How microfluidic methods can lead to better emulsion products

<u>Kelly Muijlwijk</u>, Claire Berton-Carabin and Karin Schroën Food Process Engineering Group, Wageningen University Food Valley Expo October 12th 2015

Industrial emulsification

Microfluidic methods

Surfactant adsorption

Emulsion stability

1. Surfactant adsorption – Y-junction

2. Emulsion stability - Coalescence channel

3. Emulsion stability – Microcentrifuge

Thank you for your attention

Acknowledgements

Maartje Steegmans

Thomas Krebs

See also: Schroën, K., Bliznyuk, O., Muijlwijk, K., Sahin, S., & Berton-Carabin, C. C. (**2015**). Microfluidic emulsification devices: from micrometer insights to large-scale food emulsion production. *Current Opinion in Food Science*, 3, 33–40.

