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SUMMARY 

The flow equation describing the movement of water out of a soil sample placed in a 
pressure plate apparatus, is solved for the case that the impedance of the membrane or 
porous plate will have to be taken into account. A practical and simple method is developed 
for the calculation of the capillary conductivity from outflow data. Using this method the 
total impedance at the lower boundary of the sample is determined from the experimental 
outflow data for each pressure step applied. In this way it is not necessary to determine 
the membrane impedance experimentally. The influence of the membrane impedance on 
the final value of the capillary conductivity is computed for various values of the impedance. 

INTRODUCTION 

Measurements of soil moisture conditions in the field have shown that water 
is distributed throughout the root zone of plants largely by means of un
saturated flow. The measure of influence of the unsaturated flow on évapo
transpiration during periods, when the soil moisture is being depleted, is still 
partly a matter of speculation. A study of the unsaturated flow under field 
conditions is not yet possible in a satisfactory way, because of the difficulties 
involved in locating the roots and in measuring the boundary conditions at 
the root surface. The flow of water above the groundwater table is controlled 
by the physical properties of the soil. Knowledge of these properties is neces
sary in this field of hydrological studies. A practical method for the deter
mination of the capillary conductivity is therefore needed. 

GARDNER (1956) presents a method to calculate the capillary conductivity 
from pressure plate outflow data. He assumes that the slope of the moisture 
content — suction curve and the capillary conductivity for small increments 
of the suction may be taken as being constant. By measuring the outflow, 
the capillary conductivity can be calculated from the solution of the differen
tial equation given by GARDNER. 

Difficulties arise, however, if the impedance of the membrane or the sinter 
cannot be neglected. In this case too small values of the capillary conducti
vity will be calculated. MILLER and ELRICK (1958) give a method for the 
calculation óf the capillary conductivity with non-negligible membrane impe
dance. As is pointed out by the authors, the principal limitation of their 
procedure is the uncertainty present in the determination of the flow impe
dance of the membrane. Unless good contact is established between the 
membrane and the soil, an unknown contact impedance may exist, which can 
have an important magnitude in comparison with the flow impedance of the 

l) Received for publication March 21, 1959. 
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membrane itself. Only the latter can be determined experimentally. Further, 
the impedance of the membrane or sinter can change during the experiments 
by Pegging of the larger pores by dirt, bacterial growth and swelling or 
shrinking. 

It is the purpose of this paper to give a method to calculate the capillary 
conductivity of the soil from pressure plate outflow data for non-negligible 
membrane impedances in which it is not necessary to determine the value 
of the membrane impedance experimentally. Therefore a method was develop
ed to determine the sum of all impedances occurring at the lower boundary 
of the sample from the outflow data. 

THEORETICAL ANALYSIS 2) 

According to RICHARDS (1931) the unsaturated flow can be described by 
DARCY'S law : 

y = -*<»)* « 
d<P 

where V is the volumetric flow velocity, — is the potential gradient, © is 

the volume of water per unit volume of soil and KQ is the capillary con
ductivity. This conductivity is not a constant but a function of the moisture 
content of the soil and therefore also of the suction of the soil. Combining 
DARCY'S law with the law of conservation of matter gives : 

M _ '5 (K à0\ 

17 - & VAr@; Tz ) (2) 

Consider a sample of soil having a volume V, a cross-sectional area A and 
a height Z, which is placed in a pressure membrane apparatus. Suppose the 
initial pressure in the chamber being Pi and the moisture in the soil being 
in equilibrium with the atmosferic air-pressure outside the chamber. At time 
t = 0 the pressure in the chamber is increased by a small amount A P, the 
final pressure being : Pf = P, + A P. Due to the increment of the pressure 
water will flow out of the soil until equilibrium is attained again. The differen
tial equatiton for the one-dimensional vertical flow under discussion is : 

£ = **•(£+') 
In general this equation is non-linear and difficult to solve analytically. 

Following GARDNER (1956) it is assumed that between P, and P, + A P the 
capillary conductivity is a constant and that there exists a linear relationship 
between P and 0 in this range of pressures, provided that the increments 
of A P are sufficiently small. 

Now the relation between the soil moisture content and the pressure is 
given by : 

e(Pj = a + bP (4) 
where a and b are constants. 

2) The author wishes to express his gratitude to dr. J. WESSELING for his helpful criticism. 
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Neglecting gravity and substituting (4) into (3) gives : 

ÔP _. d*P 
M = / ; â ? <5> 

where D = K/b (5a) 

As no flow of water exists across the upper boundary of the sample, the 
potential gradient must vanish at this plane, thus : 

ÔP 
~=0 z = 0 (6) 
oz 

Assuming that the flow of water through the cross-sectional area at z = I 
equals the flow through the membrane at each time, the lower boundary 
condition will be : 

K^-\-^-P = 0 z = l (7) 
oz Lp 

where P is the pressure drop through the membrane, Kp is the hydraulic 
conductivity of the membrane and lp is tfhe thickness of the membrane. 

The initial condition requires : 

P = A P 0 < z < I t = 0 (8) 

Particular solutions of eq. (5) satisfying the condition (6) have the general 
form : 

-oa't/i2 z 
P = B e cos» l (9) 

where a is any dimensionless constant. Condition (7) is satisfied when : 
v. 

I = hi = a tan a (10) 
A' 'pK 

in which h = ~ 
Ipk 

In order to satisfy the condition (8) the coefficients Bn of the infinite Fourier 
series, giving the general solution of eq. (5) must be determined. Multiplying 

through the series by cos an -y and integrating from 0 to I, yields : 

2 A P sina„ . 
Bn= ; ; (Ha) 

cos ansm an -\- a„ 
where an is the n th root of eq. (10). The first six roots are given by CABSLAVV 

and JAEGER (1959) appendix IV, table I. With the aid of eq. (10) Bn can be 
changed into : 

_ 2 A P hi sec an 

- - hrw+~i)~+^? 
Substituting this form into eq. (9) the general solution of eq. (5) subject to 

the conditions (6), (7) and (8) becomes : 

P = 2 A P 2 - , . . . . , ' f f g ; -. e casant (12) 
»=' hi (hi + 1) + a„2 I v ' 
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Substitution of (12) into (4) gives : 

fi,,,, = a + 2b A P 2 . M ( W + 2 ) + a? c cos a„i: (13) 

In order to find the total volume of water (W, ) remaining in the soil 
sample at any time t, eq. (13) is multiplied through by the cross-sectional 
area A and integrated from 0 to I, thus : 

h2p -on,? t\P 

*[M{hl+~l)+aT]e (14) 
Wt= J e(u)Adz = aV-\-2 bVAP^ ,„.„","-.<-, ~i e 

The initial volume of water (Wi ) in the soil sample derived from eq. (14) 
at t — 0 is : 

W,- = oV + fcVAP (15) 
and the volume of water remaining in the soil at time t = oo is : 

Wj= aV (16) 

The total outflow, which can be extracted from the soil between P, and 

Pf i s : 

Q„=Wi —Wj =bV AP 

Solving for b gives : 

" = Z A P <17» 
Equation (17) allows the calculation of b from the total outflow Q„ , the 

volume of the sample V and the pressure increment A P. 
The outflow at any time t is : Ql = Wi — Wt . Combining this relation 

with (14), (15) and (16) yields : 

O O %- PP -Da*t\P 
Uo—U^ 9 21 11 (18) 

Q0 - »-/ a J [hi (hi +J) + an2] { ' 
This infinite series converges rapidly and for t > 0.3 l2/a2D the second 

term is less than 1 % of the first. Neglecting all terms of the series except 
the first one and taking logarithms gives : 

'°l°Z-^=,'l°^jMWTV+^]-M343D"''1'' (19> 

Plotting now log--"- — --'- against Dt/l2 eq. (19) yields straight lines for 

various values of hi (fig. 1). The dotted line in fig. 1 represents the relation 
given by GARDNER (1956) where hi is infinite. The first part at the right hand 

side of eq. (19) gives the log "--.-—— intercepts, which are independent of 

the scale of Dt/l2. 
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F I G . 1 T H E R E L A T I O N B E T W E E N 

" Qo 
AND Dt/l2 FOR VARIOUS VALUES OF hi. THE DOTTED 

LINE GIVES GARDNER'S SOLUTION, WITHOUT MEMBRANE IMPEDANCE. 

PROCEDURE 

The amount ~ ^ — - is computed from the experimental values of the out-
Pn Q„ -Qt 

o„ are flow <2t and from the final equilibrium-yield Q0 . The values of log 

plotted against t/l2 and a straight line is drawn through the experimental 
points. The slope of this line being 

tan ß' - 0.4343 D a,2 

is determined. 
The slope of the lines in fig. 1 is given by : 

tanß = - 0.4343 a i 2 

(20) 

(21) 

Eq. (20) and (21) only differ by the unknown diffusivity D of the soil. This 
simply means an enlargement or reduction of the Df/Z2-scale, dependent on 
the value of D. In order to find D we consider the interception point of the 

straight line with the —°—=,—- -axis. This point is not influenced by changing 
Ä." n n 

the scale of Dt/l2. The value of the log -—-^— intercept is given by the 

first part at the right hand side of eq. (19) and is only dependent on the 
value of hi as can be seen from eq. (10). As the intercept, defined in this way, 
is the same for any D£/Z2-scale, it can be determined from the straight line 
connecting the experimental points. With the known intercept, the correspond
ing value of hi can be determined. For this purpose the relation between the 
intercept and hi is plotted in fig. 2. With the aid of this figure the value 
of hi can easily be read for each value of the intercept. A determination of 
the membrane impedance is therefore unnecessary. 

The next step is finding the value of tan ß corresponding with the W-value. 
In order to simplify this step, the relation between the value of hi and tan ß. 
derived from eq. (10) and (19), is plotted in fig. 3. 
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FIG. 3 THE RELATION BETWEEN THE SLOPE OF THE LINES GIVEN IN EIG. 1 AND hi. 

The value of tan ß, corresponding with the W-value, can now be read from 
this figure. Dividing tan ß ' by the value of tan ß yields the desired value D 
of the soil. The capillary conductivity can now be computed by combining 
eq. (5a) and (17) which gives : 

D & (22) K = 
VAP 

DISCUSSION 

The possibility of refining GARDNEB'S solution is fully dependent on the 
accuracy of the outflow data since these control the exactness with which 

the log "^-^— -intercepts can be determined. The accuracy of the intercepts, 

controls — in its turn — the exact value of hi. The small differences between 
the intercepts for various values of hi do not imply that the correction for 
the membrane impedance is correspondingly small. When the membrane impe-
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dance is neglected the calculated values of the capillary conductivity generally 
will be too small. With the aid of eq. (19) the influence of the membrane 
impedance can be calculated. In table 1 the capillary conductivity, calculated 
with neglected membrane impedance is expressed in per cents of the real capil
lary conductivity, which will be found when the membrane impedance is taken 
into account. 

Table 1 The calculated capillary conductivity by neglecting the membrane impedance in 
per cents of the real value for various values of hi. 

hi 

0.1 
0.5 
1.0 

* 

4.2 
17.3 
30.4 

hi 

2.0 
3.0 
4.0 

% 

47.2 
57.7 
65.0 

hi 

5 
10 
20 

% 

69.9 
83.0 
91.0 

hi 

30 
50 

100 

% 

94.0 
96.3 
98.2 

For hi = 20 the capillary conductivity obtained by neglecting the membrane 
impedance is 9% too small. If one wishes to determine the capillary conduc
tivity with a certain accuracy, neglecting the membrane impedance, the desired 
hydraulic conductivity of the membrane can be derived from table 1 and 
eq. (10). The contact impedance between the soil sample and the membrane, 
however, remains unknown and therefore such a test is of limited practical 
value. 

In comparison with the method given by MILLER and ELRICK (1958), the 
method proposed in this paper has the advantage that it is unnecessary to 
determine the membrane impedance experimentally. This is due to the fact 

that the /iZ-value determined from the " ̂  ~ ' intercept is an indirect value 

for the flow impedance occurring during the experiment. Any contact impe
dance, if present, between the soil sample and the membrane automatically 
implies a change in the hl-value determined. Changes in the membrane impe
dance due to plugging of the pores, bacterial growth and swelling or shrinking 
are accounted for, as the W-value is determined anew for each pressure step 
applied. Errors due to inaccurate matching of scales are avoided. 
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