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CHAPTER 1 
 

 

 
General introduction 

 

Background  

Mineral fertilisers and organic amendments (e.g. crop residues, animal manure and 

compost) are used to improve soil fertility and maintain agricultural fields in a 

productive state. The addition of organic amendments has been shown to maintain soil 

organic matter content and thereby contribute to enhanced fertiliser use efficiency 

(Negassa et al., 2005). Despite these benefits, the use of mineral fertiliser is limited in 

many developing countries due to its high price (Kassie et al., 2009; Dercon and 

Christiaensen, 2011), whereas only a small number of farmers in these countries apply 

organic amendments on their croplands (Baudron et al., 2014; Valbuena et al., 2015). 

Only small fractions of animal manure and crop residues are retained on croplands due 

to the strong competition for agricultural waste for fuel and animal feed (Fig 1.1; 

Baudron et al., 2014), the low production of manure (Tittonell et al., 2005) and limited 

labour availability (Tittonell et al., 2005; Kassie et al., 2009; Baudron et al., 2014). Other 

biodegradable materials such as urban waste should therefore be considered as 

alternative sources for soil amendment.  

A United Nations report indicates that slightly more than half (54%) of the 

world’s population live in cities, with that number expected to rise to 66% by 2050 

(United Nations, 2014). The rapid growth of urban populations generates large amounts 

of waste. As a result, waste management has become a matter of widespread concern 

(Marshall and Farahbakhsh, 2013), especially in developing countries where the current 

practices of waste treatment and/or re-use of waste are insufficient (Fig 1.1). Over 80% of 

urban waste is disposed of in landfills or local dumpsites due to the high costs associated 

with alternative waste management practices (Scarlat et al., 2010). In these countries, 

more than half of urban solid waste is biodegradable (Kasozi and von Blottnitz, 2010; 

Getahun et al., 2012a), indicating that bioconversion of urban waste into soil 

amendments (i.e., composting) is feasible.  

 

http://www.sciencedirect.com/science/article/pii/S0956053X15300544#b0110
http://www.sciencedirect.com/science/article/pii/S0956053X15300544#b0050
http://www.sciencedirect.com/science/article/pii/S0956053X15300544#b0050
http://www.sciencedirect.com/science/article/pii/S0956053X15300544#b0020
http://www.sciencedirect.com/science/article/pii/S0956053X15300544#b0020
http://www.sciencedirect.com/science/article/pii/S0956053X15300544#b0175
http://www.sciencedirect.com/science/article/pii/S0956053X15300544#b0175
http://www.sciencedirect.com/science/article/pii/S0956053X15300544#b0110
http://www.sciencedirect.com/science/article/pii/S0956053X15300544#b0020
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Figure 1.1. Stack of crop residues for fuel uses (a), animal feed (b); stack of animal manure (dung cake) 

for fuel uses (c); the current solid waste management problem in Addis Ababa, Ethiopia (d – f).  

 

Composting is a controlled and microbially mediated decomposition process that 

converts biodegradable waste into a stable product that is ultimately used as soil 

amendment. Urban waste composting can be used to recycle nutrients and close the 

rural-urban nutrient loop (Getahun et al., 2012b; Nigussie et al., 2015 (Chapter 2)). 

Incorporation of urban-waste compost in soil improves soil chemical (Hargreaves 

et al., 2008), physical (Peltre et al., 2015) and biological properties (Garcia-Gil et al., 2004). 

However, urban-waste compost contains relatively low amounts of plant nutrients 

(especially nitrogen) compared to mineral fertiliser (Zhang et al., 2006) and hence is 

unable to meet crop nutrient requirements. Urban-waste compost, particularly in 

(sub)tropical countries has a low N content; hence, optimisation of urban-waste 

composting should place an emphasis on increasing the nitrogen concentration in the 

compost. A significant loss of gaseous nitrogen (N) through ammonia volatilisation, 

nitrogen oxides (NOx), nitrous oxide (N2O) or dinitrogen (N2) occurs during composting 

of nitrogen-rich urban waste (Anderson et al., 2010). These high N losses reduce the 

fertilising value of compost and contribute to environmental problems (Hao et al., 2004). 

Therefore, it is also important to reduce the N losses during composting of N-rich 

materials.   

Greenhouse gas (GHG) emissions (mainly methane and nitrous oxide) from 

composting have repeatedly occurred in reports over the past two decades (Hao et al., 

2004; Anderson, 2010). Methane (CH4) is estimated to have a global warming potential 

d 

e f 

a 
b 

c 

http://www.google.nl/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjhjPqq8IvPAhVDfhoKHTjNBUEQjRwIBw&url=http://www.fao.org/docrep/005/x7660e/x7660e0g.htm&psig=AFQjCNGac6b7snGPZ7zktA5y_KY-UAm2NA&ust=1473839950351665
http://www.google.nl/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjor_yR8YvPAhUG1BoKHT0YCNMQjRwIBQ&url=http://www.iiste.org/Journals/index.php/FSQM/article/download/28683/29445&psig=AFQjCNH7lRj-vSt03tZRiQER85TX1bSQjQ&ust=1473840289032559
http://www.google.nl/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwi58YnS8ovPAhWCfRoKHZ0QBZ4QjRwIBw&url=http://www.indiamart.com/quickfix-exports/products.html&bvm=bv.132479545,d.d2s&psig=AFQjCNFHhcneGMDSH10tLC2AT2HcxHK60Q&ust=1473840700939493
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(GWP) of 35 times that of CO2 over 100 years; whereas nitrous oxide (N2O) has a GWP of 

298 times that of CO2 over 100 years (IPCC, 2013). Compost optimisation should 

therefore put emphasis on increasing or maintaining the nitrogen content of compost, 

reducing N losses and mitigating GHG emissions. 

Several technologies, such as the addition of crop residues (Santos et al., 2016; Vu 

et al., 2015), the control of aeration rate (Chowdhury et al., 2014) and the control of pH 

(Awasthi et al., 2016) (section 1.2.), are suggested as ways of reducing N losses and GHG 

emissions from composting. However, most of these interventions are inadequate to fit 

easily within the broader small-scale farming systems in developing countries because 

these practices are expensive. There is therefore a need for more research to develop low-

cost methods to mitigate N losses and GHG emissions from composting, while retaining 

the beneficial properties (fertilising value) of compost. This thesis aims to address this 

research demand.    

Composting by earthworms (known as vermicomposting) is proposed in this 

thesis as a low-cost strategy for reducing N loss and GHG emissions (Chapter 3 and 4). I 

hypothesised that earthworms reduce GHG emissions from composting because they 

increase aeration in compost piles and influence N transformations through their 

interaction with associated microbes (Lazcano et al., 2008; Velasco-Velasco et al., 2011).  

Another low-cost strategy for minimising N losses and GHG emissions from 

composting is to delay the addition of N-rich substrates. High temperatures (> 45 0C) 

shift the NH4+ = NH3 equilibrium towards ammonia (Pagans et al., 2006). The addition of 

N-rich substrate at the beginning of composting increases N losses due to the 

combination of labile N and high temperatures during the thermophilic phase, which is a 

conducive environment for ammonia volatilisation. The addition of N-rich substrate 

after the thermophilic phase is therefore proposed in this thesis (Chapter 5) as a way of 

reducing N losses from composting. The aim of this thesis is therefore to provide 

mechanistic insight into the effects of vermicomposting and the timing of substrate 

addition on N losses and GHG emissions from urban-waste composting. 

There is extensive literature about the importance of urban-waste composting for 

soil fertility (Garcia-Gil et al., 2004) and crop production (Hargreaves et al., 2008). 

However, socio-cultural and economic perspectives of urban-waste compost receive less 

attention in developing countries, even though these issues should be studied prior to 

scaling up urban-waste composting into large-scale enterprises. This thesis (Chapter 2) 

also aims to address farmers’ attitudes towards urban waste compost and to associate 

these with their livelihood strategies. 
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Nitrogen losses and GHG emissions from composting 

During composting, microorganisms consume oxygen and decompose organic materials, 

thereby generating heat, water vapour and carbon dioxide (CO2). As organic matter 

decomposes, mineral nutrients such as nitrogen, phosphorus and sulphur are released. A 

significant amount of ammonia (NH3), NOx and potent greenhouse gases (i.e., methane 

and nitrous oxide) are produced during composting as well.  

There are three stages in the traditional (also known as thermophilic) composting 

process based on the temperatures in the compost pile (Fig. 1.2). The first stage is called 

the mesophilic phase (temperature < 45 °C). It is the initial phase of composting where 

the rapid breakdown of easily degradable compounds (i.e., sugar and starch) occurs. The 

heat produced during this stage raises temperatures to above 45 °C and leads to the 

second phase, called thermophilic composting. During the thermophilic stage, 

temperatures rise above 45 °C and the breakdown of proteins, fats, hemicellulose and 

cellulose occurs. The third stage is called the curing or maturation phase during which 

temperatures decrease to ambient temperature and more stable organic compounds are 

degraded at a low rate (Lazcano et al., 2008). The composting period and the length of 

each phase depends on the quality of the organic material (carbon, nitrogen, C:N ratio 

and other nutrients), moisture content, oxygen concentration (aeration) and size of the 

pile.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2. Temperature profile during the composting process and the different stages of composting 
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Reducing nitrogen losses and GHG emissions are among the main challenges of the 

composting process because these losses reduce the fertilising value of compost and 

contribute to climate change. Ammonia volatilisation is the major N loss from compost 

and accounts for over 60% of total N losses (Dias et al., 2009; Chowdhury et al., 2014). 

Ammonia volatilisation occurs mainly during the thermophilic phase of composting 

(Chowdhury et al., 2014). Similarly, Eklind et al. (2007) showed that higher temperatures 

(i.e., 67 °C) increase ammonia loss by more than 100% compared to lower temperatures 

(i.e., 40 °C). Many studies have shown that more than half of total N losses occur during 

the thermophilic stage of composting (Pagans et al., 2006; Dias et al., 2009).  

Methane is produced in anoxic hotspots by methanogenic microbes while N2O is 

produced during nitrification in aerobic microsites and denitrification in anaerobic 

microsites (Hao et al., 2004). The total global warming potential (CO2-equivalent) of 

composting processes reaches 80-110 kg CO2-eq. Mg-1 fresh weight during garden waste 

composting (Anderson et al., 2010). Most CH4 emissions occur during the thermophilic 

stage of composting due to the coexistence of labile carbon compounds and anoxic 

microsites (Anderson et al., 2010; Chowdhury et al., 2014), and the activity of 

methanogens increases at high temperatures (Ermolaev et al., 2014). Chowdhury et al. 

(2014) and Vu et al. (2015) showed that more than 70% of CH4 production occurs during 

the thermophilic phase. On the other hand, N2O is emitted after the thermophilic stage 

because nitrifying and denitrifying bacteria are mesophilic (Hao et al., 2004; Vu et al., 

2015).  

Several strategies have been developed to reduce N losses and GHG emissions 

from composting. The increase in the C:N ratio of the composting mixture is frequently 

used to reduce N losses and GHG emissions (Chowdhury et al., 2014; Wang et al., 2014). 

For example, the use of straw decreased total N loss by 33% from vegetable waste 

composting (Chapter 2) and by 27-30% from manure composting (Vu et al., 2015; Sun et 

al., 2015). Similarly, high C:N materials such as sawdust, straw and biochar reduced CH4 

emissions by 70 - 90% and N2O emissions by 37 - 43% from composting, as noted by 

Jiang et al. (2011), Vu et al. (2015) and Chowdhury et al. (2014). Different mechanisms 

explain the effect of high C:N materials on reducing N losses and GHG emissions from 

composting. First, high C:N materials immobilise a significant amount of inorganic 

nitrogen and hence prevent ammonia volatilisation. Second, the bulkier nature of 

materials such as straw allows air movement through the compost pile, and influence 

temperature and moisture in compost pile and consequently affect N losses and GHG 

emissions (Bustamante et al., 2013; Chowdhury et al., 2014).  

Aeration is another option for mitigating N losses and GHG emissions from 

composting because it reduces the presence of anaerobic hotspots in a composting pile. 
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Excessive aeration, however, increases N loss via ammonia volatilisation (Chowdhury et 

al., 2014; Cook et al., 2015). Studies have shown that the total N loss can increase by over 

88% during excessive aeration compared to optimal aeration (Chowdhury et al., 2014; 

Jiang et al., 2011). Similarly, Cook et al. (2015) observed that frequent turning of the 

compost pile (i.e., three times per week) more than doubled the total N losses compared 

with less frequent turning (i.e., once a week). Aeration reduces CH4 emissions from 

composting (Chowdhury et al., 2014; Jiang et al., 2011), but its effect on N2O emissions 

remains controversial. Studies have shown a stimulation effect (Jiang et al., 2011), 

inhibition effect (Shen et al., 2011) and no effect (Chowdhury et al., 2014) of aeration on 

N2O production. High NO3- production via nitrification – which leads to N2O production 

through nitrifier denitrification – explains the high N2O production with increasing 

aeration.  

Controlling the pH using additives is another option for minimising ammonia 

volatilisation from composting because pH > 9 increases the production of ammonia 

(Pagans et al., 2006). The use of NH4+ absorbents such as active carbon, biochar and 

zeolite has also been recommended to mitigate N losses from composting (Steiner et al., 

2010; Chowdhury et al., 2014). However, these technologies are not included in this 

thesis because they are expensive.   

Existing technologies to mitigate N losses and GHG emissions are difficult to scale 

out to farmer’s conditions, particularly for smallholder farmers in developing countries. 

For instance, materials such as crop residues have competitive uses in smallholder 

farming systems. Over 85% of crop residues are used for feed and/or fuel in developing 

countries like Ethiopia (Baudron et al., 2014), making it difficult for smallholder farmers 

to produce high C:N ratio composting materials. Technologies such as controlling pH 

and aeration are expensive and require skill. Simple and low-cost strategies should 

therefore be investigated for smallholder farmers in developing countries. 

 

Vermicomposting as a low-cost strategy for reducing N losses and GHG emissions   

Vermicomposting is a composting process that involves both earthworms and associated 

microorganisms to decompose and stabilise organic materials (Munroe, 2007). During 

vermicomposting, earthworms fragment organic materials into smaller particles, and 

facilitate the further microbial decomposition process. There are an estimated 1800 

earthworm species worldwide, but only a few of these species are used for 

vermicomposting. Epigeic earthworm species – earthworms that only feed on fresh, 

relatively un-decomposed litter – are used for vermicomposting, with Eisenia fetida and 

Dendrobaena veneta the most common earthworm species used for this purpose (Munroe, 

2007).   

http://www.sciencedirect.com/science/article/pii/S0956053X15300544#b0020
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It is plausible that vermicomposting reduces N losses and GHG emissions from 

composting. First, earthworms improve air circulation through the continuous turning of 

organic materials, thereby maintaining aerobic conditions. Second, earthworms affect N 

cycling – mineralisation, immobilisation, nitrification and denitrification – through their 

interaction with associated microbes (Lazcano et al., 2008; Velasco-Velasco et al., 2011). 

Third, vermicomposting is a mesophilic process (< 30 °C), implying that ammonia 

volatilisation is less likely to occur because ammonia emissions rise with increasing 

temperature. The effects of earthworms on soil properties and GHG emissions (mainly 

N2O emissions) from soils are well documented (Lubbers et al., 2013), but earthworm 

effects on N losses and GHG emissions from composting are generally ignored and 

therefore need further investigation. In their report, Lubbers et al. (2013) showed that 

earthworms increased N2O emissions from soil. The substrate quality, earthworm species 

and earthworm density used for vermicomposting, however, differ from those in soil. 

Therefore it is impossible to extrapolate the results of soil experiments to 

vermicomposting systems.  

Currently little is known about N losses and GHG emissions during 

vermicomposting (Lleó et al., 2013; Lim et al., 2016), and the literature is contradictory. 

These contradictions are probably explained by the different conditions of the 

experiments such as mineral N concentration, C quality, moisture content and 

earthworm density, all of which could influence N loss and GHG emissions from 

vermicomposting. For instance, mineral nitrogen and available C contents influence the 

denitrification processes in the earthworm gut of anecic earthworms (Lubbers et al., 

2013). Earthworm density might influence aeration and subsequently influence GHG 

emissions. My thesis used a wide range of substrate qualities (i.e., C:N ratio, labile C 

sources such as glucose) and other factors (i.e., earthworm density, amount of input, and 

moisture) to clarify our understanding of the effects of earthworms on N losses and GHG 

emissions from composting.  

 

Timing of substrate addition as a low-cost strategy for reducing N losses 

Recently, N-rich substrates such as poultry manure have been applied during 

composting to increase the fertilising value of compost (Dias et al., 2009). The addition of 

more labile N materials at the beginning of composting results in ammonia volatilisation 

(Bryndum, 2014) due to the co-existence of a high concentration of NH4+, easily 

mineralisable compounds and a high temperature. Delaying (splitting) the addition of an 

N-rich substrate has therefore been studied in this thesis to reduce N losses from 

composting. During the split addition of an N-rich substrate, the first part is added at the 

beginning of composting to support the turnover of labile carbon. The remaining part is 

http://www.sciencedirect.com/science/article/pii/S0959652612004180
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then added after the thermophilic phase to increase the N concentration in the compost 

(Dresbøll and Thorup-Kristensen, 2005). It is hypothesised that postponing the addition 

of an N-rich substrate reduces ammonia volatilisation because the majority of added N 

experience conditions that are less conducive to NH3 volatilisation. However, the effect 

of timing of an N-rich substrate addition on N losses under different substrate quality 

(i.e., bulking agent) is not yet known. Manure can contain weed seeds, and applying 

composted manure could raise a concern of spreading weeds unless the seeds are 

eradicated during composting. Hence, delayed addition of an N-rich substrate might be 

less efficient at eradicating weed seeds and producing stable compost because the newly 

added substrate has had less time to decompose. This thesis therefore evaluates the effect 

of delayed addition of an N-rich substrate on compost stability and sanitisation. 

The timing of the addition of an N-rich substrate might also influence GHG 

emissions from composting. For instance, the addition of an N-rich substrate after the 

thermophilic phase might increase N2O emissions by increasing the bioavailability of 

mineral N for nitrifying and denitrifying bacteria. On the other hand, late addition of an 

N-rich substrate could reduce CH4 production due to the low temperatures for 

methanogenic microbes. Furthermore, high NH4+ concentrations during early addition 

might reduce methane oxidation in the thermophilic phase due to the enzymatic 

similarity between methane and ammonium oxidation (Hao et al., 2005; Wei et al., 2016). 

However, no studies have been conducted so far on the relationship between the timing 

of an N-rich substrate addition and GHG emissions from composting.  

 

Objectives  

Based on the above-mentioned research needs, the overall objective of this thesis is to 

provide a better understanding of existing waste management practices in developing 

countries and ensure sustainable crop production via the biotransformation of urban 

waste into a high-quality soil amendment. The specific objectives of the thesis are:   

 

(i) to assess the current agricultural waste utilisation strategies and the demand for 

urban-waste compost among different farmer groups in Ethiopia (Chapter 2) 

(ii) to evaluate the effectiveness of vermicomposting to mitigate N losses and GHG 

emissions during composting and produce a high-quality soil amendment, 

linking this effect with substrate quality (as assessed by C:N ratio and the 

presence of a labile C pool) and variables (i.e. moisture content and earthworm 

density) (Chapter 3)  

(iii) to evaluate the potential of delayed addition of N-rich substrates to reduce N 

losses and GHG emissions during composting and compost stability (Chapter 4).  
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(iv) to evaluate the effect of earthworms on dissolved organic carbon quantity and 

composition of the compost, linking this effect to the initial substrate quality and 

feeding ratio (Chapter 5) 

 

Thesis outline 

This thesis consists of six chapters: a general introduction (Chapter 1), four research 

chapters (Chapter 2, 3, 4 and 5) and a general discussion (Chapter 6).  

In developing countries, only small fractions of agricultural waste are retained on 

croplands as soil amendment. Therefore, the research outlined in Chapter 2 was 

undertaken (i) to investigate current agricultural waste utilisation strategies among 

different farmer groups and (ii) to identify the socio-economic factors influencing 

farmers’ decision to use agricultural waste as soil amendments. The demand for urban 

waste compost among different farmer groups was also assessed. Approximately 220 

urban and peri-urban farmers in Addis Ababa, Ethiopia, were involved in this study. 

Group discussions and a standardised semi-structured questionnaire were used. On the 

basis of multivariate analysis the farmers were then classified into different livelihood 

groups. Field measurements were carried out to quantify partial nutrient flows and the 

percentages of agricultural waste allocated for different purposes (i.e., feed, fuel, trade 

etc.). The contingency valuation method (CVM) was used to determine compost 

demand. 

In Chapter 2, urban wastes are suggested as alternative sources of soil 

amendments in developing countries because agricultural waste is used mainly for fuel 

and animal feed. Chapters 3, 4 and 5 therefore describe different strategies to optimise 

the agronomic and environmental benefits of urban-waste composting. More specifically, 

these chapters address the two common composting methods (i.e., thermophilic 

composting and vermicomposting) and their effect on N losses, GHG emissions and 

compost quality.   

There is considerable literature available about N losses and GHG emissions from 

the thermophilic composting method, but little is known about the effectiveness of 

vermicomposting to reduce N losses and GHG emissions compared with thermophilic 

composting. In Chapter 3, the effectiveness of vermicomposting at reducing N loss and 

GHG emissions is addressed using different variables such as C:N ratio, labile C sources 

(i.e., glucose), moisture content and earthworm density. This chapter describes three 

independent experiments that were performed. The first experiment was conducted to 

test the effectiveness of vermicomposting to reduce N loss and GHG emissions from 

materials with different C:N ratios. The second experiment tested the effect of 

earthworm density on GHG emissions from vermicomposting. The third experiment was 
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performed to test the effect of moisture and addition of glucose on GHG emissions from 

vermicomposting. To test these objectives, kitchen waste was used as composting 

material. All the experiments were conducted in small-scale composting reactors, and the 

experiments lasted for 45 days.   

Chapter 4 describes the effect of the timing of addition of an N-rich substrate on 

N loss and GHG emissions from composting. To test this effect, a medium-scale 

experiment was conducted for 90 days in 1 m x 1 m x 1 m boxes made of wood. Poultry 

manure (N-rich substrate) was applied in three different ways: (i) all poultry manure was 

applied at the beginning of composting, (ii) 80% of poultry manure was applied at the 

start of composting and the remaining 20% added after the thermophilic phase, or (iii) 

20% of poultry manure was applied at the start of composting and the remaining 80% 

was added after the thermophilic phase. Total N loss was estimated using a mass-

balance, and the CO2, N2O and CH4 emissions were measured to quantify the GHG 

budgets. To test the effect of split addition of N-rich substrate on sanitation, seeds from 

four weed species were put in small nylon mesh bags and added to the compost pile. At 

the end of the composting experiment, the nylon bags were retrieved and the seeds 

tested for germination. The incubation experiment was conducted for 90 days and 

different indices were used to test for the effect of the timing of N-rich substrate addition 

on compost stability.   

In my previous studies (Chapter 3), I noted that earthworms increased CO2 

emissions, and the higher CO2 emissions indicated a higher degree of stabilisation. 

Therefore, I initiated Chapter 5 to link the effect of earthworms on CO2 emissions with 

dissolved organic carbon (DOC) quantity and its composition (humic acid, fulvic acid, 

hydrophobic neutral, and hydrophilic compounds) – which is a recently proposed 

indicator of compost stability. Chapter 5 also deals with the effect of feeding ratio on 

compost stability and GHG emissions from vermicomposting. To address these 

objectives a laboratory-scale vermicomposting was conducted for 60 days using garden 

waste.    

In Chapter 6, I argue that reliance solely on agricultural waste to increase soil 

fertility and sustain crop production is problematic, especially in developing countries. I 

therefore suggest that biodegradable urban waste should be considered as alternative 

resource for sustainable agricultural production in developing countries. The chapter 

contains a synthesis of the merits and demerits of the composting technologies that are 

suggested in this thesis to mitigate N losses and GHG emissions and ends with the 

conclusions and policy implications of the findings from this thesis. Finally, this chapter 

suggests future research directions. 
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Figure 1.3. Mixing of the composting materials in Ethiopia, Jimma (a), turning of the composting piles 

(b), taking gas samples from small-scale vermicomposting reactors (c), the earthworms (d).   
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urban-waste compost: Evidences from smallholder farmers in 
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Agricultural waste utilisation strategies and demand for 

urban-waste compost: Evidences from smallholder farmers in 

Ethiopia   

 

Abstract  

The use of agricultural waste for soil amendment is limited in developing countries. 

Competition between fuel and feed is the major cause for the insufficient application of 

agricultural waste on cropland. The aims of this study were therefore (i) to investigate 

variation in agricultural-waste allocation between groups of farmers with different 

livelihood strategies and link this allocation with the nutrient balances of their 

production systems, (ii) to identify farm characteristics that influence utilisation of 

agricultural waste for soil amendment, and (iii) to assess demand for urban-waste 

compost. A total of 220 farmers were selected randomly and interviewed using 

standardised semi-structured questionnaires. Four groups of farmers, namely (i) field 

crop farmers, (ii) vegetable producers, (iii) ornamental-plant growers, and (iv) farmers 

practising mixed farming, were identified using categorical principal component and 

two-step cluster analyses. Field crop farmers produced the largest quantity of 

agricultural waste, but they allocated 80% of manure to fuel and 85% of crop residues to 

feed. Only <10% of manure and crop residues were applied on soils. Farmers also sold 

manure and crop residues, and this generated 5-10% of their annual income. Vegetable 

and ornamental-plant growers allocated over 40% of manure and crop residues to soil 

amendment. Hence, nutrient balances were less negative in vegetable production 

systems. Education, farm size, land tenure and access to extension services were the 

variables that impeded allocation of agricultural waste to soil amendment. Replacement 

of fuel and feed through sustainable means is a viable option for soil fertility 

management. Urban-waste compost should also be used as alternative option for soil 

amendment. Our results showed variation in compost demand between farmers. 

Education, landownership, experience with compost and access to extension services 

explained variation in compost demand. We also demonstrated that labour availability 

should be used to estimate compost demand beside cash. 

 

Keywords: animal manure, crop residue, compost, livelihood strategy, municipal waste
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Introduction  
 

Urban and peri-urban agroecosystems are common in many countries, and they are 

often characterised by a surplus nutrient balance due to the intensive use of fertilisers 

and heavy irrigation with waste water (Khai et al., 2007; Wang et al., 2008; Diogo et al., 

2010; Abdulkadir et al., 2013). In contrast, some studies showed negative nutrient 

balances and hence declining soil fertility in urban and peri-urban farming systems 

(Tewodros et al., 2007). Mineral fertilisers have been used to improve and maintain soil 

fertility and crop production; however, this is a challenge for many smallholder farmers 

because mineral fertilisers are expensive (Kassie et al., 2009; Dercon and Christiaensen, 

2011). Hence, the integration of mineral fertilisers with organic amendments (e.g. animal 

manure and compost) has been recommended to increase crop production (Negassa et 

al., 2005). Organic amendments could also increase or maintain soil organic matter 

contents and thereby contribute to enhanced fertiliser use efficiency.  

The use of organic amendments in cropping systems is the most viable option for 

farmers to maintain their field in a productive state. The benefit of organic amendments 

is not new for many farmers. However, only small fractions of animal manure and crop 

residues are retained on farmlands in many developing countries due to the low 

production of manure, the limited availability of labour and the inefficient collection of 

manure (Tittonell et al., 2005; Kassie et al., 2009; Baudron et al., 2014). In addition to this, 

high competition of agricultural waste with other uses (e.g. feed and fuel) results in 

insufficient application of organic amendments in soils, and this competition has become 

a major concern. For example, utilisation of agricultural waste for feed and fuel has been 

identified as a major cause for the slow adoption of conservation agriculture in sub-

Saharan Africa and South Asia (Mekonen and Kohlin, 2009; Baudron et al., 2014; 

Valbuena et al., 2015). Nevertheless, more than 10 t ha-1 of organic amendment are still 

recommended for resource poor farmers in many developing counties (Negassa et al., 

2005; Hou et al., 2011) but such recommendations do not consider competition in the 

utilisation of agricultural waste.  

It is important to identify the current uses of agricultural waste across different 

farmers groups and livelihood strategies because it explains the causes for minimum 

application of organic amendments for cropping systems. It is also essential to determine 

the farm characteristics that impede farmers using agricultural waste for soil 

amendment. Baudron et al. (2014); Rimhanen and Kahiluoto (2014); Valbuena et al. 

(2015) found that most of the crop residues are fed to livestock in sub-Saharan Africa and 

South Asia countries. In contrast, the majority of farmers in Western Kenya, India and 

Bangladesh retain over 80% of crop residues on farmland (Baudron et al., 2014; Valbuena 

et al., 2015). This variation could be due to the difference in degree of agricultural 

intensification and high competition of agricultural waste with other uses such as feed or 



Chapter 2                                                                                                              

16 

fuel (Baudron et al., 2014). Another reason could be differences in terms of farm 

characteristics and livelihood strategies. Therefore, we hypothesised that farmers with 

different production goals, degree of intensification and socioeconomic status have 

different agricultural-waste utilisation strategies. For example, subsistence field crop 

farmers may prefer to utilise agricultural waste for feed or fuel. In contrast, vegetable 

producers might apply more manure and retain more crop residues on fields than cereal 

producers because vegetable production demands a high nutrient input and generates a 

rapid economic return (Abdulkadir et al., 2013). Similarly, land entitlement might 

encourage farmers to allocate large quantities of agricultural waste to soil amendment. 

Availability of labour, farm size and distance could also determine farmers’ decisions to 

allocate agricultural waste for soil amendment since investment is required to transport 

agricultural waste (Tittonell et al., 2010). However, no studies have been conducted to 

explain variation in utilisation of agricultural waste across different livelihood strategies 

and production goals.  

It is clear that only very small fractions of agricultural waste are allocated to soil 

amendment in many developing countries (Baudron et al., 2014; Jaleta et al., 2014; 

Rimhanen and Kahiluoto, 2014). Therefore, other organic resources (e.g. urban waste) 

should be considered as an alternative option for soil amendment in urban and peri-

urban farming systems in developing countries. Previous studies have suggested the use 

of urban waste compost to enhance urban agricultural production (Danso et al., 2006; 

Mary et al., 2010). However, there are very few studies on urban-waste compost demand 

between different farmers groups and production goals using contingent valuation 

method (Danso et al., 2006). Contingent valuation method (CVM) is a widely used 

method to estimate the economic values of environmental services (Danso et al., 2006). 

Thus, the specific objectives of this study were: (i) to investigate the utilisation of 

agricultural waste between different urban farmers and link this use with partial nutrient 

balances, (ii) to identify farm characteristics that influence farmers’ decisions to use 

agricultural waste as a soil amendment, and (iii) to assess the demand for non-

agricultural waste (i.e. urban waste) compost. 

 

Materials and Methods  

 

Study area 

The study was conducted in Addis Ababa, the capital city of Ethiopia. Addis Ababa is 

located between 2400 and 3100 m above sea level and has a total land area of 530 km2. 

The average low and high temperatures are 10 and 25 °C respectively. Annual 

precipitation is 1180 mm. It has a unimodal rainfall regime starting in June and lasting 

until September. The dominant soil type is Vertisol, and the parent material is olivine 

basalt (Tekalign et al., 1993). Urban farmers who grow crops in the study area are 
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approximately 7,000 (Mengistu, 2013). Teff (Eragrostis tef), wheat (Triticum sp. ) and 

chickpea (Cicer arietinum) are the main crops grown in the area. Cabbage (Brassica 

oleracea), Ethiopian mustard (Brassica carinata), potato (Solanum tuberosum) and carrot 

(Daucus carota) are the main vegetables grown. Cattle, donkeys and sheeps are the main 

livestock types kept by farmers. The poor solid-waste management system is one of the 

main problems in the city. The current waste generation is about 1,000 tons day-1. The 

average daily waste generation is 32 kg person-1 yr-1 (Guerrero et al., 2013). About 76% of 

the urban waste is household waste and over 50% of the urban waste consists of organic 

materials that can be recycled into compost (Regassa et al., 2011). From the total waste 

generated, only 65% is collected, and the remaining 35% is dumped on open sites, 

drainage channels, rivers and streets (Guerrero et al., 2013). Currently, less than 5% of 

the urban waste is composted (Mengistu, 2013). 

 

Socioeconomic survey 

Areas that represent the current agricultural systems and heterogeneities of livelihood 

strategies were selected using secondary sources and governmental and non-

governmental organisations. Discussions were held with key informants who worked in 

agricultural offices in order to obtain information about the farmers, their locations and 

other relevant information. A total of 220 households were randomly selected, and 

individual farmers were interviewed using a standardised semi-structured questionnaire 

and informal conversation. The sample size was determined according to Israel (1992) 

who recommended a minimum of 200 samples for population size between 5,000 and 

10,000 at 95% confidence level and 7% precision level. The questionnaire was pre-tested 

with 12 respondents and modifications were made on the basis of this pre-test. Field 

observations and discussions with key informants, and governmental and non-

governmental organisations (NGOs) were used to supplement the household interviews. 

The qualitative and quantitative variables used in the study are given in Table 2.1.
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Table 2.1. Description of variables used in the study 

 

No Variables and proxies  Description and unit  

Socioeconomic variables   

 Education  Formal education level of the HH (0 for illiterate; 1 for primary school; 

2 for secondary school)  

 Sex  =1 if the HH is male; 0 otherwise  

 Age Age of the HH (in years)  

 Labour   Total active work force*  

 Farming experience  Years of the HH’s involvement in urban and peri-urban agriculture  

 Land size  Total size of the farm (ha) 

 Farm distance  Distance between home and farm (minutes)  

 Land tenure  = 1 if the HH considered that he/she would be able to use the parcel 

for a long time, 0 otherwise 

 Tropical livestock unit (TLU) The total number of animals reared by the HH expressed in TLU** 

 Access to extension services    =1 if the HH has access to extension services, 0 otherwise  

 Awareness of soil fertility problems  =1 if the HH identifies soil fertility problems on his/her land, 0 

otherwise 

 Non-farm activities  =1 if the HH is involved in non-farm activities, 0 otherwise 

 Income  Total gross income of the HH from agriculture in $ US 

Compost and farmers  

 Farmers’ experience of 

compost/manure  

=1 if the HH applied compost/manure, 0 otherwise 

 Willingness to participate in urban 

waste compost  

=1 if the HH is willing to contribute money or labour or both, 0 

otherwise 

 Money to contribute  = amount of money ($ US) the HH is willing to contribute for 100kg of 

urban waste compost 

 Labour to contribute  =amount of labour (days) the HH is willing to contribute for 100kg of 

urban waste compost per year  

Production systems   

 Field crop production  =1 if the HH is involved in field crop production, 0 otherwise 

 Garden vegetable production   =1 if the HH is involved in vegetable production, 0 otherwise 

 Livestock production  =1 if the HH is involved in livestock production, 0 otherwise 

 Ornamental plants  =1 if the HH is involved in ornamental plant production, 0 otherwise 

 INC_ cereal  = Contribution of field crop to HH income (highest, moderate, low, 

none) 

 INC_ vegetable  = Contribution of vegetable to HH income (highest, moderate, low, 

none) 

 INC_ animal = Contribution of animals to HH income (highest, moderate, low, 

none) 

 INC_ ornamental  = Contribution of ornamental plants to HH income (highest, 

moderate, low, 

none) 

*The total active workforce was calculated as follows: 1.0 for males aged between 16 and 55 years; 0.75 for females 

between 15 and 55 years; 0.75 for males above 55 years and 0.5 for females above 55 years. Those below 15 years of age 

were not considered in workforce calculations (Dossa et al., 2011); ** TLU = tropical livestock unit, hypothetical animal 

of 250kg live weight; TLU conversion factors used: camel=1, cattle=0.80, sheep and goats=0.10, donkey=0.5; pigs=0.20, 

poultry and rabbit=0.01. HH = household head; $ US = United States dollar  

 

 

Sampling and laboratory analyses 

Samples were collected from soil, plant, irrigation water, manure and compost to 

quantify partial balances of nitrogen (N), phosphorus (P), and potassium (K) across 

different farms. Due to budget constraints, only three farms were selected from each 

farmers group after we identified different farmer categories. The farms which represent 
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each category were selected through detailed observation, discussion with farmers and 

development agents. Three sub-plots (1 m2) were prepared in each farm (Abdulkadir et 

al., 2012). Soil and plant samples were collected from these sub-plots. Composite soil 

samples were taken from the 0-25 cm layer and air-dried for laboratory analysis. The 

hydrometer method was used to determine soil texture, and pH-H2O was measured in a 

1:2.5 soil-to-water suspension. Soil carbon was analysed using the Walkley-Black 

method, total N using Kjeldahl digestion, available P using Olsen extraction and soil K 

using aqua regia digestion (Van Reewijk, 1992). Plant, manure and compost samples 

were also collected and weighed immediately after sampling to determine fresh weight. 

Plant samples were oven-dried at 60 °C for three days, then ground and sieved for N, P 

and K analyses (Van Reewijk, 1992). Nitrogen in plant tissue was analysed using 

Kjeldahl digestion, while P and K were measured using vanadomolybdophosphoric acid 

extraction and atomic absorption respectively. Nitrogen, phosphorus and potassium in 

water, compost and manure were analysed as described earlier. Nitrogen, P and K 

concentrations in plant, manure and compost samples were multiplied by their dry mass 

to estimate element fluxes (Eq. (1)). 

f = ∑ QiCi

n

i=1

 … … … … … … … … … … … ..     (1) 

where ƒ is the input or output flow of N, P or K for one year; n is number of events in a 

year (growing season; fertilisation (manure or compost); irrigation); Q is quantity of dry 

material; C is concentration of N, P or K.   

 

The element balance equation was then calculated as:  
𝐵𝑒 =  𝐼𝑒 − 𝑂𝑒 … … … … … … … … … … … … … ..  (2) 

where B is the nutrient balance; e is the element (N, P or K); Ie is input of an element 

(fertiliser, compost, manure, irrigation) and Oe is output of an element (harvested crop 

yield and crop residue). 

 

Data analyses 

Categorical principal component analysis (CATPCA) and two-step clustering were used 

to classify 220 farmers into different groups (Dossa et al., 2011). Since nominal and metric 

variables were included in the study, CATPCA was used instead of principal component 

analysis. CATPCA was performed using IBM SPSS Statistics 22.0 to identify 

relationships between variables and to reduce a large number of variables into a small 

number of orthogonal components. According to Abdulkadir et al., (2012), a component 

(a CATPCA axis) is reliable if it contains at least four variables with a loading score > 0.6. 

Based on this criterion, two components were found. The loading score of each variable 

is presented in Table 2.2. The extracted component scores and variables with a score 

value > 0.6 in one of the two components were then used for two-step clustering (Dossa 
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et al., 2011). Before running the cluster analysis, a visual binning procedure was 

performed to convert continuous variables into nominal variables and reduce the higher 

weight of categorical variables at the expense of continuous variables (Dossa et al., 2011). 

A silhouette measure of cluster cohesion and separation – which was used for measuring 

the quality of the clustering solution – showed a good clustering quality because the 

value was between 0.6 and 0.7. Analysis of variance (ANOVA) for continuous variables 

and chi-square for categorical variables were used to test for significant differences 

between the clusters.  

 

Table 2.2. Component loadings of socioeconomic variables used for categorical component analysis 

(CATPCA) 

 

Variable  Dimension 

1 2 

Farming experience   0.635 0.081 

Age of HH 0.259 0.192 

Sex of HH 0.202 -0.339 

Education status of HH -0.437 -0.197 

Active labour force  -0.445 0.123 

Area of the farmland 0.722 -0.116 

Farm distance    0.782 -0.103 

TLU 0.685 0.136 

Awareness of soil fertility  -0.153 -0.146 

HH involved in field crop production  0.900 -0.100 

HH involved in vegetable production   -0.532 0.785 

HH involved in animal rearing 0.823 0.210 

HH involved in ornamental plant production  -0.424 -0.821 

Contribution of field crop to HH income  0.916 -0.148 

Contribution of vegetable to HH income -0.583 0.781 

Contribution of animals to HH income 0.738 0.190 

Contribution of ornamental plants to HH income -0.424 -0.821 

Contribution of non-farm activities to HH income -0.205 -0.362 

Cronbach’s alpha 
0.89 0.71 

Total eigenvalue  
5.67 2.88 

% variance  
43.58 22.16 

HH= household head; TLU = tropical livestock unit 

 

The contingency valuation method (CVM) using dichotomous choice was implemented 

to estimate the demand for urban waste compost via a willingness to contribute money 

or labour (Danso et al., 2006). In our study, labour was also used to estimate compost 

demand because resource-poor farmers might prefer to contribute labour rather than 
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money since cheap labour is more easily available than cash in many developing 

countries. Therefore, farmers were also asked to state the amount of labour they were 

willing to contribute in addition to cash. The labour was then converted into wages to 

estimate the demand. The questionnaires were designed to avoid strategic and starting 

point biases of the CVM method. A binary logit model was then used to determine 

socioeconomic variables that influence farmers’ demand for urban-waste compost. The 

dependent variable was considered to be one when respondents were willing to 

contribute money, labour or both, and zero otherwise. The logit model used for this 

study is that described by Gujarati (1995). 

 

Results  
 

Categorical principal component and two-step cluster analyses 

The results of CATPCA are presented in Table 2.2 and Figure 2.1. Eighteen variables 

were used, and two reliable component solutions were obtained from the analysis. The 

first component accounted for 44% of the variance, while the second component 

accounted for 22%. The third component was not considered reliable because it 

accounted for only 12% of the variance, and it had one variable (Age) with a score value 

>0.6. Farm experience, land size, farm distance, number of tropical livestock units (TLU), 

income from cereals and income from animals were the variables that showed the 

strongest relationship with the first component. Income from garden and income from 

ornamental plants showed the strongest correlation with the second component. 

Cronbach’s alpha values, which measure how closely related the variables are as a 

group, were 0.89 and 0.71 for components one and two respectively. These Cronbach’s 

alpha values suggest that the variables have a high internal consistency since these 

values are larger than 0.70. Vectors pointing in the same direction in Figure 2.1 were 

more correlated, and the length of the vectors indicated the most influential variables. 

Therefore, variables that were related to farming strategies, income source and resource 

endowment were the dominant variables for CATPCA analysis. The extracted 

component scores and variables with a score value >0.6 in one of the two components 

were used for two-step cluster analysis. Accordingly, the two-step cluster analysis 

identified four groups of farmers that were different in terms of livelihood strategies, 

technology choice, utilisation of agricultural waste and soil fertility management. The 

socioeconomic characteristics of each group are presented in Table 2.3 and presented 

below. 
 



Chapter 2                                                                                                              

22 

 
 

Figure 2.1. Loadings obtained from categorical principal component analysis describing the 

relationship between socioeconomic variables. Veg = vegetable growers; Inc_ Veg = income from 

vegetables; Ani = number of animal raised; Inc_ Ani = income from animal; crop = field crop growers; 

Inc_ crop = income from field crops; orn= ornamental plant growers; Inc_ ornamental= income from 

ornamental plants; Inc_ re= income from non-farm activities; TLU= tropical livestock unit; Edu = 

educational status; comp = compost users; dis = farm distance; area = land size.
     

 

 

Classification of urban and peri-urban farmer groups 

Cluster I (Subsistence field crop farmers): Farmers included in this group were located in 

peri-urban areas. These farmers used to be rural farmers, but their land has been 

encroached upon by expansion of the city. The agricultural activities were characterised 

by subsistence field crop production. Wheat (Triticum sp.) and teff (Eragrostis tef) were 

the dominant field crops. Legumes including chickpea (Cicer arietinum), grass pea 

(Lathyrus sativus) and lentil (Lens culinaris) were also grown in crop rotation as food 

crops. In addition to crop production, these farmers raised animals. The average herd 

size of these farmers in TLU was 7.64, which was significantly (P < 0.01) higher than for 

the other groups of farmers (Table 2.3). The average gross annual income of these 

farmers was the lowest because field crop production contributed most of the household 

income. Many field crop farmers had large farms (2.64 ha) but 84% of these farmers had 

insecure landownership due to urban encroachment. Many of them had lost their 

farmlands due to urbanisation. As a result, these farmers were forced to grow crops by 

renting land from peri-urban and rural farmers. Farmers in this group used family 

labour for agricultural activities. Field crop farmers had less access to institutional 

support including credit and extension services. A large number of these farmers (47%) 

were illiterate, and they had been engaged in agricultural activities for more than 25 

years. 
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Cluster II (Mixed farmers): These farmers were the intermediate category between 

clusters I and II. These farmers were on the way from being field crop farmers to 

becoming vegetable farmers due to urban encroachment and land shortage. Farmers in 

this group practised a mixed field crop -vegetable-livestock production system. The 

average heard size in TLU was 4.29 (Table 2.3). Most of the household income was 

generated from field crop production, with a moderate to low contribution from 

vegetable and livestock activities. Many farmers in this group had less access to 

institutional support compared to vegetable and ornamental-plant producers. Farmers in 

this group had large farms (1.52 ha), but ownership was insecure because field crops 

were grown in peri-urban areas where urban encroachment is a problem. 

Cluster III (Vegetable producers): These farmers were characterised as small-scale 

commercial vegetable producers. In addition to vegetable production, 38% of farmers in 

this group raised animals. Even though vegetables contributed most to the household 

income, 32% of these farmers also engaged in non-farm activities such as private 

businesses and temporary urban occupations. Female participation in vegetable 

production was higher than in the other groups. About 20% of the vegetable producers 

were female. The majority of vegetable producers (60%) had access to extension services, 

and they were organised into cooperatives and small enterprises. The land size of these 

farmers was very small (0.34 ha), but they had relatively secure land ownership 

compared to field crop farmers because vegetable production was mainly carried out 

near the homestead or main rivers. Flooding was the principal problem for many 

vegetable farmers. Vegetable production is labour intensive, therefore farmers in this 

group hired labour, especially during weeding and harvesting. The labourers were 

mostly urban dwellers, however a few field crop farmers were also working for 

vegetable producers. As a result, the average labour force (7.56) involved in this farming 

system was significantly (P < 0.01) higher than for the other groups. 

Cluster IV (Ornamental-plant growers): Farmers with commercialised 

ornamental-plant production constituted this group. Most of these farmers were urban 

dwellers who created new jobs. These farmers were literate (93%) and engaged in non-

farm activities (53%). Non-farm activities carried out by ornamental-plant growers 

included private businesses and permanent or temporary jobs in governmental and non-

governmental organisations. The contribution of non-farm activities to household 

income was moderate to high. This farming system is new in many developing 

countries. Similarly, the average farm experience of these farmers was 12 years (Table 

2.3). Ornamental plants were grown near the homestead or main roads. As with 

vegetable producers, ornamental-plant growers had good access to institutional support 

including credit services. Many ornamental-plant growers also hired labour from urban 

areas. 
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Table 2.3. Socioeconomic characteristics of urban and peri-urban farmers in the study area  

 

Socioeconomic characteristics Field crop 

producers  

Mixed farmers  Vegetable 

producers 

Ornamental 

plant growers  

P-value 

No (%) of households 76 (34.6%) 22 (10.0%) 81 (36.8%) 41 (18.6%)  

Human capital      

Farming experience (year) 26.2a 18.9b 13.9b 11.7b ** 

Age of the HH (year) 43.9 46.5 42.8 43.3 NS 

Educational status 0.5 0.7 0.8 0.9 *** 

Active labour force 4.0b 5.2b 7.6a 5.5b ** 

Natural capital      

Total land size (ha) 2.6a 1.5a 0.3b 0.2b ** 

Tropical livestock unit 7.6a 4.3b 3.8b 1.1c ** 

Number of cattle (per HH) 7.5a 4.9ab 3.4b 1.0c ** 

Number of small animals (per 

HH) 

4.2a 1.3b 2.0b 0.1c ** 

Number of equines (per HH) 1.8a 0.6bc 0.7b 0.0c ** 

Land tenure status (%) 0.2 0.4 0.8 0.7 *** 

Social capital      

Access to extension services (%) 0.2 0.4 0.6 0.7 *** 

Financial capitals      

Non-farm activities (%) 0.3 0.3 0.3 0.5 *** 

Annual gross income from 

agriculture (in $ US) 

475.0c 903.0b 850.0b 1070.0a ** 

Means with different letters within the rows are statistically different (P<0.05); ANOVA and chi-square were used to 

compare continuous and categorical variables respectively; ***, ** denote significant differences at P<0.001 and P<0.01 

respectively; NS = not significant at (P < 0.05); HH= household head  

 

Partial nutrient balances and soil fertility management practices 

Partial balances of N, P and K under different urban and peri-urban farming systems are 

presented in Figure 2.2. Partial nutrient balances varied significantly (P<0.01) between 

different groups of farmers. The N balance was negative in mixed farming and field crop 

production, but positive (20 kg ha-1 yr-1) in vegetable farms. The partial balance for P was 

positive in all farms ranging from 18 kg ha-1 yr-1 on croplands to 22 kg ha-1 yr-1 on 

vegetable farms. In contrast, the K balance was negative on all farms. The most negative 

K balance (minus 43 kg ha-1 yr-1) was observed in vegetable farms. The observed 

variation in nutrient balances resulted from differences in soil fertility management 

between the groups (Table 2.4).  
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Figure 2.2. Partial nutrient balance of different urban and peri-urban production systems (a) nitrogen 

balance, (b) phosphorus balance, (c) potassium balance; Ornamental-plant growers are not included 

because there were so many plants on each farm, and each farm has different plants, which makes the 

calculation very difficult and expensive.    

 
Table 2.4. Soil fertility management strategies of different urban and peri-urban farmers  

 

Soil fertility management strategy 

based on: 

Percentage of farmers that apply the strategy 

Field crop 

producers 

Mixed farmers Vegetable 

producers 

Ornamental 

plant growers 

X2 

Compost  9 18 22 39 ** 

Manure  9 27 31 96 ** 

Inorganic fertilisers  97 100 73 39 ** 

Legumes rotation   67 27 - - ** 

** Significant at P < 0.01  

 

The physical and chemical properties of soils presented in Table 2.5 were also in 

agreement with the nutrient balance. In general, inorganic fertilisers (urea and 

diammonium phosphate) were the primary source of nutrient inputs, but many farmers 

applied inorganic fertilisers below the recommended rate due to their high price. About 

78% of the respondents were aware of the benefits of organic amendments, and 63% of 

respondents had access to animal manure. However, the use of manure for soil 

amendment was very limited (Table 2.4). Retention of crop residues on soil was also 
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limited in the study area. The majority of farmers retained less than 10% of crop residues 

on their fields. Ornamental-plant and vegetable growers applied higher amounts of 

organic amendments compared to the other two clusters. Most ornamental-plant 

growers applied organic amendments at the rate of 6 t ha-1 yr-1 while vegetable producers 

applied organic amendments less than 3 t ha-1 yr-1. About 96% of ornamental plant 

growers applied manure and 39% applied compost from plant residues. In contrast, 31% 

of vegetable growers, 27% of mixed farmers and 9% of field crop producers applied 

manure on their farmlands. Similarly, 22% of vegetable growers, 18% of mixed farmers 

and 9% of field crop producers used compost as soil amendment (Table 2.4). 

 

Table 2.5. Physical and chemical properties of soils (0-25cm) 

 

Soil properties Field crop farmers  

(n=3) 

Mixed farmers 

(n=3) 

Vegetable  

farmers  

(n=3) 

P-Value 

Clay (%) 66.2 61.0 43.9 NS 

Silt (%) 22.6 26.0 34.7 NS 

Sand (%) 11.2b 13.0ab 21.4a * 

pH-H2O 7.3 7.4 7.6 NS 

Organic carbon (%) 1.2b 1.4b 2.2a ** 

Total nitrogen (%) 0.1b 0.1b 0.2a ** 

Olsen-P (mg kg-1) 17.9c 43.4b 89.1a ** 

CEC (cmol (+)/kg soil) 58.3 61.3 45.2 NS 

Exch Ca (cmol (+)/kg soil) 44.2 45.9 31.3 NS 

Exch Mg (cmol (+)/kg soil) 10.3 8.1 9.5 NS 

Exch K (cmol (+)/kg soil) 1.8b 1.4b 2.1a * 

Total P (g kg-1) 0.6b 0.8ab 1.0a ** 

Total K (g kg-1) 3.0b 4.12a 4.6a ** 

* Ornamental plant growers are not included because these farmers used pot soils whose properties varied from farm to 

farm; CEC = cation exchange capacity; Exch = exchangeable *, ** denote significant difference at P<0.05 and P<0.01 

respectively   

 

Current uses of agricultural waste 

The current uses of agricultural waste across different farmers groups are presented in 

Figure 2.3. Three major uses for animal manure and crop residues were identified. 

Agricultural-waste utilisation varied significantly (P < 0.001) between the different 

farmer groups. All respondents used animal manure, mainly for household fuel 

consumption. Field crop farmers allocated over 80% of manure to fuel consumption and 

only 5-10% to soil amendment. In contrast, ornamental-plant producers allocated 34% of 

manure to fuel and 56% to soil. Crop residues were used primarily for feed. Field crop 

producers and mixed farmers allocated over 83% and 76% of crop residues to animal 

feed respectively. In contrast, vegetable producers retained 62% of crop residues on their 

field. Ornamental-plant growers produced negligible quantities of crop residues; 

therefore, their residue allocation has not been studied. Manure and crop residues also 

served as income sources for many urban farmers. Many respondents sold manure and 



Demand for urban-waste compost                                                                                                               
 

27 

 

crop residues (teff (Eragrostis tef)) and earned more than $50 yr-1. This is equivalent to 5-

10% of their annual income. A very small fraction of crop residues was allocated to fuel. 

The econometric analysis (Table 2.6) indicated the socioeconomic variables that 

correlated with allocation of agricultural waste to soil amendment. The results show that 

farmers who have access to extension services allocated manure and crop residues 

mainly to soil amendment. Access to physical assets (i.e. landownership and land size) 

also influenced farmers’ decisions to use agricultural waste for soil amendment. Farmers 

with insecure landownership allocated agricultural waste mainly to household fuel 

consumption. The relationship between the educational status of the household head 

and utilisation of agricultural waste is illustrated in Figure 2.4. Farmers with a better 

educational status allocated a larger fraction of their agricultural waste to soil 

amendment. Farmers with a higher tropical livestock unit (TLU) also used crop residues, 

especially for animal feed; however, the relationship between the number of cattle and 

allocation of animal manure for soil amendment was not significant. 

 
 

Figure 2.3. Current use of (a) manure and (b) crop residues across different urban and peri-urban 

farmer groups  
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Figure 2.4. Current use of (a) manure and (b) crop residue across different educational status  

 

 

Table 2.6. Parameter estimates of socioeconomic variables that influence farmers’ decisions to use 

agricultural waste for soil amendment  

 
Variables  Manure for soil amendment Crop residue for soil amendment 

Coefficient Wald statistic Coefficient Wald statistic 

Age (year) -0.031 1.758 -0.014 0.533 

Gender  0.734 1.062 -0.434 0.751 

Educational status of HH 0.343* 2.468 0.153 0.616 

Labour   0.103 0.859 0.016 0.088 

Total land size  (ha) -0.598*** 6.924 -0.474** 4.161 

Farm distance (minutes)  -0.12* 1.193 0.024 2.228 

Tropical livestock unit 0.040 0.899 -0.015 0.206 

Awareness of soil fertility problem 

(%) 
1.292** 3.400 0.222 0.195 

Land tenure (%)  0.886* 2.011 0.815** 2.718 

Access to extension service (%)   1.009* 2.380 0.459 0.587 

Constant -4.553 9.262*** -0.154 0.018 

-2 log-likelihood 110.48  160.85  

Chi-square values  55.49***  50.54***  

Per cent correctly predicted   80.80  76.20  

*, **, *** denote significance at P < 0.01, P < 0.05 and P < 0.01 respectively; HH = household head 
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Demand for urban-waste compost 

Since there is high competition of agricultural waste with other uses such as feed and 

fuel, other organic resources (e.g. urban-waste compost) should be considered as an 

alternative option for soil amendment in urban and peri-urban farming systems. More 

than 58% of the respondents expressed willingness to contribute money and/or labour 

for urban waste compost; however, the bid varied significantly (P < 0.01) between 

different groups (Table 2.7). Ornamental-plant growers bid the highest price for 100kg 

compost (US$ 1.76) whereas field crop farmers bid the lowest price (US$ 0.60). The 

highest contribution for labour (28 days yr-1) was also offered by ornamental-plant 

growers. Many field crop producers preferred to contribute labour rather than money. 

About 20% of field crop farmers were interested in contributing labour, but just 13% 

were willing to pay money for urban-waste compost. Farmers who used manure or 

compost for their cropping systems showed a higher demand for urban-waste compost 

than non-users. About 89% of manure/compost users were willing to contribute money 

and/or labour, but only 45% of non-users were interested in urban waste compost. The 

econometrics analysis also identified socioeconomic variables that explained the 

variation in urban compost demand (Table 2.8). Education, landownership, experience 

with compost and access to extension services were the variables that determined the 

demand for urban-waste compost. 

 

Table 2.7. Willingness of urban and peri-urban farmers to participate in urban-waste composting 

 

Urban and peri-urban 

farmers group 

WTP-Labour  WTP-Cash  

 

WTP-Cash 

and labour  

WTP1-

Total  

WTP2 (USD$) WTP3  

(days yr-1) 

                                         _______________    (%)   ___________________ 

  

Field crop producers 20 13 9 24 0.55 (1.96)c 8.58 (1.42)c 

Vegetable producers 59 81 59 81 1.45 (2.34)a 16.36 (3.52)b 

Mixed farmers 72 63 59 77 0.92 (3.76)b 14.44 (1.84)b 

Ornamental plant growers  

81 

 

100 

 

81 93 1.84 (2.76)a 28.00 (3.8)a 

P-value ** *** *** ***  ** ** 

Chi-square and ANOVA were used to compare categorical and continuous variables respectively; 1: percentage of 

farmers who were willing to contribute either cash or labour or both for urban waste compost; 2: average bid offered in 

terms of cash for 100kg urban waste compost; 3: average bid offered in terms of labour (days year-1); values in 

parentheses indicate standard error of the mean; WTP = willingness of farmers to participate in urban waste composting; 

** and *** denote significance at P<0.01 and P<0.001 respectively   
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Table 2.8. Parameter estimates for variables that determine farmers’ willingness to participate in 

urban-waste composting  

 
Variables Coefficient Wald statistics  

Age (year) 0.026 1.140 

Gender  0.746 1.011 

Educational status of HH 0.936* 2.981 

Labour  0.042 0.261 

Total land size  (ha) -0.026 0.026 

Farm distance (minutes)  -0.003 0.068 

Total tropical livestock unit -0.058 2.538 

Farmer’s awareness of soil fertility problem (%) 0.027 0.002 

Farmer’s experience of compost (%) 2.430** 13.198 

Land tenure (%) 1.845** 12.967 

Access to extension services (%)  1.656** 8.541 

Income ($ US) 0.000 0.414 

-2 log-likelihood 141.05  

Chi-square values  132.27**  

Per cent correctly predicted a  82.50  

*, ** denote significance at P<0.1 and P<0.05 respectively; HH = household head; a) based on a 50-50 probability 

classification scheme  

 

 

Discussion 

 

Socioeconomic characteristics of urban and peri-urban farmers 

Four groups of urban and peri-urban farmers were identified using multivariate analysis 

(Table 2.3). Multivariate techniques show relationships between different variables and 

thereby outperform single-criteria classifications. The farmer typology described in our 

study is similar to Veenhuizen and Danso (2007) and Abdulkadir et al. (2012). Field crop 

and vegetable farmers are common urban and peri-urban agricultural systems in many 

developing countries (Drechsel et al., 2006; Pasquini et al., 2010; Abdulkadir et al., 2012). 

However, ornamental-plant growers were not included in previous studies because it is 

a relatively new urban-farming system and/or the previous classifications were based on 

only one or a few criteria (e.g. income or crop type) (Drechsel et al., 2009; Pasquini et al., 

2010). The four groups of farmers were different in terms of farm characteristics, 

livelihood strategies and soil fertility management. Ornamental-plant and vegetable 

growers had better access to financial, physical, social and human assets (Table 2.3), but 

they had very small land sizes due to urban encroachment. Ornamental-plant and 

vegetable producers had better access to financial and social assets compared to other 

farmers groups because these farmers are organised into cooperatives and small 
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enterprises. Ornamental-plant and vegetable producers had also better educational 

status that helps them to utilize the available resources (e.g. credit, extension services). 

Due to shortage of land, ornamental-plant and vegetable production systems are more 

intensive and market-oriented compared to field crop and mixed production. Many field 

crop farmers had large land sizes and the farmlands were located far from their 

homestead. Hence, it was difficult to use intensive farm management practices due to the 

efforts required to transport agricultural inputs (e.g. irrigation water, compost and 

manure). Market-oriented and intensified vegetable production on small areas of public 

land has been reported in several countries (Drechsel et al., 2009; Pasquini et al., 2010; 

Abdulkadir et al., 2012). For example, West African urban farmers produce vegetables on 

land ranging from 0.07 to 0.41 ha (Abdulkadir et al., 2012); however, the vegetable 

production is more intensive than those identified in our study. Many field crop farmers 

used family labour for agricultural activities, while more than 76% of ornamental-plant 

and vegetable growers hired additional labour (i.e field crop farmers and unemployed 

urban dwellers). The family labour reported in this study was very low compared to 

urban and peri-urban farming systems in West African and Asian countries (De Bon, 

2001; Abdulkadir et al., 2012). Hence, a shortage of labour could be another reason for 

less intensified production in our study. Many urban and peri-urban farmers in the area 

even lost their land because the land had been taken over for residential or other urban 

uses. Land acquisition is one of the main constraints for many urban farmers and it 

impedes the adoption of intensive agricultural practices (Condon et al., 2010, De Bon, 

2001). In Ethiopia, land is a public good owned by the state. Therefore, farmers are not 

allowed to sell their land or use it as collateral to obtain credit (Gittleman, 2009). This 

land tenure system discourages many urban farmers from investing in their farmland 

and generating more revenue. We observed that many urban farmers escaped the land 

tenure trap through intensified production systems close to their homestead. This 

implies that field crop producers could shift to more intensified production systems in 

the future because urban encroachment accelerates in the area. 

Ornamental-plant and vegetable growers had more formal education than the 

other clusters and were more engaged in non-farm activities. Some field crop producers 

were also engaged in unskilled non-farm activities, for instance as night watchmen or 

labourers. The contribution of non-farm activities to household income was moderate to 

high in the area. Low income from agriculture is the main reason for many farmers of the 

other groups to be involved in non-farm activities. Furthermore, the high rate of 

urbanisation in the study area (> 4% per year) creates job opportunities for many farmers 

outside agriculture. In agreement with our findings, De Bon (2001) and Tittonell et al. 

(2010) reported a significant contribution of non-farm activities to household income in 

East African countries. However, the contribution of non-farm activities to household 

income was very low in West African countries (Abdulkadir et al., 2012). The observed 
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differences between Western African farmers and our respondents suggest the need for 

site-specific classification of farmers to understand their livelihood strategies and design 

agricultural policies. 

 

Soil fertility management practices 

Soil fertility management practices varied significantly between groups of farmers. The 

application of manure and compost was very limited in the area. Inorganic fertilisers 

were the main sources of plant nutrients. Ornamental-plant and vegetable production 

demands a high nutrient input and consequently rapid economic returns, hence the 

highest application of organic amendments and irrigation practices were observed in 

these production systems. The high soil organic carbon content on vegetable farms 

compared to other farms (Table 2.5) also supported relatively high use of organic 

amendments in vegetable production. We also observed that only vegetable producers 

and few farmers who practised mixed farming used irrigation because many vegetable 

farms were located near the farmers’ homesteads or close to rivers or main roads, and for 

that reason were suitable for irrigation. Irrigation with wastewater is the main source of 

plant nutrients in many urban and peri-urban agricultural systems (Khai et al., 2007; 

Abdulkadir et al., 2013). According to Khai et al. (2007), wastewater represents 21 to 61% 

and 31 to 66% of total N and K inputs respectively in small-scale peri-urban vegetable 

production systems in Southeast Asia. In total 21 kg N ha-1 yr-1, 2.4 kg P ha-1 yr-1 and 55 

kg K ha-1 yr-1 respectively were added on vegetable farms from irrigation water in the 

area. This is equivalent to 11-15%, 5-8% and 70-85% of total N, P and K inputs 

respectively. As a result, partial N and P balances were more positive on vegetable farms 

due to high use of organic amendments and irrigation with wastewater. The negative N 

balance on field crop and mixed farms could result from the application of inorganic 

fertilisers below the recommended rate due to their high price (Kassie et al., 2009) and 

insufficient application of organic amendments. Only 9% of field crop farmers applied 

manure and/or retained crop residues on farmlands (Table 2.4), and the application rate 

of manure and/or crop residues was very low (<1 t ha-1yr-1). In agreement with this, 

Baudron et al. (2014) reported a limited application of manure on cropland in sub-

Saharan Africa (423 kg ha-1). Loss of nitrogen through leaching following heavy rainfall 

could be another reason for the negative N balance. Urea and di-ammonium phosphate 

were the only inorganic fertilisers available to the farmers. Hence, negative K balances 

were observed in all urban and peri-urban production systems. Irrigation water and 

organic amendments were the main sources of K on vegetable farms. However, even 

then the partial balance for K remained negative in these production systems probably 

due to large exports of K with the edible parts of vegetables. Comparable negative K 

balances were reported by Wang et al. (2008), Diogo et al. (2010) and Abdulkadir et al. 

(2013) in urban farming systems. In contrast to our study, Khai et al. (2007), Wang et al. 
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(2008), Diogo et al. (2010) and Abdulkadir et al. (2013) reported surpluses of N and P 

under different urban farming systems due to the intensive use of irrigation water, 

inorganic fertilisers and organic amendments. The negative nutrient balance in our study 

but positive nutrient balances in these four other studies under similar production 

systems are probably due to variations in farm characteristics, level of intensification and 

livelihood assets. For example, long farm distance, lack of landownership, shortage of 

irrigation water and less access to extension services and financial support (Table 2.3) 

influenced our respondents’ input use and technology choice. Less intensified cropping 

system and high competition for the uses of agricultural waste could be another reason 

for limited application of manure and crop residues on soils (see below) and thereby 

results in negative nutrient balances in the study area. Therefore, site-specific analysis of 

nutrient balances is deemed crucial because farmers with a similar production 

orientation could have different input uses and soil fertility management strategies. Our 

nutrient balance study also highlighted the need to increase nutrient inputs in urban 

production systems in some developing countries. 

 

Agricultural-waste utilisation 

This study shows that soil fertility issues are one of the main challenges for urban and 

peri-urban smallholder farmers in Ethiopia. About 75% of the respondents observed 

nutrient limitation on their farmlands, and over 78% of the respondents even perceived 

retention of agricultural waste on farmlands as the most viable option to improve soil 

fertility. However, very small fractions of agricultural waste were allocated to soil 

amendment in field crop and mixed farming systems. Although we observed that few 

farmers retained agricultural waste on farmlands, the quantities applied per area is too 

small to provide significant benefits for soil fertility improvement (Table 2.5 and Fig. 2.3). 

Our results showed that ornamental-plant growers and vegetable producers utilised 

over 40% of manure and crop residues for soil amendment whereas field crop farmers 

and mixed farming allocated less than 10% of manure and crop residues to soil 

amendment. Interestingly, field crop farmers utilised over 75% of manure for fuel and 

80% of crop residues for feed. The observed variations in allocation of agricultural waste 

could be due to differences in farm characteristics (Table 2.6) and production goals. 

Ornamental-plant and vegetable production demands a high nutrient input; hence, 

higher fractions of agricultural waste are allocated to soil fertility management. In 

agreement with our findings, Valbuena et al. (2015) observed strong competition for the 

use of crop residues for soil amendment even under low levels of cereal production 

systems in sub-Saharan and South Asian countries. In general, intensified production 

systems (e.g. ornamental and vegetable production systems) and farmers with better 

access to livelihood assets utilise agricultural waste mainly for soil amendment. For 

example, shortage of labour and insecure landownership impeded many field crop 
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farmers from using agricultural waste for soil amendment (Table 2.6) because land 

acquisition is the main challenge, which prevents farmers from investing in their 

farmlands (Kassie et al., 2009). Field crop farmers had large farm size (Table 2.3) and the 

farms are located far away. As a result, these farmers allocated manure and crop 

residues mainly to household consumption because a large investment is required to 

transport agricultural waste. High cattle density in field crop production systems (Table 

2.3) could be another reason to retain only a small fraction of crop residues on farmlands. 

Extension services and compost experience also influenced utilisation of agricultural 

waste for soil amendment, probably due to increasing farmers’ awareness about the 

benefits of organic amendments. Similarly, Jaleta et al. (2014) described the significant 

influence of extension services on the retention of crop residues on farmland in Ethiopia.  

The current use of agricultural waste observed in our study is consistent with 

Baudron et al. (2014) and Rimhanen and Kahiluoto (2014) who reported retention of < 

10% of crop residues on croplands in rural parts of Ethiopia. Similarly, over 80% of crop 

residues were utilised for feed and less than 20% of crop residues retained on farmlands 

in sub-Saharan and South Asian counties (Valbuena et al., 2015). In our study, cattle 

density is higher compared to farmers in sub-Saharan and South Asia (Abdulkadir et al., 

2012; Baudron et al., 2014; Valbuena et al., 2015); however, our respondents applied 

lower amounts of manure on their farmlands (< 1 t ha-1 yr-1). Low manure production, 

lack of experience and less efficient collection of manure are the causes for the minimum 

allocation of manure on farmlands (Tittonell et al., 2005). In addition to these factors, our 

results together with previous studies (Baudron et al., 2014; Rimhanen and Kahiluoto, 

2014; Valbuena et al., 2015) indicate that high competition for agricultural waste is the 

major cause for the slow and low adoption of organic amendments in many developing 

countries. We found high competition of agricultural waste with other uses such as fuel 

and feed. The use of manure and crop residues for fuel could continue into the future 

because other energy sources (kerosene and electricity) are not affordable and/or 

accessible for many resource-poor farmers. High rates of deforestation in Ethiopia also 

limit access to fuel wood (Damte et al., 2012), which might further increase the use of 

manure and crop residues as an energy source. Haileselassie et al. (2006) and Mekonen 

and Kohlin (2009) also reported on the limited use of manure as a soil amendment due to 

its consumption for household fuel in rural Ethiopia. Interestingly, many urban dwellers 

in Ethiopia use cattle dung as fuel, probably due to high poverty in urban areas. Demand 

for animal dung as fuel creates market opportunities for many urban farmers to sell 

cattle dung to nearby markets. Income diversification through the sale of cattle dung in 

rural areas of Ethiopia has been reported (Amsalu et al., 2007). Maize and sorghum straw 

are mainly used for fuel, while small-sized residues are used for animal feed in the area. 

Consistent with this, several studies showed the use of crop residues for energy and 

animal feed in developed and developing countries (Scarlat et al., 2010; Baudron et al., 
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2014; Jaleta et al., 2014). Crop residues, especially from teff (Eragrostis tef), are also used 

as building material in many parts of Ethiopia. As a result, the high demand for building 

material creates market opportunities for many field crop farmers to sell their residues. 

Hence, our results suggest that the existing competition in the uses of agricultural waste 

should be considered for sustainable soil fertility management. Furthermore, technology 

interventions are recommended that encourage households to use other sources of fuel 

such as fuel wood, so that agricultural waste could be used as a soil amendment. The 

possible solutions that could encourage farmers to use agricultural waste for soil 

amendment will be discussed in the next section. 

 

Demand for urban-waste compost 

Our study shows a high demand for urban waste compost among urban farmers. About 

58% of the respondents were willing to accept urban waste as soil amendment. Many 

respondents were also willing to work at least for eight days per year in waste treatment 

plants. Consistent with this finding, 70% of farmers in Yaoundé, Cameroon (Folefack, 

2005) and over 80% of farmers in Ghana (Danso et al., 2006) were interested to contribute 

money for urban-waste compost. In our study, the respondents bid very small amounts 

of money for urban-waste compost compared with the previous studies (Folefack, 2005; 

Danso et al., 2006) who reported more than 1 US$ for 50 kg compost. However, the 

current bids were almost twice as high as previous studies when labour is converted into 

a monetary value using the current market wage rate. Our result implies that researchers 

should consider labour in addition to money to estimate willingness-to-pay for compost 

demand in developing countries. It is important to note that resource-poor farmers 

expressed their compost demand via a willingness to contribute labour because labour is 

more readily available and cheaper than cash in many developing countries. 

The present study confirmed that the demand for urban waste compost varied 

between different urban farming systems and farm characteristics. The highest demand 

for urban waste compost was observed from ornamental-plant growers and vegetable 

producers because these production systems require a high nutrient input and 

consequently need rapid economic returns. In contrast, field crop producers showed less 

interest in urban waste compost, probably due to high distance from urban areas, 

insecure landownership, land size and less access to extension services. The econometric 

output also showed that farmers with a higher educational status and better access to 

extension services were more willing to participate in urban waste compost because 

these variables are important to increase farmers’ awareness about the benefits of 

compost (Danso et al., 2006). Education also helps farmers to utilise existing resources in 

a better way and to create new assets and opportunities (Messer and Townsley, 2003). 

Furthermore, large investments are required for field crop producers to transport urban 

waste compost because they have large land size and the farms are located a large 
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distance from urban areas. The land tenure system also influences field crop farmers’ 

willingness to participate in urban-waste compost because insecure landownership 

discourages farmers from investing in their farmlands (Kassie et al., 2009). In agreement 

with this, Folefack (2005) and Danso et al. (2006) also identified transport costs and 

insecure landownership as constraints for compost demand. 

 

Implications for intensification and urban waste management 

Integrated use of inorganic fertilisers with organic amendments may often not be 

possible in developing countries without increasing the quantity of agricultural waste 

retained in the fields. Utilisation of agricultural waste for soil amendment is limited in 

many developing countries due to low levels of crop production and high biomass 

demand for feed (Valbuena et al., 2015), maintaining a vicious circle of low inputs of 

organic resources and low outputs as crop residues produced. Intensification of crop and 

livestock production could be the best option to feed the livestock as well as utilise crop 

residues for soil amendment. For example, we observed that intensified vegetable 

production satisfied the demand for feed as well as for soil amendment. Intensification 

of vegetable production in the study area is the result of multiple cropping cycles (i.e. at 

least three cycles per year), irrigation, access to agricultural inputs and functional 

financial and market institutions. On the other hand, less intensified cropping systems 

increase the pressure on crop residues especially during the dry season when alternative 

feed resources are scarce. Similarly, Valbuena et al. (2015) found that high levels of crop 

production in India and Bangladesh provide sufficient amounts of crop residues for feed 

and soil even in areas where alternative feed resources are limited. Closing the yield gap 

is essential to increase the quantity of crop residues retained for soil amendment 

(Baudron et al., 2014). This could be achieved by increasing the quantity of nutrient 

applied, using improved crop varieties and controlling yield reducing factors such as 

weed, pests and diseases.  

Livestock intensification could increase the amount of crop residues used for soil 

amendment because high levels of livestock production require energy-rich supplements 

such as high-value forage and agro-industrial by-products rather than crop residues 

(Baudron et al., 2014). Livestock intensification also increases the amount of manure 

produced and thereby large quantities of manure could be applied on crop fields 

resulting in positive nutrient balances (Abdulkadir et al., 2013; Vu et al., 2012). 

Intensification of livestock production results in surplus N, P and K balances in 

agriculture and agriculture-aquaculture systems (fresh-rice and orchard system) in Asia 

and African countries (Abdulkadir et al., 2013; Vu et al., 2012). While intensified 

livestock production could lead to pollution of the environment and loss of plant 

nutrients if manure management is inappropriate, this potential problem could be 

resolved by using simple biogas production technology (Vu et al., 2012) and by 
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improving flooring and roofing of the stall. In our study area, we observed that farmers 

without cropland but with intensified livestock production have a problem of manure 

handling. Therefore, creating linkages between intensified livestock farmers and crop 

producers could increase the amount of manure applied on farmlands. 

Farm characteristics and socioeconomic conditions impede agricultural 

intensification in developing countries (Baudron et al., 2014; Valbuena et al., 2015). We 

identified that insecure land ownership, shortage of land, limited access to agricultural 

inputs and to functional finance and market institutions and extension services are the 

major challenges for crop and livestock intensification in the area. Hence, it is essential to 

improve the existing policies, infrastructure, extension services, markets and financial 

institutions to encourage intensification of crop and livestock production so that the 

pressure on agricultural waste could be reduced in developing countries. 

Urban waste composting is another viable option to increase soil fertility in urban 

farming systems where utilisation of agricultural waste for soil amendment is limited. A 

large amount of urban waste is produced every day; however, the majority of waste is 

dumped in landfills in both developed and developing countries (Regassa et al., 2011; 

Mengistu, 2013; Guerrero et al., 2013; Bernad - Beltrán et al., 2014). Large proportions of 

urban waste in the study area as well as in many countries are organic which could 

provide an opportunity to recycle urban waste in to compost (Xiao et al., 2007; Mengistu, 

2013; Bernad-Beltrán et al., 2014). However, less than 5% of urban waste is converted to 

compost in the study area (Mengistu, 2013), and even in some developed countries (e.g 

Beijing, China) (Xiao et al., 2007). We suggest small and decentralized community 

composting facilities because large and centralized composting plants require high 

operational, maintenance, and transportation costs. Small-scale composting plants create 

jobs for the urban poor and empower women. Urban waste composting involves a large 

number of different stakeholders. However, many urban waste composting facilities in 

the area and developing countries often face problems due to lack of organisation, 

infrastructure, involvement of stakeholders and financial resources (Guerrero et al., 

2013). 

 

Conclusions 

The integrated use of mineral fertilisers and organic amendments is the most sustainable 

option to increase agricultural production and soil organic matter. However, very small 

fractions of agricultural waste are allocated for soil amendment. We suggest that 

competition for agricultural waste between fuel, feed and soil amendment is a major 

cause of nutrient deficits in the urban and peri-urban production systems. Agricultural 

waste is mainly used for feed, fuel and income source. Hence, current soil fertility 

management strategies should consider that competition for the allocation of agricultural 
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waste. Furthermore, replacement of fuel and feed through sustainable means other than 

farm waste is crucial, as a consequence of which agricultural waste could be used as soil 

amendment. Urban-waste compost could also be an alternative soil amendment for 

urban and peri-urban agriculture. The re-use of biodegradable urban waste for soil 

amendment is an imperative in many developing countries. Hence, education and 

creation of awareness about urban-waste compost are required. The involvement and 

commitment of stakeholders are also essential because considerable investments are 

required to utilise urban waste for soil amendment. Finally, we suggest that both labour 

and cash should be considered when estimating willingness-to-pay for compost. 
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Vermicomposting as a technology for reducing nitrogen 

losses and greenhouse gas emissions from small-scale 

composting  

 

 

Abstract  

Thermophilic composting produces a significant amount of greenhouse gases. The 

objectives of this study were (i) to evaluate the effectiveness of vermicomposting to 

reduce nitrogen losses and greenhouse gases emissions compared to thermophilic 

composting, and (ii) to determine the effect of different variables (i.e. carbon : nitrogen 

ratio, earthworm density, moisture content and carbon quality) on greenhouse gases 

emissions and earthworm growth during vermicomposting. The results showed that 

vermicomposting significantly reduced nitrogen loss by 10-20% compared to 

thermophilic composting. Vermicomposting decreased nitrous oxide emissions by 25-

36% and methane emissions by 22-26%. A higher earthworm density increased carbon 

dioxide emissions by 3-14%, but decreased methane emissions by 10-35%. Earthworm 

density had a marginal effect on nitrous oxide emissions. Vermicomposting decreased 

nitrous oxide emissions by 40% with higher moisture and by 23% with lower moisture. 

Vermicomposting also decreased methane emissions by 32% and 16% with higher and 

lower moisture respectively. This study showed that the addition of labile carbon sources 

increased carbon dioxide and methane emissions and earthworm growth, but did not 

affect nitrous oxide emissions. In conclusion, vermicomposting is effective at reducing 

nitrogen losses and greenhouse gas emissions from composting. Therefore, 

vermicomposting could represent an option for reducing greenhouse gas emissions from 

composting, particularly in developing countries where the existing technical solutions 

are expensive and difficult to implement.     

 

Keywords: thermophilic composting, vermicomposting, substrate quality, earthworms
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Introduction 

Municipal solid waste management has become a matter of global concern due to rapid 

urban population growth and the high costs associated with waste management 

(Marshall and Farahbakhsh, 2013). Studies have shown that biodegradable materials 

constitute over half of municipal solid waste (Taeporamaysamai and Ratanatamskul, 

2016), with their results indicating that bioconversion of municipal solid waste into soil 

amendments (compost) is a viable option for sustainable waste management. High 

compost demand by urban farmers (Nigussie et al., 2015) also emphasises the need for 

municipal waste composting.      

Thermophilic composting and vermicomposting are effective techniques 

commonly used to convert biodegradable waste into soil amendments. Thermophilic 

composting is a composting process at high temperatures (> 45 oC), but vermicomposting 

is a mesophilic (< 30 °C) process that involves earthworms and associated 

microorganisms in decomposing and stabilising organic materials (Lim et al., 2016). 

Major similarities and differences between thermophilic composting and 

vermicomposting are summarised by Lim et al. (2016).  

Compost, particularly in many (sub-) tropical countries, contains low amounts of 

plant nutrients (especially nitrogen) and hence is unable to meet crop nutrient 

requirements. Nitrogen (N) is lost during composting through ammonia (NH3), nitrogen 

oxides (NOx), nitrous oxide (N2O) or dinitrogen (N2) (Awasthi et al., 2016; Chan et al., 

2016). The total N loss may account for 40-70% of initial N (Vu et al., 2015). These N 

losses reduce the fertilising value of compost and contribute to environmental problems. 

Furthermore, significant greenhouse gas (GHG) emissions (methane and nitrous oxide) 

from thermophilic composting are widely reported (Lim et al., 2016). Anoxic hotspots in 

the compost piles produce methane (CH4), while nitrification in aerobic microsites and 

denitrification in anaerobic microsites are responsible for N2O production (Chan et al., 

2011).   

Moisture, temperature, pH, ammonium concentration and substrate C:N ratio are 

the key factors that control N losses and GHG emissions from thermophilic composting 

(Chowdhury et al., 2014; Santos et al., 2016). Temperatures above 45 °C increase NH3 

volatilisation and a high pH (about 9; pKa = 9.25) shifts the NH4+ = NH3 equilibrium to 

ammonia (Chowdhury et al., 2014). High temperatures also inhibit the nitrification 

process and thereby increase ammonia volatilisation. About 36-70% of total N losses 

have been observed during the active stage of thermophilic composting (Chowdhury et 

al., 2014). High oxygen consumption during the active stage leads to anoxic microsites, 

which are centres of GHG production. Similarly, high activities of methanogens 

(Ermolaev et al., 2014) and subsequent CH4 emissions (Vu et al., 2015) have been 

reported during the thermophilic stage. Controlling pH through the use of additives 

(Awasthi et al., 2016), lowering mineralisable C and/or increasing the substrate C : N 

http://www.sciencedirect.com/science/article/pii/S0960852411013332#b0130
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ratio by the addition of a bulking agent (Santos et al., 2016; Wang et al., 2014) reduce N 

losses and GHG emissions. However, these practices are difficult to scale up to large-

scale systems, particularly in non-mechanised agricultural systems. Furthermore, it is a 

challenge to implement these practices under field conditions where there is shortage of 

labour. Vermicomposting, a mesophilic (< 30 °C) composting technique, might therefore 

be a good alternative for reducing N losses and GHG emissions.  

Earthworms improve air circulation in the compost pile through continuous 

turning of substrate, thereby maintaining aerobic conditions. They also affect N 

transformations such as mineralisation, volatilisation, nitrification and denitrification 

through their interaction with associated microbes (Velasco-Velasco et al., 2011; Wang et 

al., 2014). Hence, earthworms could influence N losses and GHG emissions during 

composting. Little is known about N losses and GHG emissions during 

vermicomposting (Lim et al., 2016), and the literature is contradictory. For instance, 

Wang et al. (2014) found that earthworms reduce GHG emissions during 

vermicomposting. Other studies have shown that earthworms induce N2O emissions 

(Hobson et al., 2005) because their gut contains denitrifying bacteria. Hence, the effects of 

earthworms on N loss and GHG emissions require clarification. Moreover, previous 

studies have not considered variables such as mineral N concentration, C quality, 

moisture content and earthworm density, which could influence N loss and GHG 

emissions from vermicomposting. The mineral nitrogen and available C contents 

influence the denitrification processes in the earthworm gut (Lubbers et al., 2013). It is 

therefore essential to understand the effect of earthworms on N2O emissions from 

materials with different substrate quality (i.e. C:N ratio, labile C sources such as glucose). 

Moisture is another factor that determines the magnitude of GHG emissions (Jiang et al., 

2011), since higher moisture content increases anaerobic patches in the compost pile that 

result in greater GHG emissions. However, there are no data on the effect of earthworms 

on GHG emissions with varying moisture contents. Studies have shown that a higher 

earthworm density increases N transformation (Ndegwa et al., 2000). Earthworm density 

could also influence the mixing of substrates – aeration – and subsequently influence 

GHG emissions. Hence, the objectives of the present study were: (i) to evaluate the 

effectiveness of vermicomposting in reducing N losses and GHG emissions compared 

with thermophilic composting, and (ii) to determine the effect of substrate C:N ratio, 

earthworm density, carbon quality and moisture on GHG emissions from 

vermicomposting. It was hypothesised that (i) vermicomposting decreases N losses and 

N2O and CH4 emissions compared to thermophilic composting, (ii) higher earthworm 

density reduces CH4 and N2O emissions from vermicomposting, and (iii) the addition of 

labile carbon (glucose) increases CH4 and N2O emissions from vermicomposting, with 

the effect of glucose being greater at higher moisture content of the compost.  
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Materials and Methods  
 

Experimental set-up  

Three experiments were each carried out for 45 days each. The first experiment 

(Experiment I) was undertaken to quantify total N loss and GHG emissions from two 

different composting methods as affected by the substrate C:N ratio. The composting 

experiment was carried out in small-scale reactors at the University of Copenhagen, 

Denmark using vegetable waste. Details of the reactors are described below and 

illustrated in Figure 3.1. Two composting methods, namely thermophilic composting and 

vermicomposting, and two C:N ratios (24 and 30) were used (Table 3.1). The 

experimental design was a complete random design arranged in a 2 x 2 factorial 

arrangement, and the treatments were replicated three times. The reactors were rotated 

every week to reduce the effect of external variables on the composting processes. The 

two C:N ratios were chosen after a pilot study showed that C:N ratios between 24 and 30 

were optimal for both composting methods with the substrates used. Only a small 

number of earthworms survived (< 43%) when the C:N ratio was below 24, possibly due 

to the high moisture content in vegetable waste (87-91%) creating anaerobic conditions in 

the reactors. Thermophilic conditions (> 45 °C) could not be achieved when the substrate 

C:N ratio was above 30.  

The second experiment (Experiment II) was undertaken to determine the effect of 

earthworm abundance on GHG emissions from vermicomposting. Four different 

substrates and two earthworm densities (i.e. 1 kg earthworm m-2 and 3 kg earthworm m-

2) were used. The results were analysed using a complete random design in a 4 x 2 

factorial arrangement.  

The third experiment (Experiment III) was conducted to test whether easily 

degradable C substrate (glucose) reduces N2O emissions from vermicomposting by 

immobilisation of mineral nitrogen and/or increases CH4 emissions, since labile C pools 

could be used by methanogenic microorganisms. Consequently, two levels of available C 

(i.e. with and without the addition of glucose) and two moisture levels (i.e. 75% and 85%) 

in the presence or absence of earthworms were applied. The experimental design was a 

complete random design arranged as a 2 x 2 x 2 three-way factorial experiment with 

three replicates. The details of these experiments are presented below.  
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Experiment I 

Composting materials  

Vegetable waste, a representative household waste in many countries, was collected 

from a food-processing plant in Denmark. The vegetable waste consisted of a mixture of 

carrot, cabbage, lettuce and red beet. It contained 87-91% moisture, total carbon of 400-

410 g kg-1 dry matter, total nitrogen of 15-35 g kg-1 dry matter, 1.4-2.6 g NH4+ kg-1 dry 

matter and 0.2-0.4 g NO3- kg-1 dry matter. The variation in nitrogen content between the 

different components was used to vary the C:N ratio, with minimum changes in other 

properties such as moisture content. Dry barley straw was chopped to < 2 cm pieces and 

mixed thoroughly with the vegetable waste in two ratios, namely 5:1 and 10:1 (vegetable 

: straw), to produce the intended C:N ratios. The barley straw had 5% moisture content, 

total carbon content of 441 g kg-1 dry matter and total nitrogen content of 9 g kg-1 dry 

matter. The chemical properties of substrates used for the experiments are presented in 

Table 3.1.  

 

Table 3.1. Selected chemical properties of the starting materials used for the composting experiment  

  

Treatment code Mixing ratio 1 

(vegetable: straw) 

Total C Total N C:N NH4+ NO3- pH 

Experiment I  

  

---------  g kg-1 DM---- 

 

  

-------- mg kg-1 DM-------- 

 

Mix A 5:1 443.8 14.5 30.6 6220.5 91.5 8.4 

Mix B 10:1 425.9 17.9 23.8 8160.5 119.7 8.2 

Experiment II            (vegetable: cattle manure: straw)  

Mix A 5:0:1 443.8 14.5 30.6 6220.5 91.5 8.4 

Mix B 10:0:1 425.9 17.9 23.8 8160.5 119.7 8.2 

Mix C 4:1:0.25 391.4 19.5 20.1 1038.8 269.0 7.2 

Mix D 3:1:0 382.1 26.6 14.2 1440.3 478.0 6.6 

1wet basis; C = carbon; N = nitrogen; DM = dry matter   

 

Thermophilic composting  

The thermophilic composts were prepared in 60-litre polyethylene compost reactors. The 

reactors were insulated with a 5-cm foam layer in order to minimise heat loss. Perforated 

plastic tubes 3 cm in diameter were positioned at 10, 15 and 20 cm height to ensure 

natural air ventilation in the reactor. Two plastic tubes (3 cm in diameter) were also 

connected to the reactor headspace to circulate air in the reactor (Fig. 3.1a). Five kg (wet 

basis) substrate was then applied to the reactors and the moisture content was adjusted 

to 50-60% by spraying water. The mixtures were turned every two days in the first week 

and once a week until the end of the experiment.  
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Vermicomposting  

The same substrates were used for vermicomposting, but in 36-litre polyethylene 

containers (30 cm width x 40 cm length x 30 cm height) (Fig. 3.1b). Different-sized 

containers were used because the containers for the thermophilic composting also 

included the headspace (approximately 24 L). The containers were otherwise filled to the 

same degree in both composting methods. A 10 cm diameter hole was also made in the 

lids of the containers to ensure air circulation in the vermicompost bin. A 3 cm-wide 

Velcro® tape was glued to the top of the container to prevent the escape of earthworms.  

 

 
 

Figure 3.1. The reactor design: (a) thermophilic composting, (b) vermicomposting. The reactor for 

thermophilic composting was adopted from Vu et al. (2014).  

 

Prior to earthworm addition, one kg (wet basis) straw pellets (< 1 cm) were added for 

bedding material. The straw pellets used had a C:N ratio of 62.0 (445 g C and 7.2 g N kg-1 

dry matter) and a pH value of 7.2. Pre-decomposed cattle manure (273 g C and 21.2 g N 

kg-1 dry matter) was also mixed with the straw pellets to create habitats for the 

earthworms. The same amount of straw pellets and pre-decomposed cattle manure was 

added to the thermophilic composting reactors in order to provide the same substrate.   

Adult Eisenia fetida was used for the experiment. The earthworms were kept on 

moist paper at 15 °C for 24 h to empty their guts prior to being weighed and put in the 

vermicomposting bins. The earthworms were then added to each vermicomposting 

reactor at the stocking rate of 3 kg earthworm m-2 (i.e. equivalent to 360 g earthworms 

per container). A continuous-flow vermicomposting system was used because it is the 

most commonly used vermicomposting method in small-scale systems (Abbasi et al., 

2015). This means that the bedding materials were put in first, then inoculated with 

earthworms, and finally covered continuously with 10-15 cm layers of waste. The first 

half (i.e. 2.5 kg of substrate) was added at the start of the experiment, and the other half 

added after two weeks. The moisture content in the vermicompost reactors was kept at 

80-85% by occasional spraying of water. The temperatures in the thermophilic and 

b a 
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vermicompost reactors were recorded every two hours using a temperature data logger 

(Tinytag View 2-TV-4020, United Kingdom). 

 

Experiment II 

Four different substrates were prepared from vegetable waste, pre-decomposed cattle 

manure (273 g C and 21.2 g N kg-1 dry matter) and barley straw (Table 3.1). The 

vermicomposting was prepared as described in Experiment I. In this study, however, 

adult Eisenia fetida were added at two stocking densities, namely 1 kg m-2 and 3 kg m-2, 

equivalent to 120 g and 360 g earthworms per container respectively.  

 

Experiment III 

A mixture of vegetable waste and pre-decomposed cattle manure was selected for this 

experiment. Glucose (i.e. labile C source) was added at the rate of 5% (dry weight base). 

Two moisture contents (75% and 85%) were used to determine the relationship between 

moisture and glucose on GHG emissions during vermicomposting. The earthworms 

were added at a stocking rate of 3 kg m-2. Treatments without the addition of glucose and 

earthworms were used as controls. The treatments without earthworms were mesophilic 

(i.e. the temperature was < 45 °C) because the mixtures were regularly turned manually. 

Hence, the treatments without earthworms represented small-scale household aerobic 

composting (Chan et al., 2011). 

 

Gas sampling  

The gas samples were collected every two days for the first week after the addition of 

substrates and then twice a week until the end of the experiments. All ventilation tubes 

on the thermophilic reactors (Fig. 3.1a) were air-tightened with rubber plugs at the time 

of gas sampling. The vermicompost reactors were placed in an airtight polyethylene 

container (40 cm width x 50 cm length x 40 cm height) during gas sampling. Two mini 

fans (12 V) were installed in all the reactors to ensure homogenous distribution of air in 

the headspace during sampling. Gas samples were taken using a 60 ml air-tight syringe 

at five time points (at 0, 20, 40, 60 and 80 minutes) and injected into pre-evacuated 3 ml 

screw-capped Exetainer® vials. The linearity assumption was checked once a month by 

collecting gas samples at 0, 20, 40, 60, 80 and 100 minutes. The gas samples were 

analysed using gas chromatography (Bruker 450-GC 2011, United Kingdom). The CO2 

concentration was measured using a thermal conductivity detector (TCD), whereas N2O 

and CH4 were measured using an electron capture detector (ECD) and flame ionisation 

detector (FID) respectively. The emission rate in mg kg-1 initial dry matter day-1 was 

calculated using equation 1 (Czepiel et al., 1996): 
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Emission rate = (
∆C

∆t
) ∗ (

V

A
) ∗ (

M

Vs
) ∗ (

P

Po
) ∗ (

273

T
) ∗ 24 hr ∗ (

A

W
)……………….. (1) 

 

where ΔC is the change in concentration of gas (ppm) at time interval Δt (hour), V and A 

are the headspace volume (litre) and reactor surface area (m2) respectively, M is the 

molecular mass of the gas of interest (44, 16 and 44 g for CO2, CH4 and N2O respectively), 

Vs is the volume occupied by 1 mole of a gas at standard temperature and pressure (22.4 

litre), P is the barometric pressure (bar), Po is the standard pressure (i.e. 1.013 bar), T is 

the temperature inside the chamber during the deployment time in Kelvin, and W is the 

initial dry mass of the composting material (kg).  

The cumulative emissions were calculated using the trapezoid formula (equation 

2) (Ly et al., 2013):  

At(ab) =
(tb−ta) .  (Fta+Ftb)

2
 …………………………… (2) 

where At(ab) is the cumulative emission between the measurement days (between ta and 

tb), ta and tb are the dates of the two measurements, and Fta and Ftb are the gas fluxes at 

the two measurement dates.   

Therefore, the total cumulative emission was calculated as the sum of cumulative 

emissions on each day using equation 3: 

 

Total cumulative emission =  ∑ At(ab)……………………….. (3) 

 

The global warming potential (CO2-equivalents) of each treatment was then calculated 

by multiplying total cumulative CO2, CH4 and N2O emissions by 1, 34 and 298 

respectively (IPCC, 2013). Global warming potential was calculated for all three 

greenhouse gases and for the combination of CH4 and N2O. 

 

Chemical analyses 

Compost samples were collected for the analyses of pH, total carbon, total nitrogen, NO3- 

and NH4+. Half of the samples were oven-dried at 40 °C and milled to determine pH, 

total carbon and total nitrogen, while the other half was stored in a freezer at -18°C for 

NH4+ and NO3- measurements. The pH was measured in water (1:10 ratio, w/v). Total 

carbon and total nitrogen were determined using isotope ratio mass spectroscopy (IR-

MS). Compost samples were mixed with 1 M KCl in a 1:100 compost:solution ratio (w/v) 

and shaken for one hour. The extracts were then analysed for NH4+ and NO3- using a 

flow injection analyser (FIA star TM 5000 analyser, Denmark).    

  The final and initial total C and total N contents were used to calculate the C and 

N mass balances as: 
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𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑚𝑎𝑠𝑠 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 =  
𝑄𝑖𝐶𝑖 − 𝑄𝑓𝐶𝑓

𝑄𝑖𝐶𝑖

𝑋 100 … … … … … … … … … (4) 

 

where Qi and Qf are total dry weight at the beginning and end of the experiments 

respectively, and Ci and Cf are carbon or nitrogen concentrations at the beginning and 

end of the experiments respectively.  

 

Statistical analyses 

The statistical analyses were carried out using the SAS version 9.3 statistical package. 

Analysis of variance (ANOVA) was used to test the significant sources of variation, and 

subsequent Tukey test was used to compare the treatment means if the factors’ effect was 

significant at P < 0.05. Treatments in Experiments I and II were arranged in a complete 

random design and two-way ANOVA was performed accordingly. Three-way ANOVA 

was used in Experiment III. The assumptions of ANOVA were checked before data 

analysis.  

 

Results 
 

Comparison of thermophilic compost and vermicompost (Experiment I) 

 

GHG emissions 

Total cumulative CO2 varied by composting method (P < 0.01), C:N ratio (P < 0.001) and 

their interaction (P < 0.001) (Fig. 3.2). Vermicomposting increased total cumulative CO2 

emissions compared with thermophilic composting. The composting method and C:N 

ratio affected total cumulative CH4 emissions (P < 0.05 and P = 0.04 respectively). 

Vermicomposting decreased CH4 emissions by 22% from high C:N and 26% from low 

C:N compared with thermophilic composting. The higher C:N ratio (addition of straw) 

decreased CH4 emissions by 13-18% (P = 0.04). As with CH4 emissions, the composting 

method and C:N substrate affected cumulative N2O emissions (P = 0.05 and P = 0.001 

respectively). Vermicomposting decreased N2O emissions by 36% from low C:N 

substrate and by 25% from high C:N material.  

The total GHG budget for both composting methods and C:N ratio is presented in 

Figure 3.2. Total GHG emissions varied between composting method (P < 0.001) and 

substrate C:N (P < 0.05) if CO2 emissions were excluded from the total GHG budget. 

Accordingly, vermicomposting decreased total GHG emissions by 20-30% relative to 

thermophilic composting (Fig. 3.2d). Vermicomposting had a higher total GHG budget 

than thermophilic composting (P < 0.001) when CO2 was accounted for in the total GHG 

budget (Fig. 3.2e). The addition of straw reduced total GHG emissions (P < 0.05) in both 

scenarios (including and/or excluding CO2 from the GHG budget).  
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Figure 3.2. Total cumulative GHG emissions after 45 days of composting: (a) CO2-C, (b) CH4-C, (c) 

N2O-N, (d) total non-CO2 GHG emissions, (e) total GHG emission including CO2. T = Thermophilic 

composting; V= vermicomposting; ** indicates that CO2 emission is not included; bars indicate the 

standard error of the means (n = 3) 

 

Nitrogen and carbon balance 

Total N loss varied between composting methods (P = 0.02) and C:N ratios (P = 0.01). 

Vermicomposting reduced total N loss by 10% from the high C:N substrate and by 20% 

from the low C:N substrate (Table 3.2). Total C varied between composting methods (P = 

0.001) and substrate C:N (P = 0.001) (Table 3.2). Vermicomposting increased total C loss 

irrespective of the substrate C:N (Table 3.2). C loss varied between 44% and 46% of initial 
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ANOVA        

  Method C:N 
Method* 

C:N 

CO2-C < 0.001 0.01 0.01 

CH4-C 0.04 0.05 0.32 

N2O-N 0.03 < 0.001 0.08 

Non-CO2 

GHG 
0.01 0.01 0.05 

Total GHG < 0.001 0.01 0.01 
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C content after vermicomposting and 40-43% of initial C content after thermophilic 

composting.  

 

Table 3.2. Carbon and nitrogen mass balances after 45 days of thermophilic composting and 

vermicomposting (Mean + SEM; n =3) 

 

 

 

Treatments  

C balance N balance 

Total C 

retained 

C loss 

(CO2-C) 

C-loss 

(CH4-C) 

Carbon 

unaccounted 

Total N 

retained 

N loss 

(N2O-N) 

N losses as 

(NH3-N, N2, 

NOx) 

----------------------% of initial carbon---------------- -------% of initial nitrogen------ 

T_mix A  60.4 +0.8 25.0 +1.2 0.19+0.02 14.4 +0.7 77.0 +1.9 0.09 22.8 +2.2 

T_mix B 57.0 +1.2 30.3 +1.7 0.22+0.01 12.5 +2.0 69.6 +0.7 0.41 29.8 +1.3 

V_mix A 56.5 +0.6 33.6 +0.5 0.14+0.02 9.7 +1.4 79.4 +1.1 0.04 21.3 +0.9 

V_mix B 54.5 +1.0 31.3 +0.5 0.20+0.01 14.0 +0.6 76.3 +1.9 0.30 22.2 +1.4 

ANOVA        

Method 0.01 <0.001 0.03 0.24 0.02 0.03 0.02 

Mix  0.01 0.01 0.02 0.81 0.01 <0.001 0.06 

Method*mix 0.30 0.01 0.28 0.10 0.14 0.10 0.24 

T = thermophilic composting; V = vermicomposting; mix A = 5:1 (waste:straw ratio); mix B = 10:1 (waste:straw ratio); N = 

nitrogen; C = carbon 

 

Effect of earthworm density on GHG emissions (Experiment II) 

Analysis of variance showed that higher earthworm density increased CO2 emissions in 

all substrates (P = 0.04). Higher earthworm density decreased CH4 emissions by 12-36% 

(P = 0.011) and had a marginal effect on N2O emissions (P = 0.05). The addition of more 

straw reduced the earthworm density effect on N2O emissions (Fig. 3.3). Both CH4 and 

N2O emissions varied significantly between substrates (P < 0.001). Vermicomposting of 

vegetable waste (i.e. mixtures A and B) produced the highest amounts of CO2 and CH4 

compared with the substrates also containing pre-decomposed cattle manure (i.e. 

mixtures C and D) (Fig. 3.3). The highest N2O emissions were found in substrates 

containing pre-decomposed manure compared with vegetable waste. Higher earthworm 

density did not affect the total GHG budget if CO2 was excluded from total GHG 

emissions (Fig. 3.3d). However, higher earthworm density marginally influenced total 

GHG emissions (P = 0.08) when CO2 was included (Fig. 3.3e).  
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Figure 3.3. Total cumulative GHG emissions from different earthworm densities and substrates: (a) 

CO2-C emissions, (b) CH4-C emissions, (c) N2O-N emissions, (d) total non-CO2 GHG emissions, (e) 

total GHG emissions including CO2. HD = earthworm density at 3 kg m-2; LD = earthworm density at 1 

kg m-2; Mix A = 5:1 (waste : straw ratio); Mix B = 10:1 (waste : straw ratio); DM = dry matter; Mix C = 

4:1:1/4 (waste : manure : straw ratio); Mix D =3:1:0 (waste : manure : straw mixture); ** indicates that 

CO2 is not included; bars indicate the standard error of the means (n = 3)  
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ANOVA       

  Density Substrate 
Density *  

substrate 

CO2-C 0.02 <0.001 0.4 

CH4-C 0.01 <0.001 0.56 

N2O-N 0.05 <0.001 0.15 

Non-CO2 

GHG 
0.7 < 0.001 0.16 

Total GHG 0.08 <0.001 0.56 
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Effect of C quality and moisture on GHG emissions (Experiment III) 

The addition of glucose increased the total cumulative CO2 and CH4 emissions from 

vermicompost (P < 0.001 and P < 0.001 respectively) (Fig. 3.4). The glucose effect on N2O 

emissions was non-significant (P = 0.13). The higher moisture content increased total 

cumulative CH4 emissions (P < 0.001) and N2O emissions (P = 0.01). The effect of 

moisture on CH4 and N2O, however, was only pronounced in the treatments without 

earthworms (Fig. 3.4). Earthworm treatments decreased CH4 emissions by 9-53% (P < 

0.001) and N2O emissions by 16-59% (P < 0.001) compared with non-earthworm 

treatments. Earthworms decreased N2O emissions by 40% with higher moisture and by 

23% with lower moisture. Earthworms also decreased CH4 emissions by 32% and 16% 

with higher and lower moisture respectively. 

 

Change in chemical properties  

The composting method and C:N ratio affected C and N concentration in the end 

product (P < 0.01 and P < 0.001 respectively). The C concentration was higher in 

thermophilic composting than in vermicomposting (Table 3.3). Vermicomposting 

resulted in a higher total nitrogen concentration than thermophilic composting for all 

substrates. Total N concentration increased by 26-33% after vermicomposting, but only 

by 18-20% after thermophilic composting. The composting method did not affect NH4+ 

concentration (P = 0.23), however NH4+ concentration varied significantly between 

substrates (P < 0.001) (Table 3.3). NO3- concentration varied between the composting 

methods (P = 0.03) and C:N ratio (P < 0.001). Vermicomposting increased NO3- 

concentration by 14% and 33% with the high and low C:N ratio respectively compared 

with thermophilic composting (Table 3.3). During Experiment III, vermicomposting also 

increased NO3- concentration by 164-401% (P < 0.0001) compared with non-earthworm 

treatments (Supplementary Fig. 3.1). Earthworm density, however, did not affect NH4+ 

and NO3- concentrations.  

 

Earthworm biomass  

The earthworm biomass increased in all vermicomposting experiments (Fig. 3.5). The 

relative change in earthworm biomass was significantly affected by substrate C:N ratio 

(P < 0.001), but not by the initial earthworm density (P = 0.14). Mixtures containing 

decomposed cattle manure (i.e. mixtures C and D) increased the earthworm biomass by 

more than 80%, while the mixtures of vegetable waste and straw (i.e. mixtures A and B) 

increased the earthworm biomass by just 40%. Higher moisture content increased 

earthworm biomass by 50-57% (P < 0.001) compared with the lower moisture content. 

The addition of glucose marginally increased the earthworm biomass (Fig. 3.5).  
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Figure 3.4. Total cumulative GHG emissions from different qualities of substrate: (a) CO2-C emissions, 

(b) CH4-C emissions, (c) N2O-N emissions, (d) total non-CO2 GHG emissions, (e) total GHG emissions 

including CO2. G+ = glucose added; G- = glucose not added; MC_85% = moisture content of 85%; 

MC_75% = moisture content of 75%; Earthworms - = without earthworms; Earthworms + = 

earthworms added; ** indicates that CO2 is not included; bars indicate the standard error of the means 

(n = 3) 
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ANOVA 

  CO2-C CH4-C N2O-N 
Non-CO2 

GHG 

Total 

GHG 

E <0.001 <0.001 0.13 <0.001 <0.001 

G <0.001 0.002 <0.001 0.003 <0.001 

M 0.9 <0.001 0.01 0.04 0.55 

E x G 0.58 0.03 0.17 0.03 0.98 

E x M 0.4 0.002 0.17 0.004 0.91 

G x M 0.66 0.69 <0.001 0.77 0.62 

E x G x M 0.65 0.16 0.32 0.2 0.88 
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Table 3.3. Chemical properties of the end products after 45 days of thermophilic composting and 

vermicomposting 

  
 Total C Total N C:N NH4+ NO3- pH 

                                                    .........g kg-1 DM..........  ..........mg kg-1 DM........  

T_mix A 412.3 17.3 23.8 558.7 327 8.0 

T_Mix B 383.8 21.1 18.2 1398.7 440 7.7 

V_mix A 399.2 18.3 21.9 884.5 374 7.6 

V_mix B 376.7 23.1 16.3 1450.9 583 6.8 

ANOVA        

Method  0.01 <0.001 <0.001 0.03 0.23 <0.001 

Mixture  <0.001 <0.001 <0.001 0.002 0.001 0.004 

Method*mixture 0.39 0.07 0.90 0.22 0.38 0.06 

T = thermophilic composting; V= vermicomposting; mix A = 5:1 (waste : straw ratio); mix B = 10:1 (waste : straw ratio); N 

= nitrogen; C = carbon; DM = dry matter  

 

 

 
 

Figure 3.5. Change in earthworm biomass after 45 days of vermicomposting: high density = 3 kg m-2; 

low density = at 1 kg m-2; Mix A = 5:1 (waste : straw ratio); Mix B = 10:1 (waste : straw ratio); Mix C = 

4:1:1/4 (waste : manure : straw ratio); mix D =3:1:0 (waste : manure : straw mixture); G+ = glucose 

added; G- = glucose not added; * indicates biomass change during experiment I; bars indicate the 

standard error of the means (n = 3) 
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Discussion  

 

Earthworms and GHG emissions from vermicomposting 

 

Methane and nitrous oxide   

The hypothesis that vermicomposting decreases CH4 and N2O emissions irrespective of 

the substrate quality (C:N ratio and presence of a labile C pool) (Figs. 3.2 and 3.4) was 

confirmed. In agreement with these findings, earthworms have been found to decrease 

CH4 emissions by > 40% during vermicomposting of manure (Wang et al., 2014) and N2O 

emission by > 80% during vermifiltration of pig slurry (Luth et al., 2011). Vermifiltration 

is a wastewater treatment using epigeic earthworms, which is a different system from 

that used in the present study. Wang et al. (2014) also observed a 6-27% decrease in N2O 

emission during vermicomposting of manure. The present study, however, is the first to 

evaluate the effectiveness of vermicomposting to reduce GHG emissions using a wide 

range of variables (C:N ratio, carbon quality, moisture and earthworm density). 

Continuous turning of the substrates by earthworms and subsequent higher air 

circulation explained the decrease in CH4 and N2O emissions after vermicomposting, 

which is also supported by the lower CH4 emissions with the higher earthworm density, 

as hypothesised. The higher temperature (45-56 °C) in the thermophilic phase compared 

with vermicomposting (< 27 °C) (Supplementary Fig. 3.2) may also contribute to the 

differences in CH4 emissions between the composting methods. High microbial activities 

during the active phase of composting increase temperature and oxygen consumption, 

and subsequently increase CH4 production (Chowdhury et al., 2014; Vu et al., 2015). 

Chowdhury et al. (2014) found a positive correlation between composting temperature 

and CH4 emissions. N2O emission occurs during both nitrification and denitrification 

processes, implying that excess aeration increases nitrification and consequently results 

in high N2O production (Jiang et al., 2011). Surplus air circulation could therefore explain 

the slight increase in N2O emission at higher earthworm density. The effect of earthworm 

density on N2O was less pronounced in straw-amended substrates, suggesting that initial 

nitrogen content, aeration and other composting parameters might influence the effect of 

earthworm abundance on N2O emissions.  

Increasing the C:N ratio (addition of straw) reduced CH4 and N2O emissions from 

both composting methods, as hypothesised (Figs. 3.2 and 3.3). The addition of straw or 

bulking agents improves porosity and regulates moisture in a compost pile and thereby 

reduces CH4 and N2O emissions (Santos et al., 2016; Vu et al., 2014). The addition of 

glucose also increased CH4 emissions as hypothesised. Higher CH4 emissions from the 

addition of glucose to substrates (Fig. 3.4) implies that labile C pools could easily be used 

by methanogenic microorganisms to produce CH4 (Garcia-Marco et al., 2014). The 
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addition of labile C sources (glucose) also increased microbial oxygen demand and 

thereby caused anaerobic microsites for CH4 and N2O production. Higher CH4 emissions 

from vegetable waste than from pre-decomposed manure (Fig. 3.3) confirmed the 

hypothesis that a high proportion of easily decomposable materials increase CH4 

production. The effect of glucose addition on N2O emissions, however, was inconsistent 

with this study’s hypothesis. N2O emissions were mainly affected by NO3- concentration. 

Higher N2O emissions from pre-decomposed manure than from vegetable mixtures (Fig. 

3.3) could be explained by the higher concentration of NO3- (Table 3.1). A high moisture 

content increases anaerobic patches in compost piles and thereby increases CH4 and N2O 

emissions. However, this study showed that earthworms reduced the moisture effect on 

CH4 and N2O, as hypothesised (Fig. 3.4), because the earthworms mixed the substrates 

continuously and thereby counterbalanced the moisture effect. The results are consistent 

with the 34% decrease in N2O due to earthworms in the soil with higher moisture (i.e. 

97% water-filled pore space) (Chen et al., 2014).    

 

Carbon dioxide  

Total cumulative CO2 emissions were higher from vermicomposting than from 

thermophilic composting, as hypothesised. Experiment III also confirmed this hypothesis 

since vermicomposting increased total cumulative CO2 emissions by 11-26% relative to 

non-earthworm treatments. Higher total cumulative CO2 emissions indicate a higher 

biodegradation rate and stabilisation (Chan et al., 2011). The results from the present 

study therefore suggest that vermicomposting enhances decomposition of waste 

materials compared with thermophilic compost. Similarly, the CO2 flux after 45 days was 

between 0.15 and 0.5 g CO2-C kg-1 dry matter day-1 in vermicompost and 0.98 – 1.3 g CO2-

C kg-1 dry matter day-1 in thermophilic compost, implying that vermicompost was at a 

more advanced stage of decomposition than conventional compost. It is possible to argue 

that earthworm respiration could contribute to higher CO2 emissions from 

vermicomposting. However, this argument cannot explain the higher CO2 emissions in 

the earthworm treatments because the difference observed was greater than the 

earthworm respiration. The effect of earthworms on CO2 emissions was less clear in the 

low C:N and substrates with glucose (Figs. 3.2 and 3.4) because a higher proportion of 

easily decomposable materials (i.e. low C:N and glucose-added substrates) resulted in 

much higher decomposition (Chowdhury et al., 2014), which exceeded the earthworms’ 

effect. The higher CO2 emissions at higher earthworm density implied that 

decomposition of vermicompost could be accelerated by increasing the earthworm 

population from the optimal earthworm density (1.6 kg earthworms m-2) recommended 

by Ndegwa et al. (2000).  
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Total GHG emissions 

This study used two different scenarios to assess the GHG budget from the two 

composting methods. The first scenario excluded CO2 emissions from the total GHG 

budget. Under this scenario, vermicomposting had a lower total GHG budget than 

thermophilic composting, as hypothesised. The lower GHG budget from 

vermicomposting was explained by the lower N2O and CH4 production (Figs. 3.2 and 

3.4). The second scenario included CO2 emissions in the GHG budget, and under this 

scenario total GHG emissions were higher from vermicomposting than from 

thermophilic composting. This variation was expected because CO2 emissions were 

higher during vermicomposting, and CO2 contributed over 75% of the total GHG budget 

in all treatments. Similarly, Anderson et al. (2010) and Chan et al. (2011) reported an 80% 

contribution of CO2 to total GHG emissions during household waste composting. Higher 

CO2 emissions indicate a greater stability of the remaining material (i.e. a higher 

decomposition). It is therefore important to exclude CO2 from the total GHG budget of 

composting experiments (Schott et al., 2016; Vu et al., 2015), including as biogenic CO2 

from short-term pools, as plant litter is usually excluded from greenhouse gas balances 

(IPCC, 2013). Substrate quality determined the relative contribution of N2O and CH4 to 

the total GHG budget (Figs. 3.2, 3.3 and 3.4). The contribution of CH4 was higher than 

N2O in vegetable waste composting due to the high proportion of easily degradable C, 

which favours CH4 production. The N2O contribution was higher from cattle manure, 

which was explained by the high mineral N concentration in cattle manure.  

 

Nitrogen and carbon balance  

Total N loss was lower after vermicomposting than thermophilic composting, as 

hypothesised. The N loss as N2O was small (less than 1% of the total N loss) (Table 3.3), 

therefore other gaseous losses such as NH3, NOx and N2 explain the variation in N loss 

between the two composting methods. No N loss via leaching was observed during the 

experimental period. NH3 is the major N loss from composting (Jiang et al., 2011), and 

temperatures above 45 °C increase NH3 volatilisation (Chowdhury et al., 2014). Hence, 

higher temperatures (45-56 °C) during the active phase (Supplementary Fig. 3.1) explain 

the higher N loss during thermophilic composting. The active phase was short (i.e. three 

days), typical of small-scale composting systems (Bustamante et al., 2013; Lieo et al., 

2013), however this temperature is sufficient to produce a significant NH3 loss 

(Chowdhury et al., 2014; Vu et al., 2015). Total N loss was lower compared with previous 

studies on manure composting (Chowdhury et al., 2014; Vu et al., 2015) and this 

difference can be explained by the lower N concentration in the substrates (Table 3.1) 

relative to manure (25 - 38.6 g kg-1 dry matter) (Chowdhury et al., 2014; Vu et al., 2015). 

The NO3- concentration increased during composting and was higher after 
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vermicomposting, implying higher N mineralisation, nitrification and lower NH3 loss in 

the vermicompost than in conventional compost. Moreover, the more rapid decrease in 

NH4+ concentration after thermophilic composting suggested high NH3 loss. 

Vermicomposting increased total C loss compared with thermophilic composting, 

irrespective of substrate quality (Table 3.3). CO2 loss accounted for over 65% of C loss 

(Table 3.3), therefore higher C loss after vermicomposting was explained by (i) 

earthworms decomposing C (Lubbers et al., 2013) (ii) earthworms mixing the substrate, 

thereby increasing the accessibility of the materials for decomposers, and (iii) earthworm 

casts increasing decomposition (Sierra et al., 2013). The unaccounted C was between 9-

14%, which is comparable with several studies (Chowdhury et al., 2014; Vu et al., 2015). 

The unaccounted C indicates C that was not measured between sampling dates (Vu et 

al., 2015) and/or C loss via volatile compounds (Chowdhury et al., 2014). The sampling 

frequency might be inadequate for capturing all CO2 emissions, particularly from 

vermicomposting where intensive decomposition occurs. The increase in earthworm 

biomass (Fig. 3.5) also explains some of the unaccounted carbon during 

vermicomposting.      

 

Implications for small-scale farmers  

Gaseous N losses and GHG emissions have been reported from thermophilic composting 

(Chowdhury et al., 2014), and these emissions reduce the agronomic value of compost 

and contribute to climate change and nuisance odour. The addition of bulking agents 

such as crop residues (Santos et al., 2016; Vu et al., 2015), the control of aeration rate 

(Chowdhury et al., 2014) and the control of pH (Awasthi et al., 2016) have been identified 

as means of reducing N losses and GHG emissions from composting. However, it is 

difficult to apply these practices in many developing countries, for instance because of 

the competing uses of crop residues, mainly for animal feed and fuel in smallholder 

farming systems (Nigussie et al., 2015), and the need for labour to turn compost piles, 

determining factors in the adoption of composting in developing countries (Nigussie et 

al., 2015). Technologies such as forced aeration are expensive and difficult to scale up to 

field conditions. It is therefore suggested that vermicomposting is a more practical and 

less expensive method than the existing solutions to reduce GHG emissions, enhance the 

fertilising value of compost and close the nutrient loop in smallholder farming systems. 

Temperatures above 45 °C are essential in order to remove pathogens from compost 

(Velasco-Velasco et al., 2011). However, literature shows the effectiveness of 

vermicomposting at eradicating pathogens (Edwards et al., 2011; Rodríguez-Canché et 

al., 2010). Pre-composting prior to vermicomposting could be the solution to remove 

pathogens and weed seeds from vermicomposting (Wang et al., 2014), however N loss 

and GHG emissions during pre-composting need further investigation because higher N 
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losses and GHG emissions might occur during the pre-composting stage (Velasco-

Velasco et al., 2011).  

The experiments in this study were designed to correspond to the activity of 

small-scale farmers in developing countries; therefore care should be taken when 

extrapolating the results to large-scale enterprises. For example, temperatures may reach 

values above 60°C (Tortosa et al., 2012) during large-scale thermophilic composting. 

Hence, N losses and GHG emissions could be greater in large-scale composting systems. 

The earthworm effect on GHG budget might be smaller in large-scale vermicomposting 

because a high input of fresh material might offset the effect of earthworms on aeration 

(Luth et al., 2011).  

Studies have shown earthworm-induced N2O emissions from soils (Lubbers et al., 

2013) because denitrifying bacteria in the earthworm gut contribute to measurable N2O 

fluxes. However, caution should be exercised when interpreting this fact because 

substrate quality, earthworm species and earthworm abundance used for 

vermicomposting are different from soil experiments. Vermicomposting uses nitrogen-

rich substrates, higher earthworm density (> 1 kg m-2) and epigeic earthworms, 

consequently the earthworms’ effect on aeration exceeds the earthworm gut effect 

(denitrification). In contrast, soil usually has < 3% organic carbon, low earthworm 

density (< 2.1 g m-2) and anecic earthworms, consequently the earthworm gut effect on 

denitrification is greater.  

 

Conclusions   

This study showed that vermicomposting reduces total N loss, CH4 and N2O emissions 

compared with thermophilic composting methods, irrespective of the substrate quality 

(i.e. C:N ratio, moisture content and presence of a labile C pool). Higher earthworm 

abundance reduces CH4 emissions and accelerates the decomposition process. The 

addition of labile C sources increases CO2 and CH4 emissions during composting. 

Vermicomposting increases CO2 emissions, implying that vermicompost is at a more 

advanced stage of decomposition than thermophilic compost. Numerous solutions have 

been identified for reducing N losses and non-CO2 GHG emissions from composting, 

however the existing technologies are harder to apply in developing countries because 

they are expensive and difficult to upscale to larger systems. Vermicomposting, on the 

other hand, is a low-cost method, making it feasible for many resource-poor farmers to 

produce high fertilising value compost. Further studies, however, are needed to 

understand the effect of earthworms on N losses and GHG emissions from composting 

using different parameters such as substrate quality, earthworm species and feeding 

frequency.     
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Appendix  

 

 
 

 

 
 

Supplementary Figure 3.1. Inorganic nitrogen concentration after 45 days of vermicomposting 

(Experiment III). (a) NO3- concentration, (b) NH4+ concentration. G+ = glucose added; G- = glucose not 

added; MC_85% = moisture content of 85%; MC_75% = moisture content of 75%; Earthworms - = 

without earthworms; Earthworms + = earthworms added; bars indicate the standard error of the 

means (n = 3) 
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Supplementary Figure 3.2. Temperature evolution during composting (Experiment I). (a) thermophilic 

composting, (b) vermicomposting, and (c) ambient temperature (c).  T = thermophilic composting; V= 

vermicomposting; arrow represents the addition of new substrate     
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CHAPTER 4 
 

 

Delayed addition of nitrogen-rich substrates during 

composting of municipal waste: Effects on nitrogen loss, 

greenhouse gas emissions and compost stability  
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Delayed addition of nitrogen-rich substrates during 

composting of municipal-waste: Effects on nitrogen loss, 

greenhouse gas emissions and compost stability 

 
Abstract  

Municipal waste is usually composted with an N-rich substrate, such as manure, to 

increase the N content of the product. This means that a significant amount of nitrogen 

can be lost during composting. The objectives of this study were (i) to investigate the 

effect of split addition of a nitrogen-rich substrate (poultry manure) on nitrogen losses 

and greenhouse gas emissions during composting and to link this effect to different 

bulking agents (coffee husks and sawdust), and (ii) to assess the effect of split addition of 

a nitrogen-rich substrate on compost stability and sanitisation. The results showed that 

split addition of the nitrogen-rich substrate reduced nitrogen losses by 9% when sawdust 

was used and 20% when coffee husks were used as the bulking agent. Depending on the 

bulking agent used, split addition increased cumulative N2O emissions by 400-600% 

compared to single addition. In contrast, single addition increased methane emissions by 

up to 50% compared to split addition of the substrate. Hence, the timing of the addition 

of the N-rich substrate had only a marginal effect on total non-CO2 greenhouse gas 

emissions. Split addition of the N-rich substrate resulted in compost that was just as 

stable and effective at completely eradicating weed seeds as single addition. These 

findings therefore show that split addition of a nitrogen-rich substrate could be an option 

for increasing the fertilising value of municipal waste compost without having a 

significant effect on total greenhouse gas emissions or compost stability. 

 

Keywords: municipal wastes, poultry manure, bulking agent, split application 

 

  



Delayed addition of N-rich substrate reduces N losses during composting 
 

65 

 

Introduction  

A large amount of municipal waste is generated globally due to rapid urban population 

growth (Scarlat et al., 2015). In many developing countries, over 80% of municipal waste 

ends up in landfills or incineration sites (Scarlat et al., 2015). Studies have shown that 

biodegradable materials constitute more than 50% of municipal waste in developing 

countries (Getahun et al., 2012a) and therefore composting has been suggested as a 

method to reduce the amount of municipal waste in landfill sites. More importantly, 

composting of municipal waste can be used to recycle nutrients from urban areas to 

agricultural land, thereby closing the rural-urban nutrient loop (Nigussie et al., 2015) and 

contributing to a circular economy.   

Municipal-waste compost contains a high amount of organic matter, and 

incorporation in soil may therefore increase soil aggregate stability, reduce the draught 

force for soil tillage (Peltre et al., 2015), promote soil microbial activity and enhance soil 

chemical properties (Hargreaves et al., 2008). No adverse effects of the application of 

municipal waste compost on croplands have been reported (Poulsen et al., 2013). 

However, municipal waste composts, particularly in many (sub)tropical 

countries, contain low levels of nitrogen (N), commonly <  1% of dry matter (Getahun et 

al., 2012b). In addition, less than 10% of total N is mineralised from municipal waste 

compost in the first year after soil application (Zhang et al., 2006). This means that the 

compost will also contain relatively little mineralisable nitrogen, therefore relatively 

large amounts (40-50 Mg ha-1) of compost have to be applied to satisfy plant 

requirements (Hargreaves et al., 2008). However, high input of municipal waste compost 

might result in losses of other nutrients and the accumulation of heavy metals in soils 

and plant tissues, thus impeding the ecological and environmental benefits of the 

compost. The optimisation of municipal waste composting should therefore place an 

emphasis on increasing the nitrogen concentration in the compost while reducing losses 

of other nutrients.  

The composting of municipal waste and N-rich substrates such as poultry manure 

generally increases the N concentration in the compost (Lhadi et al., 2006; Rizzo et al., 

2015). Poultry manure has a total N content greater than 3% dry matter, but contains 

pathogens such as E. coli and Salmonella and weed seeds, implying that poultry manure 

should be treated (composted) prior to soil application. Composting of municipal waste 

with poultry manure is therefore a strategy for increasing the N concentration in 

compost and sanitising poultry manure. 

Temperatures above 45 °C during composting, i.e. the thermophilic phase, are 

essential for compost sanitisation. High temperatures (> 45 oC) shift the NH4+ = NH3 

equilibrium towards ammonia (Pagans et al., 2006) and inhibit nitrification, both of 

which increase ammonia volatilisation. Poultry manure has a high NH4+ concentration, 

implying that composting of municipal waste with poultry manure may increase 

https://paperpile.com/c/klQWBi/OYHN
https://paperpile.com/c/klQWBi/ltBc
https://paperpile.com/c/klQWBi/uXtu
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ammonia volatilisation, and thereby result in high N losses. High N loss has also been 

observed in experiments. For example Dias et al. (2010) and Rizzo et al. (2015) reported 

over 65% N loss during the thermophilic phase of poultry manure and crop residue 

composting. Minimising N losses is therefore essential for increasing the agronomic 

value of the final product and reducing environmental problems. Split addition of an N-

rich substrate (i.e. poultry manure) has been suggested as a way of reducing N losses 

from composting (Bryndum, 2014; Dresbøll and Thorup-Kristensen, 2005). During split 

addition of an N-rich substrate, the first part is added at the beginning of composting in 

order to support the turnover of carbon (C). The remaining part is then added later (i.e. 

after the thermophilic phase) in order to increase the N concentration in the compost. It is 

hypothesised that split application of an N-rich substrate reduces N losses via ammonia 

volatilisation.   

C-rich materials (bulking agents), such as crop residues, are commonly added to 

compost mixtures to adjust the C : N ratio so that immobilisation prevents losses and to 

adjust the moisture content and allow air movement through the compost pile (Yang et 

al., 2013). These C-rich materials influence the composting temperature (Santos et al., 

2016) and N transformations such as mineralisation, immobilisation and volatilisation 

(Chowdhury et al., 2014). However, it is not known how the timing of the addition of an 

N-rich substrate affects N losses under different C-rich materials.   

In addition to high ammonia loss, composting produces a significant amount of 

greenhouse gases in the form of methane and nitrous oxide (Chowdhury et al., 2014). 

Inorganic N concentration (Nigussie et al., 2016a), C quality (Chowdhury et al., 2014) and 

temperature are among the key factors that influence greenhouse gas (GHG) emissions 

during composting. Methane (CH4) is mainly produced in the thermophilic phase 

(Sánchez-Monedero et al., 2010) due to the presence of labile carbon compounds in 

conjunction with anoxic microsites. Nitrous oxide (N2O) is emitted after the thermophilic 

stage because nitrifying and denitrifying bacteria are mesophilic (Vu et al., 2015). Hence, 

nitrification and denitrification, which are the major N2O-producing processes, hardly 

occur during the thermophilic stage of composting. The timing of the addition of an N-

rich substrate might therefore influence GHG emissions from composting. For example, 

additions of an N-rich substrate after the thermophilic phase might increase N2O 

emissions by increasing the bioavailability of mineral N for nitrifying and denitrifying 

bacteria. On the other hand, the single addition of an N-rich substrate could trigger CH4 

emissions due to the occurrence of anaerobic sites, high temperatures and bioavailable C 

and/or N for methanogenic bacteria. Studies also claim that high NH4+ concentrations 

reduce methane oxidation due to the enzymatic similarity between methane and 

ammonium oxidation (Wei et al., 2016). However, no studies have been conducted to 

investigate the relationship between the timing of N-rich substrate addition and GHG 

emissions from composting.  
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Compost should be free from pathogens and weed seeds, and must have a high level of 

stability prior to soil application. Compost is considered stable when the rate of organic 

matter decomposition is reduced to an insignificant level. Application of unstable 

compost leads to oxygen depletion in the root zone, and may impede plant growth 

owing to its content of phytotoxic compounds (Wichuk and McCartney, 2010). Split 

addition of an N-rich substrate might be less efficient at eradicating weed seeds and 

producing stable compost than single addition because the newly added substrate will 

have less time to decompose. However, no studies have been conducted to evaluate the 

effect of split addition on compost stability and sanitisation.  

The objectives of the study were (i) to investigate the effectiveness of split 

addition of an N-rich substrate on N losses and GHG emissions during composting 

using different bulking agents, and (ii) to assess the effect of split addition of an N-rich 

substrate on sanitisation and compost stability. It was hypothesised that (i) split 

application of an N-rich substrate reduces total N loss, with effects varying between 

bulking agents, (ii) split application of N-rich substrate decreases CH4 emissions, but 

increases N2O emissions from composting, and (iii) split application of an N-rich 

substrate is effective at eradicating weed seeds and is as efficient at producing stable 

compost as single addition.  

 

Materials and Methods  
 

Experimental set-up 

A composting experiment was carried out at the University of Jimma, Ethiopia for 90 d 

in 1 m x 1 m x 1 m boxes made of wood (Juniperus procera). The study area is located at 

7°41′N latitude, 36°50′E longitude and at an average altitude of 1780 m above sea level. 

The experiment was conducted in a greenhouse, and the room temperatures in the 

greenhouse ranged between 20 °C and 33 °C throughout the experimental period.  

Biodegradable waste containing vegetables was collected from Jimma 

University’s cafeteria. The vegetable mixture had 85% moisture, total carbon content of 

410 g kg-1 dry matter and total nitrogen content of 15 g kg-1 dry matter. The vegetable 

wastes were mixed thoroughly with one of two bulking agents on a wet basis ratio of 3:1 

(vegetable: bulking agent). The two bulking agents were coffee husks and sawdust – 

both locally available C-rich materials. These materials are also used as bulking agents 

for composting in many coffee-growing countries (Dias et al., 2010). The coffee husks had 

a moisture content of 4.6%, a total carbon content of 411 g kg-1 dry matter and a total 

nitrogen content of 12.2 g kg-1 dry matter. The sawdust had 5% moisture, 457 g kg-1 dry 

matter total carbon and 10.6 g kg-1 dry matter total nitrogen. Fresh poultry manure was 

collected from Jimma University’s experimental farm. The poultry manure had 6.4% 

moisture, total carbon content of 244 g kg-1 dry matter and total nitrogen content of 37.6 g 
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kg-1 dry matter. The poultry manure was added to the vegetable waste and bulking agent 

mixture on a wet basis ratio of 3:3:1 (poultry manure : vegetable waste : bulking agent). 

The composting mixture containing coffee husk had a total carbon content of 390 g kg-1 

dry matter and total nitrogen content of 27 g kg-1 dry matter; whereas the mixture 

containing sawdust had a total carbon content of 420 g kg-1 dry matter and a total 

nitrogen content of 22 g kg-1 dry matter. 

The poultry manure was added to the composting mixtures in three different 

ways: (i) all poultry manure was applied at the beginning of composting, (ii) 80% of the 

poultry manure was applied at the beginning of composting and the remaining 20% 

added after the thermophilic phase, or (iii) 20% of the poultry manure was applied at the 

beginning of composting and the remaining 80% was added after the thermophilic 

phase. The experiment therefore had two factors: (i) two different bulking agents (i.e. 

coffee husks and sawdust), and (ii) three distributions of poultry manure application. 

The experimental design was a completely randomised design arranged as a 3 x 2 two-

way factorial experiment with three replicates. Details of all treatments are presented in 

Table 4.1. The compost was turned every two weeks. The moisture content of the pile 

was adjusted to 60-65% by spraying water on top. The temperatures were recorded every 

2 h using a temperature data logger (Tinytag View 2-TV-4020, United Kingdom). One 

data logger was placed in each box at the centre of the pile. In addition to this, the 

temperature was measured twice a day at different points in the pile. The temperature 

profile presented in Fig 4.1. is the mean value of the three replicates.   

 

Table 4.1. Codes and detailed descriptions of all treatments 

 

Code Descriptions of the treatments  

C-100 All poultry manure was applied at the beginning of composting and the bulking agent was coffee husks.  

C-80/20 80% of the poultry manure was applied at the beginning of composting and the remaining 20% was 

applied after the thermophilic phase. The bulking agent was coffee husks. 

C-20/80 20% of the poultry manure was applied at the beginning of composting and the remaining 80% was 

applied after the thermophilic phase. The bulking agent was coffee husks. 

S-100 All poultry manure was applied at the beginning of composting and the bulking agent was sawdust.  

S-80/20 80% of the poultry manure was applied at the beginning of composting and the remaining 20% was 

applied after the thermophilic phase. The bulking agent was sawdust.  

S-20/80 20% of the poultry manure was applied at the beginning of composting and the remaining 80% was 

applied after the thermophilic phase. The bulking agent was sawdust.  
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Chemical analyses  

Compost samples were collected at the beginning and end of the experiment for analysis 

of total carbon, total nitrogen, NO3- and NH4+. The sampling was carried out from five 

different locations after turning the pile thoroughly. The pile was turned manually to 

ensure representative sampling. The five samples were then mixed to make a composite 

sample. Half of the samples were dried (40 °C) and sent to the University of 

Copenhagen, Denmark, for analysis of total carbon and total nitrogen. Total carbon and 

total nitrogen were determined using an elemental analyser coupled to an isotope ratio 

mass spectrometer (PYRO Cube from Elementar, Germany coupled to an Isoprime100 

IRMS, UK). The remaining samples were stored at -18 °C for NH4+ and NO3- 

measurements. The NH4+ and NO3- concentrations were measured as described by 

Bryndum (2014). Briefly, compost samples were mixed with 1 M KCl in a 1:100 compost : 

solution ratio (w/v) and shaken for 1 h. The extracts were then analysed for NH4+ and 

NO3- concentrations using a flow injection analyser (FIA star TM 5000 analyser, 

Denmark). Water-extractable C was determined using ultra-pure water, as described by 

Straathof and Comans (2015). Briefly, fresh compost was mixed with ultra-pure milli-Q 

water at a 1:10 ratio (w/v), shaken for 1 h on the horizontal shaker and filtered through 

0.45 μm (Whatman TM). Due to the heterogeneity of the compost samples, each sample 

was replicated four times and the replicates were finally pooled together after the 

extracts had been filtered through 0.45 μm. A sub-sample (5 ml) was then taken and 

analysed for DOC quantity using San++ channel SFA (SKALAR, The Netherlands). The 

final and initial total N concentrations were used to calculate the N loss during 

composting as: 

 

𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑛𝑖𝑡𝑟𝑜𝑔𝑒𝑛 𝑙𝑜𝑠𝑠 = ( 
𝑄𝑖𝐶𝑖 − 𝑄𝑓𝐶𝑓

𝑄𝑖

) 𝑥 100 … … … … … … … … … … . (1) 

 

where Qi and Qf are total dry mass (kg) of the vegetable waste-bulking material-manure 

mixture that was added during the experiment and remained at the end of the 

experiment respectively, and Ci and Cf are nitrogen concentrations that were added 

during the experiment and remained at the end of the experiment respectively. 

 

Gas sampling 

The static-chamber method was used to collect gas samples (Chan et al., 2011). For gas 

sampling, a 20 L polyethylene gas chamber equipped with a rubber stopper was inserted 

2 cm into the composting materials. The rim of the chamber was then covered in the 

composting material and water applied around it to provide a good air seal. Two mini 

fans (12 V) were installed in the polyethylene chamber to ensure homogeneous 

distribution of air in the headspace. Gas samples were collected by syringe every 2 d for 

the first week after the addition of substrates, and then once a week until the end of the 
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experiment. Gas samples were collected at three time points (0, 20, 40 min) and injected 

into 3 ml screw-capped evacuated Exetainer® vials. Gas samples were also collected at 0, 

20, 40, 60, 80 and 100 min every month in order to check the linearity assumption. The 

gas samples were analysed at the University of Copenhagen using gas chromatography 

(Bruker 450- GC 2011, United Kingdom). The emissions rate in mg kg-1 initial dry matter 

was calculated as:  

 

Emission rate = (
∆C

∆t
) ∗ (

V

W
) ∗ (

M

Vs
) ∗ (

P

Po
) ∗ (

273

T
) ∗ (

A1

A2
)………….. (2) 

 

where ΔC is the change in concentration of gas (ppm) during time interval Δt in d, V is 

the headspace volume (L), M is the molecular mass of the gas of interest (44, 16 and 44 g 

for CO2, CH4 and N2O, respectively), Vs is the volume occupied by 1 M of a gas at 

standard temperature and pressure (22.4 L), P is the atmospheric pressure (bar), Po is the 

standard pressure (1.013 bar), T is the temperature inside the chamber during the 

deployment time in Kelvin, A1 and A2 are the area (m2) of the composting container and 

chamber respectively, and W is the initial dry mass of the composting material (kg).  

The cumulative emissions were calculated using the trapezoid formula (equation 

3) (Ly et al., 2013):  

At(ab) =
(tb−ta) .  (Fta+Ftb)

2
 …………………………… (3) 

 

where At(ab) is the cumulative emission between the measurement days (between ta and 

tb), ta and tb are the dates of the two measurements, and Fta and Ftb are the gas fluxes at 

the two measurement dates.   

Therefore, the total cumulative emission was calculated as the sum of cumulative 

emissions on each day using equation 4: 

 

Total cumulative emission =  ∑ At(ab)……………………….. (4) 

 

The global warming potential (CO2-equivalents) of each treatment was calculated 

by multiplying total cumulative CH4 and N2O emissions by 34 and 298 respectively 

(IPCC, 2013). The CO2 emission from composting is considered a biogenic gas (Vu et al., 

2015) and hence is not included in the global warming potential of the process (Yang et 

al., 2013).  

  

Seed germination     

Seeds of four weed species, namely Parthenium hysterophorus, Digitaria abyssinica, Lantana 

camara and Solanum marginatum, were used. These weeds are common in many parts of 

the tropics and subtropics. Small nylon-mesh bags (4 cm x 4 cm) were prepared and 20 

seeds of each species placed in separate bags. The nylon bags were then put deep in the 
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compost piles. At the end of the experiment, the nylon bags were retrieved and the seeds 

tested for germination. For germination tests, the seeds were placed in 90 mm Petri 

dishes with moistened filter paper. The Petri dishes were sealed using paraffin film to 

reduce moisture loss and then placed in an incubator at 25 °C. Germination was 

periodically recorded for three weeks, after which time 5 ml of 0.2% KNO3 was added to 

promote further germination. The seeds were kept in an incubator for a further two 

weeks. 

 

Phytotoxicity assay  

The germination test was conducted in three replicates to assess the phytotoxicity of the 

composts. Twenty-five barley (Hordeum vulgare) seeds were placed in 90 mm Petri dishes, 

moistened with 5 ml of the compost extracts and incubated at 20 °C for 3 d. The extract 

was prepared from fresh compost using ultra-pure milli-Q water at a 1:10 ratio (w/v), 

shaken for 1 h on the horizontal shaker and filtered through 0.45μm (Whatman TM). 

Similarly, a control was prepared from ultra-pure milli-Q water. The germination test 

was then calculated as:  

 

Relative seed germination (%) = [
(No. of seeds germinated in compost extract)

(No. of seeds germinated in control)
] X 100 

 

Design of the incubation experiment 

The incubation experiment was undertaken to determine compost stability and N 

mineralisation after soil application of the composts. Soils were collected from the 

plough layer of agricultural fields (Tasstrup, Denmark) which for over 30 years had only 

received mineral fertilisers. The soil samples were air-dried and sieved to < 2 mm. The 

soil was a sandy clay loam (clay 15%, silt 18%, sand 65%) with a C content of 1.15%, total 

N content of 0.13% and a pH (CaCl2) value of 5.6. Fifty grams of soil were added to 100 

ml polyethylene cups, wetted to 60% water-holding capacity (WHC) and pre-incubated 

for two weeks. After that time, the composts – produced with different timings of 

substrate addition (Table 4.1) – were applied to the incubated soils at a rate of 5% (dry 

weight basis) and mixed thoroughly. The treatments were replicated three times. The soil 

and compost mixtures were packed to 1.2 g cm-3 and the moisture content was adjusted 

to 60% WHC using milli-Q water. Soil without compost was packed to the same density 

and moisture content, and then used as a control. The experiment was conducted in the 

dark at a temperature of 15 °C. The weight of the cups was checked every week, and the 

water loss was adjusted by adding milli-Q water. 

During gas sampling, the cups were placed in an airtight 0.9 L Kilner jar equipped 

with a rubber stopper and 5 ml gas samples were collected after 0, 60 and 120 min using 

an air-tight syringe and injected into 3 ml screw-capped Exetainer® vials. The samples 
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were analysed for CO2 concentration using gas chromatography (Bruker 450-GC 2011, 

United Kingdom). The gas samples were collected every 2 d for the first week and then 

once a week until the end of the experiment. The CO2 emissions were calculated from the 

increase in CO2 concentration inside the Kilner jars, assuming a linear increase in CO2 

concentration during sampling. The linearity assumption was checked once a month by 

collecting gas samples at 0, 20, 40, 60, 80 and 100 min.    

Two destructive soil samples were collected at 21 and 60 d from the sub-set of 

each treatment. The NH4+ and NO3- concentrations were extracted using 1 M KCl 

solution. Briefly, 20 g of sample (dry matter basis) was mixed with 80 ml of 1 M KCl, 

shaken for 1 h, filtered and stored at -18 °C. The NH4+ and NO3- concentrations were 

analysed from the extract using flow injection analysis (FIA star TM 5000 analyser, 

Denmark).    

     

Statistical analyses 

All treatments (i.e. both the composting and incubation experiments) were arranged in a 

completely randomised design, and two-way analysis of variance (ANOVA) was 

performed. Tukey tests were used to compare the treatment means if the factors’ effect 

was significant at P < 0.05. All statistical analyses were carried out using SAS version 9.2 

statistical package.   
 

 

Results  
 

Temperature profile 

The temperature throughout the composting period is shown in Figure 4.1. The 

thermophilic phase was reached within one week for all treatments and lasted for more 

than three weeks. The peak temperatures were between 55 and 63 °C and between 52 

and 55 °C respectively when coffee husks and sawdust were used as the bulking agent. 

The timing of the addition of the N-rich substrate did not affect the temperature in the 

first active phase of the composting, but split addition resulted in a second temperature 

peak, which lasted for less than two weeks.  
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Figure 4.1. Temperature profiles during the composting of household waste and poultry manure. (a) 

Substrates with coffee husks, and (b) substrates with sawdust; C = coffee husks, S = sawdust; C-100 

and/or S-100 = all poultry manure was applied at the beginning of composting; C-80/20 and/or S-80/20 

= 80% of the poultry manure was applied at the beginning of composting and the remaining 20% was 

added after the thermophilic phase; C-20/80 and/or S-20/80 = 20% of the poultry manure was applied 

at the beginning of composting and the remaining 80% was added after the thermophilic phase; 

arrows indicate the time of the second substrate addition.   

 

Nitrogen loss and mineralisation during composting    

Total N loss varied depending on the timing of the addition of the N-rich substrate (P = 

0.003) and on the bulking agent (P < 0.001), whereas the interaction was marginally 

significant (P = 0.06; Table 4.2). The highest N losses were observed when all of the N-

rich substrate was added at the beginning of composting, irrespective of the bulking 

agent. Split addition of the N-rich substrate reduced total N loss by up to 20% with coffee 

husks containing substrates, and by up to 9% with sawdust containing substrates (Fig. 

4.2). The NO3- concentration after 90 d of composting period was affected by the timing 

of the N-rich substrate addition (P = 0.01) and bulking agent (P < 0.001) (Table 4.3). When 

20% of N-rich substrate was applied at first application (i.e. the 20/80 treatments), the 

NO3- concentration increased by 60% and 123% with coffee husk and sawdust-containing 

substrates respectively. Timing of the N-rich substrate addition had a marginal effect on 

the NH4+ concentration of the final product (P = 0.06), but the NH4+ concentration differed 
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between bulking agents (P < 0.001) and there was a significant interaction between 

bulking agent and the timing of the addition of the N-rich substrate (P = 0.03).  

 

Figure 4.2. Total nitrogen loss after 90 d of composting period. C = coffee husks, S = sawdust; C-100 

and/or S-100 = all poultry manure was applied at the beginning of composting; C-80/20 and/or S-80/20 

= 80% of poultry manure was applied at the beginning of composting and the remaining 20% was 

added after the thermophilic phase; C-20/80 and/or S-20/80 = 20% of the poultry manure was applied 

at the beginning of composting and the remaining 80% was added after the thermophilic phase. 

 

Table 4.2. Carbon and nitrogen mass balances after 90 d of composting period (mean + standard error 

of the mean; n = 3)  

 

Treatment Total carbon 

loss  

Carbon  

loss  

(CO2-C) 

 

Carbon 

loss  

(CH4-C) 

Carbon 

unaccounted 

for 

Total N 

retained 

N loss 

(N2O-N) 

N loss 

(NH3, N2, NOx) 

 .......................... % initial carbon ............................ 

 

................ % initial nitrogen ..................  

C_100 65.5+0.6 48.9+1.6 0.08+0.03 16.6+2.0 36.3+2.4 0.02+0.01 63.7+2.4 

C_80/20 59.2+3.0 36.1+5.9 0.10+0.03 23.0+4.8 42.1+2.2 0.13+0.04 57.8+2.2 

C_20/80 57.3+3.3 31.0+4.2 0.07+0.01 26.2+1.0 50.4+1.2 0.18+0.03 49.4+1.2 

S_100 54.3+2.3 33.8+4.7 0.14+0.02 20.3+3.9 57.8+3.2 0.32+0.07 41.9+3.1 

S_80/20 54.7+3.1 29.6+1.0 0.20+0.01 24.7+3.7 52.2+1.4 0.34+0.03 47.5+1.4 

S_20/80 52.9+2.7 31.5+1.0 0.05+0.02 21.4+2.2 61.6+3.1 0.40+0.03 38.0+3.1 

ANOVA        

T 0.23 0.01 <0.001 0.54 0.003 0.04 0.003 

B 0.01 0.01 0.01 0.68 <0.001 <0.001 <0.001 

T*B 0.38 0.01 0.01 0.62 0.06 0.55 0.06 

C = coffee husks, S = sawdust; C-100 and/or S-100 = all poultry manure was applied at the beginning of composting; C-

80/20 and/or S-80/20 = 80% of the poultry manure was applied at the beginning of composting and the remaining 20% 

was added after the thermophilic phase; C-20/80 and/or S-20/80 = 20% of the poultry manure was applied at the 

beginning of composting and the remaining 80% was added after the thermophilic phase; T = timing of N-rich substrate 

addition; B = bulking agent; T*B = treatments interaction effect. 
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Table 4.3. Chemical properties of the composts after 90 d of composting period (mean + standard error 

of the mean; n = 3)  

 

Treatment Total carbon Total nitrogen NO3- NH4+ Cw Germination  

 ……………….......................... g kg-1 dry matter....................................... 

 

(% control) 

C_100 323.4+5.3 23.0+0.14 0.6+0.06 0.7+0.02 10.52+0.40 98 

C_80/20 319.2+4.6 26.4+0.15 0.8+0.03 0.6+0.03 11.06+0.56 99 

C_20/80 349.5+23.2 29.7+0.10 1.2+0.04 1.1+0.01 12.74+2.77 93 

S_100 337.9+15.8 21.9+0.13 0.1+0.02 0.08+0.01 6.99+0.17 96 

S_80/20 351.4+24.0 23.1+0.06 0.1+0.01 0.08+0.01 7.18+1.24 93 

S_20/80 363.3+18.7 24.8+0.13 0.6+0.07 0.1+0.01 7.87+1.12 99 

ANOVA       

T 0.23 0.01 0.01 0.06 0.54 0.28 

B 0.75 0.01 <0.001 <0.001 0.01 0.94 

T*B 0.67 0.10 0.35 0.03 0.90 0.89 

T = timing of N-rich substrate addition; B = bulking agent; T*B = interaction between timing of N-rich substrate addition 

and bulking agent; C = coffee husks, S= sawdust; C-100 and/or S-100 = all poultry manure was applied at the beginning 

of composting; C-80/20 and/or S-80/20 = 80% of the poultry manure was applied at the beginning of composting and the 

remaining 20% was added after the thermophilic phase; C-20/80 and/or S-20/80 = 20% of the poultry manure was applied 

at the beginning of composting and the remaining 80% was added after the thermophilic phase; Cw = water extractable 

organic C; T = timing of N-rich substrate addition; B = bulking agent; T*B = treatments interaction effect. 

 

Greenhouse gas emissions  

The effect of split addition of the N-rich substrate on cumulative GHG emissions is 

presented in Figure 4.3. Analysis of variance showed that cumulative CO2 emissions 

were significantly affected by the timing of the N-rich substrate addition (P = 0.01) and 

bulking agent (P = 0.02), and that there was a significant interaction between the two 

factors (P = 0.004). Application of all the N-rich substrate at the beginning resulted in 

higher cumulative CO2 emissions compared with split application, and this effect was 

more pronounced with the substrates containing coffee husks (Fig. 4.3a). Split addition of 

N-rich substrates affected total cumulative CH4 emissions (P = 0.05) and there was a 

significant interaction between the timing of the addition of the N-rich substrate and the 

bulking agent (P = 0.05). Regardless of the bulking agent used, the highest CH4 emissions 

were observed when 80% of the N-rich substrate was added at the beginning of 

composting (i.e. 80/20 treatments) (Fig. 4.3b). The timing of N-rich substrate addition and 

bulking agents affected cumulative N2O emissions (P = 0.03 and P < 0.001 respectively). 

The 20/80 treatments increased cumulative N2O emissions by 600% with coffee husks as 

the bulking agent, and by 25% with sawdust as the bulking agent (Fig. 4.3c) compared to 

single addition. The total GHG budget (i.e. non-CO2 GHG) (Fig. 4.3d) varied between the 

bulking agents (P = 0.001), but the timing of substrate addition had a marginal effect (P = 

0.06). Total greenhouse gas emissions were higher with coffee husks than with sawdust. 

When CO2 was accounted for in the total GHG budget, the total GHG emissions varied 
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between the timing of substrate addition (P = 0.01) and the treatment interactions (P = 

0.05), but the effect of bulking agent was non-significant (P = 0.16) (Fig 4.3e). In this 

scenario, early addition of N-rich substrate increased the total GHG budget compared 

with delayed addition. 

 

 

  

 

Figure 4.3. Total cumulative GHG emissions after 90 d of composting period. (a) CO2-C, (b) CH4-C, (c) 

N2O-N (d) total GHG emissions excluding CO2, (e) total GHG emissions including CO2 ; C = coffee 

husks, S = sawdust; C-100 and/or S-100 = all poultry manure was applied at the beginning of 

composting; C-80/20 and/or S-80/20 = 80% of the poultry manure was applied at the beginning of 

composting and the remaining 20% was added after the thermophilic phase; C-20/80 and/or S-20/80 = 

20% of the poultry manure was applied at the beginning of composting and the remaining 80% was 

added after the thermophilic phase; ** indicates non-CO2 GHG emissions. 
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C and N mineralisation after soil application  

CO2 evolution from the composts after soil application is presented in Figure 4.4. The 

timing of N-rich substrate addition and bulking agent affected C mineralisation (P = 0.03 

and P = 0.002 respectively). Postponing the addition of N-rich substrate increased CO2 

emissions after soil application, irrespective of the bulking agent used, indicating lower 

compost maturity. The NO3- concentration differed between soils incubated with 

compost produced with a different timing of N-rich substrate addition (P = 005) and 

bulking agent (P < 0.001), and there was also a significant interaction (P = 0.02) 

(Supplementary Fig. 4.1). After 60 d of incubation, late addition of the N-rich substrate 

increased the NO3- concentration by 20% and 74% with coffee husks and sawdust 

respectively compared to single addition. The NH4+ concentration, however, was not 

affected by the treatments.  

 

 

Figure 4.4. Cumulative CO2-C emissions from soil during a 90 d of incubation period. C = coffee husks, 

S = sawdust; C-100 and/or S-100 = all poultry manure was applied at the beginning of composting; C-

80/20 and/or S-80/20 = 80% of the poultry manure was applied at the beginning of composting and the 

remaining 20% was added after the thermophilic phase; C-20/80 and/or S-20/80 = 20% of the poultry 

manure was applied at the beginning of composting and the remaining 80% was added after the 

thermophilic phase.   

 

Weed seed germination  

The seeds of Parthenium hysterophorus and Digitaria abyssinica had decomposed 

completely after 60 d of composting. Some Lantana camara and Solanum marginatum seeds 

were recovered, even after 90 d of composting, however the seeds did not germinate. 

Thus all of the treatments prevented weed emergence after 90 d of composting. The 

phytotoxicity assay (Table 4.3) showed that the timing of N-rich substrate addition and 

bulking agent did not affect the germination of Hordeum vulgare seeds.     
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Discussion  

 

Relative nitrogen loss  

Postponing the addition of the N-rich substrate reduced total N loss irrespective of the 

bulking agent, as hypothesised. The total N loss observed in this study ranged from 40% 

to 60% of the initial N content, and was comparable with earlier studies (Bernal et al., 

2009; Steiner et al., 2010), but higher than other studies (Yang et al., 2013). The high N 

losses in this study could be explained by the high temperatures, the long duration of the 

thermophilic phase (Fig. 4.1), the high NH4+ concentration and C loss (Table 4.2 and 4.3) 

and the relatively open design of the composting containers. The N loss as N2O was less 

than 1% for all treatments (Table 4.2), and N loss via leaching was minimised by 

controlling the moisture content throughout the experimental period. The majority of N 

losses could therefore be explained by ammonia emissions and N2 losses (Table 4.2). It is 

well known that temperatures above 45 °C increase ammonia volatilisation dramatically 

(Pagans et al., 2006). In this experiment, the thermophilic phase (> 45 °C) lasted for more 

than three weeks (Fig. 4.1) and the NH4+ concentration was > 1000 mg kg-1 dry matter for 

all treatments, implying the presence of optimal conditions for ammonia volatilisation. 

The high initial concentration of NH4+ when all the N-rich substrate was added at the 

beginning was therefore more prone to NH3 volatilisation than the split treatments. Split 

addition of N-rich substrate resulted in a second temperature peak, but this temperature 

lasted for less than two weeks. Consequently, when the addition of the N-rich substrate 

was postponed, the majority of N added was exposed to a lesser extent to conditions that 

are conducive to volatilisation. In agreement with these findings, Bryndum (2014) 

reported a 33% reduction in N loss due to the delayed addition of N-rich substrates (i.e. 

poultry manure) from composting of sugarcane bagasse and filter cake. Dresbøll and 

Thorup-Kristensen (2005), however, did not observe a significant effect of split addition 

of clover on N loss from composting of wheat straw and clover. These contradictory 

results are probably due to the differences in NH4+ concentration, temperature and 

materials used for composting. For instance, there are higher levels of ammonium and 

easily mineralisable nitrogen compounds in poultry manure than in clover, which 

contains mainly organic nitrogen. The NH4+ concentration was < 400 mg kg-1 dry matter 

during the earlier study (Dresbøll and Thorup-Kristensen, 2005). Hence, the effect of split 

application is less in clover because nitrogen has to be mineralised before it can volatilise. 

Furthermore, the thermophilic phase only lasted for two weeks in the previous study 

(Dresbøll and Thorup-Kristensen, 2005), which could have resulted in less ammonia 

volatilisation compared to the present experiment. The effect of delayed addition of N-

rich substrate on N loss was not as great as expected and/or reported by Bryndum (2014). 

This variation is explained by the second thermophilic phase, which was observed in the 

present study, but not by Bryndum (2014). The second thermophilic phase might result 

http://www.sciencedirect.com/science/article/pii/S0960852404003669
http://www.sciencedirect.com/science/article/pii/S0960852404003669
http://www.sciencedirect.com/science/article/pii/S0960852404003669
http://www.sciencedirect.com/science/article/pii/S0960852404003669
http://www.sciencedirect.com/science/article/pii/S0960852404003669
http://www.sciencedirect.com/science/article/pii/S0960852404003669
http://www.sciencedirect.com/science/article/pii/S0960852404003669
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in high N losses, but these high temperatures are crucial for compost sanitisation. It is 

hypothesised that splitting the N-rich substrate more than twice might further reduce 

total N loss, and this hypothesis should be investigated. 

The effect of split addition on N loss varied between both bulking materials (P < 

0.001). These variations could be explained by the higher temperatures (55-63 °C) when 

coffee husks rather than sawdust were used (52-55 °C) (Fig. 4.1), which subsequently led 

to higher ammonia volatilisation. High N immobilisation could be another explanation 

for the minimum effect of split addition with the substrates containing sawdust because 

the higher C : N ratio of this mixture may have efficiently immobilised ammonium. The 

total N loss was correlated with organic matter and/or C loss during the composting 

process (r2 = 0.78; P < 0.001). The higher C loss with coffee husk substrate compared to 

sawdust substrate (Table 4.2) could therefore be an explanation for the observed 

differences in total N losses between the two bulking materials. In agreement with these 

findings, Dias et al. (2009) observed N loss with substrate containing coffee husks that 

was three times higher than with sawdust. To the authors’ knowledge, this is the first 

study that has investigated the interactions between the timing of N-rich substrate 

addition and bulking agent on N loss. Further studies are needed to investigate the 

effectiveness of split substrate addition under different composting conditions, such as 

substrate quality, moisture content, aeration and other variables. Split addition of N-rich 

substrates also increased mineral N content in the final product after soil application, as 

hypothesised. Immobilisation and ammonia loss explained the observed variations 

between the treatments in mineral N concentrations. The mineral N concentrations in the 

soil after 21 and 60 d of incubation agreed with the inorganic N concentration of the 

composts (Table 4.3).  

 

Greenhouse gas emissions 

The hypothesis that split addition of an N-rich substrate increases N2O emissions was 

confirmed. Both nitrifying and denitrifying bacteria are mesophilic, and high 

temperatures effectively reduce N2O production (Vu et al., 2015). In the present 

experiments, over 95% of N2O emissions were observed after the thermophilic phase for 

all treatments. Postponing the addition of N-rich substrate increases the accessibility of 

inorganic N (NH4+ and NO3-) for nitrifying and denitrifying bacteria and consequently 

increases N2O production. The cumulative N2O emissions were higher than those in 

previous reports on composting (Chowdhury et al., 2014; Vu et al., 2015). High NH4+ and 

NO3- concentrations in poultry manure may explain the high N2O emissions in this 

experiment. 

Early additions of N-rich substrate (i.e. 100/0 and 80/20 treatments) increased the 

cumulative CH4 emissions from composting, as hypothesised, and the effect was more 

pronounced with the substrates containing sawdust. The high CH4 production during 
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early additions of the N-rich substrate could be explained by (i) the high load of 

materials which results in more anaerobic pockets in the pile, (ii) the presence of high 

temperatures in conjunction with high available C and N for the methanogens which 

increases CH4 production, and (iii) low methane oxidation due to the similarity between 

enzymes involved in methane and ammonium oxidation (Wei et al., 2016). 

Methanotrophs can switch substrates from CH4 to NH4+ and result in low CH4 oxidation. 

Regardless of the bulking agent used, cumulative CH4 emissions were lower during 

single addition of the N-rich substrate than when 80% of the N-rich substrate was added 

at the beginning of composting (Fig. 4.3). This observation is attributed to the high NH4+ 

concentration and ammonia volatilisation during single addition of the N-rich substrate 

because methanogenic activity decreases as ammonia volatilisation and NH4+ 

concentration increase (Hao et al., 2005). The present findings are in agreement with the 

results of previous studies reporting on the response of CH4 production from soil to 

different nitrogen fertilisers (Wei et al., 2016). To the authors’ knowledge, this is the first 

report on the relationship between split addition of an N-rich substrate and GHG 

emissions during composting. Further investigations are needed to reveal the 

mechanisms of how the timing of substrate addition influences the GHG budget. For 

both greenhouse gases (N2O and CH4), the cumulative emissions were higher with the 

substrates containing sawdust than those containing coffee husks. The likely explanation 

is that the bulkier nature of coffee husks allows more air movement through the compost 

pile than sawdust does. We used two different scenarios to assess the GHG budget from 

the treatments. The first scenario excludes CO2 from the total GHG budget because 

higher CO2 evolution indicates a greater degree of stabilisation of the compost. 

Moreover, the less stable composts produce more CO2 during soil application (Fig 4.4); 

hence, the total CO2 emissions would eventually converge to the same value for all 

composts (Supplementary Fig. 4.2). Under this scenario, the total GHG budget was not 

affected by the timing of N-rich substrate addition. Early addition of N-rich substrate, 

however, increased the total GHG budget when CO2 was included in the GHG budget. 

The obvious explanation is that early addition produce higher CO2 than delay addition 

(Fig 4.3a), and CO2 contributed over 85% of the total GHG budget in all treatments.  

 

CO2 evolution and compost stability  

The hypothesis that split application of an N-rich substrate increases C mineralisation 

after soil application was confirmed. The CO2 evolution from the composts after soil 

application correlated with the cumulative CO2 emissions during composting (Fig. 4.3a) 

and C loss (Table 4.2). Higher total C loss and CO2 emissions during composting (Fig. 4.3 

and Table 4.2) and the subsequent low CO2 emissions after soil application (Fig. 4.4) 

indicated that composts produced by early additions were at a more advanced stage of 

decomposition compared to split addition. An obvious explanation for this is that the 
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newly added N-rich substrate had less time to decompose. The CO2 emissions after soil 

application were higher with substrates containing coffee husks, implying that the 

amount of the easily degradable compound was higher in coffee husks than in sawdust. 

The C loss observed in this experiment (Table 4.2) was comparable with previous studies 

on composting (Dias et al., 2010). The unaccounted for C ranged between 16% and 26% 

(Table 4.2) and indicated C that was not measured between sampling dates (Vu et al., 

2015) and/or C loss via volatile compounds (Chowdhury et al., 2014). The sampling 

frequency might be too infrequent, so that not all the CO2 emissions were captured, 

particularly from split addition of the substrate when intensive decomposition occurs in 

the later stages of composting. The unaccounted for C reported in this experiment is, 

however, comparable with Chowdhury et al. (2014) and Sommer and Dahl, (1999) who 

reported unaccounted for C of between 17% and 36%.     

Postponing the addition of N-rich substrates killed seeds of four different and 

unrelated weed species, as hypothesised. Temperatures above 50 °C for a minimum of 

three days are sufficient to destroy most weed seeds and pathogens (Ryckeboer et al., 

2003). The temperatures in all treatments (Fig. 4.1) and even the second thermophilic 

phase during split addition therefore probably destroyed the weed seeds. The 

temperature profile suggests that a small amount of N could be enough to generate the 

thermophilic phase and kill weed seeds and potentially also human pathogens from 

composting.  

The hypothesis that split application of N-rich substrate produces stable compost 

was confirmed. Combinations of different indices were used to test compost stability 

since it is difficult to test stability using a single index (Wichuk and McCartney, 2010). 

Temperature during the composting process is a simple method for evaluating compost 

stability. Compost temperatures are affected by aeration, pile size, moisture content, 

degree of insulation and other parameters. Compost temperatures alone therefore 

provide misleading evidence about compost stability. CO2 evolution is a more reliable 

indicator of compost stability (Aslam and Vander-Gheynst, 2008). Less than 30% 

mineralisable-C in 70 d is used as an indication of a stable compost (Bernal et al., 2009), 

confirming that all of the treatments produced stable compost (Fig. 4.4). Water-dissolved 

organic carbon (Cw) < 17 g kg-1 dry matter (Bernal et al., 2009) and a Cw:total nitrogen 

ratio < 0.7 (Santos et al., 2016) are indicators of compost maturity, indicating that all of 

the treatments produced mature compost (Table 4.3). The decrease in NH4+ concentration 

after composting, C : N ratios < 15:1 (Table 4.3) and eradication of weed seeds could also 

be indicators of compost stability and/or maturity. An NH4+:NO3- ratio below 0.16 is often 

used to indicate compost maturity (Bernal et al., 2009), but none of the treatments did 

satisfy this criterion due to the high concentration of NH4+ in the poultry manure. The 

NH4+:NO3- ratio was, however, in the acceptable range (i.e. 0.5 – 3.0) (Bernal et al., 2009). 

The relative seed germination was > 90% (Table 4.3), confirming that the composts were 

mature.  
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Implications  

Nitrogen loss during composting reduces the agronomic value of compost and 

contributes to greenhouse gas emissions and unpleasant odours. Different strategies 

have been identified for reducing N losses from composting, but existing technologies 

such as controlling the pH (Pagans et al., 2006), controlling the  aeration rate 

(Chowdhury et al., 2014) and the use of absorbents (i.e. active carbon, biochar and 

zeolite) (Kahn et al., 2016; Steiner et al., 2010) are expensive and difficult to scale up to 

field-scale conditions. The addition of crop residues to adjust the C:N ratio is another 

effective method for reducing N losses (Dias et al., 2010), but there are competing uses of 

crop residues for animal feed and fuel in smallholding farming systems in developing 

countries (Nigussie et al., 2015). It is therefore suggested that split addition of N-rich 

substrate is a less expensive method than the existing solutions for reducing N losses 

from composting, which also produces compost with a high fertilising value. Many 

smallholder farmers prepare compost by continuously adding organic materials to a 

compost pile, implying that the present experiment corresponds to the activity of 

smallholder farmers in developing countries. In practice, however, it is not only 

nitrogen-rich substrates that are added continuously to a compost pile, but different 

qualities of materials as well. Further studies, therefore, are needed to determine the 

effect of split application of different quality substrates on the composting process.  

 

Conclusions  

Irrespective of the bulking agent used, split addition of the nitrogen-rich substrate 

reduced nitrogen loss without having a significant effect on total greenhouse gas 

emissions, compost stability and sanitisation. Split addition of the N-rich substrate 

increased N mineralisation after soil application, implying an increase in the fertilising 

value of the end product. This study demonstrated that the timing of substrate addition 

affected CH4 and N2O emissions, but not the total GHG budget. Split addition of N-rich 

substrates did not affect the temperature profile during the thermophilic phase and was 

effective at eradicating a wide range of weed seeds. This study provides essential 

information with regard to the timing of substrate addition to produce compost with a 

high fertilising value and avoid emissions of greenhouse gases. However, further studies 

are needed to scale up this technique to field conditions. Experiments in the presence of 

plants are also recommended in order to test the effect of split addition of an N-rich 

substrate on the agronomic value of the compost.  
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Appendix  

 
 

  
 

Supplementary Figure 4.1. Inorganic N content during incubation experiment. (a) NO3- concentration; 

(b) NH4+ concentration; C = coffee husk, S = sawdust; C-100 and/or S-100 = all poultry manure was 

applied at the beginning of composting; C-80/20 and/or S-80/20 = 80% of the poultry manure was 

applied at the beginning of composting and the remaining 20% was added after the thermophilic 

phase; C-20/80 and/or S-20/80 = 20% of the poultry manure was applied at the beginning of 

composting and the remaining 80% as added after the thermophilic phase. 

 
 

 

Supplementary Figure 4.2. The total C loss after the composting and soil incubation phases. C = coffee 

husk, S = sawdust; C-100 and/or S-100 = all poultry manure was applied at the beginning of 

composting; C-80/20 and/or S-80/20 = 80% of the poultry manure was applied at the beginning of 

composting and the remaining 20% was added after the thermophilic phase; C-20/80 and/or S-20/80 = 

20% of the poultry manure was applied at the beginning of composting and the remaining 80% as 

added after the thermophilic phase. 
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Earthworms change the quantity and composition of 

dissolved organic carbon and reduce greenhouse gas 

emissions during composting 

 

Abstract  

Vermicomposting has been suggested as an alternative composting method that is 

efficient at stabilising biodegradable waste and reducing greenhouse gas emissions 

during composting. The amount of substrate added per earthworm biomass (i.e. feeding 

ratio) influences the growth and activity of earthworms and aeration. However, the effect 

of earthworms and feeding ratio on the stabilisation process is not known. Dissolved 

organic carbon (DOC) has recently been proposed as an indicator of compost stability. 

The objective of this study was therefore to assess the earthworms’ effect on DOC 

content (quantity) and composition (quality), and on greenhouse gas emissions; and link 

this effect to feeding ratio and substrate quality. The results showed that earthworms 

reduced total DOC content and NH4+ : NO3- ratio, indicating larger stability of 

earthworm compost. The concentrations of humic acid and fulvic acid were also reduced 

by earthworms, whereas there was no significant effect on hydrophobic neutrals and 

hydrophilics. The humic acid fraction was depleted more quickly than the other 

compounds, indicating that humic acids are degraded during composting. The optimum 

feeding ratio decreased DOC content, humic acid and fulvic acid, but increased 

cumulative CO2 production compared with the high ratio. The lowest cumulative N2O 

emissions were observed at the optimum feeding ratio; there was no significant 

difference between the high feeding ratio and non-earthworm treatments. These results 

suggest that measurement of DOC components provides greater insight into the 

stabilisation process. Moreover, feeding ratio should be considered as an essential 

parameter when assessing the effect of earthworms on organic-waste stabilisation and 

greenhouse gas emissions.  

 

Keywords: vermicomposting, nitrous oxide, feeding ratio, dissolved organic carbon, 

stabilisation    
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Introduction  

Thermophilic composting and vermicomposting are two composting techniques 

commonly used to convert biodegradable waste into compost. Thermophilic composting 

is a microbially-mediated, high-temperature (> 45 °C) process, while vermicomposting is 

a mesophilic (< 30 °C) process that involves earthworms and associated microorganisms 

in the decomposition and stabilisation of organic materials (Munroe, 2007). The 

temperature during vermicomposting should remain within the range of 15-30 °C, as 

temperatures above 35 °C kill earthworms (Munroe, 2007). The temperatures are kept 

low in vermicomposting by gradual addition of the substrate (Nigussie et al., 2016) 

and/or pre-composting the material prior to vermicomposting (Lazcano et al., 2008).     

Considerable decomposition while retaining higher nutrient concentrations was 

observed during vermicomposting compared with thermophilic composting (Nigussie et 

al., 2016a; Lazcano et al., 2008). In contrast, high N losses occur during thermophilic 

composting because high temperatures (> 45 °C) increase ammonia volatilisation (Pagans 

et al., 2006). Temperatures above 45 °C are however considered essential for eradicating 

seeds and pathogens from compost (Ryckeboer et al., 2003). Vermicomposting has also 

been shown to be effective at eradicating weeds and pathogens (Edwards et al., 2011), 

but the mechanisms of how earthworms kill weed seeds and pathogens is not known 

and the reports are contradictory. Hence the combination of thermophilic composting 

and vermicomposting has most often been proposed to produce compost of high 

agronomic value that is at the same time pathogen-free (Lazcano et al., 2008). The first 

phase – thermophilic composting – occurs only for a short period of time, mainly to 

eradicate pathogens and eliminate toxic compounds, and the subsequent 

vermicomposting (i.e. the second phase) is carried out to accelerate the stabilisation 

process and improve the agronomic value of compost (Lazcano et al., 2008).   

It is important that compost should be sufficiently stable prior to soil application 

because unstable compost reduces plant growth. Unstable compost leads to oxygen 

depletion in the root zone and osmotic stress and contains phytotoxic compounds 

(Wichuk and McCartney, 2010). Compost is considered stable when the organic matter 

decomposition rate is reduced to a low level with no heat development. A number of 

indices are used to determine compost stability (Bernal et al., 2009; Khan et al., 2014). 

Evolution of CO2 is the most commonly used indicator (Bernal et al., 2009; Nigussie et al., 

2016b), but this index is influenced by a number of factors such as substrate quality. Lack 

of heat development is another simple method for evaluating compost stability (Boulter-

Bitzer et al., 2006), however it is also affected by aeration, pile size, moisture content, 

degree of insulation and other parameters. Therefore the use of one index to determine 

compost stability is potentially misleading. Indices such as a C : N ratio < 12 and a NH4+-

N : NO3--N ratio < 0.16 are also recommended as a threshold level for indicating compost 

maturity (Khan et al., 2014), however, theses indices also depend on substrate quality. 
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Numerous researchers have therefore suggested the combined use of multiple indices as 

indicator for compost stability (Bernal et al., 2009; Khan et al., 2014). 

Dissolved organic carbon (DOC) has recently been proposed as an indicator of 

compost stability (Bernal et al., 2009; Santos et al., 2016). A maximum threshold DOC 

value of 4 g kg-1 dry matter is used as an indicator of stable compost (Zmora-Nahum et 

al., 2005; Kahn et al., 2014). Not only the quantity but also the quality (i.e. chemical 

composition) of DOC can be used to assess compost stability. A batch fractionation 

procedure (Van Zomeren and Comans, 2007) is currently used to separate DOC into four 

fractions, viz., humic acid (HA), fulvic acid (FA), hydrophobic neutral (HON), all 

considered as hydrophobic compounds,  and hydrophilic (Hi) compounds (Straathof and 

Comans, 2015). A recent study has shown that the proportions of these four fractions 

vary between composts, irrespective of DOC concentration (Straathof and Comans, 

2015). Hi compounds declined during composting likely because they were used as a 

substrate for microorganisms, and the hydrophobic compounds (HA, FA and HON) 

fractionally increased in stable compost.  

It is plausible that earthworms influence the DOC quantity and quality 

(composition) of compost because they ingest the substrates and thereby condition the 

microbial communities that influence the decomposition process. Previous studies have 

found higher stabilisation of compost as a result of vermicomposting compared to 

thermophilic composting using indices such as CO2 evolution (Nigussie et al., 2016; Ngo 

et al., 2013) and biochemical analysis (Lazcano et al., 2008). However, little is known 

about the effect of earthworms on DOC quantity and quality during vermicomposting. 

Feeding ratio is defined as the amount of substrate added per weight of 

earthworm (Ndegwa et al., 2000) and high feeding ratio decreases the conversion rate of 

fresh materials into vermicompost. Previous studies have shown that very high food 

supply reduces the biomass and reproduction of earthworms (Luth et al., 2011). 

Furthermore, Ndegwa et al. (2000) found that low feeding ratio increases the 

mineralisation of nutrients (particularly nitrogen) compared with high feeding ratio. 

High feeding ratio increases temperature and impedes air circulation in the pile (Luth et 

al., 2011), both of which affect GHG emissions. For instance, if food supply is too high 

(supra-optimal feeding ratio) per unit earthworm biomass, the temperature in the pile 

increases; high temperatures and anoxic patches not only result in increased earthworm 

mortality, but in greater GHG emissions as well. Feeding ratio is therefore an essential 

parameter that should be considered when assessing the effect of earthworms on 

stabilisation and greenhouse gas emissions. Recent reports have used substrate quality 

(Nigussie et al., 2016; Wang et al., 2015) and earthworm density (Nigussie et al., 2016) to 

evaluate the effect of earthworms on decomposition and GHG emissions. In addition, 

feed type affects the conversion rate of fresh materials into vermicompost (Edwards and 

Bohlen, 1996). However, the effect of feeding ratio on stabilisation processes and GHG 

emissions during vermicomposting is not known. The objectives of the present study 
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were therefore (i) to evaluate the effect of earthworms on DOC quantity and composition 

of the compost, linking this effect to the initial substrate quality and feeding ratio, and (ii) 

to assess the effect of feeding ratio on GHG emissions from vermicomposting. We 

hypothesised that (i) earthworms reduce the DOC content of compost compared to non-

earthworm composting, with the effect of earthworms being greater at the optimal 

feeding ratio; (ii) earthworms reduce DOC content more in substrates that underwent the 

shortest pre-composting period, (iii) earthworms reduce the fractional contribution of Hi 

and hence increase the fractional contribution made by HA, FA and HON compared to 

non-earthworm composting, (iv) high feeding ratio increases GHG emissions from 

vermicomposting compared to the optimal feeding ratio, and (v) high feeding ratio 

reduces compost stability, as assessed by CO2 fluxes, compared to the optimal feeding 

ratio.   

 

Materials and Methods  
 

Experimental setup 

Pre-decomposed garden waste was obtained from Unifarm, part of Wageningen 

University and Research, and placed in plastic boxes (30 cm width X 40 cm length X 25 

cm height). Three substrates with different composition that have undergone different 

degrees of decomposition were used as composting materials. The first substrate 

(substrate_1) had been through the composting process for three months and the second 

substrate (substrate_2) had been through the composting process for nearly 1½ months. 

The third substrate (substrate_3) was prepared from substrate_1, substrate_2 and cattle 

manure at a ratio of 1:1:1. The cattle manure was added in the third substrate to increase 

nitrogen availability in the mixture, whereas pre-decomposed materials were used in this 

experiment to avoid the development of high temperatures in the vermicompost bins. 

Hence there was no temperature effect in our experiment unlike the previous 

composting experiments (Nigussie et al., 2016; Straathof and Comans, 2015).   

Mixtures of adult individuals of two epigeic earthworm species, namely Eisenia 

fetida and Dendrobaena veneta (approximate 2:1 ratio), were obtained from two earthworm 

breeding companies, ‘De Polderworm’ and Star Foods, in The Netherlands. The 

earthworms were added at a stocking density of 3 kg earthworms m-2. The substrates 

were added to the vermicomposting bin in two doses: (i) 1.5 kg substrate kg earthworms-

1 (recommended by Aira and Domínguez, 2008) – hereafter referred to as optimal ratio 

(OR) – and (ii) 3 kg substrate kg earthworms-1 – hereafter referred to as the high ratio 

(HR). Treatments without earthworms were used as controls. The experiment had two 

factors arranged in a 3 x 3 (earthworm treatments (OR, HR and control) X substrate 

quality) complete randomised design with three replicates. The experiment was 

conducted for 60 days, and the moisture content in each container was adjusted to 70-

75% by spraying of water on top.  
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DOC and its fractionation 

DOC was extracted using ultra-pure water, as described by Straathof and Comans (2015). 

Briefly, fresh compost was mixed with ultra-pure milli-Q water at a 1:10 ratio (w/v), 

shaken for one hour on a horizontal shaker and filtered through a 0.45μm filter 

(Whatman TM). Due to the heterogeneity of the compost samples, each sample was 

replicated four times and the replicates were finally pooled together after the extracts 

had been filtered. A sub-sample (5 ml) was then taken and analysed for DOC 

concentration using San++ channel SFA (SKALAR, The Netherlands). The remaining 

samples were used for DOC fractionation.   

The batch fractionation procedure (Van Zomeren and Comans, 2007) was used to 

separate the DOC fractions. Briefly, 40 ml of the DOC sample was added in a 50 ml 

centrifuge tube, acidified to pH 1.0 with 6 M HCl and allowed to stand overnight. This 

step allowed the humic acid (HA) fraction to precipitate and form pellets. The acidified 

solution was then centrifuged (20 min, 3500 g) to separate the HA (i.e. the pellets) from 

the supernatant containing FA, HON and Hi (FaHyHON). About 25 ml of 0.1 M KOH 

(pH 12.0) was added to the pellets and shaken for 20 min to re-suspend the HA fraction. 

The supernatant was transferred to another 50 ml centrifuge tube. About 15 ml of the 

supernatant was added to a 3 gm DAX-8 resin (Sigma–Aldrich), shaken for one hour and 

filtered through 0.45 μm (Whatman TM). This step separated the hydrophilic 

compounds (Hi) from the supernatant. Finally, 15 ml 0.1 M KOH was added to the DAX-

8 resin, shaken for one hour, and filtered through 0.45 μm (Whatman TM) to separate the 

fulvic acid (FA) fractions. This step was repeated three or more times until the 

concentration in the samples was equal to the blank samples. The neutral (HoN) 

fractions were estimated from the DOC that was not dissolved under alkaline conditions. 

The concentrations of each fraction were measured using San++ channel SFA (SKALAR, 

The Netherlands).  

 

Gas sampling 

The static chamber method was used to collect gas samples (Chan et al., 2010) every two 

days for the first week and then once a week until the end of the experiment, after 60 

days. Gas samples were collected three times after closing the chamber (0, 20 and 40 

minutes). Gas samples were also collected after 0, 20, 40, 60, 80 and 100 minutes every 

month in order to check the linearity assumption. The gas samples were measured using 

INNOVA 1412 photoacoustic field gas monitor (LumaSense Technologies, Ballerup, 

Denmark). The emissions rate in mg kg-1 initial dry matter day-1 was calculated as: 
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Emission rate = (
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T
) … … … … … … … … … . (1) 

 

where ΔC is the change in concentration of gas (ppm) during time interval Δt in days, V 

is the headspace volume (litres), M is the molecular mass of the gas of interest (44, 16 and 

44 g for CO2, CH4 and N2O respectively), Vs is the volume occupied by 1 mole of a gas at 

standard temperature and pressure (22.4 litre), P is the atmospheric pressure (bar), Po is 

the standard pressure (1.013 bar), T is the temperature inside the chamber during the 

deployment time in Kelvin, and W is the initial dry mass of the composting material (kg). 

The cumulative emissions were calculated using the trapezoid integration rule (Ly 

et al., 2013). 

 

Chemical analyses 

Compost samples were collected at the end of the experiment for the analyses of pH, 

NO3- and NH4+. The samples were stored at 4 °C prior to laboratory analysis. pH was 

measured from a compost : water ratio of 1:10 (w/v), whereas NO3- and NH4+ 

concentrations were determined using 1 M KCl. The compost samples were mixed with 1 

M KCl at a ratio of 1:100 compost:solution (w/v) and shaken for one hour. The extracts 

were then analysed for NH4+ and NO3- concentrations using segmented flow analysis 

(SFA) (SKALAR analytical, Netherlands).  

 

Statistical analyses 

A two-way analysis of variance (ANOVA) was performed to test for significant effects of 

earthworm treatments, substrate quality and their interactions. A separate ANOVA was 

performed - excluding the control treatment - to test for significant effects of two feeding 

ratios on the vermicomposting process. The data were checked for the assumptions of 

ANOVA prior to data analysis. Levene and Shapiro-Wilk’s tests were used to test for 

homogeneity of variance and normality respectively. Data on the change in earthworm 

biomass did not fit with ANOVA assumptions and hence the data were log-transformed. 

Tukey test was used to compare the means if the factors’ effect was found significant at P 

< 0.05. Linear regression was performed between the CO2 emissions in the last week as 

an independent variable and DOC quantity and DOC composition as a dependent 

variable. All statistical analyses were undertaken using SAS version 9.2.  
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Results  
 

DOC quantity and composition  

The effects of earthworms on DOC concentration are presented in Figure 5.1. There was a 

significant effect of earthworm treatment (P < 0.001) and substrate quality (P < 0.001) on 

DOC concentration as well as a significant interaction between them (P = 0.001). The 

presence of earthworms reduced DOC concentration by 7-28 %, depending on substrate 

quality and feeding ratio. The DOC concentration per total C mineralised was calculated, 

and earthworms decreased the total DOC concentration by 38-60% compared with the 

non-earthworm treatments. The effect of earthworms on DOC was observed more in 

substrate_3. DOC contents were lower than 4 g kg-1 dry matter with substrate one, 

around 4 g kg-1 dry matter with substrate_2 and higher than the critical limit value of 4 g 

kg-1 dry matter for substrate_3, indicating decreasing stability of the final product. The 

optimal feeding ratio significantly (P < 0.01) decreased DOC concentration compared 

with the higher ratio.  

 

 
Figure 5.1. Total DOC concentration of the composts after 60 days of composting (mean + standard 

error of the mean; n = 3). CON = without earthworms, OR = optimal substrate-to-earthworm ratio, HR 

= higher substrate-to-earthworm, DM = dry matter    

 

The percentage of DOC retrieved throughout the fractionation procedure was 85-98%, 

which was comparable with the previous study on compost (Straathof and Comans, 

2015). Concentrations of hydrophilic and hydrophobic (HA, FA, HON) fractions of DOC 

also varied between treatments and there was a significant earthworm * substrate 

interaction (Table 5.1). FA was the dominant proportion of DOC (> 45%) while HON 

contributed the lowest proportion (< 14%), irrespective of the treatments. Analysis of 

variance showed that the concentrations of HA, FA, HON and Hi were affected by 

substrate quality (P = 0.001, P = 0.001, P < 0.001 and P < 0.001 respectively), but the 

presence of earthworms only had a significant effect on HA and FA (P = 0.001 and P = 

0.001 respectively). Substrates that underwent the longest pre-composting period (i.e. 
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substrate_1) had the lowest concentrations of HA, FA, HON and Hi. The relative 

proportions of each fraction to total DOC are presented in Supplementary Figure 5.1. The 

presence of earthworms decreased the relative proportion of HA to total DOC (P = 0.02), 

but the relative proportions of FA, HON and Hi were not significantly affected by the 

earthworms. Similarly, feeding ratio did not affect the proportion of each fraction to total 

DOC. Linear regression between the last week of CO2 evolution and the concentration of 

DOC and its different fractions (Fig. 5.2) showed a positive and significant relationship 

for all components (P < 0.001 in all cases). The stability of the various compounds, as 

judged from the slope for the various compounds, was different. With a 50% reduction of 

the final CO2 flux, HA was most reduced (to 40%), followed by DOC, FA and Hy (51-

53%), while HON was most stable (reduced to 59%).   

 

Table 5.1. Absolute concentration (mean + SEM) of the different DOC fractions after 60 d of 

composting 

 

Substrate   DOC fractions (g Kg-1 DM) 

HA FA HON Hi 

Substrate_1 CON 0.34+0.07 1.13+0.10 0.37+0.03 0.38+0.03 

 OR 0.20+0.10 0.90+0.10 0.23+0.12 0.32+0.01 

 HR 0.22+0.02 0.94+0.17 0.22+0.18 0.31+0.01 

Substrate_2 CON 0.61+0.06 2.02+0.09 0.41+0.04 0.80+0.07 

 OR 0.53+0.09 1.75+0.01 0.56+0.04 0.67+0.03 

 HR 0.52+0.11 1.61+0.01 0.60+0.12 0.78+0.04 

Substrate_3 CON 1.15+0.07 2.97+0.23 0.62+0.01 0.99+0.10 

 OR 0.57+0.10 2.79+0.27 0.52+0.06 0.95+0.08 

 HR 0.82+0.06 2.76+0.11 0.62+0.05 1.06+0.04 

ANOVA      

Earthworm (E)  < 0.001 < 0.001 0.42 0.49 

Substrate (S)  < 0.001 < 0.001 < 0.001 < 0.001 

Earthworm * Substrate 0.007 0.18 0.01 0.03 

CON = without earthworms, OR = optimal substrate-to-earthworm ratio, HR = high substrate -to-earthworm ratio, HA = 

humic acid, FA = fulvic acid, HON = hydrophobic neutral, Hi = hydrophilic compounds, SEM = standard error of the 

mean, DM = dry matter.     
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Figure 5.2. Linear regression between CO2-C emissions at the end of experiment and different 

dissolved organic carbon pools at the end of experiment: (a) total DOC, (B) humic acid, (c) fulvic acid, 

(d) hydrophobic neutral, (e) hydrophilic compounds. DM = dry matter. , ,   represent CON, OR and 

HR of substrate_1 respectively,  ,  ,   represent CON, OR and HR of substrate_2, ,  ,  represent 

CON, OR and HR of substrate_3 respectively.       

    

 

GHG emissions 

The earthworm treatments and substrate quality influenced GHG emissions during 

composting (Fig. 5.3). Total cumulative CO2 emissions differed between the earthworm 

treatments (P < 0.001) and substrate quality (P < 0.001). There was also an interaction 

between the two factors (P < 0.001). The presence of earthworms increased CO2 

production mainly from substrate_2 and substrate_3. Similarly, the optimal feeding ratio 

increased CO2 emissions from vermicomposting compared with the higher ratio (P < 
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0.001). N2O emissions were affected by the earthworm treatments (P = 0.001) and 

substrate quality (P < 0.001). The high feeding ratio increased cumulative N2O emissions 

compared with the optimal ratio (P < 0.001), but no difference was observed between 

high feeding ratio and composting without worms. CH4 production was very small in all 

treatments, and its contribution to the GHG budget was negligible and there was no 

significant effect of the treatments. When CO2 was excluded from the total GHG 

emissions, the optimum feeding ratio decreased total GHG emissions compared to the 

high feeding ratio and non-earthworm treatment. However, both earthworm treatments 

had a higher total GHG budget than non-earthworm treatments (P < 0.001) when CO2 

was accounted for in the total GHG budget. Similarly, the optimum feeding ratio had 

higher total GHG emissions than the high feeding ratio (P < 0.001) when CO2 was 

accounted for in the total GHG budget. 

 

 

 
 

Figure 5.3. Total cumulative GHG emissions after 60 days of composting: (a) CO2 emissions, (b) N2O 

emissions. CON = without earthworms, OR = optimal earthworm-to-substrate ratio, HR = higher 

earthworm-to-substrate ratio   
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treatments (P = 0.49), substrate quality (P = 0.51) and there was no interaction effect (P = 

0.71). The NH4+ : NO3- ratio varied between the earthworm treatments (P < 0.001), 

substrate quality (P = 0.02) and there was also interaction (P = 0.03). The earthworm 

treatments reduced the NH4+ : NO3- ratio by up to 50-80%. The pH was affected by the 

earthworm treatments (P < 0.001) and substrate (P = 0.01). The presence of earthworms 

reduced pH compared with non-earthworm treatments, irrespective of the substrate 

quality. The optimal feeding ratio resulted in lower pH compared to the high feeding 

ratio (P < 0.01). 

 

 

 
 

Figure 5.4. Chemical properties of the composts after 60 days of composting (mean + standard error of 

the mean; n = 3). (a) NO3- (b) NH4+(c) pH. CON = without earthworms, OR = optimal substrate-to-

earthworm ratio, HR = high substrate-to-earthworm ratio   
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Earthworm biomass 

The change in earthworm biomass was significantly affected by substrate quality (P = 

0.01), but not by feeding ratio (P = 0.03) or the interaction (P = 0.24). The substrate that 

pre-decomposed for nearly 1½ months resulted in the highest increase in earthworm 

biomass (Fig. 5.5).       

 

 
 

Figure 5.5. Change in earthworm biomass after 60 days of vermicomposting. LR = optimal substrate-

to-earthworm ratio, HR = high substrate-to-earthworm ratio   
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0.001) (Fig. 5.2a) confirmed that existence of active decomposition process in the 

substrates containing a high DOC content. The DOC concentration of compost influences 

microbial activities and C mineralisation after soil application (Straathof et al., 2014) and 

hence it is used as an indicator of compost stability (Zmora-Nahum et al., 2005). 

Composts with a low DOC content (less than 4 g kg-1 dry matter) are considered more 

stable (Bernal et al., 2009), implying that the earthworms, especially at optimum feeding 

ratios, stabilise compost more quickly than non-earthworm treatments. The possible 

explanation for the higher stabilisation caused by earthworms is that they enhance the 

decomposition process through their interaction with microorganisms. Substrate_3 was 

not fully stable because it had high total DOC content (5-6 g kg-1 dry matter), and it is 

mainly due to the presence of manure that went through a pre-decomposition period for 

few days. The DOC concentration observed in this study was comparable with the earlier 

composting studies (Zmora-Nahum et al., 2005; Hanc and Dreslova, 2016), which 

reported a DOC concentration in the range 3-6 g kg-1 dry matter. However, Straathof and 

Comans (2015) reported a low DOC content (< 0.5-1.0 g kg-1 dry matter) in some compost, 

although their municipal-waste compost also contained high amounts of DOC (5-7 g kg-1 

dry matter). However, their values cannot be directly compared with our results, as in 

their composts organic materials were mixed with soil prior to composting. After 

correcting for non-organic (mineral) soil components, their compost contained between 

2-3 g kg-1 dry organic matter (compost with woody material or forest leaf litter) and up to 

19 g kg-1 dry matter (for municipal organic waste). Current literature often reports the 

DOC concentration per dry matter without considering the mineral fractions of compost 

materials (i.e. soils). Hence, we recommend that DOC be expressed per weight of organic 

materials after discounting mineral content in order to assess compost stability. In our 

study, however, only organic materials were used and hence the DOC values could be 

used directly to indicate compost stability.  

The concentrations of different DOC compositions (FA, HA, HON and Hi) was 

affected by the earthworm treatments, substrate quality and their interaction (Table 5.1). 

The presence of earthworms decreased concentrations of FA and HA, whereas the 

concentrations of all four components of DOC were lower in vermicompost than in 

compost in the absence of worms. The low concentration of the DOC fractions in the 

earthworm treatments coincided with the decrease in the total DOC concentration (Fig. 

5.1). Therefore, the relative proportion of each fraction to total DOC (Supplementary Fig. 

5.1) could provide more reliable information on the earthworms’ effect on DOC 

composition and the turnover of the fractions during composting. 

Straathof and Comans (2015) reported the DOC composition of composts 

produced from different input materials and processing conditions and noted significant 

variation in the relative contribution of HA, FA, HON and Hi in the various composts. 

Our study showed only small effects of treatments and substrate on the fractional 

contribution to total DOC. One major explanation for the discrepancy is that these 
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authors used a larger range of input material (from wood and forest leaf litter to 

municipal waste) and there were also large differences between composting practices 

(temperature, time).  

We hypothesised, in agreement with Straathof and Comans (2015) that during the 

composting process, Hi compounds are depleted more quickly than the three 

hydrophobic compounds because the hydrophilic fraction consists of low-molecular-

weight sugars and amino acids, which are readily available C sources for 

microorganisms. Straathof and Comans (2015) reported a lower Hi proportion, but 

higher proportions of HA, FA and HON in composts that had undergone a longer 

composting period and high temperature (> 70 °C) compared with composts produced at 

a lower temperature with a composting period of < 28 days (i.e. unstable compost). They 

suggested that the fractional contribution of Hi to DOC may be a better indicator for the 

contribution of compost on microbial activity. However, our data contradict this 

hypothesis. In fact, the fractional contribution of HA declined with increasing stability; 

and a ranking of the compounds with increasing stability was HA > DOC ≈ FA ≈ Hi > 

HON. We suggest two hypotheses to explain why HA turned out to be the least stable 

component. First, decline of HA (and FA to a smaller extent) is likely indicative for 

ligninolysis, whereas decline of Hi is indicative for cellulolysis. While it has for a long 

time been taken for granted that degradation of lignin proceeds at a slower rate than 

degradation of cellulose, recent data have actually indicated a faster decomposition of 

lignin than cellulose (Klotzbücher et al., 2011). Second, changes in the various pools are 

driven both by depletion of the compound during decomposition but also by novel 

production during degradation and / or changes in solubility of compounds. Van 

Zomeren and Comans (2007) put their study in the framework of a novel perspective on 

humic substances as supramolecular associations of compounds with relatively small 

mass, and observed that at declining HA concentrations the chances increased that part 

of the HA fraction actually showed up in the FA fraction. Further research is needed to 

evaluate both potential mechanisms. Considering that the concentrations of HA and FA, 

but not those of HON and Hi, were lower in the vermicompost than in the non-worm 

compost, independent of the total amounts of DOC, we hypothesise a role of earthworms 

and their associated microbes in the breakdown of aromatic polymers like lignin. 

Earthworms also secrete mucus, and these compounds may be rich in carbohydrates and 

proteins (Pan et al., 2010) that may also preferentially end up in the Hi fraction. Next to 

the fractional contribution of individual compounds, the ratio of hydrophilic to 

hydrophobic substances (HA+FA+HON) may provide indications of compost stability. 

Our compost showed ratios between 0.20 and 0.30, while the study of Straathof and 

Coomans (2015) indicated ratios of 0.66-0.79 for unstable composts.  

To our knowledge, however, no studies have been conducted to assess the effect 

of earthworms on DOC composition. Further studies are therefore recommended to 

advance understanding of the effect of earthworms on the DOC pools using different 
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parameters such as substrate quality (i.e. fresh organic material), earthworm species and 

earthworm density.   

 

Greenhouse gas emissions  

As hypothesised, earthworms increased CO2 emissions compared with non-earthworm 

treatments, and the results were comparable with earlier studies (Chan et al., 2010; 

Nigussie et al., 2016). Similarly, the CO2 emissions from vermicomposting were higher at 

optimum feeding ratio than at the high ratio, as hypothesised. Higher cumulative CO2 

emissions indicated a greater stability of compost and confirmed that the earthworms 

resulted in compost which was at a more advanced stage of stabilisation. The CO2 results 

were in agreement with the observation on DOC quantity (Fig. 5.1).   

The hypothesis that the high feeding ratio increases N2O emissions from 

vermicomposting was confirmed. As compared to the non-earthworm treatment, 

earthworms decreased N2O emissions by 23-48% at the optimum feeding ratio. At the 

higher ratio, however, earthworms had no significant effect on N2O emissions compared 

with the non-earthworm treatments. The low N2O production in the earthworm 

treatments could be explained by: (i) continuous turning of substrates by earthworms 

which subsequently increases aeration (Chan et al., 2010; Nigussie et al., 2016) and (ii) 

high substrate stability after it has passed through the earthworms’ gut (Luth et al., 

2011). Hence, the low DOC concentration as evidence for compost stability (Fig. 5.1) 

could explain the low N2O emissions in the earthworm treatments. At the higher feeding 

ratio, however, the presence of anaerobic patches and the lower degree of stabilisation 

(Fig. 5.1) reduced the mitigation effect of earthworms on N2O emissions.  

Reports on the effect of earthworms on N2O emissions are contradictory. For 

instance, Hobson et al. (2005) and Lubbers et al. (2012) reported earthworm-induced N2O 

emissions. In contrast, Chan et al. (2011), Nigussie et al. (2016) and Wang et al. (2015) 

found that earthworms decreased N2O emissions during composting. The contrasting 

results can be explained by differences in earthworm species (i.e. difference in their 

feeding and burrowing behaviours) (Lubbers et al., 2013), substrate quality (i.e. carbon 

quality and nitrogen content) (Luth et al., 2011; Nigussie et al., 2016), temperature 

(Nigussie et al., 2016) and the scale of the experiment (Chan et al., 2010). In our study the 

decreasing effect of earthworms on N2O emissions occurred at optimum feeding ratio, 

while at a high feeding ratio earthworms did not decrease N2O emission, implying that 

feeding ratio is an important parameter for consideration when assessing the 

earthworms’ effect on GHG emissions during composting. Denitrification in the 

earthworm gut was the main process contributing to N2O emissions in the case of anecic 

earthworms (Lubbers et al., 2013). Composting materials mostly contain high levels of 

nitrogen, hence the contribution of denitrification occurring in the earthworm gut to total 

N2O emissions was smaller than the contribution from denitrification in the environment 
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around the worms. Furthermore, the feeding and burrowing behaviours of earthworms 

mostly used in soil experiments (i.e. anecic earthworms) are different from compost 

worms. 

Two scenarios were used to assess the effect of earthworm treatments on total 

GHG emissions. The first scenario excluded CO2 because higher CO2 emissions indicate a 

greater stability of the material. Including CO2 in the GHG balance would therefore 

privilege composts that are not stabilised over the course for the experiment, and 

therefore provide a biased assessment how earthworms affect the GHG balance 

(Chowdhury et al., 2014). Under this scenario, the effect of earthworm treatments on the 

total GHG emissions was similar to their effect on N2O emissions since the contribution 

of CH4 was negligible. However, when CO2 was included in the total GHG budget, the 

earthworm treatments increased total GHG emissions compared with the non-

earthworm treatments. This variation was explained by the high CO2 emissions in the 

earthworm treatments (Fig. 5.3a), and the large contribution of CO2 to the total GHG 

budget in all treatments (> 80%). These results are comparable with previous studies on 

composting (Anderson et al., 2010; Nigussie et al., 2016).   

 

Properties of compost  

Irrespective of substrate quality, the presence of earthworms and optimum feeding ratio 

decreased pH, but increased the NO3- concentration. The high NO3- concentration in the 

earthworm treatments and optimum feeding ratio was explained by the mineralisation of 

N from the organic materials and /or reduced N2 losses through denitrification (Fig. 

5.3b). The NH4+ concentration decreases during decomposition due to ammonia 

volatilisation and nitrification processes, while the NO3- concentration increases towards 

the end of the composting period. Hence, the NH4+ : NO3- ratio has been used to assess 

the maturity of compost (Bernal et al., 2009), and the threshold value of < 0.16 is an 

indicator of mature compost, implying that all the composts were mature. Still the 

earthworm treatments produced more mature compost than the non-earthworm 

treatments. We used the total DOC content and NH4+ : NO3- ratio to estimate compost 

stability, and both indices yield the same result except for substrate_3. The presence of 

manure increased the NO3- concentration in substrate_3, subsequently reduced the NH4+ 

: NO3- ratio, suggesting that NH4+ : NO3- ratio depends on the substrate quality and hence 

it may not be a reliable index compared with DOC. The decrease in pH values in the 

earthworm treatments at optimum feeding ratio could be due high nitrification in these 

treatments (Fig. 5.4a) and the production of organic acids as a result of greater 

decomposition (Fig 5.1 and 5.3a) (Lazcano et al., 2008).       

The data presented here confirmed a significant effect of feeding ratio on the 

stabilisation of organic material (Fig. 5.1), GHG emissions (Fig. 5.3) and properties of the 

end product (Fig. 5.4), however (applied) researchers on vermicomposting have paid 
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little attention to feeding ratio. Feeding ratio influences earthworm growth (Fig. 5.5: Luth 

et al., 2011), aeration and temperature, subsequently affecting decomposition, 

mineralisation, nutrient losses and GHG emissions. Hence, it is suggested that this ratio 

be considered an equally important parameter when evaluating the effectiveness of 

earthworms in the stabilisation of organic materials to parameters such as earthworm 

species, substrate quality etc.  

    

Conclusions 

Earthworms accelerated the stabilisation of organic materials compared with the non-

earthworm treatments, as confirmed by CO2 production, DOC concentration, DOC 

composition and NH4+ : NO3- ratio. Earthworms decreased the total DOC concentration, 

but they did not affect the relative composition of hydrophilic, fulvic acid and 

hydrophobic neutral fractions. The relative contribution by humic acid decreased in the 

earthworm treatments, implying that the humic acid fraction was less recalcitrant as 

commonly assumed, and was likely used as a substrate by microorganisms. The 

hydrophilic-to-hydrophobic ratio was consistent between the different stable composts, 

despite differences between input materials and processing conditions, and this ratio 

could be used as an additional criterion to assess compost stability. This ratio is much 

higher for unstable composts, implying that it can be used as an indicator of compost 

stability. Fractionation of DOC is therefore important for understanding the stabilisation 

of organic waste. A higher (supra-optimal) feeding ratio reduced the stabilisation process 

and increased N2O emissions compared with the optimum feeding ratio. Hence feeding 

ratio should be considered as an important parameter when assessing the earthworms’ 

effect on the stabilisation of organic materials and GHG emissions during composting.  
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Supplementary Figure 5.1. Relative composition of dissolved organic carbon (DOC) from different 

treatments after 60 days of composting. CON = without earthworms, LR = with earthworms and lower 

substrate input, HR = with earthworms and higher substrate input, HA = humic acid, FA = fulvic acid, 

HON = hydrophobic neutral, Hi = hydrophilic compounds. 

substrate_1 (CON) 

HA_%

FA_%

HON_%

HI_%

substrate_1 (OR) 

HA_%

FA_%

HON_%

HI_%

substrate_1 (HR) 

HA_%

FA_%

HON_%

HI_%

substrate_2 (CON) 

HA_%

FA_%

HON_%

HI_%

substrate_2 (OR) 

HA_%

FA_%

HON_%

HI_%

substrate_2 (HR) 

HA_%

FA_%

HON_%

HI_%

substrate_3 (CON) 

HA_%

FA_%

HON_%

HI_%

substrate_3 (OR) 

HA_%

FA_%

HON_%

HI_%

substrate_3 (HR) 

HA_%

FA_%

HON_%

HI_%



Chapter 5 

 

104 



Chapter 6 
 

105 

 

 

CHAPTER 6 
 

 

 

General discussion  

 

 

 

 

 

 

 
  

 



General discussion  
 

106 

Introduction 

Many smallholder farming systems in developing countries are characterised by low 

agricultural inputs, such as improved seed varieties, mineral fertilisers and organic 

amendments (i.e. crop residues, manure, compost). Numerous efforts have been made to 

improve soil fertility and crop yield using mineral fertilisers and/or organic amendments 

(Mann and Warner, 2015). Organic amendments maintain or increase soil organic matter 

contents and thereby contribute to enhanced fertiliser use efficiency. Despite the benefits 

of organic amendments, many smallholder farmers do not retain crop residues or 

manure on their farmlands and as a result, a large quantity of nutrients and carbon (C) is 

exported from agricultural lands to markets/cities. The use of other sources, such as 

urban-waste compost, has been therefore proposed to close nutrient and C cycles (Danso 

et al., 2006; Mary et al., 2010).  

Many efforts have recently been made to prepare compost from urban-waste. In 

developed countries urban-waste compost has been applied to farmlands to improve soil 

properties (Peltre et al., 2015) and crop yield (Getahun et al., 2012b) without any negative 

effect on the surrounding soil or water bodies (Poulsen et al., 2013). However, no 

attention is paid to urban-waste compost in developing countries, despite a large amount 

of organic waste being produced in cities, and this has become a matter of global 

concern. A lack of institutional involvement is the main driver behind the limited use of 

urban-waste compost as a soil amendment. Urban-waste composting requires farmers’ 

participation and hence studies are needed with regard to their attitudes to urban-waste 

compost in order to optimise its economic benefits. In addition to this, urban-waste 

composts usually have low content of nutrients especially nitrogen (Hargreaves et al., 

2008), therefore studies are required on how to produce nutrient-rich compost at the 

lowest cost. N-rich composts are produced by composting urban waste with N-rich 

substrates such as manure, however this process results in high N losses and greenhouse 

gas emissions (Chapters 3 and 4) and subsequently reduces the agronomic value of 

compost and contributes to climate change. As described in Chapter 1, the main aims of 

this thesis were therefore (i) to contribute to and strengthen knowledge about the 

challenges and opportunities of utilising urban-waste compost as a soil amendment, 

particularly in smallholder farming systems, and (ii) to develop low-cost technologies 

that improve the fertilising values of urban-waste compost while reducing losses to the 

environment and alleviating climate change through the reduction of GHG emissions.  

The findings of this thesis come from socioeconomic studies and composting 

experiments conducted both in laboratory reactors and under field conditions. In this 

chapter, I summarise and contextualise the key findings of the thesis with respect to the 

hypotheses stated in Chapter 1. I start by recalling the hypotheses in order to evaluate 

whether they were confirmed. I then discuss whether urban-waste composting can be 

used as a soil amendment in developing countries. Thirdly, I examine low-cost 

https://paperpile.com/c/klQWBi/uXtu


Chapter 6 
 

107 

 

technologies that could be used to reduce N losses and GHG emissions from composting 

before finally concluding my results and offering suggestions for further studies. 

 

The findings   

Despite the benefits of organic amendments on soil properties and crop yield, only a 

small number of farmers retain agricultural waste on their farmlands. In Ethiopia, for 

example, less than 30% of farmers retain crop residues and/or applied manure on their 

farmlands (Nigussie et al., 2015), and in the latter case farmers usually apply organic 

amendments at low rates (< 1 t ha-1) (Baudron et al., 2014). The second chapter of my 

thesis was therefore designed to answer the question: Why do farmers retain no or 

insufficient agricultural waste on their farmlands? Low crop production, a limited number of 

animals, insufficient collection of manure and limited availability of labour have been 

identified as major causes behind the limited use of agricultural waste (Tittonell et al., 

2005, Kassie et al., 2009; Baudron et al., 2014). I added a further dimension to this issue 

and hypothesised that competition for agricultural waste (as animal feed, building 

material, fuel and soil amendments) is a major explanatory factor behind the limited use 

of soil amendments and soil fertility enhancement. This hypothesis was confirmed by my 

results (Chapter 2). I interviewed 220 farmers in Addis Ababa, Ethiopia and observed 

that crop residues were mainly used for feed and fuel and that manure was used for fuel 

(Fig 6.1). Manure is a source of fuel even for urban dwellers, probably due to high 

poverty in urban areas. This high poverty-driven demand creates market opportunities 

and entices farmers to sell their agricultural waste to nearby cities, further exacerbating 

carbon and nutrient fluxes from the countryside to cities. I also hypothesised that the 

allocation of agricultural waste varies between different farmer groups. Farmers with 

market-oriented production systems allocate their agricultural waste mainly for soil 

amendments compared with resource-poor subsistence farmers. Socioeconomic variables 

such as land ownership, shortage of land and access to extension services also influence 

farmers’ decisions to retain agricultural waste on their farmlands.  

The use of other sources (e.g. urban waste) has been suggested as an alternative 

soil amendment, particularly for urban and peri-urban farmers (Danso et al., 2006). 

Extensive literature is available on the effect of urban-waste compost on soil properties 

(Peltre et al., 2015) and crop yield (Hargreaves et al. 2008). Despite the beneficial effects 

of urban-waste compost, < 5% of urban waste is converted into compost (Mengistu, 

2013). I expanded the second chapter to address the question: Is there a demand from (per-

)urban farmers for urban-waste compost? I hypothesised that there is indeed a demand for 

urban-waste compost, but that this demand varies between different farmer groups. I 

observed that about 60% farmers were willing to pay or contribute labour for urban-

waste composting. Farmers with market-oriented production systems showed a higher 

demand than resource-poor subsistence farmers. Education, distance between the 
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farmland and the city, land tenure status, experience with compost and access to 

extension services explained the variation in compost demand and willingness to pay for 

or contribute to the acquisition of compost. 

 
Figure 6.1: Current use of manure (a) and crop residues (b) across different urban and peri-urban 

farmer groups  

 

Even though urban-waste compost was suggested as an alternative soil amendment in 

Chapter 2, high N losses, especially through volatilisation of NH3, and greenhouse gas 

(GHG) emissions by N2O and CH4 still represent a challenge during the composting of 

N-rich urban waste materials (Anderson, 2010). Different strategies have been suggested 

to reduce N losses and GHG emissions (Steiner et al., 2010; Chowdhury et al., 2014; Kahn 

et al., 2016), but these are expensive and difficult to scale up to field conditions. Chapters 

3, 4 and 5 were therefore initiated to develop technologies that could easily fit with 

existing farming systems.  

Earthworm composting (vermicomposting) is a mesophilic (< 30 °C) process (see 
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(Luth et al., 2011). Increased aeration prevents anoxia and reduces GHG emissions. In 

chapter 3, I reported that vermicomposting, compared to thermophilic composting, 

reduces NH3 losses and GHG emissions. I demonstrated that vermicomposting 

decreased total N losses by 20% compared with thermophilic composting. The highest 

reduction of N losses by earthworms was observed with substrates at lower C:N ratios. 

Existing reports on the effect of earthworms on GHG emissions are contradictory. Hence, 

I used different quality substrates (as assessed by C:N ratio and the presence of a labile C 

pool) and manipulated several variables (moisture content, earthworm density and 

feeding ratio) to clarify understanding of the effect of earthworms on GHG emissions 

during composting.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Earthworms decreased CH4 emissions from composting, and this observation was 

consistently found in all the experiments. Similarly, earthworms decreased N2O during 

vermicomposting compared to thermophilic composting, but I observed that the 

earthworm effect varied between substrate quality and earthworm density and feeding 

ratio (Chapter 3 and Chapter 5). A higher earthworm abundance (Chapter 3) and feeding 

ratio (Chapter 5) increased N2O emissions during vermicomposting. A comparison 

between Chapter 3, Chapter 5 and our unpublished data (Motta et al., unpublished) also 

suggested that different species of epigeic earthworms used for vermicomposting could 

result in different GHG emissions. Earthworms increased CO2 emissions, and this 

observation was consistent in all experiments (Chapter 3 and Chapter 5). Earthworms 

BOX 6.1. Composting methods  

Thermophilic composting and vermicomposting are commonly used composting 

techniques. There are two phases in thermophilic composting: the first is the 

thermophilic (active) stage, in which rapid decomposition takes place and 

temperatures rise above 45 °C and the second is known as the maturation or curing 

stage, in which the temperature decreases to ambient value and more stable organic 

compounds are degraded at a lower rate. Vermicomposting is a mesophilic (< 30 °C) 

process that involves earthworms and associated microorganisms in decomposing and 

stabilising organic materials. The temperature during vermicomposting should 

remain within a range of 15-30 °C as temperatures above 35 °C kill earthworms.  

The mesophilic phase of composting can be achieved by continuously turning 

the pile (without using earthworms), but this method requires labour and excessive 

aeration could result in NH3 emissions. In my thesis, one experiment compared 

vermicomposting with thermophilic composting, while the other two compared 

mesophilic composting in the presence and absence of earthworms. In all these 

experiments, I demonstrated that earthworms play an important role in mitigating N 

losses and GHG emissions during composting.  
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increased CO2 emissions by up to 14%. While higher CO2 evolution might suggest a 

greater contribution to GHG emissions, it should be noted that in the end all composts 

are likely to be of a similar stability as more CO2 might escape after the compost is 

applied to the field. Therefore higher CO2 evolution indicates a greater degree of 

stabilisation of the compost and hence it should not be considered as GHG (Vu et al., 

2014). I therefore calculated total GHG emissions from the different treatments (Chapters 

3) considering only N2O and CH4 emissions. Accordingly, I confirmed that the use of 

earthworms (vermicomposting) reduced GHG emissions compared with non-earthworm 

treatments (thermophilic composting).   

While vermicomposting is effective at reducing N losses and GHG emissions from 

composting, high N losses, however, occur during composting of nitrogen-rich materials. 

Studies show low levels of N in urban-waste compost, particularly in (sub-)tropical 

countries (Getahun et al., 2012b), that negatively impact on compost quality from a soil 

fertility perspective. Composting of (N-poor) urban waste together with N-rich materials 

such as manure is commonly used to increase the N content of the final compost (Lhadi 

et al., 2006; Rizzo et al., 2015). This practice could result in significant N losses (NH3 

volatilisation) due to the combination of high temperatures (> 45 °C) during the 

thermophilic phase and high NH4+ concentration in the N-rich substrate. Chapter 4 was 

therefore initiated to test the hypothesis that the addition of N-rich substrate after the 

thermophilic phase reduces N losses. I also tested the hypothesis that the timing of N-

rich substrate addition influences N2O and CH4 emissions. I noted that delayed addition 

reduced N losses up to 20%. In addition to this, I demonstrated that delayed addition 

increased N2O emissions by 400-600%, but decreased CH4 emissions by 50%. The 

mechanisms of how delayed addition influences GHG emissions have not been 

investigated in my thesis, hence further studies are required to identify these 

mechanisms.  

In my thesis (Chapter 3), I found that earthworms increased CO2 emissions, 

indicating that vermicomposting increase the stabilisation process compared with 

traditional composting method. Hence I proposed Chapter 5 to determine the effect of 

earthworms on the dissolved organic carbon (DOC) quantity and its various fractions – 

which are recently proposed indices of compost stability. A consequence of higher 

compost stability is a lowering of the contents of DOC and its various fractions, an issue 

more extensively studied in Chapter 5. I expanded this chapter to address the effect of 

feeding ratio (i.e., the ratio of earthworms to substrate added) on the GHG emissions and 

compost stability. I demonstrated that optimum feeding ratio reduced GHG emissions 

and accelerated the stabilisation of organic materials compared with higher feeding ratio.  

 

 



Chapter 6 
 

111 

 

Challenges and opportunities of using organic amendments in 

developing countries   

As shown in Chapter 2, competition between fuel and feed is a major explanatory factor 

in explaining the insufficient application of agricultural waste on croplands. Furthermore 

Baudron et al. (2014), Rimhanen and Kahiluoto (2014) and Valbuena et al. (2015) found 

that < 20% of crop residues are retained on croplands in sub-Saharan and South Asian 

counties because the majority of crop residues are used for feed and fuel. Similarly, small 

amounts of manure (usually < 1 t ha−1 yr−1) are applied on farmlands (Chapter 2), even in 

farming systems where cattle density is high (Baudron et al., 2014) because manure is the 

main source of fuel. How to fulfil the demand for both animal feed and household fuel 

on the one hand and soil on the other still presents a challenge. The use of other energy 

sources such as kerosene, electricity and fuel wood could be an option for reducing 

existing pressure on manure and crop residues. However, theses energy sources are not 

affordable and/or accessible. High deforestation results in limited access to fuelwood 

(Haileselassie et al., 2006; Mekonnen and Köhlin, 2009; Damte et al., 2012), hence efforts 

should be made to increase accessibility to alternative energy sources so that manure and 

crop residues can be used mainly as a soil amendment. However, this is not a simple 

solution that can be achieved in the short term because it is expensive for many (sub-

)tropical countries.  

Intensification of crop and livestock production is another option for feeding 

livestock as well as utilising crop residues as a soil amendment. Baudron et al. (2014) and 

Valbuena et al. (2015) suggest that closing the yield gap provides sufficient amounts of 

crop residue for feed and soil amendments. Livestock intensification also increases the 

amount of manure produced, meaning that larger quantities of manure can be applied 

on croplands (Abdulkadir et al., 2012; Vu et al., 2012). Intensification of crop and/or 

livestock production requires higher inputs such as the application of fertilisers, the use 

of improved crop varieties and the control of yield-reducing factors such as weeds, pests 

and diseases. 

Despite the fact that many countries having been promoting intensified 

agricultural management practices for the past three decades, many farmers still apply 

fertilisers (far) below the recommended rate due to their high price (Kassie et al., 2009; 

Chapter 2), without complementary inputs (organic amendments). Due to soil fertility 

problems and further yield-reducing factors, the yield gap reaches about 40% (Getnet et 

al., 2016; Mann and Warner, 2015). Therefore the current limited use of fertiliser could 

still result in negative returns for many farmers, thereby resulting in stagnation of 

further intensification (Valbuena et al., 2015). In developing countries such as Ethiopia, 

farmers also have a farm size of less than one ha and agricultural products are mainly 

used for household consumption. Hence, little or no surplus production is available to 

purchase inputs. Thus, farmers are caught in a vicious circle of low agricultural 

http://www.sciencedirect.com/science/article/pii/S0956053X15300544#b0020
http://www.sciencedirect.com/science/article/pii/S0956053X15300544#b0155
http://www.sciencedirect.com/science/article/pii/S0956053X15300544#b0185
http://www.sciencedirect.com/science/article/pii/S0956053X15300544#b0090
http://www.sciencedirect.com/science/article/pii/S0956053X15300544#b0125
http://www.sciencedirect.com/science/article/pii/S0956053X15300544#b0125
http://www.sciencedirect.com/science/article/pii/S0956053X15300544#b0110
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production (a large yield gap) and low income, even though several attempts have been 

made to address these problems (Tittonell and Giller, 2013). It is well recognised that 

farmers and possibly even governments will be unable to afford an increase in the 

application rate of fertilisers. It is therefore essential to improve current policies, 

infrastructure, markets and financial institutions to enable intensification of crop and 

livestock production so that the competition for agricultural waste can be reduced.  

Throughout my thesis efforts to re-use urban waste as a soil amendment have 

been explored because the current utilisation of manure and crop residues results in the 

export of nutrients and C from farmlands to cities. Hence urban-waste composting is a 

crucial strategy for closing the rural-urban nutrient loop and sequestering C in soils. In 

addition to this, urban-waste composting is important for solid waste management 

because a large amount of biodegradable waste is produced, and waste management has 

become or is likely to become a major concern in developing countries in the near future 

since there is barely any waste management and urban populations are rapidly 

increasing (Marshall and Farahbakhsh, 2013; Danso et al., 2008). The current waste 

management strategy (i.e. landfill) pollutes the surrounding soil and groundwater and 

produces potent greenhouse gases such as methane (CH4) (Regassa et al., 2011, Mengistu, 

2013, Bernard-Beltrán et al., 2014). 

As shown in Chapter 2, many (peri-)urban farmers were willing to apply urban-

waste compost on their farmlands, which is comparable with a previous study in Ghana 

(Danso et al., 2008). Urban waste as an alternative source of organic amendments 

therefore seems to present an important opportunity for improving crop production. 

However few studies have been conducted on urban-waste compost demand and 

farmers’ attitudes in different countries, hence it has been difficult to compare my results 

with other studies conducted in different socioeconomic settings. In my thesis I found 

that the demand for urban-waste compost varied between different farmer groups 

(Chapter 2). Income, education and access to extension services explained the variation 

in compost demand. Farmers with better access to finance, education and extension 

services were able to understand the benefits of compost and were more interested in 

applying urban-waste compost on their farmlands than poor subsistence farmers. Low 

nutrient content (Getahun et al., 2012b; Hargreaves et al. 2008), contamination with 

heavy metals and sanitation were and remain major concerns around urban-waste 

compost, and these issues determined farmers’ interest in the use of urban-waste 

compost. A small number of studies are available on the nutrient content and qualities of 

compost produced from urban waste, particularly in Africa (Getahun et al., 2012b). Even 

though the risks of heavy metals are not included in my thesis, they present one of the 

main concerns about urban-waste compost because contaminants (e.g. old batteries, 

plastics and metal scraps) are commonly found in urban waste. Despite high concern 

about heavy metal contamination, recent studies show that urban-waste compost can be 

applied without contamination of heavy metals as long as the relevant guidelines are 

http://www.sciencedirect.com/science/article/pii/S0378429012003346
http://www.sciencedirect.com/science/article/pii/S0378429012003346
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followed (Lekfeldt et al., 2015). In many developing countries, however, national 

compost guidelines and standards to control compost quality do not exist. Source 

separation systems – sorting of different materials at their point of generation – are 

another option to reduce contamination and improve the efficiency of waste recycling. 

However, this system does not exist in many developing countries and hence 

municipalities should encourage and provide incentives to communities to sort different 

materials at their point of generation.    

I noted that current policies such as the land tenure system are one of the main 

drivers preventing farmers from using urban-waste compost and intensifying their 

production systems. In Ethiopia, land is owned by the government and the transfer of 

land through long-term leases or sales and/or the use of land as collateral is legally 

prohibited. Moreover, rapid population growth and the expansion of cities put pressure 

on agricultural land, especially in urban and peri-urban farming systems. These 

circumstances cause insecure landownership and hence discourage farmers from 

investing in their farmlands (Chapter 2; Kassie et al., 2009). It is therefore essential to 

improve the existing policies, infrastructure and financial institutions to enable farmers 

to use urban-waste compost and other organic amendments (i.e. agricultural waste).  

Decentralised and community-based composting enterprises are suggested to 

ensure the use of urban-waste compost as a soil amendment because large and 

centralised composting plants incur high operational, maintenance and transportation 

costs (Danso et al., 2008). Recently, a small number of small-scale composting enterprises 

have been set up, thereby creating jobs for young people and poor urban dwellers. The 

market linkage between compost producers and farmers, however, is still inadequate. 

Consequently, most enterprises are not profitable. Thus approaches that link up farmers 

with compost producers, with the assumption of long-term business relationships, 

should be identified. Furthermore, the government should subsidise the making and use 

of urban-waste compost. The involvement of governmental and private sectors is 

therefore crucial, and these institutions should work closely with compost producers, 

farmers and research institutes to (i) improve compost quality, (ii) ensure market 

linkages and (iii) provide financial and technical support for compost producers and 

farmers.  

Currently, waste energy projects are being implemented in Sub-Saharan African 

countries with the aim of producing energy from municipal waste and using the by-

products as liquid fertiliser and/or compost (Hamad et al., 2014). Although these projects 

are not included in my thesis, the implementation of these projects is important for the 

execution of urban-waste composting because they improve the efficiency of waste 

collection and reduce the amount of waste dumped in landfill and/or waterbodies. The 

agronomic value of waste energy by-products is, however, very low in nutrient content, 

hence studies are needed to improve the agricultural importance of composts and/or 

fertilisers produced from these by-products.     

http://www.businessdictionary.com/definition/material.html
http://www.sciencedirect.com/science/article/pii/S0956053X15300544#b0110
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Low-cost techniques to reduce N losses and mitigate GHG emissions 

during composting 

In Chapter 2 I indicated the need for urban-waste composting. However, challenges 

remain around how to produce nutrient-rich compost (Danso et al., 2008), reduce N 

losses (when starting with N-rich waste) and mitigate GHG emissions during urban-

waste composting (Nigussie et al., 2016) at low costs. Chapter 2 is helpful for 

understanding the socio-economic perspective of my project and provides the 

foundation for the next chapters of my thesis. In Chapters 3, 4 and 5 I discussed low-cost 

technologies that reduce nutrient (mainly N) losses and GHG emissions during urban-

waste composting.  

 

Vermicomposting 

Nitrogen losses during composting reduce the agronomic value of compost and 

contribute to greenhouse gas emissions. I found N losses of between 30% and 60% of the 

initial N content (Chapters 3 and 5), and such losses are comparable with earlier studies 

(Bernal et al., 2009; Steiner et al., 2010; Chowbury et al., 2014). The high variation in N 

losses was explained by the differences in the N content of the composting materials and 

the temperatures in the composting pile. Temperature influenced N losses from 

composting because ammonia emissions occur at high temperatures (> 45 °C) (Pagans et 

al., 2006). Chapter 3 was therefore initiated to test the effectiveness of earthworm 

composting (i.e. vermicomposting) at reducing N losses and GHG emissions because it is 

a mesophilic process and earthworms influence N cycling. I demonstrated that 

vermicomposting reduced N losses and non-CO2 GHG emissions (N2O and CH4). Higher 

N losses in thermophilic composting were observed with substrates with a high nitrogen 

content, and the effectiveness of earthworms at reducing N losses was more pronounced 

with these substrates. Ammonia volatilisation explained the differences in N losses 

between the two composting methods (i.e. thermophilic composting and 

vermicomposting).   

Different mechanisms explained the decrease in N losses during 

vermicomposting. The first obvious mechanism was the temperature effect. Ammonia 

volatilisation accounts for about 70% of total N losses (Szanto et al., 2007; Chowdhury et 

al., 2014) and occurs at higher temperatures. In contrast, vermicomposting is a 

mesophilic process, hence high NH3 volatilisation was not expected. A second 

mechanism could be the lowering of pH in vermicomposting experiments (Chapters 3 

and 4) compared with conventional composting because NH3 emission occurred more at 

a higher pH. In agreement with my results, Wang et al. (2014) and Velasco-Velasco et al., 

(2011) reported low ammonia emissions during vermicomposting. Optimising the 

nitrogen contents of the composting materials (i.e. adjusting the C : N ratio to between 

25:1 and 30:1) has been recommended to minimise N losses (Chowdhury et al., 2014). 
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Addition of straw reduced N losses by 24% (Chapter 3), which is consistent with 

previous studies (Velasco-Velasco et al., 2011; Chowdhury et al., 2014). In Chapter 2, 

however, I demonstrated competing uses of crop residues (straw) for animal feed in 

smallholder farming systems. Hence, vermicomposting is a more practical and less 

expensive method to reduce N losses during composting compared to using crop 

residues. Chapter 5 and Chowdhury et al. (2014) showed that bulking materials (other 

than crop residues such as sawdust) could be used to reduce N losses from composting. 

However, these materials are expensive and not available in large quantities, particularly 

in countries such as Ethiopia. Techniques to control pH (Pagans et al., 2006) and the use 

of absorbents (i.e. active carbon, biochar and zeolite) (Steiner et al., 2010; Kahn et al., 

2016) will also result in reduced N losses, but they are expensive and difficult to scale up 

to field conditions. 

Vermicomposting decreased N2O emissions compared with thermophilic 

composting, but the effect of the earthworms’ was affected by substrate quality (nitrogen 

content), earthworm abundance and feeding ratio (Chapters 3 and 4). In these chapters, I 

used different parameters to explain the effect of earthworms on N2O emissions because 

the existing literature is contradictory and requires clarification. In agreement with my 

findings, Chan et al. (2010) and Wang et al. (2014) found that earthworms reduce N2O 

emissions from composting. The obvious mechanisms for lower N2O emissions during 

vermicomposting are: (i) continuous turning of substrates by earthworms, which 

increases air circulation and entry of oxygen (Chapter 3; Chan et al., 2010) and (ii) 

earthworms accelerate the stabilisation of organic materials (i.e. low content of labile C 

for denitrifying bacteria during vermicomposting) (Chapter 4). In contrast to my 

findings, our unpublished data (De Mota et al., unpublished) show that continuous 

turning of piles by hand leads to lower N2O losses than with earthworms. Similarly, 

Lubbers et al. (2013) reported that earthworms induce N2O emissions from soils. 

Earthworm-induced N2O emissions are explained by high mineralisation and 

denitrification in the earthworm gut (Hobson et al., 2005). Substrate quality (mainly 

nitrogen and carbon content) is the key variable that should be considered when 

assessing the effect of earthworms on N2O emissions. Lubbers et al. (2013) found higher 

earthworm-induced N2O emissions from soils where N content and carbon content are 

lower (total nitrogen content of < 1.3 g kg-1 and carbon content of < 30 g kg-1 soil) 

compared with vermicomposting experiments (total nitrogen content of 14 g kg-1 and 

carbon content of 400 – 500 g kg-1 dry matter) (Chapter 3). Similarly, in our unpublished 

data (De Mota et al., unpublished), materials were used that underwent a longer pre-

composting period. It appears that the earthworm gut contributes a small amount to N2O 

emissions compared with the denitrification process taking place in the composting 

materials. Furthermore, the species used in my experiments (Eisenia fetida in Chapter 3 

and a mixture of Eisenia fetida and Dendrobaena veneta in Chapter 5) were different from 

the earthworms used in soil experiments (Lumbricus rubellus) and/or species used by De 
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Mota et al. (unpublished) (Dendrobaena veneta) (see Box 6.2). This difference could be 

another explanation for the observed variation because earthworms with different 

feeding strategies vary in terms of decomposition rates of substrate with which they are 

feeding (Lubbers et al., 2013). My results and earlier studies indicate that the 

earthworms’ effect on N2O emissions are diverse and depend on the environment in 

which they live. The effects of earthworms on GHG emissions could be altered simply by 

manipulating variables such as substrate quality, earthworm density and feeding ratio. 

Hence it is essential to identify when and where earthworms are important for reducing 

N2O emissions.  

In Chapters 3 and 5, I also noted that vermicomposting decreased CH4 emissions 

compared with conventional composting. In agreement with my findings, Luth et al. 

(2011) and Wang et al. (2014) reported a 40-65% decrease in CH4 emissions during 

vermicomposting. The obvious mechanisms are: (i) earthworms increase air circulation 

by continuously turning the substrates, (ii) earthworms maintain substantially lower 

temperatures that result in reduced CH4 production compared to thermophilic 

composting because activities of methanogenic bacteria increase with temperature 

(Ermolaev et al., 2014) and (iii) high oxygen demand (and limited exchange with the 

surroundings) during the thermophilic phase creates anaerobic patches where most CH4 

is produced (Vu et al., 2014). In soils, however, both increases (Kammann et al., 2009) 

and decreases (Kernecker et al., 2015; Kim et al. 2011) of CH4 emissions in the presence of 

earthworms have been observed, but the underlying mechanisms are not known. The 

positive effect could be explained by earthworm casts possibly stimulating methanogenic 

activity (Depkat-Jakob et al., 2012) because casts constitute an anaerobic substrate due to 

the limited diffusion of oxygen into the casts. During vermicomposting, the substrates 

are rich in easily degradable materials, hence earthworm-induced CH4 emissions are 

unlikely to occur. Moreover, the earthworm species in the vermicomposting experiments 

and soil experiments were different. Hence, the results of vermicomposting experiments 

cannot be extrapolated to agricultural soils. In their meta-analysis, Lubbers et al., (2013) 

excluded CH4 while estimating the earthworm effect on GHG budget from 

agroecosystems. However, my thesis and other studies on soil (Kammann et al., 2009) 

indicate the need for further study into the role of earthworms on CH4 emissions from 

agricultural practices.  
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In all the experiments, despite variations in substrate quality (C:N ratio), earthworm 

abundance and feeding ratio, CO2 emissions were higher from vermicomposting than 

from thermophilic composting (Chapters 3 and 4). Similarly, Chan et al. (2010) found 

higher CO2 production from vermicomposting than from conventional composting. 

Higher CO2 evolution, which appears to suggest a greater contribution to GHG 

emissions by earthworms, in fact indicates a greater degree of stabilisation of the 

compost (Bernal et al., 2009; Wichuk and McCartney, 2010). Such results therefore imply 

that vermicompost has a greater degree of stability than conventional compost. Similarly 

in Chapter 5, I confirmed the higher degree of stabilisation during vermicomposting 

using additional parameters such as dissolved organic carbon (DOC) concentration, the 

composition of DOC in different fractions and NH4+ : NO3- ratio (Chapter 5). We however 

noted that compost stability indices such as total DOC content and NH4+ : NO3- ratio 

BOX 6.2. Types of earthworms  

 

Ecologists divide earthworms into three functional groups on the basis of their feeding 

and burrowing behaviour, namely: (i) epigeic species that live within the few 

centimetres of the soil-litter interface, feed on undecomposed litter and do not make 

burrows, (ii) endogeic species that feed on soil and associated organic matter and live 

in non-permanent branching burrows below the soil surface, and (iii) anecic species 

that feed on the surface litter and pull it into the soil in permanent burrows. 

Earthworms used for vermicomposting are epigeic species, but not all epigeic 

species are composting worms. There are an estimated 1,800 species of earthworm 

worldwide, but only a few of these are used for vermicomposting. The species 

currently commonly used in tropical and sub-tropical countries are Eisenia fetida, 

Dendrobaena veneta and Eudrilus eugeniae. All of these worms are prolific feeders and 

can eat up to half of their weight per day. Even though theses worms are used for 

vermicomposting, they vary in terms of substrate affinity, tolerance to external 

environments (temperature, pH, EC), biomass and rate of production. Eisenia fetida, for 

example, can feed on a wide range of organic waste and survive in temperatures of 

between 10 °C to 35 °C. In contrast, Dendrobaena veneta is sensitive to high 

temperatures and its production is low in substrates such as manure. 

The decomposition and mineralisation processes differ between earthworm 

species (Postma-Blaauw et al., 2006). As a result, the earthworms’ effect on N cycling 

and GHG emissions vary between earthworm species. For instance, Lubbers et al. 

(2013) indicated that earthworm species influence GHG emissions from soils 

differently.  

 



General discussion  
 

118 

could yield different results. The NH4+ : NO3- ratio depends on the substrate quality 

while the DOC concentration is often reported without correcting for non-organic 

(mineral) components of composting material. Indices such as a C : N ratio and 

temperature are also recommended as indicators of compost maturity (Khan et al., 2014), 

however, theses indices also depend on substrate quality. The combined use of multiple 

indices is therefore suggested to assess compost stability. Future studies are also needed 

to develop a more reliable compost maturity indicator. 

Since CO2 evolution indicates a greater degree of stabilisation of compost, only 

N2O and CH4 emissions were used in Chapter 3 to estimate the GHG budget of the two 

composting methods (vermicomposting and thermophilic composting). The rationale for 

excluding CO2 emissions from the total GHG budget was that the less stable composts 

produce more CO2 during soil application (Ngo et al., 2013; Sierra et al., 2013), hence the 

total CO2 emissions would eventually converge to the same value for all composts. When 

CO2 was excluded, vermicomposting reduced total GHG emissions by 26-37% (Chapter 

3). The relative contribution of N2O and CH4 emissions to total GHG budget depended 

on substrate quality. CH4 emissions dominated the GHG budget when the substrates 

contained a high amount of easily degradable C (i.e. vegetable waste), while N2O 

emissions dominated with substrates containing high NO3- (i.e. manure).  

Even though vermicomposting produces a high-quality compost (Lazcano et al., 

2008; Chapter 3; Chapter 5), vermicomposting is not common practice in many 

developing countries. Promotion of vermicomposting technology is still needed, 

particularly in developing countries such as Ethiopia. Active participation of institutions 

is a key to integrating earthworms into the existing waste management strategy and 

closing rural-urban nutrient loops. Further technical and socioeconomic research is 

needed to optimise the vermicomposting process. For instance, local earthworm species 

should be tested to identify whether they could be used for vermicomposting. 

Composting worms such as Eisenia fetida, Dendrobaena veneta and Eudrilus eugeniae should 

be introduced. Pathogens such as E. coli and Salmonella are commonly found in urban 

waste, hence temperatures above 50 °C for a minimum of three days are required to 

destroy these pathogens (Ryckeboer et al., 2003). Sanitation could therefore be the main 

concern with vermicomposting of urban waste, but some studies indicate the 

effectiveness of vermicomposting at eradicating pathogens (Rodríguez-Canché et al., 

2010; Edwards et al., 2011). However, more studies are still required to understand the 

mechanisms of how earthworms eradicate pathogens from the compost pile. Pre-

composting prior to vermicomposting could be another solution to eradicating 

pathogens from vermicompost (Wang et al., 2014), however significant N losses could 

occur during pre-composting. More research is therefore needed to optimise 

vermicomposting technology so that the balance between N losses and sanitation is 

maintained. In my thesis, I used kitchen waste that was not contaminated with heavy 

metals. In practice, urban waste contains heavy metals, hence further studies are 
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required to determine the effect of vermicomposting on the bioavailability of heavy 

metals during urban-waste composting.   

 

Delayed addition of N-rich substrate 

Composting of nitrogen-poor materials such as urban waste with manure is commonly 

used to increase the N concentration of compost (Lhadi et al., 2006; Rizzo et al., 2015). 

During this composting practice, however, we observed about 60% N losses (Nigussie et 

al., 2016b), which is comparable with the losses reported in earlier studies (Bernal et al., 

2009; Steiner et al., 2010). The high N losses were caused by the coexistence of a 

thermophilic phase (> 45 °C) with high NH4+ concentrations in the manure, which 

generated optimal conditions for ammonia volatilisation. In Chapter 5, I demonstrated 

that the addition of N-rich substrate (i.e. poultry manure) after the thermophilic phase 

reduced N losses by 20%. My results are in agreement with Bryndum (2014) who 

reported a 33% reduction in N losses due to delayed addition. When N-rich substrate 

was applied after the thermophilic phase, most added N was exposed to low 

temperatures (< 30 °C), which were less conducive to ammonia volatilisation. The 

majority of N was prone to NH3 volatilisation when all the N-rich substrate was added at 

the beginning. Dresbøll and Thorup-Kristensen (2005) did not observe a significant effect 

of delayed addition of N-rich substrate (i.e. clover) on N losses. The differences in NH4+ 

concentration between these materials (i.e. manure vs. clover) may explain the 

differential effect. Poultry manure contains high levels of NH4+, but clover contains 

mainly organic N. As a result, the effect of delayed addition is smaller because nitrogen 

has to be mineralised before it can volatilise. Moreover, the thermophilic phase lasted for 

more than three weeks in my study, but Dresbøll and Thorup-Kristensen (2005) observed 

a thermophilic phase that lasted for two weeks. As a result this and the larger fraction of 

organic N, NH3 volatilisation was higher in my study than in their experiment.  

High temperatures reduce N2O emissions because nitrifying and denitrifying 

bacteria are mesophilic (Vu et al., 2015). Consequently, high N2O production occurs after 

the thermophilic phase (Hao et al., 2004). Addition of N-rich substrate after the 

thermophilic phase therefore increased the accessibility of inorganic N (NH4+ and NO3-) 

for nitrifying and denitrifying bacteria, subsequently increasing N2O production. At the 

same time, delayed addition decreased CH4 emissions as a result of (i) the absence of 

high temperatures in conjunction with reduced available C and N for the methanogens 

and (ii) higher methane oxidation due to the similarity between enzymes involved in 

methane and ammonium oxidation (Wei et al., 2016).  

The main concern with delayed addition of N-rich substrate is whether the 

product is stable and free from pathogens and weed seeds because substrate added later 

has less time to decompose. In addition to sanitation concerns, compost stability is 

crucial because the application of unstable compost can impede crop growth (Wichuk 

http://www.sciencedirect.com/science/article/pii/S0960852404003669
http://www.sciencedirect.com/science/article/pii/S0960852404003669
http://www.sciencedirect.com/science/article/pii/S0960852404003669
http://www.sciencedirect.com/science/article/pii/S0960852404003669
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and McCartney, 2010). In my thesis, I demonstrate that delayed addition resulted in 

compost that was as stable and effective at completely eradicating weed seeds as 

traditional composting. Furthermore, the germination test confirmed that the composts 

produced by delayed addition were as mature as by the traditional composting method. 

My results indicated that farmers could reduce N losses and produce high-agronomic-

value compost simply by manipulating the timing of the addition of N-rich substrate. I 

manipulated the timing of the addition of N-rich substrate but in practice, however, 

different qualities of materials are added at different times during composting. Further 

studies are therefore needed to determine the effect of timing of addition of different 

quality materials on the composting process 

In Chapter 2, I showed that manure is used mainly for fuel in smallholder farming 

systems; hence it is plausible to challenge the applicability of delayed addition in 

smallholder farming systems. In Chapter 5, I deliberately used poultry manure because it 

has no or little competitive uses in Ethiopia. Furthermore, the management of poultry 

manure presents a challenge for many poultry production systems. The use of this N-rich 

substrate together with urban waste could therefore be one strategy for increasing the 

agronomic value of urban-waste compost. A link between poultry producers (or 

livestock producers) and urban-waste compost producers should be established in order 

to utilise the manure for urban-waste composting.         

 

Future research directions 

Efforts have been made throughout this thesis to illustrate possibilities for closing urban-

rural nutrient cycles through urban-waste composting. However research is still needed 

(1) to understand the socio-economic perspective of urban-waste composting and (2) to 

improve the nutrient content of urban-waste compost using low-cost technologies. 

Furthermore, I encountered limitations when conducting the experiments that are listed 

in this thesis. For instance, simple econometric models and a small group of farmers 

were used to estimate the current uses of agricultural waste and compost demand. 

Therefore, it is recommended that in the future a greater diversity of farming systems 

and a wider variety of econometrics approaches be used when assessing the pressure on 

agricultural waste and examining the demand for urban-waste compost.  

My composting experiments were conducted in small-scale reactors and the 

experiments (particularly vermicomposting) were conducted for less than 60 days. Care 

should therefore be taken when extrapolating the results to large-scale composting 

systems. Most of my experiments do not explain the mechanisms involved in how 

different treatments cause N losses and GHG emissions. In addition to this, some 

important parameters such as NH3 were not measured directly due to methodological 

challenges. I showed that earthworms reduce GHG emissions from composting; however 

exactly how this happened was not studied in any detail with regard to microbial 
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ecology and physiology. Furthermore, how delayed addition influences N2O and CH4 

emissions needs further clarification. For instance, I observed the second thermophilic 

period during delayed addition, but the advantage and/ or disadvantage of this phase 

need further investigation.  

Based on the results of my thesis, I recommend the following technical and 

socioeconomic research areas: 

 

1. How crop residues and animal manure can fulfil the future demand for both 

fuel/feed and soil amendment in smallholder farmers still presents a challenge and 

needs prompt solutions  

2. Not all compost worms are the same, hence the effect of different earthworm species 

on N losses, GHG emissions and composting process should be studied 

3. The link between compost stability, dissolved organic carbon (DOC) and DOC 

composition needs to be better established. Furthermore, the earthworms’ effect on 

DOC composition should be studied (i.e. earthworm abundance, earthworm species 

and substrate quality)  

4. The effect of the timing of N-rich substrate addition on GHG emissions is a new 

concept and future studies are recommended to understand the mechanisms.  

5. Studies that address the socioeconomic and cultural issues of urban-waste compost 

are needed, such as (i) a cost-benefit analysis of vermicomposting since continuous 

addition of substrate for earthworms might be labour intensive, (ii) how institutions 

should be organised to encourage their participation in urban-waste composting.  

6. Upscaling of vermicomposting and delayed addition of N-rich substrate is needed   

 

Conclusions  

The competition for agricultural waste between fuel, animal feed and soil amendments is 

a major reason behind the limited use of organic amendments to soils in smallholder 

farming systems. Hence technologies that fulfil the demands for feed, fuel and soil 

amendments are required. One single technology would not provide the solution; 

instead combinations of different technologies are needed. One option could be to use 

urban-waste compost as an alternative soil amendment, particularly in (peri-)urban 

farming systems. However, this technology would not be achieved without the 

involvement of different institutions because considerable investment is required before 

urban-waste could be utilised as a soil amendment. Many socioeconomic drivers (i.e. 

access to extension services and land tenure systems) influence the adoption of urban-

waste compost. It is therefore essential to improve existing policies, infrastructures and 

financial institutions to enable farmers to use urban-waste compost. 

Urban-waste compost has a low nutrient content, and high N losses and GHG 

emissions occur during the composting of N-rich materials. Efforts should be made to 
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increase the agronomic value of urban-waste compost and reduce GHG emissions using 

low-cost technologies. Vermicomposting is one strategy for reducing N losses and GHG 

emissions from small-scale composting. The effects of vermicomposting, however, 

depend on substrate quality (i.e. nitrogen content) and other factors (moisture, 

earthworm species and earthworm density). Hence, optimum management practices 

should be established to achieve the desired objectives of vermicomposting. Delayed 

addition of nitrogen-rich substrate is another option to reduce N losses from urban-waste 

composting without having a significant effect on total greenhouse gas emissions or 

compost stability. Although vermicomposting and delayed additions of nutrient-rich 

substrate are effective in producing high-quality compost, the promotion of these 

technologies and the creation of conducive conditions for their use by smallholder 

farmers still present major challenges that require the input of natural and social 

scientists, policy makers and farmers.  
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Summary 
 

Organic amendments (i.e., crop residues, manure and compost) maintain or increase soil 

organic matter contents and thereby contribute to enhanced fertiliser use efficiency. 

Despite the benefits of organic amendments, many smallholder farmers do not retain 

crop residues and manure on their farmlands. Hence, large amounts of nutrients and 

carbon are exported from agricultural lands to nearby markets and/or urban areas. At the 

same time, a large amount of biodegradable waste is produced in cities, and its 

management has become a major concern in developing countries - where waste 

management is hardly existing.  

My thesis is motivated by the lack of scientific evidence on (i) the socio-economic 

perspectives of urban-waste composting, (ii) low-cost technologies that improve the 

agronomic value of urban-waste compost, while reducing losses to the environment and 

mitigating climate change by reducing greenhouse gas (GHG) emissions. To address 

these issues, I conducted both socio-economic studies and composting experiments both 

in laboratory reactors and under field conditions. 

In Chapter 1, I provide an overview of previous studies conducted on the use of 

organic materials (both agricultural and urban waste) for soil amendment, and I list my 

hypotheses. In Chapter 2, I determined the current use of agricultural waste (i.e., crop 

residues and manure) under different urban and peri-urban farming systems. This 

chapter addresses the question Why do farmers retain no or insufficient agricultural waste on 

their farmlands? I interviewed 220 farmers in Addis Ababa, Ethiopia using standardised 

semi-structured questionnaires, and found that 85% of the crop residues were used for 

animal feed, and 80% of manure was used for fuel. Less than 10% of manure and/or crop 

residues are retained in the soil, indicating that the current use of agricultural residues 

result in an export of a large amount of nutrients and C from the croplands. Manure is a 

source of fuel even for urban dwellers. While this demand creates market opportunities 

and entices farmers to sell their manure (in the form of dung cake) to the nearby cities, it 

exacerbates carbon and nutrient fluxes from the country side to cities. I noted that 

farmers with market-oriented production systems allocate their agricultural waste 

mainly for soil amendment compared to resource-poor subsistence farmers. In addition 

to this, socio-economic variables such as land ownership, shortage of land and access to 

extension services influence the farmers’ decision to retain agricultural waste on their 

farmlands. I further expanded Chapter 2 to address the question: If urban waste is 

composted, is there a demand from (peri-urban) farmers? I assessed the demand for urban-

waste compost (operationalised as farmers willingness to pay and / or to contribute 

labour for urban-waste compost), and found that 60% of the farmers were willing to pay 

and / or to contribute labour for urban-waste composting. Education, distance of the 

farmland from the city, land tenure status, experience with compost, and access to 

extension services explained the variation in willingness to pay for or contribute to the 
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acquisition of compost. My findings in Chapter 2 indicate that competition for 

agricultural waste between fuel, feed and soil causes nutrient mining and organic matter 

losses from agricultural land; hence, urban-waste compost is an alternative option to 

close this loop. But urban-waste composting cannot be achieved without the 

involvement of different institutions and needs improvement of the existing policies, 

infrastructure and financial institutions.   

Even though urban-waste compost has been suggested for soil amendment, a 

large amount of N losses and GHG emissions occur during composting of N-rich urban 

waste, which consequently reduce the fertilising value of urban-waste compost and 

contribute to climate change. The high temperatures during composting are the main 

drivers for N losses. Chapter 3 is therefore initiated to evaluate the effectiveness of 

earthworm composting (vermicomposting) – a mesophilic (< 30 °C) composting 

technique - to reduce N losses and GHG emissions. I demonstrated that 

vermicomposting decreased total N losses by 20% compared with thermophilic 

composting. The existing reports on the effect of earthworms on GHG emissions are 

contradictory. Hence, Chapters 3 used substrates of different quality (as assessed by C:N 

ratio and the presence of a labile C pool) and manipulated several variables (moisture 

content and earthworm density) to clarify our understanding on the effect of earthworms 

on GHG emissions during composting. I noted that earthworms decreased N2O 

emissions during composting, but the earthworms effect varied between substrate 

quality, earthworm density and feeding ratio. Higher earthworm density increased N2O 

emissions during vermicomposting. My findings suggested that different species of 

epigeic earthworms could result in different N2O emissions. Earthworms decreased CH4 

emissions from composting, and this observation was consistently found in all 

experiments. Earthworms increased CO2 emissions, and this observation was also 

consistent in all experiments. Higher CO2 evolution indicates a greater degree of 

stabilisation of the compost, and it should be noted that in the end all composts are likely 

of similar stability as more CO2 might escape after application of the thermophilic 

compost to the field. Hence, I decided to exclude CO2 emissions from the total GHG 

budget. When CO2 emission is excluded from GHG emissions, vermicomposting reduces 

GHG emissions compared with non-earthworm treatments (thermophilic composting). 

However, total GHG emissions are higher from vermicomposting than from 

thermophilic composting when CO2 is included in the balance.  

Low levels of N in urban-waste compost, particularly in (sub-)tropical countries 

has been observed, which negatively impacts the agronomic value of compost from a soil 

fertility perspective. Composting of (N-poor) urban waste together with N-rich materials 

such as manure is commonly used to increase the N content of the final compost. This 

practice, however, results in a significant NH3 volatilisation due to the combination of 

high temperatures during the thermophilic phase and high NH4+ concentration in the N-

rich substrate. Chapter 4 addresses the question: Does the addition of N-rich substrate after 
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the thermophilic phase reduce N losses? I conducted a 90 days composting experiment using 

N-poor urban waste materials and poultry manure as N-rich substrate. Delayed addition 

reduced nitrogen losses by 9-20% compared with traditional composting method. 

Furthermore, I tested whether delayed addition influences N2O and CH4 emissions, and 

noted that delayed addition increased N2O emissions by 400-600%, but decreased CH4 

emissions by 50%. In all, delayed addition had only a marginal effect (P = 0.06) on total 

non-CO2 GHG emissions. I also confirmed that delayed addition resulted in compost that 

was as stable and effective at completely eradicating weed seeds as single addition. 

Hence, I conclude that delayed addition is one option for increasing the fertilising value 

of urban-waste compost without having a significant effect on total greenhouse gas 

emissions or compost stability. 

Because higher CO2 emissions indicates a higher degree of stabilisation, I initiated 

Chapter 5 to link the observed effect of earthworms on CO2 emissions with additional 

and potentially more reliable indices of compost stability such as dissolved organic 

carbon (DOC) quantity and its composition (humic acid, fulvic acid, hydrophobic 

neutral, and hydrophilic compounds) – which was a recently proposed indicator of 

compost stability. Earthworms showed a lowering of the contents of DOC and its various 

fractions compared with non-earthworm treatments, which is a consequence of higher 

compost stability. I noted that humic acid fraction was depleted more quickly than the 

other hydrophobic compounds, confirming that it is degraded during composting. I 

expanded of Chapter 5 to address the effect of feeding ratio – the ratio of earthworms to 

the amount of substrate added – on compost stability. The optimum feeding ratio 

decreased DOC quantity and its composition compared with higher ratio, which 

confirms higher stability under optimum feeding. My findings indicate that earthworms 

accelerate the stabilisation of organic materials, and measurement of DOC components 

provides greater insight about compost stability. Moreover, feeding ratio should be 

considered when assessing the effect of earthworms on stabilisation of biodegradable 

waste. In the general discussion (Chapter 6), I synthesised my findings and emphasised 

on the challenges to increase soil fertility and sustain crop production in developing 

countries, and the opportunities to utilise urban-waste as soil amendment. 

Recommendations for future research directions were also included in this chapter. 

Finally, I suggested that biodegradable urban waste should be considered as alternative 

source for soil amendment. Technologies such as vermicomposting and delayed addition 

of N-rich substrate are recommended to reduce N losses and mitigate GHG emissions.



Sammenfatning 
 

134 

 

Sammenfatning 

 
Organiske jordforbedringsmidler (f.eks. afgrøderester, husdyrgødning og kompost) 

opretholder eller øger jordens indhold af organisk stof og medvirker hermed til at en 

øget udnyttelseseffektivitet af gødning. På trods af fordelene ved de organiske 

jordforbedringsmidler fastholder mange husmænd ikke afgrøderester og husdyrgødning 

på deres marker. Dermed bliver store mængder af næring og kulstof eksporteret fra 

landbrugsområder til nærliggende markeder og/eller byområder. Samtidig bliver der 

produceret store mænger biologisk nedbrydeligt affald i byerne og håndteringen af dette 

affald er blevet et betydeligt problem in udviklingslande – hvor affaldshåndtering er så 

godt som ikke-eksisterende. 

 Min afhandling er motiveret af fraværet af videnskabelig evidens vedrørende (i) 

de socio-økonomiske perspektiver af kompostering af byaffald, (ii) billige teknologier der 

forbedrer den agronomiske værdi af byaffaldskompost samtidig med at de kan reducere 

tabet til miljøet og afbøde klimaforandring gennem en reduktion af udledning af 

drivhusgasser (GHG). For at adressere disse spørgsmål udførte jeg både 

socioøkonomiske studier og komposteringsforsøg – både i laboratorieskala og under 

markforhold. 

 I Kapitel 1 giver jeg et overblik over tidligere studier af brugen af organiske 

restprodukter (både fra landbruget og i form af byaffald) som jordforbedringsmiddel og 

jeg oplister mine hypoteser. I Kapitel 2 undersøger jeg den nuværende anvendelse af 

landbrugsaffald (afgrøderester og husdyrgødning) i forskellige landbrugssystemer i byer 

og bynære områder. Dette kapitel adresserer spørgsmålet Hvorfor sker det kun i 

utilstrækkelig grad eller slet ikke, at bønder fastholder landbrugsaffald på deres jord?  

Jeg interviewede 220 bønder i Addis Ababa, Etiopien vha. standardiserede, 

semistrukturerede spørgeskemaer og fandt, at 85% af afgrøderesterne blev anvendt til 

dyrefoder og at 80% af husdyrgødningen blev anvendt til brændsel. Mindre end 10% af 

husdyrgødningen og/eller afgrøderesterne blev fasthold i jorden hvilket indikerer at den 

nuværenden anvendelse af landbrugsrestprodukter resulterer i en eksport af store 

mængder af næringsstoffer og kulstof fra de dyrkede arealer. Husdyrgødning er en kilde 

til brændsel selv for byboere. Mens denne efterspørgsel medfører handelsmuligheder og 

ansporer bønder til at sælge deres husdyrgødning (i form af møgkager) til de 

nærliggende byer, forstærker denne efterspørgsel også transporten af kulstof of 

næringsstoffer fra landet til byerne. Jeg noterede mig, at landbrugere med 

markedsorienterede produktionssystemer primært allokerer deres langbrugsaffald til 

jordtilsætning i sammenligning med ressourcesvage subsistenslandbrugere. Derudover 

påvirker socioøkonomiske faktorer såsom ejerskab til jord, knaphed på jord og adgang til 

rådgivningstjenester langbrugernes beslutning om at fastholde langbrugsaffald på deres 
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jord. I kapitel 2 adresserede jeg endvidere spørgsmålet: Hvis byaffald bliver 

komposteret, er der så en efterspørgsel fra (bynære) landbrugere? Jeg vurderede 

efterspørgslen efter byaffaldskompost (operationaliseret som landbrugernes villighed til 

at betale og/eller til at bidrage med arbejdskraft i bytte for byaffaldskompost) og fandt at 

60% af landbrugerne var villige til at betale og/eller bidrage med arbejdskraft til 

kompostering af byaffald. Uddannelse, afstand fra markerne til byen, ejendomsretten til 

jorden, erfaring med kompost og adgang til rådgivning forklarede variationen i 

villigheden til at betale for eller bidrage til erhvervelsen kompost. Mine fund i kapitel 2 

indikerer at konkurrence om landbrugsaffald mellem brændsel, foder og jorden 

medfører udpining og tab af organisk stof i landbrugsjorderne; deraf følger det, at 

byaffaldskompost udgør et alternativ mulighed for at lukke denne løkke. Men 

kompostering af byaffald kan ikke opnås uden involvering af forskellige institutioner og 

afhænger af forbedringer af eksisterende politikker, infrastruktur og finansielle 

institutioner. 

 Selvom kompost lavet af byaffald er blevet foreslået som jordforbedringsmiddel 

sker der et stort tab af N og emission af drivhusgasser under komposteringen af N-rigt 

byaffald hvilket igen fører til en reduktion i gødningsværdien af byaffaldskomposten og 

medvirker til klimaforandringer. De høje temperaturer under kompostering en den 

primære drivkraft bag N-tabet. Derfor undersøger jeg i Kapitel 3 potentialet af 

kompostering vha. regnorme (ormekompostering) - en mesofil (< 30oC) 

komposteringsteknik – til at reducere kvælstoftab og emissioner af drivhusgasser. Jeg 

demonstrerede at ormekompostering nedsatte det totale kvælstoftab med 20% 

sammenlignet med termofil kompostering. De eksisterende studier af effekten af 

regnorme på drivhusgasudledninger er modstridende. For at øge vores forståelse af 

effekten af regnorme på udledningerne af drivhusgasser anvendte jeg derfor i Kapitel 3 

substrater af forskellig kvalitet (bedømt ud fra C:N ratio og tilstedeværelsen af en 

letnedbrydelig C pulje) og manipulerede forskellige variable (vandindhold og tætheden 

af regnorme). Jeg observerede at regnormene sænkede N2O-udledningerne under 

kompostering, men effekten af regnorme varierede afhængig af substratkvalitet, tæthed 

af regnorme og forholdet mellem regnorme og foder (fodringsforholdet). En øgning i 

regnormstætheden medførte en øgning i N2O-emmisionerne under ormekompostering. 

Mine resultater antyder, at forskellige arter af epigæiske regnorme kan medføre 

forskellige niveauer af N2O-emmission. Regnorme førte til et fald i CH4-udledningen fra 

kompostering og denne observation var konsistent på tværs af alle udførte forsøg. 

Regnorme øgede CO2-emmisionerne og denne observation var også konsistent på tværs 

af alle udførte forsøg. En højere CO2-udledning indikerer en højere grad af stabilisering 

af komposten, og det bør noteres, at det må forventes at alle kompost-typer i sidste ende 

sandsynligvis har en lignende stabilitet idet mere CO2 kan tænkes at blive frigivet efter 

udbringning af den termofile kompost på marken. Derfor besluttede jeg mig for at 

udelade CO2 fra det samlede drivhusgasbudget. Når CO2-udledningerne udelades fra 
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drivhusgasudledningerne, medfører ormekompostering en reduktion den totale 

udledning af drivhusgasser i sammenligning med den termofile kompostering. 

Imidlertid er den totale udledning af drivhusgasser højere fra ormekompostering end fra 

termofil kompostering når CO2 inkluderes i regnestykket. 

 Lave kvælstofniveauer i byaffaldskompost, som især er blevet observeret (sub-

)tropiske lande, påvirker den agronomiske værdi af komposten i negativ retning. 

Kompostering af (N-fattigt) byaffald sammen med N-rige materialer såsom 

husdyrgødning er en ofte anvendt teknik til at øge N-indholdet i den færdige kompost. 

Denne praksis medfører dog også en betragtelig NH3-fordampning på grund af 

kombinationen af de høje temperaturer i den termofile fase og høje NH4+-

koncentrationer i det N-rige substrat. Kapitel 4 adresserer spørgsmålet: Fører en 

forsinkelse i tilsætningen af det N-rige substrat til efter den termofile fase til en reduktion 

i kvælstoftabene? Jeg udførte et 90 dage langt komposteringsforsøg med N-fattige 

byaffaldsprodukter og N-rigt kyllingemøg. En forsinket tilsætning af kyllingemøget 

reducerede kvælstoftabene med 9-20% sammenlignet med den traditionelle 

komposteringsmetode. Endvidere testede jeg hvorvidt forsinket tilsætning påvirkede 

udledningerne af N2O og CH4, og noterede at forsinket tilsætning øgede N2O-

udledningerne med 400-600%, men sænkede CH4-udledningerne med 50%. Alt i alt 

havde forsinket tilsætning kun en marginal effekt (P = 0,06) på udledningerne af 

drivhusgasser fraregnet CO2. Jeg bekræftede, at forsinket tilsætning var lige så effektiv 

til at udrydde ukrudtsfrø og resulterede i en kompost der var lige så stabil og effektiv 

som den traditionelle metode med en enkelt tilsætning. Jeg konkluderer derfor at 

forsinket tilsætning giver mulighed for at øge gødningsværdien af byaffaldskompost 

uden at have en signifikant effekt på de totale udledninger af drivhusgasser eller 

stabiliteten af komposten. 

 Idet en højere CO2-udledning indikerer en højere grad af stabilisering påbegyndte 

jeg kapitel 5 for at linke de observerede effekter af regnorme på CO2-udleningerne til 

supplerende og potentielt mere pålidelige tal for kompoststabilitet såsom mængden af 

opløst organisk kulstof (DOC), og dettes sammensætning (humussyre, fulvussyre, 

hydrofobe neutrale og hydrofile stoffer), som for nylig er blevet foreslået som indikator 

for kompoststabilitet. Jeg noterede mig, at humussyrefraktionen blev udtømt hurtigere 

end de øvrige hydrofobe stoffer, hvilket bekræfter at den nedbrydes under 

kompostering. Jeg gik videre i kapitel 5 for at adressere effekten af fodringsforholdet på 

stabiliteten af kompost. Det optimale forhold sænkede mængden af DOC og medførte en 

ændring i sammensætningen af DOC i sammenligning med et højere forhold. Mine 

resultater indikerer at regnorme accelerer stabiliseringen af de organiske materialer og at 

målinger af DOC-komponenter giver større indsigt vedrørende kompoststabilitet. 

Endvidere bør fodringsforholdet tages med i betragtning, når man undersøger effekten 

af regnorme på stabilisering af biologisk nedbrydeligt materiale.  
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 I den generelle diskussion (kapitel 6) syntetiserede jeg mine resultater og 

fremhævede de udfordringer der er i forbindelse med at øge jordfrugtbarhed og 

opretbolde afgrødeproduktion i udviklingslande og de muligheder der eksisterer for at 

anvende byaffald som et jordforbedringsmiddel. Anbefalinger til fremtidig forskning 

blev også inkluderet i dette kapitel. Endelig foreslog jeg, at biologisk nedbrydeligt 

byaffald burde blive anset for at være et alternativ som jordforbedringsmiddel. 

Teknologier såsom ormekompostering og forsinket tilsætning af N-rige substrater 

anbefales for at reducere N-tab og afbøde drivhusgasudledninger. 
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