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Multi-gene phylogeny for Ophiostoma spp. reveals two new species 
from Protea infructescences 
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Abstract: Ophiostoma represents a genus of fungi that are mostly arthropod-dispersed and have a wide global distribution. The best known of 
these fungi are carried by scolytine bark beetles that infest trees, but an interesting guild of Ophiostoma spp. occurs in the infructescences of 
Protea spp. native to South Africa. Phylogenetic relationships between Ophiostoma spp. from Protea infructescences were studied using DNA 
sequence data from the β-tubulin, 5.8S ITS (including the flanking internal transcribed spacers 1 and 2) and the large subunit DNA regions. Two 
new species, O. phasma sp. nov. and O. palmiculminatum sp. nov. are described and compared with other Ophiostoma spp. occurring in the 
same niche. Results of this study have raised the number of Ophiostoma species from the infructescences of serotinous Protea spp. in South 
Africa to five. Molecular data also suggest that adaptation to the Protea infructescence niche by Ophiostoma spp. has occurred independently 
more than once.

Taxonomic novelties: Ophiostoma phasma Roets, Z.W. de Beer & M.J. Wingf. sp. nov., Ophiostoma palmiculminatum Roets, Z.W. de Beer & 
M.J. Wingf. sp. nov.
Key words: β–tubulin, ITS, LSU, Ophiostoma, phylogeny, Protea. 

STUDIES IN MYCOLOGY 55: 199–212. 2006.

INTRODUCTION

The southern tip of Africa is recognised for its floral 
diversity, accommodating the world’s smallest floral 
kingdom that is commonly referred to as the Fynbos. 
The Fynbos Biome is a major constituent of the Cape 
Floristic Region (CFR) in which approximately 9000 
vascular plant species (ca. 44 % of the southern 
African flora) are found (Arnold & De Wet 1993, 
Cowling & Hilton-Taylor 1997, Goldblatt & Manning 
2000). Amongst these plants, the CFR also includes 
approximately 330 species of Proteaceae in 14 genera, 
10 of which are endemic to the region (Rebelo 1995, 
Rourke 1998). Members of the Proteaceae, including 
the genus Protea (proteas), commonly dominate plant 
communities of the Fynbos Biome (Fig. 1A) (Cowling 
& Richardson 1995). The Proteaceae are not only 
ecologically significant, but provide the basis for the 
South African protea cut-flower industry that generates 
an annual income of more than US $ 10 million (Anon. 
1999, Crous et al. 2004). 

Florets of Protea spp. are arranged in inflorescences. 
After a bud stage that can last for several months 
(Fig. 1B), the inflorescences will open to reveal the 
often brightly coloured involucral bracts that attract 
many insect and bird pollinators (Fig. 1C–G). After 
pollination, the involucral bracts close, forcing the 
florets together in compact infructescences (Fig. 1H–
J). The infructescence may persist on the plants for 
several years, and act as an above-ground seed bank 
(Bond 1985) that opens to release seeds after a fire  
(Rebelo 1995). During this time, the infructescences 
are colonised by many different arthropods (Myburg 

et al. 1973, 1974, Myburg & Rust 1975a, b, Coetzee 
& Giliomee 1985, 1987a, b, Coetzee 1989, Wright 
1990, Visser 1992, Roets et al. 2006a) and micro-fungi 
(Marais & Wingfield 1994, Lee et al. 2003, 2005), some 
of which are specific to their Protea hosts.

Three species of Ophiostoma Syd. & P. Syd. have 
been described from Protea infructescences in South 
Africa, showing varying degrees of host specificity. 
Ophiostoma africanum G.J. Marais & M.J. Wingf. 
is reportedly specific to its P. gaguedi host (Marais 
& Wingfield 2001), while O. protearum G.J. Marais 
& M.J. Wingf. is confined to the infructescences of 
P. caffra (Marais & Wingfield 1997). Ophiostoma 
splendens G.J. Marais & M.J. Wingf., in contrast, has 
been reported from P. repens, P. neriifolia, P. laurifolia, 
P. lepidocarpodendron, and P. longifolia (Marais & 
Wingfield 1994, Roets et al. 2005). All three species 
are characterised by Sporothrix Hekt. & C.F. Perkins 
anamorphs, tolerance to high levels of the antibiotic 
cycloheximide and contain rhamnose in their cell walls 
(Marais el al. 1998). 

Wingfield et al. (1999) suggested that the Ophiostoma 
spp. from proteas possibly reside in a discrete genus 
of the Ophiostomatales. This observation was based 
on the marked differences between these species and 
O. piliferum (Fr.) Syd. & P. Syd., the type species of 
Ophiostoma. A recent study (Zipfel et al. 2006) has, 
however, confirmed that the Protea-associated species 
reside in the O. stenoceras (Robak) Nannf. clade of 
Ophiostoma. 

The present study aimed to determine the 
phylogenetic relationships of the three known Protea-
associated Ophiostoma spp., using ribosomal ITS and 
partial β-tubulin gene sequences. We also reconsidered 
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Fig. 1.  Growth habit and flower phenology of Protea species. A. Natural Fynbos landscape dominated by Protea repens. B. Flower-bud stage 
of P. cynaroides. C. Flowering stage of P. repens. D. Flowering stage of P. eximia. E. Inflorescence of P. scolymocephala. F. Inflorescence of P. 
cynaroides. G. Inflorescence of P. repens showing visiting pollinators (Apis melifera capensis, Hymenoptera: Apidae). H. Infructescences (ca. 4-
mo-old) of P. repens. I. Same, opened to show tightly packed florets and undamaged involucral receptacle. J. Same, showing damage by insect 
larvae boring into involucral receptacle.
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the phylogenetic position of these species at the 
generic level using ribosomal large subunit (LSU) data. 
The study included Ophiostoma spp. described from 
proteas in previous studies, as well as new isolates 
collected from Protea spp. from a wider geographical 
range than that considered previously. 

MATERIALS AND METHODS

Isolates
Infructescences of various Protea spp. were collected 
from different sites in South Africa between Feb. 2003 
and Jun. 2005, and examined for the presence of 
Ophiostoma spp. Ascospores were removed from the 
apices of ascomatal necks with a small piece of agar 
attached to the tip of a dissecting needle and transferred 
to 2 % malt extract agar (MEA; Biolab, Midrand, South 
Africa) amended with 0.05 g/L cycloheximide (Harring-
ton 1981). Once purified, all cultures were maintained 
on Petri dishes containing MEA at 4 ºC. Representative 
cultures of all species (Table 1) have been deposited 
in the culture collection of the Centaalbureau voor 
Schimmelcultures (CBS), Utrecht, The Netherlands, 
and the culture collection (CMW) of the Forestry and 
Agricultural Biotechnology Institute (FABI), University 
of Pretoria, South Africa. Herbarium specimens of 
both the teleomorph and anamorph states of the new 
species have been deposited in the National Fungus 
Collection (PREM), Pretoria, South Africa (Table 1). 

Microscopy
Perithecia of Ophiostoma spp. collected from within the 
Protea infructescences, and conidiophores and conidia 
of the Sporothrix anamorphs formed in culture, were 
mounted on microscope slides in clear lactophenol. 
Specimens were studied using a Nikon SMZ800 
dissecting microscope and a Nikon Eclipse E600 light 
microscope with differential interference contrast (DIC). 
Photos were taken with a Nikon DXM1200 digital 
camera mounted on the microscopes. Measurements 
(25) of each taxonomically useful structure were made 
and means (± standard deviation) calculated. 

Growth in culture
The growth of the unidentified species was determined 
by transferring a 5 mm diam piece of mycelium-covered 
agar from the edges of actively growing 1-wk-old 
cultures to the centre of fresh Petri dishes containing 
20 mL MEA. Plates were incubated at a range of 
temperatures between 5–35 ºC with 5 ºC intervals. 
Three replicate plates were used for each temperature 
interval and colony diameters (two per plate) were 
determined after 2 d and again after 10 d of growth 
in the dark. The mean difference between growth 
diameter at 2 and 10 d was determined (± standard 
deviation) for each species. 

Tolerance of the unidentified species to cyclohexi-
mide was tested by transferring a 5 mm diam piece of 
agar containing fungal mycelia and conidia to MEA plates 
containing varying concentrations of cycloheximide (0, 

0.05, 0.1, 0.5, 1.0 and 2.5 g/L). The colony diameter 
of three replicate plates per tested concentration was 
calculated as described for the study of growth at 
different temperatures after incubation at 25 ºC in the 
dark for 10 d. 

DNA extraction, amplification and sequencing 
Mycelium was collected for DNA extraction by scraping 
the surface of the agar plates with a sterile scalpel. 
Genomic DNA from fungal mycelium was extracted 
using a Sigma GenElute™ plant genomic DNA miniprep 
kit (Sigma-Aldrich Chemie CMBH, Steinheim, Germany) 
according to the manufacturer’s instructions. 

The following primers were used for amplification: 
LR0R and LR5 for nuclear LSU rDNA (http://www.
biology.duke.edu/fungi/mycolab/primers.htm), ITS1–F 
(Gardes & Bruns 1993) and ITS4 (White et al. 1990) 
for the ITS and 5.8S regions. PCR reaction volumes 
for the rDNA amplifications were 50 µL consisting of: 
32.5 µL ddH2O, 1 µL DNA, 5 µL (10×) reaction buffer 
(Super-Therm, JMR Holdings, U.S.A.), 5 µL MgCl2, 5 
µL dNTP (10 mM of each nucleotide), 0.5 µL (10 mM) of 
each primer and 0.5 µL Super-Therm Taq polymerase 
(JMR Holdings, U.S.A.). DNA fragments were amplified 
using a Gene Amp®, PCR System 2700 thermal cycler 
(Applied Biosystems, Foster City, U.S.A.). PCR reaction 
conditions were: an initial denaturation step of 2 min at 
95 ºC, followed by 35 cycles of: 30 s denaturation at 95 
ºC, 30 s annealing at 55 ºC, and 1 min elongation at 72 
ºC. The PCR process terminated with a final elongation 
step of 8 min at 72 ºC.

Reaction mixtures to amplify part of the β-tubulin 
gene region were the same as for ribosomal DNA, 
except that 1.5 µL DNA, 32 µL of ddH2O and primers 
T10 (O’Donnell & Cigelnik 1997) and Bt2b (Glass & 
Donaldson 1995) were used. The amplification protocol 
for β-tubulin was as follows: initial denaturation for 4 
min at 95 ºC, 35 cycles of denaturation at 95 ºC for 1 
min, annealing at 50 ºC for 1.5 min, elongation at 72 ºC 
for 1 min, and a termination step of 7 min at 72 ºC.

All amplified PCR products were cleaned using 
the Wizard® SV gel and PCR clean up system 
(Promega, Madison, Wisconsin, U.S.A.) according to 
the manufacturer’s instructions. The purified fragments 
were sequenced using the PCR primers and the Big 
Dye™ Terminator v. 3.0 cycle sequencing premix kit 
(Applied Biosystems, Foster City, CA, U.S.A.). The 
fragments were analysed on an ABI PRISIM™ 3100 
Genetic Analyzer (Applied Biosystems). 

Analysis of sequence data
LSU sequences obtained in this study (Table 1) were 
compared to sequences of species of Ophiostoma and 
related genera from the study of Zipfel et al. (2006). 
ITS and partial β-tubulin sequences from the present 
study (Table 1) were compared with sequences of 
closely related Ophiostoma spp. from previous studies 
(De Beer et al. 2003, Aghayeva et al. 2004, 2005). 
Sequences were aligned using Clustal X v. 1.81.
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Maximum parsimony: One thousand random stepwise 
addition heuristic searches were performed using the 
software package PAUP v. 4.0 beta 10 (Swofford 2000) 
with Tree Bisection-Reconnection (TBR) on and 10 
trees saved per replicate. Internal node support was 
assessed using the bootstrap algorithm (Felsenstein 
1985), with 1000 replicates of simple taxon addition.

Neighbour-joining: Relationships between taxa 
were determined using distance analysis in PAUP. 
Evolutionary models for the respective data sets 
were determined based on AIC (Akaike Information 
Criteria) using the Modeltest 3.06 (Posada & Crandall 
1998). Selected evolutionary models were: GTR+I+G 
(proportion invariable sites 0.6899 and rates for 
variable sites following a gamma distribution with shape 
parameter of 1.0185) for LSU, TrN+I+G (proportion 
invariable sites 0.4213 and rates for variable sites 
following a gamma distribution with shape parameter 
of 0.6253) for ITS, and HKY+G (rates for variable sites 
following a gamma distribution with shape parameter of 
0.1783) for β-tubulin. Trees were constructed using the 
neighbour-joining tree-building algorithm (Saitou & Nei 
1987) and statistical support was determined by 1000 
NJ bootstrap replicates.

Bayesian inference: Data were analysed using Bayesian 
inference based on a Markov chain Monte Carlo 
(MCMC) approach in the software package MrBayes 
v. 3.1.1 (Ronquist & Huelsenbeck 2003). The most 
parameter-rich model available in MrBayes, GTR+I+G 
(shape parameter using 4 rate categories) was used for 
the analysis. All parameters were inferred from the data. 
Two independent Markov chains were initiated from a 
random starting tree. Runs of 1 million generations with 
a sample frequency of 50 were implemented. Burn-in 
trees (first 20000 generations) were discarded and the 
remaining trees from both runs were pooled into a 50 % 
majority rule consensus tree. 

RESULTS

Isolates
A total of 38 isolates obtained from proteas were 
included in this study, with 12 isolates from five Protea 
spp. derived from previous collections by Wingfield 
and Marais (Table 1). The remaining 26 isolates were 
obtained from three Protea spp. in surveys that formed 
part of this study.

Microscopy
Among all isolates studied, five groups could be 
distinguished based on morphology. Three of these 
groups included isolates of the three Ophiostoma spp. 
previously described from Protea infructescences. No 
recent isolates were added to this group, except for 
seven isolates of O. splendens that came from the same 
host, P. repens. Some old isolates of O. africanum from 
P. dracomontana and P. caffra were newly identified.
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The remaining isolates collected resided in two 
clear morphological groups that did not resemble 
any of the three Ophiostoma species described from 
proteas, or any other Ophiostoma species. Isolates 
in the one group were commonly collected on the 
styles of P. neriifolia and P. laurifolia. The fungus often 
occurred sympatrically with Gondwanamyces capensis 
(M.J. Wingf. & P.S. van Wyk) G.J. Marais & M.J. Wingf. 
Isolates representing the second morphological group 
were found only in the insect-damaged involucral 
receptacles of Protea repens (Fig. 1J). 

Growth in culture
Isolates of both the unknown Ophiostoma species 
showed optimum growth at 30 ºC. Mean colony 
diameter for the species collected from P. repens was 

26 mm (± 1), while the species from P. neriifolia and P. 
laurifolia had a colony diameter of 18 mm (± 1) at this 
temperature after 8 d in the dark. Both of the unknown 
Ophiostoma species were tolerant to cycloheximide 
and were able to grow on all tested concentrations of 
this antibiotic. Mean colony diameter for the species 
collected from P. repens declined from 27 mm (± 1) 
on 0.05 g/L to 17 mm on 2.5 g/L cycloheximide. Mean 
colony diameter for the species from P. neriifolia and P. 
laurifolia declined from 20 mm (± 1) on 0.05 g/L to 12 
mm (± 1) on 2.5 g/L cycloheximide.

Phylogenetic analysis
Alignment of the amplified products with Clustal X 
resulted in data sets of 709 characters for LSU, 531 
characters for ITS, and 307 characters for part of the 
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β-tubulin gene. Placement of isolates in the resulting 
trees based on phylogenetic analyses for each gene 
region was similar. For all three gene regions, the trees 
presented (Figs 2–4) were obtained from neighbour-
joining analyses.

For the LSU region there were 98 parsimony-
informative characters, 611 parsimony-uninformative 
characters, and 581 constant characters. For the ITS 
region there were 98 parsimony-informative characters, 
433 parsimony-uninformative characters, and 389 
constant characters. For the β-tubulin region there were 
112 parsimony-informative characters, 195 parsimony-
uninformative characters, and 194 constant characters. 

Analysis using the parsimony algorithm yielded 38, 
9990 and 9530 equally most parsimonious trees of 
291, 234 and 268 steps long for the LSU, ITS and β-
tubulin data sets respectively. The Consistency Indices 
were 0.765, 0.533 and 0.705, while the Retention 
Indices were 0.957, 0.856 and 0.940 for the ITS, LSU 
and β-tubulin regions, respectively. Apart from group C 
[(Fig. 2), (PP 1.0)], PP values obtained for LSU were 
not statistically significant for the groups of interest and 
were omitted.

Trees obtained using different analyses of the LSU 
data resembled each other, and only the neighbour-
joining tree (Fig. 2) is presented. The five taxa from 
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proteas formed four distinct, well-supported groups (A–
D). These groups did not form a monophyletic lineage, 
but were distributed among various species of the O. 
stenoceras complex in the genus Ophiostoma. The 
LSU data did not distinguish between O. protearum 
and O. africanum, which formed a single group [(A), 
(Fig. 2)]. Based on these analyses, two isolates of  
O. nigrocarpum were selected as outgroup for the more 
focused ITS and β-tubulin analyses. 

Analyses of the ITS data (Fig. 3) confirmed the 
topology of the LSU tree. The protea isolates formed 

four well-supported groups (A–D), with isolates of 
O. protearum and O. africanum grouping together 
(group A) similar to the outcome of the LSU sequence 
comparisons. The topology of the tree arising from 
analyses of part of the β-tubulin gene region (Fig. 4) 
differed from both the LSU and ITS trees (Figs 2–3). 
Groups B–D remained well-resolved with strong 
bootstrap support, but group A was sub-divided into 
two distinct, well-supported sub-groups, representing 
O. protearum (group A1) and O. africanum (group A2), 
respectively. 
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TAXONOMY

Phylogenetic and morphological differences 
distinguished two groups of Ophiostoma isolates from 
each other as well as from the three Ophiostoma 
species previously described from the infructescences 
of Protea spp. Isolates in these groups were also 
distinct from other closely related Ophiostoma spp. 
The fungi residing in these two morphologically and 
phylogenetically distinct groups are described as new 
species as follows: 

Ophiostoma phasma Roets, Z.W. de Beer & M.J. 
Wingf., sp. nov. MycoBank MB500684. Fig. 5.
Anamorph: Sporothrix sp.

Etymology: The epithet phasma (phasma = ghost) 

refers to the small and inconspicuous perithecia growing 
within a cryptic habitat.

Ascomata superficialia, basi depressa globosa, atra, nuda, 35–70 µm 
diam, collo atro, 20–60 x 15–25 μm, sursum ad 10–15 μm angustato, 
hyphae ostiolares absentes. Asci envanescentes. Ascosporae 
allantoideae, unicellulares, hyalinae, vagina gelatinosa carentes, 4–
6 x 2 μm, aggregatae electrinae. Anamorphe Sporothrix sp., conidiis 
ellipsoideis vel clavatis, 5–8 x 2–3 μm. 

Ascomata superficial on the host substrate, bases 
depressed–globose, wider at base, black without 
hyphal ornamentation, 35–70 (51 ± 8) µm diam; necks 
black, 20–60 (42 ± 10) µm long, 15–25 (19 ± 3) µm 
wide at the base, 10–15 (11 ± 2) µm wide at the apex, 
ostiolar hyphae absent (Fig. 5A–C). Asci evanescent. 
Ascospores allantoid, aseptate, hyaline, sheaths 
absent, 4–6 (5 ± 1) µm, 2 µm (Fig. 5C), accumulating 
in a hyaline gelatinous droplet at the apex of the neck, 

Fig. 5. Micrographs of Ophiostoma phasma. A. Perithecium removed from the style of Protea neriifolia. B. Electronmicrograph of sporulating 
perithecia on P. laurifolia host tissue. C. Ascospores at the tip of perithecial neck. D. Two-week-old colony of the Sporothrix anamorph on MEA. 
E. Conidia. F–K. Conidia arising directly from hyphae and short conidiophores. Scale bars A, B = 30 µm; C = 5 µm; E–K = 3 µm.
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becoming amber-coloured when dry. 

Colonies on malt extract agar 22 µm (± 1) mm diam in 8 
d at 25 ºC in the dark, white to cream-coloured, effuse, 
circular with an entire edge, surface smooth becoming 
mucoid, with a distinctive soapy odour, hyphae semi-
immersed (Fig. 5D). Growth reduced at temperatures 
below and above the optimum of 30 ºC. Sporulation 
profuse on MEA. Conidiogenous cells arising directly 
from hyphae on the surface of the agar and from aerial 
conidiophores, proliferating sympodially, hyaline (Fig. 
5F–K). Conidia holoblastic and hyaline and of two forms, 
one ellipsoidal to clavate, smooth, thin-walled, 5–8 x 
2–3 µm (Fig. 5E) and the other globose to obovate, 
smooth, thin-walled, 3–5 x 2–3 µm (Fig. 5E). Conidia 
forming singly, but aggregating into slimy masses, often 
also produced directly on hyphae (5H–I). 

Substrate: Confined to the dead styles and petals of 
florets within serotinous infructescences of Protea 
spp.

Distribution: South Africa, Western Cape Province.

Specimens examined: South Africa, Western Cape Province, 
Stellenbosch, Jan S. Marais Park, on Protea laurifolia, Jun. 2005, 
F. Roets, holotype PREM 58941, culture ex-type CMW 20676 = 
CBS 119721; Stellenbosch, Jonkershoek NR, on P. neriifolia, May 
2004, F. Roets, paratype PREM 58943, culture ex-paratype CMW 
20681 = CBS 119722; Bainskloof Pass, on P. laurifolia, Aug. 2004, 
F. Roets, paratype PREM 58946, culture ex-paratype CMW 20689 
= CBS 119588; Stellenbosch, Jonkershoek NR, on P. neriifolia, Jul. 
2004, F. Roets, paratype PREM 58944, culture ex-paratype CMW 
20682 = CBS 119589; Giftberg top, on P. laurifolia, Jun. 2005, F. 
Roets, culture CMW 20698; Giftberg top, on P. laurifolia, Jun. 2005, 
F. Roets, culture CMW 20699; Bainskloof Pass, on P. laurifolia, Aug. 
2004, F. Roets, PREM 58945, culture CMW 20683; Piekenierskloof 
Pass, Aug. 2004, on P. laurifolia, F. Roets, culture CMW 20684; 
Jonkershoek NR, Aug. 2004, on P. neriifolia, F. Roets, PREM 58948, 
culture CMW 20692; Bainskloof Pass, Sep. 2004, on P. laurifolia, F. 
Roets, PREM 58947, culture CMW 20690.

Ophiostoma palmiculminatum Roets, Z.W. de Beer 
& M.J. Wingf., sp. nov. MycoBank MB500685. Fig. 6.
Anamorph: Sporothrix sp.

Etymology: The epithet palmiculminatum (palma = 
palm; culmen = peak) refers to the palm-like hyphal 
ornamentation of the ostiolar tip.

Asomata superficialia, basi globosa, atra, 80–195 μm diam, 
nonnumquam paucis hyphis circumdata, collo atro, 360–760 x 20–
35 μm, sursum ad 10–15 μm angustato, 8–12 hyphis ostiolaribus 
rectis vel curvatis, hyalinis vel subhyalinis, 10–25 μm longis palmam 
fingentibus ornato. Asci evanescentes. Ascosporae allantoideae, 
unicellulares, hyalinae, vagina gelatinosa carentes, 3.5–5.5 x 2.0–
2.5 μm, aggregatae incoloratae. Anamorphe Sporothrix sp., conidiis 
clavatis 3–11 x 1.5–2.5 μm.

Ascomata superficial on the host substrate, also 
produced on agar plates after 2 mo of growth at 25 ºC in 
the dark. Bases globose, black, 80–195 (146 ± 33) µm 
diam, occasionally with sparse hyphal ornamentation; 
necks black, 360–760 (569 ± 114) µm long, 20–35 (28 
± 5) µm wide at the base, 10–15 (12 ± 2.5) µm wide 
at the apex (Fig. 6A–B). 8–12 ostiolar hyphae, straight 
or slightly curved, hyaline to sub-hyaline, 10–25 (16 
± 5) µm long (Fig. 6C). Asci evanescent. Ascospores 
allantoid, aseptate, hyaline, sheaths absent, 3.5–5.5 x 

2–2.5 µm (Fig. 6D), collecting in a hyaline gelatinous 
droplet at the apex of the neck (Fig. 6C), remaining 
uncoloured when dry. 

Colonies on MEA reaching 23 mm diam in 8 d at 25 ºC 
in the dark, white to cream-coloured, circular, effuse, 
with an entire edge and somewhat rough surface, 
not producing an odour (Fig. 6E). Growth reduced 
at temperatures below and above the optimum of 30 
ºC. Sporulation profuse on MEA. Conidiogenous cells 
arising directly from hyphae on the surface of  the agar 
and from aerial cinidiophores, proliferating sympodially, 
hyaline, becoming denticulate (Fig. 6F–G). Denticles 
0.5–2 µm (1 ± 0.5) long (Fig. 6G). Conidia holoblastic, 
hyaline, aseptate, clavate, smooth, thin-walled, 3–11 
x 1.5–2.5 µm (Fig. 6H). Conidia forming singly, but 
aggregating in slimy masses, also produced directly on 
hyphae (Fig. 6I–J). 

Substrate: Confined to the insect-damaged involucral 
receptacles of Protea repens infructescences. 

Distribution: South Africa, Western Cape Province.

Specimens examined: South Africa, Western Cape Province, 
Stellenbosch, Jan S. Marais Park, on P. repens, Jun. 2005, F. Roets, 
holotype PREM 58942, culture ex-type CMW 20677 = CBS 119590; 
Stellenbosch, Jan S. Marais Park, on P. repens, Jun. 2005, F. Roets, 
paratype PREM 58949, culture ex-paratype CMW 20693 = CBS 
119591; Stellenbosch, Jan S. Marais Park, on P. repens, Jun. 2005, 
F. Roets, paratype PREM 58950, culture ex-paratype CMW 20694 
= CBS 119592; Stellenbosch, Jan S. Marais Park, on P. repens, 
Jun. 2005, F. Roets, paratype PREM 58951, culture ex-paratype 
CMW 20697 = CBS 119593; Stellenbosch, Jan S. Marais Park, on 
P. repens, Jun. 2005, F. Roets, culture CMW 20695; Stellenbosch, 
Jan S. Marais Park, on P. repens, Jun. 2005, F. Roets, culture CMW 
20696.

DISCUSSION

The infructescences of Protea spp. in southern Africa 
represent a unique and unusual habitat for Ophiostoma 
spp. Their ecology is poorly understood and knowledge 
of their relatedness to other species of Ophiostoma 
is only just emerging. Phylogenetic analyses of DNA 
sequence data added substantially to our understanding 
of the placement of these fungi amongst their close 
relatives. We have been able to show that Ophiostoma 
splendens, O. africanum and O. protearum, previously 
described from Protea infructescences, represent 
well-defined species of Ophiostoma sensu Zipfel et 
al. (2006). These three species form a monophyletic 
lineage within the O. stenoceras-complex. 

The Ophiostoma spp. found in Protea infructescen-
ces look morphologically similar and in this respect, 
analyses of DNA sequence data enhance our ability 
to recognise distinct taxa. Thus, two new Ophiostoma 
spp. are recognized that had probably been overlooked 
during the period when the first of these fungi were 
discovered and described. The two new species, 
O. phasma and O. palmiculminatum, can easily be 
distinguished from each other and from the other three 
Ophiostoma spp. occurring in Protea infructescences 
based on DNA sequence comparisons. They are also 
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Fig. 6. Micrographs of Ophiostoma palmiculminatum. A. Perithecium. B. Electronmicrograph of sporulating perithecia in tunnels in the base 
of P. repens infructescence created by insect borers. Short basal hyphae can be seen. C. Close-up of perithecial tip showing ostiolar hyphae 
and ascospores in a sticky mass. D. Ascospores. E. Habit of the Sporothrix anamorph on MEA after 2 wk of growth. F, G. Conidiogenous cells 
showing denticles. H. Conidia. I–J. Conidiogenous cells arising directly from hyphae. K–L. Conidiophores of varying lengths. Scale bars A–B = 
100 µm; C = 10 µm; D = 5 µm; F–G = 3 µm; H = 5 µm; I–L = 3 µm.
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morphologically distinct from each other and from the 
other three species, although these differences would 
have been difficult to define in the absence of DNA 
sequence comparisons. Results of this study also 
represent the first report of O. africanum from Protea 
dracomontana and P. caffra.

Analyses of LSU and ITS sequence data was 
insufficient to distinguish between O. africanum and O. 
protearum. This shows that the two species are very 
closely related. Analyses of the more variable β-tubulin 
gene regions, however, support the notion that the two 
species represent distinct taxa as defined by Marais & 
Wingfield (2001) based on morphological characters. 
The close phylogenetic relationship of these species 
indicates that they share a common ancestor. These 
affinities may be explained by the fact that they occur 
in the infructescences of closely related Protea spp. 
that have overlapping geographical distribution ranges 
(Rebelo 1995). Ophiostoma protearum appears to be 
specific to P. caffra (Marais & Wingfield 1997, 2001) 
that is classified in the section Leiocephalae and 
occurs in the eastern and northern provinces of South 
Africa (Rebelo 1995). Ophiostoma africanum was 
previously thought to be specific to P. gaguedi (Marais 
& Wingfield 2001), but sequence data from the present 
study show that it also occurs in the infructescences 
of P. dracomontana and P. caffra. Like P. caffra, P. 
dracomontana is classified in the section Leiocephalae, 
and the latter species is restricted to the Drakensberg 
mountain range. This area overlaps with the distribution 
ranges of both P. caffra and P. gaguedi, although P. 
gaguedi is classified in a different section of the genus 
Protea, the Lasiocephalae (Rebelo 1995). 

Phylogenetic analyses of DNA sequences of three 
gene regions investigated in this study suggest that O. 
splendens is closely related to O. africanum and O. 
protearum. Ophiostoma splendens has been recorded 
from P. repens, P. neriifolia, P. lepidocarpodendron and 
P. longifolia in the Western Cape Province (Marais & 
Wingfield 1994). However, morphological data arising 
from this study (results not shown) show that all O. 
splendens isolates from non-P. repens hosts from the 
culture collection (CMW) of the Forestry and Agricultural 
Biotechnology Institute (FABI), were misidentified and 
belong in Gondwanamyces. The only exception was 
one isolate (CMW 2753) collected from P. neriifolia. It is 
suspected that in most of these cases, O. splendens was 
confused with G. capensis due to superficial similarities 
in the teleomorph structures of these species (Marais & 
Wingfield 1994, Roets et al. 2005). We did not isolate 
O. splendens from any Protea species other than P. 
repens. Other than the single isolate of O. splendens 
from P. neriifolia, the fungus appears to be confined 
to P. repens, which resides in the section Melliferae. 
The explanation for the close phylogenetic relationship 
between O. splendens and its northern counterparts, 
O. protearum and O. africanum, will probably only be 
revealed once a robust phylogeny for the genus Protea 
becomes available. 

Ophiostoma phasma was isolated from P. neriifolia 
and P. laurifolia. Perithecia with features closely 
resembling those of O. phasma were also observed 

in the infructescences of P. lepidocarpodendron and 
P. longifolia. However, we were not able to isolate 
Ophiostoma spp. from these Protea spp. because the 
perithecia were old and the ascospores appeared not 
to be viable. Although we were unable to identify the 
species definitively, we believe that the perithecia in 
P. lepidocarpodendron and P. longifolia represent O. 
phasma. It thus appears as if this species is associated 
with a number of different Protea spp. belonging to 
different sections. 

The seemingly wide host range of O. phasma 
in comparison to the restricted host range of O. 
splendens mirrors the situation in Gondwanamyces. 
Gondwanamyces proteae is exclusively associated 
with P. repens, whereas G. capensis is associated with 
numerous Protea spp. (Wingfield & Van Wyk 1993). 
Perithecia of O. phasma appear to be confined to 
the styles and petals of florets of the host plant and 
they were never observed in insect tunnels commonly 
found in the bases of infructescences. Similar to O. 
phasma, the species O. protearum, O. africanum and 
O. splendens preferably colonise the styles and petals 
of florets of their host plants. 

Ophiostoma palmiculminatum is the only species 
of Ophiostoma and Gondwanamyces that has been 
collected from the tunnels of insects found within the 
involucral receptacles of P. repens. These tunnels 
are either made by coleopteran or lepidopteran 
larvae (Coetzee & Giliomee 1987b). The involucral 
receptacles consist of living tissue, contrasting 
with the substratum in the Protea infructescences. 
The ability of O. palmiculminatum to exclusively 
exploit this substrate probably results in reduced 
competition between this species, O. splendens and 
Gondwanamyces proteae that can colonise the same 
infructescence simultaneously (pers. observ.). Whether 
O. palmiculminatum is pathogenic to its host remains to 
be determined. 

Ophiostoma spp. produce ascospores in evanescent 
asci within the bases of their ascomata. The spores are 
exuded through the necks and carried in sticky masses 
on the apices of the necks. These morphological 
characters represent adaptations for arthropod-
vectored dispersal (Malloch & Blackwell 1990). In the 
Northern Hemisphere scolytine bark beetles infesting 
conifers are the most common vectors of Ophiostoma 
spp. (Wingfield et al. 1993, Paine et al. 1997, Klepzig 
& Six 2004). The interactions between the beetles and 
the fungi may, in some cases, lead to the death of the 
host plant (Wingfield et al. 1993, Paine et al. 1997). As 
a result, many studies have focused on unravelling the 
complexity of these associations (Six & Paine 1998, 
1999, Klepzig et al. 2001a, b, Six 2003a, b, Six & Bentz 
2003, Klepzig & Six 2004). Based on similarities in 
morphology, the Ophiostoma spp. on proteas appear 
to share this mode of vectored spore dispersal, and 
may thus also be involved in mutualistic associations 
with arthropods. The nature of these multi-organism 
interactions is currently being investigated. 

The large number of insects representing diverse 
habits complicates these studies and it has been 
necessary to develop specialised DNA-based tech-
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niques to study the vector relationships of Ophiostoma 
spp. from Proteaceae (Roets et al. 2006b). Preliminary 
observations have shown that insects are involved, at 
least occasionally, in transporting spores of Ophiostoma 
spp., and we expect that the discovery of new species 
of Ophiostoma will enhance our understanding of these 
fungi and the invertebrates that transport them from 
one Protea infructescence to another.
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