Genomic prediction and GWAS with sequence information versus HD or 50k SNP chips

Roel Veerkamp, Aniek Bouwman

Background

- Whole genome sequence data
 - Causal mutation (QTN) is included
 - No dependency on LD between SNP and QTL
- Expected to perform better
 - GWAS

WAGENINGENUR For quality of life

• WGS: More persistent across generations / breeds

Prediction 0.6 reliability 0.5 reliability • Not any benefit yet. Pedigree BLUP But it should!? 0.3 BovineHD **Prediction** 0.3 BSSVS Sequence What are we doing BSSVS wrong? 0.1 0 PY Prediction with 12.5 Million SNPs for 5503 Holstein Frie Tor quality of life ibergew^{1,1}, M.P.L. Calus¹, M.C.A.M. Bink¹, C. Schrooten², F.A. van Eeuwijk¹, R.F. Veerkamp

Identifying QTN with GS?

Objective of this study

- The potential benefit of sequence data, compared to usual SNP chip, for
 - QTL detection
 - \rightarrow genomic prediction
 - How much genetic variation is explained?
 - Prediction accuracy genomic selection?

Method (1): Imputation to sequence

Method (2): Statistics GV	VAS	Method (3): SNP s	et select	ion	
Single SNP regression (program)	GCTA)	11 SNP sets select	ed (based on SNP ch	hip/ significance fro	om GWAS):	
Include GRM based on HD :	SNP set		Sequence	HD	50k	сојо
• MAF >0.01 (13,789,029 SN	NP)					
		All	1	2	3	
<u>Conditional and jo</u> int multiple SI	NP GWAS (COJO)	1		_	_	_
 Stepwise selection of SNP explaining additional 		-log(p)>3	4	5	6	7
variance		-log(p)>5	8	9	10	11
Conditional and joint multiple SNP analysis of GWAS summary dataties identifies additional variants influencing complex trails helded (Summar) into the SNP inclusion of SNP analysis of GWAS		WAGENINGE	How g	ood are these SNP	sets for genomic p	prediction?
Por quality of the	Pandu & Palakie ¹ , Andres C. Handl, "Malani G. Bartik ¹ , Ganr W. Mongamur ² , Mahari N. Wander," Bart Hare, Transky M. Iwyling ¹ , Mich I. M. Galty ¹⁰ , McN. Wite observ ¹⁰ , "Malada E. Goldan ^{10,10} in <i>Proc. N. Yander^{10,10}</i>	For quality of	ide			8

Method (4): Two validation methods

Which is the "best" SNP set and how much "better"?

- 1. Estimate heritability in validation animals using $\mathsf{GRM}\textbf{s}$ based on selected sets of SNP
- Train GRMs on discovery animals, back solve SNP and predict DGV for 2287 validation animals. Correlate DGV with phenotypes.

Results: number of SNP

GRMs	Sequence	HD	50k	сојо
All	13,789,029	656,044	49,580	
-log(p)>3	24,387	1,238	120	119
-log(p)>5	2,194	159	27	49

Many more (significant) SNP with sequence info Reduced with COJO to 49 SNP explaining genetic variance

VAGENINGENUR For quality of life

Results: 50K

Results: HD

10

14

Results: Sequence + cojo5

Results: Cojo5 on Chr14 (DGAT)

Results: Heritability GRMs

 $h^{2}\xspace$ is %variance explained by GRMs

GRMs	Sequence	HD	50k	СОЈО
All	0.83	0.82	0.81	
-log(p)>3	0.53	0.40	0.22	0.24
$-\log(p) > 5$	0.60*	0.43*	0.22 *	0.16

*Scale problems with GRM when estimating variances

Considerable reduction when selecting SNP

GRMs	Sequence	HD	50k	C010
All	13,789,029	656,044	49,580	
-log(p)>3	24,387	1,238	120	119
-log(p)>5	2.194	159	27	40

Results: Genomic prediction

Correlation between genomic breeding value and phenotype

GRMs	Sequence	HD	50k	COJO
All	0.68	0.68	0.68	
-log(p)>3	0.58	0.56	0.42	0.38
$-\log(n) > 5$	0.39	0.30	0.28	0.31

Separating GS+, SIRE+, SMGS+ to random to conclude

For quelty of the

GRMs	Sequence	HD	50k	C010
411	13,789,029	656,044	49,580	
log(p)>3	24,387	1,238	120	119
log(p)>5	2,194	159	27	49

Results: Heritability GRMs + GRMc

variance explained by selected SNP GRM, whilst accounting for GRMc

All	Sequence	HD	50k
GRMs	0.83	0.78	0.70
GRMc	-	0.04	0.12

Similar LogL when fitting GRMs or GRMc separate

-log(p)>3	Sequence	HD	50k	C0J05	
GRMs	0.19	0.15	0.09	0.11	
GRMc	0.61	0.65	0.73	0.71	
LogL better compared with other models even full sequence					

WAGENINGEN UR

Conclusions

- Simple using sequence within Holstein population, unlikely to improve GS, but helps QTL detection.
- \rightarrow Another approach?
- Subsets of selected SNP always poorer h² and GS
 - Full seq. accuracy GS of 0.68 and h² =0.83
 - \bullet 51 SNPs accuracy GS of 0.31 and $h^2\approx 0.16$
- Good way to get realistic expectations from GWAS+QTL.

For quelty of life

Acknowledgements

