

climate changes spatial planning

Claire Vos

Adaptation A2

Adapting the National Ecological Network to Climate Change

Partners: Wageningen University and Research, Leiden University, SOVON Birds, Dutch Butterfly Conservation,

EU Interreg IIIB: (among others) Natural England, Change Institute, Oxford University

Project A2 - overview

Content

- Impacts climate change stronger because of habitat fragmentation
- Adaptation strategies ask for spatial planning

Habitat fragmentation: a conservation strategy

Habitat network strategy: in metapopulations the local risk is spread over the network

Spreading the risk: a local mishap is repaired

Different approaches

Experimental studies

Plants: influence CC on competition

Butterflies influence weather on dispersal behaviour

Empirical studies

Time series on distribution/abundance (plants, butterflies, birds) and influence weather conditions and habitat fragmentation

Models

Combining climate change and metapopulation models, statistical models, mechanistic models

Integration
Spatial
Planning Tools

Quantify adaptation strategies

Spatial cohesion national ecological network

Case studies: Multifunctional adaptation buffer zones surrounding nature areas

Different approaches

Different approaches

Experimental studies

Plants influence CC on competition
Butterflies influence weather on dispersal behaviour

Empirical studies

Time series on distribution/abundance (plants, butterflies, birds) and influence weather (extremes) and habitat fragmentation

Models

Combining climate change and metapopulation models, statistical models, mechanistic models

Integration
Spatial
Planning Tools

Quantify adaptation strategies

Spatial cohesion national ecological network

Case studies: Multifunctional adaptation buffer zones surrounding nature areas

How to cope with uncertainty?

Underpinning
of models by
experimental
and empirical
studies

Models to predict
future impacts of CC
on biodiversity

Develop
Assessment tools
and
Adaptation Strategies

Evaluate
effectiveness of
adaptation
strategies and
adjust

Branch Project –Questions

- If species tend to adapt their ranges to new climatic conditions
- where does the landscape inhibit responding?
- and how can these bottlenecks areas be adapted to contribute to a climate proof network?

www.branchproject.org

climate changes spatial planning

Results BRANCH project Analysis NW Europe 2020 2050

- SPECIES bio climate envelope model: predict shifting ranges
- GRIDWALK dispersal model identify climate proof and non climate proof networks
- Adaptation strategies

Projected Change in Simulated Climate Space

Shift suitable
climate space

Adaptation measures Agile frog 2020.

Legend

Climate proof networks.	
0.8 - 1.	0.2 - 0.4.
0.6 - 0.8.	0 - 0.2.
0.4 - 0.6.	

Areas that need adaptation measures.

non climate proof networks.
non climateproof isolated patches.

no longer climate proof.
present distribution.

SCENARIO:Def barr thr 2.

1. Climate change proof networks

2. Areas that need adaptation 2020

Branch
BIODIVERSITY
SPATIAL PLANNING
CLIMATE CHANGE

Adaptation task forest species NW Europe

Adaptation strategies

1. Link to nearest climate proof network
2. Increase colonizing capacity
3. Optimize networks in climate refugia

Adaptation strategy I: Link networks

Adaptation strategy I: Link networks

Adaptation strategy II: Increase colonizing capacity

Adaptation strategy II: Increase colonizing capacity

Modelling still in full development

- Climate envelopes BRANCH:
 - identify main adaptation zones for many species
 - given the direction of CC and habitat fragmentation
- include population dynamics METAPHOR shaking windows
 - impact weather extremes
 - are species able to keep up?

North

METAPHOR moving/shaking window

Window of Suitable Climate Space

- * Moves
- * Shakes (weather extremes)
- * Impact habitat fragmentation

Landscape: random 100 ha patches vs. 50 ha patches (1 p.p.km²)

Location of the population (no climate change: window shaking, not moving)

Scenario: Climate shift velocity to North 9 km/year, 100 ha patches

Location of the population (25 year intervals: moving and shaking window)

Fast climate change (9 km/y): 10% habitat vs. 5% habitat

- year 0
- year 25
- year 100
- year 125
- year 150
- year 175

Climate velocity to North 9 km/year, 50 ha patches

patial planning

© 2014 University of Minnesota. All rights reserved. U of M is an equal opportunity educator and employer.

Slow climate change (2.5 km/y): 10% habitat vs. 5% habitat

Preliminary results

- actual population movement rate << potential dispersal distance
- stochastic climate change decreases population movement rate
- habitat fragmentation decreases population movement rate
- climate change and fragmentation decrease population viability

Modelling still in full development

- Climate envelopes BRANCH:
 - identify main adaptation zones for many species
 - given the direction of CC and habitat fragmentation
- include population dynamics METAPHOR shaking windows
 - impact weather extremes
 - are species able to keep up?

Thank you for your attention

