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1 Abstract

Colloidal glasses are often made by using size polydispersity or a binary mixture
of sizes, though the effects of these size disparities on the colloidal glass transi-
tion are not yet completely understood. We use contrast variation multispeckle
diffusing wave spectroscopy to analyse the effect of size ratio on particle dynam-
ics near the binary glass transition. We find that both for long and short time
relaxation the dynamics of the small particles either complete decouple from
the large ones, moving freely through a glassy matrix, or are identical to the
dynamics of the larger particles. For a size ratio of 0.35, we find a single glass
transition for both particle populations and do not observe a predicted double
glass transition.

2 Introduction

The changes in the dynamics of supercooled liquids approaching the glass tran-
sition has been one of the most researched, yet least understood phenomena.
Whereas the liquid-crystal transition gives rise to clear changes in both struc-
ture and shear modulus; the liquid-glass transition is characterised by changes
in shear modulus and a lack of any major structural changes. Binary glasses,
consisting of two particle populations which differ in size, in particular have
gained much attention over the last decade because of their application in bulk
metallic glasses (BMGs). New types of binary BMGs have garnered attention
from a material science point of view because of their high tensile strength, cor-
rosion resistance, good processing ability paired with densities lower than their
crystallised counterparts. [6] [27]

Mode coupling theory (MCT) has been used to predict dynamical behaviour
of colloids approaching the glass transition, though it deviates from experiment
close to the transition point. [3] [4] [16] The study of colloidal glasses is hin-
dered by the fact that samples consisting of purely monodisperse particles will
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crystalize within experimental timescales. This problem is generally circum-
vented either by increasing the size polydispersity of the particles [4] [8] [7] or
by mixing two distinct particle populations of different sizes. [23] The effect of
this non-monodispersity in size on the particle behaviour near the colloidal glass
transition has been glossed over for a long time. [4] [7]

Simulations on the effects of polydsipersity [29] and binary mixtures [26]
have been performed in recent years. In these simulations a decoupling of the
dynamics of the smallest and largest particles of polydisperse hard spheres was
observed and it was argued that polydispersity might cause the glass transi-
tion to be smeared out; the large particles arresting at lower packing fractions
than the smaller ones. Simulations for a binary mixture of long range repulsive
colloids have shown that the dynamics of the small particles either completely
decouple or show a precursor of a double glass transition where the small parti-
cles arrest at higher packing fraction. [26] The effect of the size ratio between the
particle populations in binary mixtures on the glass transition and this double
transition scenario has not yet been resolved so far.

Unravelling this effect would be of great significance as it provides us with
insight into the formation of binary BMGs and helps devise predictive models
for the properties which specific alloys might provide. Furthermore, it will shed
light on the effect of size dispersity on glassy dynamics and the process of vit-
rification.

One of the challenges when analysing colloidal glasses is that the particles
undergo both very fast and very slow dynamics. The typical fast dynamics
are caused by small movements of individual particles that do not change the
structure as a whole (β-relaxation or cage rattling), while the slow dynamics
are caused by larger movements where particles leave the cage that is formed by
its surrounding particles (α-relaxation or ’cage breaking’). The analysis meth-
ods that are generally used are eiter either microscopy [5] [10] [22] [28] [8] or
light scattering techniques. [24] [15] [7] While confocal microscopy offers the
ability to visualize individual particles and allows for clear discrimination be-
tween different particle populations, generating sufficient statistics proves to be
difficult. Furthermore, this technique often fails to access both fast timescales
(< 10−3 s) due to image capturing speed limitations and long timescales (≥ 102

s) due to the enormous amounts of data generated. This hinders the ability of
this technique to adequately capture both the fast β- and slow α-relaxation.
Light scattering techniques like diffusing wave spectroscopy (DWS) do not suf-
fer from poor statistics as the light samples many particles as it traverses the
suspension. [25] A downside of light scattering techniques is that the distinction
between different particle populations is lost, a distinction that is essential when
analysing binary mixtures.

We solve this problem of light scattering by using contrast variation. By us-
ing poly(N-isopropylacrylamide) (PNIPAM) microgels with an refractive index

2



that is very close to that of the aqueous medium (nw = 1.330 [17]) while the
other set of particles are highly scattering polystyrene (PS) particles (nPS = 1.6
[11]) we ensure that the scattered light only ’sees’ one particle population. Ap-
plying the dual detection technique of multispeckle diffusing wave spectroscopy
(MSDWS) allows us to analyse concentrated, highly scattering samples [15] and
reach over seven decades of detection timescales [9] [19], enough to visualize
both the α and β decays of these glassy samples.

By varying the only the size of low concentration PS tracers in a microgel
matrix we investigate both the short and long time dynamics for the glass tran-
sition of binary mixtures for different size ratios SR = rPS

rmicrogel
. We find that

the dynamics of binary glasses follow one of two types of behaviours: for small
size ratio (SR = 0.20) the dynamics of the small particles are completely decou-
pled from the larger microgel matrix both for short and long timescales, showing
only hindered difusion, while intermediate to large sized tracers of SR = 0.37
and SR = 1.44 show identical dynamics to the microgel matrix. No double
transition is observed where separate particle populations experience the glass
transition at different packing fractions.

3 Materials and Methods

3.1 Particle system

We prepare Poly(N-isopropylacrylamide) (PNIPAM) particles with a radius of
0.9 µm according to. [13] The microgels are suspended in a 1 mM NaOH so-
lution in order to swell them and drastically decrease their size dependence on
temperature. Next, we concentrate the microgels by centrifuging at 25000 g for
5 hours. Two sets of polystyrene (PS) particles with respective radii a = 0.18
and 0.33 µm are made using emulsion polymerisation [2] and a set with a raidus
of 1.3 µm is prepared using dispersion polymerisation. [14] We wash the PS
particles by repeated centrifugation and resuspension steps in a 1 mM NaOH
solution. Three separate mixtures of the microgels and each of the PS popula-
tions are prepared to gain a final PS volume fraction of φ = 0.01 and and a high
microgel packing fraction ζ > 1. Dilution ranges for the microgels are prepared
while keeping the PS volume fraction constant.

3.2 Multispecle Diffusing Wave Spectroscopy

3.2.1 Experimental Setup

As the dynamics of glasses involves of both fast β-relaxation, cage rattling,
and slow α-relaxation, cage breaking, a measurement setup is needed that can
probe a wide range of time scales. We therefore use the MSDWS setup shown
in Figure 1, employing dual detection. This setup allows us to probe both short
timescales using a photomultiplier tube (PMT) detector and long timescales
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using a charged coupled device (CCD) camera. [25]

Figure 1: The dual cell MSDWS experimental setup consisting of a laser (L), a
wave plate (WP), a polarizing beam splitter (P-BS), a beam dump (BD), two
mirrors (M), a beam expander (BE), two diaphragms (D), the sample of interest
(S), an infinity corrected objective (O), a non-polarizing beam splitter (NP-BS),
a CCD camera, a second cell reference sample and a PMT detector.

This MSDWS setup uses a Cobolt SambaTM laser; a λ = 532 nm diode-
pumped solid-state laser with a maximum output power of 1.5 W . We tune the
effective power that is experienced by the sample by remotely rotating a 1/2 λ
wave plate. Changing the laser polarization allows us to tune the percentage
of laser power that is diverted by a polarizing beam splitter cube away from
the sample and into a beam dump. The remaining beam is subsequently ex-
panded by a beam expanded to a diameter of 1.5 cm. The laser intensity drops
near the edge of the expanded beam so we place a diaphragm with a diameter
of 1.3 cm in front of the sample to ensure uniform exposure. A 2x Mitutoyo
infinity-corrected objective, placed in such a way that the edge of the sample
is located in the focal point, collimates the scattered light onto a 50-50 non-
polarizing beam splitter. Half of the light passes through another diaphragm
and is detected by a FasttechTM charge coupled device camera. The camera is
placed a distance d behind the second diaphragm. The other half of the light
intensity is projected onto a second, purely diffusive scattering sample, this is
needed to ensure ergodicity of the signal. [19] [9] The secondarily scattered light
is detected by a PMT detector. The entire setup is encased in anodized black
steel to block stray light.
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The high max output power of the laser ensures that we can analyse even
highly scattering samples. In order to ensure laser stability for samples that
require illumination with a much lower laser power, a 1/2 λ wave plate and
polarizing beam splitter allow us to keep the laser output consistent for all mea-
surements at 1.3 W while tuning the percentage of laser power that reaches
the sample. The camera captures 127x128 pixels sized frames at 500 fps. For
every sample we determine the appropriate effective laser power that uses the
dynamic range of the camera to its fullest without pixels exceeding the maxi-
mum intensity. This generally falls within the range of 270-325 mW.

PMT detection gives reliable data at very fast time scales (≥ 10−3 ms). For
long time scales the time needed to gather ample statistics increases exponen-
tially, imposing practical limitations on measuring slow dynamics. The CCD
camera can detect many speckles simultaneously, each pixel effectively acting
as a separate correlator. This way the ensemble average is obtained in a single
frame instead of needing to average over time.

The size of the speckles on the CCD camera is determined by

s = dλ/a (1)

where s is the speckle size, d is the distance between the diaphragm and the
CCD camera, λ is the wavelength of the laser and a is the diaphragm diameter.
The speckle size should be tuned to make sure that speckles are small enough to
yield as much statistics as possible but not so small that the signal for a single
pixel contains the information of multiple speckles. For our experiments we set
d = 15 cm and a = 2 mm, yielding a speckle size of 40 µm. The speckle size
in pixels can also be determined empirically by calculating the spatial intensity
autocorrelation function

C(p) =
< IiIi+p >i
< I2i >i

(2)

over all the pixels in a frame. Where Ii is the measured intensity of pixel i, Ii+p
is the measured intensity of a pixel which is a distance p removed from pixel
Ii. The speckle size is defined as the position of the first minimum in Equation
2. The calculated speckle size for the conditions used in our measurements is 6
pixels.

3.2.2 Data processing

In order to extract information from the camera images, we calculate the ensemble-
averaged, temporal autocorrelation function of the measured intensities using

g2(t, t0) =
< Ii(t0)Ii(t0 + t) >i

< Ii(t0) >i< Ii(t0 + t) >i
(3)

where Ii(t0) is the intensity of a pixel at the starting time t0. Unlike in con-
ventional, PMT detected g2(t0, t), we acquire the ensemble average over pixels
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instead of over different t0.
The measured autocorrelation function g2(t) can be converted into the field
autocorrelation function g1(t) using the Siegert relation [20]

g1(t) = β
√
g2(t)− 1 (4)

where β is a setup dependent coefficient. We find that the timescale of the
camera measurements is limited by slow vibrations in the setup. Temporal
autocorrelation curves of a static glass frit show partial or complete decorrelation
at timescales typically in the order of 105-106 ms. We therefore cut off the
camera data at 3 · 104 ms.
PMT detection assumes that the detected signal originates from an ergodic
source. The two-cell technique allows us to measure nonergodic samples such
as glasses. [19] [9] If light is scattered by a nonergodic and an ergodic sample
sequentially the overall signal will be ergodic. The measured correlation function
gM2 (t)− 1 is a the product of the correlation functions of the sample of interest
gS2 (t)− 1 and a reference sample in the second cell gR2 (t)− 1.

gM2 (t)− 1 =
(
gS2 (t)− 1

)(
gR2 (t)− 1

)
(5)

However, this means that as soon as the correlation of the reference sample has
decayed to zero, no more data on the sample of interest can be acquired. It
is therefore of importance that the reference sample decays slowly. We use a
φ = 0.01 suspension of PS with a radius of 1 µm in glycerol in a cell thick-
ness of 2 mm. This sample decorrelates in the time frame of 40-100 ms so we
cut off our PMT data at 30 ms. Combined with the frame rate of the cam-
era of 500 fps this gives us a region of 2-30 ms where the techniques overlap.
This overlap is used to determine the β value from the Siegert relation for the
camera detection. This β varies between samples, in part because the effective
laser intensity is varied between samples. For every sample a β value was found
that gave excellent agreement between the camera and PMT data in the overlap.

Combining different detection techniques allows us to measure correlations
reliably on timescales ranging from 10−3 to 104 ms.

4 Results and Discussion

Through contrast variation we can follow the dynamics of a single population
of particles exclusively. As swollen PNIPAM microgels contain >95% water,
their refractive index matches that of the aquous medium (nw = 1.33) very
well, whereas the PS particles show a clear index mismatch (nPS = 1.6). This
allows us to measure how the dynamics of the PS tracers of different sizes are
effected microgel matrix approaching the glass transition. We first examine the
dynamics of both the limits of large (1.44) and small (0.20) size ratios in or-
der to obtain references for both strongly coupled dynamics for large tracers
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and completely decoupled dynamics small tracers. Next we investigate how this
compare to the dynamics of at intermediate size ratio of 0.37.

In order to determine the dynamics of the microgel matrix, we first mea-
sure the decorrelation function g2(t)− 1 of a binary mixture of microgel matrix
and PS with SR = 1.44, for a wide range of microgel packing fractions ζ. For
ζ ≥ 0.76 the g2(t) − 1 shows a partial decay on short timescales to a plateau
value followed by a full decay from the plateau value to zero on long timescales.
As ζ is lowered the plateau value decreases as do the decays for both long and
short timescales. For ζ < 0.76 the plateau and second decay disappear alto-
gether and the correlation curve reduces to a single, full decay.

We fit g2(t)− 1 to either

g2(t)− 1 = e
t
τ2∗

γ

(6)

if it shows full decorrelation in a single decay, or

g2(t)− 1 = de(
t
τ1∗ )

γ1 − (1− d)e(
t
τ2∗ )

γ2

(7)

if it shows a two-step decay separated by a plateau. Here (1− d) is the plateau
height for τ1∗ < τ2∗ and the γ are stretch exponentials. We expect sub-diffusive,
γ < 1, behaviour for our more concentrated samples, as diffusion of the PS par-
ticles is inherently hindered by the matrix.

τ1∗ and τ1∗ are the characteristic decay times of the autocorrelation func-
tions in equations 6 and 7. Unlike other scattering techniques like dynamic light
scattering, the measured characteristic decay time does not equal that of the
sample. Because the light is scattered many times before being detected, the
measured decay time depends both on the sample thickness L and the mean
free path l∗ of the photons, which is the length over which the direction of the
light is randomized. These parameters are related through τ∗ = ( l∗L )2τ [15],
where τ is the delay time of the particles.

In order to determine l∗ for every sample S, we relate it to a reference sample
R with a known l∗ through

lS∗
IS

=
lR∗
IR

(8)

where I is the transmittance intensity. Equation 8 only applies if effective laser
power and L are kept constant. lR∗ is determined by fitting the g1(t) for four
measurements with different values of L to equation 16.39b of reference [15].

The occurrence of a double decay is to be expected for supercooled liquid
and glassy samples because of their short time cage rattling dynamics (β-decay)
and long time cage breaking dynamics (α-decay). For liquid samples we would
expect only a single decay as the particles move more freely and every movement

7



is essentially cage breaking. Therefore when analysing the liquid-glass transition
we are interested mainly in the cage breaking dynamics. Figure 2 (red triangles)
shows the ζ dependence of τ

τ0
, where τ0 is the decay time for the PS particles

in the diluted limit.

Figure 2: Relative relaxation times τ
τ0

for polystyrene particles at constant
φPS = 0.01 in a matrix of PNIPAM microgels versus the packing fraction ζ of
the microgels for PS:PNIPAM size ratios of 1.44 (triangles), 0.33 (squares) and
0.20 (circles). A Vogel-Fulcher-Tammann fit (Equation 9) of the data for the
1.44 size ratio is shown (solid line) for the parameters A = 0.7 and ζ0 = 0.97.

For a size ratio of 1.44, this dependence is described very well by the Vogel-
Fulcher-Tammann (VFT) equation

τ

τ0
= e

Aζ
ζ0−ζ (9)

Equation 9 is an empirical function that holds for both the molecular [1] [12] and
colloidal [4] glass transitions. For our fit we find A = 0.7 and ζ0 = 0.97. We de-
fine that the glass transition occurs at ζg where

τζg
τ0

= 106, resulting in ζg = 0.92.

Though we observe that the PS particles experience a glass transition they
cannot form a glass by themselves as φPS is far too low. As SR > 1 the PS
particles will only arrest if the microgel matrix does. Although the system is
binary, the dynamics we observe are shared by both particle populations. We
have therefore indirectly determined the dynamics of the microgels approaching
glass transition. This gives us a good reference to compare the dynamics of
other size ratios. The dynamics of the microgels are not be significantly influ-
enced by the size ratio as the number of PS tracers is very small compared to
the microgels.

8



Next we repeat the experiments and analysis for SR = 0.20. Even at ζ > 1,
the correlation function g2(t) − 1 decays fully in a single, fast decay and τ

τ0
varies only a single decade with increasing ζ (blue circles in Figure 2). Even
though the microgels will still form a glass at ζ = 0.92, the small PS particles do
not experience a glass transition at all and are barely hindered by the microgel
glass. The two particle populations are completely decoupled.

When considering the geometry of small spheres moving through a matrix
of larger spheres, this decoupling makes perfect sense. When considering the
most closely packed system of spheres, the smallest openings can be compared
to three touching circles. A sphere of with a size ratio of 0.15 compared to the
larger ones will still be able to move through these openings. As our glasses are
made up of randomly packed spheres, rather than closely packed, the openings
will on average be bigger. It is therefore plausible that at a size ratio of 0.20
the small particles can move almost diffusively inside a disordered matrix of the
large particle population.

The interesting regime is at intermediate size ratios where the particles are
significantly smaller than the large particles but large enough as to not diffuse
freely through a random close packed matrix of the large particles. Simulations
have predicted a double transition in this regime, where the small particles ar-
rest at higher ζ than the large ones. We evaluate this regime using SR = 0.20
and observe that the correlation curves resemble those at SR = 1.44; a single,
full decay at low concentrations and a plateau separated double decay at high
concentrations. When we consider the dependence of τ

τ0
on ζ (green squares in

Figure 2) we notice that it overlaps within experimental margins with the VFT
fit for the SR = 1.44 scenario. This indicates that is no difference in the long
time dynamics between binary mixtures of size ratios 1.44 and 0.37.

This finding, a single glass transition at a size ratio of 0.37 contradicts earlier
simulations [26]. There, a clear decoupling of the motions of the small and large
particles was found for a size ratio of 0.35. This disparity between simulation
and experiment can be explained by the simulated repulsive interactions and
the volume regulation of the microgels. The PNIPAM microgels do not display
the long range repulsion that was simulated by Voigtmann and Horbach. Fur-
thermore, we have previously proposed a model for soft colloidal glasses which
considers the osmotic shrinkage of microgels at high ζ. As the PS tracer par-
ticles do not display this osmotic shrinkage, the effective volume ratio that is
experienced by the tracer particles will be higher than the 0.37 at low ζ. This
size regulation effect was not considered in the simulation in REF x. It is inter-
esting to note that while both type of particles are generally considered ’soft’,
they display very different behaviours at this size ratio.

So far, we have only looked at the particle dynamics at long timescales.
However, recent publications have argued that when considering liquid dynam-
ics, both long time (diffusional) and and short time (vibrational) motions are
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important. [21] We can extract the short time dynamics of our system from
our correlation curves as well by converting g2(t)− 1 to g1(t) using the Siegert
relation in Equation 4. The mean squared displacement (MSD) < ∆r2 > of our
tracer particles can be determined from g1(t) by performing a numerical inver-
sion of equation 4 from reference [18], provided g1(t) has not yet fully decayed.

Figure 3: The mean square displacement < ∆r2 > of Polystyrene tracers inside
a PNIPAM microgel matrix for PS:PNIPAM size ratios of 1.44 (triangles), 0.33
(squares) and 0.20 (circles) near the microgel glass transition (ζ = 0.84 for size
ratios 0.33 and 0.2 and ζ = 0.85 for size ratio 1.44).

The < ∆r2 > of the systems with size ratios of 1.44 and 0.33 show very sim-
ilar behaviour near the microgel glass transition (ζ = 0.95), exhibiting a caging
plateau at approximately the same height, whereas the system with a size ratio
of 0.20 does not show a caging plateau at all. This behaviour, shown in Figure
3, indicates that the small particles for SR = 0.20 do not feel the matrix at all
on short timescales.

The caging plateaus in the MSD give us the localisation lenghts δ of the
PS particles by taking the square root of the value of < ∆r2 > at the plateau.
For SR = 1.44 and SR = 0.33 the δ are equal within experimental margins for
all measured ζ as is shown in Figure 4. This shows that while there is a clear
bifurcation of the short time dynamics in glasses with a size ratio of 0.20, glasses
with size ratios of 0.33 and 1.44 only show a single dynamical population.

5 Conclusions

We have found that there are two regimes for particle dynamics in binary col-
loidal suspensions approaching the glass transition. For a very large size dis-
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Figure 4: The localisation length of PS particles in a microgels with size ratios
of 1.44 (circles), 0.33 (squares) show identical behaviour. No localisation lengths
could be determined for the particle system with a size ratio of 0.20 as the there
is no caging plateau in the MSD.

parity between the small and large particles there is a complete decoupling of
the dynamics of the small and large particles, where the small particles are able
to diffuse freely through a glass of the large particles. For both intermediate
and large size ratios the particle dynamics of the small and large particles are
indistinguishable, experiencing both similar α-relaxation times as well as caging
lenghts. These two regimes are separated by a sharp transition as no interme-
diate double transition behaviour was found.
In order to come to a general understanding of the binary glass transition it is
necessary to investigate the effect of other factors that govern particle dynam-
ics. The inclusion of a long range repulsive potential has shown to able to be
the difference between a coupled and decoupled glass at the same size ratio.
Different types of interaction potentials should be analysed in future work to
elucidate their effect on the binary glass transition.
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