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During their lifetime, plants are exposed to a wealth of potential pathogens including 

viruses, bacteria, fungi, oomycetes, protozoa, and nematodes. These pathogens may differ 

with respect to their host range (ranging from a single species to whole genera or even a 

wide range of hosts belonging to various families of plants), the nature of infection 

(systemic or localized), the mode of perpetuation and spread (soil-, seed-, water- and air-

borne, etc.), and the organ or tissue of the plant on which they can grow, which may even 

be age-dependent. As a result of the invasion of the pathogen and the development of 

disease, normal physiology and activities of the infected parts of the host plants may be 

compromised and tissues or organs may malfunction. Consequently, morphological and 

physiological changes may occur. Eventually, such changes may lead to death of plant 

parts or, ultimately, of the entire plant (Agrios, 2005; Horst, 2013; Smith et al., 1988). 

Vascular wilts caused by xylem-colonizing pathogens are among the most 

devastating plant diseases worldwide. The microbial pathogens that cause these diseases 

are generally soil-borne and infect the plants through the roots. They traverse the cortex 

of the roots and enter the xylem vessels, after which they proliferate within the vessels, 

causing blockage of water and mineral flows that may result in wilting and death of the 

leaves, often followed by partial destruction or death of whole plants (Agrios, 2005). 

There are four fungal genera (Ceratocystis, Ophiostoma, Verticillium, and Fusarium), 

seven bacterial genera (Clavibacter, Curtobacterium, Erwinia, Pantoea, Ralstonia, 

Xanthomonas, and Xylella), and one oomycete genus (Pythium) that comprise the most 

important vascular wilt pathogens (Yadeta and Thomma, 2013).  

Verticillium wilt disease is one of the most common and destructive plant diseases 

worldwide, and is most often caused by the soil-borne fungus Verticillium dahliae Kleb. 

(Bhat and Subbarao, 1999; Pegg and Brady, 2002; Smith et al., 1988; Fradin and Thomma, 

2006). Up to today, no sexual stage has been observed for V. dahliae, but DNA evidence 

places the species within the class of Sodariomycetes in the phylum Ascomycota. Its 

vegetative mycelium is hyaline, septate, and multinucleate, while conidia are ovoid or 

ellipsoid and usually single-celled. They are borne on phialides, which are specialized 

hyphae produced in a whorl around each conidiophore, and each phialide carries a mass 

of conidia (Inderbitzin et al., 2011). Verticillium is named after this verticillate 
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(=whorled) arrangement of the phialides on the conidiophore. The fungus forms 

microsclerotia, which are masses of melanized hyphae, as resting structures in dying plant 

tissue that are able to survive for many years in the soil (Barbara et al., 2003; Goud et al., 

2003; Jabnoun-Khiareddine et al., 2010). The species can cause vascular wilt disease in 

at least 300 plant species, ranging from herbaceous annuals to woody perennials 

(Berlanger and Powelson, 2005; Klosterman et al., 2009). Control of Verticillium wilt is 

very difficult due to the long-term persistence of the pathogen in form of the 

microsclerotia in the field, the broad host range of the pathogen, and lack of curative 

measures once a plant is infected. Therefore, the use of practices to avoid spreading of the 

disease and to reduce soil inoculum levels, combined with resistant host plant cultivars if 

these are available, are the most effective measures to deal with Verticillium wilt disease 

(Barranco et al., 2010, Jiménez-Díaz et al., 1998; López-Escudero and Mercado-Blanco, 

2011). To this end, detection and accurate diagnosis of the pathogen at cultivation sites 

prior to planting, as well as early during infection is essential. Conventional methods for 

identifying plant pathogens, for instance through interpretation of visual symptoms or 

isolation and culturing of the pathogen followed by determination, are often time-

consuming, laborious and require expert knowledge. Over the last decade, advances in 

molecular methods have revolutionized detection and identification of fungal pathogens 

(Capote et al., 2012; McCartney et al., 2003; Tsui et al., 2011). Currently, PCR-based 

methods such as real-time PCR as well as array technology are increasingly used for rapid 

and sensitive detection and quantification of plant pathogens without the need for a 

culturing step (Lievens et al., 2003, 2005; 2006; Markakis et al., 2009; Mercado-Blanco 

et al., 2003; Schena et al., 2004a; Schena et al., 2004b). Improvement of the efficiency of 

such techniques, as well as the development of novel technologies to create a practical 

tool for a large-scale real-time disease monitoring under field conditions, will be valuable 

for early detection and monitoring of diseases and will facilitate decision making for 

proper management strategies to prevent the development and spread of diseases.  

Verticillium wilt is quite intensively studied in relation to herbaceous hosts, 

whereas little is known about Verticillium wilts of trees, despite their economic and 

ecological impact. Worldwide, olive-growing regions and tree nurseries are affected by 
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this disease. In Chapter 2, the most important aspects of Verticillium wilt of woody hosts 

are reviewed, with emphasis on olive, ash and maple trees. The disease cycle, 

symptomatology, genetic diversity of the pathogen and defensive reactions of infected 

plants are discussed, as well as Verticillium wilt management in trees.  

As discussed previously, detection and accurate identification of plant pathogens is 

one of the most important strategies for disease control. Early detection of pathogens in 

plant material to avoid the introduction of pathogens in non-infested growing areas is 

important. For that reason, the availability of fast, sensitive and accurate methods for 

detection and identification of pathogens is required. In the case of tree hosts, such 

methods particularly require attention for straightforward and non-destructive sampling 

methods. Chapter 3 aims to design a straightforward and efficient sampling protocol for 

reliable detection and quantification of V. dahliae in olive trees. To this end, the suitability 

of twig and leaf samples for robust and reliable detection of V. dahliae in infected olive 

trees is tested. Furthermore the minimum number of samples required for reliable 

detection using real-time PCR is determined.  

V. dahliae isolates that infect olive trees can be classified as defoliating (D) isolates 

that are highly virulent, and non-defoliating (ND) isolates that are generally less 

aggressive (Rodríguez-Jurado et al. 1993). The design of a novel, accurate method for 

accurate discrimination and sensitive detection of these V. dahliae isolates is described in 

Chapter 4. To this end, whole-genome sequences of various V. dahliae isolates were 

compared and primers that can discriminate the two groups of isolates were designed. 

Subsequently, the suitability of the primers to discriminate the two groups of isolates is 

validated.  

The distribution patterns of D and ND isolates of V. dahliae in resistant and 

susceptible olive trees provides insight into the differences in their interactions. In 

Chapter 5, changes in quantities of D and ND V. dahliae in lower, middle and top parts 

of stems of susceptible and resistant cultivars of olive trees is assessed in a time course 

experiment. Furthermore, to characterize colonization in olive trees, GFP-labelled isolates 

are used for inoculation. To illustrate the growth and spread of the pathogen in infected 
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olive trees, epi-fluorescence and confocal laser microscopy were used to characterize 

pathogen progression. 

Maple (Acer spp.) and ash (Fraxinus spp.) are popular shade trees that are affected 

by Verticillium wilt disease. Unlike infected maple trees, however, infected ash trees are 

able to recover from Verticillium wilt, even in cases of serious damage (Hiemstra and 

Harris 1998). Studying the progress of disease and proliferation and survival of V. dahliae 

in maple and ash trees provides useful information about differences in spatial and 

temporal distribution of V. dahliae colonization, as well as the recovery phenomenon. In 

Chapter 6, the progress of disease is monitored in inoculated maple and ash trees. Also 

changes in quantity of pathogen DNA is assessed in stem sections over time. Furthermore, 

the infection and changes in V. dahliae DNA quantities are analysed in xylem vessels of 

maple and ash over two consecutive years.  

Finally, in Chapter 7 the major results described in this thesis are discussed and a 

perspective on Verticillium wilt management in tree species is presented. 
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Abstract 

Olive plantations and tree nurseries are economically and ecologically important 

agricultural sectors. However, Verticillium wilt, caused by Verticillium dahliae Kleb., is 

a serious problem in olive-growing regions and in tree nurseries worldwide. In this review 

we describe common and differentiating aspects of Verticillium wilts in some of the main 

economically woody hosts. The establishment of new planting sites on infested soils, the 

use of infected plant material and the spread of highly virulent pathogen isolates are the 

main reasons of increasing problems with Verticillium wilt in tree cultivation. Therefore, 

protocols for quick and efficient screening of new planting sites as well as planting 

material for V. dahliae prior to cultivation is an important measure to control Verticillium 

wilt disease. Furthermore, screening for resistant genotypes that can be included in 

breeding programs to increase resistance to Verticillium wilt is an important strategy for 

future disease control. Collectively, these strategies are essential tools in an integrated 

disease management strategy to control Verticillium wilt in tree plantations and nurseries. 

 

Introduction 

Verticillium wilt caused by the soil-borne fungus Verticillium dahliae Kleb. is among the 

most widespread plant diseases worldwide (Pegg and Brady, 2002; Smith et al., 1988). 

Although no exact statistics exist on the number of species that are susceptible to 

Verticillium wilt, it is estimated that at least 300 (Berlanger and Powelson, 2005) to 400 

(Klosterman et al., 2009) plant species, ranging from herbaceous annuals to woody 

perennials, are affected. All woody hosts that are susceptible to Verticillium wilt belong 

to the Dicotyledonaceae, whereas monocotyledonous trees and Gymnophytes are not 

affected (Hiemstra, 1998a; Sinclair and Lyon, 2005). Olive plantations in the 

Mediterranean Basin and tree nurseries in more temperate regions are the most important 

agricultural sectors that involve woody species affected by the disease (Goud et al., 2011; 

Hiemstra and Harris, 1998; Jiménez-Díaz et al., 2012). In this review we discuss about 

Verticillium wilt disease cycle, reactions of infected plants and recovery, Verticillium wilt 

in major tree hosts and symptoms, genetic diversity and detection of the pathogen, and 

management of Verticillium in the main woody hosts. In this review we will further 
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concentrate on olive as the most important fruiting species, and on ash and maple as the 

most important shade trees affected by Verticillium wilt. 

 

Disease cycle of verticillium wilt of trees  

The life cycle of V. dahliae consists of a parasitic part, in which the fungus lives in its 

host, and a non-parasitic part, in which it is dormant. For tree hosts the disease cycle of 

V. dahliae has been described in detail by Hiemstra (1998a) (Figure 1). During the non-

parasitic phase in the soil, V. dahliae survives as microsclerotia, either as dispersed 

propagules or embedded within plant debris, mainly in the upper layer of the soil from 

where it can easily be spread by wind, rain or irrigation water, human and animal 

activities, and agricultural tools and machines (Pegg and Brady, 2002; Schnathorst, 1981; 

Wilhelm, 1950). Microsclerotia are very persistent and enable the pathogen to attack new 

plantings even after a long period without hosts being present (Wilhelm, 1955). The 

infection process of V. dahliae in woody plants is similar to that in herbaceous plants. 

Microsclerotia are stimulated to germinate by exudates from nearby growing roots 

(Schreiber and Green, 1963). V. dahliae begins its parasitic phase when hyphae from 

germinating microsclerotia penetrate roots of a susceptible host (Lockwood, 1977; 

Nelson, 1990; Schreiber and Green, 1963). Subsequently, hyphae grow inter- and 

intracellular within the root cortex to reach the xylem vessels and enter these (Prieto et 

al., 2009). Once inside the vessels, the fungus produces conidia that are carried with the 

flow of xylem fluid until they are trapped at vessel ends or protruding parts of vessel 

elements. Here they may germinate and the new hyphae penetrate into adjacent vessel 

elements (Beckman et al., 1976). At this step accumulation of V. dahliae hyphae, 

ultrastructural and chemical alterations resulting from defense reactions, and aggregates 

resulting from degradation of external material of the xylem vessel walls by fungal 

enzymatic activity may cause occlusion of V. dahliae-infected xylem vessels (Baídez et 

al., 2007; Hiemstra and Harris, 1998; Pegg and Brady, 2002). As a result, the water flow 

through the xylem is hampered and symptoms of water stress may develop. Wilting, 

defoliation and early senescence comprising chlorosis, necrosis, and stunting are the main 

symptoms of Verticillium wilt disease (Figure 2). Moreover, sparse foliage and branch 
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dieback may also occur (Berlanger and Powelson, 2005; Hiemstra, 1998a; Riffle and 

Peterson, 1989; Sinclair and Lyon, 2005). Plants with acute infections may start with 

symptoms on individual branches or on one side of the plant. This is often called 

“flagging”, which can be diagnostic for Verticillium wilt disease. Furthermore, one or 

several branches may suddenly wilt and die and buds may fail to leaf out in spring 

(Douglas, 2008; Himelick, 1968; Piearce and Gibbs, 1981).  

 

Figure 1. Disease cycle of V. dahliae in trees (Drawing by P.J. Kostense; reprinted with permission 

from Hiemstra and Harris, 1998). 
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Figure 2. Wilting and leaf necrosis in maple, ash and olive trees affected by Verticillium dahliae. 

A) Wilting and desiccation of leaves in a young maple tree (photograph: M. Keykhasaber). B) 

Necrosis and wilting of leaves in a young ash tree (photograph: M. Keykhasaber). C) Partial 

dieback of shoots and branches in an olive tree (photograph: J.A. Hiemstra). 

Finally, at late stages of the disease, microsclerotia are formed in dying tissues. The 

presence of V. dahliae in petioles of infected trees in the form of microsclerotia has been 

demonstrated for several tree species including Acer (Hiemstra 1997), Liriodendron 

tulipifera (Morehart and Melchior, 1982), olive (Prieto et al., 2009), and Fraxinus (Rijkers 

et al., 1992). Recently, formation of microsclerotia was also found inside peduncles and 

flowers of infected olive trees (Trapero et al., 2011). After incorporation of infected plant 

debris in the top soil layer and decomposition by the activity of soil-borne organisms, 

microsclerotia survive in the soil for prolonged times (years) and become available as 

inoculum for new infections (Hiemstra, 1997; Hiemstra and Harris, 1998; Morehart and 

Melchior, 1982; Rijkers et al., 1992; Tjamos and Botseas, 1987; Tjamos and Tsougriani, 

1990; Townsend et al., 1990). 
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Reactions of the infected tree and recovery 

In some cases trees infected by Verticillium wilt are able to recover from the disease 

(Hiemstra, 1998a). This phenomenon has been reported in olive as re-growth from 

existing crowns that suffer from limited dieback, or from the stem base after complete 

dieback (López-Escudero and Blanco-López, 2001; 2005; Levin et al., 2003; Markakis et 

al., 2009; Mercado-Blanco et al., 2001). Recovery has similarly been reported in Catalpa 

bignonioides as re-growth from the crown, in Acer platanoides with re-growth from stem 

base after extensive dieback (Goud et al., 2011), and in Fraxinus excelsior as re-growth 

without dieback of twigs (Hiemstra, 1998b). Differences in the severity of symptoms and 

in the percentage of recovery in tree species may be related to differences in the capacity 

to compartmentalize infected xylem. Compartmentalization was first proposed as a 

mechanism against spread of decay in trees by isolating the damaged tissues and replacing 

it by new functional tissues (Shigo and Marx, 1977). Later it was reported that this 

mechanism that causes changes in anatomy and chemistry of xylem cells also has an 

important role in protecting trees against colonization by vascular pathogens (Bonsen et 

al., 1985; Shigo, 1984; Tippett and Shigo, 1981; Manion, 2003; Smith, 2006). 

The inherent structure of the xylem and the ability of trees to produce new layers of 

xylem also has a significant impact on the potential of recovery (Banfield, 1968; 

Emechebe et al., 1974; Sinclair et al., 1981; Tippett and Shigo, 1981). In ring-porous tree 

species (like robinia and ash) most of the water transport is in the most recent growth ring. 

This implicates that as long as these trees are able to produce new xylem vessels every 

year, they can substitute their blocked vessels with new ones, which enables complete 

recovery, often even without dieback of the crown. In tree species with a diffuse-porous 

structure of the xylem, such as maple, xylem vessels in each growth ring remain functional 

for several years. Hence loss of a major part of the water transport capacity in infected 

trees often cannot sufficiently be compensated by the wood in a new growth ring. Such 

trees therefore probably show much more dieback of the aerial parts and recovery starts 

by regrowth from healthy parts of the stem base or roots (Hiemstra and herris, 1998). 

Compared to the healthy plants, however, recovered plants have higher probability of 

becoming diseased again (Goud et al., 2011).  



VERTICILLIUM WILT OF WOODY PLANTS 

21 
 

Expansion of V. dahliae in xylem vessels of infected plants triggers defense 

reactions, including ultrastructural and chemical alterations (Adams and Thomas, 1985; 

Hiemstra and herris, 1998; Pegg and Brady, 2002). In response to pathogen invasion, the 

cambium may form a barrier zone consisting of parenchymatous cells surrounding the 

infected tissues (Shigo, 1984). Host plants may also deposit coating materials (such as 

lipid-rich or fibrillar coatings) onto xylem vessel walls and into pit membranes (Robb et 

al., 1982; Street et al., 1986), and accumulate gums and form tyloses to prevent pathogen 

spread (Baídez et al., 2007).  

Infected plants also secrete phytoalexins, terpenoid and phenolic substances that have 

antimicrobial activity during pre-vascular and vascular phases of infection (Daayf et al., 

1997; Laouane et al., 2011; Mace et al., 1989; Mansfield, 2000; El-Zik, 1985; Rodríguez-

Jurado et al., 1993; Ryan and Robards, 1998; Treutter, 2006). In olive trees infected with 

V. dahliae it was observed that the level of phenolic components such as quercetin, 

luteolin aglycons, rutin, oleuropein, luteolin-7-glucoside, tyrosol, p-coumaric acid and 

catechin increased in vascular tissues during infection and colonization (Baídez et al., 

2007). Their antifungal activity against V. dahliae was substantiated by in vitro studies, 

suggesting they are involved in defense (Baídez et al., 2007).  

 

Major tree hosts and symptoms  

Olive (Olea europaea L.), a member of the Oleaceae family, is considered as one of the 

economically, socially and ecologically most important trees within olive producing 

countries. It originates from the Persian high plateau and coastal Syria, from where it was 

spread throughout the Mediterranean Basin, at first by the Greeks and Phoenicians, later 

by the Carthaginians, Romans, and Arabs. Later olive cultivation expanded to the 

Americas, South Africa, China, Japan and Australia (Blázquez-Martínez, 1996; Civantos, 

2004(. Verticillium wilt of olive was first reported from Italy (Ruggieri, 1946), and soon 

thereafter from various other regions, including California, European and Asian countries 

as well as Australia (López-Escudero and Mercado-Blanco, 2011; Navas-Cortes et al., 

2008), and Argentina (Decampo et al., 1981). Initially, Verticillium wilt mostly occurred 

in olive groves that were established in fields that were previously used for cultivation of 
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crops that are susceptible to V. dahliae, especially cotton, or in groves established next to 

fields with susceptible crops (Jiménez-Díaz et al., 1998; 2012). Currently, Verticillium 

wilt is considered as the most important disease that threatens olive production, causing 

serious concern to growers, nursery companies and the olive-oil industry throughout the 

world (López-Escudero and Mercado-Blanco, 2011; Jiménez-Díaz et al., 2012; Tsror, 

2011). This is particularly relevant since most olive cultivars are susceptible to V. dahliae 

(Antoniou et al., 2001, 2008; Cirulli et al., 2008; López-Escudero et al., 2004; López-

Escudero and Mercado-Blanco, 2011), although a number of relatively resistant 

genotypes have been identified in artificial inoculation assays (García-Ruiz et al., 2014; 

López-Escudero et al., 2004; Martos-Moreno et al., 2006) as well as in field experiments 

(López-Escudero and Mercado-Blanco, 2011; Trapero et al., 2013). However, most of the 

agronomically and economically relevant olive cultivars are susceptible or extremely 

susceptible to highly virulent strains of V. dahliae (López-Escudero and Mercado-Blanco, 

2011).  

In olive, two forms of Verticillium wilt have been distinguished: an acute form 

(‘apoplexy’) and a chronic form (‘slow decline’) (Blanco-López et al., 1984; Jiménez-

Díaz 1998; Tosi and Zazzerini, 1998). The ‘apoplexy’ form, which mainly occurs in late 

winter and early spring, is characterized by rapid outbreaks involving severe wilting of 

main and secondary branches. Leaves first become chlorotic, and then turn light-brown 

and roll back towards the abaxial side while remaining attached to the branches. 

Ultimately, a rapid dieback of twigs, shoots and branches takes place, especially in young 

plants, which may result in death of the entire tree (Jiménez-Díaz, 1998; Jiménez-Díaz et 

al., 2012; López-Escudero and Blanco-López, 2001). The ‘slow decline’ syndrome is 

characterized by necrosis of inflorescences, chlorosis of leaves and heavy defoliation of 

green or dull green leaves. On infected plants, flowers mummify and remain attached to 

the shoots. The bark of affected shoots may become reddish-brown, and the inner vascular 

tissues show a dark-brown discoloration. These symptoms usually begin in spring and 

slowly progress to early summer (Jiménez-Díaz, 1998; Jiménez-Díaz et al., 2012; López-

Escudero and Mercado-Blanco, 2011). 
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In addition to olive groves, Verticillium wilt is also a major problem in shade tree 

nurseries in more temperate regions, and can occur also in landscape plantings, especially 

at locations where susceptible field crops were grown previously (Hiemstra and Harris, 

1998; Riffle and Peterson, 1989). Maples (Acer spp.) are popular trees for residential and 

commercial landscapes, but generally very susceptible to Verticillium wilt (Gleason and 

Hartman, 2001; Harris, 1998; Frank et al., 2012). Among the most frequently grown 

maple species, Norway maple (A. platanoides) is known as a highly susceptible species 

on which most of the investigations on Verticillium wilt of maple have been conducted 

(Harris, 1998; Townsend et al., 1990). This wilt can induce a range of symptoms in maple 

include leaf yellowing, curling, and wilting. Leaf scorch can also occur at leaf margins. 

Leaves on one side of the tree or on just an individual branch may suddenly wilt and die. 

Leaves are yellowish and smaller than normal. Also a dark olive-green discolouration 

develops in the sapwood that is more likely to be present in the larger branches than in the 

smaller twigs, and is more common near the bases of larger, symptomatic branches. 

Infected shoots may die back that leads to the death of branches, and possibly whole tree 

(Frank et al., 2012; Harris, 1998; Pscheidt and Ocamb, 2013a). 

Ash (Fraxinus spp.), like olive a member of the Oleaceae family, is another widely 

cultivated genus with tree species that are well-known for their high quality timber and 

ornamental value. Several species in this genus, especially common ash (F. excelsior) 

which is the most widely distributed species in Europe (Fraxigen, 2005), may be severely 

affected by Verticillium wilt (Heffer and Regan, 1996; Hiemstra, 1998; 1998b; Worf et 

al,. 1994). Wilting and defoliation are the earliest symptoms of this disease on ash trees. 

Leaves may turn to a lighter greyish green colour or complete necrosis that can affect the 

entire crown or only part of it. Ash rarely produces the wilting and discoloration of 

sapwood common to other trees such as maple. However, some affected trees show a 

discoloration in the cambial zone, the wood or the pith of stems or branches. In summer 

after the first heat stress of the year upper branches may die back in a random or one-sided 

distribution on the tree (Hiemstra, 1998; Pscheidt and Ocamb, 2013b). In young trees, 

although death of affected trees may occur, most of the affected trees recover. Older trees, 

however, show more gradual disease progress and decline over a period of months or even 

http://en.wikipedia.org/wiki/Oleaceae
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years. This disease may occur in all kinds of plantations: nurseries, roadside, amenity and 

recreational plantations as well as forest stands of ash (Hiemstra, 1995a; 1995b).  

Apart from the above-mentioned major tree hosts, V. dahliae can attack fruit tree 

species including stone fruits, pistachio and cocoa, as well as other shade tree species 

including well known genera as Catalpa, Tilia, Ulmus and Robinia (Hiemstra, 1998a, 

Sinclair and Lyon, 2005).  Wilt, leaf curling or dying, abnormal red or yellow colour of 

entire leaves, leaf scorch, defoliation, dieback and death, and sapwood discolouration are 

common symptoms in most of these woody hosts infected with Verticillium wilt 

(Hiemstra and harris, 1998; Sinclair et al., 2005; Stipes and Hansen, 2009). Eventually, 

particularly infected young trees may die slowly over a period of several years or suddenly 

within a few weeks (Adams et al., 2010; Douglas, 2008; Dykstra, 1997; Heimann and 

Worf, 1997).  

 

Genetic diversity and detection of V. dahliae  

Little information is available about variation of the virulence among V. dahliae isolates 

causing wilt in trees. An exception to this is the classification of isolates from olive as 

defoliating (D) and non-defoliating (ND) isolates (Rodríguez-Jurado et al., 1993). This 

dichotomy was first described by Schnathorst and Mathre (1966) for Verticillium 

infections on cotton (Gossypium hirsutum L.). Isolates belonging to the D pathotype are 

highly virulent and cause complete defoliation of affected plants, whereas isolates 

belonging to the ND pathotype are generally less aggressive and cause milder wilt 

symptoms that do not include defoliation (Schnathorst and Mathre, 1966). Interestingly, 

although isolates of both types cause defoliation in olive, isolates that belong to the D 

pathotype on cotton are also highly virulent on olive, while isolates that belong to the ND 

pathotype on cotton are also less virulent on olive (Rodríguez-Jurado et al., 1993; 

Schnathorst et al., 1971). However, despite the high virulence of isolates of the D 

pathotype on cotton and olive, different levels of virulence have been observed on other 

hosts. Moreover, on particular plant species D isolates can be highly virulent without 

inducing defoliation (Jiménez-Díaz et al., 2006; Korolev et al., 2008; Schnathorst and 

Mathre, 1966). So far, presence of the D pathotype has been reported in North and South 
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America, Europe, the Middle East, and Asia (Jiménez-Díaz et al., 2012). However, no 

information is available about the differential effects of these two types on other woody 

hosts. 

Differentiation of V. dahliae pathotypes infecting cotton and olive from diverse 

regions has been conducted through the use of molecular markers (Mercado-Blanco et al., 

2001; 2003; Pérez-Artés et al., 2000). Pérez-Artés et al., (2000) designed PCR primers 

specific for D and ND isolates of V. dahliae, based on sequences of pathotype-associated 

RAPD bands, and tested them on 67 V. dahliae isolates from cotton and olive collected 

from southern Spain, China, Italy and the USA. Subsequently, nested-PCR primers were 

designed and optimized for specific detection of D and ND pathotypes in planta and in 

soil samples (Mercado-Blanco et al., 2002; Pérez-Artés et al., 2005). However, although 

these primers have worked for several isolates tested worldwide, it was found that they 

do not produce the desired amplicon on all V. dahliae isolates (Collins et al., 2005) that 

can be explained by the high genetic variability that exists among V. dahliae isolates (De 

Jonge et al., 2012; 2013).  

PCR based assays for detection of V. dahliae have been developed by several authors; 

for detection in soil (e.g. Pérez-Artés et al., 2005; DeBode and Van Poucke, 2011; 

Bilodeau et al., 2012) as well as for detection in plant samples (e.g. Schena et al., 2004; 

Karajeh and Masoud, 2006; Gayoso et al., 2007). So far, however, these protocols have 

not been developed into procedures for routine screening of planting stock or fields to be 

planted with crops susceptible to Verticillium wilt. If field soils are screened before 

planting this usually is done using laborious and time consuming wet or dry sieving and 

plating techniques (Hiemstra, 2015; Termorshuizen, 1998).  

Another way to characterize genetic diversity in fungi is to classify individual 

isolates in vegetative compatibility groups. According to the ability of individual fungal 

strains to undergo hyphal anastomosis and form stable heterokaryons they can be 

classified into vegetative compatibility groups (VCGs), such that compatible isolates are 

placed in the same VCG group (Joaquim and Rowe, 1990; Katan, 2000; Leslie, 1993). V. 

dahliae isolates have been classified into six VCGs (VCG1 through VCG6). VCG1, 

VCG2 and VCG4 were further divided into subgroups A and B based on the frequency 
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and vigour of complementation (Chandelier et al., 2003; Chen, 1994; Dervis et al., 2010; 

Goud and Termorshuizen, 2002; Jiménez-Díaz et al., 2006; Jiménez-Díaz et al., 2011; 

Jiménez-Díaz et al., 2012; Korolev et al., 2000; 2001; 2008; López-Escudero and 

Mercado-Blanco, 2011). So far, vast numbers of V. dahliae isolates from maple, ash, olive 

and some other woody hosts in USA and Europe have been analysed through 

complementation tests and classified into VCG1A, VCG1B, VCG2A, VCG2B and 

VCG4B (Chandelier et al., 2003; Chen, 1994; Hiemstra and Rataj-Guranowska, 2000; 

Jiménez-Díaz et al., 2011; Jiménez-Díaz et al., 2012; Neubauer et al., 2009). Recently, 

however, Papaioannou and Typas (2015) showed that although VCGs may be helpful in 

characterising different isolates, they are genetically not completely isolated.  

 

Management of the disease 

Control of Verticillium wilt is very difficult due to the characteristics of the pathogen and 

the nature of the infection, especially the long survival time of microsclerotia in soil, the 

long lifetime of a tree with continuous exposure to inoculum present in the soil, and the 

absence of methods to cure infected trees are important factors. Consequently, the use of 

an integrated strategy is the best way to deal with this disease. This includes the 

employment of resistant cultivars or rootstocks, cultural practices (i.e., avoid 

intercropping with V. dahliae susceptible crops; minimise cultivation practices that 

damage the roots; avoid contaminated equipment; and avoid irrigation that may 

disseminate the pathogen) to avoid spreading of the disease, and measures (i.e., 

disinfestation of V. dahliae-infested soil with fumigants, soil solarisation) to avoid build-

up of soil inoculum and to reduce soil inoculum levels wherever possible (Barranco et al., 

2010, Jiménez-Díaz et al., 1998; López-Escudero and Mercado-Blanco, 2011; Tjamos and 

Jiménez-Díaz, 1998). Green amendments or biological soil infestation would be also a 

promising method for control of Verticillium wilt in tree nurseries, but it is a costly 

method and rely on soil quality (Blok et al., 2000; Hiemstra et al., 2013). Moreover, 

accurate quantification of inoculum in soil would provide valuable information for disease 

prediction, since density of inoculum in soil is correlated with final disease incidence 

values (López-Escudero and Blanco-López, 2007). Replacement of diseased trees with 
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non-host plants might also be an environmentally friendly management solution to control 

Verticillium wilt. Studies on replacement of dead or severely diseased olive trees with 

apple trees revealed that this would be an appropriate approach in an integrated disease 

management to control Verticillium wilt disease (Karajeh and Owais, 2012). Use of 

biological control agents, including beneficial bacteria is of the other practices to manage 

Verticillium wilts (Prieto et al., 2009). However, the use of resistant cultivars and the 

screening of new planting sites and planting stock for infection by V. dahliae are the most 

efficient tools for control of Verticillium wilt of trees (López-Escudero and Mercado-

Blanco, 2011; Tjamos and Jiménez-Díaz, 1998).  

 

Conclusion  

Over the last decades, spreading of Verticillium Wilt of olive was associated with the 

establishment of new olive orchards on infested soils, the use of infected plant material, 

and the spread of highly virulent pathogen isolates. Therefore, improving the resistance 

of cultivars, as well as protocols for fast and reliable detection of V. dahliae in planting 

stocks and at planting sites are of the highest importance for establishing an integrated 

disease management strategy. PCR-based methods for sensitive and accurate detection 

and discrimination of V. dahliae isolates allow for the rapid and reliable assessment of 

soil contaminations and plant infections by V. dahliae. Presently used methods, however, 

are not efficient enough and need to be improved for use in standard screening protocols. 

Furthermore, revealing the genetics and molecular background of resistance mechanisms, 

and of the recovery phenomenon, may provide essential information that can be used in 

breeding programs to increase the natural resistance of trees against Verticillium wilt. 

Collectively, these strategies are essential tools in an integrated disease management 

strategy to control Verticillium wilt in tree plantations and nurseries. 
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Abstract 

Verticillium wilt caused by Verticillium dahliae Kleb. is one of the most threatening 

diseases of olive worldwide. For pre-planting and post-planting control of Verticillium 

wilt in olive trees, availability of a rapid, reliable and non-destructive method for detection 

of V. dahliae is essential. For such a method, suitable and easily performed sampling and 

efficient processing of samples for extraction of DNA are necessary. In this study, we 

assessed the suitability of young twig and leaf samples of olive trees that are easy to collect 

and extract DNA for the detection of V. dahliae in routine procedures. The lower and top 

parts of twigs as well as leaves from infected olive trees were screened for V. dahliae 

infection and distribution using real-time PCR. We observed that the biomass of V. 

dahliae detected in individual twigs was highly variable, but there was no significant 

difference between mean quantities of V. dahliae DNA detected in top and lower parts of 

twigs. It was furthermore demonstrated that analysis of combined samples containing 

DNA extracted from five twigs of an infected tree accurately detected the presence of the 

pathogen. Similarly, testing combined samples of 5-10 leaves enabled reliable detection 

of the pathogen in an infected tree. The development of this assay provides for reliable 

detection of V. dahliae in infected olive trees that can aid in management decisions for 

the implementation of integrated disease management. 

 

Introduction 

Olive (Olea europaea L.) is one of the most ancient cultivated plant species and has a 

huge economic and social importance in olive-producing countries worldwide (Blázquez-

Martínez, 1996; Civantos, 2004). Verticillium wilt caused by the fungus V. dahliae Kleb. 

is a major disease of this tree crop, causing serious concern to growers, nursery companies 

and the olive-oil industry (Jiménez-Díaz et al., 2012; López-Escudero and Mercado-

Blanco, 2011). The outbreak of this disease was first reported in Italy in 1946 and soon 

thereafter in California, European and Asian countries and Australia (López-Escudero and 

Mercado-Blanco, 2011), and most recently in Argentina (Ladux et al., 2014). Currently, 

Verticillium wilt is considered one of the most important disease of olive with most olive 
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cultivars being susceptible to V. dahliae (Jiménez-Díaz et al., 2012; López-Escudero and 

Mercado-Blanco, 2011).  

V. dahliae is a soil-borne fungus that can survive as microsclerotia in the soil or on 

plant debris for prolonged periods of time (Pegg and Brady, 2002). The presence of root 

exudates from nearby growing roots of host plants stimulates germination of 

microsclerotia which gives rise to the formation of infective hyphae. The fungus 

penetrates the roots of the host plants, and once inside the root of a susceptible plant the 

fungus grows into the xylem vessels where it produces conidia and spreads upward by a 

combination of passive movement of conidia with the transpiration stream and active 

growth of hyphae into neighbouring xylem vessels. Collectively, this enables rapid 

colonization of the above-ground parts of tree hosts by the fungus (Hiemstra, 1998; Pegg 

and Brady, 2002). As a result of the presence of the fungus and the defence reactions of 

the infected plant, such as secretions of gums and gels into xylem vessels as well as the 

formation of tyloses, xylem vessels may be occluded. This reduces water transport 

capacity, triggering the typical wilt symptoms, but also defoliation and dieback of shoots 

or even death of complete trees (Baídez et al., 2007; Hiemstra, 1998; Pegg and Brady, 

2002). 

Control of Verticillium wilt of olive is difficult, particularly due to the long survival 

time of microsclerotia in soil, the long lifetime of olive trees with continuous exposure to 

inoculum present in the soil, the broad range of hosts which enhances the pathogen 

survival capacity, and the absence of methods to cure infected trees (López-Escudero and 

Mercado-Blanco, 2011; Tjamos, 1993; Tjamos and Jiménez Díaz, 1998). Therefore, the 

best way of controlling Verticillium wilt in olive is implementation of an integrated 

disease management strategy. Using pathogen-free plant material, especially when 

planting in areas free of V. dahliae, and swift identification of diseased trees aiming to 

minimise damage by preventing an outbreak occurring or stopping Verticillium wilt from 

spreading further are essential elements in such a strategy (Barranco et al., 2010; 

Hiemstra, 2015; López-Escudero and Mercado-Blanco, 2011). To this end, a rapid, 

reliable and preferably non-destructive method for detection of V. dahliae, particularly in 

symptomless infected plants, is highly desired.  
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Traditional methods for detection of fungi from diseased plants involve plating of 

small subsamples of infected plant material onto agar plates and identification by visual 

inspection of the resulting colonies. Such plating assay procedures are laborious and time-

consuming, and therefore not suitable for routine testing of large numbers of samples. 

Detection of V. dahliae using plating assays takes at least 7-10 days (Termorshuizen, 

1998). However, real-time PCR technology has allowed the design of fast and sensitive 

methods for detection and quantification of DNA of pathogens. The use of real-time PCR 

for detection and quantification of V. dahliae in samples from diseased olive trees has 

been reported by several authors (e.g. Ceccherini et al., 2013; Gramaje et al., 2013; 

Lievens et al., 2006; Markakis et al., 2009 Mercado-Blanco et al., 2003).  

For a robust and reliable detection of the pathogen in practical disease management 

using PCR techniques, suitable and easily performed sampling and efficient processing of 

samples for extraction of DNA are required. Arguably, young twigs and leaves are the 

most appropriate parts for sampling, due to the ease of collection and suitability for DNA 

extraction; and the non-destructive character of such a sampling method. However, it is 

currently unknown whether V. dahliae will always be present in these tissues in every 

infected tree. Moreover, as a result of the way in which infected trees are colonized, i.e. 

through conidia transported by the sapstream in the xylem, the resulting distribution of V. 

dahliae may be discontinue and parts of symptomatic trees may remain free of the fungus.  

Thus, information on the distribution of V. dahliae within these parts of infected olive 

trees may help to design an appropriate and efficient sampling method for reliable 

detection of the pathogen. Therefore, we investigated the distribution of V. dahliae in 

young twigs and leaves of naturally infected olive trees by real-time quantification of V. 

dahliae DNA, aiming to assess the suitability of twig and leaf samples to be used in 

routine procedures to screen for V. dahliae infection. Additionally, we investigated the 

possibility of combining individual twig or leaf subsamples in one analysis per tree for 

reliable detection of V. dahliae DNA using real-time PCR. The final aim was to design an 

easy and efficient sampling protocol for reliable detection of V. dahliae in olive trees that 

can provide information for diagnosis-based strategies to manage Verticillium wilt in 

olive production. 
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Materials and methods 

Plant material and sampling. This study was carried out with samples from olive trees 

(Olea europaea L.) from five olive cultivars (table 1) showing symptoms of Verticillium 

wilt. Samples were collected in Spain, Portugal and Greece in different seasons of the 

years 2012 and 2013. In total 58 trees were sampled, organized in 6 groups according to 

the region and date of sampling (Table 1).  

Table 1. Overview of the olive trees used in this study. 

Sample 

groupa  

number of 

trees 

evaluated 

trees 

positiveb for 

V. dahliae  

% samples 

positive for 

V. dahliae 

after PCR 

testing 

% samples 

positive for 

V. dahliae 

after 

standard 

plating 

Cultivar 
Sampling 

date 
Country 

0 14 11 52 12 Picual 
April 

(2012) 
Spain 

1 10 10 100 n.d.c 
Cobrançosa, 

Galega 

February 

(2013) 
Portugal 

2 5 5 100 n.d. Picual 
April 

(2013) 
Spain 

3 6 6 100 0 Picual 
September 

(2012) 
Spain 

4 14 5 36 n.d. Picual 
August 

(2013) 
Spain 

5 9 9 100 88 
Konservolia, 

Magaritikes 

October 

(2012) 
Greece 

 

a    Samples collected by the last author as part of the work in the EU-Vertigeen project 

(www.vertigeen.eu).   
b After PCR testing of 5 individual twigs per tree (groups 1-5), and 2-6 twigs per tree (group 

0) (detection limit 0.001 ng V. dahliae DNA). 
c        No data (not tested). 

 

From each tree, 5-10 twigs (about 50-60 cm. in length) with leaves attached to them were 

collected from symptomatic branches in the middle region of the crown at different sides 

of the trees (Figure 1A). Samples were collected in labelled plastic bags (1 sample per 

bag) kept out of the sun during the field work and shipped to the laboratory in the 

http://www.vertigeen.eu/
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Netherlands by courier. Temperature recorders included in one of the shipments (Table 1, 

group 4) showed that temperatures during transport did not exceed 32 ºC and were below 

30 ºC for most of the time. At the laboratory the samples were stored in a cold room (4 

ºC) until processing, usually within 4-6 weeks from collection.  

Figure 1. Sampling of olive trees. A) Adult olive tree as a representative of the sampled trees, the 

rectangle indicates the part of the crown that was sampled. From this part of the tree, 5 twigs were 

collected from different sides of the tree. B) Picture of a representative twig. The ovals indicate the 

lower (about 50 cm from top) and top (about 5 cm from top) parts of the twig that were used for 

subsequent analyses. C) Adult olive tree with serious symptoms in only part of the crown whereas 

other parts of the crown remain free of symptoms. 

DNA isolation. For DNA isolation from twigs, 300-400 mg of woody parts from top 

(about 5 cm from the top) and lower parts (about 50 cm from the top) of the twigs were 

used (Figure 1B). First 10 cm long pieces of the top and lower part of a twig were washed 

under running tap water for 1-2 minutes and then dried for a few minutes on sterile paper. 

Then, the bark was removed under sterile conditions and small (about 2-5 mm) pieces of 

xylem tissue were taken by using a sterilized (70% alcohol) scalpel and put in a 2 ml tube 

containing 1 ml of lysis buffer AP1 of the DNeasy Plant Mini Kit (Qiagen, Hilden, 

Germany) and 4-5 stainless steel beads (3.2 mm diameter, BioSpec, US/Canada). Next, 

the tubes were incubated for 15-30 min at 65˚C and then shaken in a Retsch® mixer mill 

(MM 400) for 15 minutes at 30 Hz. After centrifugation at 10,000 rpm for 5 minutes, 400 

µl of suspension was used for total genomic DNA extraction using the DNeasy Plant Mini 

Kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. Extracted 

DNA was quantified using a BioPhotometer (Eppendorf AG, Hamburg, Germany) and 

concentrations were equalized by adding elution buffer or DNase-free water. For DNA 
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isolation from leaves, samples were ground in liquid nitrogen to a fine powder using a 

mortar and pestle (Dellaporta et al. 1983). Next, about 100-150 mg of powder was 

transferred to a 2 ml tube with 1 ml of lysis buffer AP1 of the DNeasy Plant Mini Kit 

(Qiagen, Hilden, Germany) for DNA extraction according to the manufacturer’s 

instructions.  

Quantification assay. Real-time PCR using a V. dahliae-specific primer pair designed 

using the internal transcribed spacer (ITS) region (Van Doorn et al., 2009) (VerDITSF: 

5’-CCGGTCCATCAGTCTCTCTG-3’, VerDITSRk: 5’- 

CACACTACATATCGCGTTTCG-3’) was performed to quantify the amount of V. 

dahliae DNA. These primers in previous work were shown to be highly specific to V. 

dahliae as they only reacted with V. dahliae isolates but neither with other Verticillium 

species (albo-atrum, longisporum, tricorpus) nor with a series of common plant 

pathogenic or soil inhabiting fungi (Van Doorn et al., 2009; Hiemstra et al. 2013). 

Amplification was carried out in a 25 µl final reaction volume containing: 1.5 µl of DNA 

extract, 10 nM of each primer, 12.5 µl of SYBR Green Supermix (2X) and sterile 

nuclease-free water to reach the appropriate volume. Each run included a positive control 

containing pure V. dahliae (isolate V117; supplied from the collection of the Laboratory 

of Plant Pathology, Department of Agronomy, University of Córdoba) DNA, a negative 

control containing nuclease-free water instead of DNA, as well as a negative control 

containing DNA isolated from leaves collected from a healthy ornamental olive tree in 

the Netherlands. At least two simultaneous replicates were carried out for each sample. 

All real-time PCR reactions were performed in a Max 3000PTM STRATAGENE real-time 

PCR machine. The real-time PCR program consisted of an initial step of denaturation for 

10 min at 95˚C, followed by 45 cycles of 15 sec at 95˚C, 40 sec at 62˚C, and 40 sec at 

72˚C. A melting curve program was also run for which measurements were made at 0.5˚C 

temperature increments every 10 s within a range of 56-94˚C to determine signals from 

specific and non-specific products. Based on the melting profiles obtained from 

preliminary runs the reading step for fluorescence emission was set at Tm = 81˚C for all 

runs (figure 2a). To determine the quantity of V. dahliae, a standard curve was generated 

by plotting the logarithm of known DNA concentrations of a ten-fold dilution series of 
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DNA (10 ng/µl) of V. dahliae isolate V117, against the threshold cycle (Ct) obtained in 

the real-time PCR assays. A Ct of 36 (0.001 ng of DNA according to the standard curve) 

was considered to be the threshold value in the standard curve suitable for quantification 

(Figure 2b). Primers specific for the plant cytochrome oxidase (COX) gene (Weller et al., 

2000) were used to quantify the amount of plant DNA for calculation of the relative 

quantity of V. dahliae DNA in the tested samples based on the quantity of V. dahliae DNA 

(ng) in 100 ng total DNA (including pathogen and plant DNA) isolated from infected 

plant materials. Mean values were compared using T-test analysis and the Fisher protected 

LSD at P=0.05. 
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Figure 2. Melting and standard curves obtained from real-time PCR assays. In melting curve (a), 

measurements were made at 0.5˚C temperature increments every 10 s within a range of 56-94˚C 

to determine signals from specific and non-specific products. Based on the melting profiles 

obtained from preliminary runs the reading step for fluorescence emission was set at Tm = 81˚C for 

all runs. Standard curve (b) obtained by plotting the logarithm of known DNA concentrations of a 

ten-fold dilution series of DNA (10 ng/µl) of V. dahliae isolate V117 against the Ct values obtained 

from real-time quantitative PCR assays. This curve served to calculate the amount of V. dahliae 

DNA in total genomic DNA samples extracted from infected olive tissues. 

 

Plating assay. To isolate V. dahliae, stem samples of 10 cm were first washed under 

running tap water. After drying, the bark was peeled off and chips from xylem sheets of 

the two most recent growing years were taken and disinfected in 10% chloramine-T 

hydrate 98% for 1 minute. Afterwards, wood chips were washed with sterile water for 30 

seconds and dried on Whatman filter paper. Chips then were placed onto PDA plates that 
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were incubated at 24ºC in the dark. After 7 days the number of wood chips yielding V. 

dahliae colonies was counted. 

 

Results 

Efficiency of real time PCR in comparison to plating assay. In a preliminary experiment 

60 shoot samples collected from 1 healthy and 13 diseased trees varying in disease 

severity (Table 1, group 0) were examined for presence of V. dahliae using both real-time 

PCR and plating assays. By plating assay V. dahliae was detected in only 7 samples 

(12%), all from trees with severe disease symptoms, whereas by real-time PCR the 

pathogen was detected in 31 samples (52 %) including samples from trees with moderate 

of even little symptoms of Verticillium wilt (Table 2). The efficiency of reactions based 

on the slope of standard curve (-3.150) was 107.7% (i.e., calculated from the equation in 

Figure 2b), indicating the high-efficiency of the real-time PCR assay in our study. 

Samples from a healthy tree were negative with both methods. These results indicate that 

the PCR method we used has a higher sensitivity for detection of V. dahliae in olive shoot 

samples than the standard plating assay, especially in trees showing only little or moderate 

symptoms. However, the percentage of Vd-positive samples per tree varied strongly, from 

17% (1 out of 6) till 100% (6 out of 6) suggesting that for a reliable result several shoot 

samples per tree should be analysed.   

 

Table 2. Detection of V. dahliae in shoot samples from diseased olive trees with varying disease 

severity (table 1, group 0) by means of real-time PCR and standard plating assays. 

Disease class trees Vd-pos after platinga Vd-pos after real time PCRa 

Healthy 1 0  ( 0/3 ) 0  (  0/3 ) 

Slight symptoms 2 0  ( 0/5 ) 1  (  1/5 ) 

Moderate 

symptoms 

3 0  (0/18) 3  ( 2/18) 

Severe symptoms 8 5  (7/34) 7  (28/34) 

total 14 5  (7/60) 11 (31/60) 
 

a   First figure is number of Vd-positive trees; between brackets the number of Vd-positive 

samples and the total number of samples that was examined. 
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Identification of infected trees. All twigs (five per tree) collected from 44 trees in five 

sampling groups (Table 1, groups 1-5) were tested individually with real-time PCR 

through analysis of one sub-sample per twig containing fragments from different parts of 

that twig (Table 1, groups 1-5). Results from this analysis confirmed the presence of V. 

dahliae in 35 out of the 44 sampled trees (i.e. the fungus was detected in at least one 

sample per tree). This again was substantially more than the number of infected trees 

detected by standard plating assays that were performed in parallel for part of the trees; 

out of the 15 sampled tree from groups 3 and 5 that were positive for V. dahliae after PCR 

testing only from 8 trees V. dahliae was recovered by the plating assay (Table 1). The 

trees in which V. dahliae was not detected, likely because of absence of V. dahliae in the 

sampled twigs or because its amount was lower than the threshold value (0.001 ng of 

DNA) were discarded from further research. 

Presence of V. dahliae in individual twigs. To investigate the distribution of V. dahliae 

in twigs of the infected trees identified in the first step, 55 twigs from 11 infected trees (2, 

2, 1, 5 and 1 tree(s) respectively from the groups 1-5 in Table 1) were analysed for V. 

dahliae colonization. To this end, top (about 5 cm from the top) and lower parts (about 50 

cm from the top) of five twigs per tree were analyzed separately with real-time PCR. At 

least two technical repeats were run for each DNA sample. The analysis of mean values 

of the real-time PCR results for individual samples revealed that V. dahliae quantities 

were highly variable between and within shoots. Out of the 110 samples that were 

examined, 28 individual samples (25%) yielded no V. dahliae DNA and many samples 

yielded very low levels of V. dahliae DNA, whereas in 14 out of 110 samples V. dahliae 

DNA levels over 5% up to almost 50% of total DNA were detected (Figure 3). Moreover, 

although many of the differences between samples from top and lower parts of a twig 

were statistically significant, there was no consistent pattern of one of the two of sample 

types (top or lower part of twigs) containing higher amounts of V. dahliae DNA.  

Detection of V. dahliae in combined twig samples. Because of the high variation in the 

amount of V. dahliae DNA detected in individual twig samples of infected trees, 

combined samples from five twigs per tree were processed and used for V. dahliae 
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detection. To this end, for all 35 infected trees, DNA samples isolated from five individual 

twigs per tree were mixed in equal amounts, separately for the top and lower parts, and 

used for quantification of V. dahliae DNA. In this manner, V. dahliae DNA was detected 

in all trees, both in the combined samples from the lower and from the top parts. 

Figure 3. Mean quantities of V. dahliae DNA (ng) in 100 ng of total DNA extracted from 

individual twigs. From each tree, the top (about 5 cm from top) and lower (about 50 cm from top) 

parts of five individual twigs were analysed separately. A triangle () indicates that V. dahliae 

DNA was not detected (threshold value 0.001 ng of DNA according to the standard curve). Each 

bar is the mean value of at least two replications for each DNA sample. Error bars show standard 

deviation. An asterisk indicates trees for which significantly different quantities of V. dahliae DNA 

were detected in lower and top parts (P=0.05). 

 

Again, although for some of the trees the differences between amounts detected in top and 

lower parts were significant, no consistent pattern of top or lower parts yielding more V. 

dahliae DNA was detected and in most of the trees no significant differences were 

observed in the mean quantities of V. dahliae DNA detected in top and lower parts of 

twigs (P=0.05) (Figure 4). These results show that twig samples can be used for detection 

of V. dahliae infected olive trees, and that analysis of mixed DNA samples from top or 

lower parts of five twigs per tree gives reliable results whereas the results from individual 

twigs are much more variable. In our study testing samples from 35 infected trees for 

presence of V. dahliae, analysis of just one sample per tree (top or bottom part of a twig) 

gave 25% negative results, combined top and bottom parts from one twig per tree gave 

10% negative results and analysis of combined top or bottom parts from 5 different twigs 
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per tree gave 0% negative results. We subsequently investigated if V. dahliae detection 

could be made more time efficient by combining samples of five twigs per tree prior to 

DNA extraction. To this end, 25 twigs sampled from five infected trees were used, and 

after combining subsamples taken from top or lower parts of five twigs per tree, total 

DNA was isolated. Then, all DNA samples were analysed using real-time PCR for 

detection of V. dahliae DNA. Interestingly, V. dahliae DNA was detected in all DNA 

samples from combined twigs (Figure 5) and the amounts of V. dahliae detected were 

comparable to mean quantities of 5 individual twigs (figure 4). Similar to the results of 

individual twigs statistical analysis did not show significant differences between results 

for samples from top and lower parts of shoots for most of the samples (P=0.05) (Figure 

5). Hence, detection of V. dahliae after extraction of DNA from combined samples of five 

twigs would be as robust as detection in mixed DNA samples extracted from five 

individual twigs, and significantly reduces the amount of samples that need to be 

processed and extracted in order to reliably detect V. dahliae in infected olive trees.   

Figure 4. Mean quantities of V. dahliae DNA (ng) in 100 ng of mixed DNA samples from lower 

(about 50 cm from top) and top (about 5 cm from top) parts of twigs (Figure 1) as detected after 

mixing equal amounts of DNA isolated separately from five twigs per tree. Top and lower parts of 

twig samples of 35 trees were separately analysed. Each bar is the mean value of two replications 

for each DNA sample with standard deviation. Means of the results of top and lower parts were 

compared for each tree separately, based on T-test analysis. An asterisk indicates trees for which 

significantly different quantities of V. dahliae DNA were detected in lower and top parts (P=0.05). 
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Figure 5. Quantities of V. dahliae DNA detected in 100 ng of mixed DNA samples extracted from 

top (about 5 cm from top) and lower (about 50 cm from top) parts of five individual twigs (A bars), 

and in 100 ng DNA extracted from combined samples of five twigs (B bars) (Figure 1). Each bar 

is the mean value of at least three replications for each DNA sample. Error bars show standard 

deviation. Mean quantities of V. dahliae DNA in mixed DNA samples extracted from five 

individual twigs and from combined samples of five twigs were compared, based on T-test 

analysis. An asterisk indicates cases where the quantities of V. dahliae DNA detected by the two 

approaches were significantly different (P=0.05).  

 

Detection of V. dahliae in leaves. To examine the use of leaves of infected olive trees as 

a substrate for reliable detection of V. dahliae, 40 individual leaves randomly collected 

from symptomatic twigs of four infected olive trees (10 leaves from each tree) were tested. 

DNA was extracted from all individual leaves and analyzed with real-time PCR. At least 

two repeats were run for each DNA sample. Although V. dahliae DNA was detected in 

most of the samples, analysis of mean values of real-time PCR results showed that, like 

we observed for individual twigs, quantities of V. dahliae appeared to be highly variable 

between individual leaves of the same tree (Figure 6). Therefore, we assessed the 

suitability of combined samples from sets of 5, 10, 15, 20 or 25 leaves, randomly collected 

from symptomatic twigs of three infected trees, for detection of V. dahliae DNA. For each 

tree we tested at least three replications of each size set of leaves. For each DNA sample 
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extracted from each set of leaves two repeats were run in real-time PCR assays. V. dahliae 

DNA was readily detected in all sets of leaves. Also mean quantities of V. dahliae DNA 

detected after repeated testing of different sets of leaves from the same tree showed less 

variation than the variation that was observed after testing individual leaves of the same 

tree. This indicates that testing of combined samples of leaves is appropriate for fast and 

reliable detection of V. dahliae in infected trees. Furthermore, statistical analysis did not 

show significant differences between different set sizes that were tested for the same tree 

(Figure 7).  Notably, as the combination of 5 or 10 leaves already accurately betrays fungal 

presence, samples composed of 5-10 leaves collected from symptomatic branches are 

considered sufficient for detection of V. dahliae in infected olive trees.  

 

Figure 6. Quantities of V. dahliae DNA (ng) in 100 ng of total DNA extracted from individual 

leaves that were randomly sampled from symptomatic branches of four infected trees. From each 

tree 10 leaves were assayed separately. Triangles () indicate that the V. dahliae DNA failed to 

be detected. Each bar is the mean value of at least two replications. Error bars show standard 

deviation. 
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Figure 7. Quantities of V. dahliae DNA (ng) in 100 ng of total DNA extracted from sets consisting 

of 5, 10, 15, 20 or 25 leaves from infected olive trees. Leaves were randomly collected from 

symptomatic branches of three infected trees. Each bar is the mean value of at least 3 independent 

real-time PCR assays for different sets of leaves.  The same letters above bars indicate that there 

were no significant differences between different sets of leaves, according to the Fisher protected 

LSD test (P=0.05). Error bars show standard deviation. 

 

Discussion 

The main goal of this study was to provide information on distribution of V. dahliae within 

diseased olive trees needed for designing efficient non-destructive sampling protocols for 

reliable detection and quantification of V. dahliae using PCR technology. We focussed on 

sampling of young twigs and leaves because these samples can be collected relatively 

easy and collecting them is not destructive to the tree. Indeed, in our experiments V. 

dahliae DNA could be successfully detected and quantified both in twig and leaf samples 

collected from naturally infected trees in olive orchards in different periods and in 

different regions. The real-time PCR with ITS-based primers (Van Doorn et al., 2009) 

that we used also appeared to be much more sensitive than the standard plating method as 

the percentage of samples positive for V. dahliae was much higher (Table 1) which is in 

agreement with the results of Morera et al. (2005) and Karajeh and Masoud (2006) who 

also reported that detection using PCR technology is much more reliable for detecting 

infected olive trees than the traditional plating method.  
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Analysis of twig samples collected from different sides of the crown of infected olive 

trees, resulted in highly variable quantities of V. dahliae DNA detected even within twigs, 

implying a non-uniform distribution of the fungus within infected parts of diseased olive 

trees. In the past, several authors have reported a non-continuous distribution of V. dahliae 

in infected olive trees (e.g. Vigouroux, 1975; Wilhelm and Taylor, 1965). In our results, 

however, the number of negative samples was very low. This may be attributed to the 

real-time PCR method being much more sensitive than the plating method used by those 

authors. Also in our results the relative amount of V. dahliae DNA in most of the samples 

is low indicating limited fungal growth within the tissues of the host. This is in accordance 

with a colonisation process that supposedly is based on the fungus mainly being 

transported by conidia that passively move with the sap stream until they are trapped at 

vessel ends or other obstructions within the xylem vessels of the host where they may 

germinate, start hyphal growth and form new conidia (Hiemstra, 1998). The rather high 

relative amounts of V. dahliae DNA detected in some samples may refer to such sites with 

relatively profuse hyphal growth. Furthermore, resistance mechanisms of the host plant 

that pose widespread local occlusions of xylem vessels may restrict uniform spread of the 

pathogen (Hiemstra, 1998; Pegg and Brady, 2002). In naturally occurring infections it is 

very likely that the uneven distribution of V. dahliae in soil results in just a part of the root 

system being infected. Because olive trees are highly sectored with direct vascular 

connection of specific roots and shoots (Lavee, 1996) infection through one major root 

may lead to a tree with serious symptoms in just a part of the crown whereas other parts 

of the crown remain free of symptoms (Levin et al., 2003). This explains the common 

phenomenon that diseased olive trees show some branches with severe symptoms of 

Verticillium wilt whereas other parts of the tree may be completely free from symptoms 

(Figure 1). This, however, did not affect our results as samples always were collected 

from symptomatic parts of the trees. Our results demonstrate that in these parts V. dahliae 

clearly is present in a more or less continuous pattern, although the relative amount of the 

fungus may be varying strongly and incidentally the pathogen may not be detected at all.  

Because of the varying amount of the pathogen within infected parts of diseased olive 

trees, analysis of samples collected from different twigs in the diseased part of a tree will 
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increase reliability of the screening for presence of V. dahliae as has been suggested 

before by Karajeh and Masoud (2006) and Levin et al. (2003). This is confirmed by our 

results as for all infected trees analysis of a mixed sample from five twigs resulted in 

detection of V. dahliae whereas part of the twig samples were negative when tested 

individually. Moreover, results demonstrated that testing mixed samples from different 

twigs in one go, i.e. DNA extraction and PCR analysis on one mixed sample with small 

subsamples from different twigs, gives positive results for all infected trees that were 

tested. From an economical point of view, testing mixed DNA samples instead of DNA 

samples from individual twigs is highly favourable as it reduces the costs of quantification 

assays by reducing the number of tests needed for reliable analysis of individual trees. 

This is particularly important in large-scale diagnostic experiments.  

Several studies have demonstrated the presence of V. dahliae in petioles of infected 

olive trees (Prieto et al., 2009; Tjamos and Botseas, 1987). The present results, however, 

represent the first systematic testing of large sets of leaves as a good approach with 

practical advantages. Comparable to the results using twig samples, high variation was 

observed in relative quantities of V. dahliae DNA detected in individual leaves. This again 

may be explained by the fact that distribution of the pathogen throughout the vascular 

system of naturally infected trees is not uniform. Therefore, like twigs, the level of 

infection would be highly variable between leaves. To overcome the variation caused by 

testing individual leaves, DNA from several sets of combined leaves was tested and V. 

dahliae DNA was detected in all sets (5, 10, 15, 20, and 25) of leaves with less variation 

in quantities of V. dahliae DNA between replications of each set in the same tree. The 

maxima for the relative amount of V. dahliae DNA detected in leave samples were 

substantially lower than for twig samples. This probably can be explained by the type of 

samples. As long as its host is still alive V. dahliae is confined to the xylem vessels. The 

part that was analysed from twig samples only consists of xylem tissues (i.e. vessels, fibres 

and some parenchyma cells, with part of the tissue being not alive (vessels and part of 

fibres), i.e. without DNA, whereas in leaf samples parts of the whole leaf were used, i.e. 

veins and leaf lamina. The latter sample therefore contains relatively more living plant 

cells and most probably a higher percentage of plant DNA.  
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In conclusion, to minimise damage of Verticillium wilt on olive trees and to stop the 

pathogen from spreading further, early detection of the pathogen as part of an integrated 

control strategy is necessary (Hiemstra, 2015; López et al., 2003). For a robust and reliable 

detection of the pathogen as part of such a strategy non-destructive and easily performed 

sampling is required (López et al., 2003). Due to the distribution of the pathogen within 

the tree detection using single samples is unreliable. Data presented in this study 

demonstrate that testing of one combined sample comprising subsamples from at least 5 

twigs from different sides of the tree, or 5-10 leaves randomly collected from symptomatic 

twigs can reliably detect the pathogen. With this valuable information for the design of 

easy and efficient sampling protocols for detection of V. dahliae in olive trees as part of 

integrated management strategies for the control of Verticillium wilt in olive is provided. 

Our results demonstrate that the present procedure works well for reliable and efficient 

detection of V. dahliae in diseased olive trees. Because our study only addressed 

symptomatic trees, its robustness in early detection of the pathogen in symptomless trees, 

whether tolerant (i.e. infected without symptoms) or recently infected (i.e. not yet showing 

symptoms) remains to be studied in more detail.   
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Abstract 

Verticillium dahliae isolates infecting olive and cotton are traditionally classified into 

highly virulent defoliating (D) and mildly virulent non-defoliating (ND) pathotypes. 

Previously, a PCR-based method was developed for detection and discrimination of D 

and ND isolates of V. dahliae, but it later became clear that this method failed to assign 

particular V. dahliae isolates to either pathotype. In the present study, comparative 

population genomics was employed to identify similarities within and differences 

between pathotypes to find genomic regions that could reliably be associated to D and ND 

isolates of V. dahliae, aiming to design robust markers for discrimination of these 

pathotypes. Comparison of eight recently sequenced genomes of V dahliae isolates, as 

well as the genomes of V. dahliae isolates JR2 and VdLs17, revealed that isolates 

belonging to the D and the ND pathotype are monophyletic and developed as two distinct 

V. dahliae lineages. Our analysis resulted in the identification of a particular deletion that 

is observed in all sequenced ND isolates but not in D isolates. Thus, a set of primers was 

designed across the deletion that was able to generate differentially sized amplicons for 

isolates belong to the different pathotypes of V. dahliae. Subsequently, a nested PCR 

assay was developed that allowed detection of very low quantities of pathogen DNA in 

planta and discrimination of D and ND V. dahliae isolates.  

 

Introduction 

Verticillium dahliae Kleb. is a soil-borne fungus that causes Verticillium wilt worldwide 

in various plant species, ranging from herbaceous annuals to woody perennials (Berlanger 

and Powelson, 2005; Fradin and Thomma, 2006; Klosterman et al., 2009; Pegg and Brady, 

2002; Smith et al., 1988). Verticillium symptoms comprise wilting, chlorosis, stunting, 

necrosis, vein clearing and defoliation, in advanced stages of the disease especially in 

woody hosts often leading to dieback or death of plants. Despite the name of the disease, 

wilting symptoms do not generally occur and symptom display is highly variable between 

hosts; there are no unique symptoms that belong to all plants infected by this fungus 

(Fradin and Thomma, 2006). Based on the symptoms that are inflicted, on some host 

species, particularly on cotton (Gossypium hirsutum L.) and olive (Olea europaea L.), V. 

dahliae isolates are traditionally classified into a highly virulent defoliating (D) and a 
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mildly virulent non-defoliating (ND) pathotype (Schnathorst and Mathre, 1966). This 

typing was first described for Verticillium isolates infecting cotton according to their 

differential level of virulence and the ability to cause defoliation. On cotton, the D 

pathotype comprises isolates that are highly virulent and causes complete defoliation of 

infected plants, whereas the ND pathotype comprises isolates that are moderately virulent 

and only cause mild wilt without defoliation (Schnathorst and Mathre, 1966). 

Interestingly, isolates that belong to the D pathotype on cotton are also highly aggressive 

on olive, whereas isolates of the ND pathotype on cotton are less aggressive (Rodríguez-

Jurado et al., 1993; Schnathorst et al., 1971).  

Despite the fact that the strict correlation with the occurrence of defoliation 

symptoms as occurs on cotton is not observed on olive plants (Rodríguez-Jurado et al., 

1993), assignment of isolates to the D or ND pathotype is still meaningful as it directly 

correlates with fungal aggressiveness and damage caused by the disease.  Moreover, 

differentiation between D and ND pathotype is important in order to predict the severity 

of disease, and decide on appropriate disease management strategies to take (López-

Escudero and Mercado-Blanco, 2011; Hiemstra, 2015). More specifically, isolates 

belonging to the D pathotype cause much more severe disease symptoms in olive than 

isolates belonging to the ND pathotype (Bell, 1994; Schnathorst and Mathre, 1966). 

Initially, whereas the ND pathotype of V. dahliae occurred ubiquitously, the D pathotype 

only occurred in particular sites in the Americas (Mathre et al., 1966; Schnathorst, 1966), 

China (Zhengjun et al., 1998) and Spain (Bejarano-Alcázar et al., 1996). However, since 

then the D pathotype has also spread significantly (Jiménez-Díaz et al., 2012).  

Conventional methods for discrimination of pathotypes involve virulence tests on 

cotton or olive that are time-consuming, laborious and often require expert knowledge. 

Therefore, more rapid, sensitive and accurate tools such as DNA-based methodologies are 

desired to assign V. dahliae isolates to the correct pathotype. To this end, a variety of 

PCR-based methods has been developed (Aljawasim and Vincelli, 2015; Carder et al., 

1994; Mercado-Blanco et al., 2001, 2002, 2003; Pérez-Artés et al., 2000).  Differentiation 

of D and ND isolates of V. dahliae became possible by using primer pair DB19/DB22 

(Carder et al., 1994) that resulted in generating specific polymorphic DNA bands of 539 
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or 523 bp for the D and ND pathotype, respectively. However, these primers occasionally 

produced unspecific bands for D isolates (Collins et al., 2005; Mercado-Blanco et al., 

2003). Therefore, a new primer (espdef01) was designed that, in combination with the 

DB19 primer, allowed for specific amplification of a 334 bp marker for D isolates 

(Mercado-Blanco et al., 2003). Later it became clear that this 334 bp amplicon is 

generated not only for D isolates but also for particular ND isolates (Collins et al., 2005, 

Jiménez-Díaz et al., 2006). Finally, a PCR-method based on sequences of pathotype-

associated RAPD bands, was developed for detection and discrimination of V. dahliae 

isolates (Pérez-Artés et al., 2000). This method allowed for the detection and 

differentiation of several D and ND isolates of V. dahliae collected worldwide (Pérez-

Artés et al., 2000). Subsequently, nested PCR primers were designed to increase the 

sensitivity of the assay to allow for detection of D and ND pathotypes in planta and in 

soil samples (Mercado-Blanco et al., 2002; 2001 Pérez-Artés et al., 2005). Unfortunately, 

however, it later became clear that this method also does not work for all V. dahliae 

isolates, as isolates were encountered for which this PCR method did not result in any 

amplification, and thus the PCR was not able to assign the isolate to the correct pathotype 

(Collins et al., 2005).  

Comparative population genomics is a powerful tool to query for similarities and 

differences between isolates that belong to the same species (De Jonge et al., 2012). 

Previously, we have used comparative population genomics in combination with 

transcriptome sequencing to identify the Ave1 effector molecule that is secreted by V. 

dahliae race 1 isolates that are recognized by the Ve1 immune receptor of resistant tomato 

plants. The comparative genomics strategy was based on the comparison of the genomes 

of race 1 isolates with race 2 isolates that defy recognition (de Jonge et al., 2012). 

Appreciating the success of this approach, the aim of the present study was to compare 

whole-genome sequences of V. dahliae isolates that belong to the ND and the D pathotype 

to design an improved marker that can discriminate these isolates.  
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Materials and methods 

V. dahliae isolates and plant materials. Initially, in this study 18 V. dahliae isolates with 

a known pathotype were used for testing the primers used in this study (Table 1). Of these 

18 isolates, eight were previously determined to belong to the ND pathotype whereas ten 

isolates were determined to belong to the D pathotype by means of biological pathotyping 

on cotton or olive (Bejarano-Alcázar et al., 1995; 1996; Joaquim and Rowe, 1991; 

Jiménez-Díaz 2008; Mace et al., 1990; Xu et al., 2012). Additionally, ten uncharacterized 

isolates recovered from naturally infected olive trees in two commercial olive plantations 

in central Greece were used. Finally, to set up an in planta detection assay, eight twig 

samples from naturally infected olive trees (cv Picual) from southern Spain, were used. 

The Greek Isolates and Spanish samples were obtained through cooperation within the 

EU-Vertigeen project (FP-SME-2011-286140; www.vertigeen.eu). 

 

Table 1. Source, original host, geographic origin and pathotype of the V. dahliae isolates used in 

this study. 

Isolate Host Origin Provider of the isolate Pathotype PCR# Sequenced* 

V4 Olive Spain  
dr. F. J. Lopez-Escudero, department of 

agronomy, university of Cordoba 
ND X X 

BP2 Cotton China 
dr Baolong Zhang, Jiangsu Academy of 

Science, China 
ND X X** 

B1-3 Olive Spain 
dr. F. J. Lopez-Escudero, department of 

agronomy, university of Cordoba 
ND X  

B4-10 Olive Spain 
dr. F. J. Lopez-Escudero, department of 

agronomy, university of Cordoba 
ND X  

B4-12 Olive Spain 
dr. F. J. Lopez-Escudero, department of 

agronomy, university of Cordoba 
ND X  

V-096 Olive Spain 
dr. F. J. Lopez-Escudero, department of 

agronomy, university of Cordoba 
ND X  

V117 Olive Spain 
dr. F. J. Lopez-Escudero, department of 

agronomy, university of Cordoba 
D X X 

T9 Cotton USA 
dr Baolong Zhang, Jiangsu Academy of 

Science, China 
D X X 

F4-A20 Olive Spain 
dr. F. J. Lopez-Escudero, department of 

agronomy, university of Cordoba D X  

F4-A83 Olive Spain 
dr. F. J. Lopez-Escudero, department of 

agronomy, university of Cordoba 
D X  

V-054 Olive Spain 
dr. F. J. Lopez-Escudero, department of 

agronomy, university of Cordoba 
D X  

V-071 Olive Spain 
dr. F. J. Lopez-Escudero, department of 

agronomy, university of Cordoba 
D X  

F3-A23 Olive Spain 
dr. F. J. Lopez-Escudero, department of 

agronomy, university of Cordoba 
D X  

V991 Cotton China 
dr Baolong Zhang, Jiangsu Academy of 

Science, China 
D X X** 

V-76/463 Cotton Mexico 
dr Volker Lipka Department or plant cell 

biology, Gottingen  
D X  

1cd3_2 Cotton China 
dr Baolong Zhang, Jiangsu Academy of 

Science, China 
ND  X 

http://www.vertigeen.eu/
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1HN_1 Cotton China 
dr Baolong Zhang, Jiangsu Academy of 

Science, China 
ND  X 

4TM6_15 Cotton China 
dr Baolong Zhang, Jiangsu Academy of 

Science, China 
D  X 

VD-270 Olive Greece 
EU-Vertigeen project (FP-SME-2011-

286140; www.vertigeen.eu) 
- X - 

VD-272 Olive Greece 
EU-Vertigeen project (FP-SME-2011-

286140; www.vertigeen.eu) 
- X - 

VD-273 Olive Greece 
EU-Vertigeen project (FP-SME-2011-

286140; www.vertigeen.eu) 
- X - 

VD-274 Olive Greece 
EU-Vertigeen project (FP-SME-2011-

286140; www.vertigeen.eu) 
- X - 

VD-276 Olive Greece 
EU-Vertigeen project (FP-SME-2011-

286140; www.vertigeen.eu) 
- X - 

VD-277 Olive Greece 
EU-Vertigeen project (FP-SME-2011-

286140; www.vertigeen.eu) 
- X - 

VD-280 Olive Greece 
EU-Vertigeen project (FP-SME-2011-

286140; www.vertigeen.eu) 
- X - 

VD-287 Olive Greece 
EU-Vertigeen project (FP-SME-2011-

286140; www.vertigeen.eu) 
- X - 

VD-291 Olive Greece 
EU-Vertigeen project (FP-SME-2011-

286140; www.vertigeen.eu) 
- X - 

VD-294 Olive Greece 
EU-Vertigeen project (FP-SME-2011-

286140; www.vertigeen.eu) 
- X - 

       

* paired-end sequencing using 500 bp insert size library 

** mate-pair sequencing using 5000 bp and  paired-end sequencing using 500 bp insert size library 

# isolates used for testing the primers used in this study 

Genome assemblies and comparative analysis. V. dahliae isolates V991 and BP2 were 

paired-end sequenced using two libraries (500 bp and 5000 bp insert size, 100 bp read 

length) while six additional isolates (Table 1) were paired-end sequenced using one 

library only (500 bp, 100 bp read length) with Illumina sequencing. About 1 Gb of data 

was produced from each library. The genomes of V991 and BP2 were assembled using 

the A5 pipeline (Tritt et al., 2012). The reads of the additional six isolates were mapped 

onto the V991 and the BP2 genomes using Bowtie2 software with default settings 

(Langmead et al., 2009). The mapping results were used in combination with BED tools 

software (Quinlan and Hall, 2010) using default settings to retrieve coverage plots and to 

identify polymorphic regions between the genomes of the ND and D isolates. A 

phylogenetic tree was constructed using RealPhy software (Bertels et al., 2014) using the 

genome of V. dahliae isolate JR2 as a reference (Faino et al., 2015). Primer pairs were 

designed to amplify the polymorphic regions.  

Polymerase chain reaction (PCR). All PCR reactions were performed using a PTC-200 

Thermal Cycler (MJ Research, Watertown, MA, USA), and primers used in this study are 

listed in Table 2. Further to the primers designed in this study we also used the previously 

http://www.vertigeen.eu/
http://www.vertigeen.eu/
http://www.vertigeen.eu/
http://www.vertigeen.eu/
http://www.vertigeen.eu/
http://www.vertigeen.eu/
http://www.vertigeen.eu/
http://www.vertigeen.eu/
http://www.vertigeen.eu/
http://www.vertigeen.eu/
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described D1-D2 (Pérez-Artés et al. 2000) and NDr-NDf (Mercado-Blanco et al. 2001) 

primers to discriminate D and ND isolates of V. dahliae, respectively. PCR reactions with 

D1-D2 and NDr-NDf primers were performed as previously described (Pérez-Artés et al., 

2000; Mercado-Blanco et al., 2001). For the new primers designed in this study (Table 2), 

the temperature profile consisted of an initial denaturation step for 4 minutes at 94˚C, 

followed by 40 cycles of 45 seconds at 94˚C, 30 seconds at 56˚C, and 60 seconds at 72˚C. 

Subsequently, a final extension step was performed for 4 minutes at 72˚C. Also nested 

PCR assays were performed using this temperature profile in both primary and secondary 

rounds of the PCR. Primers specific for the plant cytochrome oxidase (COX) gene (Weller 

et al. 2000) were used as a control.  

 Table 2. Primers used in this study for detection of D and ND isolates of V. dahliae by PCR. 

 

Results 

Attempted differentiation of D and ND isolates of V. dahliae. Initially, the previously 

described ND- and D-specific primers (NDf-NDr and D1-D2, respectively; Pérez-Artés 

et al. 2000) were tested on 6 isolates belonging to the D pathotype and 9 isolates belonging 

to the ND pathotype of V. dahliae, collected from different parts of the world (Table 1). 

The PCR assay revealed that the NDf-NDr primers adequately recognized all tested ND 

isolates (Figure 1A). In contrast, however, whereas the D1-D2 primers accurately 

recognized most of the D isolates, no amplicons were observed for the T9 and V76 isolates 

that belong to the D pathotype (Puhalla and Hummel, 1983; Pérez-Artés et al. 2000) 

(Figure 1B). Thus, we confirm that the currently available markers to discriminate ND 

Primer Sequence 
Amplicon size (bp) 

 ND               D 

Vdf1 

Vdr1 

5´-AGGCTGACTGGGAGAGTTGA-3´ 

5´- GGCCCTCAAGGTCAAACTCT-3´ 
423        694 

Vdf2 

Vdr2 

5´- GGCCCTCAAGGTCAAACTCT-3´ 

5´- GACCAGTATCACGGCAGGTT -3´ 
297        568 

D1 

D2 

5´- CATGTTGCTCTGTTGACTGG -3´ 

5´- GACACGGTATCTTTGCTGAA -3´ 
 -            548 

NDf 

NDr 

5´- ATCAGGGGATACTGGTACGAGA-3´ 

5´- GAGTATTGCCGATAAGAACATG-3´ 
1410      - 
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and D isolates are not accurate and cannot reliably assign every V. dahliae isolate to its 

corresponding pathotype. 

 

Identification of specific primers for D and ND pathotypes using sequencing data. In 

order to determine why the previously described ND- and D-specific primers (Pérez-Artés 

et al. 2000) are not consistently able to discriminate isolates that belong to the D and ND 

pathotypes, we aimed to investigate the genomic basis of the PCR assay.  First we 

generated a reference genome assembly for an isolate belonging to the D pathotype and 

the ND pathotype, respectively. To this end, the genomes of V. dahliae isolates V991 (D) 

and BP2 (ND) were sequenced by paired-end sequencing of two libraries (500 bp and 

5000 bp insert size, 100 bp read length) for each isolate. The subsequent genome assembly 

produced ~650 contigs for each of the isolates, with an N50 of ~35 kb and ~48 kb for 

V991 and BP2, respectively (Table 3).  

 

Figure 1. PCR products obtained 

with primer pair NDr-NDf to 

identify V. dahliae isolates 

belonging to the ND pathotype 

(A), and primer pair D1-D2 to 

identify isolates belonging to the 

D (defoliating) pathotype (B). 

Lanes 1-6: V. dahliae ND 

isolates: V4 (1); Bp2 (2); B1-3 

(3); B4-10 (4); B4-12 (5); V-096 

(6). Lanes 7-17: V. dahliae D 

isolates: V117 (7); T9 (8); F4-

A20 (9); F20-A83 (10); V-054 

(11); V-071 (12); F3-A23 (13); 

V-991 (14); V-76 (15). 

Amplification reactions with 

NDr-NDf primers yielded a 1410 

bp band for all tested ND isolates 

and no band for D isolates. 

Amplification reactions with D1-

D2 primers yielded a 548 bp band 

for D isolates except for T9 (lane 

8) and V-76 (lane 15). D1-D2 

primers did not amplify any 

fragment for ND isolates. Lane 

16: DNase-free water as negative 

control.   
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Table 3. Assembly statistics of the genome sequences of V. dahliae isolates V991 and BP2 

Isolate # contigs  Largest contig (kb) N50 (kb) # N's per 100 kb 

V991 1,991 1,430,085 354,213 1,524.20 

BP2 1,675 2,190,310 483,968 1,353.53 

 

Additionally, the genome sequences of six additional V. dahliae isolates were determined 

by paired-end Illumina sequencing of a single library (500 bp, 100 bp read length), three 

of which belonged to the D pathotype and three to the ND pathotype (Table 1; Table 3). 

A phylogenetic analysis was conducted using the eight sequenced genomes as well as the 

genomes of V. dahliae isolates JR2 and VdLs17 that were previously sequenced (Faino et 

al. 2015). The analysis showed that isolates belonging to the D and the ND pathotype 

cluster in different clades, suggesting that the two pathotypes developed as two distinct 

V. dahliae lineages (Figure 2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Isolates belonging to the defoliating and to the non-defoliating pathotype are 

monophyletic in the Verticillium dahliae population. Phylogenetic relationship between eleven 

sequenced V. dahliae isolates was inferred using RealPhy (Bertels et al. 2014). The V. dahliae 

isolate JR2 (VDAG_JR2_V4.0) was used as reference isolate while the V. alfalfa MS 102 was used 

as root of the tree. 
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Next, the genomes of V991 and BP2 were used to determine the annealing sites of 

the D and ND primers, respectively. While the target sequence of the ND primer set was 

found in the BP2 genome, it was absent from the V991 genome (Figure 3A). Similarly, 

the target sequence of the D primer set was identified in the V991 genome, while it was 

absent from the BP2 genome (Figure 3B). Subsequently, the reads from the three 

additionally sequenced D and ND isolates (Table 1) were mapped to the genome 

assemblies of BP2 and V991. Like for BP2, the additional ND isolates carried the target 

region of the ND primers, while the D isolates did not (Figure 3A). Similarly, the D 

isolates 4TM61, V991 and V117 were found to carry the target region of the D primers, 

while the ND isolates did not (Figure 3B). Importantly, however, the T9 isolate that 

belongs to the D pathotype did not carry the target region of the D primers (Figure 3B). 

Thus we conclude that the D primers have apparently been developed on a genomic region 

that is not ubiquitously present in all D isolates. Subsequently, we queried the sequencing 

data to identify genomic regions that could reliably be associated to isolates either 

belonging to the D or the ND pathotype and that could be used to design an improved 

identification assay. This time, however, we aimed for a polymorphic marker that would 

be detected in all isolates, rather than separate markers for the different pathotypes. To 

this end, the genome assembly of the D pathotype V991 was queried as a reference, and 

used in a comparative genomic analysis with the other 7 genomes. This resulted in the 

identification of a deletion on scaffold V911_N.5.1 which is observed in all sequenced 

ND isolates (Figure 4). A set of primers was designed across the deletion (Vdf1-Vdr1; 

Table 2; Figure 5), such that for all V. dahliae isolates an amplicon will be obtained. 

However, the amplicon that will be obtained for an isolate that belongs to the ND 

pathotype (423 bp) will be significantly shorter than the amplicon that will be obtained 

for an isolate that belongs to the D pathotype (694 bp) (Figure 4; Figure 5).  
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Figure 4. Genomic target region of the primer pairs developed to discriminate isolates belonging 

to the ND (in blue) and D (in red) pathotypes, respectively. On the left the names of the isolates 

used for the genomic comparison are indicated. The targeted region was compared between isolates 

using the target V991 regions as reference. On top is indicated the size of the target region and the 

arrows indicate the annealing sites of the forward (green arrow) and reverse (yellow arrow) primers 

for the region. In grey is represented the reads that map to the target region in the different isolates, 

while the depth of the coverage is indicated in colour.   
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Figure 5. Nucleotide sequence of the target region and the position of the newly designed primer 

pairs Vdf1-Vdr1 and Vdf2-Vdr2 to discriminate isolates belonging to the ND or D pathotype, 

respectively. The area highlighted in grey indicates the deletion of 271 bp on scaffold V911_N.5.1 

which occurs in all sequenced ND isolates.  

 

Robust differentiation of D and ND isolates of V. dahliae.The newly designed primer 

pair Vdf1-Vdr1 (Table 2; Figure 5) was evaluated by testing on all D and ND isolates of 

V. dahliae used in this study (Table 1).  As expected, amplicons were obtained for all 

tested V. dahliae isolates, including T9 and V76. Whereas the ND isolates yielded a 423 

bp amplicon, the D isolates yielded a 694 bp amplicon (Figure 6). Thus, whereas the 

previously designed assay failed to assign the T9 and V76 isolates to the D pathotype, our 

newly designed assay correctly assigned them to the D pathotype by yielding a 694 bp 

amplicon. (Figure 6). 
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Figure 6. Detection of D (defoliating) and ND (non-defoliating) V. dahliae isolates with Vdf1-

Vdr2 primers designed in this study. Lanes 1-9: V. dahliae D isolates:V117 (1); T9 (2); F4-A20 

(3); F20-A83 (4); V-054 (5); V-071 (6); F3-A23 (7); V-991 (8); V-76 (9). Lanes 10-15: V. dahliae 

ND isolates: V4 (10); Bp2 (11); B1-3 (12); B4-10 (13); B4-12 (14); V-096 (15). Amplification 

reactions yielded a 694 bp band for all tested D isolates, and a 423 bp band for all tested ND 

isolates. Lane 16: negative control reaction with no DNA template. 

 

The novel assay as well as the previously designed assay were further used to 

characterize ten V. dahliae isolates that were recovered from naturally infected olive trees 

in central Greece (Table 1). Remarkably, whereas the D1-D2 as well as the NDf-NDr 

primers did not produce an amplicon for any of these isolates (Figure 7A, 7B), the Vdf1-

Vdr1 primers produced a 694 bp amplicon for all of them, revealing that they belong to 

the D pathotype (Figure 7C).  

 

In planta detection of D and ND isolates of V. dahliae using nested PCR. The Vdf1-

Vdr1 primers were used in PCR assays aimed at in planta detection of D and ND isolates 

of V. dahliae. To this end, eight samples from naturally infected olive trees were used. 

Infection of these trees was confirmed by real-time PCR, using a V. dahliae-specific 

primer pair designed on the internal transcribed spacer (ITS) region (van Doorn et al., 

2009), through analysis of sub- samples containing fragments from different parts of 

twigs, and the fungus was detected at least in one sample per infected tree. For V. dahliae 

DNA detection by the newly designed assay, mixed DNA samples composed out of five 

twigs per tree were tested. However, PCR with the Vdf1-Vdr1 primers did not lead to a 
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visible amplification product, presumably due to a low amount of V. dahliae DNA in the 

total DNA that was isolated from the infected plant material (Figure 8A). Therefore, a 

nested-PCR procedure was designed to increase the sensitivity and improve detection of 

D and ND isolates in planta. To that end, Vdf2 and Vdr2 primers were designed (Figure 

5) that were used for the second round of PCR.  To this end, a 25 µl PCR reaction was 

performed with 1.5 µl of 20x diluted PCR mixture that resulted from the first round of 

PCR as template. Interestingly, the second round of PCR yielded amplicons for all tested 

samples, showing that the nested PCR assay was able to detect the V. dahliae infection 

(Figure 8B). Moreover, the assay yielded a 568 bp fragment for six of the samples, 

pointing towards infection with the D pathotype, and a 297 bp fragment for two of the 

samples, indicating infection with the ND pathotype of V. dahliae (Figure 8B).  

 

 

Figure 7. PCR results obtained with 

novel primers as well as the 

previously designed primers using 

DNA from 10 V. dahliae isolates 

recovered from naturally infected 

olive trees in central Greece. (A) PCR 

results obtained with NDf-NDr 

primers (Lanes 1-10). Lane 11 

correspond to amplifications using 

genomic DNA from BP2 used as 

control for ND pathotype. Lane 12: 

negative control reaction with no 

DNA template. (B) PCR results 

obtained with D1-D2 primers (Lanes 

1-10). Lane 11 correspond to 

amplifications using genomic DNA 

from VT9 used as control for D 

pathotype. Lane 12: negative control 

reaction with no DNA template. (C) 

PCR results obtained with Vdf1-Vdr2 

primers (Lanes 1-10).  Lanes 11 and 

12 correspond to amplifications using 

genomic DNA from Bp2 and VT9 

isolates used as controls for the ND 

and D pathotype, respectively. Lane 

13: negative control reaction with no 

DNA template. 
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Figure 8. Nested PCR results obtained for total DNA samples extracted from twigs of infected 

olive trees. A) The first round of PCR carried out with Vdf1-Vdr1 primers. No amplification was 

detected after the first PCR round (Lanes 1-8). B) The second round of PCR was carried out using 

1.5 µl of 20x diluted solution of mixture after the first round of PCR as template, using primer pair 

Vdf2-Vdr2. PCR reactions in the second round of PCR produced a 297 bp fragment for two of the 

samples (lanes 6 and 8), indicating infection with the ND pathotype of V. dahliae. PCR reactions 

in the second round of PCR produced a 568 bp fragment for six of the samples (lanes 1-5 and 7), 

indicating infection with the D pathotype of V. dahliae. Lanes 9 and 10 correspond to 

amplifications using genomic DNA from Bp2 and VT9 isolates used as controls for the ND and D 

pathotype, respectively, whereas lane 11 contains genomic DNA from non-infected olive; primers 

specific for the cytochrome oxidase (COX) gene were used as control for presence of plant DNA 

in sample from non-infected olive (lane 12). Lane 13: negative control reaction with no DNA 

template.  

 

Discussion 

V. dahliae isolates belonging to the D pathotype cause considerably more severe disease 

symptoms in olive and cotton than isolates belonging to the ND pathotype (Bell, 1994; 

Schnathorst and Mathre, 1966). Discrimination between D and ND pathotypes of V. 

dahliae isolates will provide information for assessment of disease risk as well as for 
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designing a more efficient disease control strategy through risk assessment (López-

Escudero and Mercado-Blanco, 2011; Hiemstra, 2015). This is particularly important 

because of the alarming spread of highly virulent isolates of the D pathotype worldwide 

(Jiménez-Díaz et al., 2012). The D- and ND-specific primers that were previously 

designed based on pathotype-associated RAPD bands (Mercado-Blanco et al., 2001, 

2002; Pérez-Artés et al., 2000) allowed for the discrimination of many D and ND isolates 

collected worldwide. Nevertheless, they failed amplification for particular V. dahliae 

isolates (Collins et al., 2005). This failure was confirmed in our study where the D-specific 

primers did not amplify a fragment for the D isolates T9 and V76. In our study, 

comparative population genomics revealed that the D-specific primers were developed on 

a genomic region that is not ubiquitously present in all D isolates, and that was indeed 

lacking in the isolates T9 and V76 (Figure 3B). Previously, Pérez-Artés et al. (2000) 

reported amplification of a D-specific band from the T9 isolate while we did not obtain 

an amplicon with the same primers. However, based on our findings, the T9 isolate indeed 

belongs to the D pathotype, but does not carry the target region of the D-specific primers.   

The observation that particular genomic regions are not shared among all strains fits 

with the extensive intra- and inter-chromosomal rearrangements that have been observed 

among strains of V. dahliae (de Jonge et al., 2013; Seidl et al., 2014; Faino et al., 2015). 

This genomic plasticity is correlated with the appearance of lineage-specific regions that 

are unique to, or shared only by a subset of, V. dahliae isolates and that are implicated in 

aggressiveness (de Jonge et al., 2013; Seidl et al., 2015; Faino et al., 2015). Comparative 

genomics is a powerful tool to identify genomic similarities and differences for isolates 

within, and between, species, and to identify sequence differences that may be responsible 

for phenotypic differences among pathogen strains (Hu et al., 2011; De Jonge et al., 2012). 

Previously, through high-throughput population genome sequencing and comparative 

genomics it was found that a single locus (named Ave1) that is shared only by race 1 

strains and encodes an effector that contributes to fungal virulence, is recognized by the 

tomato immune receptor Ve1 (de Jonge et al., 2013). In the present study, we similarly 

compared genomes of multiple D and ND strains of V. dahliae to find differences between 

these two pathotypes, aiming to design a marker for robust discrimination. This analysis 
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led to identification of a region absent in all sequenced ND isolates, while present from 

all D isolates. Then, a new set of primers was designed across this region to detect and 

discriminate all D and ND isolates. It is worth mentioning that  this new method only uses 

one pair of primers to identify both pathotypes, whereas for previously described assays, 

two independent primers sets (one for each pathotype) were used in parallel (Mercado-

Blanco et al., 2002; 2001; Pérez-Artés et al., 2000). Thus, our new method is time and 

cost efficient, and also more accurate as the whole typing is based on a single locus. 

Ideally, discrimination of pathotypes should be based on markers that are designed on the 

genetic element that is responsible for the phenotypic difference. Arguably, the difference 

in aggressiveness of the D and ND pathotypes is based on (a) lineage-specific effector(s) 

shared among D isolates. Although we illustrated that the region that is targeted by the 

current assay is lineage-specific, it is not the only genomic region that is differential 

among strains of the ND and the D pathotype. Thus, a causal relationship with 

aggressiveness needs to be further studied to find if there is (are) effector(s) encoded in 

this region.  

Primers that we designed in this study also enabled characterization of 10 V. dahliae 

isolates recovered from infected olive trees from central Greece that in preliminary tests 

did not react with the available D/ND primers. Interestingly, the results of the PCR assay 

revealed that all these isolates belong to D pathotype. Thus far, only ND isolates were 

reported to occur in olive infections in Greece, although presence of the D pathotype had 

occasionally been reported in cotton fields (Elena and Paplomatas, 1998; 2001). Our assay 

identified infections of olive trees with the D pathotype for the first time in this region. 

Future surveys are required to assess the distribution of the D pathotype in central Greece.  

For effective management of Verticillium wilt in olive, as well as in other field crops, 

efficient and reliable procedures for testing of planting material and of new planting sites 

for infection by V. dahliae are essential. In addition characterisation of the pathotype of 

available V. dahliae populations is needed. As the specific primers developed in this study 

enable detection and characterisation of the pathogen in one go they represent a major 

step towards the design of such procedures. 
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Abstract 

Verticillium wilt, caused by Verticillium dahliae Kleb., is the main disease of olive (Olea 

europaea L.) in most producer countries. In this study the distribution of a defoliating 

(V117) and a non-defoliating (V4) isolate of V. dahliae in young root-dip inoculated 

plants of a susceptible (Picual) and a partially resistant (Frantoio) cultivar of olive was 

studied by using real-time PCR. The infection and colonization processes of V. dahliae in 

these cultivars was also studied through microscopy by using GFP-labelled isolates of 

both V. dahliae isolates. V. dahliae was detected by real-time PCR in the lower, middle 

and top parts of inoculated plants in all treatment groups at only one week after inoculation 

and several weeks before symptom development. During the whole experiment an uneven 

distribution of pathogen DNA was observed along the main stem of the inoculated plants, 

with the highest levels being found in the lower part of the stems in all treatments. 

Microscopical analysis of inoculated plants illustrated that V. dahliae in the stem of 

inoculated plants is limited to the xylem during the phase of symptom development. With 

real-time PCR, we also observed lower amounts of both V. dahliae isolates in ‘Frantoio’ 

associated with significant lower disease severity when compared with ‘Picual’ for which 

higher amounts of V. dahliae were observed associated with higher disease severity. In 

each cultivar isolate V117 caused higher disease severity than isolate V4, and the amount 

of V. dahliae detected in V117-inoculated plants was higher than in V4-inoculated plants. 

Thus, both olive genotype and pathogen pathotype contribute to the observed differences 

in V. dahliae colonization of olive trees. 

Introduction 

Olive (Olea europaea L.) is one of the most ancient cultivated plants and the only species 

within the Oleaceae family with edible fruit. Nowadays, olive is a crop with a huge 

economic, social and ecological importance especially within the Mediterranean Basin 

(Blázquez-Martínez 1996; Civantos 2004). However, in most of the producer countries 

this crop is affected by Verticillium wilt, causing serious concern to growers, nursery 

companies and the olive-oil industry (Jiménez-Díaz et al. 2012; López-Escudero and 

Mercado-Blanco 2011). Verticillium wilt of olive is caused by Verticillium dahliae Kleb., 

and disease incidence and symptom severity strongly depend on the virulence of the 
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infecting V. dahliae isolate, being classified as belonging to the defoliating (D) or non-

defoliating (ND) pathotype (Jiménez-Díaz et al. 2011; López-Escudero et al. 2004, 2007; 

Rodríguez-Jurado et al. 1993). The D isolates causes infections that can be deadly to olive 

trees, whereas ND isolates usually do not produce severe disease symptoms and plants 

may even recover from the disease (Jiménez-Díaz et al. 1998; Tjamos et al. 1991). 

V. dahliae infection and colonization of woody hosts have been reviewed by 

Hiemstra (1998). In trees, including olive, V. dahliae begins its parasitic phase when 

microsclerotia in soil are stimulated to germinate by root exudates of nearby host roots. 

The resulting hyphae grow towards the roots of the host which they may penetrate inter- 

or intracellularly. Following the first penetration, hyphae grow inter- and intracellularly 

within the root cortex to reach and enter the xylem vessels. Next, conidiospores are 

produced within these vessels and the plant is colonized systemically by a combination of 

hyphal growth and conidiospores moving with the transpiration stream. The presence of 

the fungus and the responses of the plant ultimately cause widespread vascular 

dysfunctioning, leading to symptoms that comprise wilting, defoliation, necrosis and 

dieback. Infection and colonization of olive by V. dahliae has been studied by several 

research groups (e.g. Baídez et al. 2007; Prieto et al. 2009). However, the amount of 

information about differences in distribution of V. dahliae D and ND isolates in 

susceptible and (partially) resistant plants is limited. 

The purpose of this study was: (I) to study the distribution of D and ND V. dahliae 

isolates in young root-inoculated olive cultivars with different levels of susceptibility, 

using real-time PCR, and (II) to study the infection and colonization processes of V. 

dahliae in these trees by using GFP-labelled isolates in a microscopical analysis. 

Material and methods  

Plant and fungal material. Nine-month-old plants (70-100 cm height) of the olive 

cultivars ‘Picual’ (susceptible to isolates that belong to the D and ND pathotype), and 

‘Frantoio’ (partially resistant to isolates that belong to the D pathotype and resistant to 

those of the ND pathotype) (López-Escudero et al. 2004), were provided by F. J. López-

Escudero (Department of Agronomy, University of Córdoba, Spain) from a nursery in 

Spain and used in two experiments:  
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Experiment 1. In this experiment 100 plants of each of the two cultivars were used. While 

45 plants of each cultivar were inoculated with V. dahliae isolate V117 (D), 45 plants 

were inoculated with V. dahliae isolate V4 (ND) and ten plants were root-dipped in sterile 

water before planting and used as controls. While ten plants of each treatment were kept 

to monitor disease development, the other plants were used for sampling at regular 

intervals after the inoculation. The two V. dahliae isolates were supplied from the 

collection of the Laboratory of Plant Pathology, Department of Agronomy, University of 

Córdoba. Inoculum was prepared by adding small fragments from a potato dextrose agar 

(PDA) culture to liquid Czapek-Dox medium in Erlenmeyer flasks that were put in a 

shaker at 100 rpm at room temperature in the dark for about seven days to allow 

conidiospores to be produced. After filtration over cheese cloth, the conidiospore 

suspension was centrifuged to remove growth medium, and the pellet was resuspended in 

sterile water. Then, the concentration of conidia was determined and the suspension was 

diluted to a concentration of 107 conidia/ml. For inoculation, the root system of healthy 

plants was dipped in the conidiospore suspension for 20 minutes (López-Escudero et al. 

2004). Control trees were root-dipped in sterile water. After inoculation, the plants were 

potted in a coco peat mix in 2 L containers and placed for 15 weeks in a 64 m2 greenhouse 

on tables according to a complete randomized design at 70% relative humidity and a 

temperature of 18±3°C at night and 22±3°C during daytime, with a light/dark regime of 

16/8 hours. The plants received 100 Wm-2 supplemental lighting (Agro SON-T, 400 W 

lamps) when the sunlight influx intensity was less than 150 Wm-2. 

Experiment II. In this experiment, 80 of each of the two cultivars were used. While 35 

plants of each cultivar were root-dip inoculated with a GFP-labelled isolates of the V. 

dahliae isolate V117 (defoliating), 35 plants were inoculated with GFP-labelled V. 

dahliae isolate V4 (non-defoliating) and 10 control trees were root-dipped in sterile water 

before planting. GFP-labelled strains of V4 and V117 were generated by means of 

Agrobacterium tumefaciens-mediated transformation (ATMT) (Santhanam, 2012). The 

inoculum was prepared and the inoculation was conducted as described for experiment 1. 

Inoculated plants were grown for 13 weeks in the same greenhouse and under the same 

conditions as the plants in experiment 1.  
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Disease assessment. Disease severity was monitored by rating disease symptoms on 10 

trees per treatment at 2-week intervals on a severity scale from 0 to 4, based on the 

percentage (estimated by visual inspection) of plant tissue affected by chlorosis, leaf and 

shoot necrosis or defoliation (0 = plant without symptoms of Verticillium wilt; 1 = 1% to 

33% of the plant affected; 2 = 34% to 66% of the plant affected; 3 = 67% to 99% of the 

plant affected; 4 = dead plant) (López-Escudero et al. 2004).  

DNA isolation. To quantify the amount of V. dahliae DNA, total genomic DNA was 

extracted from stem samples from lower, middle and top parts of the stems of inoculated 

plants.  Each time disease symptoms were recorded, also five plants per treatment were 

sampled. Stem fragments of about 10 cm length were washed under running tap water for 

1-2 minutes, dried with cleaning paper, and left to dry for a few minutes on cleaning paper. 

Then, the bark was removed under sterile conditions and small (2-5 mm) pieces of woody 

tissue (300-400 mg) were taken by using a sterilized scalpel (flamed after submergence 

in 70% ethanol) and transferred to a 2 mL tube containing 1 mL of lysis buffer AP1 of the 

DNeasy Plant Mini Kit (Qiagen, Hilden, Germany) and 4-5 stainless steel beads (3.2 mm 

diameter, BioSpec, Bartlesville, US/Canada). Next, the tubes were incubated for 15-30 

min at 65˚C and then shaken in a Retsch® mixer mill (MM 400, Retsch, Haan, Germany) 

for 15 minutes at 30 Hz. After centrifugation at 10,000 rpm for 5 minutes, 400 µL of the 

suspension was used for total genomic DNA extraction using the DNeasy Plant Mini Kit 

(Qiagen, Hilden, Germany) according to the manufacturer’s instructions. DNA amounts 

were quantified using a BioPhotometer (Eppendorf AG, Hamburg, Germany) and 

concentrations were equalized by adding elution buffer or DNase-free water. 

Quantification assay. Real-time PCR assays were performed using a V. dahliae-specific 

primer pair designed on the internal transcribed spacer (ITS) region (van Doorn et al., 

2009) (VerDITSF: 5’-CCGGTCCATCAGTCTCTCTG-3’, VerDITSRk: 5’- 

CACACTACATATCGCGTTTCG-3’) and a primer pair for the plant cytochrome 

oxidase (COX) gene (Weller et al. 2000) to quantify the amount of V. dahliae and plant 

DNA, respectively. All real-time PCR reactions were performed in a STRATAGENE 

Max 3000PTM real-time PCR machine (Agilent Technologies, Santa Clara, United States). 
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The real-time PCR program consisted of an initial step of denaturation for 10 min at 95˚C, 

followed by 45 cycles of 15 sec at 95˚C, 40 sec at 62˚C, and 40 sec at 72˚C. A melting 

curve program was also run for which measurements were made at 0.5˚C temperature 

increments every 10 s within a range of 60-100˚C. Amplification was carried out in a 25 

µl final reaction volume containing 1.5 µl of DNA extract, 10 nM of each primer, 12.5 µl 

of SYBR Green Supermix (2X) and sterile nuclease-free water to reach the appropriate 

volume. Each run also included a negative control containing nuclease-free water instead 

of DNA, as well as a negative control containing DNA isolated from disease free olive 

leaves. Two or three simultaneous replicates (technical repeats) were carried out for each 

sample. The quantities of V. dahliae and plant DNA were determined using a standard 

curve by plotting the logarithm of a ten-fold dilution series prepared from 10 ng/µl DNA 

suspension of V. dahliae isolate V117, and a ten-fold dilution series prepared from 10 

ng/µl plant (olive) DNA suspension, respectively, against the threshold cycle (Ct) 

obtained in the real-time PCR assays. The relative quantity of V. dahliae DNA in the 

tested samples was calculated based on the quantity of V. dahliae DNA (ng) in 100 ng 

total DNA (i.e. including pathogen and plant DNA as quantified by simultaneously 

conducting plant-specific real-time PCR and pathogen-specific real-time PCR) isolated 

from inoculated plant tissues.  

Data analysis. Based on disease severities assessed on 10 trees for each treatment at 

different time points, the area under the disease progress curve percentage (AUDPCP) 

was calculated with the formula of Campbell and Madden (1990):  

  nSSSt i  4...2)2(AUDPCP 32 *100 

(t = days between observations; S = mean severity; Si = final mean severity; 4 = maximum 

disease rating; n = number of observations).  

Also, based on the relative quantities of pathogen DNA obtained from 5 trees for each 

treatment at different time points, the area under the quantity progress curve percentage 

(AUQPCP) was calculated with the modified formula of Campbell and Madden (1990): 



DISTRIBUTION OF DEFOLIATING AND NON-DEFOLIATING V. DAHLIAE 

89 
 

  nSSSt i ...2)2(AUQPCP 32 *100 

(t = days between observations; S = relative quantity; Si = final relative quantity; 1= 

maximum relative quantity; n = number of testing time points).  

Data obtained from disease assessment (AUDPCP) and quantification of pathogen DNA 

in stems of inoculated trees (AUQPCP) were subjected to analysis of variance (ANOVA) 

for a complete randomized design, using the SPSS program. Mean values of AUDPCP as 

well as mean values of AUQPCP were compared using the Fisher protected LSD at 

P=0.05. 

 

Results 

Progression of Verticillium wilt in inoculated olive plants. Initially, 45 olive plants that 

belong to the ‘Frantoio’ and ‘Picual’ cultivars were inoculated with V117 and V4 isolates 

of V. dahliae that are representatives of the D and the ND pathotype, respectively, while 

ten plants from each cultivar were used as non-inoculated controls. To monitor disease 

development, ten plants of each combination of olive cultivar and V. dahliae isolate 

(‘Frantoio’/V117, ‘Frantoio’/V4, ‘Picual’/V117, ‘Picual’/V4) were used for assessment 

of disease severity at 2-week intervals. At each time point, disease severity on ten trees 

per treatment was assessed by visually estimating the percentage of plant tissue affected 

by chlorosis, leaf and shoot necrosis or defoliation, and rated on 0 (plant without 

symptoms), 1 (1% to 33% of the plant affected), 2 (34% to 66% of the plant affected), 3 

(67% to 99% of the plant affected), and 4 (dead plant) severity scales. The first obvious 

symptoms on ‘Picual’ plants inoculated with the V117 and V4 isolates were recorded at 

7 weeks post inoculation (wpi), while the first symptoms on ‘Frantoio’ plants were 

observed only at 9 wpi. From 9 wpi onwards, disease severity slightly increased in all four 

combinations of olive cultivar and V. dahliae isolate. At the end of the experiment at 15 

wpi, the highest disease severity was observed in ‘Picual’ plants inoculated with isolate 

V117, whereas the lowest disease severity occurred in ‘Frantoio’ plants inoculated with 

isolate V4 (Figure 1A). Based on the disease severities assessed at different time points, 

the area under the disease progress curve percentage (AUDPCP) was calculated for each 
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combination. Statistical analysis of AUDPCP data showed that for both isolates the 

severity of disease in ‘Picual’ plants was significantly higher than the disease severity in 

‘Frantoio’ plants, confirming that ‘Picual’ is more susceptible to Verticillium wilt than 

‘Frantoio’. Furthermore, analysis of the AUDPCP also revealed that in both cultivars the 

disease severity caused by isolate V117 was significantly higher (P=0.05) than the disease 

severity caused by isolate V4 (Figure 1B).  

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Progression of Verticillium wilt disease in young ‘Frantoio’ and ‘Picual’ olive plants 

that were root-dip inoculated with 107 conidia mL-1 of defoliating (V117) and nondefoliating (V4) 

V. dahliae isolates. (A) Verticillium wilt disease progression curves. Severity of symptoms was 

assessed on a 0-4 rating scale (0 = plant without symptoms of Verticillium wilt; 1 = 1% to 33% of 

the plant affected; 2 = 34% to 66% of the plant affected; 3 = 67% to 99% of the plant affected; 4 = 

dead plant). Each plotted point is the mean value of 10 plants. (B) Area under the disease progress 

curve percentage (AUDPCP) for ‘Frantoio’ and ‘Picual’ plants inoculated with V117 and V4 

isolates of V. dahliae. The AUDPCP was calculated by the trapezoidal integration method of 

Campbell and Madden (1990). Each bar represents the mean value of 10 trees with error bars 

showing standard deviation. Mean values of all treatment were compared based on the T-test 

analysis and different letters above bars indicate significant differences between mean values 

(P=0.05). 
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Quantification of V. dahliae DNA in inoculated plants. Distribution of V117 and V4 

isolates of V. dahliae in inoculated ‘Frantoio’ and ‘Picual’ cultivars of olive in experiment 

1 was studied by real-time PCR quantification of V. dahliae DNA in samples collected 

from lower, middle and top parts of five infected plants at different intervals after 

inoculation. At each time point, mean relative quantities of V. dahliae DNA (means of 

five plants per time point) were assessed for each part separately for all four treatments 

and plotted against sampling time points (Figure 2). Already at one week after inoculation, 

i.e. well before the onset of symptoms, V. dahliae DNA was detected in all parts of the 

inoculated plants for all treatments. The amount of V. dahliae V4 and V117 DNA detected 

in ‘Picual’ plants fluctuated strongly during the 15 weeks after inoculation, reaching a 

peak of 0.033 ng/100 ng total DNA in the Picual/V4 combination and 0.035 ng/100 ng 

total DNA in the Picual/V117 combination in samples from the lower part at 11 wpi. In 

both Picual/V4 and Picual/V117 combinations the amount of V. dahliae bottomed at 13 

wpi (Figure 2A, 2B). In contrast, in ‘Frantoio’ plants the amount of V. dahliae V4 and 

V117 continuously decreased from the first week after inoculation onwards (Figure 2C, 

2D). Overall, the maximum amounts of DNA of both isolates were detected in the lower 

parts of inoculated trees of both cultivars, while at any given time point the quantities 

detected in the top parts were generally lower than those in the lower parts with quantities 

in the middle parts being intermediate (Figure 2). 
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Figure 2. Amount of V. dahliae DNA (ng) in 100 ng total DNA extracted from lower, middle and 

top parts of ‘Frantoio’ and ‘Picual’ olive trees inoculated with V. dahliae isolate V117 (A, C) and 

V4 (B, D). Quantification assays were run at nine time points during 15 weeks after inoculation. 

Each value is the mean of five replications (trees). Error bars show standard deviations. 

At the end of the experiment (15 wpi), the area under quantity progress curve 

percentage (AUQPCP) of V. dahliae DNA was calculated for each part separately for all 

four treatments. Analysis revealed that there were significant differences between 

different parts of the inoculated olive trees (P=0.05) (Figure 3). Also, mean quantities of 

V. dahliae DNA in trees of each treatment group were calculated at each time point by 

averaging the amounts detected in different parts (lower, middle and top) of five trees at 

each time point. The AUQPCP analysis of mean values showed that quantities of both 

isolates detected in ‘Frantoio’ plants were significantly lower than quantities in ‘Picual’ 

plants, while the amount of V117 in both cultivars was significantly higher than the 

amount of V4 (P=0.05) (Figure 4). These results were consistent with the results of the 

AUDPCP analysis in which V117 caused significantly more disease symptoms than V4 

in both cultivars, and the severity of disease in ‘Picual’ was significantly higher than that 

in ‘Frantoio’ (P=0.05).  
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Figure 3. Area under the quantity progress curve percentage (AUQPCP) of the amount of V. 

dahliae DNA (ng) in 100 ng of total DNA extracted from lower, middle and top parts of ‘Frantoio’ 

and ‘Picual’ olive trees after inoculation with V117 and V4 isolates of V. dahliae. The AUQPCP 

values were calculated by the trapezoidal integration method of Campbell and Madden (1990) of 

the data of figure 2. Error bars show standard deviations. Means of the results of lower, middle and 

top parts were compared for each treatment (‘Frantoio’/V117, ‘Frantoio’/V4, ‘Picual’/V117 and 

‘Picual’/V4) separately, based on Fisher protected LSD at P=0.05. Different letters above bars in 

each treatment group indicates significantly different quantities of V. dahliae DNA detected in 

lower, middle and top parts of plants within each combination group. 

 

 

 

 

 

 

 

 

 

Figure 4. Area under the quantity progress curve percentage (AUQPCP) for mean values of V. 

dahliae DNA quantities in Frantoio/V117, Frantoio/V4, Picual/V117 and Picual/V4 combinations. 

Mean quantities of V. dahliae DNA were obtained by averaging the amounts detected in different 

parts (lower, middle and top) of tested trees (five trees per time point). The AUQPCP values were 

calculated by the trapezoidal integration method of Campbell and Madden (1990). Different letters 

above the bars show significant differences between mean values (T-test, P=0.05), while error bars 

indicate standard deviations. 
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Infection of olive trees with GFP-expressing isolates. To study the process of infection 

and colonisation by V117 and V4 isolates of V. dahliae in ‘Frantoio’ and ‘Picual’ olive 

cultivars, we used GFP-labelled isolates of V. dahliae V4 and V117 for inoculation of 

‘Picual’ and ‘Frantoio’ plants. To this end, GFP-expressing transgenes were generated by 

means of Agrobacterium tumefaciens-mediated transformation (ATMT) of V. dahliae 

isolates V117 and V4, and each transgene was used for inoculation of 35 plants from each 

‘Picual’ and ‘Frantoio’ cultivar. Ten plants from each cultivar were used as controls. To 

monitor disease development, ten plants of each combination of olive cultivar and GFP-

expressing V. dahliae transgene were used for assessment of disease severity at 2-week 

intervals, in the same way as we did for plants inoculated with wild-type V117 and V4. 

As expected, the disease development as observed in plants inoculated with GFP-labelled 

transgenes of V. dahliae V117 and V4 was similar to that observed in plants inoculated 

with V. dahliae V117 and V4 (data not shown).  

The amounts of the GFP-labelled isolates of V. dahliae in the stem of inoculated trees 

was quantified by real-time PCR at different time points (two weeks intervals). Total 

DNA was isolated from mixed subsamples taken from three different parts of the stem 

and used for quantification of V. dahliae DNA. At each time point, five plants from each 

treatment were sampled and mean relative quantities of V. dahliae DNA (means of five 

plants) were plotted against sampling time points (Figure 5A). Results were similar to 

those of experiment 1. One week after inoculation, V. dahliae DNA could be detected in 

the stem of trees from all four treatments with more V. dahliae DNA detected in ‘Picual’ 

plants than in ‘Frantoio’ plants. Like in experiment 1, in Frantoio plants a gradual decline 

of the amount of V. dahliae DNA was observed, whereas in Picual the amount of V. 

dahliae DNA was more variable with a decline at the end of the period of observation. 

The AUQPCP analysis of mean values showed, similar to experiment 1, that quantities of 

V. dahliae DNA in ‘Picual’ plants were significantly higher than quantities in ‘Frantoio’ 

plants for both GFP-labelled isolates, and the quantities of GFP-V117 were significantly 

different from quantities of GFP-V4 in both cultivars (P=0.05) (Figure 5B). 
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Figure 5. Mean quantity of V. dahliae DNA (ng) in 100 ng total DNA extracted from ‘Frantoio’ 

and ‘Picual’ olive trees inoculated with GFP-V117 and GFP-V4 transgenes. (A) Progress curve of 

the mean quantities of V. dahliae DNA in different treatments. Mean quantities of V. dahliae DNA 

in tested trees were obtained by averaging the amounts detected in different parts (lower, middle 

and top). Quantification assays were run at eight time points during 13 weeks after inoculation. 

Each value is the mean of five replications (trees) per time point. Error bars show standard 

deviations. (B) Area under the quantity progress curve percentage (AUQPCP) of the mean 

quantities of V. dahliae DNA in the different treatment groups. The AUQPCP values were 

calculated by the trapezoidal integration method of Campbell and Madden (1990).  Different letters 

above the bars show significant differences between mean values (T-test, P=0.05) and error bars 

show standard deviations. 

To illustrate in which part of the vascular system of olive trees, and in what form, V. 

dahliae grows and spreads, samples from root and stem of olive trees inoculated with 

GFP-expressing isolates were analysed with epi-fluorescence and confocal laser 

microscopy. Two to four dpi, germinating conidia were frequently observed on the surface 
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of the roots (Figure 6A, 6B, 6C). At this time point, also formation of more complex 

networks of hyphae were observed locally on the epidermis of the roots (Figure 6D, 6E, 

6F). Intriguingly, before penetration and colonization of the cortical tissues, inflated 

structures that are recognized as “hyphopodia” and that are thought to be functionally 

analogous to appressoria (Vallad et al., 2008, Reusche et al., 2014; Zhao et al., 2016) were 

observed at the penetration site (Figure 6G). One week after inoculation, the surface of 

the roots was locally intensively colonized by hyphae at seemingly random positions 

along the roots (Figure 7A, 7B). 

Simultaneously, hyphae were observed growing intra- and intercellularly within the 

root cortex and the central cylinder to colonize the vascular system of the root (Figure 7C, 

7D, 7E). Two weeks after inoculation, germinating conidia were observed in xylem 

vessels of middle parts of the inoculated trees (Figure 8A, 8B, 8C, 8D), while formation 

of hyphae was observed in lower parts (Figure 8E, 8F, 8G). Notably, colonization in the 

stem was restricted to the xylem vessels (Figure 8E1-8E3). These observations were 

similar for GFP-V4 and GFP-V117 transgenes in ’Frantoio’ and ‘Picual’ olive cultivars.  

 

Figure 6. Colonization of the surface of olive roots by GFP-labelled V. dahliae at 48 h after 

inoculation as observed with epi-fluorescence microscopy (A, B and C). Conidia on the root 

surface of plants from different treatments (D, E, F and G). Growth of V. dahliae hyphae on the 

root surface (G). Arrows indicate appressorium-like structures at penetration sites. Scale bar = 50 

μm.   
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Figure 7. Presence of GFP-labelled V. dahliae in cortex and vessels of olive roots at one week 

after inoculation. GFP-labelled V. dahliae in the root cortex (A, B and C). Colonization of GFP-

labelled V. dahliae in root vessels (D, E). Images were captured using confocal laser microscopy 

(A) or epi-fluorescence microscopy (B, C, D and E). Scale bar=50 μm. 

 

 

 

 

 

 

 

 

 

Figure 8. Presence of GFP-labelled V. dahliae in xylem vessels of the stem of olive plants at 2 

weeks after root-dip inoculation. Germinating conidia in xylem vessels of middle parts of infected 

olive trees (A, B, C, D). Hyphae of GFP-labelled V. dahliae in xylem vessels of lower parts of 

infected olive trees (E, F and G). Images were captured using epi-fluorescence microscopy (A, B, 

C, D, E1, E2, F, and G) and confocal laser microscopy (E2). Scale bar = 50 μm. 
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Discussion 

Verticillium wilt disease incidence and severity of symptoms in olive trees are strongly 

dependent on the virulence of the infecting V. dahliae isolate, the pathotype (D or ND) to 

which the isolate belongs (Jiménez-Díaz et al. 2011; López-Escudero et al. 2004, 2007; 

Rodríguez-Jurado et al. 1993), and on the level of resistance of the host tree (Mercado-

Blanco et al. 2003). More knowledge of the dynamics of pathogen distribution in infected 

plants may help to elucidate the reason for differences in the extent and severity of disease 

caused by these two pathotypes in resistant and susceptible olive genotypes. Therefore, 

the objective of this study was to investigate the distribution of a defoliating (D) and a 

non-defoliating (ND) isolate of V. dahliae (V117 and V4 respectively) in relation to 

disease progression in a susceptible (Picual) and a partially resistant cultivar (Frantoio) of 

olive.  

As expected, disease severity caused by isolate V117  was significantly higher than 

that caused by isolate V4  in both cultivars, and disease severity in ‘Frantoio’ plants was 

less than in ‘Picual’ plants for both isolates, confirming that isolate V117 is more virulent 

than isolate V4, and ‘Picual’ is more susceptible to Verticillium wilt than ‘Frantoio’. 

Colonization of the above ground parts of infected olive plants arguably occurs by means 

of conidiospores that are transported with the xylem sap stream, the pathogen occurs in 

the upper parts already at one week post inoculation. Conceivably, this is too fast to be 

achieved by hyphal growth only, as the maximum growth rate of V. dahliae hyphae is 

about 8 mm/day (ElSharawy, 2015; Rampersad, 2010). This conclusion is further 

underpinned by the observation of conidia and germinating conidia and the absence of 

hyphal growth in xylem vessels in samples from the middle part of inoculated stems at 

the second week after inoculation. By this time, profuse hyphal growth was only observed 

on the root surface and in the cortex of infected roots, and some hyphae were detected in 

vessels in samples from the lower stem parts. Moreover, in the stem samples the fungus 

could only be detected in the xylem, indicating that V. dahliae in the stem of infected 

plants is limited to the vascular system of the plant during symptom development.  

The highest levels of V. dahliae DNA within the stem of infected plants (before the 

onset of symptoms) were detected already at one week after inoculation with symptoms 
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developing only from week seven (Picual) or week nine (Frantoio) onward. Street and 

Cooper (1984) indicated that vessel occlusion is the primary cause of water stress and 

wilting in Verticillium wilt. This occlusion might be caused by physical blockage of the 

plant’s xylem by the pathogen itself or by host defence responses that are aimed at vessel 

plugging. Data from our study show that symptoms are the result of reactions by the plant 

to the presence of the pathogen, rather than to the presence of the pathogen itself (e.g. 

through clogging of vessels). This hypothesis is supported by the low levels of V. dahliae 

DNA that were detected, i.e. up to 0.035 % of the total DNA extracted for isolate V117 

in ‘Picual’ plants (0.035 ng in 100 ng total DNA) at the most  (Fig. 2). In this respect, it 

should be taken into account that many plant cells in the sample volume are dead (i.e. the 

xylem vessels) and therefore do not contain DNA. This leads to the conclusion that despite 

the occurrence of severe symptoms, only limited growth of the fungus within the plant 

stems occurs during the period of symptom development. This conclusion was further 

substantiated by the microscopical analysis that only rarely revealed V. dahliae presence, 

and if so usually to a limited extent. 

Interestingly, real-time PCR analysis revealed that initial V. dahliae DNA levels 

detected at one week post inoculation were rather similar for all treatments, while striking 

differences developed in the weeks after. In ‘Picual’ plants the quantity of V. dahliae DNA 

fluctuated for both isolates and remained at a high level until 13 weeks post inoculation, 

whereas in ‘Frantoio’ plants the quantities of both pathotypes gradually decreased till the 

end of the experiment. Notably, in each cultivar the higher amount of pathogen biomass 

was observed in the interaction with the V117 isolate. Apparently in the susceptible 

cultivar (Picual), V. dahliae is able to overcome the defense reactions of the host, as 

several peaks in the amount of V. dahliae DNA were observed in infected plants of this 

cultivar. However, in the ‘Frantoio’ the defense mechanisms of the host are apparently 

more effective as in this cultivar the quantity of V. dahliae DNA gradually decreases. 

Despite the differences in disease development and pathogen biomass as measured by 

real-time PCR, we did not observe visible difference in the infection and colonization 

process of the GFP-labelled isolates of V. dahliae V117 and V4 in the ’Frantoio’ and 

‘Picual’ trees. This illustrates that quantitative nature of GFP-visualisation of colonisation 



DISTRIBUTION OF DEFOLIATING AND NON-DEFOLIATING V. DAHLIAE 

101 
 

in this study is rather poor, because microscopical analysis concerns only localized sites 

and only provides a quantitative rather than a quantitative view. 

The highest amounts of V. dahliae DNA were always detected in the lowest parts of 

the inoculated plants. Also the distribution patterns of the two isolates in the lower, middle 

and top parts of the tested olive cultivars showed that differences in symptom severity 

correlated to higher amounts of the pathogen in the lower and middle parts of the trees. 

Actually, colonization of the pathogen in top parts of the stem of inoculated plants was 

not significantly different between treatments. Resistance mechanisms of woody plants 

against a vascular pathogen like V. dahliae include physical and biochemical components, 

serving to seal off infected sites and immobilize the pathogen (Hiemstra 1998). For olive, 

several components including production of tyloses extruding from the paravascular 

parenchyma into the vessel elements, aggregates, and polysaccharide-type materials have 

been described (Baídez et al. 2007; Rodríguez-Jurado et al. 1993). In both olive cultivars 

these defense mechanisms are not sufficient to prevent the fungus from colonizing the 

upper parts of the stem of inoculated plants. Moreover, the interaction between the plant 

and the fungus results in significant differences in disease intensity that can be related to 

differences in the quantity of V. dahliae in the lower and middle parts of the stems. Thus, 

for a better understanding of differences in susceptibility of olive cultivars to Verticillium 

wilt, it would be very interesting to investigate the presence and activity of different 

proteins and secondary metabolites in the xylem sap that contribute directly or indirectly 

to plant defense, especially in the xylem of the upper part of the root system and the lower 

part of the stem of olive cultivars that display differential levels of susceptibility.  
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Abstract 

V. dahliae colonizes the xylem vessels of susceptible host plants. Hence it can be expected 

that the distribution of the fungus as well as disease progress will be influenced by the 

anatomy of the xylem of that host. Here, we studied the spatial and temporal distribution 

of V. dahliae in relation to recovery from disease symptoms in young European ash 

(Fraxinus excelsior) trees and Norway maple (Acer platanoides) that differ in their 

vascular anatomy. Quantifying the amount of V. dahliae DNA at different heights in the 

stem of inoculated trees at different time points after inoculation showed that in the year 

of inoculation the speed of colonization of these two species by V. dahliae was highly 

similar. Nevertheless, in the year after inoculation disease incidence and also quantities 

of V. dahliae detected in maple trees were significantly higher than in ash trees, suggesting 

that the xylem of ash trees is much less supportive for growth and survival of V. dahliae 

than that of maple trees. Moreover in this second year V. dahliae could not be detected at 

all in the wood of ash trees that had recovered from disease whereas it easily could be 

detected in the wood of diseased ash and maple trees. Furthermore, despite the presence 

of a layer of parenchyma cells between growth rings in ash trees, in symptomatic ash trees 

V. dahliae was present in the xylem of the new growth ring. We observed that V. dahliae 

can move downward from the point of inoculation into the root collar. This may provide 

a way for infection of new growth rings by circumventing the physical barriers within the 

stem xylem. 

 

Introduction 

Verticillium wilt caused by the soil-borne fungus Verticillium dahliae Kleb., is a major 

disease worldwide that not only affects herbaceous annuals but also woody perennials 

(Pegg and Brady, 2002; Smith et al., 1988). Shade tree nurseries and landscape plantings, 

especially in areas where field crops suffered from Verticillium wilt in the past, are 

agricultural settings that are confronted with this disease (Hiemstra and Harris, 1998; 

Riffle and Peterson, 1989). Maples (Acer spp.) are probably the best known shade trees 

that are susceptible to Verticillium wilt (Gleason and Hartman, 2001; Harris, 1998; 

Townsend et al., 1990). A. platanoides (Norway maple) is an important shade tree species 
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in Europe that is known to be highly susceptible to V. dahliae (Harris, 1998; Piearce and 

Gibbs, 1981). Ash trees (Fraxinus spp.) are widely cultivated because of their high-quality 

timber (strong but elastic) and their ornamental value. Several species in this genus, and 

especially F. excelsior, are also highly susceptible to Verticillium wilt in nurseries as well 

as after being planted out in the landscape (Heffer and Regan, 1996; Hiemstra, 1998; Worf 

et al., 1994).  

The disease cycle of V. dahliae on tree hosts has been described in detail by Hiemstra 

(1998). Microsclerotia (resting structures) of V. dahliae in the soil are stimulated to 

germinate by exudates from nearby growing roots. Hyphae from germinating 

microsclerotia grow towards the roots, penetrate the root surface (Lockwood, 1977; 

Nelson, 1990; Schreiber and Green, 1963) and grow inter- and intracellularly through the 

root cortex to reach the xylem vessels (Prieto et al., 2009). Once inside the vessels, the 

fungus starts to produce conidia that are spread throughout the infected tree with the flow 

of xylem fluid. At vessel ends or against protruding parts of vessel elements, conidia are 

trapped and may germinate. The new hyphae penetrate into adjacent vessel elements, 

produce conidia and the process starts all over again, finally leading to systemic 

colonization of upper parts of infected plants (Baídez et al., 2007; Rodríguez-Jurado, 

1993).  

Fungal propagules and host defense products may block xylem vessels in infected 

plants. As a result, the water flow throughout the xylem is hampered and symptoms of 

water stress develop. Consequently, wilting, desiccation and defoliation are among the 

early symptoms of Verticillium wilt disease in trees. If the plugged vessels are not 

replaced in time by novel ones, dieback of shoots, branches or even the whole tree may 

follow. Not all tree species show dieback to the same extent. Whereas ash is able to 

recover completely from Verticillium wilt (Hiemstra, 1995b), serious dieback is generally 

observed in maple trees (Harris, 1998; Piearce and Gibbs, 1981).  

The capability of tree species to recover from vascular infections has been related to 

the inherent structure of their xylem and the ability to produce new layers of healthy xylem 

tissue around diseased xylem (Banfield, 1968; Emechebe et al., 1974; Sinclair et al., 1987; 

Tippett and Shigo, 1981). Ash is a ring-porous tree with most of the water transport taking 
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place in the xylem vessels of the most recent growth ring and a marginal parenchyma 

sheath between successive growth rings that may act as a barrier zone, effectively 

separating the latewood vessels of one growth ring from the earlywood vessels of the next 

growth ring (Braun, 1970; Grosser, 1977; Schweingruber, 1990). This implies that as long 

as infected ash trees are able to produce new uninfected xylem vessels every year they 

can substitute their blocked vessels, which enables complete recovery, often even without 

dieback of the crown. In maple, which is a diffuse-porous tree, xylem vessels remain 

functional for several years in each growth ring. Therefore, loss of a major part of the 

water transport capacity in infected trees often cannot sufficiently be compensated by new 

growth rings. Consequently, these trees show much more dieback of the aerial parts and 

recovery, if it occurs, starts by regrowth from healthy parts of the stem base or roots 

(Hiemstra, 1998).   

De novo xylem formation as a mechanism to recover from Verticillium wilt implies 

the requirement to protect new xylem vessels from infection by the fungus that is already 

present in the tree. Compartmentalization resulting from the inherent structure of the 

wood, in combination with changes in anatomy and chemistry of xylem after infection, 

has been suggested to play an important role in protecting trees against colonization by 

vascular pathogens (Bonsen et al., 1985; Manion, 2003; Shigo, 1984; Tippett and Shigo, 

1981; Smith, 2006). However, although recovery from Verticillium wilt has been 

described not only for ash, but also for other tree species including almond and peach 

(Ciccarese et al., 1990), apricot (Taylor and Flentje, 1968; Vigouroux and Castelain, 

1969), pistachio (Paplomatas and Elena, 1998), cocoa (Emechebe et al., 1974), avocado 

(Latorre and Allende, 1983), and olive (López-Escudero and Blanco-López, 2005), there 

is little information about the fate of the fungus in infected trees in the years following the 

initial infection.  

In this research we investigated (1) if the spread of V. dahliae is different in two tree 

species that differ in vascular anatomy, (2) if V. dahliae is still present in the xylem of a 

tree host at one year after infection, and (3) if recovery is correlated to containment of the 

pathogen in the xylem of the year of infection. To this end, we studied the spatial and 

temporal distribution of V. dahliae as well as recovery in Norway maple and European 
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ash trees. We monitored disease progression and quantified the amount of pathogen that 

is present at different heights in the stem of inoculated trees during the year of inoculation 

and in the subsequent year. In that second year we also investigated the presence of the 

pathogen in the newly formed ring of stem xylem.  

 

Materials and methods 

Plant and fungal material. Two-year-old seedlings of Norway maple (Acer platanoides) 

(79 trees) and ash (Fraxinus excelsior) (74 trees) were stem-inoculated on August (8th) 

2013 with V. dahliae isolate Vd1 that originates from maple (collection of Applied Plant 

Research (PPO), Wageningen University and Research Center). The inoculum was 

prepared by adding small fragments from a potato dextrose agar (PDA) culture to liquid 

Czapek-Dox medium in Erlenmeyer flasks. The flasks were put in a shaker at 100 rpm at 

room temperature in the dark for about seven days to allow conidiospores to be produced. 

After filtration over cheese cloth, the conidiospore suspension was centrifuged to remove 

growth medium, and the pellet was resuspended in sterile water. Then, the concentration 

of conidia was determined and diluted to 106 conidia/ml. This conidiospore suspension 

was used for inoculation of healthy ash and maple trees. To this end, a horizontal incision 

of a few millimetres deep was made through the bark of the stem into the xylem with a 

snap-off cutter, around 30 cm above the soil level. Next, 1-2 drops of 50-100 μl of the 

conidial suspension were put on the cutter blade with a disposable transfer pipette, with 

the blade still inside the incision (Figure 1). Within a few seconds the conidial suspension 

was drawn into the stem as a result of the low pressure potential within the xylem vessels. 

Additionally, 35 maple trees and 27 ash trees were not inoculated to be used as controls. 

From each species, 40 inoculated trees were kept for assessment of disease progression, 

and the remainder of the inoculated trees (39 maple trees and 34 ash trees) were used for 

quantification of the pathogen.  
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Figure 1. Illustration of stem-inoculation of a maple seedling. With a snap-off cutter a horizontal 

incision of about 5 mm deep is made through the bark into the xylem of the stem. With the knife 

still inside the incision, 1-2 drops of 50-100 µl of a conidiospore suspension were put on the knife 

with a disposable transfer pipette. The conidiospore suspension is drawn into the stem within a few 

seconds as a result of the negative pressure potential within the xylem vessels. 

Sampling. To monitor the upward and downward distribution of V. dahliae from the point 

of inoculation within the stem of inoculated trees, and also to examine changes in V. 

dahliae biomass in infected trees over time, 10 cm samples were taken at different heights 

from the stem of 5 individual trees at different time points: 0 days past inoculation (dpi; 

i.e. about an hour after inoculation), 10 dpi, 24 dpi and 60 dpi; as well as 8 months past 

inoculation (mpi), 11 mpi and 14 mpi. As the ash trees were shorter than the maple trees, 

we tested eight samples from ash trees (P1 = 5 cm below the soil level, P2 = 5 cm above 

the soil level, P3 = 5 cm below the inoculation point, and P4 to P8 = 5, 10, 20, 40 and 60 

cm above the inoculation point, respectively) and ten samples from maple trees (P1-P8 as 

for ash trees and P9 and P10 at 80 and 100 cm above the inoculation point, respectively) 

(Figure 2). These samples were used for quantification of V. dahliae DNA and for 

reisolation of the pathogen through plating. 
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Figure 2. Locations in the stem of inoculated trees that were sampled for detection and 

quantification of V. dahliae DNA shown on an uprooted maple (left) and ash (right) tree that was 

photographed with most leaves removed before taking samples. Positions of the soil level and 

inoculation point are indicated. 

DNA isolation. For DNA isolation the stem samples were first washed under running tap 

water for 1-2 minutes, dried with cleaning paper and left to dry for a few minutes on 

cleaning paper. Then, the bark was removed under sterile conditions and small (2-5 mm) 

pieces of woody tissue (300-400 mg) were taken by using a sterilized scalpel (flamed after 

submergence in 70% alcohol) and transferred to a 2 ml tube containing 1 ml of lysis buffer 

AP1 of the DNeasy Plant Mini Kit (Qiagen, Hilden, Germany) and 4-5 stainless steel 

beads (3.2 mm diameter, BioSpec, Bartlesville, US/Canada). Next, the tubes were 

incubated for 15-30 min at 65˚C and then shaken in a Retsch® mixer mill (MM 400, 

Retsch, Haan, Germany) for 15 minutes at 30 Hz. After centrifugation at 10,000 rpm for 
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5 minutes, 400 µl of the suspension was used for total genomic DNA extraction using the 

DNeasy Plant Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer’s 

instructions. DNA amounts were quantified using a BioPhotometer (Eppendorf AG, 

Hamburg, Germany) and concentrations were equalized by adding elution buffer or 

DNase-free water. 

DNA quantification. Real-time PCR assays were performed using a V. dahliae-specific 

primer pair designed on the internal transcribed spacer (ITS) region (van Doorn et al., 

2009) (VerDITSF: 5’-CCGGTCCATCAGTCTCTCTG-3’, VerDITSRk: 5’- 

CACACTACATATCGCGTTTCG-3’) and a primer pair for the plant cytochrome 

oxidase (COX) gene (Weller et al. 2000) to quantify the amount of V. dahliae DNA and 

plant DNA, respectively. All real-time PCR reactions were performed in a 

STRATAGENE Max 3000PTM real-time PCR machine (Agilent Technologies, Santa 

Clara, United States). The real-time PCR program consisted of an initial step of 

denaturation for 10 min at 95˚C, followed by 45 cycles of 15 sec at 95˚C, 40 sec at 62˚C, 

and 40 sec at 72˚C. The quantities of V. dahliae and plant DNA were determined using a 

standard curve by plotting the logarithm of a ten-fold dilution series prepared from 10 

ng/µl DNA suspension of V. dahliae isolate V117 (supplied by F. J. Lopez-Escudero of 

the Laboratory of Plant Pathology, Department of Agronomy, University of Córdoba, 

Spain), and a ten-fold dilution series prepared from 10 ng/µl plant (maple/ash) DNA 

suspension, respectively, against the threshold cycle (Ct) obtained in the real-time PCR 

assays. The relative quantity of V. dahliae DNA in the tested samples was calculated based 

on the quantity of V. dahliae DNA (ng) in 100 ng total DNA (i.e. including pathogen and 

plant DNA as quantified by simultaneously conducting plant-specific real-time PCR and 

pathogen-specific real-time PCR) isolated from inoculated plant tissues.  

Disease assessment. To monitor disease progress, 40 inoculated trees were selected 

randomly from the group of inoculated trees and severity of disease symptoms on these 

trees was recorded at the day of inoculation (0 dpi = days post inoculation) and at the end 

of the growing season  in the year of inoculation (60 dpi) and, after the dormant period in 

the winter from 2013-2014, at 11 mpi (mid-season; mpi = months post inoculation) and 
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14 mpi (end of the growing season) in the year after inoculation. Disease symptoms of 

each tree were rated on a scale from 0 to 4 based on the percentage of plant tissue affected 

by chlorosis, leaf and shoot necrosis or dieback (0 = no symptoms; 1 = slight (<30%) 

foliar symptoms; 2 = severe foliar symptoms (>30%) with or without slight (<10%) 

dieback of top or shoot tips; 3 = severe dieback of top or shoot tips (>10%); 4 = dead 

plant) (scale modified from Hiemstra, 1995a).  

Plating assay. To re-isolate V. dahliae, stem samples of 10 cm were first washed under 

running tap water. After drying, the bark was peeled off and chips from xylem sheets of 

the two most recent growing years were taken and disinfected in 10% chloramine-T 

hydrate 98% for 1 minute. Afterwards, wood chips were washed with sterile water for 30 

seconds and dried on Whatman filter paper. Chips then were placed onto PDA plates and 

incubated at 24ºC in dark for 7 days. 

 

Results 

Disease incidence. In this study, 79 maple trees and 74 ash trees were stem-inoculated 

with a V. dahliae conidiospore suspension to investigate the disease progression and 

distribution of the pathogen. Notably, in naturally infected trees this is difficult to 

investigate because every year new upward surges of the pathogen from infected roots are 

possible, as well as new infections from the soil. However, in stem-inoculated trees the 

infection essentially is a one-time event which makes it possible to investigate differences 

between tree species in their capacity to limit spread of the pathogen in the year of 

infection as well as in their capacity to contain the pathogen effectively and prevent it 

from spreading into newly formed tissues in the next year. To monitor disease 

progression, the severity of disease symptoms on 40 inoculated trees of each of the two 

species were recorded in a time course (0 dpi, 60 dpi, 11 mpi, 14 mpi). Two months after 

inoculation (i.e. at the end of the growing season) disease symptoms had developed in 

both species, although the percentage of diseased trees varied strongly. At this time point, 

75% of the inoculated ash trees showed symptoms of Verticillium wilt, with 55% of the 

trees showing severe symptoms (Table 1A), whereas only 17.5% of the inoculated maple 

trees showed disease symptoms, with 5% displaying severe symptoms (Table 1B). 
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Interestingly, early in the following growing season (11 mpi), the disease incidence in ash 

trees was decreased strongly, with 70% of the trees being devoid of disease symptoms, 

whereas disease incidence in maple was strongly increased with only 35% of the trees 

remaining symptomless. During that second season, incidence and severity of disease 

increased again in both species, with ash being notably less affected than maple. At the 

end of the second growing season (14 mpi) still 37.5% of the ash trees remained 

symptomless and 40% showed only slight leaf symptoms. In contrast, the disease index 

for maple trees was strongly increased by that time, resulting in 80% of the maple trees 

showing symptoms, including 30% dead trees. These data illustrate the potential of ash to 

recover from Verticillium wilt disease, despite the fast occurrence of disease symptoms 

in the first year. At the end of the year after inoculation, the percentage of seriously 

affected trees was much lower than at the end of the year of inoculation. In contrast, 

disease in maple trees developed much slower in the year of inoculation, but showed a 

strong increase in the second year (Figure 3).  

Upward movement of V. dahliae. To investigate upward movement of V. dahliae within 

the stem of maple and ash trees, different heights of the inoculated stems were analysed 

in a time course by real-time PCR for presence of the pathogen. The results of the real-

time PCR analysis of samples collected at different heights of the inoculated stems 

showed that in ash trees V. dahliae was already present at P4, P5 and P6 (i.e. 5, 10 and 20 

cm above the inoculation point) at the day of inoculation, at P7 (i.e. 40 cm above the 

inoculation point) at 10 days after inoculation, at P8 (i.e. 60 cm above the point of 

inoculation) at 24 days after inoculation, and at P9 (i.e. in the top of the stem, 80 cm above 

the point of inoculation) at only 60 days after inoculation (Figure 4A). At the day of 

inoculation, V. dahliae was detected at P4 and P5 in maple, while at 10 days after 

inoculation the fungus was also detected at P6, P7 and P8. At 24 days after inoculation V. 

dahliae DNA was detected at P9 and at 60 dpi the fungus was detected at P10 (i.e. in the 

top of the stem) (Figure 4B). These results show that the speed of V. dahliae colonization 

in the inoculated ash and maple trees does not really differ between the two species. 

 



DISTRIBUTION AND PERSISTENCE OF V. DAHLIAE 

115 
 

 

  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1
 D

isease sy
m

p
to

m
s o

f each
 tree w

ere rated
 o

n
 a scale fro

m
 0

 to
 4

 b
ased

 o
n

 th
e p

ercen
tag

e o
f p

lan
t tissu

e affected
 b

y
 ch

lo
ro

sis, leaf an
d

 sh
o
o
t 

n
ecro

sis o
r d

ieb
ack

 (0
 =

 n
o

 sy
m

p
to

m
s; 1

 =
 slig

h
t (<

3
0

%
) fo

liar sy
m

p
to

m
s; 2

 =
 sev

ere fo
liar sy

m
p

to
m

s (>
3

0
%

) w
ith

 o
r w

ith
o

u
t slig

h
t (<

1
0

%
) 

d
ieb

ack
 o

f to
p

 o
r sh

o
o

t tip
s; 3

 =
 sev

ere d
ieb

ack
 o

f to
p

 o
r sh

o
o

t tip
s (>

1
0

%
); 4

 =
 d

ead
 p

lan
t). 

2
 d

p
i =

 d
ay

s p
o

st in
o

cu
latio

n
. 

3 m
p

i =
 m

o
n

th
s p

o
st in

o
cu

latio
n

. 

T
a

b
le 1

. N
u

m
b

er (#
) an

d
 p

ercen
tag

e (%
) o

f d
iseased

 trees o
f ash

 (A
) a

n
d

 m
ap

le (B
) at d

ifferen
t tim

e p
o

in
ts a

fter in
o

c
u
latio

n
 w

ith
 

V
. d

a
h

lia
e. 



CHAPTER 6 

116 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 3. Disease incidence in ash (left) and maple (right) at different time points. Disease index 

(DI) categories: trees without symptoms (DI 0), with slight symptoms (DI 1), severe symptoms 

(DI 2+3) and dead trees (DI 4). Dpi = days post inoculation, mpi = months post inoculation. 
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Figure 4. Amount of V. dahliae DNA detected at different heights above the inoculation point (IP) 

in the stem of inoculated ash (A) and maple trees (B). Assessments were conducted at 0, 10, 24, 

60 dpi and 8 mpi. Each bar is the mean value of V. dahliae DNA quantities detected at 

corresponding stem positions in 5 trees. Error bars show standard errors. An inverted solid triangle 

() indicates that V. dahliae DNA was not detected (threshold value 0.001 ng of DNA according 

to the standard curve). Significant differences in quantities of V. dahliae DNA detected in different 

stem positions at each time point have been indicated by different letters on top of the bars 

(P=0.05). 

Downward movement of V. dahliae. The potential of downward movement of V. dahliae 

after stem inoculation was studied by analysis of stem samples at three points below the 

inoculation point (P1 = 5 cm under soil level, P2 = 5 cm above the soil level and P3 = 5 

cm below the inoculation point) taken at 0 dpi, 10 dpi, 24 dpi, 60 dpi in the year of 

inoculation; and at 8 mpi in the year after inoculation (Figure 5). Directly after inoculation, 

high amounts of V. dahliae DNA were detected in P3 samples of both species, while V. 

dahliae DNA could not be detected in P2 and P1 samples. At 10 dpi, V. dahliae DNA was 

detected also at P2 in both species, while at 24 days after inoculation V. dahliae DNA was 

detected at all three sites below the inoculation point, which evidences downward spread 

of the pathogen in the year of inoculation. Analysis of P1, P2, and P3 samples taken at 8 

mpi (i.e. in the next growing year) showed that V. dahliae was still present at these three 
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sites in both species. Although perhaps unexpected, these findings show that V. dahliae is 

able to move downward in the xylem against the direction of the water flow.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Amount of V. dahliae DNA detected at three points below the inoculation point (IP) in 

the stem of inoculated ash (A) and maple trees (B) at different time points (dpi=days post 

inoculation, mpi = months post inoculation). Each bar represent the mean of samples from 5 

individual trees. Error bars show standard deviations. An inverted solid triangle () indicates that 

V. dahliae DNA was not detected (threshold value 0.001 ng of DNA according to the standard 

curve). Significant differences in quantities of V. dahliae DNA detected in different stems positions 

at each time point have been indicated by different letters added on top of the bars (P = 0.05). 
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Changes in biomass of V. dahliae in infected maple and ash trees over time. To 

investigate if there is a difference in proliferation of V. dahliae in inoculated ash and maple 

trees, we examined the V. dahliae biomass within the infected trees over time. To this end, 

at each time point we measured the V. dahliae DNA quantities at different heights in the 

stems. The mean values of V. dahliae DNA quantities detected at the corresponding 

positions in five trees tested at each time point and standard error of the means for all 

tested points were calculated (Table 2).  

Table 2. Quantities of V. dahliae DNA (ng) in 100 ng total DNA (including pathogen and plant 

DNA) detected in samples collected at different positions in the stem of inoculated ash (A) and 

maple trees (B) at different time points1.  

 

 

 

  

 

 

 

  

  

 

 

  

 

 

 

  

   

 

 

 

 

 

 

 
1Values represent means ± standard error for five trees at each time point. Significant differences 

in quantities of V. dahliae DNA detected in different stems positions at each time point have 

been indicated by different letters added to the values (P = 0.05). 
2 Distances (cm) from the inoculation point (IP) (P3-P12) and from the soil level (SL) (P1 and P2). 
3 X = points that did not exist in tested trees.  
4 ND = indicates positions in which V. dahliae was not detected.  
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5 Avr = averages of the V. dahliae DNA quantities as detected at V. dahliae-positive positions at 

each time point. Mean values of V. dahliae DNA quantities that are indicated with asterisks in table 

A are significantly different (P=0.05) from the mean values of V. dahliae DNA quantities as 

calculated for other time points in ash trees. Mean values of V. dahliae DNA quantities that are 

indicated with asterisks in table B are significantly different (P=0.05) from the mean values of V. 

dahliae DNA quantities as calculated for other time points in maple trees. In each table, mean 

values of V. dahliae DNA quantities that are indicated with asterisks are not significantly differing 

from each other. 
6 dpi = days post inoculation. 
7 mpi = months post inoculation. 

In ash trees, from 10 dpi onward, the quantities of V. dahliae DNA detected at 

different heights in the stem were more or less at the same level with  the differences 

between the quantities detected at different levels in the stem generally statistically not 

being significant (P=0.05) (Table 2A). In contrast, V. dahliae DNA quantities detected in 

maple varied much stronger with in the year of inoculation the quantities detected at 

higher points (P8 at 10 dpi, P8 and P9 at 24 dpi, and P10 at 60 dpi) being significantly 

(P=0.05) lower than the quantities detected at points closer to the inoculation site. 

However, in the year after inoculation (8 mpi), the amount of V. dahliae DNA in top part 

(P10) did not differ significantly from lower parts (P=0.05) (Table 2B). Comparison of 

the mean V. dahliae DNA quantities in ash and maple trees at different time points, as 

determined by averaging the amounts detected at different heights in the stem of the 

examined trees, revealed that in the year of inoculation there was no significant difference 

between maple and ash trees at each of the time points tested, except at 24 dpi (Figure 6; 

see also Table 2A and B, last lines). At this time point, the mean quantity of V. dahliae 

DNA in maple trees was significantly higher than the mean quantity of V. dahliae DNA 

in ash trees (P=0.05). However, from 8 mpi (start of the growing season in the year after 

inoculation) onward, the amounts of V. dahliae DNA in the stem of maple trees showed 

a significant increase when compared with the quantities detected at 0, 10, 24 and 60 dpi 

(in the year of inoculation), while quantities of V. dahliae DNA in the stem of ash trees 

did not show any increase (P=0.05) (Table 2). Notably, from 8 mpi onward, quantities of 

V. dahliae DNA in ash trees were significantly lower than in maple trees (P=0.05) (Figure 

6). These data show that the ash xylem is less supportive than the maple xylem for the 

growth of V. dahliae. 
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Figure 6. Comparison between mean relative quantities of V. dahliae DNA detected in maple and 

ash trees at different time points after inoculation. Each bar is the mean value of V. dahliae DNA 

quantities as detected at different heights in the stem of five examined trees (see Table 2). Asterisks 

indicate significant differences in quantities of V. dahliae DNA detected in inoculated maple and 

ash trees at that time point (P=0.05). Dpi = days post inoculation, mpi = months post inoculation. 

Presence of V. dahliae upon de novo xylem formation. To investigate movement of V. 

dahliae from the xylem of the growth ring of the year of inoculation into newly formed 

xylem vessels of the next year’s growth ring, we analysed subsamples from the xylem of 

two successive years in both species by plating assays using samples collected at 11 mpi 

and 14 mpi. Four maple trees at each time point, as well as four ash trees at 11 mpi and 

six ash trees at 14 mpi, were examined. Two of the tested ash trees at each of the time 

points were recovered trees, meaning that they showed clear disease symptoms in the year 

of inoculation but became symptomless in the year after inoculation (11 mpi/14 mpi). At 

each time point, one non-inoculated tree from each species was used as control. 

Interestingly, V. dahliae was not found in symptomless ash trees based on plating assays, 

while it was recovered from most samples from old as well as new growth rings of 

symptomatic ash trees at both time points (11 mpi and 14 mpi) (Table 3A). In maple, V. 

dahliae was recovered from old and new growth rings of most of the tested trees at both 

time points, whereas the pathogen could not be recovered from two tested trees (tree 3 at 

11 mpi and tree 1 at 14 mpi) (Table 3B).  
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Presence of V. dahliae in the xylem of the growth ring of the year of inoculation as well 

as in that of the next year of ash (both recovered and symptomatic trees) and maple trees 

was further studied by real-time PCR at two time points in the year after inoculation (11 

mpi and 14 mpi). To this end, xylem subsamples from both growth rings, separated by 

using scalpel and forceps under a binocular at three points above the inoculation point 

(P4, P6, P8 in maple trees, and P4, P5, P6 in ash trees) were examined. In this assessment, 

75% (27 out of 36) of the subsamples tested from six symptomatic ash trees at 11 mpi and 

14 mpi contained V. dahliae DNA in the vessels of both years (Table 3A). In contrast, 

from four symptomless ash trees at 11 mpi and 14 mpi V. dahliae DNA was detected only 

in 25% (3 out of 12) of the tested subsamples, and always in the xylem from the year of 

inoculation and never in the xylem of the new growth ring (Table 4A). In maple trees, V. 

dahliae DNA was detected in over 80% of all tested subsamples from new and old vessels 

of tested trees (Table 4B). Notably, V. dahliae was not detected in negative control 

samples from ash and maple trees when tested by real-time PCR and plating assays. 

Table 4. Quantities of V. dahliae DNA (ng) in 100 ng of total DNA (including pathogen and plant 

DNA) as detected in successive growth rings of ash (A) and maple (B) trees in the year after 

inoculation (11 mpi, 14 mpi) by real-time PCR. In each species samples from three different 

positions in the stem (P4, P5 and P6 in ash and P4, P6 and P8 in maple trees) were examined. 
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1 Old = growth ring of the year of inoculation.  
2 New = growth ring of the year after inoculation. 
3 Between brackets are the number of the tree from which the chips originated. 
4 ND = indicates positions in which V. dahliae was not detected.   
5 mpi = months past inoculation. 

 

Discussion 

Little is known about differences in the pattern of V. dahliae distribution in the stems of 

infected tree species that differ in anatomy of the xylem. As vascular pathogens like V. 

dahliae colonize their hosts through the xylem vessels, it can be expected that the speed 

and extent of colonization after a localized infection will be influenced by the xylem 

anatomy of that host. Also, some tree species such as olive, cherry, apricot, peach, cacao, 

catalpa, and ash are able to recover from Verticillium wilt; a capability in which the 

anatomy of the xylem is supposed to play an important role (Banfield, 1968; Emechebe 

et al., 1974; Hiemstra and Harris, 1998; Sinclair et al., 1987; Tippett and Shigo, 1981). 

However, the fate of V. dahliae in recovered trees in the years following the initial 

infection has been unrevealed so far. This study investigated the spatial and temporal 

distribution of V. dahliae in relation to disease progression and recovery in stem-

inoculated maple and ash trees, two species that differ strongly in vascular anatomy with 

maple having a diffuse porous xylem anatomy whereas ash has a ring porous xylem 

anatomy (Schweingruber et al., 2013). The main difference between these two types of 

xylem anatomy is that in ring porous species the xylem vessels that are formed early in 

the growth season have a much larger diameter (~ 2.5 to 3.5 times) than the vessels formed 

later in the season, whereas in diffuse porous species the diameter of the xylem vessels is 

more or less the same regardless of the position in the ring (Cochard and Tyree 1990; Core 

et al., 1979). Despite these innate differences in the anatomy of their xylem, the speed of 

V. dahliae colonization in the inoculated ash and maple trees did not really differ between 

the two species. This may be due to the inoculations being carried out relatively late in 

the season and the cut into the stem being only few millimeters deep into the xylem. As a 

result, the conidia were likely introduced mainly in the vessels of the outer part of the 

growth ring; in the case of ash in the smaller sized latewood vessels. Additionally, the 
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plants of both species were rather young, when shoot vessel dimensions are usually 

smaller than in mature stems (Zimmermann, 1983). The latter aspect may also explain the 

decrease in speed of colonization towards the top of the maple plants. 

 Directly after inoculation the pathogen was detected up to 10 cm both upward and 

downward from the inoculation site in inoculated stems of both species. As there was no 

time for hyphal growth, this must be the result only of the conidial suspension being drawn 

into the severed vessels as a result of the low pressure potential within those vessels. In 

the first ten days after inoculation, the fungus moved at least 30 cm upward in ash and 

even 50 cm in maple, corresponding to 3-5 cm per day. From day 10 on the speed of 

colonization in maple is decreasing (Table 2), but is still well over the maximum growth 

rate of V. dahliae hyphae of about 8 mm/day (ElSharawy, 2015; Rampersad, 2010). These 

results confirm the important role of conidiospore transport upward with the sap stream 

in the xylem of infected trees. 

Hiemstra and Harris (1998) reported that ash trees are able to recover from 

Verticillium wilt, whereas maple trees usually show progressive dieback of the aerial 

parts. Our observations confirm this earlier observation. Notably, the difference in disease 

incidence in maple and ash trees correlated with a difference in quantities of V. dahliae 

DNA detected in these two species in the year after inoculation (Figure 6). Moreover, in 

the year after inoculation we were not able to detect or recover the pathogen in new xylem 

sheaths and only rarely in old xylem sheaths of recovered ash trees (Tables 3A, 4A). 

Similar results were observed for olive trees infected with V. dahlia, where reduction in 

symptoms was associated with a decrease in V. dahliae DNA in newly developed 

asymptomatic shoots (Markakis et al., 2009; Mercado-Blanco et al., 2003). Therefore, it 

appears that recovery correlates with the inactivation of the fungus in the xylem and 

impeding new infections (Hiemstra, 1995a, b; Rodríguez-Jurado, 1993; Sinclair et al., 

1981; Talboys, 1968; Wilhelm and Taylor, 1965). It has been reported that V. dahliae can 

become inactivated by high air temperature or other non-favourable environmental 

conditions in the field (Wilhelm and Taylor, 1965; Taylor and Flentje, 1968) or by 

antimicrobial phenolic components that are produced by the host (Baídez et al. 2007; 

Markakis et al. 2010). Based on our data it can be ruled out that the remission of symptoms 
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in ash is caused by unfavorable environmental factors for the pathogen because the maple 

trees in the same field showed a steady increase of symptoms over the same two year 

period in which a number of the diseased ash trees recovered. Thus, recovery of the ash 

trees must be the result of inherent characteristics of (the xylem of) this species.  

 In the present study, V. dahliae DNA could be detected in both successive xylem 

sheaths of maple and symptomatic ash trees. Moreover, the pathogen could also be re-

isolated from both xylem sheaths. This demonstrates that the fungus can still be present 

and alive in the xylem of a tree one year after infection. For ash it also shows that, despite 

the presence of a layer of parenchyma cells between two growth rings which is supposed 

to restrict penetration of pathogens from the xylem of one growth ring to the xylem of the 

growth ring of next year (Braun, 1970), infection of the new xylem layer did occur. One 

explanation is that V. dahliae is able to penetrate through this layer of parenchyma. 

Another explanation, however, could be that infection of xylem of the new growth year 

in infected ash trees occurs from the root area where the percentage of vessels per unit 

area is much higher than in the stem and branch wood (Banfield, 1968). To this end, 

downward movement of the pathogen within infected xylem vessels toward roots would 

be required. Surprisingly, in this study we observed that V. dahliae indeed spreads 

downwards in the stem of both species and with considerable speed (Table 2), as pathogen 

DNA was detected at 5 cm under the soil level of the main stem of stem-inoculated ash 

trees at 24 days after inoculation. Consequently, it is a well possible that infection of new 

xylem vessels of ash trees occurred from the root area.   

 Summarizing, it can be concluded that differences in the xylem anatomy of ash and 

maple did not significantly affect the speed and extent of the upward spread of the 

pathogen in stem-inoculated trees. Furthermore, despite the presence of a layer of 

marginal parenchyma cells between the growth rings in ash trees, infection of the new 

xylem layer did occur in the year after inoculation. Nevertheless, this transition to the new 

growth ring was not observed in recovered ash trees, while in recovered ash trees 

proliferation of the pathogen is also impeded suggesting that the ash xylem is much less 

supportive for the growth of V. dahliae than the maple xylem. However, further studies 

are necessary to uncover the mechanisms responsible for the reduction of the presence of 
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the pathogen in recovered trees. We also observed a fast downward movement of the 

pathogen from the point of inoculation into the root collar. This may provide a way for 

infection of the xylem of the new growth ring by circumventing the mechanical barriers 

in the stem xylem. Moreover, in addition to the inoculum from infected leaves falling 

from diseased ash trees (Rijkers et al., 1992), it may provide new inoculum (from infected 

roots) for contamination of the soil in case of cultivating infected plants in non-infested 

soil. 
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Introduction 

Verticillium wilt disease is one of the major constraints for olive (Olea europaea L.) 

plantations and tree nurseries, and causes substantial reduction in the production of olive 

orchards and high rates of tree mortality (Goud et al. 2011; Hiemstra and Harris 1998; 

Jiménez-Díaz et al. 2012). Designing effective control strategies for this disease is 

difficult because of the long survival time of the pathogen in the form of microsclerotia 

in soil, broad host range of the pathogen that complicates crop rotation, and the absence 

of methods to cure infected trees and eradicate the pathogen from infested soils (Hiemstra, 

1998; López-Escudero and Mercado-Blanco, 2011; Jiménez-Díaz et al. 2012). Thus, as 

an important pre-planting measure, new plantations should not be stablished in or near 

fields with a known history of Verticillium infections (Jiménez-Díaz et al. 2012). 

Arguably, the best measure to control Verticillium wilt disease is by planting on soils 

without Verticillium and preventing introduction of the pathogen into fields by using 

healthy planting material, and also the deployment of resistant plants when V. dahliae is 

already present (Hiemstra et al. 2014; López-Escudero and Mercado-Blanco 2011; 

Jiménez-Díaz et al. 2012; Melero-Vara et al. 1995; Tjamos and Jiménez-Díaz 1998).  

 

Use of healthy planting material 

Selection of planting material only based on (the lack of) visible symptoms is not reliable, 

since asymptomatic infections have been reported to occur in several host plants (Evans 

and Gleeson 1973; Mathre 1986; Malcolm et al. 2013). V. dahliae could be detected when 

samples from trunks and branches of asymptomatic infected olive trees were subjected to 

amplification by PCR using V. dahliae-specific ITS primers (Karajeh and Masoud 2006). 

Moreover, nested-PCR analysis and plating assays have shown that seeds harvested from 

asymptomatic olive trees can transmit the pathogen to seedlings (Karajeh 2006). This may 

be explained by the fact that V. dahliae can colonize plant species strictly as an endophyte 

without inducing any visible symptoms of disease (Malcolm et al. 2013; Petrini 1991). 

Currently, endophytic colonization of V. dahliae has been reported mainly from 

monocotoledonous plant species, such as barley, oat and wheat (Krikun and Bernier 1987; 

Mol 1995). However, also numerous weeds, including dicotelydonous ones such as 
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common blackberry (Rubus allegheniensis Porter ex L. H. Bailey), nettle (Urtica spp.), 

Pennsylvania smartweed (Polygonum pennsylvanicum L.), lamb’s quarters 

(Chenopodium album), common purslane (Portulaca oleraceae), and black nightshade 

(Solanum nigrum) are known as symptomless hosts of Verticillium spp. (Malcolm et al. 

2013; Pegg and Brady 2002; Vallad et al. 2005). Thus, the fact that V. dahliae can thrive 

as an endophyte in plant hosts has the important implication that asymptomatic plants may 

serve as a reservoir of inoculum and may potentially initiate epidemics of Verticillium 

wilt disease.  

Asymptomatic infections may also occur in recently infected plants that do not yet 

display symptoms; a phenomenon that is also known as the latent period (Figure 1). 

Depending on host and pathogen genotypes as well as environmental conditions, this 

period can last for longer or shorter periods. Upon artificial inoculation, pathogen DNA 

can be detected in symptomless olive plants at much earlier time points than when the 

first Verticillium wilt symptoms appear (Mercado-Blanco et al. 2003a; Prieto et al. 2009; 

Rodríguez-Jurado et al. 1993). In this thesis, V. dahliae could be detected in above-ground 

tissues of infected olive trees only one week after inoculation, while the first symptoms 

were only observed at about 5-7 weeks after inoculation depending on the level of 

susceptibility of the cultivar that was used (Chapter 5). Thus, considering that latency is 

a phenomenon that is associated with Verticillium infections, reliable methods should be 

used for detection of the pathogen in plant material prior to planting to ensure use of 

healthy plant material and to avoid the introduction of pathogens in non-infested growing 

areas. 

PCR-based methods such as real-time PCR are increasingly used for rapid and 

sensitive detection and quantification of V. dahliae in artificially inoculated as well as in 

naturally infected trees (Markakis et al. 2009; Mercado-Blanco et al., 2003a; chapter 3). 

In artificially inoculated trees, detection of the pathogen early after inoculation generally 

works well, owing to the high inoculum concentration that is generally used to promote 

consistency of disease incidence in pathogenicity tests (Rodríguez-Jurado, 1993). 

However, the amount of fungal inoculum in asymptomatic infected plants, as likely occurs 

in natural infections in tree nurseries as well, combined with the non-uniform distribution 
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of the fungus within the tree (Levin et al. 2003a; Chapter 3), complicates robust and 

reliable early detection of the pathogen in natural infections. Several studies have been 

conducted to improve PCR-based methods for early in planta detection and quantification 

of V. dahliae in symptomatic and asymptomatic tissues that carry low amounts of 

pathogen DNA (Mercado-Blanco et al. 2003b; Gramaje et al. 2013). However, also the 

sampling strategy may have a major influence. We demonstrate that the testing mixed 

samples instead of individual samples improves the robustness of detection methods 

(Chapter 3). Thus, exploitation of these PCR-based in planta detection methods, in 

combination with sampling strategies as suggsted here, facilitates robust testing of 

planting material for V. dahliae presence, aiming to provide pathogen-free planting 

material for establishing new plantations.  

Recovery: a natural phenomenon to overcome verticillium infection  

In several tree species such as almond, peach, apricot, ash, catalpa, pistachio, cocoa, 

avocado, and olive it has been observed that Verticillium wilt symptoms of infected trees 

may be reduced in a next growing year (Taylor and Flentje 1968; Emechebe et al. 1974; 

Latorre and Allende 1983; Hiemstra 1995; Cirulli et al. 1998; Goud and Hiemstra 1998). 

Also in our work we observed that, despite the fast occurrence of disease symptoms in 

ash trees in the year of inoculation, a high portion of diseased ash trees were recovered 

from Verticillium wilt symptoms in the year after inoculation (Chapter 6). Interestingly, 

analysis of the distribution of the pathogen in the year after inoculation showed that new 

xylem sheahts in recovered ash trees were not infected by V. dahliae, whearas new xylem 

sheaths of both maple and symptomatic ash trees were infected (Chapter 6). This implies 

that occurrence of recovery in ash trees is associated with impeding new infections. It also 

has been observed that olive trees that have recovered from a single inoculation will not 

express wilt symptoms again, unless new infections occur (López-Escudero and Blanco-

López 2005; Wilhelm and Taylor 1965). Sources of new infections, however, may be 

either internal (i.e. previously infected xylem sheets) or external (i.e. contracted from the 

environment). Infested soil is the major external source of new infections in the field. 

Therefore, practices that reduce inoculum sources in the soil and prevent new infections 

have an impact on the occurrence and persistence of natural   
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recovery (Jiménez-Díaz et al. 2012; López-Escudero and Mercado-Blanco 2011; Wilhelm 

and Taylor 1965). In this context, soil treatments such as soil solarization (Al-Ahmad 

1993; Abu-Qamar and Al-Raddad 2001; Tjamos et al. 1991), soil fumigation (Conn et al. 

2005; Gullino et al. 2002; Wilhelm et al. 1961), and organic or biological amendments 

(Blok et al. 2000; Goicoechea 2009; Hiemstra et al. 2013; Lima et al. 2008; Wilhelm and 

Taylor 1965) that reduce the inoculum density of V. dahliae in the soil around the tree and 

therefore reduce the number of new invasions of rootlets not only prevent new disease but 

also stimulate recovery from disease.  

As noted above, in trees infected xylem sheets may provide an internal source of 

inoculum for infections of new vessel elements in the next year. In chapter 6, we showed 

that pathogen DNA can be isolated from the xylem of two successive years in diseased 

maple trees, while in recovered ash trees pathogen DNA could be isolated only from old 

vessels and not from newly formed vessels in the wood after inoculation. In this 

experiment, plants received a single inoculation. This indicates that new xylem sheets in 

maple trees were infected by spreading of the pathogen from old vessels, while in 

recovered ash trees the ability of V. dahliae to invade adjacent vascular bundles was 

impaired. Thus, mechanisms that hinder spread of the pathogen from old vessels to the 

new vessels or other parts of infected trees can stimulate recovery of infected trees. 

Compartmentalization is a boundary-setting process that is activated following fungal 

vascular invasion and tends to limit the spread of infection and the loss of normal 

functioning of sapwood (Hiemstra 1998; Nicole and Gianinazzi-Pearson 1996; Shigo 

1984; Tippet and Shigo 1981). The principle of the compartmentalization lies in the 

establishment of four types of “walls”. While wall 1 restricts pathogen movement 

longitudinally, wall 2 consists of the growth ring boundary and restricts pathogen 

movement centripetally, and wall 3 limits the tangential movement of pathogen and is 

associated with ray parenchyma. Wall 4 is the strongest and referred to as the 

parenchymatous “barrier zone”, produced by cambial activity, and separates the tissue 

present at the time of infection from new, uninfected tissue (Shigo 1984). Studies on 

clones of Populus deltoides Bartr. (eastern cottonwood) and Liquidambar barstyraciflua 

L. (sweetgum) have shown that different clones vary in their compartmentalization ability, 
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suggesting that this phenomenon is under genetic control, and making it possible to screen 

species for genotypes that display superior compartmentalization traits (Garrett et al. 

1979; Shain and Miller 1988; Smith 2006). 

Recovery is also enhanced by producing new vascular tissue, which allows novel 

vegetative growth of affected stems and branches (Tjamos et al. 1991; López-Escudero 

and Blanco-López 2001). In trees in temperate climate zones every year a new zone of 

xylem elements (growth ring) is formed as long as the cambium survives. This enables 

recovery of infected trees through replacement of the infected vascular tissue. In annual 

plant species diseased plants at least two different strategies in response to invasion of 

vascular pathogens to produce new xylem vessels have been reported: 1) 

transdifferentiation which is defined as the conversion of one cell type into another with 

a different function (Okada 1991; Tosh and Slack 2002; Sugimoto et al. 2011), and 2) 

vascular hyperplasia which is generally defined as an induced increase in cell number as 

a result of infection (Talboys 1958; Jammes et al. 2005; Depuydt et al. 2009; Malinowski 

et al. 2012). In vascular diseases, infection may induce transdifferentiation of bundle 

sheath cells to novel, functional xylem vessels, or may increase xylem cells within the 

vascular bundle as a result of prolonged or renewed activity of the vascular cambium 

(Reusche et al. 2012). Seven putative NAC (for NAM, ATAF1/2, and CUC2) 

transcription factors have been identified in the Arabidopsis thaliana, which are involved 

in transdifferentiation and fall into the subfamily of VND (Vascular related NAC Domain) 

(Demura et al. 2002; Kubo et al. 2005; Yamaguchi et al. 2010). Within this subfamily, 

VND6 and VND7 seem to have specific roles on Verticillium-triggered 

transdifferentiation of bundle sheath cells, with VND6 regulating metaxylem (xylem 

tissue that consists of rigid thick-walled cells and occurs in parts of the plant that have 

finished growing) formation, and VND7 inducing protoxylem (the first-formed xylem 

tissue, consisting of extensible thin-walled cells thickened with rings or spirals of lignin) 

development (Kubo et al. 2005; Reusche et al. 2012). It would be very interesting to see 

if similar mechanisms do occur in tree species resulting in increased numbers of vascular 

elements being formed after vascular infection. Interestingly, homologs of NAC domain 

protein genes (PtVNS/PtrWND) have been identified in poplar (Populus trichocarpa) and 
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their role in differentiation of the xylem vessel element has been demonstrated (Hu et al. 

2010; Ohtani et al. 2011). Thus, studying the distribution of these genes or their homologs 

in other trees, and also their impact on Verticillium-triggered changes in differentiation of 

cells from the cambium or even within existing tissues, may help to design strategies to 

stimulate recovery of susceptible trees.  

 

Exploiting resistance sources to control verticillium wilt 

Genetic resistance is the most preferred strategy to control Verticillium wilt diseases 

because of its potentially effective and environmentally-friendly nature (Blanco-López et 

al. 1998; Lopez-Escudero et al. 2004). Several experiments have been carried out to 

identify Verticillium wilt resistance in various tree species, such as maple (Townsend et 

al. 1990; Schreiber and Mayer 1992; Hiemstra 2000), pistachio (Ogawa and english 1991; 

Epstein et al. 2004), and olive (Bubici and Cirulli 2012; Mercado-Blanco & López-

Escudero 2012; Antoniou et al. 2008; Trapero et al. 2013). Cultivars that have been 

introduced as resistant show reduction in disease progression when they are inoculated 

with V. dahliae, but can still be colonized by the pathogen as the pathogen could be 

isolated from inoculated trees. In this thesis, we studied distribution of V. dahliae in 

artificially inoculated ‘Picual’ and ‘Frantoio’ olive cultivars which are considered as 

highly susceptible and resistant to V. dahliae, respectively (López-Escudero et al. 2004). 

It was observed that ‘Frantoio’ plants not only showed signs of disease progression, but 

also were colonized by the pathogen, although the severity of disease symptoms and the 

amount of the pathogen detected were significantly lower than in ‘Picual’ (Chapter 5). 

This suggests that resistance in these cultivars is partial and despite the efficacy in 

reduction of disease symptoms, such plants may serve as a reservoir of inoculum and 

contribute to spread of the pathogen. Furthermore, when these cultivars are used as 

rootstock, the pathogen may grow through the rootstock and cause significant disease 

when it reaches the susceptible scion (Bubici and Cirulli 2011). Therefore, identification 

of genetic sources of resistance is an essential need for improving resistant trees aiming 

the effective control of Verticillium wilt in tree plantations.  
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Genetic resistance against Verticillium wilt diseases has been reported in several crop 

species, such as alfalfa (Medicago sativa), cotton (Gossypium hirsutum), potato (Solanum 

tuberosum), strawberry (Fragaria vesca), sunflower (Helianthus annuus), and tomato 

(Solanum lycopersicum) (Alexander 1972; Bae et al. 2008; Gulya 2007; Lynch et al. 1997; 

Schaible et al. 1951; Vallad et al. 2006; Klosterman et al. 2009). Nevertheless, for many 

other crops and tree species, genetic resistant is not readily available (Hiemstra and Harris 

1998; Fradin and Thomma 2006). The Ve locus in tomato is the only cloned and 

functionally characterized locus in terms of plant resistance against Verticillium wilt. This 

locus contains two genes, Ve1 and Ve2, encoding extracellular leucine-rich repeat 

receptor-like proteins (eLRR-RLPs). However, of these genes only Ve1 provides 

resistance against race 1 isolates of V. dahliae and V. albo-atrum via recognition of Ave1 

effector, which was identified only in race 1 isolates (de Jonge et al. 2012; Fradin and 

Thomma 2009; Fradin et al. 2011; Kawchuk et al. 2001). Intriguingly, phylogenetic 

analysis showed that homologues of Ve1 are widely distributed in plants (Song et al. 

2016). So far, several Ve1 homologous genes that confer race-specific resistance against 

V. dahliae have been reported such as SlVe1 from Solanum lycopersicoides (Chai et al., 

2003), StVe1 from S. tuberosum (Simko et al. 2004), StVe and StoVe1 from S. torvum 

(Fei et al. 2004; Liu et al. 2012), mVe1 from Mentha longifolia (Vining and Davis 2009), 

and Vr1 from Lactuca sativa (Hayes et al. 2011). Recently, the Ve1-like genes GbVe1 and 

Gbvdr5 were cloned from island cotton, which is resistant to Verticillium wilt. Transgenic 

expression of these genes in susceptible Arabidopsis and upland cotton induced 

significant resistance to both D and ND isolates of V. dahliae (Zhang et al. 2012; Yang et 

al. 2014). Moreover, the Ve1-like gene VvVe was recently cloned from Vitis 

vinifera. Overexpression of VvVe in transgenic Nicotiana benthamiana conferred 

resistance to the V991 isolate (D pathotype) of V. dahliae (Tang et al. 2016). However, 

genes conferring resistance to V. dahliae D and ND isolates have not been reported from 

tree hosts thus far.  
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A holistic approach for improvement of resistance to verticillium wilt disease 

Putative resistant cultivars may be identified by screening genotypes preserved in 

germplasm banks, or by screening wild relatives or progenies generated in breeding 

programs. Several screenings of commercial olive cultivars and wild olive germplasm 

have been carried out to identify sources of resistance to Verticillium wilt (e.g. Bubici and 

Cirulli 2011; López-Escudero and Mercado-Blanco 2011; Jiménez-Díaz et al. 2012; 

Mercado-Blanco and López-Escudero 2012). Although olive genotypes that display some 

degree of resistance to V. dahliae have been found, most of the commercial olive cultivars 

are still susceptible or extremely susceptible to Verticillium wilt (López-Escudero and 

Mercado-Blanco 2011; Jiménez-Díaz et al. 2012). Thus, the development of breeding 

programs may act as an important approach to generate resistant cultivars that also have 

desirable agronomic traits. Breeding for resistance typically includes: 1) identification of 

genotypes that carry a useful disease resistance trait, even if this is combined with less 

desirable other traits; 2) crossing of a susceptible preferred cultivar with the resistance 

source; 3) testing of the progeny of the cross for reduced disease susceptibility; 4) 

selection of disease-resistant individuals and crossing back to the recurrent parent. This 

process is repeated for as many back crosses as needed to obtain a line as identical as 

possible to the recurrent parent with the addition of the gene of interest (Stuthman et al. 

2007). Especially in perennial species this is a long term approach that takes many years, 

often even decades. 

 Diversity in plant genetic resources is the basis for selection and for plant 

improvement in breeding programs (Ramanatha Rao and Hodgkin 2001; Govindaraj et al. 

2015). In the absence of sufficient diversity, mutagenesis followed by screening for 

enhanced resistance is a means to identify novel resistance traits (Schaible et al. 1951; 

Veronese et al. 2003). Actually, through the years, mutagenesis has played a significant 

role in plant breeding programs by producing a vast amount of genetic diversity in crops 

and tree species (Shu et al. 2012). Several technologies have been developed for random 

mutation, e.g., radiation (gamma and X-ray) (Barakat et al. 2010; Nikam et al. 2014), 

chemical mutagens such as ethyl methanesulfonate and sodium azide and 

methylnitrosourea (Sikora et al. 2011), T-DNA- or transposon-based activation tagging 
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(Fladung and Polak 2012; Busov et al. 2011; Fladung et al. 2004; Harrison et al. 2007). 

Besides, in vitro culture techniques are particularly relevant for mutagenesis as large 

populations of cells can be treated and screened before being regenerated into complete 

plants (van Harten 1998). Among the different in vitro methods, however, somatic 

embryogenesis is the most useful tool for the selection and multiplication of mutants as 

somatic embryos usually originate from single cells. Furthermore, a number of 

subcultures can be performed in a short time to increase the mutagenized population for 

selection (Penna et al. 2012). Therefore, combination of mutagenesis and in vitro culture 

techniques can generate an appropriate genetic diversity to be used in breeding programs 

for improvement of resistant cultivars.  

 To evaluate the resistance level of olive genotypes that are developed in a breeding 

program, they should be challenged with the pathogen. López-Escudero et al. (2004) 

reported that olive cultivars that are highly resistant to isolates that belong to the ND 

pathotype may be highly susceptible to isolates that belong to the D pathotype. This 

indicates that resistance in trees is only active against particular isolates of the species, 

and not to others, equivalent to the occurrence of a race-structure that is frequently 

observed with the deployment of resistance genes. As isolates of V. dahliae are mostly 

considered host-adapted rather than host-specific, i.e. are more virulent to the host from 

which they were isolated (Koike et al. 1994; Bhat and Subbarao 1999; Douhan and 

Johnson 2001) it is important to include isolates representing differential virulence in 

programs for evaluating host resistance to V. dahliae (Barbara et al. 1998).  

 Advances in genetic transformation technology through use of selected strains of 

Agrobacterium tumefaciens and subsequent regeneration via somatic embryogenesis have 

provided new possibilities for the biotechnological improvement of resistance in olive and 

other tree species (Cerezo et al. 2011; Torreblanca et al. 2010). However, for this strategy 

understanding host-pathogen interactions and molecular characterization of the genes and 

proteins that are responsible for resistance is essential. In tomato, genetic analysis has 

shown that the Ve1-mediated resistance signaling pathway requires the EDS1 (Enhanced 

Disease Susceptibility 1), NDR1 (Non-race-specific Disease Resistance 1), BAK1 (BRI1-

Associated Kinase 1), MEK2 (MKK2, MAP kinase kinase 2), and SOBIR1 (LRR-RLK 



GENERAL DISCUSSION 

143 
 

Suppressor Of BIR1-1) proteins (Fradin et al. 2009; Liebrand et al. 2013). Also, it has 

been reported that GhNDR1 and GhMKK2 are required for resistance mediated by the 

GbVe1 and Gbvdr5 genes in cotton (Gao et al. 2011). In tree hosts, however, many aspects 

of defence responses remain unknown and require investigation. With recent genomic and 

transcriptomic advances we are now better equipped to begin unravelling the mechanisms 

underlying plant-pathogen interactions in woody hosts. The discovery of candidate genes 

for disease resistance in trees based on genomics and transcriptomics, coupled with 

advancements in breeding technology, is expected to enable us to improve resistance 

particularly in commercially propagated olive and other valuable tree species in the future.  

  



CHAPTER 7 

144 
 

References 

Abu-Qamar, M., and Al-Raddad, A. (2001). Integrated control of Verticillium wilt of 

olive with cryptonol in combination with a solar chamber and fertilizer. Phytoparasitica 

29, 223-230.  

Al-Ahmad, M. A. (1993). The solar chamber: An innovative technique for controlling 

Verticillium wilt of olive. Bulletin OEPP/EPPO Bulletin 23, 531-535. 

Alexander, L.J., (1972). Susceptibility of certain Verticillium resistant tomato varieties 

to an Ohio isolate of the fungus. Phytopathology 52, 998-1000. 

Antoniou, P. P., Markakis, E. A., Tjamos, S. E., Paplomatas, E. J., and Tjamos, E. 

C. (2008). Novel methodologies in screening and selecting olive varieties and root-stocks 

for resistance to Verticillium dahliae. European Journal of Plant Pathology 110, 79-85. 

Bae, J., Halterman, D.A., Jansky, S.H. (2008). Development of a molecular marker 

associated with Verticillium wilt resistance in diploid interspecific potato hybrids. 

Molecular Breeding 22, 61-69. 

Barakat, M.N., S.A.F. Rania, M. Badr, and M.G. Eitorky (2010). In vitro mutagenesis 

and identification of new variants via RAPD markers for improving Chrysanthemum 

morifolium. African Journal of Agricultural Research 5(8), 748-757. 

Barbara, D.J., Paplomatas, E.J., Jiménez-Díaz, R.M., (1998). Variability in V. dahliae. 

In: Hiemstra, J.A., Harris, D.C. (eds.). A compendium of Verticillium wilts in tree species, 

pp. 43- 45. Ponsen and Looijen, Wageningen, The Netherlands. 

Bhat, R.G., and Subbarao, K.V. (1999). Host range specificity in Verticillium dahliae. 

Phytopathology 89, 1218-1285. 

Blanco-López, M.A., Hiemstra, J., Harris, D., López-Escudero, F.J., Antoniou, P. 

(1998). Selection and screening for host resistance. In: Hiemstra J, Harris D (eds) 

Compendium of Verticillium wilt in tree species. Ponsen & Looijen, Wageningen, pp 51-

54. 

Blok, W.J., Lamers, J.G., Termorshuizen, A.J., Bollen, G.J. (2000). Control of 

soilborne plant pathogens by incorporating fresh organic amendments followed by 

tarping. Phytopathology 90, 253-259. 

Bubici, G., Cirulli, M. (2011). Control of Verticillium wilt of olive by resistant 

rootstocks. Plant Soil. DOI 10.1007/s11104-011-1102-9. 

Busov, V., Yordanov, Y., Gou, J., Meilan, R., Ma, C., Regan, S., Strauss, S. (2011). 
Activation tagging is an effective gene tagging system in Populus. Tree Gen Genom 7, 

91-101. 



GENERAL DISCUSSION 

145 
 

Cerezo, S., Mercado, J.A., Pliego-Alfaro, F. (2011). An efficient regeneration system 

via somatic embryogenesis in olive. Plant Cell Tiss Organ Culture 106, 337.  

Chai, Y., Zhao, L., Liao, Z., Sun, X., Zuo, K., Zhang, L., Wang, S., Tang, K. (2003). 

Molecular cloning of a potential Verticillium dahliae resistance gene SlVe1 with multi-

site polyadenylation from Solanum lycopersicoides. DNA Sequence 14, 375-384. 

Cirulli, M., Amenduni, M., Paplomatas, E.J. (1998). Verticillium wilt of major tree 

hosts. Stone fruits. In: Hiemstra J.A., Harris DC (eds) A compendium of Verticillium wilts 

in tree species. Ponsen and Looijen, Wageningen, pp 17-20. 

Conn, K. L., Tenuta, M., and Lazarovits, G. (2005). Liquid swine manure can kill 

Verticillium dahliae microsclerotia in soil by volatile fatty acids, nitrous acid, and 

ammonia toxicity. Phytopathology, 95, 28-35. 

Demura, T., Tashiro, G., Horiguchi, G., Kishimoto, N., Kubo, M., Matsuoka, 

N., Minami, A., Nagata-Hiwatashi, M., Nakamura, K., Okamura, Y., Sassa, 

N., Suzuki, S., Yazaki, J., Kikuchi, S., Fukuda, H. (2002). Visualization by 

comprehensive microarray analysis of gene expression programs during 

transdifferentiation of mesophyll cells into xylem cells. Proceedings of the National 

Academy of Sciences of the United States of America 99(24), 15794–15799.  

Depuydt, S., Trenkamp, S., Fernie, A.R., Elftieh, S., Renou, J.-P., Vuylsteke, M., 

Holsters, M., Vereecke, D. (2009). An integrated genomics approach to define niche 

establishment by Rhodococcus fascians. Plant Physiology 149, 1366-1386. 

Douhan, L.I., and Johnson, D.A. (2001). Vegetative compatibility and pathogenicity of 

Verticillium dahliae from spearmint and peppermint. Plant Disease 85, 297-302. 

Emechebe, A.M., Leakely, C.L.A., Banage, W.B. (1974). Verticillium wilt of cacao in 

Uganda: wilt induction by mechanical vessel blockage and mode of recovery of diseased 

plants. The East African Agricultural and Forestry Journal 39, 337-343. 

 

Evans, G., Gleeson, A. (1973).  Observations on the origin and nature of Verticillium 

dahliae colonising plant roots. Australian Journal of Biological Sciences 26, 151-162. 

Epstein, L., Beede, R., Kaur, S., and Ferguson, L. (2004). Rootstock effects on 

pistachio trees grown in Verticillium dahliae-infested soil. Phytopathology 94, 388-395. 

Fei J., Chai Y., Wang J., Lin J., Sun X., Sun C., Zuo K., Tang K. (2004). cDNA 

cloning and characterization of the Vehomologue gene StVefrom Solanum torvum 

Swartz. DNA Sequence 15, 88-95. 

 

Fladung, M., Deutsch, F., Hönicka, H., Kumar, S. (2004). DNA and transposon tagging 

in aspen. Plant Biology 6, 5-11. 

 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Minami%20A%5BAuthor%5D&cauthor=true&cauthor_uid=12438691
https://www.ncbi.nlm.nih.gov/pubmed/?term=Nagata-Hiwatashi%20M%5BAuthor%5D&cauthor=true&cauthor_uid=12438691
https://www.ncbi.nlm.nih.gov/pubmed/?term=Nakamura%20K%5BAuthor%5D&cauthor=true&cauthor_uid=12438691
https://www.ncbi.nlm.nih.gov/pubmed/?term=Okamura%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=12438691
https://www.ncbi.nlm.nih.gov/pubmed/?term=Sassa%20N%5BAuthor%5D&cauthor=true&cauthor_uid=12438691
https://www.ncbi.nlm.nih.gov/pubmed/?term=Sassa%20N%5BAuthor%5D&cauthor=true&cauthor_uid=12438691
https://www.ncbi.nlm.nih.gov/pubmed/?term=Suzuki%20S%5BAuthor%5D&cauthor=true&cauthor_uid=12438691
https://www.ncbi.nlm.nih.gov/pubmed/?term=Yazaki%20J%5BAuthor%5D&cauthor=true&cauthor_uid=12438691
https://www.ncbi.nlm.nih.gov/pubmed/?term=Kikuchi%20S%5BAuthor%5D&cauthor=true&cauthor_uid=12438691


CHAPTER 7 

146 
 

Fladung, M., Polak, O. (2012). Ac/Ds-transposon activation tagging in poplar: a 

powerful tool for gene discovery. BMC Genomics. doi:10.1186/1471-2164-13-61. 

 

Fradin, E.F., Thomma, B.P.H.J. (2006). Physiology and molecular aspects of 

Verticillium wilt diseases caused by V. dahliae and V. albo-atrum. Molecular Plant 

Pathology 7, 71-86. 

 

Fradin, E.F., Zhang, Z., Ayala, J.C.J., Castroverde, C.D.M., Nazar, R.N., Robb, J., 

Liu, C.M., Thomma, B.P.H.J. (2009). Genetic dissection of Verticillium wilt resistance 

mediated by tomato Ve1. Plant Physiology, 150, 320-332. 

 

Fradin, E., Adb-El-Haliem, A., Masini, L., Van den Berg, G., Joosten, M., et al. 

(2011). Interfamily transfer of tomato Ve1 mediates Verticillium resistance in 

Arabidopsis. Plant Physiology 156, 2255-2265. 

Gao, X., Wheeler, T., Li, Z., Kenerley, C.M., He, P., Shan, L. (2011). Silencing 

GhNDR1 and GhMKK2 compromises cotton resistance to Verticillium wilt. Plant Journal 

66 293–305. 

Garrett, P.W., Randall, W.K., Shigo, A.L., Shortle, W.C. (1979). Inheritance of 

compartmentalization of wounds in sweetgum (Liquidambar styraciflua L.) and eastern 

cottonwood (Populus deltoides Bartr.). Res. Pap. NE-443. Broomall, PA: U.S. 

Department of Agriculture, Forest Service, Northeastern Forest Experiment Station. 4p. 

Goicoechea, N. (2009). To what extent are soil amendments useful to control Verticillium 

wilt? Pest Management Science, 65,831-839. 

Goud, J.C., Hiemstra, J.A. (1998). Other tree species. In: Hiemstra JA, Harris DC (eds) 

A compendium of Verticillium wilts in tree species. Ponsen and Looijen, Wageningen, 

pp 37-39. 

Goud, J.K.C., Termorshuizen, A.J., van Bruggen, A.H.C. (2011). Verticillium wilt in 

nursery trees: damage thresholds, spatial and temporal aspects. European Journal of Plant 

Pathology 131, 451-465. 

Govindaraj, M., Vetriventhan, M., & Srinivasan, M. (2015). Importance of Genetic 

Diversity Assessment in Crop Plants and Its Recent Advances: An Overview of Its 

Analytical Perspectives. Genetics Research International 14. doi: 10.1155/2015/431487. 

Gramaje, D., Pérez-Serrano, V., Montes-Borrego, M., Navas-Cortés, J.A., Jiménez-

Díaz, R.M., Landa, B.B. (2013). A comparison of real-time PCR protocols for the 

quantitative monitoring of asymptomatic olive infections by Verticillium dahliae 

pathotypes. Phytopathology 103, 1058-1068. 

Gullino, M. L., Minuto, A., Gilardi, G., Garibaldi, A., Ajwab, H., and Duafala, T. 

(2002). Efficacy of preplant soil fumigation with chloropicrin for tomato production in 

Italy. Crop Protection 21, 741-749. 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Wheeler%20T%5BAuthor%5D&cauthor=true&cauthor_uid=21219508
https://www.ncbi.nlm.nih.gov/pubmed/?term=Li%20Z%5BAuthor%5D&cauthor=true&cauthor_uid=21219508
https://www.ncbi.nlm.nih.gov/pubmed/?term=Kenerley%20CM%5BAuthor%5D&cauthor=true&cauthor_uid=21219508
https://www.ncbi.nlm.nih.gov/pubmed/?term=He%20P%5BAuthor%5D&cauthor=true&cauthor_uid=21219508
https://www.ncbi.nlm.nih.gov/pubmed/?term=Shan%20L%5BAuthor%5D&cauthor=true&cauthor_uid=21219508


GENERAL DISCUSSION 

147 
 

Gulya, T., (2007). New strain of Verticillium dahliae in North America. Helia, 30, 115-

120. 

Harrison, E.J., Bush, M., Plett, J.M., McPhee, D.P., Vitez, R., O’Malley, B., Sharma, 

V., Bosnich, W., Seguin, A., MacKay, J., Regan, S. (2007). Diverse developmental 

mutants revealed in an activation tagged population of poplar. Canadian Journal 

of Botany 85, 1071-1087. 

Hiemstra, J.A. (1995). Recovery of verticillium-infected ash trees. Phytoparasitica 23, 

64-65.  

Hiemstra, J.A. (1998). Some general features of Verticillium wilts in trees. In: Hiemstra, 

J.A., Harris D.C. (eds). A compendium of Verticillium wilts in tree species. Ponsen and 

Looijen, Wageningen, pp 5–11. 

Hiemstra, J.A. (2000). Screening for Verticillium Resistance in Norway Maple. In: 

Tjamos, E.C., Rowe, R.C., Heale, J.B. and Fravel, D.R. (eds). Advances in Verticillium 

Research and Disease Management. APS Press St Paul, Minnesota 212-213. 

Hiemstra, J.A. (2014). Der schnelle Nachweis von Verticillium. Jahrbuch der 

Baumpflege 2014, 108-120. 

Hiemstra, J.A., Harris, D.C. (Eds.) (1998). A compendium of Verticillium wilts in tree 

species. Wageningen: Centre for Plant Breeding and Reproduction Research (CPRO-

DLO)/West Malling: HRI-East Malling. 

Hayes, R. J., McHale, L. K., Vallad, G. E., Truco, M. J., Michelmore, R. W., 

Klosterman, S. J., Maruthachalam, K.,Subbarao, K. V. (2011). The inheritance of 

resistance to Verticillium wilt caused by race 1 isolates of Verticillium dahliae in the 

lettuce cultivar La Brillante. Theoretical and Applied Genetics 123(4), 509-517. 

Hu, R., Qi, G., Kong, Y., Kong, D., Gao, Q. and Zhou, G. (2010). Comprehensive 

analysis of NAC domain transcription factor gene family in Populus trichocarpa. BMC 

Plant Biology 10, 145. 

Jiménez-Díaz, R.M, Cirulli, M., Bubici, G., Jiménez-Gasco, M., Antoniou, P.P., 

Tjamos, E.C. (2012). Verticillium wilt a major threat to olive production: Current status 

and future prospects for its management. Plant Disease 96(3), 304-329. 

Jammes, F., Lecomte, P., de Almeida-Engler, J., Bitton, F., Martin-Magniette, M.L., 

Renou, J.P., Abad, P., and Favery, B. (2005). Genome-wide expression profiling of the 

host response to root-knot nematode infection in Arabidopsis. Plant Journal 44, 447-458. 

Karajeh, M.R. (2006). Seed transmission of Verticillium dahliae in olive as detected by 

a highly sensitive nested PCR-based assay. Phytopathologia Mediterranea 45, 15-23. 



CHAPTER 7 

148 
 

Karajeh, M.R., Masoud, S.A. (2006). Molecular detection of Verticillium dahliae Kleb. 

in asymptomatic olive trees. Journal of Phytopathology 154, 496-499. 

Kawchuk, L.M., Hachey, J., Lynch, D.R., Kulcsar, F., Van Rooijen, G., et al. (2001). 
Tomato Ve disease resistance genes encode cell surface-like receptors. Proceedings of the 

National Academy of Sciences USA 98, 6511-6515. 

Koike, S.T., Subbarao, K.V., Davis, R.M., Gordon, T.R., Hubbard, J.C., (1994). 
Verticillium wilt of cauliflower in California. Plant Disease 78, 1116-1121. 

Krikun, J., and Bernier, C. C. (1987). Infection of several crop species by two isolates 

of Verticillium dahliae. Canadean Journal of Plant Pathology 9, 241-245. 

Kubo, M., Udagawa, M., Nishikubo, N., Horiguchi, G., Yamaguchi, M., Ito, J., 

Mimura, T., Fukuda, H. and Demura, T. (2005). Transcription switches for protoxylem 

and metaxylem vessel formation. Genes and Development 16, 1855-1860. 

Latorre, B.A., Allende, P.T. (1983). Occurrence and incidence of Verticillium wilt on 

Chilean avocado groves. Plant Diseases 67, 445-447. 

Levin, A. G., Lavee, S., and Tsror, L. (2003). Epidemiology of Verticillium dahliae on 

olive (cv. Picual) and its effects on yield under saline conditions. Plant Pathology 52, 212-

218. 

Liebrand, T.W.H., van den Burg, H.A., Joosten, M.H. A.J. (2013). Two for all: 

receptor-associated kinases SOBIR1 and BAK1. Trends Plant Science 19(2), 123-132.  

Lima, G., Piedimonte, D., de Curtis, F., Elgelane, A. A., Nigro, F., D’Onghia, A. M., 

Alfano, G., and Ranalli, G. (2008). Suppressive effect of cured compost from olive oil 

by products towards Verticillium dahliae and other fungal pathogens. Acta Horticulturae 

791, 585-591. 

Liu S.P., Zhu Y.P., Xie C., Jue D.W., Hong Y.B., Chen M., Hubdar A.K., Yang Q. 

(2012). Transgenic potato plants expressing StoVe1 exhibit enhanced resistance to 

Verticillium dahliae. Plant Molecular Biology Reporter 30, 1032-1039. 

López-Escudero, F.J., Blanco-López, M.A. (2001). Effect of a single or double soil 

solarization to control Verticillium wilt in established olive orchards in Spain. Plant 

Disease 85, 489-496. 

López-Escudero, F. J., del Río, C., Caballero, J. M., and Blanco-López, M. A. (2004). 

Evaluation of olive cultivars for resistance to Verticillium dahliae. European Journal Plant 

Pathology 110, 79-85. 

López-Escudero, F.J., Blanco-López, M.A. (2005). Recovery of young olive trees from 

Verticillium dahliae. European Journal Plant Pathology 113, 367-375. 

http://www.pnas.org/
http://www.pnas.org/


GENERAL DISCUSSION 

149 
 

López-Escudero, F.J., Mercado-Blanco, J. (2011). Verticillium wilt of olive: a case 

study to implement an integrated strategy to control a soil-borne pathogen. Plant Soil 344, 

1-50. 

Lynch, D.R., Kawchuck, L.M., Hachey, J. (1997). Identification of a gene conferring 

high levels of resistance to Verticillium wilt in Solanum chacoense. Plant Disease 81, 

1001-1014. 

Malcolm, G.M., Kuldau, G.A., Gugino, B.K., Jiménez-Gasco, M.M. (2013). Hidden 

host plant associations of soilborne fungal pathogens: An ecological perspective. 

Phytopathology 103, 538-544. 

Malinowski, R., Smith, J.A., Fleming, A.J., Scholes, J.D., and Rolfe, S.A. (2012). Gall 

formation in clubroot-infected Arabidopsis results from an increase in existing 

meristematic activities of the host but is not essential for the completion of the pathogen 

life cycle. Plant Journal 71, 226-238. 

Markakis, E.A., Tjamos, S.E., Antoniou, P.P., Paplomatas, E.J., Tjamos, E.C. (2009). 
Symptom development, pathogen isolation and Realtime QPCR quantification as factors 

for evaluating the resistance of olive cultivars to Verticillium pathotypes. European 

Journal of Plant Pathology 124, 603-611. 

Mathre, D.E. (1986). Occurrence of Verticillium dahliae on barley. Plant Disease, 70, 

981-981. 

Melero-Vara, J.M., Blanco-López, M.A., Bejarano-Alcázar, J., Jiménez-Díaz, R.M. 

(1995). Control of Verticillium wilt of cotton by means of soil solarization and tolerant 

cultivars in Southern Spain. Plant Pathology 44, 250-260. 

Mercado-Blanco, J., Collado-Romero, M., Parrilla-Araujo, S., Rodríguez-Jurado, 

D., Jiménez-Díaz, R.M. (2003a). Quantitative monitoring of colonization of olive 

genotypes by Verticillium dahliae pathotypes with real-time polymerase chain reaction. 

Physiological and Molecular Plant Pathology 63, 91-105. 

Mercado-Blanco, J., Rodríguez-Jurado, D., Parrilla-Araujo, S., Jiménez-Díaz, R.M. 

(2003b). Simultaneous detection of the defoliating and nondefoliating Verticillium 

dahliae pathotypes in infected olive plants by duplex, nested polymerase chain reaction. 

Plant Disease 87, 1487-1494. 

Mol, L. (1995). Formation of microsclerotia of Verticillium dahliae on various crops. 

Netherlands journal of agricultural science, 43, 205-215. 

Nikam, A.A., Devarumath, R.M., Ahuja, A., Babu, H., Shitole, M.G., Suprasanna, 

P. (2015). Radiation-induced in vitro mutagenesis system for salt tolerance and other 

agronomic characters in sugarcane (Saccharum officinarum L.). The Crop Journal 3(1), 

46-56.  



CHAPTER 7 

150 
 

Nicole, M., Gianinazzi-Pearson, V. (1996). Histology, Ultrastructure and molecular 

cytology of plant-microorganism interactions. Dordrecht: Kluwer. 261 pp. 

Ogawa, J.M., English, H. (1991). Diseases of temperate zone tree fruit and nut crops. 

University of California and Division of Agriculture and Natural Resources Publiction 

3345. 461 pp. 

Ohtani, M., Nishikubo, N., Xu, B., Yamaguchi, M., Mitsuda, N., Goué, N., Shi, F., 

Ohme-Takagi, M., Demura, T. (2011). A NAC domain protein family contributing to 

the regulation of wood formation in poplar. The Plant Journal 67, 499-512.  

Okada, T.S. (1991). Transdifferentiation: Flexibility in Cell Differentiation (Oxford, UK: 

Clarendon Press). 

Pegg, G.F., Brady, B.L. (2002). Verticillium wilts. Wallingford, UK: CABI publishing. 

 

Penna, S., Vitthal, S. B., Yadav, P.V. (2012). In Vitro Mutagenesis and selection in plant 

tissue cultures and their prospects for crop improvement. Bioremediation, biodiversity 

and bioavailability 6, 6-14. 

 

Prieto, P., Navarro-Raya, C., Valverde-Corredor, A., Amyotte, S.G., Dobinson, K.F., 

Mercado-Blanco, J. (2009). Colonization process of olive tissues by Verticillium dahliae 

and its in planta interaction with the biocontrol root endophyte Pseudomonas fluorescens 

PICF7. Microbial Biotechnology 2(4), 499-511. 

 

Petrini, O. (1991). Fungal endophytes of tree leaves. Pages 179-187 in: Microbial 

Ecology of Leaves. J. H. Andrews and S. S. Hirano, eds. Springer-Verlag, New York. 

 

Ramanatha Rao, V., Hodgkin, T. (2002). Genetic diversity and conservation and 

utilization of plant genetic resources. Plant Cell, Tissue and Organ Culture 68(1), 1-19. 

 

Reusche, M., Thole, K., Janz, D., Truskina, J., Rindfleisch, S., Drübert, C., Polle, A., 

Lipka, V., Teichmann, T. (2012). Verticillium infection triggers VASCULAR-

RELATED NAC DOMAIN7–dependent de novo xylem formation and enhances drought 

tolerance in arabidopsis. The Plant Cell 24, 3823-3837. 

 

Rodríguez-Jurado, D., Blanco-López, M.A., Rappoport, H.F., Jiménez-Díaz, R.M. 

(1993). Present status of Verticillium wilt of olive in Andalucía (southern Spain). 

European and Mediterranean Plant Protection Organization (EPPO) Bulletin 23, 513-516. 

Schaible, L., Cannon, O.S., Waddoups, V. (1951). Inheritance of resistance to 

Verticillium wilt in a tomato cross. Phytopathology 41, 986-990. 

http://ucanr.edu/


GENERAL DISCUSSION 

151 
 

Schreiber, L.R., Mayer, J.S. (1992). Seasonal variations in susceptibility and in internal 

inoculum densities in maple species inoculated with Verticillium dahliae. Plant Disease 

76, 184-187. 

Shain, L., Miller, J.B. (1988). Ethylene production by excised sapwood of clonal eastern 

cottonwood and the compartmentalization and closure of seasonal wounds. 

Phytopathology 78, 1261-1265. 

Shigo, A.L. (1984). Compartmentalization: A conceptual framework for understanding 

how trees grow and defend themselves. Annual Review of Phytopathology, 22, 189-214. 

 

Shu, Q.Y., Forster, B.P., Nakagawa, H. (2012). Plant mutation breeding and 

biotechnology. Plant breeding and genetics section joint FAO/IAEA division of nuclear 

techniques in food and agriculture international atomic energy agency, Vienna, Austria. 

10.1079/9781780640853.0000. 

 

Sikora, P., Chawade, A., Larsson, M., Olsson, J., & Olsson, O. (2011). Mutagenesis 

as a tool in plant genetics, functional genomics, and breeding. International Journal of 

Plant Genomics .doi: 10.1155/2011/314829. 

 

Simko, I., Costanzo, S., Haynes, K.G., Christ, B.J., Jones, R.W. (2004). Linkage 

disequilibrium mapping of a Verticillium dahliae resistance quantitative trait locus in 

tetraploid potato (Solanum tuberosum) through a candidate gene approach. 

Theoretical and Applied Genetics 108, 217-224. 

 

Smith, K. T. (2006). Compartmentalization Today. Arboricultural Journal 29(3), 173-

184.  

Song, Y., Zhang, Z., Seidl, M. F., Majer, A., Jakse, J., Javornik, B., Thomma, B. P. 

H. J. (2016). Broad taxonomic characterization of Verticillium wilt resistance genes 

reveals ancient origin of the tomato Ve1 immune receptor. Molecular Plant Pathology, 

n/a-n/a. doi: 10.1111/mpp.12390. 

Stuthman, D.D., Leonard, K.J., Miller-Garvin, J. (2007). Breeding crops for durable 

resistance to disease, p. 319-367, In D. L. Sparks, ed. Advances in Agronomy, Vol. 95. 

Academic Press, New york, USA. 

Sugimoto, K., Gordon, S.P., and Meyerowitz, E.M. (2011). Regeneration in plants and 

animals: Dedifferentiation, transdifferentiation, or just differentiation? Trends Cell 

Biology 21, 212-218. 

http://www.cabi.org/cabebooks/search/?q=ed%3a%22Shu%2c+Q.+Y.%22
http://www.cabi.org/cabebooks/search/?q=ed%3a%22Shu%2c+Q.+Y.%22
http://www.cabi.org/cabebooks/search/?q=ed%3a%22Forster%2c+B.+P.%22
http://www.cabi.org/cabebooks/search/?q=ed%3a%22Nakagawa%2c+H.%22
http://dx.doi.org/10.1079/9781780640853.0000


CHAPTER 7 

152 
 

Tang, J., Lin, J., Yang, Y., Chen, T., Ling, X., Zhang, B., Chang, Y. (2016). Ectopic 

expression of a Ve homolog VvVe gene from Vitis vinifera enhances defense response 

to Verticillium dahliae infection in tobacco. Gene 576(1), 492-498. 

Taylor, J.B., Flentje, N.T. (1968). Infection, recovery from infection and resistance of 

apricot trees to Verticillium albo-atrum. New Zealand Journal of Botany 61, 417-426. 

Tippet, J.T., Shigo, A.L. (1981). Barrier zone formation: a mechanism of tree defence 

against vascular pathogens. IAWA Bulletin 2, 163-168. 

Tjamos, E. C., Biris, D. A., and Paplomatas, E. J. (1991). Recovery of olive trees from 

Verticillium wilt after individual application of soil solarization in established olive 

orchards. Plant Diseases 75, 557-562. 

Tjamos, E.C., Jiménez-Díaz, R.M. (1998). Management of disease. In: Hiemstra JA, 

Harris DC, 1998. A compendium of Verticillium wilts in trees 55-57. 

Talboys, P.W. (1958). Association of tylosis and hyperplasia of the xylem with vascular 

association of the hop by Verticillium alboatrum. Transactions of the British 

Mycological Society 41, 249-260. 

Torreblanca, R., Cerezo, S., Palomo-Ríos, E., Mercado, J. A., and PliegoAlfaro, F. 

(2010). Development of a high throughput system for genetic transformation of olive 

(Olea europaea L.) plants. Plant Cell Tissue Organ Culture 103, 61-69. 

Tosh, D., and Slack, J.M.W. (2002). How cells change their phenotype. Nature 

Reviews Molecular Cell Biology 3, 187-194. 

Townsend, A. M., Schreiber, L. R., Hall, T. J., and Bentz, S. E. (1990). Variation in 

response of Norway maple cultivars to Verticillium dahliae. Plant Disease 74, 44-46. 

Trapero, C., Díez, C. M., Rallo, L., Barranco, D., López-Escudero, F. J. (2013). 
Effective inoculation methods to screen for resistance to Verticillium wilt in olive. 

Scientia Horticulturae 162, 252-259.  

Vallad, G.E., Qin, Q-M., Grube, R., Hayes, R.J., Subbarao, K.V. (2006).  
Characterization of race-specific interactions among isolates of Verticillium dahliae 

pathogenic on lettuce. Phytopathology 96, 1380-1387. 

Vallad, G. E., Bhat, R. G., Koike, S. T., Ryder, E. J., Subbarao, K. V. (2005). 
Weedborne reservoirs and seed transmission of Verticillium dahliae in lettuce. Plant 

Disease 89, 317-324. 

 

Van Harten, A.M. (1998). Mutation breeding: Theory and practical applications. 

Cambridge University Press, Cambridge. 

 



GENERAL DISCUSSION 

153 
 

Vining K., Davis T. (2009). Isolation of a Vehomolog, mVe1, and its relationship to 

Verticillium wilt resistance in Mentha longifolia (L.) Huds. Molecular Genetics and 

Genomics 282, 173-184. 

Veronese, P., Narasimhan, M.L., Stevenson, R.A., Zhu, J.K., Weller, S.C., Subbarao, 

K.V. and Bressan, R.A. (2003). Identification of a locus controlling Verticillium disease 

symptom response in Arabidopsis thaliana. Plant Journal 35, 574-587. 

Wilhelm, S., Sorken, R. C., Sagen, J. E. (1961). Verticillium wilt of strawberry 

controlled by fumigation of soil with chloropicrin and chloropicrin-methyl bromide 

mixtures. Phytopathology 51, 744-748. 

Wilhelm, S., Taylor, J.B. (1965). Control of Verticillium wilt of olive through natural 

recovery and resistance. Phytopathology 55, 310-316. 

Yamaguchi, M., Goué, N., Igarashi, H., Ohtani, M., Nakano, Y., Mortimer, J.C., 

Nishikubo, N., Kubo, M., Katayama, Y., Kakegawa, K., Dupree, P., Demura, T. 

(2010). VASCULAR-RELATED NACDOMAIN6 and VASCULAR-RELATED NAC-

DOMAIN7 effectively induce transdifferentiation into xylem vessel elements under 

control of an induction system. Plant Physiology 153, 906-914. 

Yang, Y., Ling, X., Chen, T., Cai, L., Liu, T., Wang, J., Fan, X., Ren, Y., Yuan, H., 

Zhu, W., Zhang, B., Ma, D.P. (2014). A Cotton Gbvdr5 Gene Encoding a Leucine-Rich-

Repeat Receptor-Like Protein Confers Resistance to Verticillium dahliae in Transgenic 

Arabidopsis and Upland Cotton. Plant Molecular Biology Reporter 33(4), 987-1001. 

Zhang, B.L., Yang, Y.W., Chen, T.Z., Yu, W.G., Liu, T.L., Li, H.J., Fan, X.H., Ren, 

Y.Z., Shen, D.Y., Liu, L., Dou, D.L., Chang, Y.H. (2012). Island cotton Gbve1 gene 

encoding a receptor-like protein confers resistance to both defoliating and non-defoliating 

isolates of Verticillium dahliae. PLoS One, 7:e51091.



SUMMARY 

154 
 

Summary 

Vascular wilts caused by xylem-colonizing pathogens are among the most devastating 

plant diseases that affect a wide range of plant species worldwide. Chapter 1 is the 

general introduction to the thesis outlining the process of infection by vascular wilt 

pathogens. Vascular wilt pathogens, which comprise bacteria, fungi and oomycetes, are 

generally soil-borne micro-organisms that infect their host plants through the roots. They 

traverse the cortex of the roots and enter the xylem vessels, after which they proliferate 

within these vessels, causing blockage of water and mineral flows that may result in partial 

or complete wilting or death of whole plants. Verticillium wilt disease caused by the soil-

born fungus Verticillium dahliae Kleb. is among the major vascular wilt diseases in 

herbaceous crops as well as woody plants. Verticillium wilt is intensively studied in 

herbaceous hosts, whereas little is known about Verticillium wilts of woody hosts. This 

chapter is completed with an outline of the PhD research project.  

Verticillium wilt is a serious problem in olive-growing regions and in tree nurseries 

worldwide. In Chapter 2, we review common and differentiating aspects of Verticillium 

wilt, caused by V. dahliae, in woody hosts, with further emphasis on olive, ash and maple. 

The establishment of new planting sites on infested soils, the use of infected plant material 

and the spread of highly virulent pathogen isolates are the main reasons of increasing 

problems with Verticillium wilt in tree cultivation. The use of practices to avoid spreading 

of the disease and to reduce soil inoculum levels, combined with resistant host plant 

cultivars if these are available, are discussed as the most effective measures to deal with 

Verticillium wilt disease. It is underlined that improvement of methods for early detection 

and accurate diagnosis of the pathogen in diseased trees, planting material and at 

cultivation sites prior to planting is essential in this regard.  

Information on the distribution of V. dahliae in infected trees helps to design an 

appropriate and efficient sampling method for reliable detection of the pathogen in 

diseased trees. In Chapter 3, the distribution of V. dahliae in young twigs and leaves of 

infected olive trees is studied by real-time quantification of V. dahliae DNA. Analysis of 

twig and leaf samples collected from different sides of the crown of infected olive trees 

showed a non-uniform distribution of the fungus within infected parts of diseased olive 
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trees. It was demonstrated that testing of combined samples comprising subsamples from 

at least 5 twigs from different sides of the tree, or 5-10 random leaves, can reliably detect 

the pathogen. 

V. dahliae isolates that infect olive trees can be classified as defoliating (D) isolates 

that are highly virulent, or non-defoliating (ND) isolates that are generally less aggressive. 

Discrimination of these pathotypes is important in order to predict the severity of disease, 

and decide on appropriate disease management strategies. This is particularly important 

due to the alarming spread of highly virulent isolates of the D pathotype worldwide. In 

Chapter 4, a novel method is designed for accurate discrimination and sensitive detection 

of D and ND isolates of V. dahliae. Through comparative genomics of multiple D and ND 

isolates of V. dahliae a region was identified that is present in all sequenced ND isolates, 

while absent from all D isolates. Based on this presence-absence polymorphism, a set of 

primers was designed spanning this region that was able to generate differentially sized 

amplicons for isolates that belong to the different pathotypes. Additionally, a nested-PCR 

assay was designed to increase the sensitivity and improve detection of D and ND isolates 

in planta. 

In Chapter 5, the relation of the dynamics in pathogen distribution in infected plants 

to the differences in extent and severity of disease caused by D and ND isolates in resistant 

and susceptible olive genotypes is studied. To this end, the distribution of a D (V117) and 

a ND (V4) isolate of V. dahliae in root-inoculated young plants of a susceptible (Picual) 

and a partially resistant cultivar (Frantoio) of olive and its relationship to the disease 

progression was investigated using real-time PCR. The amount of pathogen DNA 

detected in the two cultivars correlated with their susceptibility to Verticillium wilt, with 

lower quantities of V4 and V117 DNA detected in ‘Frantoio’ than in ‘Picual’. Also 

quantities of pathogen DNA in V117-inoculated plants were higher than quantities of 

pathogen DNA in V4-inoculated plants. The distribution patterns of D and ND isolates in 

the lower, middle and top parts of tested olive cultivars showed that differences in 

symptom severity were related to amounts of the pathogen in lower and middle parts of 

the trees, since colonization of the pathogen in top parts of the stem of inoculated plants 

was minor and was not significantly different between treatments. Moreover, microscopic 



SUMMARY 

156 
 

analysis of infection and colonization processes of V. dahliae in olive plants inoculated 

with GFP-labelled isolates revealed that colonization of the above ground tissues of 

infected olive plants is by means of conidia transported upward with the xylem sap stream. 

In Chapter 6 we investigated the spatial and temporal distribution of V. dahliae in 

relation to disease progression and recovery in stem-inoculated maple and ash trees. These 

species differ strongly in vascular anatomy with maple having a diffuse porous xylem 

anatomy whereas ash has a ring porous xylem anatomy. Results showed that that 

differences in the xylem anatomy of ash and maple did not significantly affect the speed 

and extent of the upward spread of the pathogen in stem-inoculated trees. Nevertheless, 

the xylem of ash trees is much less supportive for growth and survival of V. dahliae than 

that of maple trees, as in the year after inoculation disease incidence and also quantities 

of V. dahliae detected in maple trees were significantly higher than in ash trees. Moreover, 

V. dahliae could not be reisolated at all from ash trees that had recovered from disease. 

However, it could be detected by PCR in some cases in the xylem formed in the year of 

inoculation, never in the xylem formed in the year after inoculation. Nevertheless, V. 

dahliae easily could be detected in the wood of diseased ash and maple trees in the year 

after inoculation. Notably, despite the presence of a layer of terminal parenchyma cells 

between growth rings, in ash trees showing disease symptoms in the year after inoculation 

V. dahliae was present in the xylem of the new growth ring. It was also observed that in 

stem-inoculated trees V. dahliae can move downward from the point of inoculation into 

the root collar, which may provide an avenue for infection of new growth rings in ash 

trees. 

Finally, in chapter 7 the major results described in this thesis are discussed and 

placed in a broader perspective.
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Title:  Unravelling aspects of spatial and temporal distribution of Verticillium dahliae in olive, maple and ash 

trees and improvement of detection methods 

Writing a review or book chapter

Title:  Verticillium wilt caused by Verticillium dahliae in woody plants with emphasis on olive and shade 

trees; European Journal of Plant Pathology, submitted

MSc courses

Laboratory use of isotopes

EPS PhD student days

EPS PhD student day, Wageningen (NL)

EPS Symposium 'Omics Advances for Academia and Industry'

Molecular and Developmental Genetics: Reprogramming Photosynthesis in Arabidopsis thaliana, Leiden

Seminar plus

International symposia and congresses

11th international Verticillium symposium 2013, Gottingen, Germany

Education Statement of the Graduate School

Experimental Plant Sciences

Subtotal Start-up Phase

1) Start-up phase 

Issued to:
Date:
Group:
University:

EPS theme symposia

2) Scientific Exposure 

EPS PhD student day, Amsterdam (NL)

EPS PhD student day, Leiden (NL)

EPS Theme 2 symposium 'Interactions between Plants and Biotic Agents', Amsterdam (NL)

EPS Theme 4 symposium 'Genome Biology', Wageningen (NL)

Lunteren days and other National Platforms

Platform Molecular Genetics, Lunteren (NL)

Seminars (series), workshops and symposia

Meeting at the Max-Planck institute for Terrestrial Microbiology, Marburg, Germany       
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date

► 

Nov 01-03, 2011

Aug 27-31, 2012

Jun 02-04, 2014

May 06-09, 2014

Apr 28-29, 2015

► 

2011-2015

► 

Oct 07-08, 2013, Aug 07,18, 2014, 

Sep 01, 03,16-17, 2014 

9.9 credits*

date

► 

Oct 30-Dec 11, 2013

Dec 03-06, 2013

► 

► 

2.7 credits*

35.2

EPS courses or other PhD courses

Spring School ‘Host-Microbe Interactomics' 

3) In-Depth Studies

Autumn School 'Host-Microbe Interactomics' 

Course: Techniques for Writing and Presenting a Scientific Paper (TWP)

Course: Genome assembly

Skill training courses

Journal club

Participation in literature discussion group at Phytopathology

Course: Project and time management

* A credit represents a normative study load of 28 hours of study.

TOTAL NUMBER OF CREDIT POINTS*

Herewith the Graduate School declares that the PhD candidate has complied with the educational requirements 

set by the Educational Committee of EPS which comprises of a minimum total of 30 ECTS credits 

Subtotal Personal Development

4) Personal development

Subtotal In-Depth Studies

Organisation of PhD students day, course or conference

Membership of Board, Committee or PhD council

Individual research training

Working with microtome and microscopy imaging (confocal and epi microscopes), WUR - Cell Biology, 

dr. ing. NCA de Ruijter 

Course: Bioinformatics, A User's Approach

Course: Microscopy and Spectroscopy in food and plant science
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This research was conducted at the Wageningen Plant Research and at the Laboratory of 

Phytopathology of Wageningen University. This research was financially supported by 

the Ministry of Science, Research, and Technology (MSRT) of Iran and by Wageningen 

University. 
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