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1.1 The need for mitigating emissions from animal manure 

The expansion of global livestock production during recent decades is driven by an increasing 

demand for livestock products, which follows from human population growth, income growth, 

urbanization and shifts in dietary preferences (Steinfeld et al., 2006; Thornton, 2010). The 

livestock sector becomes one of the largest current users of national resources. Livestock 

production systems occupy about 30% of the planet’s ice-free surface, use one-third of the 

freshwater, and one-third of global cropland as feed (McMichael et al., 2007; Herrero et al., 

2013). The growth of livestock production also leads to an increase in the production of 

animal manures. Animal manures contain all 14 nutrient elements that are essential for plant 

growth and development. Return of manure nutrients to crop land is crucial for closing the 

nutrient cycle. The plant nutrients in manure, if used appropriately, can replace significant 

amount of mineral fertilizers, and the organic matter in manure can improve soil quality and 

can also be used for energy production. Globally, livestock excretes 80-140 Tg nitrogen (N) 

and 20-30 Tg phosphorus (P) per year, which are 1-2 times the current amounts of N and P in 

mineral fertilizers consumed (Sheldrick et al., 2003; Potter et al., 2010). 

However, improper management and utilization of manure results in nutrient losses, which 

may lead to negative impacts on the environment locally and globally. It has been estimated 

that globally only 20-40% of the N in animal excreta is returned to agricultural land, while the 

remainder is dissipated into the environment (Oenema & Tamminga, 2005). The livestock 

sector is responsible for 40-65% of global anthropogenic ammonia (NH3) emissions, 40-60% 

of nitrous oxide (N2O) emissions, and 30-40% of methane (CH4) emissions (Bouwman et al., 

1997; Galloway et al., 2004; Oenema et al., 2005). The livestock sector contributes nearly 80% 

to the total greenhouse gas (GHG) emissions from the global agricultural sector (Steinfeld et 

al., 2006). 

In Europe, approximately 70% of the total land area utilized for agriculture was used in 2005 

for animal feed and forage production (Lesschen et al., 2011). About 60-65% of the plant 

biomass consumption in Europe is associated with the livestock sector (Krausmann et al., 

2008). The intensification of animal production during the 2
nd

 half of the 20
th

 century has led 

to high animal density in several regions of the European Union (EU) and has contributed to 

high nutrient surpluses regionally (Figure 1-1). These surpluses increase the risk of polluting 

the natural environment with nutrients (Velthof et al., 2014). The total amount of N in animal 

excreta is as large as the amount of mineral N fertilizer currently used in Europe. Roughly 50-
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60% of the N excreted in animal housing systems is effectively returned to cropland or 

grassland, while the remainder is lost during storage and following the application of manure 

to land (Oenema et al., 2007). Animal manures are currently responsible for about 80% of the 

NH3 emissions, 50% of the N2O emissions, 15-25% of the CH4 emissions from agriculture in 

EU (Oenema et al., 2007; Leip et al., 2015). 

Clearly, animal manures are large sources of nutrients and organic carbon. Because of 

improper storage and management, manures are also a large source of NH3 and N2O 

emissions into the air, and of N and P losses to water bodies. There is an urgent need to 

decrease nutrient losses and emissions of NH3 and GHG from animal manure management, 

and to increase the utilization of the nutrients in manure for feed and food production. 

 

Figure 1-1. Soil nitrogen (N) surplus in the EU-27 in 2010 (kg N per ha of utilized agricultural area 

per year), based on the calculations with the MITERRA-Europe model (unpublished, Alterra). 
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1.2 Towards improved manure management 

Manure management consists of a chain of activities and technologies (Figure 1-2). The 

manure management chain is diverse, depending on the combination of for example animal 

categories, feeding strategies, grazing activities, housing structures, manure storage and 

treatment facilities and manure application methods. 

 

Figure 1-2. Schematic representation of the manure management chain. Solid arrows show the main 

flows of nutrients; dashed arrows show possible losses of nutrients to the atmosphere and to 

groundwater and surface waters.  

A fraction of nutrients in feed are utilized by animals to produce marketed products (e.g. meat, 

eggs and milk); the remainder is excreted in urine and faeces. Animal excreta are generally 

handled in the housings as slurries (mixture of dung and urine) or solid manure (mixture of 

bedding material, dung and urine) with or without separate collection of liquids (mainly urine). 

The slurries, solid manure and liquids are often removed periodically to outdoor storages 

(tanks, lagoons or heaps with or without covers and leak-tight floors). After storage, the 

slurries, solid manure and liquids are applied to land. Urine and faeces from grazing animals 

are directly dropped in pastures, and are generally not collected. Nutrients in manure are 

partially used to fertilize cropland for feed production, thereby closing the nutrient cycle 

between crop and animal production systems (Oenema et al., 2007). In the whole chain from 

animal feeding to manure application to land, a range of measures can be taken to mitigate 

nutrient losses and to increase the utilization of the nutrients and organic matter contained in 

manures. 
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Nutrient losses and emissions of NH3, CH4 and N2O may occur from animal manures at 

various management stages (Figure 1-2). Evidently, accurate estimates of the amounts of 

nutrients in animal manures is the starting point for estimating nutrient flows and losses in the 

manure management chain, and are also required for nutrient management planning (Sutton et 

al., 2011). The fraction of the nutrients in animal feed that ends up in manure depends on 

animal category, feed composition and animal productivity. International and national 

statistics (e.g., Eurostat and FAO statistics) provide national data on animal production and 

animal number per animal category annually. However, there is lack of animal category-

specific data on feed use and composition at national levels. Such data are needed for 

improving the accuracy of manure production estimates. 

1.2.1 Ammonia emission mitigation measures 

Emissions of NH3 are often the largest N loss pathway. These emissions can contribute to the 

acidification and eutrophication of nitrogen-limited ecosystems (Sutton et al., 2008). 

Emissions of NH3 also decrease the N fertilizer equivalent value of animal manure. In 

response to the negative effects of NH3 emissions on the environment, series of policy 

measures have been proposed through the 1999 Gothenburg Protocol under the UN-ECE 

Convention on Long-Range Transboundary Air Pollution (LRTAP). This Protocol aims to 

abate acidification, eutrophication and ground-level ozone, and addresses also sulphur (SO2), 

nitrogen oxides (NOx), and volatile organic compounds (VOCs) emissions. The NH3 emission 

mitigation measures of the Gothenburg Protocol have been implemented in the EU member 

states through the 2001/81/EC National Emission Ceiling Directive. This directive requires 

that Member States develop national programmes that aim at meeting agreed ceilings of 

national NH3 emissions by 2010 and 2020. The suggested NH3 emission mitigation measures 

have been described in detail in the Guidance Document for preventing and abating NH3 

emissions (Bittman et al., 2014). Different NH3 emission abatement measures may target at 

different stages of the manure management chain, such as low-emission animal housing, 

covered storages and low-emission manure application (Bittman et al., 2014). 

These measures typically consider NH3 emissions only, although these measures may have 

possible side-effects. Introducing a measure to decrease emissions at a particular stage may 

affect emissions downstream in the chain (e.g. pollution swapping), or emissions of other 

pollutants (Petersen et al., 2007; Velthof et al., 2009; Reis et al., 2015). For example, several 

studies have indicated that some NH3 mitigation measures may increase N2O emissions from 
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slurry storages or during field application, or enhance CH4 emissions from solid manures 

storages (e.g. Berg et al., 2006; Szanto et al., 2007; Hansen et al., 2009). These unwanted 

side-effects decrease the effectiveness and efficiency of mitigation measures. 

A systematic quantitative analysis of the effects of NH3 mitigation measures on emissions of 

NH3, N2O and CH4 is still lacking, especially in consideration of the whole manure 

management chain. The assessment of a measure or technology must include the effects of the 

performance of other management measures in the whole chain from animal feeding to animal 

excretion, in-house and outdoor manure storage, manure treatment and up to 

application/deposition of manure to crop land and grassland (Figure 1-2). 

1.2.2 Manure treatment  

In the EU, manure storage conditions and the maximum amount of manure to be applied per 

unit of agricultural area are regulated, through the 1991 EU Nitrates Directive. This Directive 

and the governmental incentives to replace fossil energy sources by renewable energy sources 

(e.g., Renewable Energy Directive-2009/28/EC) stimulate the development of manure 

treatment technologies, to increase the utilization of manure in terms of energy and nutrient 

sources, and to decrease manure surpluses in areas with high animal density (Menzi et al., 

2010; Sommer et al., 2013). 

A wide range of manure treatment technologies have been developed and, in part, applied in 

practice in EU, such as anaerobic digestion, liquid-solid separation, slurry acidification, 

composting, drying, and incineration (Foged et al., 2011). Different treatment technologies 

have different objectives, including reducing manure volumes to facilitate transport, 

bioenergy production, emission mitigation, improving fertilizer value of manure, increasing 

stability of organic matter in manure, and sanitation and odor control (see Box-1.1). 

Treatment technologies alter the physical, chemical and/or biological characteristics of 

manure, and thus may affect emissions of NH3, N2O and CH4 from the manure management 

chain. A large number of laboratory and pilot experiments have been carried out to analyze 

NH3 and/or GHG emissions from processed manure. Most of these studies typically focus on 

a specific gas and/or emission source (i.e. manure storages or application of manure). Few 

studies have focused on whole-farm or life cycle effects of for example solid-liquid separation 

(ten Hoeve et al., 2014), anaerobic digestion (Sandars et al., 2003; Hamelin et al., 2011; De 

Vries et al., 2012; Mezzullo et al., 2012), and pyrolysis and incineration processes 
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(Fernandez-Lopez et al., 2015). Country-scale analyses of the effects of manure treatment 

technologies have not been conducted yet. 

Clearly, there is a lack of quantitative insights about the current and future possible effects of 

manure treatment technologies on nutrient and GHG emissions, and on the amount of 

remaining manure nutrients at various stages of the ‘manure management chain’, at regional 

and national levels. There is also lack of knowledge about optimal combinations of manure 

treatment technologies. Optimizing the implementation of treatment technologies requires a 

‘chain’ approach, because of the possible interactions between measures and technologies. 

1.2.3 Stakeholder perceptions 

Implementation of manure treatment technologies in practice is still limited in most EU 

countries. The diffusion and exploitation of cleaner technologies rely on a combination of 

factors including governmental policies, financial incentives, technical and service supports 

and social acceptance (Montalvo, 2008). The development of manure treatment involves 

stakeholders across government, industry, academia, extension service and agricultural 

production sectors. However, there is lack of understanding about the key factors influencing 

the adoption of treatment technologies in practice. Identifying stimulants for and obstacles to 

adoption of technology is an essential step to develop effective governmental supporting 

programs and marketing strategies to promote the development of manure treatment. 
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Box 1.1 - Brief description of manure treatment technologies that are currently implemented 

in Europe (Foged et al., 2011) 

 Solid-liquid separation has the objective of separating manure slurry into a dry matter and 

nutrient -rich solid fraction and a diluted liquid fraction. 

 Anaerobic digestion includes a series of biological processes in which microorganisms 

break down organic molecules in absence of oxygen, resulting in the production of a 

mixture of gases (mainly methane and carbon dioxide) that can be used as bioenergy. 

 Acidification involves the application of an acidic reagent (e.g., sulfuric acid) to manure 

slurry to lower its pH to 5.5, and thereby to reduce ammonia emissions and deactivate 

pathogens. 

 Biological nitrogen removal (i.e. nitrification-denitrification) has the objective of 

biological conversion of ammonium to inert nitrogen gas (N2) using classical nitrogen 

removal treatment, combining autotrophic nitrification and heterotrophic denitrification 

processes. The feedstock is generally the liquid fractions separated from slurry. 

 Membrane (ultra) filtration targets the removal of solid particles from the separated liquid 

fractions in the range of 5 to 200 nm. Reverse osmosis aims to further separate dissolved 

components in permeates produced by ultrafiltration (or other treatments separating small 

particles), by using pressure to force a solvent through a semipermeable membrane that 

retains the solute on one side and allows the pure solvent to pass to the other side. 

 Composting includes aerobic biological decomposition and stabilization processes under 

conditions that allow for the development of thermophilic micro-organisms that convert 

the solid manure into compost. Compost is sufficiently stable for storage and subsequent 

soil application. 

 Drying aims at reducing the moisture content and offensive odor emissions of solid 

manures/poultry litters by external heating, which is usually followed by pelletizing, a 

process of compressing a material into a smaller, denser form. 

 Combustion/incineration aims to complete the thermo-chemical oxidation of organic 

matter in manures in order to obtain recoverable heat, ashes and gasses. For feedstocks 

with high moisture contents, a pre-drying process is generally required to lower moisture 

contents to less than 50-60% (by weight). 
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1.3 Objectives 

The first objective of the research described in this thesis is to increase the understanding of 

the agronomic and environmental impacts of the manure management chains in EU-271. The 

second objective is to explore options towards improving the performance of the management 

chain, especially related to the mitigation of NH3 and GHG (N2O and CH4) emissions, and to 

the utilization of manure N and P, through application of mitigation measures and manure 

treatment technologies. The utilization of manure N and P depends on the fraction of the 

excreta N and P retained in the manure throughout the manure management chain, on its 

fertilizer effectiveness values, and on the judicious application of the manure to cropland or 

grassland. The term ‘recovery of manure N and P’ has also been used to refer to the fraction 

of N and P excreted that ultimately returns to cropland or grassland. 

This PhD thesis research was part of the Marie Curie Training Program ReUseWaste 

(Recovery and Use of Nutrients, Energy and Organic Matter from Animal Waste). In total 

eleven PhD students and two post docs have been working on various specific mitigation 

measures and treatment technologies (http://www.reusewaste.eu/). My research focused on 

the integral analysis of the whole manure management chain, and on the up-scaling and 

synthesis of research results, including those from literature.  

The specific objectives of this thesis are to: 

 Analyze the feed resource use and nutrient (especially N) excretion by animals in the 

EU-27 at country levels (Chapters 2 and 3) 

 Assess the effects of NH3 mitigation technologies on emissions of NH3, CH4 and N2O 

from individual sources, and their whole-chain effects (Chapter 4) 

 Analyze the contribution of manure treatment activities to emissions of NH3, N2O 

and CH4 from manure management chains in EU-27 at country levels in 2010; and 

explore the potential whole-chain effects of these treatment technologies on 

emissions and nutrient recovery in the EU-27 (Chapter 5) 

 Provide insights into stakeholders perceptions about factors that facilitate or hinder 

the adoption of treatment technology in practice (Chapter 6) 

  

                                                 
1
 In Chapters 3 and 5, the reference year of the analyses is 2010. Croatia is a EU member country since 2013, 

therefore the analyses focus on the EU-27. 
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1.4 Outline of this thesis 

This thesis contains a general introduction (Chapter 1), five research chapters (Chapters 2-6) 

and a general discussion (Chapter 7). 

Chapter 2 reviews N excretion factors of animal categories, and the guidelines and 

methodologies for the estimation of N excretion factors, as used by member states of the 

EU. 

Chapter 3 presents a transparent and uniform methodology for estimating annual feed use 

and N excretion per animal category for all member states of the EU in 2010, based on the 

energy and protein requirements of the animals and statistics of feed use and composition, 

animal number and productivity. 

Chapter 4 presents a meta-analysis of the effects of a set of NH3 mitigation measures on 

NH3, CH4 and N2O emissions from individual sources of the manure management chain, 

and an integrated assessment of whole-chain effects of these measures on emissions 

through scenario analysis. 

Chapter 5 presents scenario analyses of effects of manure treatment technologies on the 

recovery of N and P, and emissions of NH3, N2O and CH4 in manure management chains 

in EU at country level. 

Chapter 6 reports on a survey study about stakeholder perceptions of manure treatment 

technologies in Denmark, Italy, the Netherlands and Spain; which factors facilitate or 

hinder the implementation in practice of manure treatment technologies?. 

Chapter 7 provides a general discussion of the main findings of the study, and identifies 

remaining future research needs. 

 

Chapters 2, 3, 4, 6 have been published in peer-reviewed journals. Chapter 5 is accepted 

subject to revision. 

 

  



General introduction 
 

11 
 

References 

Berg W, Brunsch R, Pazsiczki I (2006) Greenhouse gas emissions from covered slurry compared with 

uncovered during storage. Agriculture, Ecosystems & Environment, 112, 129–134. 

Bittman S, Dedina M, Howard C, Oenema O, Sutton M (2014) Options for Ammonia Mitigation: 

Guidance from the UNECE Task Force on Reactive Nitrogen. Centre for Ecology and Hydrology, 

Edinburgh, UK. 

Bouwman AF, Lee DS, Asman WAH, Dentener FJ, Van Der Hoek KW, Olivier JGJ (1997) A global 

high-resolution emission inventory for ammonia. Global Biogeochemical Cycles, 11, 561–587. 

De Vries JW, Vinken TMWJ, Hamelin L, De Boer IJM (2012) Comparing environmental 

consequences of anaerobic mono- and co-digestion of pig manure to produce bio-energy--a life 

cycle perspective. Bioresource technology, 125, 239–48. 

Fernandez-Lopez M, Puig-Gamero M, Lopez-Gonzalez D, Avalos-Ramirez A, Valverde J, Sanchez-

Silva L (2015) Life cycle assessment of swine and dairy manure: Pyrolysis and combustion 

processes. Bioresource Technology, 182, 184–192. 

Foged HL, Flotats X, Blasi AB, Palatsi J, Magri A, Schelde KM (2011) Inventory of manure 

processing activities in Europe. Technical Report No. I concerning “Manure Processing 

Activities in Europe” to the European Commission, Directorate-General Environment. 138 pp. 

Galloway JN, Dentener FJ, Capone DG et al. (2004) Nitrogen Cycles: Past, Present, and Future. 

Biogeochemistry, 70, 153–226. 

Hamelin L, Wesnæs M, Wenzel H, Petersen BM (2011) Environmental consequences of future biogas 

technologies based on separated slurry. Environmental science & technology, 45, 5869–77. 

Hansen RR, Nielsen DA, Schramm A, Nielsen LP, Revsbech NP, Hansen MN (2009) Greenhouse gas 

microbiology in wet and dry straw crust covering pig slurry. Journal of environmental quality, 

38, 1311–9. 

Herrero M, Havlík P, Valin H et al. (2013) Biomass use, production, feed efficiencies, and greenhouse 

gas emissions from global livestock systems. Proceedings of the National Academy of Sciences 

of the United States of America, 110, 20888–93. 

Krausmann F, Erb K-H, Gingrich S, Lauk C, Haberl H (2008) Global patterns of socioeconomic 

biomass flows in the year 2000: A comprehensive assessment of supply, consumption and 

constraints. Ecological Economics, 65, 471–487. 

Leip A, Billen G, Garnier J et al. (2015) Impacts of European livestock production: nitrogen, sulphur, 

phosphorus and greenhouse gas emissions, land-use, water eutrophication and biodiversity. 

Environmental Research Letters, 10, 115004. 

Lesschen JP, van den Berg M, Westhoek HJ, Witzke HP, Oenema O (2011) Greenhouse gas emission 

profiles of European livestock sectors. Animal Feed Science and Technology, 166-167, 16–28. 

McMichael AJ, Powles JW, Butler CD, Uauy R (2007) Food, livestock production, energy, climate 

change, and health. Lancet, 370, 1253–1263. 

Menzi H, Oenema O, Burton C (2010) Impacts of intensive livestock production and manure 

management on the environment. In: Livestock in a changing landscape, drivers, consequences, 

and responses (ed Steinfeld, H., Mooney, H.A., Schneider, F., Neville LE), pp. 139–164. Island 

Press. 

Mezzullo WG, McManus MC, Hammond GP (2012) Life cycle assessment of a small-scale anaerobic 

digestion plant from cattle waste. Applied Energy, 102, 657–664. 

Montalvo C (2008) General wisdom concerning the factors affecting the adoption of cleaner 

technologies: a survey 1990-2007. Journal of Cleaner Production, 16, 7–13. 

Oenema O, Tamminga S (2005) Nitrogen in global animal production and management options for 

improving nitrogen use efficiency. Science in China Series C: Life Sciences, 48, 871–887. 



Chapter 1 

12 
 

Oenema O, Wrage N, Velthof GL, Groenigen JW, Dolfing J, Kuikman PJ (2005) Trends in Global 

Nitrous Oxide Emissions from Animal Production Systems. Nutrient Cycling in Agroecosystems, 

72, 51–65. 

Oenema O, Oudendag D, Velthof GL (2007) Nutrient losses from manure management in the 

European Union. Livestock Science, 112, 261–272. 

Petersen S, Sommer S, Beline F et al. (2007) Recycling of livestock manure in a whole-farm 

perspective. Livestock Science, 112, 180–191. 

Potter P, Ramankutty N, Bennett EM, Donner SD (2010) Characterizing the spatial patterns of global 

fertilizer application and manure production. Earth Interactions, 14. 

Reis S, Howard C, Sutton MA (2015) Costs of Ammonia Abatement and the Climate Co-Benefits (eds 

Reis S, Howard C, Sutton MA). Springer Netherlands, Dordrecht, 292 pp. 

Sandars DL, Audsley E, Cañete C, Cumby TR, Scotford IM, Williams  a. G (2003) Environmental 

Benefits of Livestock Manure Management Practices and Technology by Life Cycle Assessment. 

Biosystems Engineering, 84, 267–281. 

Sheldrick W, Keith Syers J, Lingard J (2003) Contribution of livestock excreta to nutrient balances. 

Nutrient Cycling in Agroecosystems, 66, 119–131. 

Sommer SG, Christensen ML, Schmidt T, Jensen LS (2013) Animal Manure Recycling: Treatment 

and Management. 382 pp. 

Steinfeld H, Gerber P, Wassenaar T, Castel V, Roslaes M, De Haan C (2006) Livestock’s long shadow. 

environmental issues and options. FAO report, Rome, Italy. 390 pp. 

Sutton M, Howard C, Erisman J (2011) The European nitrogen assessment: sources, effects and policy 

perspectives. 612 pp. 

Szanto GL, Hamelers HVM, Rulkens WH, Veeken AHM (2007) NH3, N2O and CH4 emissions 

during passively aerated composting of straw-rich pig manure. Bioresource technology, 98, 

2659–2670. 

ten Hoeve M, Hutchings NJ, Peters GM, Svanström M, Jensen LS, Bruun S (2014) Life cycle 

assessment of pig slurry treatment technologies for nutrient redistribution in Denmark. Journal of 

environmental management, 132, 60–70. 

Thornton PK (2010) Livestock production: recent trends, future prospects. Philosophical transactions 

of the Royal Society of London. Series B, Biological sciences, 365, 2853–2867. 

Velthof GL, Oudendag D, Witzke HP, Asman W a H, Klimont Z, Oenema O (2009) Integrated 

assessment of nitrogen losses from agriculture in EU-27 using MITERRA-EUROPE. Journal of 

environmental quality, 38, 402–417. 

Velthof GL, Lesschen JP, Webb J et al. (2014) The impact of the Nitrates Directive on nitrogen 

emissions from agriculture in the EU-27 during 2000-2008. The Science of the total environment, 

468-469, 1225–1233. 

 

 



 
 

 
 

 

 

 

CHAPTER 2 

Nitrogen excretion factors of livestock in the 

European Union: a review 

 

 

 

 

 

 

 

 

This Chapter has been published: G.L. Velthof, Y. Hou, O. Oenema. Journal of the 

Science of Food and agriculture (2015) 95: 3004–3014, DOI 10.1002/jsfa.7248 

 



Chapter 2 

14 
 

Abstract 

Livestock manures are major sources of nutrients, used for the fertilization of cropland and 

grassland. Accurate estimates of the amounts of nutrients in livestock manures are required 

for nutrient management planning, but also for estimating nitrogen (N) budgets and 

emissions to the environment. Here we report on N excretion factors for a range of animal 

categories in policy reports by member states of the European Union (EU). Nitrogen 

excretion is defined in this paper as the total amount of N excreted by livestock per year as 

urine and faeces. We discuss the guidelines and methodologies for the estimation of N 

excretion factors by the EU Nitrates Directive, the OECD/Eurostat gross N balance 

guidebook, the EMEP/EEA Guidebook and the IPCC Guidelines. Our results show that N 

excretion factors for dairy cattle, other cattle, pigs, laying hens, broilers, sheep, and goats 

differ significantly between policy reports and between countries. Part of these differences 

may be related to differences in animal production (e.g. production of meat, milk and eggs), 

size/weight of the animals, and feed composition, but partly also to differences in the 

aggregation of livestock categories and estimation procedures. The methodologies and data 

used by member states are often not well described. There is a need for a common, 

harmonized methodology and procedure for the estimation of N excretion factors, to arrive 

at a common basis for the estimation of the production of manure N and N balances, and 

emissions of ammonia (NH3) and nitrous oxide (N2O) across the EU. 
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2.1 Introduction 

Livestock manures are major sources of nutrients, to be used for the fertilization of cropland 

and grassland. Accurate estimates of the amounts of nutrients in livestock manures are 

required for nutrient management planning, but also for estimating nitrogen (N) budgets and 

emissions of N to the environment (Sutton et al., 2011).
 
Nitrogen excretion is defined in this 

paper as the total amount of N excreted by livestock per year as urine and faeces.
. 
The total 

amount of N excreted as manure by livestock in the member states of the European Union 

(EU) was 9.2 Tg in 2011, which is only 15% less than the amount of 10.6 Tg artificial 

fertilizer N consumed (Source: Eurostat statistics). The N in manure is vulnerable to losses 

via emissions of ammonia (NH3), nitrous oxide (N2O) and nitrogen oxides (NOx) to the 

atmosphere and via leaching of nitrate (NO3
-
), ammonium (NH4

+
) and organic N to 

groundwater and surface waters. Emissions of NH3 occur from manure N in animal houses, 

manure storages, and following the application of manure to soils, including the droppings 

from grazing animals in pastures (Webb et al., 2013). Deposition of atmospheric NH3 to land 

and surface waters results in eutrophication of ecosystems, acidification and loss of 

biodiversity. Moreover, NH3 may form fine particles (PM) in the atmosphere, which 

negatively affect human health (Moldanová et al., 2011). The nitrification and denitrification 

of N from manure may release nitrous oxide (N2O), nitrogen oxide (NOx) and dinitrogen (N2) 

into the atmosphere. Gaseous N emissions occur from manure applied to land, deposition of 

excreta by grazing animals, and from animal houses and manure storages. Nitrous oxide is a 

potent greenhouse gas and is an important cause for depletion of stratospheric ozone 

(Ravishankara et al., 2009; IPCC, 2014). Nitrogen oxides can react with carbon monoxide 

and volatile organic compounds in air, resulting in the formation of tropospheric or ground 

level ozone (O3). Ground-level O3 pollution has several negative effects on health 

(Moldanová et al., 2011). Dinitrogen is harmless for the environment, but N2 losses like other 

N loss pathways decrease the N use efficiency of agricultural systems and, by that, increases 

the need for N fertilizers. Application of manure and droppings of grazing animals may also 

result in N leaching to groundwater and surface waters, which subsequently may cause 

eutrophication of surface water and pollution of groundwater as drinking water (Camargo and 

Alonso, 2006; WHO, 2011). 

Several policies have been implemented by the European Union (EU) and United Nations 

(UN) bodies to improve the utilization of manure nutrients in agriculture and to decrease N 
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emissions to the environment (Oenema et al., 2011). These policies include the EU National 

Emission Ceiling Directive (European Commission, 2001) and the Gothenborg protocol of the 

UN-ECE Convention on Long-range Transboundary Air Pollution (UNECE, 1999) to 

decrease NH3 and NOx emissions, the UN-FCCC Kyoto protocol to decrease N2O emission 

(UNFCCC, 1997), and the EU Nitrates Directive to decrease N leaching to groundwater and 

surface waters (European Commission, 1991). In addition, OECD and Eurostat developed 

agri-environmental indicators for monitoring of the pressures by agriculture on the 

environment and of the state of the environment (European Commission, 2006; OECD, 2013). 

Evidently, there is a need for accurate estimates of N excretion by livestock, to be able to 

calculate and monitor manure production, N balances of agriculture and emissions of N to the 

environment. Currently, there are no uniform, standard and accepted methodologies and 

terminologies for estimating the amounts of N and P in animal excrements. Guidelines and 

recommended methodologies for the estimation of N excretion and associated emissions of 

NH3 and NOx (EEA, 2013) and N2O
 
(IPCC, 2006) are given by the Gothenborg protocol and 

Kyoto protocol, respectively. The EU Nitrates Directive includes a maximum manure 

application standard of 170 kg N per ha, to be applied in so-called nitrate vulnerable zones. 

Guidelines to calculate manure N application rates are available (Ketelaars and Van der Meer, 

1999). The OECD and Eurostat give also recommendations for the calculation of N excretion, 

as part of the gross N balance indicator (OECD/Eurostat, 2007). 

Further, EU policies are evaluated or underpinned using integrated assessment models such as 

GAINS (http://gains.iiasa.ac.at/models/) and CAPRI (www.capri-model.org). GAINS is used 

for emission projections of greenhouse gases and atmospheric pollutants, including NH3. 

CAPRI is an economic model used for exploring reforms of for example the Common 

Agricultural Policies (CAP) and biofuel policies. CAPRI includes a module for the 

calculation of N balances and greenhouse gas emissions. GAINS (Klimont and Brink, 2004) 

and CAPRI
 
(Leip et al., 2010) both use methodologies for the estimation N excretion by 

livestock. 

EU member States tend to use methods to estimate excretion which they have developed and 

improved over time, and sometimes use different methodologies for different reporting 

requirements (Oenema et al., 2011). This make comparisons between countries and estimates 

at EU level complicated. 

http://gains.iiasa.ac.at/models/
http://www.capri-model.org/
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Here, we present a review of the methodologies for the calculation of N excretion factors in 

EU, and provide a comparison of the N excretion factors used for different policy streams and 

models by the EU member states. First, we present a review of the used methodologies. 

Thereafter, the reported N excretion factors for different livestock categories and EU member 

states are summarized and discussed. Finally, we present recommendations for a common, 

harmonized methodology for estimating N excretion factors. 

2.2 Review of methods to estimate nitrogen excretion factors 

2.2.1 Type of methods 

The most common method for deriving N excretion factors is the input-output balance of the 

animal, which assumes that the amount of N excreted in faeces and urine is equal to the total 

amount of feed N consumed minus the N retained in marketed products (milk, meat, eggs, 

live weight gain). Hence, N excretion = N intake – N retention. 

Two approaches are used for the estimation of N excretion factors, i.e. the gross and net N 

excretion. The gross N excretion is the total N excretion in urine and faeces from an animal 

without accounting for any N loss after excretion. The net N excretion is defined as the total 

amount of manure N (mixture of collected urine and faeces) that is applied to land, i.e. the net 

N excretion is defined as the gross N excretion corrected for N losses from housing systems 

and manure storages. The amount of N consumed by the animal depends on the feed intake by 

the animal, and the N content of the feed. Total feed intake depends on the maintenance cost 

and production level of the animal (e.g. growth rate, milk and egg production), and the 

feeding value and digestibility of the feed. Data on the annual N retention in meat, egg, milk, 

or wool produced is usually derived from production statistics and scientific reports about the 

N contents in animal products. The IPCC guidelines present default values of N retention 

(IPCC, 2006). More details about the gross N excretion methods are provided in the following 

sections. 

The net excretion can be calculated from i) the gross N excretion corrected for gaseous N 

emissions (as NH3, N2O, N2, and NOx) from housing systems and manure storages, or ii) 

from the volume or mass and the N content of the manure in the manure storage just before 

application to land. Estimates for gaseous N losses from housing systems and manure storages 

can be based on the default emission factors in the guidelines for NH3
 
(EEA, 2013) and N2O 
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emissions (IPCC, 2006). Some countries have derived country specific emission factors, 

taking county specific housing systems and conditions into account, e.g. Denmark (Hutchings 

et al., 2001), France (Gac et al., 2007), Ireland (Hyde et al., 2003), Germany (Dämmgen et al., 

2006), The Netherlands (Velthof et al., 2012), and UK (Webb and Misselbrook, 2004). 

For the second approach, the volume or mass and the N content of produced manure have to 

be estimated. Estimating the mass or volume and N content of manures in storages is not 

without discussion. One option is to use default factors for manure excretion per animal and 

to correct for changes in volume through for example water entering manure storages (rain, 

spilling and cleaning water), additions of bedding materials like straw and dust, evaporation 

of water and compaction processes. The volume or mass can also be estimated by 

measurement of the dimension of the manure storage or tanker or by weighing. For translation 

of the volume in mass and vice versa, manure density factors are needed. The N content of 

manures are either measured or based on defaults. Manures are often very heterogeneous, and 

the variation in N contents is very large. As a consequence, a large number of samples is 

needed to obtain an accurate average N content, using well-designed sampling protocols. In 

the Netherlands, all transports of manure have to be sampled and analyzed on N and P 

contents because of legislation. The results show large variations in N contents between 

livestock categories and within a livestock category (Table 2-1). The variation within a 

livestock category is largest for solid manure. For most manures the variation is larger for P 

than for N. The large variation of N and P contents in solid manure is due to the 

heterogeneous distribution of nutrients in these manures, and also due to the diversity in solid 

management systems. Nicholson et al. (1996) also found large variations in the composition 

of solid poultry manures in England and Wales. 

The calculation of gross and net N excretion factors is reported on different spatial scales. 

Generally, NH3 and N2O emissions are reported on a national level for the Gothenborg and 

Kyoto protocols, nutrient balances at regional to national level for the OECD/Eurostat reports, 

and the manure production at farm level for the Nitrates Directive. 
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Table 2-1. Average and standard deviation (SD) of N and P (expressed in P2O5) contents of livestock manure in the Netherlands (Van Bruggen, 2014), based 

on data of 2011-2013 of the Dutch Ministry of Economic Affairs. 

Animal and manure type No of samples N (g kg
-1

 manure) P2O5 (g kg
-1

 manure) 

   Average SD Average SD 

Cattle Solid cow manure 10436 7.7 5.7 4.3 5.2 

 
Liquid fraction separated cow slurry 1136 4.5 2.1 1.8 0.8 

 
Cow slurry 201087 4.0 0.7 1.5 0.4 

 
Calve (white meat) slurry 46526 3.1 1.0 1.4 1.1 

 
Calve (red meat) slurry 24216 5.6 1.7 2.3 0.8 

Poultry Chicken slurry 602 10.0 3.2 6.0 2.5 

 Chicken manure (manure belt) 9477 28.4 9.9 23.0 10.5 

 Chicken dried manure (manure belt)  9149 32.7 9.4 25.9 8.9 

 Chicken litter 29107 29.0 8.6 25.6 8.0 

 Broiler 27266 34.1 6.7 16.6 5.8 

 Turkey 2053 32.7 8.7 22.5 5.9 

 Duck  1268 10.7 6.6 9.7 6.5 

Pigs Solid pig manure 3895 13.9 14 13.6 13.5 

 Liquid fraction separated pig slurry 17672 1.9 1.8 0.8 0.8 

 Sow slurry 70598 3.8 1.7 2.5 1.8 

 Fattening pig slurry 118616 7.0 1.9 3.9 1.5 

Sheep  256 8.7 2.7 5.1 2.4 

Goat  11135 9.7 10.1 5.4 7.2 

Horses  2585 5.6 2.4 3.0 1.5 

Rabbits  964 13.6 5.4 12.6 5.1 
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2.2.2 Methodologies in the IPCC guidelines 

Countries have to report annually greenhouse gas emissions to the UNFCCC; the National 

Greenhouse Gas Inventories (NIR). The method used to calculate greenhouse gas emissions is 

based on the IPCC guidelines. The IPCC Guidelines include recommendations for NIR. These 

guidelines also include recommendations for the calculation of N excretion factors, to be able 

to calculate direct and indirect N2O emissions, and thereby NH3 emissions and NO3 (nitrate) 

leaching. Losses of NH3 and NO3 are indirect sources of N2O emissions. The IPCC 

Guidelines contain recommendations at different levels of detail, i.e. the Tier levels. The Tier 

1 approach is the most simple method and includes default estimates of N excretion. The Tier 

2 and 3 approaches are more detailed and include country specific estimates and/or models. 

Nitrogen excretion factors have be determined for each livestock category. 

The Tier 1 excretion factors are expressed in kg N 1000 kg
-1

 animal day
-1

. These rates can be 

applied to livestock sub-categories of varying ages and growth stages using a typical average 

animal mass (TAM) for that population sub-category. The IPCC Guidelines include default 

TAM coefficients, but it is recommended to use country-specific TAM factors. 

For Tier 2, the annual N excretion is calculated from the N intake and N retention data as 

Nex(T) = Nintake(T) * [1 - Nretention(T)], where Nex(T) is the annual N excretion rate of 

animal of species/category T (kg N animal
-1

 year
-1

), Nintake(T) is the annual N intake per 

head of animal of species/category T (kg N per animal per year), and Nretention(T) is the 

dimensionless fraction of annual N intake that is retained by animal of species/category T. 

Default N retention fractions are provided in the IPCC Guidelines: 0.20 for dairy cows, 0.07 

for other cows, 0.30 for pigs and poultry, 0.10 for sheep and goats, and 0.07 for horses. The 

IPCC guidelines recommend the use of country specific N intake and retention data for each 

livestock category, which should be based on national data statistics and information from 

animal nutrition specialists. 

For Tier 3, country-specific methods and models are being used. These methods and models 

should be well documented and reviewed, and should clearly describe the estimation 

procedures. 

Our analyses of the national inventory reports for 2011 show that most Member States use a 

country specific approach for N excretion estimates (Table 2-2). Some member states use a 
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country specific approach for the main livestock categories and the IPCC default values for 

the other categories. 

2.2.3 Methodologies in the EMEP/EEA inventory guidebook 

The EMEP/EEA air pollutant emission inventory guidebook provides guidance on estimating 

emissions from both anthropogenic and natural sources of gaseous pollutants, including NH3 

(EEA, 2013) The Tier 1 approach for NH3 emissions in this guidebook is not based on N 

excretion factor. It includes default NH3 emission factors in kg NH3 animal
-1

. 

The Tier 2 and Tier 3 are based on emission factors, which relate excreted total N or excreted 

total ammoniacal nitrogen (TAN) to NH3 emissions. The Tier 2 approach is based on default 

N excretion factors and comparable to the IPCC Tier 1. For Tier 3 country-specific models 

and country specific data are required. There is no restriction on the form of Tier 3, provided 

it can be demonstrated that the estimated emissions with Tier 3 are more accurate than those 

with Tier 2. If data are available, emission calculations may be made for a larger number of 

livestock categories than listed under Tier 2. Generally, standard values for TAN, per animal 

category, are used to calculate the TAN excretion (Reidy et al., 2008). Default values for the 

fraction of TAN in total N range from 0.5 – 0.7 (EEA, 2013). In the Netherlands, TAN values 

are calculated annually on the basis of data statistics about feed composition (Velthof et al., 

2012). 

Our analyses of national inventory reports for the Gothenborg protocol shows that 11 

countries use a Tier 1 methodology (not based on N excretion factors), and the other use 

(combinations of) Tier 2 excretion factors and country specific excretion factors (Table 2-2). 
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Table 2-2. Sources/methods of nitrogen excretion used in the National Inventory Reports of UNFCCC (NIR), reports for Gothenborg protocol and action 

programmes of the Nitrates Directive. 

Country NIR Gothenborg protocol Nitrates Directive 

Austria N balance
a
 As NIR Country specific net excretion 

Belgium Country specific As NIR As NIR for Flanders. Gross excretion for Walloon 

Bulgaria IPPC default Tier 1 - NH3 based
b
 N content and volume of manure

c
 

Cyprus IPPC default Tier 1 - NH3 based N content and volume of manure 

Czech Rep. IPPC default Not clear N content and volume of manure 

Denmark N balance N balance As NIR; corrected for gaseous N loss 

Estonia IPPC default, except dairy cow Tier 1 - NH3 based N content and volume of manure 

Finland N balance As NIR N balance 

France IPPC default Tier 1 - NH3 based N balance; corrected for gaseous N loss 

Germany Region specific N balance As NIR Country specific gross excretion. Method not indicated 

Greece IPPC default Not indicated N content and volume of manure 

Hungary IPPC default Tier 1 - NH3 based Country specific net excretion, based on literature 

Ireland N balance Tier 1 - NH3 based As NIR 

Italy N balance As NIR As NIR 

Latvia N balance Tier 1 - NH3 based N content and volume of manure 

Lithuania N balance for cattle and pigs. Other default IPCC Tier 1 - NH3 based Net excretion based on N balance and gaseous N loss 

Luxembourg Country specific; method not indicated Tier 1 - NH3 based Not indicated 

Malta Country specific; method not indicated Not indicated Not indicated 

Netherlands N balance As NIR As NIR  

Poland Country specific for dairy cattle, pigs, and horses Country specific N content and volume of manure 

Portugal Country specific As NIR N content and volume of manure 

Romania IPPC default Tier 1 - NH3 based As NIR 

Slovakia IPPC default Tier 1 - NH3 based N content and volume of manure 

Slovenia Dairy cattle based on milk production As NIR  Country specific net excretion. Method not indicated. 

Spain N balance As NIR Country specific gross excretion. Method not indicated. 

Sweden Country specific model Country specific model Country specific model 

UK N balance As NIR As NIR 
a
 Input – output balance of the animal 

b
 Emission of NH3 is expressed in kg NH3 per animal; N excretion is not used in Tier 1 approach

 

c 
The manure production/ N excretion calculated from volume of manure and the N content of the manure  



Nitrogen excretion factors of livestock: a review 

23 
 

2.2.4 Methodologies for the EU Nitrates Directive 

The EU Nitrates Directive has the objective to decrease nitrate leaching to groundwater and 

surface waters. One of the measures in the Nitrates Directive is a maximum application 

standard of manure of 170 kg N per ha per year. Farmers have to calculate the amount of 

manure N that is produced on their farm and that can be applied to land. Member States of the 

EU have to report N excretion values in their Nitrates Directive Action Programmes for so-

called Nitrate Vulnerable Zones. Our analyses indicate that the approaches for the calculation 

of the N excretion per livestock category differ between the Member States (Table 2-2). Many 

countries use a feed balance method to calculate N excretion for a large number of animal 

categories, but some countries use default estimates of N excretion, and others use a method 

based on estimating the volume or mass of manure and the N content of the manure.  

The 1999 study “Establishment of criteria for the assessment of the nitrogen content of animal 

manures” presents guidelines for the calculation of manure N production, to be used within 

the framework of the EU Nitrates Directive (Ketelaars and Van der Meer, 1999). The manure 

N production is calculated as: Nmanure = Ndiet – Nanimal products – Nlosses from buildings 

and manure storage, where Nmanure is the manure production in kg N animal
-1

 year
-1

, Ndiet 

is the feed N consumed in kg N animal
-1

 year
-1

, Nanimal products is N retention (N in animal 

products) in kg N animal
-1

 year
-1

, and Nlosses from buildings and manure storage are the 

gaseous N losses in animal housings and manure storages, in kg N animal
-1

 year
-1

. Details of 

feed composition, daily feed intake, N contents of products, production rounds per year, and 

feed conversion ratios are included in the guidelines (Ketelaars and Van der Meer, 1999).
 

North Italy (Xiccato et al., 2005)
 
and UK (ADAS, 2007)

 
use these guidelines for the 

calculation of manure N production. 

2.2.5 Methodologies used for the OECD/EUROSTAT Gross N balance 

The methodology for deriving the Eurostat/OECD nutrient balances are described in the 

OECD/Eurostat (2007) Gross Nitrogen Balances Handbook. The following countries 

submitted country specific N excretion factors to Eurostat for 2011: Austria, Belgium, Czech 

republic, Denmark, Finland, Germany, Hungary, Ireland, Italy, Malta, Netherlands, Poland, 

Portugal, Slovakia, Slovenia, and Sweden. Often similar methodologies were used as for the 

UNFCCC reporting. Some countries have not supplied data to Eurostat/OECD or the data 

were not compliant with the guidelines in the OECD/Eurostat Handbook. For these countries 
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Eurostat/OECD used the N excretion factors reported in the 2010 submission of greenhouse 

gases to the UNFCCC. 

2.2.6 Methodologies used in the GAINS model 

The GAINS model estimates emissions of NH3, N2O and CH4 from animal manures per 

livestock category and Member State. GAINS relies on data submitted by national experts, 

based on a questionnaires (Klimont and Brink, 2004; Asman et al., 2011). The questionnaires 

included questions for dairy cattle and other cattle, fattening pigs, sows, horses, sheep and 

goats, laying hens, broilers, other poultry (geese, ducks, turkey), and fur animals. If no 

national information was provided, assumptions were made. If no country-specific data for 

dairy cattle was provided, a relationship between milk yield and N-excretion was used: Nx = 

0.0178 x M + 0.2271, where Nx = N excretion rate (kg N animal
-1

 year
-1

), and M = milk yield 

(kg animal
-1

 year
-1

). The available data do not allow conclusions for milk yields below 3500 

kg milk year
-1

; then a mean N excretion value of 50 kg N animal
-1

 year
-1 

is assumed, 

irrespective of milk yield. 

2.2.7 Methodologies used in the CAPRI model 

The CAPRI (Common Agricultural Policy Regional Impact) model is an agricultural sector 

model covering the whole of EU, Norway and Western Balkans at regional level (250 

regions), and links global agricultural markets at country or country block level. Besides 

economic evaluations, CAPRI is also used for the calculation of balances for N, P, K and 

greenhouse gas emissions (Leip et al., 2010, 2011). The excretion of N per animal category is 

calculated as the difference between N intake and N retention of animals. CAPRI includes a 

feed module in which available feed in a region/country is distributed over the animals in a 

region, based on energy and nutrient requirements of the animals. Feed statistics from FAO 

and Eurostat are used. The yields and N content of grassland are based on estimates made in 

the MITERRA-model (Velthof et al., 2009). 

2.3 Nitrogen excretion factors 

Table 2-3 shows the calculated N excretion factors for EU countries using the default IPCC 

Tier 1 factors, the EMEP/EEA Tier 2 approach, and the gross N excretions in the Nitrates 

Directive report. For the Nitrates Directive study, ranges are presented, which reflect 

differences in breed, N content of the diet, protein conversion ratio, and live weight. There is 
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a wide range in the N excretion factors of dairy cattle (75 to 184 kg N animal
-1

 year
-1

) and 

other cattle (20 – 90 kg N animal
-1

 year
-1

). The IPCC uses defaults for Western and Eastern 

Europe and EMEP/EEA uses only one default. In the EMEP/EEA Guidelines it is indicated 

that the default N excretion data were taken from IPCC. However, it is not indicated if 

Western or Eastern European excretion coefficients were used and which animal category was 

selected. For most animal categories, the EMEP/EEA defaults are different from the IPCC 

defaults, when using the TAM values in the IPCC report. It is not clear how the EMEP/EEA 

Tier 2 defaults have been obtained for the IPCC Tier 1 defaults. If the ranges provided by the 

Nitrates Directive report reflect the actual variations in practice, it will be difficult to accept 

that the default values presented by the IPCC Tier 1 and the EMEP/EEA Tier 2 approaches 

have high accuracy, even though the factors do not differ much between the two latter 

approaches. 

Table 2-3. N excretion factors in kg N animal
-1

 yr
-1

 according to IPCC Tier 1 guidelines, EMEP/EEA 

Tier 2 guidebook, and recommendations for Nitrates Directive. 

Animal IPCC Tier 1
a
  EMEP/EEA 

Tier 2 

 Nitrates 

Directive
e
 

Explanation of range in Nitrates Directive factors 

 Western 

Europe 

Eastern 

Europe 

  

Dairy cattle 105 70  105  75 - 184 Small breed low N diet to large breed high N diet 

Other cattle 51 50  41  20 - 90 Growing cattle low N diet to suckler cow high N diet 

Fattening pig
b
 9.3 10  12  12 - 15 High to low protein conversion 

Sow
c
  30 30  35  32 - 38 High to low protein conversion (incl. piglets < 25 kg) 

Layers
d
 0.63 0.54  0.77  0.64 - 0.96 Good to poor feed conversion 

Broilers 0.36 0.36  0.36  0.41 - 0.61 Good to poor feed conversion 

Turkeys 1.84 1.84  1.64  1.6 - 2.5 Good to poor feed conversion 

Ducks 0.82 0.82  1.26  1.0 - 1.4 Good to poor feed conversion 

Sheep 15 16  16  15 - 30 Low to high N diet (incl. lambs < 40 kg) 

Goats 18 18  16  16 - 26 Low to high N diet (incl. lids < 7 kg) 

Horses 36 41  48  39 - 67 400 to 800 kg 

Rabbits 8.1 8.1  -  7 - 12 Low to high N diet (incl. kittens) 

a
Calculated from IPCC Tier 1 tables with excretion per mass per day and IPCC default mass values (TAM)

 

b
Market swine in IPCC 

c
Breeding swine in IPCC 

d
Hens ≥ 1 yr in IPCC 

e
 Ketelaars and Van der Meer (1999) 

Tables 2-4 to 2-7 show the N excretion factors for dairy cattle and other cattle, pips, poultry, 

and sheep and goats, respectively, reported in i) the National Inventory Reports (NIR) for 

2011, ii) the reports to UNECE Gothenborg protocol for the years 2007 – 2010 (years differ 

between countries), (iii) the Action Programmes for the Nitrates Directive available for 2011, 

(iv) the OECD/Nutrient balance for 2011, (v) the GAINS model (Asman et al., 2011) and (vi) 
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the CAPRI model (Leip et al., 2010). Member states using a Tier 1 approach for the 

Gothenborg Protocol do not report N excretion factors. For the Nitrates Directives, only data 

are presented for countries that present gross N excretion factors or net N excretion factors 

and gaseous N emission factors from which gross N excretion can be calculated. 

The N excretion of dairy cattle varied from less than 80 kg N cow
-1

 year
-1

 to more than 140 kg 

N cow
-1

 year
-1

 (Table 2-4). This large range is partly due to differences in breed, N content of 

the diet and level of milk production (Ketelaars and Van der Meer, 1999).  However, 

differences in methods and in data combination are also causes of the variation shown in 

Table 2-4. For nearly all countries, there are differences in N excretion of dairy cattle between 

the policy reports. The excretion factors used in National Inventory Reports for UNFCCC and 

for the Gothenborg protocol are for most member states similar or only lightly different 

(except Germany; 132 kg year
-1

 for NIR 2011 and 114 kg year
-1

 for the Gothenborg protocol). 

The CAPRI estimates were very high for some countries, e.g. 194 kg N cow
-1

 year
-1

 in 

Denmark and 180 kg N cow
-1

 year
-1

 in Sweden. One of the uncertainties in calculation of N 

excretion of dairy cows, is the estimate of grassland yields and the N content of the grassland 

(Velthof et al., 2009). Grassland yields are not yet recorded in statistics, as harvested and 

grazed grass is generally used on the own farm. Lesschen et al. (2011) estimated that the EU 

livestock sector uses around 500 million tonnes of animal feed per year, 40% of which is 

grass (expressed in dry matter). Grasslands are highly diverse in terms of management, yield 

and biodiversity value, which has a large effect on the N and P content of the herbage 

(Whitehead, 2000). Calculations show that the N excretion of dairy cows decreases on 

average with 0.17 kg N kg
-1

 decrease in fertilizer N input, in the range of 200 to 400 kg N ha
-1

 

year
-1 

(Velthof et al., 2014). 

The category ‘other cattle’ consists of cattle with different breeds, weight and age, and 

thereby with large differences in N excretion factors, from less than 15 kg N head
-1

 for calves 

to more than 75 kg N for beef cattle and suckling cows (Table 2-4). This hampers the 

estimation of an average excretion rates for the category “other cattle”. Evidently, excretion 

factors for the different functional categories within the category ‘other cattle’ have to be 

estimated first, and then aggregated proportionally to arrive at a mean excretion factor for 

‘other cattle’. The dominant functional categories within other cattle should be described as 

well to allow comparison. In conclusion, it is recommended to estimate excretion factors for 

functional cattle categories within other cattle instead of using an average excretion factor for 
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“other cattle”. This is also needed because the excretion factors have to be multiplied with the 

appropriate number of animals, which mostly are registered for detailed categories. This 

procedure leads to a transparent and accurate estimation of the N excretion factor for other 

cattle. 

There is also large variation in N excretion factors for pigs (Table 2-5). The N excretion 

factors for pigs in NIR range from 8.4 kg N head
-1

 per year for Denmark to 20 kg N head
-1

 per 

year
-1

 for Romania and Czech Republic. The pig category also consists of a large number of 

different types (breeds, sex, age, weight). Further, it may not be excluded that some countries 

express the N excretion factors on an animal head basis and others on an animal place basis. 

For sows, it is important to report whether piglets are included or not (and till which weight 

and age). The CAPRI model calculates livestock feed using a feed distribution tool and data 

from market balances on a country level, regional fodder availability and animal requirements 

(Leip et al., 2010). The CAPRI estimates for N excretion factors for pigs are much higher 

than that for the other methods (Table 2-5). 

The same comments as for other cattle and pigs hold for poultry. There is a large diversity in 

poultry categories (laying hens, broilers, turkey, ducks etc.), which hampers the use of one 

excretion factor for one poultry category. There are sometimes large differences in N 

excretion factors between countries, which are difficult to explain (Table 2-6). Differences 

may be partly due to differences in age/weight, and unit (animal head or animal place). 

Large differences in N excretion factors between sheep categories are shown in the UNFCCC 

report; N excretion factors range from 5.2 kg N head
-1

 for Spain to 20 kg N head
-1

 in Slovenia 

(Table 2-7). Also the figures used for the Nitrates Directive show large differences for sheep. 

These differences may partly be due to differences in the way male, female and young 

animals are considered in the excretion calculation. 

  



Chapter 2 

28 
 

Table 2-4. Gross nitrogen excretion factors for dairy cows and other cattle (kg N head
-1

 yr
-1

) in EU-27 for different sources. 

 Dairy cows  Other cattle 

Country NIR 

(2011) 

UNECE 

(2007-

2010) 

Nitrates 

Directive 

(2011) a 

OECD/ 

Eurostat 

(2011) 

CAPRI 

(2004) 

GAINS 

(2010) 

 NIR 

(2011)b 

UNECE 

(2007-

2010)a 

Nitrates 

Directive 

(2011)a 

OECD/ 

Eurostat 

(2011)a 

CAPRI 

(2004) 

GAINS 

(2010) 

Austria 97 97 - 97 90 106  47 26-74 - 15-69 40 46 

Belgium 115 - - 109 95 118  54 - - - 47 50 

Walloon - 121 - 111 - -  - 11-97 - 11-77 - - 

Flanders - 97 97 106 - -  - 13-98 23-61 11-77 - - 

Bulgaria 70 - - - 116 75  50 45 - - 49 45 

Cyprus - - - 107 134 103  - - - 19-48 43 40 

Czech Rep. 145 - - 105 114 131  70 - - 20-60 43 45 

Denmark 138 138 - 129 194 132  48 - - 11-66 62 37 

Estonia 102 - - 62 122 113  44 - - 11-45 42 45 

Finland 127 122 - - 92 121  50 38-66 - 16-51 30 53 

France 100 - - 125 105 112  58 - - 53-67 53 50 

Germany 132 114 100-149 119 106 130  41 44-88 60-87 84 40 40 

Greece 100 - - - 97 111  45 - - 25 47 45 

Hungary 114 - - 125 149 146  48 - - 12-65 51 45 

Ireland 85 - 85 109 88 105  49 - 24-65 14-55 48 69 

Italy 116 116 - 94 97 112  49 50 - 63-74 39 47 

Latvia 70 - - 70 139 88  50 - - - 57 51 

Lithuania 99 - 120 - 99 95  58 - 33-95 - 38 50 

Luxembourg 102 - - 71 - 114  68 - - 10 - 42 

Malta - - - 103 155 98  - -  10-28 51 40 

Netherlands 127 130 99-131 135 119 147  83 12-83 35-71 16-75 38 40 

Poland 87 - - 70 91 81  58 - - 36-40 36 35 

Portugal 115 112 - 112 121 102  51 25-80 - 25-55 68 50 

Romania 70 - -  96 67  50 - - 21 39 53 

Slovakia 100 - - 105 119 135  60 - - 21-60 42 45 

Slovenia 111 - - 113 85 110  42 - - 27-35 38 40 

Spain 68 68 89 103 108 71  53 52 - 21-73 51 45 

Sweden 126 125 117-139 117 180 132  42 28-63 22-63 26-57 61 39 

UK 110 - - 117 142 133  55 - - 31-63 53 49 
a
Range in N excretion factors indicate that more categories of cows are included, e.g. suckler cows, calves, young cattle (<1 yr or >1 yr), or bulls. 

b
Data: from common reporting format (CRF) of greenhouse gas inventory submission of 2011. 
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Table 2-5. Gross nitrogen excretion factors (kg N head
-1

 yr
-1

) for pigs. 

Country NIR 

(2011)
a
 

UNECE 

(2007-

2010)
b
 

Nitrates 

Directive 

(2011)
b
 

OECD/ 

Eurostat 

(2011)
b
 

CAPRI 

(2004) 

GAINS 

(2010) 

Austria 9.6 10-29 - 4-24 17.3 9.0 

Belgium 10.1 - - - 18.4 11.1 

Walloon - 2-22 - 2-21 - - 

Flanders - 5-43 13-24 2-21 - - 

Bulgaria 20.0 - - 20 21.6 12.4 

Cyprus - - - 3-25 21.5 12.4 

Czech Rep. 20.0 - - 4-21 19.8 12.4 

Denmark 8.4 8 - 2-23 22.8 9.6 

Estonia 12.9 - - 1-30 18.1 12.4 

Finland - 3-29 - 3-26 12.3 10.1 

France 16.5 - - 1-29 16.6 12.2 

Germany 12.1 3-28 12-35 - 18.4 14.8 

Greece 16.0 - - - 16.1 11.5 

Hungary 8.1 - - 3-27 26.9 8.9 

Ireland 8.5 - 9-35 3-24 15.2 12.4 

Italy 11.8 13-28 - 4-26 20.0 11.5 

Latvia 10.0 - - 20 24.4 10.0 

Lithuania 12.3 - 5-43 12 17.5 12.4 

Luxembourg 11.9 - - 10 - 9.9 

Malta - - - 3-28 24.1 12.4 

Netherlands 8.9 12-30 9-22 13-31 15.8 9.2 

Poland 13.6 - - 3-15 16.6 11.1 

Portugal 9.5 7-42 - 7-42 19.9 9.1 

Romania 20.0 - - 20 18.8 12.4 

Slovakia 15.8 - - 3-22 18.0 12.4 

Slovenia 11.9 - - 14-36 15.0 11.9 

Spain 9.4 7-22 10-24 2-23 17.5 9.4 

Sweden 9.1 11-34 11 2-27 21.3 11.0 

UK 10.6 - - 2-25 17.6 12.4 
a
Data: from common reporting format (CRF) of greenhouse gas inventory submission of 2011. 

b
Range in N excretion factors indicate that more categories of pigs are included. 
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Table 2-6. Gross nitrogen excretion factors (kg N head
-1

 yr
-1

) for poultry (NIR 2011, and CAPRI), laying hens (UNECE, Nitrates Directive, 

OECD/Eurostat, GAINS) and broilers (UNECE, Nitrates Directive, OECD/Eurostat). 

 NIR 

(2011)
a
 

UNECE (2007-2010)  Nitrates Directive 

(2011) 
 OECD/Eurostat (2011) CAPRI 

(2004) 
GAINS 

(2010) 

 Poultry Laying hens Broilers  Laying hens Broilers  Laying hens Broilers Poultry Laying hens 

Austria 0.55 0.52 -  - -  0.72 0.28 0.49 0.73 

Belgium 0.58 0.74 -  - -  - 0.55 0.42 0.70 

Walloon - - -  - -  - 0.54 - - 

Flanders - - -  - -  - 0.60 - - 

Bulgaria 0.60 - -  - -  - - 0.68 0.80 

Cyprus - - -  - -  0.63 0.32 0.58 0.80 

Czech Rep. 0.60 - -  - -  0.60 0.35 0.56 0.80 

Denmark 0.53 0.79 -  - -  1.11 0.63 0.84 0.71 

Estonia 0.60 - 0.40  - -  0.78 0.23 0.58 0.80 

Finland 0.58 0.67 -  - -  0.64 0.48 0.43 0.80 

France 0.60 - 0.55  - -  - - 0.61 0.80 

Germany 0.78 0.84 -  0.75-0.79 0.31-0.47  0.78 0.37 0.52 0.84 

Greece 0.60 - -  - -  - - 0.52 0.80 

Hungary 0.60 - -  - -  0.74 0.38 0.69 1.50 

Ireland 0.31 - -  0.56 0.24  - 0.60 0.47 0.84 

Italy 0.53 - -  - -  0.66 0.38 0.47 0.66 

Latvia 0.60 - -  - -  - - 0.83 0.90 

Lithuania 0.60 - -  0.8-0.87 0.12  - - 0.61 0.80 

Luxembourg 0.74 - -  - -  - - - 0.80 

Malta - - 0.50  - -  0.57 0.04 0.62 0.80 

Netherlands 0.65 - -  0.37 0.36  - 0.53 0.49 0.67 

Poland 0.35 - 0.45  - -  0.70 0.14 0.58 0.70 

Portugal 0.56 0.80 -  - -  0.80 0.45 0.64 0.60 

Romania 0.60 - -  - -  - - 0.58 0.78 

Slovakia 0.73 - -  - -  0.70 0.30 0.62 0.80 

Slovenia 0.60 - 0.43  - -  0.71 0.40 0.43 0.71 

Spain 0.45 0.49 0.29  0.80 0.60  0.49 0.42 0.56 0.80 

Sweden 0.40 0.64 -  0.60 0.28  0.73 0.28 0.73 0.64 

UK 0.57 - -  - -  1.89 0.51 0.58 0.85 
a
Data: from common reporting format (CRF) of greenhouse gas inventory submission of 2011. 
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Table 2-7. Gross nitrogen excretion factors (kg N head
-1

 yr
-1

) for sheep and goats in EU-27. 

Country NIR (2011)
a
  UNECE (2007-2010)  

 

Nitrates Directive (2010)  OECD/ Eurostat (2011)  CAPRI (2004) GAINS (2010) 

Sheep Goats  Sheep Goats  Sheep Goats  Sheep Goats  Sheep and goats Sheep and goats  

Austria 13.1 12.3  13.1 12.3  - -  - 13.1  5.2 13.0 

Belgium 7.5 8.4  8.8-10.5 8.8-10.5  - -  8.9 8.3  5.5 7.4 

Walloon - -  - -  - -  10.2 9.2  - - 

Flanders - -  - -  - -  7.4 7.1  - - 

Bulgaria 14.7 17.0  - -  - -  14.7 17.0  9.5 12.0 

Cyprus - -  - -  - -  9.5 11.2  9.2 12.0 

Czech Rep. 20.0 25.0  - -  - -  9.8 9.8  4.7 12.0 

Denmark 15.3 16.4  17.0 16.3  - -  - -  8.8 17.0 

Estonia 16.0 25.0  - -  - -  14.0 14.0  6.5 14.0 

Finland 10.0 10.7  10.0 10.7  - -  10.0 10.7  4.0 16.0 

France 18.3 25.0  - -  - -  18.3 25.0  7.7 12.0 

Germany 7.4 11.0  7.8 11.0  18.1-18.6 14.8  - 14.8  5 7.5 

Greece 10.7 12.0  - -  - -  - -  7.9 12.0 

Hungary 20.0 18.0  - -  - -  - 14.6  7.9 12.0 

Ireland 6.3 9.0  - -  7-13 9  10.6 12.9  5.1 8.0 

Italy 16.2 16.2  16.2 16.2  - -  12.8 13.5  6.2 16.2 

Latvia 13.0 13.0  - -  - -  6.0 6.0  10.8 7.0 

Lithuania 16.0 16.0  - -  12 10-12  16.0 16.0  6.7 12.0 

Luxembourg 17.0 17.0  - -  - -  17.0 17.0  - 12.0 

Malta - -  - -  - -  9.1 -  8.3 12.0 

Netherlands 6.7 9.9  14.1 17.5  7.4 - 10.2 3.1-5.8  - -  4.8 11.5 

Poland 6.8 6.7  - -  - -  8.0 7.0  6.2 13.7 

Portugal 7.1 6.0  6.6 -  - -  - -  8.4 7.0 

Romania 16.0 25.0  - -  - -  16.0 25.0  7.8 5.2 

Slovakia 16.0 16.0  - -  - -  - 10.0  6.9 12.0 

Slovenia 20.0 25.0  - -  - -  20.0 -  5.0 11.3 

Spain 5.2 11.3  5.1 11.3  10.0 8.8  6.6 9.0  6.8 12.0 

Sweden 6.1 8.7  13.0 -  14.0 -  13.0 11.3  8.2 6.1 

UK 5.2 20.6  - -  - -  - -  - 6.4 
a
Data: from common reporting format (CRF) of greenhouse gas inventory submission of 2011. 
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2.4 Need for harmonization of methods and data 

Our comparison of the excretion factors between policy reports and between countries shows 

large differences. The differences in N excretion factors between countries result from 

differences in animal productivity and animal husbandry practices, but also from differences 

in animal categorization and aggregation, calculation methods, year of reporting or data 

collection, data and information collection/processing/reporting procedures, and adjustments 

for the actual length of the production cycle. These adjustments are necessary to allow for 

non-productive time needed for cleaning and re-stocking the housings. A difference in the 

calculated N excretion between member states due to methodology is unacceptable for 

policies and calculation of total excretion and emissions in EU, and therefore there is a need 

for harmonization of methodologies. 

The N excretion factor has a large effect on the calculated NH3 and N2O emissions, and N 

surplus. The emission factors for NH3 and N2O are expressed in percent of N excreted or N 

applied to soil (Hyde et al., 2003; Dämmgen et al., 2006; IPCC 2006; Gac et al., 2007; 

Hutchings et al., 2011; Oenema et al., 2011; Velthof et al., 2012; EEA, 2013). Evidently, 

variations in N excretion factors affect the calculated emissions directly. Thus, large 

variations in N excretion factors between member states have a large effect on the reported 

emissions. Emission reduction targets for NH3 and N2O are set by UNFCCC, UNECE and the 

European Commission. Manure application standards set by the European Commission have 

less meaning if N excretion factors have low accuracy. Evidently, there is a clear need for a 

robust, common, harmonized approach for estimating N excretion factors, so that the 

emissions reported by member states have a common and transparent basis and can be used 

for estimates of total emission in the EU.  

Any common, universal approach must account for the differences between countries in (i) 

the importance of livestock production, and hence in the relative magnitude of N and P 

excretion as a source of N and P, (ii) the type of livestock production systems (animal species, 

animal housing, animal feeding), and (iii) in the data and information collection infrastructure. 

This holds especially also for the EU, where livestock density may range from an average of 

less than 0.5 livestock units (LSU) per ha to more than 3 LSU per ha. Also, some countries 

have relatively large populations of cattle (dairy and/or beef), while other countries have 

relatively more pigs or poultry or sheep or goat. Countries with a high livestock density 
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commonly have developed a more detailed infrastructure for data and information collection 

than countries with a low livestock density. 

The first step would be the definition of animal categories for which excretion figures have to 

be calculated. These are preferably categories for which animals number are gathered, so that 

total manure production in regions and countries can be made. For the EU, it is recommended 

to use animal categories in the Farm Structure Survey (European Commission, 2009) as a 

basis. It is also recommended to harmonize the livestock categories in the different policy 

reporting streams or develop procedures to aggregate or disaggregate livestock categories for 

the N excretion calculation. This is especially important for other cattle, pigs, and poultry, as 

these categories include livestock types with a large difference in N excretion. 

The second step would be to recommend a set of methodologies with different levels of detail 

(i.e. a Tiered approach) to estimate the N excretion for each category. The accuracy of the 

balance method to calculate excretion is higher than that of estimation on basis of measured 

manure composition. The variability of N contents in manure is large (Table 2-1) and 

accuracy of weighing or measurement of volumes of manure on animal or farm scale is often 

low. The uncertainties in data needed for the balance are generally lower than those of 

measurement of manure composition and amount of manure. Therefore, the basis for the 

calculation of N excretion factors should be the balance method, i.e., N excretion = feed N 

intake – N retention in the animal and animal products. The Tier 1 approach is the most 

simple approach and would be an approach with default N excretion figures for certain 

regions or farming systems (depending on intensity). In other Tier levels, harmonized 

methodologies to calculate N excretion data are needed, which use available information for 

productivity and inputs on regional to national scales and are updated every 1 -5 years. 

The third step is the harmonization of collection and processing of data, such as feed intake 

per animal category, feed production (e.g. grassland yields) and composition (e.g. protein 

content of grassland), animal production (e.g. production of meat, milk, and eggs), and the 

composition of animal products. For accurate estimates of N excretion of dairy cows, there is 

a need for accurate estimates of grassland yields and N uptake. Estimates of grassland yields 

can be based on empirical data (field experiments), results of crops models, expert estimates, 

and feed balances of dairy cattle (i.e. the feed N intake can be estimated from the milk yield). 
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Common methodologies for N excretion calculation and data collection would allow for a 

harmonized and transparent estimation of actual N excretion, and hence for a common basis 

for the estimation and sound comparison of manure N, N balances, and NH3 and N2O 

emissions in different member states and EU policies. 
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Abstract 

Livestock excreta is a large source of nitrogen (N) in the European Union (EU), used to 

fertilize crops, and also a main source of ammonia (NH3), nitrous oxide (N2O) and nitrate 

(NO3
-
) losses to the environment. The amount of N in excreta mainly depends on the animal 

category and productivity, and on feed use and management. National inventories of 

emissions to the environment are often based on different methodologies for the estimation of 

N excretion. Here, we present a transparent and uniform methodology for estimating annual 

feed use and N excretion per animal category for all countries of the EU-27, based on the 

energy and protein requirements of the animals and statistics of feed use and composition, 

animal number and productivity. 

The calculated total feed use in the EU-27 was 506 Tg dry mass in 2010. Dairy cows used 

29%, other cattle 34%, pigs 17%, chicken 9%, sheep and goats 8%, and other animal 

categories 3% of the total feed use. Grass and annual forages were mainly used by dairy cows 

(30 and 49%, respectively) and other cattle (55 and 44%); pigs used most of the feed cereals 

(53%); protein-rich feed (e.g., soybean meal) were mostly used by pigs (34%) and chicken 

(24%). Differences between countries in feed use were large, mainly related to variations in 

national feed supply and animal productivity. Total N excretion of the animals amounted to 

9.7 Tg in 2010, and varied between countries from 14 to 291 kg ha
-1

 of utilized agricultural 

land. The present study provides a uniform and transparent approach for evaluating feed use 

and N excretion in all countries of the EU-27. Our results underline the significant differences 

in N excretions between EU countries as a result of feed use variations, suggesting the need 

for basing N excretion estimations on feed use data. The dataset present in this study may 

serve as a basis for such efforts, also to improve national inventories of N emissions. 
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3.1 Introduction 

The livestock sector is a key user of natural resources, including land, water, nutrients and 

biomass. Recent estimates suggest that 4.7 to 7.0 billion tonnes dry biomass is used by 

livestock, equivalent to nearly 60% of the global plant biomass use (Krausmann et al., 2008; 

Wirsenius et al., 2010; Herrero et al., 2013). A similar estimate (60-65%) is reported for 

Europe (Krausmann et al., 2008). The livestock sector also contributes approximately 40% to 

the global anthropogenic ammonia (NH3) and nitrous oxide (N2O) emissions (Galloway et al., 

2004; Oenema et al., 2005). In Europe, livestock contributes as much as 80% to the total NH3 

emissions (EEA, 2014), and about 40% to the total N2O emissions (Bellarby et al., 2013; 

Oenema et al., 2014). In addition, over use of livestock manure results in leaching of nitrates 

to groundwater and surface water in Europe (Velthof et al., 2014). 

Animal production is projected to continue growing in the next decades, driven by human 

population growth, rising incomes and dietary preferences towards ‘western’ diets (Steinfeld 

et al., 2010; Thornton, 2010). The expansion of animal production, feed use and associated 

environmental impacts will increase the pressures on natural ecosystems further, unless large 

improvements are being made in animal productivity, manure handling and manure nutrient 

recycling (Wirsenius et al., 2010; Kastner et al., 2012; Tilman & Clark, 2014). Strategies such 

as improvements in feed quality and management, low-emission animal housing and manure 

management, and timing and rate of N application can greatly abate the growing pressure on 

the environment (Thornton & Herrero, 2010; Wirsenius et al., 2010). To that end, knowledge 

and quantitative information on feed use and nutrient excretion rates of the animals, 

depending on regional resource availability, is crucial for the development of sustainable 

agro-ecosystems. 

Feed composition and animal productivity have significant influences on nitrogen (N) 

excretion, and on N emissions downstream in the manure management chain (Olesen et al., 

2006; Oenema et al., 2009; Hou et al., 2015). International and national statistics (e.g., 

Eurostat and FAO statistics) provide national data on animal production and animal number 

per animal category annually. However, animal category-specific data on feed use and 

composition and on nutrient excreta are usually not available at regional or national levels, 

and therefore have to be collected or estimated. Various approaches are being used to estimate 

feed use and N excretion. The N balance approach covers both aspects of feed intake and 

animal production, i.e., the N excretion is equal to the total amount of feed N consumed 
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minus the N retained in animal products (e.g., milk, eggs and live-weight gains). This 

approach has been widely employed in field and farm scale research, and benefits from timely 

measured feed composition and production performance (Arriaga et al., 2010; Galassi et al., 

2010; O’Connell et al., 2006; Philippe et al., 2012, 2009). Further, efforts have been made to 

scale up this N balance approach to regional and national scales, based on estimates of 

regional and category specific feed use, to support national inventories of N emissions (Webb, 

2001; Velthof et al., 2012; Bai et al., 2014). Most of these national-level studies have focused 

on a single animal category. However, only national studies that include all animal categories 

would allow to check the feed balance; do the total supplies of feed resources in a country 

indeed match with the sum of the estimated national feed use by all animal categories, within 

acceptable ranges of uncertainty? 

The overall objective of our study was to provide a uniform approach for the estimation of 

feed use and N excretion rates of the animals in EU-27 through linking statistical data on feed 

quality and quantity with energy and protein requirements per animal category at country 

levels. Firstly, we developed a uniform method for the estimation of animal category-specific 

average feed use per country, as function of animal productivity and feed availability. 

Secondly, we estimated the N excretion rates of individual animal categories using the N 

balance approach. Thirdly, sensitivity analyses were carried out to get quantitative insight in 

the effect of changes of several methodological parameters on the feed use and N excretion. 

We then discussed regional variations in feed use and N excretion, and compared our results 

with national inventories, and also discussed the implication of our study. 

3.2 Materials and methods 

3.2.1 Concept 

The methodology developed here aims at deriving animal category-specific and country-

specific N excretion coefficients through linking statistical data and information on the 

availability (quantity and quality) of feed with animal numbers, and the energy and protein 

requirements of the animals. Animal categories included dairy cows, other cattle, sheep and 

goats, pigs, laying hens, broilers, turkey and other poultry, i.e., similar to the main categories 

in the Farm Structure Survey (FFS), used by all countries of the EU-27. The methodology 

developed in this study is described schematically in Figure 3-1. We started by estimating the 

feed energy required for each animal category per country, considering animal stock and 
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animal production (e.g., milk, eggs and meat). Next, national feed supply and compositions 

were derived for eight aggregated feed classes: (i) animal and fish derived feed, (ii) protein-

rich feed (e.g., soybean meal), (iii) cereal (grain or processed) feed, (iv) brans, (v) oil and 

sugar crops, (vi) other non-roughage feed (e.g., root crops, and residues of fruits and 

vegetables), (vii) annual forages (e.g., maize silage, leguminous crops, temporary grass, and 

crop straw) and (viii) perennial forages (grass harvested by grazing and grass harvested for 

silage and hay). We then partitioned each feed aggregate over animal categories using a linear 

optimization approach, by respecting a series of category-specific numerical constraints 

related to energy and protein requirements, with the objective of minimizing the difference 

between the total feed biomass supply and the total feed biomass requirements per country. 

Finally, we quantified N excretion as the difference between the feed N intake (i.e., N in 

animal diet) and the N retained in animal products for each animal category on the national 

scale. We based our data on three-year averages of statistical input data (e.g., animal stock, 

production, and feed biomass supply and production) for the period 2009-2011. The 

calculation procedures are described in more detail in the following sections. 

3.2.2 Calculation of energy requirements 

The total annual energy requirement of each ruminant category (dairy cows, other cattle, 

sheep and goats) was estimated per country according to the Tier 2 approach of IPCC (2006). 

The method described by Wirsenius (2000) was adapted here to calculate the energy 

requirements of the mono-gastric animal categories. Energy requirements were calculated for 

animal maintenance, growth, lactation, pregnancy and activity, as a function of the average 

live weight of the animals, animal production and management conditions (i.e., raised in 

houses or pasture) (IPCC, 2006; Wirsenius, 2000). Energy requirements for maintenance were 

based on the number of animals in the statistics and the calculated requirement per animal on 

a national level. We assumed that the number of animals remained constant throughout the 

year. Energy requirements for growth, lactation and pregnancy were related to animal 

production statistical data. Information about pasturing periods of ruminants was derived from 

national inventory reports to UNFCCC (the United Nations Framework Convention on 

Climate Change) and used for calculation of energy requirements for activity (IPCC 2006). 

More details about the calculations of energy requirements can be found in the supplementary 

information. Animal numbers and production data were derived from Eurostat (2014). Energy 

required by ruminants was calculated on a digestible energy (DE) basis. For poultry and pigs, 
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the calculated energy requirements are expressed as metabolizable energy (ME) and digestible 

energy (DE), respectively.  

All calculations were performed with GAMS programming software (http://www.gams.com/). 

Linear optimization was performed using the ‘LP’ solver in GAMS. 

 

Figure 3-1. A simplified schematic representation of the information flow in calculating country-

specific feed use and nitrogen (N) excretion of each animal category. The arrows depict the 

information flow direction. Information as data and parameter input to the model are sketched in top 

and left boxes. Results are indicated in the shaded boxes, which are gained through the calculations 

indicated in dashed circles. 
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3.2.3 Calculation of feed supply 

Data on the national supply of feed resources (except for grass, forages and crop residues) 

were extracted from FAO commodity balance sheets; data were corrected for export and 

import (FAOSTAT, 2014). The fresh or air-dry weights in the FAOSTAT database were 

corrected for moisture content to obtain a uniform dry matter (DM) weight of each feed item. 

The use of straw as feedstuff was based on domestic cereal production (FAOSTAT), the mean 

straw/grain ratio (Krausmann et al., 2008) and the proportion of crop straw recovered as feed 

(Krausmann et al., 2008). The supplies of grass and annual forages were estimated from the 

land areas of grassland and forages (Eurostat, 2014), multiplied by the regional productivity 

data of forages (Eurostat, 2014) and grass (Smit et al., 2008). 

The specific feed resources present in FAO commodity balance sheets and the grass, forages 

and straw were aggregated into 20 groups. Parameters related to protein and energy contents 

were given for each feed group (Table S3 and Table S4). Protein and energy contents were 

obtained from NRC (2001, 2000, 1998, 1994). The supply of feed protein and energy were 

estimated for each feed group and each country. To improve the optimization procedure (see 

Section 3.2.4) and the presentation of results, we further allocated these 20 feed groups into 

eight main classes (animal and fish derived feed, protein-rich feed, cereal feed, brans, oil-and-

sugar crops, other non-roughage feed, annual forages and perennial forages). The 

classification of feedstuffs is further detailed in the supplementary information. 

3.2.4 Feed allocation 

The allocation of feed classes over animal categories per country in EU-27 was performed by 

an optimization procedure and under a set of constraints, dependent on the protein and energy 

requirements per animal category per country and the availability of national feed resources. 

The final objective of the optimization is to minimize the difference between the total national 

feed biomass supply (see Section 3.2.3) and the calculated total feed biomass use by all 

animal categories in a country. The feed biomass use (feed ration) of the animal was 

determined endogenously by the feed optimization model, and therefore considered an 

outcome of the model calculations. The principle behind this minimization objective is that 

the total national feed supply has to match with the total feed use, within acceptable ranges of 

uncertainty. We assumed that the feed biomass supply can be equal to or more than the 
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calculated feed biomass use. Four constraints were considered, as follows (see also 

supplementary information): 

1. We estimated the energy requirement per animal category for ‘average’ conditions in a 

country (e.g., average climate, animal genetics and animal performance; Section 3.2.2). 

To allow for some variations, we assumed that the ‘actual’ energy requirement may 

vary from 90 to 110% of the requirement for ‘average’ conditions. Therefore, the feed 

energy use per animal category (endogenous variable of the model) was considered 

equal to the calculated energy requirement for ‘average conditions’ within a range of ± 

10%. 

2. The average crude protein (CP) contents of the animal diets were constrained by a set 

of category-specific ranges derived from literature (e.g., Bittman et al., 2014) (see 

Table 3-1). Please note that the ranges of dietary CP contents were the estimates for 

national average conditions; there may be animal farms in practice where the CP 

contents in animal diets may be higher (or lower) than the upper (or lower) value of 

the range, but these farms are not representative of national averages. 

3. Roughage (grass, forages and crop residues) were allocated to ruminants, cereals and 

protein-rich feeds were offered mainly to poultry and pigs. Table 3-1 summarizes 

these constraints, which were defined according to literature (Bouwman et al., 2005; 

Lesschen et al., 2011; CBS, 2012) and experts’ opinions. 

4. We assumed that all animals in one country use at least 85% of the supply of high-

quality feed classes, such as protein-rich feed and feed cereals, and at least 70% of the 

total supply of animal and fish derived feed, brans, root and sugar crops and grass 

from managed grassland. The minimum percentages of feed use were set relatively 

low for annual forages (at least 40% of the supply), other non-roughage feeds (e.g., 

root crops, residues of fruits and vegetables) in minute supply (20%), natural grass 

(10%) and crop residues (10%). These assumptions are set up mainly for the sake of 

proper methodological performances and uncertainty concerns (discussed in detail in 

Section 3.4.2). For instance, by setting the minimum use of major feed classes high, 

we guarantee that animals make full use of these high-quality feeds as much as 

possible. Feedstuffs from crop residues are known to be insignificant in animal diets 

(in most EU countries), thus low priority for their use were assumed by using a low 

minimum percentage. In addition, uncertainties in the estimated supply of annual 

forages, crop residues and natural grasses are relatively large, so that low minima were 
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assigned. It should be noted that the calculated feed use of these low-quality (and 

minute-supply) feed classes may be large as percentage of the feed supply, when the 

high-quality feed classes in a country are hardly sufficient to meet the total feed 

requirements of the animals. 

3.2.5 Calculation of nitrogen excretion 

Nitrogen excretion of each animal category at the national level was quantified as the 

difference between the total feed N intake and the total N retained by animal products (milk, 

eggs and/or live-weight gains). Feed N intake per animal category was quantified based on 

individual feed DM intake per animal category and N content of the respective feedstuff. The 

N retained in animal products per animal category was calculated according to the total 

production of animal products per animal category and N contents of the products. Nitrogen 

content is expressed in % N of DM in the case of feed and in % of fresh weight (as-is) in the 

case of animal products. Nitrogen and crude protein contents were assumed to be related by a 

constant protein-to-nitrogen coefficient. Country-specific protein contents of dairy milk were 

derived from Eurostat (three-year averages over 2009-2011), then converted to N contents 

using a constant milk protein-to-nitrogen conversion coefficient. Protein contents in other 

animal products are not recorded by Eurostat; therefore, N contents (% N, on as-is basis) were 

derived from literature and were uniformly applied to all countries: i.e., 0.5% for goat and 

sheep milk, 1.85% for eggs, 2.5% for live-weight gains of sheep, goat and pigs, 3.0 % for 

live-weight gains of chicken, 3.1% for turkey and 2.6% for other cattle and other poultry 

(CBS, 2012). 
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Table 3-1. Constraints added to the linear equations of feed partitioning, applied uniformly to all EU-27 countries (unless otherwise noted). 

Animal 

categories 

Ranges Constraints of 

crude protein 

content in diet 

(%, in weight) 

Constraints related to the fraction of each feed class in diet (on dry matter basis) 

Animal and 

fish based 

feed 

Protein-

rich feed 

Cereals
a
 Brans Oil and 

sugar 

crops 

Others Grass
a
  Annual forages 

 Maize and 

other forages 

crop straw 

Dairy cows Min. 13  0 0.05 0.05 0 0 0 0.20  0.05 0 

Max. 19  0.10 0.10 0.40 0.10 0.25 0.25 0.95  0.60 0.10 

Other cattle Min. 13  0 0 0 0 0 0 0.20  0.05 0 

Max. 19  0.10 0.10 0.40 0.10 0.25 0.25 0.95  0.60 0.10 

Sheep  Min. 14  0 0 0 0 0 0 0.20  0.05 0 

Max. 19  0.10 0.05 0.15 0.10 0.25 0.25 0.95  0.60 0.10 

Goats Min. 14  0 0 0 0 0 0 0.20  0.05 0 

Max. 20  0.10 0.05 0.30 0.10 0.25 0.25 0.95  0.60 0.10 

Pigs  Min. 14  0 0.05 0 0 0 0 -  - - 

Max. 18  0.10 0.40 0.85 0.30 0.15 0.15 -  - - 

Laying hens Min. 15  0 0.15 0 0 0 0 -  - - 

Max. 18  0.10 0.55 0.80 0.25 0.15 0.15 -  - - 

Broilers Min. 17  0 0.20 0 0 0 0 -  - - 

Max. 20  0.10 0.55 0.80 0.25 0.15 0.15 -  - - 

Turkey Min. 14  0 0.20 0 0 0 0 -  - - 

Max. 21  0.10 0.55 0.80 0.25 0.15 0.15 -  - - 

Other poultry 

(duck and 

geese) 

Min. 14  0 0.15 0 0 0 0 -  - - 

Max. 20  0.10 0.55 0.80 0.25 0.15 0.15 -  - - 

- Not applicable.
 

a 
The maximum constraints of cereal product fractions for ruminants were adjusted into 0.4 for Cyprus and Malta, and the minimum constraints of grass fractions were 0.1 for 

Cyprus, Malta and Finland; these adjustment are made considering the relatively small fraction of grass supply in these countries. 
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3.2.6 Definition of assessment indicators 

Feed conversion was defined as the amount of dry weight feed needed to produce 1 kg of 

animal product. Feed conversion ratio (FCR) was calculated by dividing the overall feed dry 

mass intake by the total production of animal products per animal category per country. 

Further, feed energy to edible energy convention ratio (FER), i.e., the feed energy intake 

needed to yield 1 MJ edible energy contained in animal products, was quantified. Edible 

energy contents in animal products were derived from USDA (2011). The feed-to-animal 

protein conversion ratio (FPR), i.e., the feed dry mass needed to yield 1 kg protein in animal 

product, was also calculated. Nitrogen use efficiency (NUE, %) at animal level was quantified 

in terms of total N retained in animal production as percentage of total feed N intake. In 

addition, the mean feed DM (kg DM stock
-1

 yr
-1

), energy (MJ stock
-1

 yr
-1

) and N intake (kg N 

stock
-1

 yr
-1

) per animal stock, and the N retained and N excretion (N excretion coefficient) per 

animal stock were calculated. The number of animals (stock) were derived from Eurostat 

(three-year averages were used, namely 2009-2011). Data were checked for consistency 

through comparing the number and mean weight of slaughtered animals with the mean stock; 

we observed for some countries (e.g., Slovenia) unusually high values for the ratio of 

slaughtered broilers to the mean stock of broilers. Stock data were corrected in such cases by 

using the median ratio of slaughtered number to stock in the EU-27. 

3.2.7 Sensitivity analyses 

The impacts of changes of input parameters on total feed use and N excretion per country 

were assessed, so as to identify the sensitivity of assumptions and input parameters: 

 The N concentration of feed may vary due to the variations in, e.g., fertilization, crop 

varieties and climate conditions. The effect of these possible variations on the total 

feed use and N excretion were assessed for major feed classes, namely, protein-rich 

feed (± 5%, relative to default N content), cereals (± 10%) and grass (± 10%). 

According to the literature (Feedipedia, 2014; NRC, 2001), generally regional 

variations in protein contents of grass and cereals were larger than that of protein-rich 

feed (e.g., soybean and soybean meal, and other oil cakes). 

 Effects of possible variations in feed energy content on feed use and the amount of N 

in excreta per country were estimated by assuming a 5% difference in energy content, 

compared to the default energy content, for cereal feed and grass. This assumption for 
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the changes (± 5%) in energy content was based on literature information (Feedipedia, 

2014; NRC, 2001) and experts’ opinions. 

 Effects of possible variations in animal production and animal numbers on total 

national feed use and N excretion were also examined: i) increases in animal 

production by 5%, with animal numbers being unchanged (i.e., increasing animal 

productivity); ii) increases in both animal production and animal numbers by 5% (i.e., 

expanding animal husbandry with the default animal productivity level). 

 Effects of changes (±5%) in average live weight of animals, relative to the default 

value, on total feed use and N excretion per country were analysed. 

3.3 Results 

3.3.1 Feed supply and use 

 

Figure 3-2. The total supply of dry-weight mass per feed class per country of the EU-27, annual 

averages of 2009–2011 (Gg=10
9
 g). Country abbreviations are explicated in Table 3-2. 

 



Feed use and nitrogen excretion 

51 
 

Figure 3-2 shows the estimated three-year averaged (2009-2011) feed supply per feed class 

per country in the EU-27. The total feed supply in the EU-27 amounted to 593 Tg (1 Tg = 

10
12

 g). Feed supply ranged from < 1 Tg yr
-1

 in Cyprus, Luxembourg and Malta to >50 Tg yr
-1

 

in France, Germany, Spain and the UK. Grass, annual forages (e.g., silage maize, leguminous 

crops) and cereals were the largest feed classes, accounting for 33, 28 and 25% of the total 

feed use in the EU-27, respectively. However, there were large differences between countries 

(Figure 3-2). The calculated total feed use was 506 Tg, or 85% of the calculated feed supply 

in the EU-27; the use of cereal feed and protein-rich feed was on average 90% of their supply 

totals (see Table S5). Note that effects of feed wastes and conservation losses were not 

included in the feed use estimations due to the lack of reliable quantitative information. 

The annual average feed DM use per animal category in EU-27 was 6252 kg for dairy cows, 

2620 kg for other cattle, 571 kg for pigs, 359 kg for sheep and goats, 35 kg for laying hens, 

and 38 kg for broilers. There were large variations between countries, both in the feed use per 

animal and the feed composition (Figure 3-3). The average ration of dairy cows comprised 34% 

perennial forages, 48% annual forages and 17% cereals and protein-rich feed; other cattle 

used 54, 37 and 8% of the aforementioned feed classes, respectively. Grass was the main 

ingredient for cattle in countries with large areas of grassland, e.g., Germany, Netherlands, 

Ireland and the UK (Figure 3-3). Cereals, protein-rich feed and brans were the main feed 

sources for pigs (on average 78, 17 and 4% of the ration, respectively), laying hens (72, 19 

and 6%) and broilers (47, 24 and 18%). 

Dairy cows used 29% of the total feed use in the EU-27, other cattle used 34%, pigs 17% and 

chicken 9% (Table S6). Pigs used 53%, chicken 21%, and dairy cows 14% of the cereal feed 

in EU. Protein-rich feed was used for 34% by pigs, 24% by chicken, 18% by dairy cows, and 

for 14% by other cattle (Table S7). The feed use per animal category per country is shown in 

Figure 3-4. Dairy cows and other cattle had the largest share in the national total feed use, 

except for Denmark and Spain, where pigs had the largest share. 
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Figure 3-3. Annual average feed dry matter (DM) use per animal stock of the main livestock categories in the EU-27. Notice that member states on X-axis are 

presented in decreasing order. Country abbreviations are explicated in Table 3-2.  
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Figure 3-4. Percentage of national total feed dry matter (DM) use by animal category and percentage 

of total nitrogen (N) excretion by animal category for each country in the EU- 27. Country 

abbreviations are explicated in Table 3-2. 

3.3.2 Feed nitrogen intake 

Total feed N intake of all animal categories in EU-27 was estimated at 12.2 Tg for the three-

year average of 2009-2011. The calculated feed N intake per head for each animal category 

and each country is shown in Figure 3-5. The annual average N intake in kg per head was 144 

kg for dairy cows (range 94-185 kg), 58 kg for other cattle (42-84 kg), 15 kg for pigs (9-17 

kg), 8 kg for sheep and goats (5-15 kg), 1.0 kg for laying hens (0.5-1.3 kg) and 1.2 kg for 

broilers (0.6-1.5 kg) in the EU-27. For ruminants, protein-N intake mainly originated from 

perennial (grasses) and annual forages (Figure 3-5). Protein-rich feed and cereals were the 

main protein-N sources of pigs, laying hens and broilers (Figure 3-5).  
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Figure 3-5. Annual average feed nitrogen (N) intake per animal stock per country for the main livestock categories in the EU-27. Notice that member states 

on X-axis are presented in decreasing order. Country abbreviations are explicated in Table 3-2.  



Feed use and nitrogen excretion 

 

55 
 

3.3.3 Nitrogen excretion 

The total amount of N excreted by animals in the EU-27 was 9.7 Tg yr
-1

 for the period 2009-

2011 (Table 3-2). Dairy cows contributed 27%, other cattle 35%, pigs 15%, chicken (i.e., 

layers and broilers) 10%, sheep and goats 9% (Table 3-2). Countries with the largest total N 

excretions were France and Germany, followed by UK, Italy, Spain, Poland and The 

Netherlands. The average annual N excretion per ha of utilized agricultural land (UAA) in the 

EU-27 was 54 kg ha
-1

, ranging from < 25 kg ha
-1

 in Bulgaria and Latvia to more than 170 kg 

ha
-1

 in Belgium and The Netherlands (Table 3-2). 

Table 3-2. Total nitrogen (N) excretion per animal category and per country (Gg N yr
-1

) and N 

excretion per ha of utilized agricultural land (kg N ha
-1

 UAA) in the EU-27 (1 Gg = 10
9
g). 

Country names 

(abbreviations) 

N excretion (Gg N yr
-1

) National 

sum  

(Gg N 

yr-
1
) 

National 

sum as % 

of EU-27 

totals  

N excretion 

per ha (kg 

N ha
-1

 

UAA) 
a
 

Dairy 

cows 

Other 

cattle 
Pigs Chicken 

Sheep 

&Goats 
Others 

Austria (AT) 57 80 32 12 3 2 177 2 61 

Belgium (BE) 57 95 71 13 1 <1 238 2 176 

Bulgaria (BG) 26 10 6 12 14 2 68 1 14 

Cyprus (CY) 2 2 4 2 3 - 14 <0.5 121 

Czech (CZ) 39 45 19 18 2 <1 117 1 35 

Denmark (DK) 46 62 138 15 <1 <1 256 3 98 

Estonia (EE) 13 6 3 2 <1 - 26 <0.5 26 

Finland (FI) 34 25 14 7 <1 <1 84 1 36 

France (FR) 457 819 169 108 84 93 1563 18 56 

Germany (DE) 424 367 280 95 19 50 1309 13 74 

Greece (EL) 16 20 7 20 73 <1 136 1 35 

Hungary (HU) 30 17 25 20 9 11 106 1 20 

Ireland (IE) 120 281 15 10 38 5 454 5 106 

Italy (IT) 208 309 88 98 84 83 848 9 67 

Latvia (LV) 18 14 3 3 <1 - 35 <0.5 21 

Lithuania (LT) 41 20 7 4 <1 <1 72 1 26 

Luxembourg (LU) 5 6 <1 <1 <1 - 12 <0.5 94 

Malta (MT) <1 <1 <1 <1 <1 <1 3 <0.5 226 

Netherlands (NL) 219 98 133 78 14 7 553 6 291 

Poland (PL) 237 130 109 100 3 28 646 6 40 

Portugal (PT) 29 72 15 22 23 15 152 2 48 

Romania (RO) 121 66 43 34 96 - 291 4 26 

Slovakia (SK) 17 18 5 9 3 - 45 1 28 

Slovenia (SI) 12 17 3 <1 1 <1 32 <0.5 71 

Spain (ES) 109 310 239 117 150 3 830 10 39 

Sweden (SE) 49 86 17 13 4 <1 141 2 55 

United Kingdom 

(UK) 

250 445 50 119 249 18 1012 12 66 

Sum of EU-27 2636 3419 1498 932 877 320 9681 100 54 

- Not considered or no available data. 
a
 The total utilized agricultural area (UAA) were derived from Eurostat (three-year averages of 2009-2011). 
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Country- and animal- specific N excretion coefficients expressed in kg N per animal per year 

are presented in Table 3-3. Differences in N excretion coefficients between countries were 

large. The average N excretion coefficients were 111 kg for dairy cows (range 75-141 kg), 52 

kg for other cattle (39-73 kg), 9.9 kg for pigs (6-12 kg), 0.74 kg for laying hens (0.25-0.95 kg), 

0.73 kg for broilers (0.15-0.92 kg), 8 kg for sheep (6-10 kg) and about 7 kg for goats (4-12 kg) 

in the EU-27. 

Table 3-3. Country-specific nitrogen (N) excretion coefficients of the main animal categories in the 

EU-27 (kg N animal 
-1

 yr
-1

). 

Country 

N excretion coefficient (kg N animal
-1

 yr
-1

) 

Dairy 

cows 

Other 

cattle  
Pigs 

Laying 

hens 
Broilers Sheep Goats Turkey 

Other 

poultry 

Austria 107 54 10.1 0.86 0.77 8.1 8.5 3.9 0.8 

Belgium 113 46 11.1 0.65 0.26 7.6 10.7 1.5 - 

Bulgaria 83 42 7.6 0.86 0.69 8.1 7.2 - 1.1 

Cyprus 79 63 9.8 0.83 0.83 6.1 4.9 - - 

Czech 101 47 10.0 0.83 0.78 7.6 9.5 - 1.4 

Denmark 82 63 10.8 0.90 0.92 6.0 - - 1.2 

Estonia 133 41 9.3 0.87 0.86 7.0 8.3 - - 

Finland 118 39 10.3 0.86 0.62 7.8 - 2.3 - 

France 123 52 11.9 0.71 0.77 8.7 10.7 2.8 0.9 

Germany 101 43 10.5 0.87 0.79 8.0 8.5 4.0 1.2 

Greece 75 46 6.2 0.74 0.56 5.9 4.1 3.1 0.7 

Hungary 96 44 7.8 0.81 0.51 7.1 6.1 2.0 0.7 

Ireland 109 50 10.0 0.82 0.67 8.0 - 2.7 1.1 

Italy 114 73 9.6 0.73 0.78 9.6 7.4 2.6 - 

Latvia 110 64 7.3 0.87 0.77 7.5 8.8 - - 

Lithuania 113 49 7.6 0.66 0.24 7.7 10.3 2.0 0.6 

Luxembourg 131 39 7.8 0.95 0.76 6.4 8.9 - - 

Malta 80 62 10.3 0.83 0.58 5.7 4.6 2.5 - 

Netherlands 141 41 10.8 0.74 0.82 8.4 12.2 5.1 1.3 

Poland 93 41 7.6 0.74 0.86 8.3 6.7 2.7 0.8 

Portugal 118 58 7.7 0.66 0.53 9.0 5.9 2.3 - 

Romania 88 65 7.4 0.52 0.29 10.2 6.2 - - 

Slovakia 107 57 7.4 0.76 0.71 8.0 8.0 - - 

Slovenia 104 46 8.0 0.24 0.15 7.1 6.3 0.5 - 

Spain 130 60 9.3 0.86 0.84 6.9 8.1 3.7 - 

Sweden 140 73 11.1 0.86 0.80 7.3 - 3.4 - 

UK 135 54 11.2 0.74 0.79 7.9 - 3.9 1.1 

Average
a
 111 52 9.9 0.74 0.73 8.0 6.6 2.9 0.9 

Median 109 50 9.6 0.82 0.77 7.7 8.1 2.7 1.1 

SD
b
 20 10 1.6 0.14 0.22 1.1 2.1 1.1 0.2 

-
 Not considered. 

a
 The EU-27 weighted average. 

b
 SD indicates the difference between countries. 

 

 

 



Feed use and nitrogen excretion 

57 
 

3.3.4 Feed conversion and nitrogen use efficiency 

Table 3-4 shows the calculated average feed conversion ratio (FCR), N use efficiency (NUE), 

feed energy conversion to edible energy ratio (FER) and feed-to-animal protein conversion 

ratio (FPR) for the main animal categories in the EU-27. Beef cattle had on average the 

highest FCR, FPR and FER, and the lowest NUE. The FCR was relatively low for dairy cows, 

compared to other animal categories. Broilers had the highest NUE and the lowest FPR. The 

average FER of pigs was lower than that of other categories. 

Table 3-4. Feed conversion ratio (FCR), nitrogen use efficiency (NUE), feed energy conversion to 

edible energy ratio (FER) and feed-to-animal protein conversion ratio (FPR), expressed in weighted 

averages (±SD) for the EU-27
a
. 

Animal category (product) FCR 

(kg kg
-1

) 

NUE 

(%) 

FER 

(MJ MJ
-1

) 

FPR 

(kg kg
-1

 protein) 

Dairy cows (cow milk) 1.0± 0.2 23 ± 4 5.1 ± 1.0 30 ± 6 

Other cattle (live-weight gain) 12.6 ± 5.6 9 ± 3 22.7 ± 9.6 77 ± 35 

Pigs (live-weight gain) 2.9± 0.5 33 ± 5 3.1± 0.5 19 ± 3 

Laying hens (eggs) 2.5 ± 0.5 26 ± 7 7.3 ± 1.6 22 ± 5 

Broilers (live-weight gain) 2.4 ± 0.5 40± 14 4.3 ± 0.7 13 ± 3 
a 
FCR indicates the dry mass of feed use per mass of animal products (milk and eggs) or live-weight gain; NUE 

indicates the amount of nitrogen retained in animal products as percentage of total feed nitrogen intake; FER 

indicates the feed energy conversion into per unit human edible energy of animal product; FPR indicates the dry 

mass of feed use per kg of protein in animal products. 

3.3.5 Sensitivity analyses 

Increasing animal production by 5% increased total feed use by 2.2% (~11 Tg) in EU-27, and 

by 4.5% (~23 Tg) when simultaneously increasing animal number by 5% (Figure 3-6). A 5% 

increase of animal production and animal number resulted in a 4 % increase in N excretion. 

Altering average live weight of animals by 5% resulted in a ~2.4% change in feed DM use 

and in a ~3.0% change in total N excretion. Changing energy contents of cereals and grass by 

5% changed total feed use with about 7-8 Tg, or 1.3-1.5% of the baseline value. The effect of 

changes in feed protein content (grass, cereals and protein-rich feed) on total feed use was 

minute (Figure 3-6). However, changing the N content in grass by 10% changed total N 

excretion in EU-27 by ~4% relative to the baseline value (Figure 3-6). These effects 

(sensitivity extents) varied largely between countries (see standard deviations present in 

Figure 3-6) 
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Figure 3-6. Effects of changing parameters on total feed dry mass use and nitrogen (N) excretion of 

the animals in the EU-27. Changes from the baseline by the respective assumptions were calculated 

and expressed as a percentage of the baseline value. Standard deviations (SD) are present in the 

parentheses, indicating the variance between countries. For more details see Section 3.2.7. 

3.4 Discussion 

We developed a transparent methodology for the estimation of feed use and N excretion by 

livestock in all countries of the EU-27, based on the mass balance of feed supply and demand, 

statistical data and an optimization routine. The advantage of this methodology is that feed 

use and N excretions are estimated in a uniform manner for all Member States. Possible 

changes in feed supply and animal production statistics will be reflected in feed use and N 

excretion coefficients. 

Currently, there are large differences within and between countries in the methodologies 

applied for estimating and reporting N excretion coefficients that serve national inventories of 

NH3 and greenhouse gas emissions (Velthof et al., 2015). Our methodology could be used as 

a benchmark for national estimates. The methodology designed here for quantifying N 

excretions in the EU can easily be applied for the estimation of other nutrient excretions (e.g., 
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phosphorus, potassium), based on the calculated feed use and the nutrient contents of feed and 

animal products. Our methodology can be used also for global assessments. We used three-

years averages (2009-2011) to obtain a robust mean, but the methodology is equally 

applicable to annual data. 

Linking feed use to N excretion coefficients facilitates the analysis of emission mitigation 

potentials of animal diet-related strategies. For example, decreasing the proportion of protein-

rich feed in the ration of animals to an optimal level is an effective measure to reduce N 

emissions from the whole manure management chain (Hou et al., 2015). Linking feed use to 

specific animal categories allows also to allocate feed production related resource use (e.g., 

land, water, fertilizers) and greenhouse gas emissions to individual animal categories and 

animal food products (e.g., Tilman and Clark, 2014). Ranking various animal products 

according to the associated environmental (e.g., N footprints) and human health impacts may 

facilitate the implementation of revised dietary recommendations (Eshel et al., 2014; 

Galloway et al., 2014). Our method addresses various key livestock categories simultaneously, 

using a uniform methodology and common national statistics, and provides national averages, 

which allow direct comparison of feed use and N excretion coefficients among countries. 

3.4.1 Differences between the Member States 

Dairy cattle is the dominant animal category in the EU-27 in terms of feed use, N excretion 

(Figure 3-4), and emissions of NH3 and greenhouse gases (Lesschen et al., 2011). Countries 

with large dairy herds in 2009-2011 were Germany, France, Poland, UK, Italy, The 

Netherlands, together using nearly 70% of the total dairy feed use in EU-27 (Table S6). 

However, the rations of dairy cows differed between these countries (Figure 3-3). Dairy cows 

in UK and The Netherlands were fed grass-based diets, while dairy cows in Poland and Italy 

were fed relatively large portions of annual forages (Figure 3-3), which reflects the estimated 

availability of grass and annual forages in these countries (Figure 3-2). Statistics Netherlands 

reported that the average ration of dairy cows in The Netherlands during 2006-2008 included 

54-64% grass and 12-27% maize silage, depending on region (CBS, 2012), which is 

comparable with our results (60% grass and 18% annual forages at national level). The feed 

use per dairy cow was related to milk yield and feed use efficiency (Figure 3-3). Some 

countries (e.g., Spain, Sweden) had relatively high milk yields (>7500 kg milk yr
-1

) and high 

feed intake (nearly 7500 kg DM yr
-1

) per animal, while other countries (e.g., Bulgaria, Greece, 

Romania) had relatively low milk yields (<4000 milk yr
-1

) and low feed dry matter intake 
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(<5000 kg DM yr
-1

). Other countries (e.g., The Netherlands, UK) combined a relatively high 

milk yield (> 7400 kg milk yr
-1

) with a modest feed dry matter intake per head (6500~7000 kg 

DM yr
-1

), which can be explained by relatively high quality feed and good feed management. 

Results from the present study show that the aforementioned countries with high milk yields 

appear to have a relatively efficient feed use at animal level (i.e., FCR ranges between 0.8-1.0; 

and NUE ranges between 22-25%, Tables S10-11), compared to countries with low milk 

yields (FCR ranges between 1.3-1.4; and NUE ranges between 17-20%). Our NUE estimates 

for dairy cows are similar to estimates derived from studies at dairy farms in Spain (mean 

NUE of 22%; Arriaga et al., 2010) and The Netherlands (NUE ranged from 23-26%; Oenema 

et al., 2012). 

Large pork producers include Germany, Spain, France, Poland, Denmark, The Netherlands 

and Italy; these seven countries accounted for 75% of the total pig feed use in the EU-27. 

Differences in the rations between countries were relatively small, with cereals as the largest 

feed source in all countries (Figure 3-3). This study estimated that over 34% of protein-rich 

feed and nearly 53% of feed cereals in EU-27 were used by pigs. Herrero et al. (2013) also 

reported that most of feed concentrates (cereals, pulses, etc.) are fed to pigs (~50%) and 

poultry (~20%) in regions where industrial systems dominate (e.g., Europe, North America). 

The quantity of feed use per head per year varied greatly between Member States (Figure 3-3), 

mainly due to differences in the live-weight gain per stock, which is related to the live weigh 

at slaughtering and pig husbandry characteristics. A relatively high feed intake (~680 kg DM 

per stock) was estimated for Germany and Italy due to a high live-weight gain per stock (265 

and 230 kg, respectively) and a high live weight at slaughtering (123 and 157 kg, 

respectively). Feed use (Figure 3-3) and live weight gain (~140 kg) per stock were relatively 

low in the Netherlands, which is in part related to the export of piglets to other countries, 

including Germany and Italy. 

Large differences were observed between countries for the total amount of N in manure and 

the amount of N excreted per ha of utilized agricultural area (UAA) (Table 3-2). A relatively 

high N excretion in kg N ha
-1

 UAA was found for the Netherlands, Belgium, Ireland and 

Denmark (Table 3-2). These countries with high animal N excretion loads have also relatively 

high N losses (NH3 and N2O emissions, N leaching, etc.) per ha of UAA (Oenema et al., 2007; 

Velthof et al., 2009). 

 



Feed use and nitrogen excretion 

61 
 

3.4.2 Feed supply – use balance 

The total feed dry mass potentially available in the EU-27 in 2010 was estimated at 593 Tg, 

and the calculated total feed use by the main animal categories amounted to 506 Tg. Lesschen 

et al. (2011) estimated a similar amount of feed use (509 Tg) for the EU-27 in 2005. The 

difference (87 Tg) between the amount of feed potentially available and the calculated feed 

requirement may be explained by various factors. Firstly, minor animal categories (horses, fur 

animals, rabbits, etc.) and animals at ‘hobby farms’ were not taken into account. Secondly, 

feed conservation losses and feed wastes were not considered. Feed conservation losses of 

grass and forage silages are usually in the range of 5-10% and those for concentrate feeds in 

the range of 2 to 5% (McGechan, 1989, 1990; McCormick et al., 2011). Feed wastes (i.e., the 

feed discarded by the animals) are also in the range of 2-5%, depending on feed quality. 

Thirdly, there are competing uses for some forages, such as silage maize in anaerobic 

digesters (Pedroli & Langeveld, 2011). This in part explains that forages from arable land 

(silage maize, leguminous crops, root crops, crop residues etc.) had a relatively large 

mismatch between supply and use in our calculations. Fourth, there are uncertainties in the 

feed statistics, particularly in grass and forage statistical data (Smit et al., 2008), and 

uncertainties in animal numbers. For example, there is transport of live animals across some 

borders (summarized in Table S8; FAOSTAT, 2014), which is related to the specialization of 

animal production systems in some regions. Some countries import animals for raising the 

animals to final weight, while other countries may import animals at slaughter weight to fully 

utilize the slaughterhouse capacity. We did not correct for net import, because of the 

uncertainties related to live weight of the imported animals. Thus, the import-export of live 

animals creates uncertainties in the estimated national feed use and N excretion coefficients. 

3.4.3 Comparison of N excretion with other studies 

Nitrogen excretion coefficients are critically important parameters for agricultural N balances 

and national inventories of NH3 and N2O emissions and nitrate leaching from agriculture, 

which have to be reported for the evaluation and underpinning of EU and United Nations (UN) 

policies (Oenema et al., 2011; Velthof et al., 2015). The impacts of these agri-environmental 

policies and possible changes in these policies are evaluated by integrated assessment models 

such as GAINS (Asman et al., 2011) and CAPRI (Britz & Witzke, 2012). Both models 

estimate N excretions and emissions of NH3 and N2O from animal manures per country, but 

use in part different approaches. Our estimates of the N excretion per animal category per 
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country were compared with those from Eurostat, national inventory reports (NIRs) to 

UNFCCC, GAINS and CAPRI (Figure 3-7). The total N excretion estimates for GAINS and 

CAPRI models were updated, using the animal number data from Eurostat for the years 2009-

2011, but the animal excretion coefficients from GAINS and CAPRI. There is a good 

agreement between the estimates for total N excretion per country (Figure 3-7a) and the total 

N excretion by cattle (Figure 3-7b). Total N excretions by pigs (Figure 3-7c) and chicken 

(Figure 3-7d) are largely comparable, except for those from CAPRI. CAPRI reported 

relatively high N excretions for pigs and relatively low values for chicken. The reason for 

these differences is unclear, but it is likely due to the differences in the methods and data 

sources used to estimate N excretion coefficients. Differences between our estimates and 

those from Eurostat and NIRs were also relatively large for some countries, e.g., Romania and 

France (Figure 3-7). These differences are likely related to the use of IPCC default 

coefficients in the national reports (Velthof et al., 2015). 

Figure 3-7. Comparisons of nitrogen (N) excretion (Gg = 10
9
 g) per country (a; the sum of all animal 

categories) or per animal category (b–d) with other studies: Eurostat, National inventory reports (NIR) 

to the UNFCCC, CAPRI model and GAINS model. Linear equations are shown corresponding to each 

pair of comparison. Magnified subfigures are included. 

 



Feed use and nitrogen excretion 

63 
 

3.5 Conclusions 

Our study is the first assessment of feed use and N excretion per animal category and country 

in the EU-27, using a uniform methodology. Such a methodology is a necessary first step for 

environmental impact assessments of livestock production and manure management (i.e., the 

whole feed production-to-manure use chain) at animal category, at regional and national 

scales. Currently, various approaches and methods are being used for estimating the total N 

excretion per animal category at regional and national levels. These different approaches often 

lead to different estimates, and complicate comparisons between regions and countries. Our 

methodology could be used as a benchmark for these studies. 

The total annual feed dry mass use by livestock in EU-27 during the years 2009-2011 was 

estimated at ~506 Tg, and total N excretion at ~9.7 Tg. There were large differences between 

countries in feed use per animal category, which led to differences in feed use efficiency and 

N excretion per animal category. Hence, feed use and management must be considered in 

environmental impact studies of livestock production and manure management systems.  

We estimated a relatively large difference (87 Tg) between total potential feed supply and 

total feed requirement in EU-27. We identified several possible reasons for this difference, 

which must be explored further. This difference may however, also have implications for agri-

environmental policies. Evidently, our methodology allows to assess the effects of possible 

changes in for example agricultural policy (CAP reform) and biofuel policy on feed use, feed 

use efficiency and N excretion per animal category. Accurate estimations of N excretions are 

also essential for assessing N emission mitigation measures and policies for animal 

production systems. 
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Abstract: 

Livestock manure contributes considerably to global emissions of ammonia (NH3) and 

greenhouse gases (GHG), especially methane (CH4) and nitrous oxide (N2O). Various 

measures have been developed to mitigate these emissions, but most of these focus on one 

specific gas and/or emission source. Here, we present a meta-analysis and integrated 

assessment of the effects of mitigation measures on NH3, CH4 and (direct and indirect) N2O 

emissions from the whole manure management chain. We analysed the effects of mitigation 

technologies on NH3, CH4 and N2O emissions from individual sources statistically using 

results of 126 published studies. Whole-chain effects on NH3 and GHG emissions were 

assessed through scenario analysis. Significant NH3 reduction efficiencies were observed for i) 

housing via lowering the dietary crude protein (CP) content (24-65%, compared to the 

reference situation), for ii) external slurry storages via acidification (83%) and covers of straw 

(78%) or artificial films (98%), for iii) solid manure storages via compaction and covering 

(61%, compared to composting), and for iv) manure application through band spreading (55%, 

compared to surface application), incorporation (70%) and injection (80%). Acidification 

decreased CH4 emissions from stored slurry by 87%. Significant increases in N2O emissions 

were found for straw-covered slurry storages (by two orders of magnitude) and manure 

injection (by 26-199%). These side-effects of straw covers and slurry injection on N2O 

emission were relatively small when considering the total GHG emissions from the manure 

chain. Lowering the CP content of feed and acidifying slurry are strategies that consistently 

reduce NH3 and GHG emissions in the whole chain. Other strategies may reduce emissions of 

a specific gas or emissions source, by which there is a risk of unwanted trade-offs in the 

manure management chain. Proper farm-scale combinations of mitigation measures are 

important to minimize impacts of livestock production on global emissions of NH3 and GHG. 
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4.1 Introduction 

Livestock farming systems are main sources of emissions of ammonia (NH3), nitrous oxide 

(N2O) and methane (CH4). Emissions of NH3 are largely responsible for the acidification and 

eutrophication of nitrogen-limited ecosystems (Sutton et al., 2008). Emissions of N2O and 

CH4 contribute considerably to the radiative forcing of the atmosphere, as the global warming 

potentials of N2O and CH4 are, respectively, 298 and 25 times higher than that of CO2 per kg 

(IPCC, 2007). Approximately 40% of the global anthropogenic NH3 and N2O emissions are 

associated with manures from livestock production (Galloway et al., 2004; Oenema et al., 

2005). Enteric fermentation and animal manure together contribute some 80% to the global 

CH4 emissions from agriculture and about 35–40% to the global anthropogenic CH4 

emissions (Steinfeld et al., 2006).  

Emissions of NH3, CH4 and N2O may occur simultaneously from different sources of manure 

management systems. Animal excreta in housing and manure storage systems, from grazing 

animals voided on pastures and from land following manure application are main sources of 

NH3 and N2O. Enteric fermentation in ruminants is the dominant source of CH4 emissions. 

Manure storages are also a significant source of CH4 (Sommer et al., 2004). Most agricultural 

soils are a sink for CH4 and a source of N2O, depending on drainage, soil properties, 

fertilization practices and climatic conditions (Oenema et al., 2001).  

Series of measures have been developed to address manure-related emissions, and some have 

been implemented successfully in practice. However, effects of these measures are typically 

considered for a specific gas or emission source only (e.g. Petersen et al., 2007), although it is 

well-known now that measures may have possible environmental side-effects (i.e. pollution 

swapping). For example, some NH3 mitigation measures may increase N2O emissions from 

slurry storages, or enhance CH4 emissions from solid manures storages (Berg et al., 2006; 

Szanto et al., 2007; Hansen et al., 2009; Velthof & Mosquera, 2011). Several recent studies 

have addressed the possible side-effects of NH3 mitigation measures on emissions of N2O and 

CH4, but a systematic quantitative assessment of the effects of mitigation options in the 

manure chain is still lacking (Novak & Fiorelli, 2010; Webb et al., 2010; Chadwick et al., 

2011; Montes et al., 2013). 

Manure processing creates alternative nutrient management opportunities by producing 

manure products (e.g. anaerobic digestate, separated liquid and solid fractions, compost) that 

differ from untreated manure, and it can also induce changes in NH3 and GHG emissions 
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(Sommer et al., 2009). Manure processing has become increasingly popular in many countries. 

For instance, the European Commission recently conducted a survey on manure processing 

activities in 27 member states of the European Union (EU-27). The results of this survey 

show that manure processing currently has reached an average level of 7.8% of the livestock 

manure production in EU-27, although regional variations were large (Foged et al., 2011). 

Anaerobic digestion and separation technologies were responsible for the processing of 3.5% 

and 3.1% of the total livestock manure production in the EU, respectively (Foged et al., 2011). 

The fraction of manure processed is expected to increase in the near future in order to achieve 

the targets of governmental policies related to further increasing the use efficiencies of 

manure nutrients, mitigating NH3 and GHG emissions and to renewable energy. Therefore, 

there is a need to improve our understanding about emissions of NH3 and GHG from the use 

of manure processing products. 

The overall objective of the current study is to make a quantitative assessment of the effects 

of (sets of) mitigation options on the NH3, N2O and CH4 emissions from the whole manure 

chain, namely livestock housing, manure storage and land application. Firstly, the impacts of 

a suite of NH3 mitigation measures on NH3 emissions at individual stages, and also the 

associated impacts on N2O and CH4 emissions were analysed by means of a meta-analysis of 

published data. Secondly, we evaluated the overall impacts of combinations of mitigation 

measures (including manure processing) on NH3, CH4, and (direct and indirect) N2O 

emissions from the whole manure management chain through scenario analysis. 

4.2 Materials and Methods 

4.2.1 Manure management chain and emission mitigation measures  

An overview of studies examined here is shown in Table 4-1. These studies focused on 

different stages of the manure management chain (subjected to different management 

practices), namely housing (different dietary crude protein content in the animal feed, 

different floor constructions), storage of liquid manure (different covers, and acidification) 

and solid manure (compaction, covering, stockpiling, composting), and manure application to 

land (different application techniques, different processed manure products). Within each of 

these stages, emissions of NH3, N2O and CH4 from manure are compared between given 

management practices (see Table 4-1). Pig and cattle manures were mainly considered in this 

meta-analysis. Measures for cattle manure during grazing and feeding strategies affecting CH4 

emissions from enteric fermentation were excluded in the present study. 
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4.2.2 Literature search and study selection 

Studies related to manure management and emissions of NH3, N2O and CH4 were searched 

using the bibliographic database Scopus, until the beginning of 2014. Specific search terms 

were combined, depending on animal category (animal, livestock, pig, swine, cattle or cow), 

manure type (slurry, waste, manure, compost, farmyard manure, digestate, liquid or solid), 

management measures (feeding: feed, diet, dietary manipulation or dietary crude protein; 

animal housing: housing, barn, slatted floor, deep litter, solid floor or straw floor; manure 

processing: acidification, acidified, separation, separated, digestion or biogas; slurry storage: 

storage, crust or cover; solid manure storage: compaction, cover, stockpiling, static piling, 

turning or compost; field application: band spreading, trailing hose, trailing shoe, injection, 

injected, incorporation or incorporated), and emissions (ammonia, methane, nitrous oxide or 

greenhouse gas emissions). For example, literature related to NH3 emissions from acidified 

pig slurry was searched with the following combination of terms “pig OR swine AND slurry 

OR manure AND acidification OR acidified AND ammonia” in article titles, abstracts and 

keywords in Scopus. 

Only data from studies with reference treatments (i.e. without mitigation/processing measures) 

were included in our database, so as to allow side-by-side comparisons. To maximize the 

number of studies, both laboratory and field experiments were taken into account. The 

selected studies in our database and grouped side-by-side comparisons are listed in Table 4-1. 

The reported experiments and measurements were predominately conducted in EU, United 

States of America and Canada. Mean values of replicates for each treatment were included in 

the database. Manure characteristics (e.g. manure type, dry matter content, total N content, 

ammoniacal N content and pH), land use parameters (e.g. soil texture, vegetation), 

environmental conditions (e.g. temperature, seasons and geographic locations) were also 

included, and used to, if possible, quantify their relationships with emissions and the 

effectiveness of the measures. 
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Table 4-1 Matrix showing which studies provided data for each stage of manure management on which effect sizes were estimated 

Management 

stages 

Emission sources 

targeted 
 Pollutants Grouped comparisons References 

 

Feeding 

 

Housing 

  

NH3 

 

 

<2 % reduction in dietary CP 

2-4 % reduction in dietary CP 

>4 % reduction in dietary CP 

 

Canh et al., 1998a; James et al., 1999; Külling et al., 2001; Frank & Swensson, 

2002; Frank et al., 2002; Portejoie et al., 2004; Hayes et al., 2004; Leek et al., 

2005, 2007; Velthof et al., 2005; O’Connell et al., 2006; Panetta et al., 2006; 

Lynch et al., 2007, 2008; Hansen et al., 2007; Le et al., 2008, 2009; van der Stelt 

et al., 2008; Li et al., 2009; O’Shea et al., 2009; Agle et al., 2010; Arriaga et al., 

2010; Galassi et al., 2010; Hernández et al., 2011; Lee et al., 2012; Koenig et al., 

2013; Madrid et al., 2013; Montalvo et al., 2013 

 

Housing Housing  NH3  slatted floor/deep litter vs solid floor 

slatted floor vs deep litter 

litter removal frequently vs infrequently 

extra straw addition vs no extra addition 

Groenestein & Van Faassen, 1996; Kavolelis, 2006; Gilhespy et al., 2009; Amon 

et al., 2007; Philippe et al., 2007a, 2007b, 2011, 2013; Ivanova-Peneva et al., 

2008; Cabaraux et al., 2009; Dourmad et al., 2009 

 

   N2O, CH4  slatted floor vs deep litter 

litter removal frequently vs infrequently 

 

Groenestein & Van Faassen, 1996; Amon et al., 2007; Philippe et al., 2007a, 

2007b, 2011; Cabaraux et al., 2009; Dourmad et al., 2009 

 
 

Acidification External storage  NH3  acidified vs not acidified Kai et al., 2008; Petersen et al., 2012, 2014; Dai & Blanes-Vidal, 2013; Wang et 

al., 2014 

   CH4  acidified vs not acidified Petersen et al., 2012, 2014; Wang et al., 2014 

 

Slurry storage External storage  NH3  crusting vs no-crust 

straw cover vs no-cover 

wooden lid vs no-cover 

wooden lid vs crusting 

granules cover vs no-cover 

artificial film cover vs no-cover 

peat/kitchen oil cover vs no-cover 

Sommer, 1997; Hörnig et al., 1999; Portejoie et al., 2003; Misselbrook et al., 

2005b; Balsari et al., 2006; Berg et al., 2006; Clemens et al., 2006; Amon et al., 

2007; Smith et al., 2007; VanderZaag et al., 2009; VanderZaag & Gordon, 2010; 

Petersen et al., 2013 

   N2O, CH4  straw cover vs no-cover 

wooden lid vs no-cover 

wooden lid vs crusting 

granules cover vs no-cover 

granules cover + acids vs no-cover/acids 

artificial film cover vs no-cover 

 

Berg et al., 2006; Clemens et al., 2006; Amon et al., 2007; Hansen et al., 2009; 

VanderZaag et al., 2009; VanderZaag & Gordon, 2010; Rodhe et al., 2012; 

Petersen et al., 2013 
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Table 4-1 (continued) 

Solid manure 

storage 

 

External storage  NH3 stockpiling vs turning (composting) 

compaction/covering vs turning 

Sommer & Dahl, 1999; El Kader et al., 2007; Sagoo et al., 2007; Szanto et al., 

2007; Jiang et al., 2013 

   N2O, CH4 stockpiling vs turning (composting) 

compaction/covering vs turning 

Sommer & Dahl, 1999; Hao et al., 2001; El Kader et al., 2007; Szanto et al., 

2007; Ahn et al., 2011; Jiang et al., 2013 

 

Field application Arable land and 

grassland 

 NH3  band spreading vs surface spreading 

incorporation vs surface spreading 

injection vs surface spreading 

Malgeryd, 1998; Smith et al., 2000; Huijsmans et al., 2001; Wulf et al., 2002a; 

Misselbrook et al., 2002; Rodhe & Karlsson, 2002; Huijsmans, 2003; Mattila & 

Joki-Tokola, 2003; Webb et al., 2004, 2014; McGinn & Sommer, 2007; Sagoo et 

al., 2007; Bhandral et al., 2009 

   N2O  injection/incorporation vs surface spreading 

injection/incorporation vs band spreading 

 

Sommer et al., 1996; Flessa & Beese, 2000; Wulf et al., 2002b; Velthof et al., 

2003; Webb et al., 2014, 2004; Vallejo et al., 2005; Weslien et al., 2006; Rodhe et 

al., 2006; Bhandral et al., 2009; Sistani et al., 2010; Thomsen et al., 2010; Velthof 

& Mosquera, 2011 

   NH3 anaerobic digestate vs raw slurry 

separated liquid fractions vs raw slurry 

separated solid fractions vs raw slurry 

Wulf et al., 2002a; Mattila et al., 2003; Amon et al., 2006; Chantigny et al., 2007, 

2009; Balsari et al., 2008; Bhandral et al., 2009; Möller & Stinner, 2009; 

Dinuccio et al., 2011, 2012; Monaco et al., 2011; Nyord et al., 2012 

   N2O anaerobic digestate vs raw slurry 

separated liquid fractions vs raw slurry 

separated solid fractions vs raw slurry 

Petersen, 1999; Vallejo et al., 2006; Clemens et al., 2006; Chantigny et al., 2007; 

Fangueiro et al., 2007, 2008b, 2010; Bertora et al., 2008; Bhandral et al., 2009; 

Möller & Stinner, 2009; Pereira et al., 2010b; Thomsen et al., 2010; Chiyoka et 

al., 2011; Collins et al., 2011; Dinuccio et al., 2011; Schouten et al., 2012 
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4.2.3 Derivation of the effect size and statistical analysis 

Standardization of the literature results was undertaken through calculation of the effect size 

(i.e. a measure of comparing two variables). This allows quantitative statistical information to 

be pooled, and robust statistical comparisons to be made between effects from a range of 

studies that reported results based on different experimental variables. For each side-by-side 

comparison (i.e. observation), the natural logarithm of the response ratio was calculated as the 

effect size (lnR): 

lnR = ln (XA/XB) 

Where XA and XB represent the mean emissions in treatment A (mitigation measure or 

alternative practice) and treatment B (reference practice), respectively, for NH3, N2O and CH4. 

Log-transformation of the response ratio was carried out to stabilize the variance. For 

calculation of grouped effect sizes, a mixed-effects model was used and performed in the 

nlme package of R statistical software Version 3.1 (Pinheiro et al., 2014). Mixed-effect 

models are preferable to fixed-effect models for statistical testing in ecological data synthesis 

because their assumption of variance heterogeneity is more likely to be satisfied (Gurevitch et 

al., 2001). Experimental sites were considered as a random effect factor, to allow accounting 

for variances among studies. The lnR of individual pairwise comparison was the dependent 

variable. The mean effect size and the 95% confidence intervals (CIs) of each categorical 

group were estimated. The significance of the effects on emissions was statistically assessed 

at 0.05 level. In the graphs (forest plots), the “effect-size” (the mean value and 95% CIs) of 

each grouping was transformed back (i.e. exponentially transformed) and converted to a 

percentage change in gas emissions relative to the reference treatment. 

4.2.4 Integrated assessment of management options 

Introducing a new technology or management measure to mitigate emissions from a particular 

source may affect the emissions downstream in the manure management chain. To examine 

such possible effects, a scenario analysis was conducted. 

Impacts of changes in technologies and management measures were compared with the 

reference scenario. We defined scenarios for three contrasting pig farming systems, namely a 

slurry-based system, a solid manure-based system, and a slurry-based system with slurry 

separation. The reference scenarios (systems) and the NH3 emissions mitigation scenarios 

were derived from the UNECE Ammonia Guidance Document (Bittman et al., 2014). For the 
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slurry-based system with slurry separation, we selected two contrasting separation techniques; 

a screw press (low separation efficiency) and a decanter centrifuge (high separation efficiency) 

(Hjorth et al., 2010). The reference and alternative scenarios are described in Table 4-2. 

Emissions of NH3, N2O and CH4 were calculated from the model pig manure management 

chains, divided into emissions from enteric fermentation (CH4), houses, storage of manure 

and field application of manure. 

Emissions of NH3 were calculated using the Tier 2 methodology of the EMEP/EEA air 

pollutant emission inventory guidebook (EMEP/EEA, 2013), based on the flow of TAN (total 

ammoniacal N) and emission factors. This methodology enables estimation of the effects of 

measures on NH3 emissions at subsequent stages of the manure management chain. Emissions 

of N2O were calculated using the IPCC guidelines. Indirect N2O emissions resulting from 

NH3 emissions were included in the assessment (IPCC, 2006). A default emission factor of 

0.01 kg N2O-N per kg NH3-N emitted was adopted. Indirect N2O emissions from nitrate 

leaching were not considered. Methane emissions from enteric fermentation and from storage 

of slurry and solid manure were based on IPCC guidelines (IPCC, 2006). The overall GHG 

emissions were calculated and presented as kg CO2-eq, using the default values of 298 kg 

CO2-eq for N2O emissions and 25 kg CO2-eq for CH4 emissions (IPCC, 2007). Effects of new 

technologies and mitigation measures were estimated from the differences with the reference 

scenario. Average emission factors for the new technologies and mitigation measures were 

derived from the effect-size analysis of published data, as described before. Parameters used 

to calculate emissions from the reference systems and scenarios with mitigation measures and 

alternative practices can be found in the supplementary file (Table S1 and S2). 
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Table 4-2. Description of the reference scenario and the emission mitigation measures and technologies used for the scenario analysis 

Scenario ID Housing 

Separation 
a
 

Storage 

Field application 
 Dietary CP content Floor types 

Slurry/liquid 

fractions 

Solid manure/solid 

fractions 

 

Slurry-based system 

Reference Conventional Slatted floor  No-crust cover  Surface spreading 

Diet 
b
 2% reduction Slatted floor  Crusting  Surface spreading 

Acidification Conventional Slatted floor  No-crust cover  Surface spreading 

Straw cover Conventional Slatted floor  Straw cover  Surface spreading 

Artificial film Conventional Slatted floor  Artificial film  Surface spreading 

Band spreading Conventional Slatted floor  No-crust cover  Band spreading 

Injection Conventional  Slatted floor  No-crust cover  Injection 

Acidification + injection Conventional Slatted floor  Acidification   Injection 

Straw + injection Conventional Slatted floor  Straw cover  Injection 

Artificial film + injection Conventional Slatted floor  Artificial film  Injection 

Diet + acidification + injection 2% reduction Slatted floor  Acidification   Injection 

Diet + straw cover + injection 2% reduction Slatted floor  Straw cover  Injection 

Diet + artificial film + injection 2% reduction Slatted floor  Artificial film  Injection 

       

Solid manure-based system 

Reference Conventional Deep litter   Composting Surface spreading 

Diet 2% reduction Deep litter   Composting Surface spreading 

Stockpiling Conventional Deep litter   Stockpiling Surface spreading 

Compaction Conventional Deep litter   Compaction Surface spreading 

Incorporation Conventional Deep litter   Composting Incorporation 

Stockpiling + incorporation Conventional Deep litter   Stockpiling Incorporation 

Compaction + incorporation Conventional Deep litter   Compaction Incorporation 

Diet + stockpiling + incorporation 2% reduction Deep litter   Stockpiling Incorporation 

Diet + compaction + incorporation 2% reduction Deep litter   Compaction Incorporation 
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Table 4-2 (continued) 

a
 separation efficiencies of N and DM (i.e. C), expressed as % in solid fraction relative to raw slurry, were 10% and 25% for screw press, and 30% and 60% for centrifuge 

(after Hjorth et al., 2010). 
b
 natural surface crust is assumed to be generated when dietary CP level was reduced, because of increased proportion of DM-rich faeces in slurry with lowering dietary CP. 

The effect of reducing dietary CP on animal N excreta and emissions from manure are considered, but its effect on CH4 emissions from animal body is not considered in the 

scenario analysis. 
c
 separated liquid fractions were injected into soil and solid fractions were immediately incorporated into soil after land spreading. 

 

 

 

Slurry separation-inclusive system 

Reference (slurry-based system) Conventional  Slatted floor  No-crust cover  Surface spreading 

SEP I (Screw press) Conventional Slatted floor Screw press No-crust cover Composting Surface spreading 

SEP II (Centrifuge) Conventional Slatted floor Centrifuge No-crust cover Composting Surface spreading 

SEP I +diet 2% reduction Slatted floor Screw press No-crust cover Composting Surface spreading 

SEP II + diet 2% reduction Slatted floor Centrifuge No-crust cover Composting Surface spreading 

SEP I + deep placement Conventional Slatted floor Screw press No-crust cover Composting Deep placement 
c
 

SEP II + deep placement Conventional Slatted floor Centrifuge No-crust cover Composting Deep placement 

SEP I + artificial film Conventional Slatted floor Screw press Artificial film Composting Surface spreading 

SEP II + artificial film Conventional Slatted floor Centrifuge Artificial film Composting Surface spreading 

SEP I + artificial film + stockpiling Conventional Slatted floor Screw press Artificial film Stockpiling Surface spreading 

SEP II + artificial film + stockpiling Conventional Slatted floor Centrifuge Artificial film Stockpiling Surface spreading 
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4.3 Results 

4.3.1 Emissions from housing – effects of dietary CP manipulation and housing 

constructions 

A total of 86 observations (37 from field-based experiments) were collected to analyse the 

effects of changes in crude protein (CP) content of the animal feed on NH3 emissions from 

animal excretion in stables (i.e. from housing and indoor manure storage). The NH3 emission 

decreased by 24 to 65% with a lowering of the CP content. The largest decrease was derived 

at a CP reduction of > 4% (Figure 4-1). There was a significant linear relationship between 

CP content in the diet vs manure pH, manure N content, amount of urine-N excreted and 

amount of total N excreted (Figure 4-2). The slopes of the two linear models (Figures 4-2a 

and b) show that one percent decrease in dietary CP content decreased the pH of the manure 

by on average 1.1% and the TN content of manure by 3.5%. 

Data derived from 11 farm-scale studies were used to test the effects of animal houses with 

distinct floor constructions on emissions. Animal houses with alternative floors tended to 

have lower NH3 emissions compared to the reference floor construction (Figure 4-1). The 

difference between slatted-floor/deep litter stables compared with solid-floor stables was 

statistically significant (P < 0.01). Buildings with slurries underneath slatted floor tended to 

have higher CH4 emissions, but significantly lower N2O emissions than buildings with deep-

litter (Figure 4-3) 

4.3.2 Emissions from slurry storages – effects of acidification and covers 

Side-by-side comparisons were extracted from five studies in which the acidification-induced 

effects on emissions of NH3 and/or CH4 from stored slurries were estimated. One study was 

carried out at pilot scale and the other four in the laboratory; four studies used sulphuric acid 

(H2SO4) and one study hydrochloric acid (HCl). Statistically significant decreases in NH3 

emissions from acidified slurries (pH=4.5-6.5) were observed; the mean emission reduction 

was 83% and the 95% CIs ranged from 60% to 90% (Figure 4-1). Slurry acidification also led 

to a statistically significant reduction (on average, 87%) of CH4 emissions during slurry 

storage (Figure 4-3). 

A total of 12 studies compared the effects of covers on the emission of NH3 from slurry 

storage, 10 of which were run at pilot or farm scales. Slurry storages covered by chopped 

straw, granules, artificial film, peat or oil had significant (P < 0.01) less NH3 emissions 
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compared to storages without such covers (Figure 4-1). In addition, the presence of a natural 

surface crust tended to lower emissions by 65% (14-89%) compared to storages without crust. 

Yet, the difference was statistically insignificant at the 0.05 level. 

 

Figure 4-1. The mean change in NH3 emissions as a percentage of the reference treatment, for a 

number of grouped side-by-side comparisons between treatments with vs without mitigation measures. 

Points show means of treatments, bars show 95% confidence intervals. The maximum values that 

exceed the scale of x-axis are shown in brackets. Numbers in the parentheses indicate the number of 

observations on which the statistical analysis was based, and the number of different studies from 

which the observations originated.. 
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Figure 4-2. Relation between reduction in dietary CP content and change in manure pH (a), total N 

content of manure (b), urine-N excreted (c) and total (faeces and urine) N excreted (d), expressed as a 

percentage of the reference treatment. A CP reduction of 1 % equals to 10 g CP per kg DM-based feed. 

Significance asterisks ** = P <0.01, * = P <0.05. 

 

A total of 9 studies (including 8 field-scale studies) were available to quantify the effect sizes 

of covers on CH4 and/or N2O emissions from slurry storage. Methane emissions were slightly 

suppressed by artificial film covers, but the effect was not statistically significant (Figure 4-3; 
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P > 0.05). Similarly, for all other grouped side-by-side comparisons, the changes in CH4 

emissions showed negative mean values. These effects were not statistically significant. 

Emissions of N2O were enhanced by a factor of 8.6 when stored slurry was covered by 

chopped straw (P < 0.01). By contrast, slurry covered with artificial film decreased N2O 

emissions by 98% (P < 0.01). 

4.3.3 Emissions from solid manure storages – effects of compaction, stockpiling and covers 

Five studies conducted at pilot scales were available to compare side-by-side NH3 emissions 

from solid manure storages subjected to different treatments. Emissions of NH3 from 

compacted or covered manure heaps were on average 61% lower in comparison to manure 

heaps subjected to composting (i.e. turning over manure heaps regularly; Figure 4-1). Yet, 

these differences were not statistically significant (P > 0.05). Static piling of manure (i.e. 

without turnover or disturbance) yielded lower emissions compared to manure heaps 

subjected to composting (P > 0.05; Figure 4-1). Apart from the meta-analysis, a number of 

additional studies without side-by-side comparisons were included in our database in order to 

maximize the number of studies for which NH3 emissions were recorded. Based on all studies 

reviewed, the median NH3 emission factor (% of TN) for composting was 39% (Table 4-3). 

Much lower emission factors were observed for static pilings (9%), covered heaps (9%) and 

compacted heaps (12%). 

A total of 6 pilot-scale studies were available for the analysis of the effect size of manure heap 

management on CH4 and N2O emissions. As illustrated in Figure 4-3, storage of solid manure 

subjected to compaction, covering or stockpiling had larger CH4 emissions than manure heaps 

subjected to composing; this difference was not significant. Compared to composting, two out 

of four studies reported significant higher CH4 emissions from stockpiling, whereas only one 

study found significant lower CH4 emissions from stockpiling. The effect sizes of these 

manure heap management practices on N2O emissions were found to be inconsistent and not 

statistically significant.   
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Figure 4-3. The mean change in methane (a) and nitrous oxide (b) emissions as a percentage of the 

reference treatment, for a number of grouped side-by-side comparisons between treatments with vs 

without mitigation measures. Points show means of treatments, bars show 95% confidence intervals. 

The maximum values that exceed the scale of x-axis are shown in brackets; some large variances (4-5 

orders of magnitude) derived from limited studies are not shown. Numbers in the parentheses indicate 

the number of observations on which the statistical analysis was based, and the number of different 

studies from which the observations originated.  
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Table 4-3. Emission factors of ammonia from storage of solid manure and field application of manure. 

Management stages Management  

practices 

 Ammonia emission factors 

 Unit Median 
a
 Range 

b
 

Solid manure storage Composting  % of total N into 

storage 

38.9 (26/8) 17.3 - 45.3 

Stockpiling  9.0 (15/9) 1.8 - 23.5 

Compaction  12.4 (4/3) 1.1 - 17.4 

Covering  9.0 (4/4) 8.3 - 15.2 

Field application Surface spreading  % of total 

ammoniacal N 

applied 

47.7 (229/20) 30.0 - 68.1 

Band spreading  20.9 (100/11) 13.5 - 31.5 

Incorporation  21.0 (39/5) 8.0 - 35.5 

Injection  11.1 (106/11) 4.9 - 21.2 
a 
Numbers in the parentheses indicate the number of observations/studies; Data were derived from the references shown in Table1 

and some additional studies referring storage of solid manure (Martins & Dewes, 1992; Petersen et al., 1998; Sommer, 2001; 

Parkinson, 2004; Chadwick, 2005; Paillat et al., 2005; Hansen et al., 2006) and field application (Sommer & Olesen, 1991; Menzi et 

al., 1998; Hansen et al., 2003; Amon et al., 2006; Chantigny et al., 2007; Balsari et al., 2008; Moal et al., 2009; Dinuccio et al., 

2011, 2012; Huijsmans & Hol, 2011; Nyord et al., 2012); These additional studies are not included in this meta-analysis. 
b 
Range from first quartile to third quartile 

 

4.3.4 Emissions after field application – effects of application methods and of processed 

manure products 

Side-by-side comparisons of NH3 emissions from manure following different application 

approaches were analysed based on results exclusively from field experiments. The emissions 

of NH3 from manures following band spreading, incorporation and injection were 55% (range: 

37-67%), 70% (50-82%) and 80% (72-86%) lower than that from surface broadcasted 

manures, respectively (Figure 4-1). These differences were statistically significant (P <0.01). 

Based on the reviewed studies, the median NH3 emission factor (in % of TAN applied) for 

surface broadcasted manure was 48%, compared to the emission factors of 21%, 21% and 11% 

for band spread, incorporated and injected manure, respectively (Table 4-3). A total of 75 

observations (69 from field experiments) were available to analyse the effect sizes of 

application technologies on N2O emissions. Statistically higher emissions of N2O (98%) were 

found for injection/incorporation of manure compared with surface broadcasted manure (P < 

0.01) (Figure 4-3b). 

Emissions of NH3 were not significantly different between digestates and raw slurry 

following field application (Figure 4-1; P > 0.05). Significantly lower NH3 emissions (18%) 

were found for separated liquid fraction (LFs) relative to raw slurry (P < 0.01; Figure 4-1), 

based on 44 observations (41 from field experiments). The overall effect of LFs on N2O 

emissions did not differ from that of raw slurry (Figure 4-3b). Field-applied digestates and 

solid fractions showed on average 25% (P > 0.05) and 46% (P <0.01) lower N2O emissions 

than field-applied untreated manure, respectively (Figure 4-3b). 
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4.3.5 Emissions from manure management chains – effects of scenario analysis 

In the reference slurry-based system, emissions of NH3 from animal housing, external slurry 

storages and slurry application to the field amounted to 43%, 22% and 35% of the total 

emissions, respectively (Figure 4-4a). The assessment of single mitigation measures showed 

that the total NH3 emission was lowest (35% of the reference) for the acidification scenario, 

followed by the low dietary CP scenario (65% of the reference) and the slurry injection 

scenario (71% of the reference). Covering slurry storages with straw or an artificial film 

decreased NH3 emissions during storage, but increased emissions following land application 

(Figure 4-4a). The largest decrease in NH3 emissions was obtained when mitigation measures 

were combined (Figure 4-4a). Covering slurry storage with straw did not change the overall 

GHG emissions from the management chain (Figure 4-4b); the increased direct N2O 

emissions were offset by decreased indirect N2O and CH4 emissions during storage. The 

“injection” scenario showed a higher total GHG emissions than the reference scenario (by 

16%). Lowering dietary CP content decreased the whole-chain GHG emissions by 5%. Use of 

an artificial film cover reduced GHG emissions with 24%. The largest decrease (up to 50%) 

was shown in the scenarios with slurry acidification (Figure 4-4b). 

In the reference solid manure-based system, emissions of NH3 from housing, outdoor storages 

and following field application contributed to 38%, 25% and 37% of the total NH3 emissions 

(Figure 4-5a). Reducing dietary CP content decreased the NH3 emissions from the whole solid 

manure system by 29%. Emissions of NH3 following the field application of stockpiled and 

compacted manures were higher than in the reference situation, suggesting that NH3-N 

trapped by low-emission techniques during storage escaped at subsequent stages (i.e. during 

field application). Lowering dietary CP content of the animal feed and direct incorporation of 

manure into the soil decreased NH3 emissions from stockpiled and compacted manures 

(Figure 4-5a). Direct N2O emissions were relatively large in the solid manure-based systems 

(Figure 4-5b). The “Diet” scenario was the only scenario that had lower GHG emissions than 

the reference (by 15%), due to reduction in both direct and indirect N2O emissions. The GHG 

emissions in scenarios with stockpiling, compaction or manure incorporation were higher than 

that in the reference system. The highest GHG emissions were found for combined 

stockpiling and incorporation (Figure 4-5b). 

Introducing separation techniques in slurry-based systems did not affect total emissions of 

NH3 and GHG much (Figure 4-6). This is due to the fact that decreased CH4 emissions were 
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counterbalanced by increased N2O emissions. Centrifugation-based systems tended to have 

higher GHG emissions compared to systems with screw press (Figure 4-6b), which is related 

to differences in separation efficiencies. Emissions of GHG were reduced by a combination of 

low dietary CP level (7-10% reduction) and covering storages of LFs (6-20%). 

 
Figure 4-4. Impacts of mitigation measures on NH3 (a) and GHG (b) emissions from slurry-based 

systems, expressed as percentage of the reference system. See Table 4-2 for description of scenarios. 
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Figure 4-5. Impacts of mitigation measures on NH3 (a) and GHG (b) emissions from solid manure-

based systems, expressed as percentage of the reference system. See Table 4-2 for description of 

scenarios.   
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Figure 4-6. Impacts of mitigation measures on NH3 (a) and GHG (b) emissions from slurry 

separation-inclusive systems, expressed as percentage of the reference (i.e. slurry-based) system. SEP 

I and SEP II respectively indicate screw press and centrifuge separation. See Table 4-2 for description 

of scenarios.   
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4.4 Discussion 

4.4.1 Main findings 

This study quantitatively assessed the impacts of NH3 mitigation measures on emissions of 

NH3, N2O and CH4 at individual stages of the manure management chain by means of a meta-

analysis of 126 published studies. In addition, an integrated assessment of the impacts of 

packages of measures on NH3 and GHG emissions from the whole management chains was 

carried out using various scenarios for slurry-based and solid manure-based systems. The 

main findings of our study are as follows: (i) lowering the CP content in feed significantly 

decreased NH3 emissions at the housing stage (Figure 4-1) and also decreased the total GHG 

emissions from manure chains (Figures. 4-4,5,6), (ii) slurry acidification significantly 

decreased emissions of NH3 and CH4 from slurry storages (Figure 4-3), which leads to 

decreases in total GHG emissions from systems with acidified slurry (Figure 4-4b), (iii) 

covering slurry storages with straw significantly decreased NH3 emissions (Figure 4-1) and 

increased N2O emissions (Figure 4-3b), but the effects on total GHG emissions from the 

manure chains were relatively small (Figure 4-4b), (iv) stockpiling tended to decrease NH3 

emissions (Figure 4-1), yet might enhance emissions of N2O and CH4 during storage (Figure 

4-3) and total GHG emissions (Figure 4-5b), (v) injection or direct incorporation of manure 

into soil significantly decreased NH3 emissions (Figure 4-1), but significantly increased N2O 

emissions (Figure 4-3b) and total GHG emissions from the manure management chain 

(Figures 4-6), (vi) the packages of NH3 mitigation measures were effective in NH3 emission 

mitigation, but had only minor impacts on GHG emissions, with the exception of acidification 

and stockpiling, and (vii) the manure N that is conserved by using mitigation measures can be 

used as crop available N, when low-emission field application techniques are applied. 

The results collected did not allow to compare management options across animal species (e.g. 

pigs vs cattle). However, sufficient data were available for analysing the effects of lowering 

the CP content of feed for different animal species on NH3 emissions during housing and 

following slurry injection. The results indicate that the differences between animal species in 

emission reduction were not significant (P > 0.05; data not shown). Data from both field-and 

laboratory-scale studies were included in our database as data solely from field-scale studies 

were insufficient. All data used in the meta-analysis is available as supporting information 

(Table S3). This database is expected to be updated in the future when new data especially 

from field-scale studies becomes available. 
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4.4.2 Dietary CP manipulation 

Clearly, lowering CP content in animal feed is an effective strategy to reduce NH3 emissions 

in the entire management chain (Figures 4-4,5,6). Lowering dietary CP deceases the N 

content of animal excreta. This is more pronounced for urine than for faeces (Figure 4-2). 

Urinary N is mainly in the form of urea and is easily converted into NH3 by the enzyme 

urease present in faeces (Smits et al., 1995; Canh et al., 1998a; Misselbrook et al., 2005a; 

Galassi et al., 2010). Lowering feed CP also decreases the pH of the manure (Figure 4-2a), 

which decreases the risk of NH3 emissions. This decrease in pH is likely related to a 

decreased dietary electrolyte balance, to changes in the concentration of volatile fatty acids 

(VFA), and to a decreased acetic acid/ propionic acid ratio in the manure (Canh et al., 1998b; 

Leek et al., 2005; Velthof et al., 2005; Hernández et al., 2011). Caution must be taken to 

maintain animal performance when dietary CP manipulation is implemented (Frank & 

Swensson, 2002; Panetta et al., 2006). When necessary, essential amino acids should be 

supplemented in accordance with animal requirements. The perspectives for lowering dietary 

CP also depend on the current diet (Bittman et al., 2014). According to our database, a 0.5-2% 

reduction in dietary CP was implemented for diets with a mean CP content of 14.4 % (on a 

DM-basis), while a 4% reduction was implemented for diets with a mean CP content of 

18.1%. 

The effects of dietary CP manipulation on CH4 and N2O emissions from animal excreta in 

housings were not quantitatively evaluated in the meta-analysis, as there were insufficient 

results. Montalvo et al. (2013) showed that reducing CP contents of pig diets decreased CH4 

emissions from manure, but did not significantly affect N2O emissions. This is in agreement 

with the results of Velthof et al. (2005), who showed that the emission of CH4 had significant 

correlations with the contents of dry matter, total C and VFAs in the manure. However, Le et 

al. (2009) and Lee et al. (2012) reported no significant impacts on CH4 and N2O emissions 

when low CP diets were used. Clark et al. (2005) found increased emissions of CH4 from 

manure with decreasing dietary CP contents, presumably due to a slight reduction in 

digestibility of fibre that is the main substrate for methanogenesis with low CP contents 

(Külling et al., 2001). The impacts of reducing dietary CP contents on enteric CH4 emissions 

were reviewed recently by Dijkstra et al. (2011). They found no consistent effect of lowering 

dietary CP content on enteric CH4 emission. The scenario analysis showed that lowering the 

CP content in feed decreased NH3 and N2O emissions from the whole management chains 

(Figures 4-4,5,6). This decrease is partly due to less N in manure and partly also because of a 
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decrease in the pH of the manure. Decreasing the dietary CP content turned out to be a most 

promising strategy for abating N-based emissions. 

4.4.3 Housing structure 

The floor construction in animal houses has a significant effect on NH3 emissions from 

indoor-stored manure (Groot Koerkamp et al., 1998), partly because floor types might cause 

differences in micro-condition of manure storage. Animal houses with slatted floors or deep 

litter showed lower emissions than traditional houses with solid (concrete) floors (Figure 4-1). 

This is because urine as main source of NH3 can be drained off quickly via openings of slatted 

floor into the relatively cool underground storage with low airflow or can be absorbed by 

deep straw (Kavolelis, 2006). Livestock housing with V-shaped solid floors with a gutter at 

the bottom of the V-groove to drain urine have low NH3 emissions (Swierstra et al., 1995; 

Braam et al., 1997). The effectiveness of housing structure and management such as use of 

bedding on NH3 mitigation may vary depending on environmental conditions. Significant 

relationships between NH3 emissions and various climatic factors, such as outside 

temperature and wind speed, have been frequently reported for naturally ventilated dairy 

housings and pig buildings (Ivanova-Peneva et al., 2008; Pereira et al., 2010a; Schrade et al., 

2012; Wu et al., 2012; Van Ransbeeck et al., 2013; Saha et al., 2014). 

The emissions of N2O from a deep-litter house were significantly higher compared to those 

from a slatted-floor house (Figure 4-3b). The formation of N2O occurs during nitrification and 

denitrification processes. Nitrification requires aerobic conditions and denitrification requires 

anaerobic conditions. Both conditions can be found in deep-litter but not in slurries 

underneath slatted floors (Cabaraux et al., 2009). Emissions of N2O from housings without 

bedding materials are often hard to detect (Ngwabie et al., 2009, 2011; Wu et al., 2012; Saha 

et al., 2014). More attention should be given to deep-litter induced N2O emissions, 

particularly in the case of countries where adding bedding materials in housings is 

increasingly considered as a means to improve animal welfare. Conversely to N2O, CH4 

emissions were significantly higher in housings with slatted floors and underground slurry 

stores than in housings with deep litter (Figure 4-3a). The anaerobic conditions and the 

moderate pH level of slurry under slatted floor favour CH4 production. A high straw – manure 

ratio inhibits CH4 production because of a greater manure aeration (Philippe et al., 2011). 

4.4.4 Acidification 
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Slurry acidification has been approved as a Best Available Technology (BAT) and is widely 

adopted in Denmark now (Petersen et al., 2012). The slurry is acidified in a process tank by 

controlled addition of sulphuric acid to a pH of about 5.5. The acidified slurry is pumped back 

to the slurry pit in the animal house or to outdoor storage tanks (Petersen et al., 2012). Such 

acidification technology has potential to reduce NH3 emission from housing, storage and field 

application (Kai et al., 2008). The pH of the slurry is a key factor affecting NH3 mitigation 

potential. The effectiveness of acidification to mitigate NH3 emissions is significantly 

weakened when the pH of the acidified slurry goes up to a level of 6.0-6.5 (Dai & Blanes-

Vidal, 2013; Petersen et al., 2014; Wang et al., 2014). Therefore, a pH of 6.0 is recommended 

as the upper limit for a successful emission abatement. There is limited information on 

emissions after land application of acidified slurry. Recent field experiments have shown that 

acidification results in a long-term inhibition of CH4 emissions from slurry storages (Petersen 

et al., 2014). The reduction in CH4 emissions could be attributed to inhibited methanogenesis 

because of the acidic conditions and high sulphide concentrations (Ottosen et al., 2009; 

Petersen et al., 2012). High sulphide concentrations may impair indoor air quality and animal 

performance. Because emissions of both NH3 and CH4 were decreased by acidification, the 

overall GHG emissions from acidified slurry were low (Figure 4-4b). Acidification of slurry 

to ≤ 6.0 is therefore a possible technique to minimizing GHG emissions from slurries. 

4.4.5 Natural surface crust and artificial covers 

Formation of a natural surface crust on stored manure is known to be effective in reducing 

NH3 emissions during slurry storage. Crusting is enhanced by gasification, i.e., the release of 

gases, including CO2 and CH4 during anaerobic storage. During this process bubbles tend to 

combine around fibre particles, helping to raise floating particles  to the surface (Smith et al., 

2007). A limiting factor of generating a slurry crust is the dry matter content in slurry, and no 

crust is formed when the dry matter content is less than 1% (Misselbrook et al., 2005a). The 

dry matter content is also influenced by diet ingredients and manure treatment such as slurry 

separation (Misselbrook et al., 2005a; Dinuccio et al., 2008; Fangueiro et al., 2008b). The 

ammonia mitigation potential is larger with artificial covers than with natural crusts (Figure 4-

1). Artificial covers minimize  the emitting surface and may adsorb ammonia (Hörnig et al., 

1999; Portejoie et al., 2003). The effects depend on environmental conditions (Sommer, 

1997). Emissions of NH3 were higher in summertime than in wintertime, and such 

temperature effect seems to be more pronounced for slurry without crust and cover (Balsari et 

al., 2006; Clemens et al., 2006; Petersen et al., 2013). 
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The published impacts of artificial covers and natural crusts on CH4 emissions during slurry 

storage are inconsistent (Figure 4-3a). Husted (1994) indicated that a natural surface crust 

reduced CH4 emission from slurry by a factor of 11-12, although this effect decreased with 

increasing slurry temperature. A 38% decrease of CH4 emissions was reported by Sommer et 

al. (2000) when slurry was covered by a natural surface crust, or straw or floating Leca
®

 

(lightweight expanded clay aggregate). This reduction in CH4 emissions was related to the 

oxidation of CH4 in the surface crusts (Petersen et al., 2005; Petersen & Ambus, 2006). 

However, Clemens et al. (2006) and Petersen et al. (2013) did not find a significant influence 

on CH4 emissions by covering slurry with straw. Berg et al. (2006) reported relatively high 

emission from slurry covered with straw, perlite or Leca
®
 compared to uncovered slurry. 

Methane emissions are known to be highly dependent on ambient air temperature or slurry 

temperature (Husted, 1994; Sommer et al., 2000, 2007), which results in seasonal variations 

in CH4 emissions. The magnitude of such seasonal variations are dependent on many factors 

including manure characteristics, environmental conditions, and management practices 

(Clemens et al., 2006; Rodhe et al., 2012; Petersen et al., 2013). 

Straw covers significantly increased emissions of N2O from slurry storages (Figure 4-3b). 

This may be due to an interface between the slurry and the air-filled surface covers, which 

favours both nitrification and denitrification (Sommer et al., 2000; Petersen et al., 2013). 

However, there were no significant differences in the overall GHG emissions between 

systems with or without straw covers (Figure 4-4b), because of the reduction of NH3 

emissions and associated indirect N2O emissions. The variation in straw cover-induced N2O 

emissions was large (Figure 4-3b), which is partly related to variations in environmental 

conditions. There is evidence that increases in N2O emissions from slurry storage with covers 

(especially, surface crust and chopped straw) are more pronounced in summer than in winter 

(Sommer et al., 2000; Berg et al., 2006; Rodhe et al., 2012; Petersen et al., 2013). 

4.4.6 Stockpiling, compaction and covering 

Composting is considered as a good measure for recycling manure because it produces a 

stabilised and sanitised end-product for agriculture, with relatively low transport costs 

because of reduced volume and mass (Bernal et al., 2009). However, losses of N during 

composting can be high, especially via NH3 emissions (Figure 4-1) and are affected by the 

frequency of turning the manure heap (Sommer & Dahl, 1999; Parkinson, 2004)(Martins & 

Dewes, 1992). Methane emissions can be enhanced under anaerobic conditions in covered, 
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compacted or static heaps compared to heaps subjected to turning (Figure 4-3a). However, 

CH4 emissions from heaps of solid manure with these alternative management measures are 

also (very) low, in case air temperature is relatively low (e.g. in winter) (Amon et al., 2001; 

Chadwick, 2005; Hansen et al., 2006). This indicates that measures to mitigate CH4 emissions 

from manure heaps should be especially implemented during warm seasons. Increases in N2O 

emissions during stockpiling (Figure 4-3b) increased GHG emissions from solid manure-

based systems (Figure 4-5b). However, the mechanism behind the stockpiling-induced 

increase in N2O emission has not been well-studied and therefore requires further research 

(McGinn & Sommer, 2007; Sagoo et al., 2007; Shah et al., 2012). 

4.4.7 Low-NH3-emission application technologies 

The calculated NH3 reduction efficiencies of low-emission field application techniques are 

well in agreement with the findings of Webb et al. (2010). Slurry injection has the highest 

NH3 mitigation potential (Figure 4-1). However, a side-effect of slurry injection is increased 

N2O emissions (Figure 4-3b). Such increases in N2O emissions are likely to increase the 

overall GHG emissions of the whole system when no combined mitigation measures (such as 

dietary CP manipulation and acidification) are applied (Figure 4-4b). The calculated effects of 

slurry injection or incorporation into the soil on N2O emissions were highly variable (Figure 

4-3b) and related to many factors, e.g. types and application rates of manure, soil properties 

(e.g. soil texture and moisture content), vegetation and climate (Velthof et al., 2003). For 

example, Velthof & Mosquera (2011) reported higher N2O emissions from injected manures 

than from surface-applied manures, but the effects were variable due to the large variations in 

soil moisture and rainfall. Webb et al. (2014) concluded that the impacts of immediate 

incorporation on N2O emissions may be related to soil type, with a greater possibility of 

emission increases on coarse sandy soils. 

4.4.8 Field application of processed manure 

The effect-size analysis of 44 side-by-side comparisons indicated that the liquid fraction of 

separated slurry had a significantly smaller NH3 emissions following application to land than 

untreated slurry (Figure 4-1). Most comparisons were made on manures applied via surface 

broadcasting (36 out of these comparisons). The lower NH3 emissions have been attributed to 

the low dry matter content in the liquid fraction that allows rapid infiltration of manure into 

soil (Bhandral et al., 2009; Dinuccio et al., 2012; Nyord et al., 2012). Infiltration into the soil 

reduces NH3 losses from surface applied slurry, partly because the rate of diffusion of NH3 in 
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the soil is relatively low, and the sorption of NH4
+
 to soil colloids reduces the concentration of 

ammonium in the soil solution (Sommer & Hutchings, 2001). The dry matter content in the 

liquid fraction may differ greatly between separation technologies and also because of the dry 

matter content in original slurry (Hjorth et al., 2010). Inefficient removal of solids from raw 

slurry may decrease the infiltration rate of the liquid fraction, which decreases the potential of 

lowering NH3 emissions from liquid fractions (Mattila et al., 2003; Dinuccio et al., 2011). 

No significant difference in N2O emissions was observed between liquid factions and raw 

slurry following land application. Conversely, solid fractions have shown lower N2O 

emissions than raw slurry in terms of percentage of total N applied (Figure 4-3b). As the solid 

fraction contains less  available N (particularly NH4
+
) than raw slurry, there is likely to be less 

nitrification and, by that, less emission of N2O (Fangueiro et al., 2007; Bertora et al., 2008). 

Slurry separation did not considerably influence the total GHG (CO2-eq.) emissions from the 

whole management chain (Figure 4-6b). Field application of digested substrates tended to 

have lower N2O emissions compared to raw slurry (Figure 4-3b). This is in agreement with 

the review of Nkoa (2013) in which the environmental risk of soil application of anaerobic 

digestates has been assessed. It has been hypothesized that the lower N2O emissions from 

digestates are the consequence of less easily degradable C, hence less energy source for 

denitrifiers (Rochette et al., 2000; Vallejo et al., 2006).  

4.4.9 The manure management chain 

Our study provides a quantitative analysis of the effect sizes of a range of key manure 

management technologies on NH3, N2O and CH4 emissions from the manure management 

chain. Lowering the dietary crude protein (CP) content of the animal feed and acidification of 

slurry in storages are management strategies that effectively reduced NH3 emissions and GHG 

emissions from all subsequent stages of the manure management chain (including both 

indirect and direct N2O emissions, and CH4 emissions). Strategies aimed at decreasing NH3 

emissions from manure storages must be combined with low-NH3-emission manure 

application techniques, to ensure that the NH3 trapped during storage does not escape 

following field application. Slurry injection greatly decreases NH3 emissions but enhances 

N2O emissions. Joint adoption of slurry injection with a low dietary CP intake, and covering 

manure storages or acidification of slurry in storages greatly decreases the risk of pollution 

swapping. Compaction, static stockpiling and covering of solid manure tend to decrease NH3 

emissions and increase CH4 and N2O emissions compared to manure heaps subjected to 
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composting. However, the number of observations underlying these latter effects is low. 

Slurry separation in liquid and solid fractions does not significantly affect emissions of NH3 

and GHG compared to a reference system without slurry separation. Given the possible 

synergistic and antagonistic effects, and the fact that mitigation measures are increasingly 

implemented in practice, selecting the proper combinations of measures becomes more 

important, in order to successfully minimize the whole-chain ammonia and GHG emissions. 
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Abstract 

Animal manure contributes considerably to ammonia (NH3) and greenhouse gas (GHG) 

emissions in Europe. Various treatment technologies have been implemented to reduce 

emissions and to facilitate its use as fertilizer, but a systematic analysis of these technologies 

has not been carried out yet. Here, we present an integrated assessment of manure treatment 

effects on NH3, nitrous oxide (N2O) and methane (CH4) emissions from manure management 

chains in EU-27 in 2010, using the model MITERRA-Europe. Whole-chain effects of 

implementing twelve treatment technologies on emissions and nutrient recovery were further 

explored through scenario analyses; the level of implementation corresponded to levels 

currently achieved by forerunner countries. Manure treatment decreased national GHG 

emissions from manures by 0-17% in 2010, with the largest contribution from anaerobic 

digestion; the effects on NH3 emissions were small. Scenario analyses indicate that increased 

implementation of acidification, thermal drying, incineration and pyrolysis may decrease both 

NH3 (9-11%) and GHG (11-18%) emissions; nitrification-denitrification treatment decreased 

NH3 emissions, but increased GHG emissions. The nitrogen recovery (% of nitrogen excreted 

in housings that is applied to land) would increase from a mean of 57% (in 2010) to 61% by 

acidification, but would decrease to 48% by incineration. Promoting optimized manure 

treatment technologies can greatly contribute to achieving NH3 and GHG emission targets of 

EU regulations. 
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5.1 Introduction 

Animal manure is a main source of plant-available nutrients, but also a major emission source 

of ammonia (NH3) and greenhouse gases (GHG) - nitrous oxide (N2O) and methane (CH4). 

Manure from animal production is responsible for about 40% of the global anthropogenic 

NH3 and N2O emissions (Galloway et al., 2004; Oenema et al., 2005). Approximately 35-40% 

of the global anthropogenic CH4 emissions are associated with the livestock sector (about 6% 

from manure management and the remaining from enteric fermentation) (Steinfeld et al., 

2006). In Europe, animal manures contribute about 65% to the total anthropogenic NH3 

emissions, 40% to N2O emissions and 10% to CH4 emissions (Oenema et al., 2007, 2014; 

EEA, 2014a, 2014b). Farm animals excreted 9.7 Tg N and 1.7 Tg P in the European Union 

(EU) in 2010, equivalent to about 95% and 160% of the total use of mineral N and P 

fertilizers (Eurostat; Hou et al., 2016). 

Emissions of NH3, N2O and CH4 may occur simultaneously from different sources of manure 

management systems that typically include animal houses, manure storages, manure 

application to land and droppings from grazing animals in pastures. Introducing a 

management measure may have interactive effects on emissions of these gases from a specific 

source; it may also influence emissions downstream in the system and hence the nutrient 

recovery from the manure (Sommer et al., 2009; Velthof et al., 2009; Hou et al., 2015). The 

whole manure management chain needs to be considered therefore, when assessing effects of 

measures on gaseous emissions and nutrient recycling and recovery. 

Manure treatment technologies have been increasingly applied in practice in Europe during 

the last few decades, driven by the specialization/intensification of animal production and the 

tightened enforcement of EU environmental policies (Oenema et al., 2011). Manure treatment 

creates management opportunities to better use the nutrients and organic matter in manure. 

Treatment may induce changes in physical, chemical and/or biological properties of the 

manure and hence influence emissions of NH3 and GHG throughout the whole management 

chain. An inventory reported that 7.8% of manure production in the EU was processed in 

2010, but with large variations among countries (range 0-35%) (Foged et al., 2011). While the 

growth in implementation of manure treatment is in general lauded as an environmental 

success (Sommer et al., 2013), there is a need for systematic environmental assessment of 

manure treatment, also to provide guidance for the further development of proper manure 

management strategies. 
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Only few studies have assessed losses of N and GHG emissions from the animal production 

systems at country and EU scales (Oenema et al., 2009; Lesschen et al., 2011; Weiss & Leip, 

2012). Manure treatment techniques are usually not considered in these large-scale studies, 

and as a consequence their environmental impacts have not been systematically addressed. 

Yet, a large number of laboratory and pilot experiments have been carried out to analyze NH3 

and GHG emissions from processed manures, most of them typically focused on a specific 

gas/substance or emission source (Petersen et al., 2007; Thangarajan et al., 2013; Hou et al., 

2015). Whole-farm (or life cycle) assessments were mostly conducted on the basis of specific 

farm-scale characteristics. Manure management systems and the implementation of NH3 

abatement measures (e.g. low-emission stables, storage systems and application methods) 

vary greatly among farms and countries (UNFCCC; Asman et al., 2011). These farm and 

country-specific contexts may also influence the performance of manure treatment 

technologies. There is as yet little information about the potential effects of manure treatment 

technologies in the EU. In particular, there is insufficient understanding of possible 

synergistic and antagonistic effects of manure treatment on emissions of NH3, N2O and CH4 

and on nutrient recovery. 

The objectives of this study are to assess the contribution of manure treatment techniques to 

emissions of NH3, N2O and CH4 at national level for the EU-27 in 2010, using the improved 

model MITERRA-Europe (Velthof et al., 2009; Lesschen et al., 2011). Further, we explored 

the whole-chain impact potentials of treatment technologies on gaseous emissions and 

nutrient recovery through scenario analyses. We also executed an uncertainty analysis. 

5.2 Materials and methods 

System boundary. The whole chain from ‘animal excretion, in-house and outdoor manure 

storage, manure treatment, application of manure to land, and deposition of urine and faeces 

in pastures during grazing’ in the EU-27 was considered in this study. The system boundary, 

the main flows of nutrients embodied in animal manures and the possible manure treatment 

techniques are illustrated in Figure 5-1, defined according to literature (Velthof et al., 2009; 

Foged et al., 2011; Lesschen et al., 2011). Faeces and urine are deposited by grazing animals 

in pastures and produced by housed animals in housings. Excreta from housings are applied to 

agricultural land after a period of storage in either liquid or solid form, or in some cases are 

treated by certain technologies. The main treatment technologies currently applied in Europe 

are solid-liquid separation, anaerobic digestion, acidification, biological aerobic N removal 
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(i.e. nitrification-denitrification), composting, (thermal or bio-) drying and incineration 

(Foged et al., 2011). The use of treatment technologies depends on manure types (e.g. liquids, 

slurry and solid manure). Treated manure products are typically returned to soil, as fertilizers 

or soil amendments (Foged et al., 2011; Sommer et al., 2013). In addition, several NH3 

mitigation measures have been adopted alongside the manure management chain, but 

depending on country (Oenema et al., 2009). 

 

 

Figure 5-1. Schematic representation of the manure management chain with possible manure 

treatment technologies (highlighted in grey) discussed in this study. The arrows indicate the main 

flows of manure products. The clouds show emission sources of ammonia (NH3), nitrous oxide (N2O) 

and methane (CH4) from animal manure. 
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Emission sources. Emissions of NH3, N2O and CH4 from the manure management chain of 

the EU-27 were quantified at national scales in 2010. Animal categories include dairy cows, 

other cattle, pigs, poultry, sheep and goats, which are the main categories in Europe (Lesschen 

et al., 2011). Emission sources include emissions of NH3, N2O and CH4 from animal manure 

in animal housing, manure storage and treatment systems, and emissions of NH3 and N2O 

from manure applied to land and deposited in pastures (Figure 5-1). Indirect N2O emissions 

were excluded. As our study focuses on manure management, enteric CH4 emissions were not 

considered. 

MITERRA-Europe and data sources. For calculations, the model MITERRA-Europe 

was further developed and used. MITERRA-Europe is an integrated environmental 

assessment model which calculates the N and P losses, and GHG emissions on a deterministic 

and annual basis, using statistical data of agriculture at EU country and regional levels 

(Velthof et al., 2009; Lesschen et al., 2011). Country specific NH3 emission factors (EFs) are 

based on information from the GAINS model, and quantification of N2O and CH4 emissions 

are based on the IPCC guidelines (Klimont & Brink, 2004; Asman et al., 2011). 

The N and P excretion for each animal category and country was quantified on the basis of a 

three-year average (2009-2011), using the nutrient balance of feed intake and animal 

production (Hou et al., 2016). Data about manure management systems (i.e. animal grazing, 

daily spreading, liquid and solid based systems) were sourced from the national GHG 

inventory reports (NIRs) to UNFCCC (UNFCCC, 2016). Data about the degree of 

implementation of NH3 mitigation measures and their abatement efficiencies were obtained 

from GAINS (Klimont & Brink, 2004; Asman et al., 2011), supplemented with information 

from NH3 mitigation guidance (UNECE) and review articles (e.g. Melse & Timmerman, 2009; 

Bittman et al., 2014; Hou et al., 2015; Pardo et al., 2015; Van der Heyden et al., 2015). The 

IPCC default N2O-N EFs were adopted to quantify emissions of N2O from manure 

management systems, manure application and deposition (IPCC, 2006). For calculating CH4 

emissions, country-specific methane conversion factors (MCFs) for each animal category and 

manure management system were obtained from NIRs to UNFCCC, considering the 

allocation of manure management systems among climate zones. Data on nutrient excretion 

(Table S1) and emission factors (Table S2) are shown in supporting information (SI). 
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Emissions of GHG, including N2O and CH4, were converted to CO2-equivalent (CO2-eq), 

considering the global warming potential of 25 and 298 times of that of CO2 for CH4 and N2O 

emissions, respectively. 

Emissions from manure treatment. A ‘manure treatment’ module was developed to 

assess environmental effects of the main treatment technologies in the manure management 

chain (Figure 5-1). Information on the use of treatment techniques in each country in 2010 

was derived from an inventory report on manure treatment activities and NIRs to UNFCCC 

(UNFCCC, 2016; Foged et al., 2011). Parameters related to emissions (NH3, N2O and CH4) 

from manure treatment, storage and field application (treated manure), and nutrient recovery 

are shown in Table S3. Specific characteristics of referenced technologies are follows: 

Solid-liquid separation. Three groups of mechanical separator were included: i) screw and 

filter pressing, ii) non-pressurized filtration and iii) centrifugation and sedimentation. Their 

separation efficiencies (i.e. the mass of a nutrient element in separated solid fraction, 

expressed as % of the mass of this element in raw slurry) varied from 10-33% for N and 15-

69% for P, which were higher when flocculates and multivalent cations (coagulation-

flocculation) were added (Table S3). 

Slurry acidification. Acidification involves the addition of concentrated acid (e.g. sulfuric 

acid) to the slurry in house under slatted floors each day, to lower the pH to 5.5. A fraction of 

the acidified slurry is then transferred to an outside storage tank without further treatment 

(Kai et al., 2008; Petersen et al., 2016). The average NH3 abatement efficiency was 65% in 

housing, 83% in outdoor storage and 40% during application; a reduction of 87% for CH4 

emissions from housing and storage systems was found (Kai et al., 2008; Hou et al., 2015; 

Petersen et al., 2016). 

Anaerobic digestion. Anaerobic digestion of animal slurry in EU is dominantly operated 

under mesophilic conditions (Foged et al., 2011). Biogas production from slurry was 

quantified as function of volatile solid inputs, the yield of CH4 and the biogas composition 

(Hamelin et al., 2011). Biogas is considered to be composed of 55-65% CH4 and 35-45% CO2, 

depending on country. Leakage is assumed as 1% of the gross biogas production (Miranda et 

al., 2015). Liquid and solid fractions were produced from digested slurry, when mechanical 

separators were used as post treatment. 
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Nitrification-denitrification treatment. This technology includes a separation unit (pre-

treatment), a nitrification-denitrification process (with liquid fractions as input) and a 

settlement/separation unit (post-treatment). The resulting sludge and liquid effluent (post-

treatment), and solid fractions (pre-treatment) are stored before application. Emission factors 

during treatment and storage were derived from studies conducted in Belgium, France and the 

Netherlands, where this technique has been applied in practice (Table S3) (Willers et al., 1996; 

Béline & Martinez, 2002; Loyon et al., 2007; Bernet & Béline, 2009; Melse & Timmerman, 

2009). 

Composting. Manure sources used for composting consist of solid manure and solid 

fractions separated from slurry (Foged et al., 2011). Emissions of NH3 from composting were 

considered to be 52% higher on average than those from conventional storage, whereas 

emissions of CH4 (71%) and N2O (49%) were lower on average; these percentages were 

derived from a meta-analysis study (Pardo et al., 2015). 

Thermal drying. Poultry manure and separated solid fractions are dried at temperate of 80-

150
o
C, which is commonly followed by pelletizing as post treatment (Foged et al., 2011). 

Gaseous emissions from the dryer must be recovered to avoid NH3 emissions, and air scrubber 

was assumed to be installed with average NH3 abatement efficiency of 85% (Foged et al., 

2011; Ghaly & Alhattab, 2013). Methane emissions were assumed to be negligible under 

aerobic conductions. 

Bio-drying. This technique is used to treat poultry manure and solid fractions separated 

from slurry to lower moisture content (by 40-60%) and to facilitate transport. This technique 

has not been widely used in EU (Foged et al., 2011). Emissions of NH3 are assumed to be 

increased (by 121%) relative to static piling due to the forced aeration (Pardo et al., 2015). 

Changes in N2O and CH4 emissions were not always consistent, therefore EFs were assumed 

the same as that for static piling (Pardo et al., 2015). 

Incineration. Industrial-scale incineration of poultry manure exists in several EU countries 

(e.g. the Netherlands and UK), with the net energy surplus being used for electricity 

generation (Foged et al., 2011; Billen et al., 2015). The gases released from this process (with 

gas cleaning installation) mainly consist of CO2 and N2, while other emissions (NH3, N2O, 

NOx and CH4) are minor or negligible (Billen et al., 2015). Ash residues contain all P input 

from feedstocks and no or only a limited fraction (less than 2%) of the C and N input 

(Brassard et al., 2014; Christel et al., 2014; Billen et al., 2015; Fernandez-Lopez et al., 2015). 
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Emissions from application of treated manure. Emissions of NH3 and N2O following the 

application of treated manure were estimated from their N contents and the specific EFs 

(Table S2 and Table S3). Emission factors were basically obtained from review articles (e.g. 

meta-analysis), and also from a number of experimental studies. 

Defining scenarios. Effects of treatment technologies on emissions of NH3, N2O and CH4 

from manure, and the N and P flows in the manure management chain of the EU-27 were 

further examined through scenario analyses. The assessment focuses on exploring the whole-

chain effects and the interactions between gas emissions when certain treatment technologies 

are implemented. Scenarios are summarized in Table 5-1. Twelve scenarios (S1-12) were 

compared with the reference, a situation without manure treatment. For all scenarios, we 

assumed that an equivalent of 20% of total manure (N) removed from animal houses in each 

country was processed. For all technologies, the same amounts of treated manure are 

considered, allowing technology comparison. The assumption of 20% implementation 

corresponded more or less to the upper bound of the degree of implementation of specific 

treatment in EU countries at present. For example, 11% of total slurry produced was acidified 

in Denmark in 2010 (Foged et al., 2011), and nearly 20% in 2015. In Italy, 24% of total slurry 

was treated by solid-liquid separation (Foged et al., 2011). Anaerobic digestion was applied to 

13-24% of pig and cattle slurry in Germany, 20-35% in Italy, and 30% of pig slurry in Cyprus 

(UNFCCC). Nearly one third of chicken manures in the Netherlands was incinerated in 2010, 

and 15% in UK (Foged et al., 2011; Billen et al., 2015). 

Scenarios include increased implementation of single techniques to treat raw slurry (S1-5) and 

solid manure (S6-9), and also advanced combination of technologies (S10-12). For scenarios 

with raw slurry as feedstock (S1-5, 10-12), treatment technologies were considered to be 

applied to slurry removed from animal houses; the amount of slurry that is treated in each 

scenario equals to 20% of total manure (i.e. the sum of slurry and solid manure) removed 

from houses, in terms of N. There is an exception for acidification (S4, S10) that is applied to 

slurry in the houses (i.e. before removal). For scenarios with solid manure as feedstock, 

technologies were applied to solid manure removed from houses; the amount equals to 20% 

of total (slurry and solid) manure removed. The total amounts of solid manure (or slurry) that 

are assumed to be treated may be less than 20% of total manure removed from houses in few 

countries where manure was produced dominantly as slurry (solid manure). 

Although studies about pyrolysis of solid manure have been conducted, this technique has not 
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yet been commercially implemented in Europe (Foged et al., 2011). In scenario (S9), slow 

pyrolysis of manure at temperature of 600
°
C was considered with the purpose of producing a 

stabilized biochar. The mass (C, N and P) balance in pyrolysis is detailed in SI (Table S3). 

Three treatment systems with combinations of technologies were designed (S10-12) based on 

literature (Gioelli et al., 2016; Regueiro et al., 2016). In scenario S10, we assumed that 

slurries that are acidified in houses (as S4) are separated by decanter centrifuge before 

outdoor storage. In scenario S11, slurries removed from houses are separated (as S2), and 

followed by acidifying the liquid fractions and by pyrolysis of the solid fractions. In scenario 

S12, we assumed that all digested slurries from anaerobic digestion (as S3) are acidified and 

immediately separated (centrifuge). 

Uncertainty analysis. Uncertainty analysis was carried out to achieve insight in how 

variation in the key parameters in the model affected the results, using a Monte Carlo (MC) 

based method (Zhu et al., 2015). Six groups of parameter were included in this analysis: i) 

animal numbers, ii) parameters related to nutrient excretion, iii) parameters used to quantify 

emissions from housing and manure storages (e.g. emission factors), iv) parameters related to 

manure treatment, v) parameters related to manure application, and vi) manure treatment 

activity data. Parameter uncertainty is shown in Table S4. The model output uncertainty in 

response to uncertainty of the parameters was quantified for the year 2010, the reference 

(without manure treatment) and the scenarios (1000 MC runs each). The difference in 

emissions between the reference and each treatment scenario was statistically analyzed by 

comparing the MC simulating outputs, using Tukey HSD test. In addition, the uncertainty 

contribution of six parameter groups to the overall uncertainty was analyzed for the year 2010. 
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Table 5-1. Description of manure treatment scenarios
a
 

Scenarios Origin of feedstock Brief description of treatment systems Manure products 

Liquid form Solid form 

S1: Screw press Slurry (cattle, pigs) Screw press; LF, SF are not treated further LF (liquid fraction) SF (solid fraction) 

S2: Decanter centrifuge Slurry (cattle, pigs) Decanter centrifuge; LF, SF are not treated further LF SF 

S3: Anaerobic digestion (AD) Slurry (cattle, pigs) Mesophilic digesters Digestate; LF of digestate SF of digestate 

S4: Acidification (Acid) Slurry (cattle, pigs) Acidifying slurry in housing and storage Acidified slurry - 

S5: Nitrification-denitrification Slurry (cattle, pigs) Nitrification-denitrification 
b
 Effluents Sludge; SF 

S6: Composting Solid (cattle, pigs, poultry) Composting - Compost 

S7: Thermal drying Solid (cattle, pigs, poultry) Thermal drying, with air scrubbers - Dried pellets 

S8: Incineration Solid (cattle, pigs, poultry) Pre-drying and incineration - Ash residues 

S9: Pyrolysis Solid (cattle, pigs, poultry) Slow pyrolysis operated at ~600 °C - Biochar 

S10: Acid-centrifuge Slurry (cattle, pigs) Acidification -> centrifuge Acidified LF Acidified SF 

S11: Centrifuge-acid, pyrolysis Slurry (cattle, pigs) Centrifuge -> acidification (LF); pyrolysis (SF) Acidified LF Biochar 

S12: AD-acid-centrifuge Slurry (cattle, pigs) Anaerobic digestion -> acidification -> centrifuge Acidified digested LF Acidified digested SF 
a
 Parameter inputs (e.g. emissions factors) are shown in SI (e.g. Table S3); 

b 
Decanter centrifuge is considered as pre-treatment unit. 
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5.3 Results 

Manure management chain in 2010. Effects of manure treatment on NH3 and GHG 

emissions were relatively small in 2010 (Figure 5-2). Approximately 6% of total N excreted 

by housed animals was treated in EU-27; countries with excretion being treated above this EU 

average were all in the EU-15 (except Cyprus; Table S1). Manure treatment altered GHG 

emissions by -17% to 1% at country levels, and on average by -4% at EU level. This was 

mainly caused by anaerobic digestion (Figure 5-2). Germany, Italy, Denmark, Spain, and the 

Netherlands had the largest absolute GHG abatement due to manure treatment, sharing 89% 

of the total abatement in EU-27. In these five countries, anaerobic digestion abated GHG 

emissions from manure from 1% (in Spain) to 9% (in Germany). Acidification abated 5% of 

GHG emissions in Denmark, separation 5% in Italy, and composting nearly 3% in Spain 

(Figure 5-2). 

Effects of treatment techniques on NH3 emissions were minor in most EU countries (Figure 5-

2). Reduction in NH3 emissions was relatively large in Denmark due to acidification (5%), in 

Belgium (4%) due to nitrification-denitrification treatment, and in Netherlands and UK (2-3%) 

due to incineration. 

Total NH3 emissions from the manure management chain in EU were 2.5 Tg N and GHG 

emissions were 86.9 Tg CO2-eq in 2010 (Figure 5-2a). The proportions of N and P excreted in 

housings that were applied to land (corrected for NH3 emissions) were 57% (a range of 52-68% 

among countries; Table S1) and 98%, respectively (Table 5-2). 
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Figure 5-2. Emissions of ammonia (NH3), nitrous oxide (N2O) and methane (CH4) from manure management chains in countries of EU-27 in 2010 (a), and 

estimated effects of current manure treatment on NH3 and greenhouse gas (GHG) emissions by comparing situations with and without treatment (b) (positive 

= increased emission; negative = emission mitigation). 
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Scenario analyses - NH3 and GHG emissions. Scenarios with increased implementation 

of manure treatment technologies (20% of all manure produced in housings) in the EU-27 

were compared with the reference (without manure treatment; Figure 5-3). 

Increased implementation of slurry separation by screw press (S1) or decanter centrifuge (S2) 

decreased total GHG emissions by 8% and 12%, respectively. This reduction is due to 

decreased CH4 emissions from storage; the greater reduction from decanter centrifuge is 

related to the larger fraction of storage of separated solid manure. However, total NH3 

emissions changed only marginally. Increased adoption of anaerobic digestion (S3) decreased 

total GHG emissions by 19% (due to a reduction of 17% in CH4 emissions), while NH3 

emissions were minimally affected. Increased implementation of acidification (S4) decreased 

both NH3 emissions (mainly from housing and storage) and GHG emissions by 10% and 18%, 

respectively. Nitrification-denitrification treatment (S5) decreased both NH3 emissions from 

storage and treatment systems (by 3%) and from manure applied to land (5%). Emissions of 

N2O increased by 28% due to nitrification-denitrification treatment, though partly off-set by 

lower CH4 emissions (18%). This leads to an increase of 6% in the whole-chain GHG 

emissions (Figure 5-3). 

Composting of solid manure (S6) slightly changed total NH3 emissions; increased emissions 

during composting were offset by lower emissions following compost application to land. 

GHG emissions decreased by 7% relative to the reference. Thermal drying (S7), incineration 

(S8) and slow pyrolysis (S9) of solid manure decreased both NH3 (9-11%) and GHG 

emissions (11-12%). In these three scenarios (S7-9), decreased GHG emissions are due to 

reduction in both CH4 emissions from storage systems and N2O emissions from field relative 

to the reference; NH3 emissions decreased during manure storages and application to land 

(Figure 5-3). 

Acidification followed by separation of acidified slurry (S10) decreased NH3 and GHG 

emissions nearly similar as implementing acidification alone (S4). Centrifuge separation 

followed by acidification of liquid fractions and pyrolysis of solid fractions (S11) decreased 

NH3 emissions by 7% and GHG emissions by 20%. Anaerobic digestion in combination with 

acidification and centrifuge (S12) had lower NH3 emissions compared to anaerobic digestion 

alone (S3), and had similar reduction potential of GHG emissions (Figure 5-3). 
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Figure 5-3. Changes in emissions of nitrous oxide (N2O) and methane (CH4) (upper panel) and in 

ammonia (NH3) emissions (bottom panel) from the manure management chain following the 

implementation of manure treatment scenarios, relative to a situation without manure treatment (see 

text and Table 5-1). For each scenario, it was assumed that 20% of total manure produced in housings 

in a country was treated. (-)/(+) indicates significant difference (lower/higher); (ns) indicates 

nonsignificant difference.  
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Scenario analyses – nutrient recovery and content. The amount of total N applied to 

land, in terms of percentage of total N excreted in housing in EU-27, increased from 57% to 

60-61% by acidification treatment (S4, S10, S12; Table 5-2). These N recovery percentages 

however decreased to 48% with incineration (S8) and to 52% with nitrification-denitrification 

(S5) and slow pyrolysis (S9). Other technologies changed only marginally N recovery (Table 

5-2). 

For specific treatment systems (treated manure), the N recovery varied from 2% (through 

incineration) to 87% (through acidification). The N/P ratio varied from 3.4 to 10.7 in liquid 

manure products from treatment, compared to a mean of 3.5 in raw slurry. For solid manure 

products, the N/P ratio ranged from 0.1 to 3.2, compared to 3.0 in raw solid manure (Table 5-

2). 

Uncertainty. The uncertainty (expressed as coefficient of variation) was 16% for total NH3 

emissions, 20% for GHG emissions and 6% for the N recovery in 2010. Parameters related to 

emissions from housing and storages are the main factor contributing to the overall 

uncertainty in total NH3 emissions (70%) and GHG emissions (39%). Parameters related to 

emissions from manure application contributed 50% to the overall GHG emission uncertainty. 

Manure treatment activity data and associated emission parameters contributed less than 1% 

to the overall emission uncertainty in 2010 (Figure S1). 

The differences in emissions between reference and scenarios were statistically significant, 

except for S1-3 (separation techniques and anaerobic digestion; regarding NH3 emissions) and 

for S6 (composting; both NH3 and GHG emissions) (Figure 5-3). 
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Table 5-2. Amounts of nitrogen (N) and phosphorus (P) in manure applied to land in the EU-27 in 2010 and in scenarios
a
. Amounts are expressed in percent 

of the amounts of N and P excreted in housing (i.e. N and P recovery). 

 All manure  

(treated and untreated) 

 Treated manure 

N recovery 

(%) 

P recovery 

(%) 

 N recovery 

(%) 

P recovery 

(%) 

 N/P ratio in manure products
b
 

  Liquid form
 

Solid form 

In 2010 57 98  -
c
 -  3.5 (untreated) 3.0 (untreated) 

Scenarios: single technique, slurry         

S1: Screw press 58 98  63 100  3.6 2.0 

S2: Decanter centrifuge 58 98  61 100  7.5 1.2 

S3: Anaerobic digestion (AD) 58 98  62 100  3.4; 5.0 1.2 

S4: Acidification (Acid) 61 98  87 100  4.4 - 

S5: Nitrification-denitrification 52 98  33 100  8.6 2.9; 1.1 

Scenarios: single technique, solid manure         

S6: Composting 58 99  60 100   3.2 

S7: Thermal drying 58 99  57 100   3.1 

S8: Incineration 48 99  2 100   0.1 

S9: Pyrolysis 52 99  25 100   2.1 

Scenarios: combined techniques, slurry         

S10: Acid-centrifuge 61 98  84 100  10.7 1.5 

S11: Centrifuge-acid, pyrolysis 57 98  61 100  9.7 0.5 

S12: AD-acid-centrifuge 60 98  74 100  10.0 1.4 
a 

Emissions of ammonia were subtracted from the N in applied manure for calculating the N recovery; 
b 

manure products from respective treatment 

technologies are explained in Table 5-1 (liquid manure products from AD include digested slurry and liquid fraction separated from digestate; solid manure 

products from nitrification-denitrification include sludge and solid fraction separated from slurry). 
c
 not applicable 
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5.4 Discussion 

Manure treatment in EU. Anaerobic digestion and solid-liquid separation are by far the 

most popular treatment technologies in Europe, and anaerobic digestion had the largest 

contribution to overall GHG mitigation of all treatment technologies (Figure 5-2). Germany 

and Denmark have been most successful in promoting anaerobic digestion. The success is due 

to national government support (e.g. investment support for construction and subsidies on 

bioenergy delivery) and the enforcement of EU environmental regulations (e.g. Nitrates 

Directive, Renewable Energy Directive) (Edwards et al., 2015). The Danish government 

proposed a target of using 50% of the manure produced for renewable energy by 2020, which 

would essentially be met through an expansion of biogas plants (Danish Agrifish Agency). 

Slurry separation has been adopted by livestock farms in many EU countries (particularly in 

Italy and Portugal), where GHG emissions might be decreased due to the adoption of this 

technique (Figure 5-2). This reduction is mainly because of the lower CH4 emissions from 

storage of separated solid fractions relative to that from storage of raw slurry, which is in line 

with other whole-farm scale assessment (Sommer et al., 2009). Also, we assumed that 

separation is near the source of production, i.e. the slurry was not stored prior to separation. 

Anaerobic digestion and slurry separation have not changed NH3 emissions much (Figure 5-2). 

The adoption of other treatment technologies was concentrated in a few specific countries, 

therefore their contributions were limited at EU scale. Slurry acidification with the purpose of 

NH3 abatement also reduces CH4 emissions from slurry during storage (Hou et al., 2015). The 

reduction in CH4 emissions is attributed to the inhibition of methanogenesis, because of the 

acidic conditions and the high concentrations of sulphate (which is an electron acceptor) and 

sulphide (which is toxic) (Ottosen et al., 2009; Petersen et al., 2012). However, this technique 

is only used in Denmark. Poultry incineration occurs in Netherlands and UK; there is 

evidence that CH4 and N2O emissions are negligible, while the electricity production ‘saves’ 

emissions by replacement of fossil fuel combustion (Billen et al., 2015). Composting occurs 

in many countries in small scale units; a meta-analysis indicates that composting tends to 

decrease N2O and CH4 emissions compared to conventional static storage of solid waste, yet 

with large variations in the magnitude of decrease (Pardo et al., 2015). Although manure 

treatment is on average still marginal in Europe, most techniques (e.g. anaerobic digestion, 

acidification, incineration) contribute to significant decreases in GHG emissions and/or NH3 

emissions. This indicates the importance of taking manure treatment into account for national 

emission inventories. 
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Implications of scenario analyses. Our scenario analyses indicate that processing an 

equivalent of 20% of total manure production from housings will decrease NH3 emissions by 

0 to 11% and will alter GHG emissions by -20 to +6% from the manure management chain in 

EU-27, relative to the reference (Figure 5-3). Both NH3 and GHG emissions decreased 

relatively strong in scenarios with acidification (S4, S10-12), and to a lesser extent also with 

thermal drying (S7), incineration (S8) and pyrolysis (S9) (Figure 5-3). 

Manure N is a major source (81%) of NH3 emissions from agriculture in Europe. It has been 

reported that implementation of an optimal combination of NH3 mitigation measures (covered 

manure storages, low-emission application etc.) may decrease total NH3 emissions in EU-27 

by 316 Gg N (Oenema et al., 2009). Our results suggest that manure treatment, implemented 

to treat 20% of total manure production from housings, have comparable emission abatement 

(180-275 Gg N, referring to S4-5, S7-12). Some manure treatment technologies may also 

have relatively large potential to mitigate GHG emissions (Figure 5-3), compared to 

conventional NH3 abatement measures that minimally affect CH4 and N2O emissions, or 

increase N2O emissions (Oenema et al., 2009; Velthof et al., 2009). 

Nitrification-denitrification treatment increased GHG emissions because of the increased N2O 

emissions from the reactor, while CH4 emissions decreased (Figure 5-3). Emissions of N2O 

from nitrification-denitrification may range from 1 to 20% of the slurry N input (Willers et al., 

1996; Béline & Martinez, 2002; Loyon et al., 2007; Melse & Timmerman, 2009). The IPCC 

default N2O EFs for raw slurry in storages have a much smaller range: 0-0.5% (IPCC, 2006). 

Emissions of N2O from nitrification-denitrification treatment may be decreased by increasing 

the residence time of the slurry in the denitrification reactor or by a better control of the 

molasses addition (through measurement of the redox potential) (Béline & Martinez, 2002; 

Melse & Verdoes, 2005). These unwanted side effects have to be minimized; this is especially 

important for Brittany (France) and Flanders (Belgium) where this technique has been 

implemented to decrease the manure N surplus (Bernet & Béline, 2009). 

Increasing the efficiency of manure N and P use as fertilizer is economically beneficial 

because it lowers the need for chemical fertilizers. However, scenarios with nitrification-

denitrification (S5), incineration (S8) and slow pyrolysis (S9) indicate a low recovery fraction 

available for application to land (Table 5-2). These technologies cannot be considered as 

sustainable from a resource use efficiency point of view, as they convert the majority of N 

(about 65% to 100%) to a form (dinitrogen gas) that cannot be utilized anymore for 
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fertilization (Melse & Timmerman, 2009; Billen et al., 2015). During these treatments (S5, 

S8-9) a significant fraction of the carbon in the manure is also lost, and thus less organic 

matter is available for improving soil quality. In the scenario with manure incineration, the N 

loss equals to 8% of mineral N fertilizer consumed in EU in 2010. In livestock-rich regions 

that produce more manure N than crops need, these technologies may help to lower manure N 

surpluses. For scenarios with acidification (S4, S10, S12), the manure N recovery increased 

because of the N saved from volatilization (Table 5-2). The N availability in acidified slurry 

increases the N fertilizer equivalent value, by about 25% compared to raw slurry (Kai et al., 

2008; Sørensen & Eriksen, 2009). 

Phosphate rock as a non-renewable resource is scarce especially in EU where more than 95% 

of mineral P fertilizer used has been imported from outside EU (van Dijk et al., 2015). For all 

manure treatment scenarios, we estimated that the total P recovery did not decrease (Table 5-

2). Nevertheless, the P availability for crops (in terms of first year P fertilizer equivalent value) 

varies, from less than 20% for ash residues to 80%-100% for acidified slurry or separated 

liquid fractions (Sommer et al., 2013). Manure treatment generates manure products that vary 

in the ratios between nutrient (e.g. N, P and potassium), such as the N/P ratios (0.1-10.7; 

Table 5-2). This provides opportunities to better use manure and to better meet crop nutrient 

demands. Depending on between-farm variations in crop rotations and soil fertility, farmers 

may choose the manure product with the appropriate N/P ratio. 

Green energy production from anaerobic digestion and incineration of animal manure can be 

viewed as pathways to contribute to achieving the EU Renewable Energy target; at least 27% 

of the total energy needs have to come from renewables by 2030 (European Commission, 

2009). Green energy production leads to CO2 emission reduction due to the replacement of 

heat and electricity produced from fossil fuels. We estimate that the net energy production is 

1.7-2.8 Mtoe (Million Tonnes of Oil Equivalent) for the scenario with anaerobic digestion 

(S3), assuming an energy surplus of 50-80% in biogas plants, used for heat and electricity 

cogeneration (Sommer et al., 2009; Miranda et al., 2015). The avoided CO2 emissions from 

fossil fuels are 7.6-12.1 Tg CO2-eq, assuming an emission factor of 0.102 kg CO2 MJ
-1

 for 

power production from coals (Sommer et al., 2009; Miranda et al., 2015).
 
This is equivalent 

to 9-14% of GHG emissions estimated for the manure management chain in EU-27 in 2010. 

Our scenario analyses illustrate that various treatment technologies can be viewed as 

measures to mitigate GHG and/or NH3 emissions from the manure management chain. 
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Increasing the implementation of these technologies in practice may contribute to achieving 

the NH3 emission targets of the National Emission Ceiling Directive (Directive 2001/81/EC), 

and the GHG emission targets of the Kyoto Protocol (UNFCCC). Slurry acidification, 

incineration and pyrolysis are technologies that reduce both NH3 and GHG emissions. 

Acidification also increases the N recovery, while incineration and pyrolysis may reduce 

manure N surpluses in regions with high animal density. Solid-liquid separation produces 

manure products with diverse N and P contents, which allows farmers to better meet crop-

specific nutrient demands. Combing anaerobic digestion with acidification or with other NH3 

mitigation measures (for storage of digested slurry) is needed to achieve abatement of both 

GHG and NH3 emissions. 
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Supporting information: 

Table S1. The calculated nutrient excretion by the livestock in the EU-27 in 2010. 

Country Total excretion (Gg)  
Manure management systems   

(% of total N excretion) 
 

The amount of N 

excretion being 

treated, as % of total 

N excreted in housing  

N applied to land, 

as % of N excreted 

in housing  Nitrogen Phosphorus 
Volatile 

solid
a
 

Carbon
a
  Grazing 

Housing  

(slurry) 

Housing 

(solid) 

Daily 

spreading 
 

Austria 187 32 2980 1518  5 37 58 0  6 60 

Belgium 238 42 3386 1743  28 42 29 1  12 62 

Bulgaria 69 14 1248 639  22 6 72 0  <0.1 57 

Cyprus 14 3 189 99  0 32 68 0  8 56 

Czech. Rep 122 23 2237 1144  13 35 51 1  1 56 

Denmark 253 53 2952 1537  8 74 18 0  13 68 

Estonia 24 4 420 213  32 25 44 0  2 54 

Finland 81 15 1189 610  11 49 41 0  2 64 

France 1730 282 26047 13263  45 27 29 0  1 55 

Germany 1235 224 19809 10166  10 59 31 0  9 63 

Greece 136 28 2261 1151  59 7 33 0  18 53 

Hungary 111 24 1943 1019  9 16 75 0  <0.1 53 

Ireland 468 69 6676 3357  61 29 10 0  <0.1 56 

Italy 870 145 14743 7558  10 39 50 0  12 56 

Latvia 39 6 745 377  29 25 47 0  <0.1 54 

Lithuania 72 12 1251 634  30 25 45 0  <0.1 54 

Luxembourg 12 2 192 96  45 38 17 0  8 58 

Malta 3 1 33 18  0 28 72 0  <0.1 53 

Netherlands 548 87 6789 3523  13 67 19 0  8 61 

Poland 606 115 11015 5681  7 10 83 0  <0.1 53 

Portugal 176 28 2772 1426  52 16 32 0  2 52 

Romania 360 69 6699 3412  42 11 45 2  5 54 

Slovakia 53 9 949 486  13 12 74 0  <0.1 54 

Slovenia 33 6 667 338  12 56 32 0  1 56 

Spain 972 168 15286 7856  45 24 31 0  5 55 

Sweden 169 25 2434 1237  30 35 35 0  <0.1 59 

United Kingdom 1131 181 16877 8592  57 13 30 1  6 54 

EU-27 9716 1669 151790 77691  31 32 36 <0.5  6 57 
a 
VS per animal category and country was determined as function of feed VS intake and VS digestibility (IPCC, 2006; CSIRO, 2007; Hou et al., 2016). The constant ratios of 

TC/VS in excretion (0.5 for ruminants, 0.54 for pigs and 0.58 for poultry) were used to quantify carbon content in excretion.  



Manure treatment: scenario analyses 

131 
 

Table S2 Emission factors of ammonia (NH3), nitrous oxide (N2O), dinitrogen (N2) and nitrogen oxides (NOx) from animal manure in the EU-27 at country 

levels in 2010, based on the model MITERRA-Europe (Velthof et al., 2009; Lesschen et al., 2011) and additional calculations. 

Country NH3  N2O    N2 and NOx 

 

Housing 

(% N excreted 

in housing) 

Storage of 

(raw) manure 

(% of N in 

storage) 

Raw manure 

application 

(% of N 

applied) 

Grazing 

(% of N deposited 

by grazing 

animals) 

 Storage of 

(raw) manure 

 (% N in 

storage) 

Raw manure 

application 

(% of N 

applied) 

Grazing 

(% of N excreted 

by grazing 

animals) 

 Storage of raw 

manure (% N 

excreted in housing) 

Austria 13 5 19 7  0.38 1.0 1.8  7 

Belgium 13 5 14 8  0.34 1.2 2.0  5 

Bulgaria 13 6 18 8  0.38 1.1 1.4  10 

Cyprus 12 13 14   0.36 1.2   8 

Czech. Rep 14 12 16 8  0.32 1.2 1.9  7 

Denmark 9 11 10 7  0.26 1.5 2.0  3 

Estonia 13 12 19 8  0.37 1.0 2.0  7 

Finland 12 10 12 8  0.33 1.1 2.0  5 

France 13 12 18 8  0.30 1.1 1.9  6 

Germany 15 13 12 8  0.29 1.2 1.9  5 

Greece 13 14 18 4  0.31 1.1 1.1  10 

Hungary 14 14 16 6  0.34 1.2 1.6  9 

Ireland 18 8 20 8  0.38 1.0 1.9  4 

Italy 12 12 19 5  0.31 1.2 1.2  7 

Latvia 13 12 19 8  0.36 1.1 2.0  7 

Lithuania 13 12 19 8  0.37 1.1 2.0  7 

Luxembourg 13 10 20 8  0.32 1.0 2.0  4 

Malta 15 9 20   0.32 1.0   8 

Netherlands 10 8 13 7  0.22 1.6 1.9  3 

Poland 15 13 14 8  0.38 1.1 2.0  9 

Portugal 14 15 18 7  0.24 1.1 1.8  7 

Romania 13 12 17 8  0.41 1.0 1.6  9 

Slovakia 12 12 17 7  0.38 1.2 1.7  9 

Slovenia 14 7 22 5  0.32 1.0 1.8  5 

Spain 13 15 15 8  0.30 1.3 1.7  7 

Sweden 13 11 14 8  0.33 1.2 2.0  6 

United Kingdom 15 11 15 4  0.36 1.2 1.6  8 
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Table S3 Summary of key parameters and data sources used for the environmental assessment of manure treatment technologies in this study. 

Manure treatment 

technologies 

Parameter codes Values used in 

the model 

Description Data sources 

Acidification Rebuild_acid_NH3 65% NH3 and CH4 reduction factors during in-

house (Rebuild_acid), outdoor storage 

(Restorage_acid), and application (Reapplic_acid) 

of acidified slurry, relative to raw slurry 

(Kai et al., 2008; Petersen et al., 2016) 

Restorage_acid_NH3 83% (Hou et al., 2015) 

Restorage_acid_CH4 87% (Hou et al., 2015) 

Reapplic_acid_NH3 40% (Kai et al., 2008; Fangueiro et al., 2015a, 2015b) 

Solid-liquid 

Separation 

Etsep_N 10%; 22% Separation efficiency (Etsep) of N, P and 

VS, for i) screw and filter pressing; ii) 

combined with coagulation/ flocculation 

(Møller et al., 2007b, 2000, 2002, 2007a; Converse & 

Karthikeyan, 2004; Melse & Verdoes, 2005; Rico et al., 

2007; Campos et al., 2008; Fangueiro et al., 2008, 2009; 

Hjorth et al., 2010; Hamelin et al., 2011; Popovic et al., 

2012) 

Etsep_P 15%; 32% 

Etsep_VS 29%; 55% 

Etsep_N 33%; 47% i) non-pressurized filtration; ii) combined 

with coagulation/ flocculation Etsep_P 41%; 81% 

Etsep_VS 49%; 76% 

Etsep_N 26%; 47% i) centrifugation and sedimentation; ii) 

combined with coagulation/ flocculation Etsep_P 69%; 81% 

Etsep_VS 58%; 76% 

Reapplic_LF_NH3 18% NH3 reduction factors for application of 

liquid fraction, relative to raw manure 

(Hou et al., 2015) 

Reapplic_SF_N2O 45% N2O reduction factors for application of 

solid fraction, relative to raw manure 

(Hou et al., 2015) 

Anaerobic digestion fbiogas_leak 1% Biogas leakage, % of biogas production (Miranda et al., 2015) 

fbiogas_CH4  55-65% CH4 in biogas composition (Hamelin et al., 2011; UNFCCC) 

Ifstorage_dig_NH3 50% Increase in NH3 emission from storage of 

digested slurry, relative to raw slurry 

(Sommer, 1997; Clemens et al., 2006; Koirala et al., 2013) 

Restorage_dig_CH4 78.5% CH4 reduction factors from storage of 

digested slurry, relative to raw slurry; N2O 

emissions are assumed to be unchanged. 

(Miranda et al., 2015) 

fDeg_vs 0.45-0.6 Degradable rates of VS of manure in 

digester, varied among animal categories 

(Møller et al., 2004a, 2004b; Hamelin et al., 2011, 2014) 

Reapplic_dig.LF_NH3 18%  NH3 reduction factors for application of 

digested liquid fraction; NH3 EF from 

digested slurry are considered to be same 

as raw manure. 

 

(Hou et al., 2015) 

Reapplic_dig/dig.LF_N2O 25% N2O reduction factors for application of 

digested slurry and liquid fraction Of 

digestate. 

(Hou et al., 2015) 
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Nitrification and 

denitrification 

treatment (NDN) 

EFNDN_N2O 9% N2O emission factor (EF) during NDN; a 

range 1-20% was reported in literature 

(Willers et al., 1996; Béline & Martinez, 2002; Melse & 

Verdoes, 2005; Loyon et al., 2007) 

EFNDN_NH3  0.5% NH3 EF during NDN; a range 0.1-0.8%  (Willers et al., 1996; Melse & Verdoes, 2005) 

EFNDN_TN 70% Total N loss during NDN, a range 52-80% (Béline & Martinez, 2002; Beline et al., 2008; Riaño & 

García-González, 2014) 

EFNDN_CO2 15% CO2 EF during NDN; a range 52-80%  (Loyon et al., 2007) 

EFNDN_CH4 0.25% CH4 EF during NDN; a range 0.04-0.34%  (Melse & Verdoes, 2005; Loyon et al., 2007) 

EFNDN_slud_CH4 0.5% CH4 EF during storage of sludge (Loyon et al., 2007) 

EFNDN_slud_NH3  1.5% NH3 EF during storage of sludge (Loyon et al., 2007) 

EFNDN_slud_N2O 0.1% N2O EF during storage of sludge Assumption 

EFNDN_slud_N2 0.5% N2 EF during storage of sludge Assumption 

EFapplic_NDN_slud_NH3 1% NH3 EF during application of sludge  

Reapplic_SF_N2O 45% N2O reduction factors for application of 

sludge, relative to raw manure, considered 

same as separated solid fraction 

(Hou et al., 2015) 

Composting Ifcompost_NH3 52% Increasing factors (Ifcompost) or reduction 

factors (Recompost) for emissions during 

composting, relative to conventional 

storage 

(Pardo et al., 2015) 

Ifcompost_CO2 38.5% 

Recompost_CH4 71% 

Recompost_N2O 49% 

EFapplic_compost_NH3 1% NH3 EF during application of compost (Chadwick et al., 2011) 

EFapplic_compost_N2O 1% N2O EF during application of compost (IPCC, 2006; Chadwick et al., 2011) 

Incineration EFincinerate_NH3 0.03% NH3 EF of incineration; a range 0.01-

0.06%  

(Brassard et al., 2014; Billen et al., 2015) 

EFincinerate_N2O 0.3% N2O EF of incineration; a  range 0.04-0.7% (Brassard et al., 2014; Billen et al., 2015; Fernandez-

Lopez et al., 2015) 

EFincinerate_NOx 0.35% NOx EF of incineration; a range 0.1-0.4% (Brassard et al., 2014; Billen et al., 2015) 

fincinerate_residue_N 2% Fraction of N residue, a range 1.4-4% (Christel et al., 2014) 

fincinerate_residue_C 1% Fraction of C residue, a range 0.05-2.2% (Brassard et al., 2014; Christel et al., 2014; Fernandez-

Lopez et al., 2015) 

EFapplic_ash_NH3/N2O Negligible NH3 and N2O EF of application of ash Assumption 

Thermal drying EFthermal-dry_NH3 Poultry: 25%,Pig: 

30%,Cattle:30% 

NH3 EFs during drying (Pig: 25-36%; 

Cattle: 25-36%; Poultry: 21-29%) 

(Sistani et al., 2001; Maurer & Müller, 2012; Ghaly & 

Alhattab, 2013; Pantelopoulos et al., 2016) 

Redry_scrubber_NH3 85% NH3 reduction factor by air scrubber; a 

range 71-99% 

EFthermal-dry_N2O 0.02% N2O EF, a range 0.01-0.5% 

EFthermal-dry_NOx 0.02% NOx EF, assumed to be same as N2O Assumption 

EFthermal-dry_N2 5% N2 EF during thermal drying Assumption 

EFapplic_dry_NH3 negligible NH3 EFs during application (Rodhe & Karlsson, 2002) 
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Bio-drying Ifbiodry_NH3 121% Increase in NH3 emission during bio-

drying, a range 28-243% was reported in 

literature 

(Ramirez et al., 2012; Sadaka & Ahn, 2012; Pardo et al., 

2015) 

EFapplic_bio-dry_NH3 1% Assumption, considering the limited 

available N content in dried manure 
 

Slow pyrolysis fbiochar_C 35% (pigs); 44% 

(cattle, poultry) 

Fraction of C in biochar, as % of C input; a 

range 32-56% 

(Kim et al., 2009; Ro et al., 2010; Cantrell et al., 2012; 

Song & Guo, 2012; Azuara et al., 2013; Li & Takarada, 

2013; Troy et al., 2013; Wnetrzak et al., 2013; Baniasadi 

et al., 2016) 
fbiochar_N 25% (pigs); 30% 

(cattle, poultry) 

Fraction of N in biochar, as % of N input a 

range 5-40% 

fbiochar_p 99% Fraction of P in biochar, as % of P input a 

range of 97-100% was reported 

EFapplic_biochar_NH3 1% NH3 EFs during application of biochar (Kookana et al., 2011; Cayuela et al., 2014) 

EFapplic_biochar_N2O 0.5% N2O EFs from application of biochar 
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Table S4. A summary of uncertainty in model parameters used for the Monte Carlo (uncertainty) analysis (CV= coefficient of variation; SD =Standard 

deviation).
a
 

Parameter codes (if applicable, see 

Table S3) 

Brief description Group
b
 Distribution 

type 

CV SD Spatial 

correlation,  

national 

level 

Source (uncertainty) 

- Livestock numbers LAD normal 0.05  0.5 (Zhu et al., 2015) 

Excreta_N N excretion factors EXE normal 0.1  0.5 (Hou et al., 2016) 

Excreta_vs VS excretion factors EXE normal 0.1  0.5 (Hou et al., 2016) 

fTC/VS The TC/VS ratio in excretion EXE normal 0.25  1 This study
c
 

EFbuild_slurry/solid_NH3 NH3 emission factors (EFs) in housing EFH normal 0.25  0.8 (Zhu et al., 2015) 

EFstorage_lurry/solid_NH3 NH3 EFs in storage EFH normal 0.25  0.8 (Zhu et al., 2015) 

EFstorage_slurry/solid_N2O N2O EFs in storage EFH Lognormal  0.35 0.5 (Zhu et al., 2015) 

EFstorage_slurry/solid_N2 N2 EFs in storage EFH Lognormal  0.5 0.5 (Zhu et al., 2015) 

MCFslurry/solid Methane conversion factors EFH normal 0.25  0.8 (Zhu et al., 2015) 

facid_slurry Fractions of acidified slurry TAD normal 0.25  0.2 This study 

fseparate/compost/thermal-dry/biodry_slurry Fractions of slurry used for separation, 

composting, thermal or bio-drying 

TAD normal 0.25  0.2 This study 

fAD_slurry Fractions of slurry used for anaerobic digestion TAD normal 0.25  0.2 This study 

fcompost/incineration/thermal-dry_solid/biodry_solid Fractions of solid manure used for incineration, 

composting, thermal or bio-drying 

TAD normal 0.25  0.2 This study 

Restorage_acid_NH3 NH3 reduction factor, acidification EFT normal 0.47  1 (Hou et al., 2015) 

Restorage_acid_CH4 CH4 reduction factor, acidification EFT normal 0.44  1 (Hou et al., 2015) 

Etsep Separation efficiency  EFT normal 0.25  1 This study 

Yieldbiogas_CH4 Biogas-CH4 yield EFT normal 0.25  1 This study 

fbiogas_CH4 Biogas composition EFT normal 0.25  1 This study 

fDeg_vs Degradation rates, in AD EFT normal 0.25  1 This study 

Ifstorage_dig_NH3 NH3 increase factor, digestate stored EFT normal 0.5  1 This study 

Restorage_dig_CH4 CH4 reduction factor, digestate stored EFT normal 0.25  1 (Miranda et al., 2015) 

EFNDN_NH3 NH3 EFs, NDN treatment EFT normal 0.5  1 This study 

EFNDN_N2O N2O EFs, NDN treatment EFT normal 0.5  1 This study 
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EFNDN_N2 N2 EFs, NDN treatment EFT normal 0.25  1 This study 

fincinerate_residue Fractions of nutrients in ash, incinerate EFT normal 0.25  1 This study 

EFincinerate_NH3/N2O/NOx EFs from incineration EFT normal 0.25  1 This study 

EFthermal-dry_NH3/N2O/NOx/N2 EFs from thermal-dry EFT normal 0.5  1 This study 

Redry_scrubber_NH3 NH3 reduction efficiency, air scrubber EFT normal 0.1  1 (Ghaly & Alhattab, 2013) 

Ifbiodry_NH3 NH3 increase factor, during bio-drying EFT normal 0.5  1 This study 

Ifcompost_NH3 NH3 increase factor, composting EFT normal 0.59  1 (Pardo et al., 2015) 

Recompost_N2O N2O reduction factor, composting EFT normal 0.79  1 (Pardo et al., 2015) 

Recompost_CH4 CH4 reduction factor, composting EFT normal 0.5  1 (Pardo et al., 2015) 

fbiochar_C&N&P Nutrient fractions remained in biochar EFT normal 0.25  1 This study 

EFapplic_slurry/solid/compost(etc.)_NH3 NH3 EFs for applied manure products EFA normal 0.25  0.8 (Zhu et al., 2015) 

EFgraz_slurry_NH3 NH3 EFs from excreta of gazing animal EFA normal 0.25  0.8 (Zhu et al., 2015) 

Reapplic_LF/acid NH3 reduction factors, applied (separated) liquid 

fraction and acidified slurry 

EFA normal 0.5  1 (Hou et al., 2015) 

EFapplic_slurry//compost(etc.)__N2O N2O EFs for applied manure products EFA Lognormal  0.28 0.5 (Zhu et al., 2015) 

Reapplic_dig/sep.SF(etc.)_N2O N2O reduction factors, applied treated manure EFA normal 0.49  1 (Hou et al., 2015) 

EFgraz_slurry_N2O N2O EFs from excreta of gazing animal EFA Lognormal  0.57 0.5 (Zhu et al., 2015) 
a 

The uncertainty analysis was performed according to the methodology described by Zhu et al. (2015) who analyzed the uncertainty of the MITERRA model for global 

animal production; the uncertainties (CV or SD) were also mainly derived from Zhu et al. (2015), and other meta-analysis studies (Hou et al., 2015; Miranda et al., 2015; 

Pardo et al., 2015). 
b 

LAD: livestock activity data (i.e. animal numbers); EXE: parameters used for calculating nutrient excretion; EFH: parameters (e.g. emission factors) used for calculating 

emissions from housing and manure storages; EFT: parameters used for calculating emissions during manure treatment; EFA: parameters used for calculating emissions 

during manure application to land; TAD: manure treatment activity data. 
c
 For these parameters, little information on uncertainties was available. We assigned the CV of these parameters using three categories: high uncertainty (CV = 0.5), 

moderate uncertainty (CV = 0.25) and low uncertainty (CV = 0.1), following (Kros et al., 2012; Zhu et al., 2015). Low uncertainty was used for parameters derived from 

good-quality statistical databases; high uncertainty was used for parameters based on expert knowledge or derived from model estimates or limited published data. 
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Figure S1. Uncertainty contribution of different groups of model inputs and parameters to the total 

emissions of NH3, N2O, CH4 and GHG from animal manure in EU-27 in 2010. (LAD: livestock 

activity data (i.e. animal numbers); EXE: parameters used for calculating nutrient excretion; EFH: 

parameters (e.g. EFs) used for calculating emissions from housing and manure storages; EFT: 

parameters used for calculating emissions during manure treatment; EFA: parameters used for 

calculating emissions during manure application to land; TAD: manure treatment activity data; see 

details in Table S4) 
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Abstract: 

Animal manures are valuable sources of plant nutrients, bioenergy and organic matter for 

enhancing soil quality, but are also associated with a range of environmental issues. Manure 

treatment technologies have been developed in Europe to better use animal manures and to 

reduce their environmental impact, but the adoption of these technologies in practice is 

regionally diverse and still limited. Also, little is known about the opinions of stakeholders 

towards manure treatment. This study aimed to identify stakeholder perceptions of (1) which 

factors can facilitate and hinder the implementation in practice, (2) which technologies have 

the most potential for successful adoption, and (3) how farm characteristics and scale of 

treatment operations affect priorities for technology adoption. This analysis used data from a 

survey of various stakeholders engaged in manure treatment in four European countries 

(Denmark, Italy, the Netherlands and Spain) that have large areas of high animal density, but 

diverse socio-economic, political and environmental conditions. Pressure from governmental 

regulations was perceived as a key factor that stimulated manure treatment in all four 

countries (70% of respondents). Processing manure to produce bioenergy was considered 

important in Denmark and Italy, but less important in Spain and the Netherlands. The major 

barriers to technology adoption were related to economic factors (lack of investment capital, 

high processing cost and a long payback time; 45-60% of respondents), while there was 

relatively little concern regarding transport, noise burden and health risk. Slurry separation 

and anaerobic digestion were perceived to have the greatest potential for a common adoption 

in practice. Other preferred technologies were more country-specific (e.g. acidification in 

Denmark, composting in Spain, and drying and reverse osmosis in Netherlands). Farm 

characteristics and scale of operation were identified as important factors for technology 

adoption. The implementation of manure treatment in practice was facilitated by the pressure 

from environmental regulations, and was hindered by financial barriers. Manure treatment 

will therefore remain a regional activity. Policy measures and outreach strategies to alleviate 

the main barriers and to encourage the adoption of manure treatment are suggested. 
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6.1 Introduction 

Animal manures are valuable sources of plant nutrients, soil organic matter and bioenergy. 

However, following the introduction of relatively cheap inorganic fertilizers from the 1950s 

onwards, animal manures were increasingly considered as a waste, especially in affluent 

countries (e.g., in Europe and North America; Van der Meer, 1987). Recently, inappropriate 

use and inefficient recycling of animal manures, particularly in regions with high animal 

density, have exerted a series of negative impacts on the environment, e.g. eutrophication of 

ecosystems, soil acidification and global warming (Steinfeld et al., 2006). In Europe, the 

livestock sector is currently responsible for about 80% of total European ammonia (NH3) 

emissions, 10-17% of greenhouse gas (GHG) emissions, 40-50% of diffuse nitrogen (N) and 

70% of inorganic phosphorus (P) losses to inland and coastal water (Leip et al., 2015). In 

response, a series of governmental policies have been implemented by the European Union 

(EU) and some of its Member States to improve the utilization of manure nutrients in 

agriculture and therefore decrease their environment impact (Oenema et al., 2011). These 

policies have contributed towards the development of manure treatment technologies, which 

are important for achieving cleaner production in livestock husbandry. 

Historically, manure has always been treated and used for various purposes. Attempts to 

produce biogas from manure date back to the 10th century B.C. (Bond & Templeton, 2011). 

Efforts to recover specific nutrients or to increase the agronomic value of manure date from 

the second half of the 20
th

 century (Van der Meer, 1987). Manure has been dried and used as 

fuel and building material probably as long as there has been animal agriculture. A wide range 

of new manure treatment technologies have been developed and are now available in Europe. 

These technologies are considered to be of great importance for the development of 

sustainable agricultural systems and societies (Foged et al., 2011a; Sommer et al., 2013). 

Several technologies (e.g. slurry acidification, anaerobic digestion) are used to decrease 

ammonia and/or GHG emissions from animal manure, and thereby decrease the risk of 

climate change and acidification of ecosystems. Technologies have been developed to 

produce renewable energy from manure, for instance, through anaerobic digestion (i.e. biogas 

production) and incineration (Billen et al., 2015; Kimming et al., 2015). Manure-based 

bioenergy production decreases CO2 emissions by substituting fossil fuel for power and 

electricity production, and therefore is a crucial contributor to the development of bio-

economy. Other technologies (e.g. solid-liquid separation, drying, composting, reverse 
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osmosis) have been developed to improve manure handling and transportation characteristics 

(Sommer et al., 2013). In addition, various manure-based products resulting from these 

treatment technologies provide opportunities for better nutrient management in agriculture. 

These products may reduce unnecessary mineral fertilizer use and so the associated resource 

use and environmental pollution from fertilizer production (Sommer et al., 2013). 

Implementation of manure treatment technologies in practice is however limited and 

regionally scattered in the EU. Less than 10% of the total animal manure production 

(excluding excreta of grazing animals) was processed in the EU-27 in 2010, with large 

variations between countries (Foged et al., 2011a). The extent to which treatment technology 

advances in a country can be influenced by governmental policies and the perceptions of key 

stakeholders. Environmental policies and legislations vary between EU countries. Although 

EU Directives set the framework in which all Member States must create legislations directed 

at civilians/industries to attain the EU-scale objectives, Member States have some flexibility 

to implement these Directives (Oenema et al., 2011). For example, there is flexibility in the 

design of national action programs and the use of mitigation measures and techniques in the 

Nitrates Directive (1991/676/EC) and National Emission Ceiling Directive (2001/81/EC). In 

addition, differences in farming systems and environmental conditions in the EU, combined 

with the complexity of manure management and nutrient recycling, can also affect the 

adoption of treatment technologies (Sommer et al., 2013). To facilitate the proper 

development of manure treatment technology, there is a need to improve understanding of the 

reasons for the limited and scattered implementation of these treatment technologies in 

practice in the EU, especially in regions with high animal density. 

While extensive research has been conducted to evaluate the technical, environmental and 

economic performance of manure treatment technologies in EU, stakeholder opinions 

regarding the factors influencing manure treatment in practice have not received significant 

consideration. The diffusion and exploitation of cleaner technologies relies on a combination 

of factors including governmental policies, financial incentives, technical and service support, 

and social acceptance (Montalvo, 2008). A better understanding of needs and perceptions of 

stakeholders from both the supply and demand side is essential to allow for successful 

innovations for sustainable production and consumption to be shared, spread and scaled up 

(Blok et al., 2015). The development of manure treatment involves stakeholders across 

government, industry, academia, extension services and agricultural production sectors. 
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Integration between policy fields, expert bodies and types of expertise is increasingly required 

in framing and assessing these EU environmental policies (Kowarsch, 2015). Stakeholders 

from different sectors may have diverse opinions regarding the objectives of a policy measure 

as well as on the relevant actions needed to achieve it (Petit & van der Werf, 2003; Van Dam 

& Junginger, 2011). Policy makers and researchers generally have a broad picture of 

environmental issues and manure management at regional and national scales. In contrast, the 

experience of individual farmers is more tied to a particular farm environment, and their 

decisions are shaped mostly by local socio-economic conditions (Ingram, 2008; Asai et al., 

2014). Agricultural advisors have an fair understanding of a group of farmers and their farms 

through regular contact, enabling them to develop a geographically broad impression of the 

farming community (Ingram, 2008). Increased understanding among stakeholders involved in 

the system can help to overcome barriers to the adoption and exploitation of manure treatment 

technologies. 

Few studies have been conducted to investigate stakeholder perceptions of factors influencing 

the adoption of manure treatment technologies. Examples include studies focusing on 

composting (Viaene et al., 2016), slurry separation (Gebrezgabher et al., 2015) and anaerobic 

digestion (Hoppe & Sanders, 2014; Dahlin et al., 2015) in several EU countries. A study in 

the Netherlands reported that farmer attitudes toward the various properties of manure 

separation technology were important determinants of adoption. Farmer attitudes were 

positive towards the agronomic attributes of separation such as the ability to use nutrients (e.g. 

N and P) in manure optimally, but the economic benefits were generally not appreciated 

(Gebrezgabher et al., 2015). Barriers to on-farm composting in Belgium were studied based 

on interviews with stakeholders, which found that strict regulation, considerable financial 

investment, and lack of experience and knowledge were hindering on-farm composting 

(Viaene et al., 2016). An analysis of stakeholder perceptions in the biogas production chain in 

several EU countries indicated that biogas producers and digestate suppliers face many risks 

and challenges, primarily linked to high financial cost (and sometimes little incentives), legal 

constraints for operation and market barriers to digestate application (Hoppe & Sanders, 2014; 

Dahlin et al., 2015). These studies have illustrated that the adoption of manure treatment 

technology is likely to be affected by a wide range of diverse socio-political, environmental 

and agronomic factors. There is a need for better understanding of stakeholder perceptions of 

factors that currently influence manure treatment and also their perspectives regarding 

successful adoption of these technologies in future. 
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This study aimed to provide empirical insights into: (1) what stakeholders perceive as 

important to facilitate or hinder the implementation of manure treatment in practice, (2) 

stakeholder views of the technologies that have the most potential for successful adoption, 

and (3) how the preference of technologies with the most potential differs between farm types, 

farm sizes, and scale of treatment operations. To achieve these objectives, a survey of 

stakeholders from various groups was conducted in four EU countries: Denmark, Italy, the 

Netherlands and Spain. All selected countries have large areas of high animal density, but 

diverse political, farming and environmental contexts. 

6.2 Methods 

This section includes a description of the countries surveyed (Section 6.2.1), stakeholder 

categories (Section 6.2.2), the questionnaire structure (Section 6.2.3) and the methods 

regarding data collection and analysis (Section 6.2.4). 

6.2.1 Country selection and context 

Denmark (DK), Italy (IT), the Netherlands (NL) and Spain (ES) were selected to represent 

European countries that have highly-intensive animal production, and as a result, large 

pressure for manure handling and management (Figure 6-1). Average livestock densities are 

1.9 and 3.6 livestock units (LU) per ha of utilized agricultural area in DK and NL, 

respectively (compared to the EU-27 average of 0.8 LU ha
-1

). In the north of IT (e.g. 

Lombardy and Veneto regions) and in some regions of ES (e.g. Catalonia and Murcia regions) 

livestock densities are also higher than 1.5 LU ha
-1

 (Figure 6-1). 

These four countries were also selected because they vary in governmental policies, manure 

management systems and environmental conditions (Table 6-1). All four countries need to 

comply with the Nitrates Directive, which aims to protect water quality by promoting good 

farming practices and preventing the pollution of groundwater and surface waters by nitrate 

from agricultural sources (including animal manure). The implementation of the Nitrates 

Directive has had a great influence on manure management (Velthof et al., 2014). The whole 

territories of DK and NL have been designated as the so-called “Nitrate Vulnerable Zones" 

(NVZs), while the NVZs cover approximately 21% of total agricultural area in ES and 32% in 

Italy. Derogations have been granted for specific regions/farms in DK, IT and NL, which 

allow them to go beyond the limit of 170 kg N ha
-1

 of manure application, while there is no 
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derogation in ES. Renewable energy action plans differ between these countries, e.g. the use 

of animal manures for renewable energy production (Table 6-1). Soil organic matter is key to 

soil quality and productivity, and plays a major role in modifying chemical, microbiological 

and physical properties in ways that improve soil fertility. Mean organic carbon contents in 

the top soils are < 15 g C kg
-1

 in most regions of ES, while > 30 g C kg
-1

 on average in NL 

(Reijneveld et al., 2009; de Brogniez et al., 2015). The organic carbon content of the soil may 

affect decisions about the most suitable use of manure as a source of organic matter to 

improve soil quality (Diacono & Montemurro, 2010). In DK and NL, manure management 

systems of dairy cattle are dominantly slurry-based, in contrast to the large fraction of solid-

based systems in ES and IT (Table 6-1). 

 

Figure 6-1. Livestock density in the EU-27, expressed in livestock units (LU) per ha utilized 

agricultural area (UAA). Data were from Eurostat (2010) for the year 2010. 
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Table 6-1. A comparison of political and agri-environmental characteristics selected for the four 

European countries. 

 DK NL ES IT 

Policies     

-Nitrates Directive     

NVZs (% total agricultural area) 100 100 21 32 

Derogation granted Yes Yes No Yes 

-Renewable Energy (RE) Directive a     

RE from manure in 2006 (ktoe ,kilotonne of oil equivalent) ~70 0 ~1.6 n.a. 

Estimates in 2020 (ktoe) ~145 ~98 ~143 n.a. 

Agri-environmental conditions     

-Average soil organic carbon in top soils (g kg-1) b 20-30  30-40 <15 15-20 

-Manure management systems (% of manure N from housing) c 

Dairy cow 92% (slurry) 99% (slurry) 70% (solid) 60% (solid) 

Other cattle 60% (solid) 83% (slurry) 99% (solid) 60% (slurry) 

Pigs 95% (slurry) 99% (slurry) 90% (slurry) 99% (slurry) 
a Source from National renewable energy action plans; No information (n.a.) available for Italy 
b Adhikari et al., 2014; de Brogniez et al., 2015; Reijneveld et al., 2009 
c Information from National inventory reports (NIR) to UNFCCC (the United Nations Framework Convention on Climate 

Change) for the year 2010. 

 

6.2.2 Stakeholder groups 

Six stakeholder groups with expertise in the domain of manure treatment were chosen for this 

study: (i) livestock farmers; (ii) members of the board of farmers’ organizations; (iii) 

agricultural advisors and consultants; (iv) developers and users of treatment technologies 

from industry (also including contractors with manure treatment facilities); (v) employees of 

public authorities (working on the development and control of agri-environmental policies); 

and (vi) researchers from academic institutions (with expertise in animal manure treatment) 

(Table 6-2). 

6.2.3 Questionnaire design 

The survey consisted of 62 questions divided into five sections. Section 1 dealt with 

respondents’ experience in manure treatment. Section 2 related to opinions on factors that 

stimulate and hinder the implementation of manure treatment in practice. The selection of 

these factors (presented in the questionnaire) was based on peer-reviewed studies (e.g., 

Gebrezgabher et al., 2015; Hoppe and Sanders, 2014; Montalvo, 2008) and views of experts 

(including the authors) in the research of farm-based studies in the surveyed countries. 

Section 3 aimed to investigate stakeholder opinions about the technologies that have the most 

potential for successful adoption. Eight common treatment technologies were listed in the 

questionnaire: solid-liquid separation, acidification, anaerobic digestion, biological nitrogen 

removal, composting, drying, combustion/ incineration, and membrane filtration/ reverse 

osmosis (Foged et al., 2011a). For each technology there were four follow-up questions to 
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investigate why, how and where the selected technologies had the greatest adoption potential 

(considering farm type, farm size and scale of operation, and the benefits of each technology). 

Section 4 collected demographic information, including employment categories (to 

distinguish between stakeholder groups) and farm characteristics (in the case of farmers). The 

final section allowed respondents to submit any other comments and to give contact 

information (if they wished to receive the results of the study). Respondents could write 

additional comments and suggestions for each question (under the response ‘other’). 

6.2.4 Data collection and analysis 

The survey was performed through both face-to-face interviews and online questionnaires, 

with support from the academic institutions that participated in the joint EU project 

ReUseWaste 1 . The electronic version of the questionnaire was designed using 

SurveyMonkey
TM

. The questionnaire used for face-to-face interviews was the same as that 

used for the online survey. Data were collected between April 2014 and June 2015. 

Survey dissemination strategies differed between countries. In DK, surveys were 

disseminated by researchers from the University of Copenhagen via an email that described 

the purpose and background context of the survey, and included a link to the online survey. 

Agricultural advisors were contacted via a database of advisors obtained from the Danish 

agricultural extension service (110 advisors were randomly selected; 32 of them completed 

the survey, Table 6-2). A list of other stakeholders was prepared via personal contacts. For 

instance, the questionnaires were emailed to 18 researchers with expertise in manure 

management and treatment (in Aarhus University, University of South Denmark and the 

University of Copenhagen), 20 officers in local and national governmental department (e.g. 

the Danish Environmental Production Agency, the Danish AgriFish Agency), and to the 

chairmen of 45 farmers’ organizations in DK. Similarly to DK, all surveys were disseminated 

via email and completed online in NL. Requests were sent to target stakeholders (except for 

researchers) via the secretaries of two large (branch) organizations i.e., CUMELA and 

Nutrient Platform, and of the main farmers’ organization LTO.2 Furthermore, a selection of 20 

researchers from Wageningen UR with expertise in manure management and treatment were 

asked to complete the questionnaire. In ES, the questionnaire was completed online by 

                                                 
1 ReUseWaste: http://www.reusewaste.eu/  
2
 CUMELA: http://www.cumela.nl/, Nutrient Platform: http://www.nutrientplatform.org/, LTO: 

http://www.lto.nl/. 

http://www.reusewaste.eu/
http://www.cumela.nl/
http://www.nutrientplatform.org/
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stakeholders from the research, industry, extension service and policy communities who were 

selected and contacted by researchers from the Spanish National Research Council (CSIC). 

The questionnaire was completed via face-to-face interviews with farmers, instead of by an 

online survey, as it was considered that farmers would generally have limited access to the 

internet and were not familiar with online questionnaires. Livestock farmers were visited at 

their homes (one by one) in regions of high livestock density (Murcia and Catalonia) by 

researchers from CSIC. These farmers were selected via the contact of local agricultural 

advisors and also according to their willingness to participate. A hard copy of the 

questionnaire was presented to the respondents. Interviewers were instructed not to present 

their own opinions, but only to clarify the questions in case farmers did not understand. 

Results of the face-to-face interviews were uploaded to the SurveyMonkey
TM

 database and 

analyzed alongside online responses. In IT, stakeholders from the research, industry, 

extension service, and policy communities were surveyed during two national agricultural 

meetings held in 2014 (November and December), and further interviews were subsequently 

conducted via personal contacts of researchers from the University of Turin. Efforts were 

made to ensure the privacy of the face-to-face interviews, and respondents were interviewed 

one by one. Respondents representing livestock farmers and members of farmers’ 

organizations came mainly from areas where animal husbandry is highly intensive, i.e. 

Northern Italy (Piedmont, Lombardy, Emilia Romagna and Veneto). In total across all the 

countries 291 surveys were completed; each stakeholder group had between 18 and 75 

respondents (see Table 6-2 and Section 6.3). 

Table 6-2. Overview of respondents as number per country. 

 DK NL ES IT Total 

Do you have experience in manure treatment? 
a
      

Yes 73 66 55 45 239 

No 9 13 7 23 52 

Total 82 79 62 68 291 

What is your job? 
b
      

Farmer 10 18 35 12 75 

Representative in a farmer organization 10 3 3 5 21 

Agricultural advisor 32 6 1 10 49 

Technology developer/ user in company 17 30 4 7 58 

Employee in the public authority 8 1 3 6 18 

Researcher 7 18 15 23 63 

Respondents skipped this question 7 9 3 6 25 
a 
single answer

 

b 
multiple answers
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A draft of the survey was sent to researchers (more than 20 in total) in the four countries to 

improve clarity and reduce the chance of misinterpretation. Comments and suggestions on the 

draft questionnaires were used to modify the survey before distribution. The same survey was 

disseminated to the four target countries, but translated (into Danish, Dutch, Italian and 

Spanish). The link to the English version of the questionnaire (as example for Denmark) was 

attached in Appendix A. 

Data downloaded from the SurveyMonkey
TM

 were compiled and analyzed using R version 

3.0.0 (e.g. Crosstab function) and Microsoft Excel 2010. The number of positive ticks to each 

option of a question (i.e. the number of respondents) was recorded. Results were analyzed by 

individual countries and also with the sum of all countries. Since there were multiple-response 

questions in the questionnaire, the absolute number of respondents referring to each answer of 

a question was converted to the percentage of the total number of respondents who answered 

the question. This conversion allowed for the comparison of different variables listed in a 

question, as well as a comparison between countries. 

6.3 Results 

Table 6-2 provides an overview of the number of respondents per stakeholder group and 

country. In total, 291 questionnaires were completed: 28% in DK, 22% in ES, 23% in IT, and 

27% in NL. A total of 82% of the respondents had experience with manure treatment (Table 

6-2). More than 50% of those had experience with manure separation and anaerobic digestion, 

except for respondents in ES (Figure 6-2). Over 70% of respondents in DK had experience 

with slurry acidification. In ES, most respondents (40%) had experience with composting. 

Respondents from NL had more experience with manure drying and membrane filtration (or 

reverse osmosis) (Figure 6-2). Few respondents answered that they had experience with 

alternative treatment technologies that were not offered as possible responses in the question, 

e.g. ammonia stripping from liquid manure, phosphorus recovery, or evaporation of liquid 

manure. 
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Figure 6-2. Response to the question: “please indicate the treatment technique(s) in which you are 

involved.” (multiple responses permitted). The number of respondents per country with experience in 

manure treatment is shown in the legend. 

6.3.1 Factors that stimulate and hinder adoption 

Pressure from environmental policies was perceived to be the most important factor affecting 

the implementation of manure treatment in practice (70% of total respondents), which was the 

case for respondents from all four countries and all stakeholder groups (Figure 6-3; Appendix 

B.1). The need to facilitate the export of manure from the farm (47%, especially in DK and 

NL) was also highlighted by many respondents. The need to achieve renewable energy targets 

by producing bioenergy from manure was ranked relatively highly in DK and IT. Compared 

to the other factors considered, the need to efficiently use manure nutrients due to increased 

fertilizer prices was considered relatively important in ES. For all countries, controlling 

diseases, pathogens and odor was considered the least important among the six factors defined 

in the survey (Figure 6-3). 
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Figure 6-3. Responses to the questions (expressed as % of respondents from all survey countries): 

“please indicate the top three reasons that can stimulate farmers to apply manure treatment techniques.” 

The number of respondents that answered this question is shown in the legend. 

Economic factors were the main barriers to the implementation of manure treatment in 

practice, namely the lack of investment capital (60% of total respondents), high processing 

costs (52%), and long payback period (45%). These barriers were perceived to be important 

for all countries (Figure 6-4) and by all stakeholder groups (Appendix B.2). Legal constraints 

(32% of all respondents, highest at 45% in NL) and lack of knowledge (32% of all 

respondents, especially in ES and IT) were chosen by a moderate number of respondents. 

Transport, noise burdens and health risks were not seen as important barriers among all 

stakeholder groups (Figure 6-4; Appendix B.2). Interestingly, livestock farmers and 

agriculture advisors had relatively little concern about the market for manure processing 

products (Appendix B.2). This suggested that these farmers were possibly interested in using 

processed organic fertilizers, which is confirmed by the results from a parallel study on 

farmer perceptions of organic fertilizers in Denmark (Case et al., unpublished results). 
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Figure 6-4. Responses to the questions (expressed as % of respondents from all survey countries): 

“please indicate the three most important constraints / barriers to the adoption of manure treatment 

technologies.” The number of respondents that answered this question in each country is shown in the 

legend. 

 

6.3.2 Preferred treatment technologies 

Stakeholders indicated that manure separation and anaerobic digestion had the greatest 

potential for a common adoption in practice (36% and 42% of total respondents, respectively). 

Other technologies appear to be more country specific. There was a relatively high adoption 

potential for slurry acidification in DK (47%) and composting in ES (44%), while drying of 

solid manure fractions and membrane filtration (or reverse osmosis) of liquid fractions were 

considered positively in NL (Figure 5-5). 
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Figure 6-5. Response to the question: “which techniques have the most potential to be applied in your 

country during the next 10 years?” The number of respondents (answered this question) for each 

country is shown in the legend. The number of respondents for each technology/answer is indicated in 

the Y-axis label. 

6.3.3 Preferred farm structure and scale of operation 

Figure 6-6 shows that livestock farms with a limited area of land were considered to have a 

relatively high adoption potential for all of the manure treatment technologies considered with 

the exception of slurry acidification (Figure 6-6a). This exception is possibly due to the fact 

that farms with sufficient land are more willing, or are required to use techniques that reduce 

ammonia losses from on-farm storage and application of manures. Overall, manure treatment 

was considered to be more applicable to pig and cattle farms than to poultry farms (Figure 6-

6a). 

 

 

0% 25% 50% 75% 100%

Separation  (102)

Anaerobic digestion (120)

Acidification (44)

Biological N removal (21)

Composting (48)

Drying/pelletizing (34)

Incineration/combustion (19)

Membrane filtration/reverse osmosis
(25)

No potential/no interest (15)

% of respondents per country  

DK (79)

NL (76)

ES (62)

IT (66)
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Figure 6-6. Responses to indicate which farm types (a), sizes (b, LU=livestock unit) and operation 

scales (c) have the most potential for adoption of respective technologies (multiple answers), 

expressed as % of respondents for all four countries. The number (n) of respondents is shown for each 

technology. Results referring to biological nitrogen removal and incineration treatment are not shown 

due to limited number of responses.   
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Manure treatment was considered to be less applicable to small livestock farms (i.e. <50 LU). 

Drying and reverse osmosis technologies were perceived most appropriate for large livestock 

farms (> 1000 LU) (Figure 6-6b). Stakeholders had different views regarding the optimal 

scale of the manure treatment plant (Figure 6-6c). Separation (67% of respondents), 

acidification (55%) and composting (52%) were perceived to be most applicable at the farm 

scale. Anaerobic digestion, drying (pelletizing) and membrane filtration were considered to be 

most applicable at the industrial scale and for farmer cooperatives (Figure 6-6c). 

6.3.4 Benefits of manure treatment 

Table 6-3 shows respondent perceptions of the benefits of manure treatment. A reduction in 

manure disposal costs and an increase in the fertilizer value of separated liquid and solid 

fractions were ranked as the main benefits of manure separation. For anaerobic digestion, the 

main benefits included bioenergy production, the increased fertilizer nitrogen value of 

digestate, and the reduction of odor and gaseous emissions during further processing and field 

application. Mitigation of ammonia emissions during slurry storage and application, and the 

increased fertilizer N value of slurry were ranked as the main benefits of slurry acidification. 

Increased organic matter quality of manure and improved soil quality after field application 

were ranked as the main benefits of composting.  

6.4 Discussion 

Currently, less than 10% of the animal manure produced in EU is treated and most farmers 

have little knowledge about manure processing technologies (Foged et al., 2011a). In the 

present study the survey was disseminated to stakeholders involved in manure treatment, 

directly or indirectly. This explains why over 80% of the respondents described themselves as 

having at least some experience with manure treatment. Most of the stakeholders contacted 

within each group (farmers, farmers’ organizations, extension service, industry, policy and 

research) were considered to be forerunners in the whole domain of the development, 

implementation and management of manure treatment technologies. By exploring the views 

of these stakeholders engaged with manure treatment, a better understanding of the future 

perspectives of manure processing is possibly achieved. 
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Table 6-3. Summary of responses to the questions asking about the benefits of each respective 

technology (for all four countries), measured in % of the total number of respondents for each question. 

 % of respondents 

What are the top three benefits of separation? (Number of respondents: n =102)  

To reduce cost of manure disposal 47 

To increase fertilizer value of liquid fractions 39 

To increase fertilizer value of solid fractions 34 

To use solid factions for biogas production 27 

To use solid fractions for composting 25 

To reduce ammonia emissions from liquid fractions after field application 18 

To use solid factions as bedding materials 16 

What are the top three benefits of anaerobic digestion? (n=120) 
 

To produce bioenergy 88 

To increase fertilizer nitrogen value of digestate 58 

To reduce odor and gaseous emissions during processing 43 

To reduce odor and gaseous emissions after field application of digestate 42 

To increase soil quality after field application of digestate 13 

To increase fertilizer phosphorus value of digestate 8 

What are the top three benefits of acidification? (n=44) 
 

To reduce ammonia emissions during field application 82 

To reduce ammonia emissions during storage 73 

To increase fertilizer nitrogen value of slurry 68 

To increase fertilizer sulfur value of slurry 27 

To reduce greenhouse gas emissions during storage 25 

What are the top three benefits of composting? (n=48) 
 

To improve the organic matter quality 54 

To remove pathogens 46 

To reduce the volume and mass of the manure 42 

To improve soil quality after field application of compost 42 

To increase economic value as compost products 40 

To reduce ammonia emissions after field application of compost 19 

To homogenize the manure 13 

What are the top three benefits of drying/ pelletizing? (n=34) 
 

To facilitate export 59 

To increase the market value of the manure 53 

To reduce costs of transporting manure surplus off farm 41 

To increase soil quality after field application of dried products 29 

To decrease ammonia emissions after field application of dried products 26 

What are the top three benefits of membrane filtration/ reverse osmosis? (n=25) 
 

To increase fertilizer effectiveness of nitrogen as concentrates 64 

To make a K fertilizer 48 

To reduce cost of transporting phosphorus surplus off farm 44 

To remove organic matter from liquid manures 28 

To reduce ammonia emissions after field application of concentrates 12 
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6.4.1 Key factors that stimulate manure treatment in practice 

Pressure from environmental policies and regulations was identified as the most important 

stimulus for the implementation of manure treatment systems (Figure 6-3). This may reflect 

the fact that current policies and regulations implemented in these four countries have 

influenced stakeholder decisions on manure handling and management activities. A number 

of policies have been implemented by the EU and United Nations (UN) bodies to reduce 

environmental pollution from animal manures (Oenema et al., 2011), which play an important 

role in stimulating manure treatment activities in Europe. The EU Nitrates Directive sets up 

the maximum application limit of manure in NVZs, equivalent to 170 kg N ha
−1

 year
−1

 

(European Commission, 1991). This limit obliges livestock farms to treat and/or to transport 

the excess manure to other farms. The EU National Emission Ceiling Directive (European 

Commission, 2001) aims to reduce emissions of ammonia (NH3) (including from manures), 

and thereby stimulate the development of certain manure treatment technologies (Bittman et 

al., 2014). For example, acidifying slurry was introduced as one of the options for obligatory 

NH3 mitigation measures by Danish regulations in response to these EU Directives. On the 

other hand, the use of manure treatment may remain marginal in regions that have low 

pressure from these regulations. The authors conducted also a similar survey in Portugal, but 

the number of responses from targeted stakeholders was small and hence results are not 

shown. A low response rate from Portuguese stakeholders (in particular farmers) may reflect 

that the interest for manure treatment is low in regions that have sufficient land for application 

of the manure produced, as well as low pressure from governmental legislation. These results 

revealed that variations between countries in manure treatment have a strong relationship with 

variations in livestock density and national policies. 

Producing bioenergy from animal manures was identified as an important reason for the 

adoption of manure treatment in practice, in particular in DK and IT (Figure 6-3). Anaerobic 

digestion produces biogas that can be used directly for heating, for combined thermal and 

electricity generation, or to upgrade to bio-methane that has similar characteristics to natural 

gas (Bernet & Béline, 2009). Using animal manures as feedstock for biogas production has 

advantages compared to using energy crops, such as less competition with food production 

and higher mitigation potential of greenhouse gas emissions (De Vries et al., 2012). Further, 

the digestate can serve as an improved organic N fertilizer (Table 6-3). The development of 

biogas production in European countries has been influenced strongly by environmental 
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regulations and the EU Renewable Energy Directive (Edwards et al., 2015). The growth of 

anaerobic digestion in DK is largely due to policy incentives such as increased investment 

support for construction of biogas plants, the implementation of fossil energy taxes or 

renewable energy tariff subsidies and the government support strategies to increase 

interactions between various social groups (Raven & Gregersen, 2007). Italy has also 

witnessed an extraordinary growth in biogas generation from animal manures and other 

agricultural biomass in the last few years, which is largely due to the biogas support programs 

implemented in Italy (the introduction of Tradable Green Certificate and feed-in-tariff, and 

increased investment subsides) (Chinese et al., 2014). In comparison, manure-based biogas 

producers in NL and ES face many financial and socio-political challenges (Fierro et al., 2014; 

Hoppe & Sanders, 2014), which may explain why biogas production was perceived as less 

attractive in these two countries (Figure 6-3 and Figure 6-4). 

The pressure from increased fertilizer price was perceived to be an important factor for 

stimulating manure treatment in ES (Figure 6-3), which is in line with the conclusion from a 

study that investigated the existing experience on manure treatment in Catalonia, a region 

with high animal density in ES (Flotats et al., 2009). The increase in prices of mineral 

fertilizers could explain the recent growth in composting facilities in Catalonia, in order to 

recover nutrients in organic forms and produce soil organic amendments that are 

economically valuable (Flotats et al., 2009). The need to facilitate off-farm manure export 

was considered to be relatively important in NL and DK, where the average LU is high and a 

large portion of farms have been involved in manure exchange (Asai et al., 2014); it appears 

to be less important in ES partly due to the average low animal density (Figure 6-1). 

6.4.2 Key barriers to manure treatment in practice 

The most important barriers to the implementation of manure treatment in practice were 

related to economic factors (Figure 6-4). This corresponded with findings from several other 

studies. Results from a survey among 111 Dutch dairy farmers indicated that nearly half of 

respondents strongly disagreed with the statement that low cost of manure separation is a 

reason for them to consider the use of manure separation, while only 13% of respondents 

agreed (Gebrezgabher et al., 2015). Substantial upfront investments, subsidies not being 

granted, and increased price of co-feedstock were identified as important barriers for biogas 

producers in NL (Hoppe & Sanders, 2014). In the present study, most respondents (who 

perceived that anaerobic digestion had the most potential for adoption) stated that subsidies 
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for upfront investment and/or energy production were vital for anaerobic digestion of animal 

slurries in practice (data not shown). This confirms results from previous studies that 

subsidies play a large role in the profitability of biogas plants (Gebrezgabher et al., 2010; 

Chinese et al., 2014; Riva et al., 2014). 

A number of respondents brought up legal constraints as an important issue hindering the 

implementation of manure treatment (Figure 6-3). A Dutch respondent indicated that 

“Licensing can be very restrictive in realizing initiatives, due to lack of objective knowledge 

(on manure processing) among local residents and licensing authorities”. Likewise, a 

stakeholder study indicated that legal permits to operate biogas plants were difficult to attain 

in NL, partly because municipalities did not yet have specific biogas polices in place and 

therefore there were few staff trained in how to deal with permit requests for co-digestion 

plants (Hoppe & Sanders, 2014). A Danish respondent also stated that “It is difficult or 

impossible to get authority approval for treatment operations, because of the resistance of the 

local community”. Therefore, outreach strategies should be developed to provide more 

information to local residents, authorities, and extension services regarding the benefits and 

risks of manure treatment so as to increase social acceptability. 

6.4.3 Differences in priorities of technology adoption and operation structure 

The choice of prioritized technologies generally corresponded with the technologies for which 

respondents had experience (see Figure 6-2) and the status of manure processing activities in 

the countries surveyed (Foged et al., 2011a). An EU inventory study reported that slurry 

separation was used most in IT and ES; anaerobic digestion was predominantly applied in 

Germany, followed by IT and DK; and acidification operations were mainly located in DK, 

while ES had the largest share of composting operations (Foged et al., 2011a). In this study, 

composting was identified to have considerable growth potential in ES (Figure 6-4). This is 

partly because of the low soil organic matter content of arable land in ES (< 15 g C kg
-1

; de 

Brogniez et al., 2015) and the ability to improve soil quality following the application of 

compost (Bernal et al., 2009). Composting was not ranked highly in DK and NL, where soil 

organic matter contents are relatively high (de Brogniez et al., 2015). Solid-liquid separation, 

drying of solid fractions and reverse osmosis of liquid fractions (to concentrates) were 

considered as attractive technologies for livestock farms with a limited area of land in NL 

(Figure 6-4). This may have been chosen due to the need to comply with policy regulations. 

Obligatory manure treatment was introduced in NL in 2013, which designated that livestock 
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farms with a manure surplus have to treat and/or to export a certain percentage of the surplus. 

Thus, the need to transport manures can greatly increase the use of treatment technologies that 

reduce the volume of liquid (separation and reverse osmosis) and solid fractions (drying and 

pelletizing). Manure-based anaerobic digestion was prioritized in DK (Figure 6-4), mainly 

due to Danish government policy. The Danish government proposed a target of using 50% of 

the manure produced in DK for renewable energy by 2020, which would need to be met 

through a strong expansion of biogas plants and capacity (Danish Ministry of Food, 

Agriculture and Fisheries, 2009). 

Farm size and treatment plant operation structure are important for the implementation of 

manure treatment technologies (Flotats et al., 2009; Gebrezgabher et al., 2015). Clearly, land-

limited large farms with >300 LU (representing farms with high animal density) have larger 

potential (or need) for the adoption of manure treatment than small farms (Figure 6-6). 

Separation and composting were generally considered to be farm-scale treatment technologies, 

while manure drying and reverse osmosis were considered most applicable at large, industrial 

scales (Figure 6-6). The complexity of the management and the costs of investments and 

processing varied among treatment technologies (Foged et al., 2011b). This may explain why 

the potential and suitability of technology adoption is related to the scale of farm and plant 

operations. Solid-liquid mechanical separation and composting are generally considered to be 

less complex in operation and of relatively low cost, compared to treatments such as 

anaerobic digestion and reverse osmosis (Flotats et al., 2009; Foged et al., 2011b). The annual 

gross costs (investment and operational costs) vary from 0.5-3 € t
-1

 of inputs for mechanical 

separation and slurry acidification to 8-14 € t
-1

 for anaerobic digestion and reverse osmosis, 

and their net processing costs on the basis of total N treated vary from 0.15-3 € kg
-1

 of N 

(Møller et al., 2000; Foged et al., 2011b). Processing manure in a cooperative form has 

advantages to reduce financial risks (to individual farmers) and treatment costs, and to make 

manure treatment viable for small- and mid-sized farms (Møller et al., 2000; Flotats et al., 

2009; Swindal et al., 2010). 

6.5 Conclusions and recommendations 

Understanding the opinions of stakeholders closely engaged in manure treatment can enhance 

the effectiveness of programs designed to stimulate diffusion and exploitation of these 

technologies. Such an understanding is an essential part of attaining EU environmental and 
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renewable energy targets. Based on the main findings from the present study, policy 

requirements, outreach strategies and future research needs are suggested. 

Policy requirements. Pressure from governmental legislation was identified as the key 

stimulant of technology adoption, while barriers to adoption were mainly related to economic 

factors. It is recommended that policies for the promotion of manure treatment must be 

economically appealing to attract new adopters (farmers and industries). Long-term financial 

support schemes (e.g. subsidies) must be developed to encourage potential adopters to invest, 

considering the long-term investment requirements of manure treatment. It is also necessary 

to improve permit request procedures to facilitate their acquisition for operations. Large 

variations in technology preference between countries, farm types and scale of operation were 

observed in this study. These variations need to be considered when developing policy 

support schemes and marketing strategies. 

Outreach strategies. More information should be conveyed to livestock farmers (especially 

those with large, land-limited farms) and other technology users regarding the different 

aspects of a specific technology, i.e. financial viability, optimal operation conditions (e.g. 

farm size, operation scale), regulations and incentives, and the agronomic and environmental 

performance of the technology. Better dissemination of this information to users would 

alleviate the lack of knowledge and experience and thus to assist with their decisions on 

technology adoption. Resources should be allocated to enable face-to-face, direct mail contact, 

as well as internet sources for dissemination of information. Outreach strategies need to be 

developed to convey these important environmental benefits of manure treatment to local 

residents so as to increase social acceptability. 

Future research needs. This study emphasizes the importance of understanding stakeholder 

perceptions in countries with large areas of high animal density where manure treatment 

should be prioritized. However, manure treatment should not be limited to these regions, 

considering the potential benefits of manure treatment (e.g. not only environmental but also 

agronomic benefits). Thus, future research addressing the perceptions of stakeholders in 

regions with contrasting farming systems and socio-political conditions will complement the 

present findings and provide a more complete picture of the development of manure treatment. 

Understanding stakeholder opinions about the development of manure treatment can assist in 

the design of policies and outreach strategies, leading to a better use of animal manures and a 
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sustainable production and management chain. The results from this study can serve as a basis 

for such efforts. 
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Appendix A: The link to online questionnaire (as example for Denmark): 

https://www.surveymonkey.com/r/reusewasteDK_EN. 

Appendix B: 

B.1. Responses to the question (multiple responses permitted): “please indicate the top three reasons 

that can stimulate farmers to apply manure treatment technologies.” (presented as % of respondents 

per stakeholder group, for all survey countries). Due to a relatively low number of responses from 

farmer organizations, this stakeholder group was aggregated with the farmer group. 

 

B.2 Responses to the question (multiple responses permitted): “please indicate the three most 

important constraints/ barriers for adoption of manure treatment technologies.” (presented as % 

of respondents per stakeholder group, for all survey countries). Due to a relatively low 

number of responses from farmer organizations, this stakeholder group was aggregated with 

the farmer group.   

https://www.surveymonkey.com/r/reusewasteDK_EN
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7.1 Introduction 

Animal manures are major sources of plant nutrients and soil organic matter. However, when 

not properly managed, these manures release also considerable amounts of ammonia (NH3), 

nitrous oxide (N2O) and methane (CH4) into the air, and nitrogen (N) and phosphorus (P) 

losses to water bodies via leaching and runoff, which create a range of unwanted environment 

impacts. In response, a large number of policy measures and manure treatment technologies 

have been developed, and part of these have been implemented in practice. Introducing a 

measure or technology to mitigate emissions from one source in the manure management 

chain may affect emissions also downstream in the chain, and may affect emissions of other 

pollutants, which may lead to synergistic or unwanted environmental side-effects (Sommer et 

al., 2009; Velthof et al., 2009). The trade-offs and co-benefits of emission mitigation 

measures and manure treatment technologies are poorly understood, especially when 

considering the whole manure management chain. Moreover, the effects of combinations of 

measures and technologies have not been well analyzed yet at regional and national scales. 

The overall objective of my PhD thesis research is (i) to enhance the quantitative insight into 

the effects of emission mitigation measures and treatment technologies on the emissions of 

NH3, N2O and CH4, and the recovery of N and P from animal manure in the whole chain from 

animal feeding to manure application to land, and (ii) to explore the effects of combinations 

of measures and technologies to mitigate these emissions consistently. This PhD thesis 

research was part of the Marie Curie Training Program ReUseWaste (Recovery and Use of 

Nutrients, Energy and Organic Matter from Animal Waste). In total eleven PhD students and 

two post docs have been working on various specific mitigation measures and treatment 

technologies. My research focused on the integral analysis of the whole manure management 

chain, and on the up-scaling and synthesis of research results, including those from literature. 

My research was split-up in four parts: 

i) To allow for sound comparisons between countries and estimates at EU level, a harmonized 

and transparent methodology has been developed for the estimation of feed use and N and P 

excretion by the main animal categories, which is an essential first step for estimating 

manure-sourced emissions throughout the manure management chain (Chapters 2 and 3). 

ii) To provide quantitative insights into the possible side-effects of NH3 emission mitigation 

measures, effects of these measures on emission of NH3, N2O and CH4 at individual stages of 

the chain were assessed, using a meta-analysis approach. Further, the whole-chain impacts of 
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a suite of NH3 mitigation measures on these emissions were explored for alternative manure 

management systems through scenario analyses, with emission parameters derived from the 

meta-analysis (Chapter 4). 

iii) To estimate the environmental effects of treatment technologies in EU, gaseous emissions 

(NH3, N2O and CH4) and the recovery of N and P from animal manure in EU were assessed at 

country levels for the year 2010, using the improved MITERRA-Europe model, supplemented 

with a ‘manure treatment’ module developed in this study. Mitigation potentials of various 

treatment technologies and the associated impacts on nutrient recycling of manure in the EU 

were further examined through scenario analyses (Chapter 5). 

iv) To increase the understanding related to the factors that affect the adoption of treatment 

technologies in practice, a survey of stakeholder perceptions of manure treatment 

technologies was conducted in four EU countries. All these countries have regions with high 

animal density, but diverse social-economic and environment conditions (Chapter 6). 

In this chapter (Chapter 7), the main findings of my PhD thesis research are highlighted and 

discussed in a broader context. This chapter ends with a conclusion section, and a section in 

which future research needs are suggested. 

7.2 Main findings 

 In the EU-27, the total amounts of N and P in animal excretion produced annually are 

as large as or larger than the total annual amounts of fertilizer N and P used during last 

decades. However, there is a huge spatial variation in manure production. The 

methodologies used for estimating N (and P) excretion factors of animals differ 

between countries, and may also differ within countries between different policy 

reports. These differences hamper a sound comparison between countries and lead to 

uncertainties in total manure production and estimated emissions (Chapter 2). In an 

attempt to increase the accuracy of manure production estimates, I have developed a 

transparent and uniform methodology that couples feed availability in a country to N 

and P excretion rates at animal category and national levels, for all countries of the 

EU-27. This coupling allows to make checks of the plausibility of nutrient excretion 

values at the country level, and to arrive at a common basis for the estimation of the 

production of manure N and P, nutrient balances and emissions across the EU 

(Chapter 3). 
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 Increasing the effectiveness of mitigation measures for NH3 emissions from animal 

manure requires a manure management chain approach (Chapters 4 and 5). Lowering 

the crude protein (CP) content in animal feed (by an absolute value of about 1% to 5%) 

significantly decreased NH3 emissions from animal housing (by 24-65%, compared to 

the reference), and decreased emissions also from other management stages of the 

chain. External slurry storages with covers of straw and artificial films decreased NH3 

emissions from storages by on average 78 and 98%, respectively. This measure 

increases ammonium content of manure and, because of that, requires low-emission 

manure application measures to prevent increased downstream emissions. Low-

emission manure application through incorporation and injection of manures in the 

soil may reduce NH3 emissions by 70 to 80%, but tend to increase N2O emissions. The 

manure N that is conserved by using mitigation measures can be used to fertilize crops 

and to replace equivalent amounts of fertilizer N. Measures taken to decrease NH3 

emissions have relatively small effects on emissions of CH4 from the manure 

management chain, with the exception of slurry acidification. Slurry acidification 

significantly decreases emissions of NH3 and CH4 from slurry storages (83 and 87%, 

respectively), which decreases total GHG emissions from systems with acidified 

slurry. Proper combinations of mitigation measures at farm level are therefore 

important to minimize impacts of livestock production on emissions of NH3 and GHG 

(Chapter 4). 

 Effects of manure treatment on NH3 and GHG emissions from animal manures were 

relatively small in the EU-27 in 2010. Manure treatment have contributed to deceases 

in GHG emissions from manure by 0-17% depending on countries (compared to 

situations without manure treatment in 2010), with the largest contributions from 

anaerobic digestion (especially in Germany, Denmark and Italy). Scenario analyses 

indicated that increasing the implementation of slurry acidification, thermal (forced) 

drying, incineration and pyrolysis (implemented at a level of 20% of total manure 

production from housings for each technique) may decrease both NH3 (9-11%) and 

GHG (11-18%) emissions from the manure management chain in the EU-27. 

Nitrification-denitrification treatment decreased NH3 emissions (8%), but increased 

GHG emission (6%) due to increased N2O emissions. Solid-liquid separation (8-12%, 

depending on separators) and anaerobic digestion (19%) deceased GHG emissions, 

while the effects on whole-chain emissions of NH3 were small. Combining 

acidification with separation or with anaerobic digestion (acidifying digested liquid 
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fraction) decrease both GHG (18-20%) and NH3 (7-10%) emissions from the manure 

management chain. Composting marginally affected total NH3 emissions; emissions 

increased during composting and decreased emissions from application of compost to 

land. Composting also not affected GHG emissions significantly; there is a large 

variability/uncertainty in GHG emission factors during composting (Chapter 5). 

 The estimated amounts of N and P in manure applied to land, expressed as percent of 

N and P excreted in animal housings in EU-27 in 2010, were 57 and 98%, respectively. 

When increasing the implementation of treatment technologies (to an equivalent of 20% 

of total manure production in housings in all countries of the EU), the N recovery 

fraction would increase to 61% by acidification, but would decrease to 48% by 

incineration and to 52% by nitrification-denitrification treatment. Other technologies 

(solid-liquid separation, anaerobic digestion, drying, composting etc.) would only 

marginally affect the N recovery. Changes in the total P recovery due to all these 

technologies were relatively small, but there are likely differences between manure 

treatment products in P availability, which was not examined in my thesis. The N/P 

ratio of liquid manure products from treatment technologies varied from 3.4 to 10.7, 

compared to a mean of 3.5 in untreated slurry. For solid manure products, the N/P 

ratio ranged from 0.1 to 3.2, compared to 3.0 in raw solid manure in the reference. 

Production of manure products that vary in N/P ratio provides opportunities to better 

use manure nutrients and to better meet nutrient demands by crops (Chapter 5). 

 Pressure from governmental regulations is a key factor that stimulates the 

development and adoption of manure treatment in practice in countries that have 

regions with high livestock density (Denmark, Italy, Spain, the Netherlands). The 

major barriers to technology adoption were related to economic factors, while there 

was relatively little concern regarding transport and noise burdens and health risks 

(Chapter 6). 

 Slurry separation and anaerobic digestion were generally perceived to have the 

greatest potential for a common adoption in practice in all four countries. Other 

preferred technologies were more country-specific. Stakeholders had different views 

on the optimal scale of the manure treatment plant because of the differences in 

investment cost and complexity of treatment technologies. Manure treatment will 

remain a regional activity because of large differences between regions/nations in 

livestock densities and socio-economic, political and environmental conditions. To 

encourage the adoption of manure treatment, policies must be economically appealing 
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to attract new adopters (farmers and industries); long-term financial support schemes 

(e.g. subsidies) seem to be necessary. Outreach strategies are required to convey the 

knowledge to stakeholders from both the supply and the demand side, with respect to 

the economic, technical and environmental aspects of treatment technologies (Chapter 

6). 

7.3 The manure management chain approach 

Measures and technologies taken to mitigate emissions from animal manures have to be 

optimized while taking the whole manure management chain into account (Petersen et al., 

2007). The ‘chain approach’ allows for the analysis of the consequences of a technology, 

implemented at one stage of manure management, on the emissions at other stages, and also 

on emissions of other pollutants. The manure management chain concept (Figure 7-1) 

includes all main sectors, namely animal feeding, animal grazing and housing, manure storage 

and treatment, and application of manure to land. There are complex nutrient transfers and 

transformations within the chain. 

 

Figure 7-1. A simplified representation of different stages (including management practices) in the 

manure management chain. Dashed arrows show possible losses of nutrient elements to the 

atmosphere and to water bodies. 

Several studies have been conducted to analyze gaseous emissions (NH3, N2O and/or CH4) 

from animal agriculture in general and animal manure in particular in EU countries, including 

e.g., Denmark (Hutchings et al., 2001), France (Gac et al., 2007), Ireland (Hyde et al., 2003), 
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Switzerland (Reidy et al., 2008; Kupper et al., 2015), The Netherlands (Velthof et al., 2012), 

UK (Webb & Misselbrook, 2004). These analyses were generally based on a mass flow 

approach. By using such approach, the consequences of abatement measures can be assessed 

at various stages of the manure management chain. However, it is difficult to make proper 

comparisons between countries, because these studies often used different system boundaries, 

emission factors and calculation methodologies. 

Life cycle assessment (LCA) is an effective approach to analyze a wide range of 

environmental emissions along the entire life cycle of a product. LCA has been increasingly 

applied in environmental assessments of animal production (e.g. milk, pork and eggs) during 

the last decade. More recently, LCAs of treatment technologies have been conducted, such as 

for solid-liquid separation (ten Hoeve et al., 2014), anaerobic digestion (Sandars et al., 2003; 

Hamelin et al., 2011; De Vries et al., 2012; Mezzullo et al., 2012) and pyrolysis and 

combustion processes (Fernandez-Lopez et al., 2015). These LCAs were carried out in 

general at farm-scale, and the challenge therefore remains to up-scale the findings to 

regional/national levels. These LCAs often focus on a specific treatment technology or a 

specific type of manure only. The focus in my study was on the national and EU scale, 

considering the major manure types and the most used treatment technologies. Assessment 

was made with the MITERRA-Europe model. 

The MITERRA-Europe is an integrated environmental assessment model, which quantifies all 

N and P flows as well as GHG emissions in agriculture for all member states of the EU at 

regional and national scales, using a uniform method and consistent dataset (Velthof et al., 

2009; Lesschen et al., 2011). The model is partially based on information from the GAINS 

model (Asman et al., 2011) and CAPRI model (Britz & Witzke, 2012). To fulfill the 

objectives of my PhD research, the model MITERRA-Europe was further improved. The 

main improvements are as follows: i) N and P excretion are quantified using the feed balance 

approach at animal category and country levels; ii) the estimation of possible side-effects of 

mitigation measures has been improved; iii) the environmental effects of a range of manure 

treatment technologies can be analyzed simultaneously at national scales now; iv) the 

recovery of N and P from animal manure can be quantified now; these recoveries are sensitive 

to changes in management along the chain. 

There is scope for further improvement of the MITERRA-Europe model. 
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 Regional specific data on the implementation of mitigation measures are required to 

decrease the uncertainties of the model outcome. However, such data are not easy to 

obtain. The EU-wide ‘Survey on agricultural production methods (SAPM)’ was a one 

off survey in 2010 to collect farm level data on agri-environmental measures to 

support monitoring of the relevant European Union policies 

(http://ec.europa.eu/eurostat). The SAPM data have been assessed for using them in 

the scenario analyses in Chapter 5. However, some flaws and inconsistences were 

found in the database, which hamper its proper use. For example, i) animal housing 

regarding the category ‘other’ is not clearly defined; ii) housings are not distinguished 

between dairy cows and other cattle; iii) definitions of manure storage facilities are too 

complex to be properly interpreted; iv) data on application of manure are not detailed 

at animal category levels. Evidently, it is difficult to use this SAPM dataset for 

modeling purposes. 

 In the MITERRA model, it was assumed that all manure treatment activities take place 

as soon as manures are produced by animals or after removal from the housings. 

However, this is not always the case in practice. Often, there is a period of storage 

prior to treatment, but there is currently no information available about possible 

interim storage. As a consequence, the effectiveness of manure treatment may have 

been overestimated in my study. Moreover, there is lack of activity data on manure 

treatment technologies at animal category, regional and country levels, which 

contributes also to uncertainties in the model outcome. 

 There are uncertainties in model parameters, especially emission factors, which 

contribute to the overall uncertainty of the results (Chapter 5). Country specific 

parameters have been used in the MITERRA model when such data were available. 

However, monitoring data on emissions from animal manures are still insufficient 

(Chapter 4), especially regarding gaseous emissions from treated manures, and 

leaching of N and P from stored manures. Evidently, there is a need to improve the 

accuracy of regionally specific emissions factors for manure treatment activities. 

7.4 A harmonized and transparent methodology for estimating feed use and nutrient 

excretion at national level. 

Accurate estimating nutrient excretion by livestock is the first step towards improving nutrient 

cycling and mitigating gaseous emissions in the manure management chain. Variations in N 

excretion factors affect the calculated emissions of NH3 and N2O directly. The basis for the 

http://ec.europa.eu/eurostat
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calculation of N excretion factors should be the input-output balance method, i.e. (N excretion) 

= (feed N intake) –(N retention in animal products, such as milk, eggs and live-weight gains). 

The input-output balance method is firmly grounded on the commonly accepted law of mass 

conservation. The input-output balance can be applied at animal level, farm level, as well as at 

national level. National studies that include all animal categories allow to check the feed 

balance (Eshel et al., 2014a); do the total supplies of feed resources in a country indeed match 

well with the sum of the estimated national feed demand by all animal categories?  

The national feed balance provides also a check of the accuracy of N excretion coefficients, 

and is a basis for the analysis of emission mitigation potentials of animal diet-related 

strategies. In addition, linking feed use to specific animal categories allows also to allocate 

feed production related resource use (e.g., land, water, fertilizers) and greenhouse gas 

emissions to individual animal categories and animal food products (Tilman & Clark, 2014). 

Ranking various animal products according to the associated environmental (e.g., N footprints) 

and human health impacts can facilitate the implementation of revised dietary 

recommendations (Eshel et al., 2014b; Galloway et al., 2014). 

In Chapter 3, a transparent and uniform methodology for estimating N excretion rates of the 

main animal categories was developed and applied for all Member States of the EU, through 

linking statistical data and information on the availability (quantity and quality) of feed with 

animal numbers and the energy and protein requirements of the animals. The allocation of 

feed resources to animal categories was based on a set of constraints and an optimization 

routine. Results show that annual N excretion factors per animal category varied greatly 

between countries (80-140 kg N for dairy cows, 40-70 kg N for other cattle, 6-12 kg N for 

pigs), which is mainly caused by differences in feed use and animal productivity. 

The methodology developed in Chapter 3 has also some limitations, and the methodology 

therefore needs to be improved and validated further. Firstly, the cross-border trade of live 

animals are not included in my calculations. Although the number of traded live animals for 

each country is recorded yearly in Eurostat, the live-weights of these animals are unknown. 

Since the live-weight is a crucial factor determining the energy requirements for animal 

maintenance and growth, such data are required to improve the accuracy of this methodology. 

Secondly, the constraints employed in the feed optimization routine were considered to be 

uniform for the majority of countries. These assumptions to some extent mask variations in 

the estimated feed use between countries. While this feed model is designed to enable the use 
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of country-specific constraints, there is often insufficient information on these constraints, 

such as the ranges in the feed allocation to animal diets. The results from this model can be 

further validated by using regional and national statistical data on animal diets, such as those 

in the Netherlands (CBS, 2012). Furthermore, animal categories defined in my model are 

similar to those of the Farm Structure Survey, but the category ‘other cattle’ needs to be 

further refined to functional cattle categories (calves, beef cattle, suckling cows), which 

requires that the numbers, live-weight and feed requirements have to become available for 

these categories. Finally, national specific data on yields, mean energy and protein-N contents 

in grass and forages can be used to further improve the accuracy of estimating national total N 

excretion, as indicated in Chapter 3 (e.g. the sensitivity analyses). The suggested 

aforementioned improvements require additional information and data, which are not always 

easy to obtain, and this limits the applicability of the suggested improvements. 

7.5 Impacts of mitigation measures and treatment technologies on emissions 

The meta-analysis (Chapter 4) and the whole-chain analyses (Chapter 5) provide quantitative 

insights into the co-benefits and trade-offs of the main emission mitigation measures and 

treatment technologies. 

Animal manures are responsible for about 80% of the total NH3 emissions in EU-27 (EEA, 

2014; Leip et al., 2015). To comply with the UN-ECE Gothenburg Protocol, the EU National 

Emission Ceilings Directive (NECD, 2001/81/EC), and the EU Industrial Emissions Directive 

(IED, 2010/75/EU; the former IPPC Directive, 2008/1/EC), a variety of NH3 mitigation 

measures for reducing emissions from animal manures have been developed and implemented 

in EU, but with large differences between countries. Estimating the effectiveness of 

mitigation measures can therefore have implications for the EU environmental policies. 

Scenario analyses in Chapter 4 indicate that implementation of single measures can decrease 

total NH3 emissions from a slurry-based farming system by 9-29% (Table 7-1). At the EU-27 

level, it was estimated that maximum implementation of single NH3 mitigation measures may 

lead to 1-18% of reduction, compared to a situation without measures (Velthof et al., 2009). 

The effects at the EU level also depend on the nature of livestock production systems; the 

mitigation measures are mostly applicable for manure produced from housed animals, and 

much less for manure from grazing animals. Application of manure with low emission 

approaches appears to have the largest abatement potential, followed by low-N feeding and 

covering manure storages (Table 7-1). The NH3 abatement potential is strongly increased if 
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measures are combined. The abatement potential in the EU-27 was relatively low compared to 

that in the developing countries, such as China, where the agri-environmental regulations are 

as yet not well-established and mitigation measures are not implemented yet (Ma et al., 2013). 

A decrease of up to 45% of total NH3 emissions from pig production systems in China may be 

achieved with adoption of low-emission animal houses and manure storages (Bai et al., 2014). 

Table 7-1. Summary of effects of the implementation of NH3 emission mitigation measures on 

emissions at farm and EU-27 levels, compared to a situation without measures. 

NH3 emission mitigation measures 

Changes in emissions, in % 

At farm level 
a
  At EU level 

b
  

NH3 N2O CH4  NH3 N2O NO3 leaching 

Low-N feeding (Diet) -18 -1.4 0  -4 -2 -2 

Covering manure storages (Cover) -9 2131 -48  -1 0 0 

Low-emission manure application     -18 12 3 

Band application -23 0 0     

Slurry injection -29 91 0     

Combinations of measures        

Straw (Cover) + slurry injection -45 124 -3     

Plastic (Cover) + slurry injection -49 119 -40     

Diet+ straw + injection -66 95 -3     

Diet+ Plastic +injection -69 90 -40     

Low-emission application 

 + Balanced N application 

     

-24 

 

-15 

 

-29 

a
 refers to scenario analyses for the model liquid-based pig farm in Chapter 4 

b
 refers to scenario analyses with maximum country-specific implementation of measures in EU-27 (Velthof et 

al., 2009); effects on CH4 emissions were not analyzed. 

 

Implementation of single measures (except low-N feeding) may increase N2O emissions 

(Chapter 4) and NO3 leaching from soil (Velthof et al., 2009). The possible increases in NO3 

leaching from soil take place when no supplemental measures are taken to correct for the 

increased soil N surplus. This follows in part from the “hole in the pipe” theory (Figure 7-1), 

i.e. blocking one of the holes in the pipe usually leads to increased leakages from other holes 

(i.e. pollution swapping), unless the N input is decreased and/or N output in useful products is 

increased proportionally (Oenema et al., 2009). Therefore, it is recommended that NH3 

emission mitigation measures are combined with balanced N fertilization (Schröder et al., 

2007; Oenema et al., 2009; Velthof et al., 2009). Low-N feeding is an effective strategy to 

decrease N (e.g. NH3, N2O and N2) emissions from the whole manure management chain, 

without unwanted side-effects. When the protein content of the animal feed decreases by a 

moderate range (up to 10%, relative to reference) in EU-27, NH3 emissions from manures 
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decrease by up to 6%. The scope of abatement by low-N feeding largely depends on the 

current protein content in animal feed and on the economics of low-N feeding (see Section 

7.7). 

Table 7-2. Effects of increased implementation of manure treatment technologies on NH3 and GHG 

emissions and on nitrogen (N) recovery from manure in the EU-27, compared to a situation without 

treatment in 2010. It is assumed that 20% of the total manure production from housings is treated by 

each of the technologies. Technologies have been defined in Chapter 5. 

Technologies  Change in emissions and N recovery, in % 

 NH3 N2O CH4 N recovery
a
 

Screw press  -1 -1 -7 1 

Decanter centrifuge  -1 -1 -11 1 

Anaerobic digestion (AD)  0 -2 -17 1 

Acidification (Acid)  -10 0 -18 7 

Nitrification-denitrification  -8 24 -18 -9 

Composting  -2 -2 -6 2 

Thermal drying  -9 -5 -7 2 

Incineration  -11 -4 -7 -16 

Pyrolysis  -11 -5 -7 -9 

Combination of techniques      

Acid-centrifuge  -10 0 -19 7 

Centrifuge-Acid, pyrolysis  -7 -1 -19 0 

AD-Acid-centrifuge  -7 0 -17 5 
a 
Nitrogen recovery is defined here as the fraction of total N excreted in housing that is retained in manure and 

available for application to land..
 

The effects of manure treatment technologies on emissions from the manure management 

chain in EU-27 were assessed through scenario analyses in Chapter 5. The implementation 

level (20% of total manure production in housings) was assumed to be uniform for all 

scenarios; the level corresponds to the level currently achieved by forerunner countries for a 

specific technology. All treatment technologies have certain advantages and disadvantages. 

Slurry acidification appears to be the most promising technology for mitigating both NH3 and 

GHG emissions, followed by thermal drying, incineration and pyrolysis (Table 7-2). 

Acidification is also relatively cheap (Foged et al., 2011a; see Section 7.7). However, there 

are concerns related to the use of strong acids (e.g. H2SO4, HCl) (Fangueiro et al., 2015). 

Acidifying slurry with H2SO4 may increase hydrogen sulfide (H2S) emissions, which is highly 

toxic (Dai & Blanes-Vidal, 2013). Minimizing H2S emissions requires the aeration 

(oxygenation) of the acidified slurry, which is energy-intensive (Jensen, 2002). Composting 

and nitrification-denitrification treatment technologies may enhance N2O emissions 

significantly, depending on environmental conditions. Anaerobic digestion is effective for 

GHG mitigation, but does require gas-tight covering of storage facilities to minimize NH3 

emissions and the recovery of residual biogas from stored digestate (Gioelli et al., 2011; 
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Battini et al., 2014). Acidifying the digested slurry before storage can also decrease NH3 and 

GHG emissions significantly (Regueiro et al., 2016). Hence, combination of techniques may 

minimize unwanted side-effects. Biogas production can also reduce CO2 emissions due to the 

replacement of heat and electricity produced from fossil fuels, which was not examined in my 

thesis. Based on an additional analysis, the avoided CO2 emissions from coals may amount to 

7.6-12.1 Tg CO2-eq in the scenario with anaerobic digestion of 20% of total manure 

production. This is equivalent to 9-14% of non-CO2 GHG emissions from the manure 

management chain in EU-27 in 2010 (see discussion in Chapter 5). 

7.6 Nutrient recovery 

The estimated total feed N and P intake by all animal categories in EU-27 in 2010 was 12.2 

Tg N and 1.92 Tg P, respectively (Chapters 3 and 5). The fractions of N and P in animal feed 

retained in animal products (liveweight gains, eggs, milk) were on average 21 and 24%, 

respectively, and the fractions excreted via urine and faeces were on average 79% and 76%, 

respectively (Table 7-3). The N recovery, the amounts of N in manures that were applied to 

and deposited on pastures, expressed as percent of the total N excretion, varied from 53 to 78% 

between countries (Table 7-3). The remaining N fraction was lost during manure storage and 

application/deposition to agricultural land or was exported to other countries. Differences 

between countries in N recovery are related to differences in animal categories and 

productivity, manure management systems and implementation of mitigation measures. 

Grazing systems have relatively high N recovery and low N losses when compared with 

landless, industrial animal systems. Urine excreted by grazing animals typically infiltrates 

into the soil before substantial NH3 emissions can occur and overall NH3 emissions per animal 

are therefore less for grazing animals than for housed animals. This explains why the total N 

recovery from animal manure is relatively high in Ireland and UK (78%, Table 7-3). Grazing 

animals account for 91% in Ireland and 78% in UK of the total number of animal (expressed 

in livestock units), while the average for the EU-27 is 57% (Eurostat, 2016). Increasing 

grazing time of cattle has been recommended as measure to mitigate NH3 emissions and the 

recovery of N (Bittman et al., 2014). The potential to increase grazing depends on soil type, 

topography, farm size and structure (distances), climatic conditions, etc. (Bittman et al., 2014). 

Though the N recovery from the excreta from grazing animals is high, the effectiveness of N 

in dung and urine from grazing animals to fertilize pastures is low (Webb et al., 2013). This is 

related to the spatially uneven distribution of the dung and urine patches and the poor 
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synchrony of the deposition relative to herbage N demand in temperate climates. Hence, a 

significant fraction of the N from dung and urine is lost via NO3 leaching and denitrification 

(e.g. Ryden et al., 1984; De Klein & Van Logtestijn, 1994; Oenema et al., 2008). 

Table 7-3. The recovery of N and P at different stages of the manure management chain, from feed 

intake to manure applied to or deposited on land in EU-27 at country level in 2010 (derived from 

Chapters 3 and 5). 

 N and P recoveries at different stages of the manure management chain (%) 

Country Feed to excretion  Excretion to manure applied to land  Feed to manure applied to land 

 N P  N P  N P 

Austria 78 74  62 98  48 73 

Belgium* 73 70  71 96  52 68 

Bulgaria 81 82  64 98  52 80 

Cyprus 76 76  56 97  43 74 

Czech 77 76  60 98  46 74 

Denmark 73 73  70 99  51 72 

Estonia 79 75  66 98  52 74 

Finland 74 73  67 99  50 73 

France* 83 79  72 99  60 79 

Germany* 73 70  66 102  48 72 

Greece 82 82  78 99  64 81 

Hungary 73 75  56 97  41 73 

Ireland 88 82  78 99  68 82 

Italy 80 76  60 98  48 74 

Latvia 83 80  65 98  54 78 

Lithuania 81 79  66 98  53 77 

Luxembourg 84 80  73 99  62 80 

Malta 76 82  53 97  40 80 

Netherlands* 76 73  65 91  49 66 

Poland 75 74  56 97  42 72 

Portugal 81 77  73 98  59 76 

Romania 84 83  70 98  59 82 

Slovakia 81 80  59 97  48 78 

Slovenia 79 76  61 98  48 75 

Spain 79 77  71 98  56 76 

Sweden 82 77  69 99  57 76 

UK 84 80  78 99  65 79 

EU-27 79 76  69 98  54 74 

*The across-border transport of manure was considered for these countries. For importing countries, the amount of manure 

applied to land includes the imported manure, for exporting countries, the amount of manure applied to land excludes the 

exported manure. 

Ammonia emission mitigation measures increase the N recovery fraction from the animal 

excreta collected in housing systems. The implementation of these measures in practice varies 

between countries. In 2010, nearly all animal farms in Belgium, Denmark and the Netherlands 

have covered manure storage facilities; therefore the potential to further increase the N 

recovery through covered storages is limited in these countries. The average recovery of N 

and P from animal manure in the EU-27 is relative high compared to those of for example 

China and United States. The recovery fraction was only 25% for N and 45% for P in China 

in 2010 (Ma et al., 2010; Hou et al., 2013); mitigation measures are not applied and massive 

amounts of manures are discharged into evaporation ponds and rivers (Wang et al., 2010; Bai 
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et al., 2014). The recovery from manure was 30-40% for N and 70-95% for P on commercial 

dairy farms in United States (Spears et al., 2003a, 2003b). 

The estimated P recovery from manure is relatively high in EU-27 (Table 7-3). This is related 

to the obligatory leak-tight storage of manures (Nitrates Directive) and the estimated low P 

losses. Also manure discharges to surface waters are forbidden and grazing animals are not 

allowed to drop excreta in streams in EU-27. The P losses from manure storages via leaching 

and surface run-off range from 0 to 10% for EU countries, depending on storage conditions 

(Velthof et al., 2009). The uncertainty in these P loss fractions is relatively high because very 

few experimental studies have been conducted to measure P losses from manure storages in 

practice (Radcliffe et al., 2009). 

7.7 Barriers to the implementation of mitigation measures and manure treatment 

To increase the understanding related to the factors that affect the adoption of treatment 

technologies in practice, a stakeholder survey was conducted in Denmark, Italy, the 

Netherlands and Spain (Chapter 6). These four countries together shared about 55% of the 

total GHG mitigation achieved by manure treatment in the EU in 2010 (Chapter 5). Results 

from the survey indicate that the implementation of treatment technologies in practice is 

hindered by financial barriers such as high capital and operational cost. 

Technologies such as solid-liquid mechanical separation, slurry acidification and composting 

of solid manure are generally considered to be less complex in operation and relatively low 

cost. Thus, these technologies are suitable for farm-scale operations (Chapter 6). Costs of 

treating slurry with a mechanical screen separator or with a decanting centrifuge were 

estimated at €0.15 to €0.8 per kg N in effluent, including the power costs, maintenance costs 

and the capital costs of the equipment (Møller et al., 2000). Slurry acidification has a net cost 

of €0.14 per kg N in effluent (or €0.21, without subsides), according to a case study in 

Denmark (Foged et al., 2011). In comparison, nitrification-denitrification treatment and 

anaerobic digestion have relatively high economic costs, and are most suitable for farm 

cooperatives or at industrial scale. Case studies indicate that the cost of nitrification-

denitrification treatment was €1 to €1.2 per kg N in effluent for a plant in Spain, and about €2 

to €2.5 per kg N in effluent for a plant in the Netherlands (Melse & Verdoes, 2005; Foged et 

al., 2011). The net cost of anaerobic mono-digestion was estimated at €2.3 to €3 kg per N in 

the effluent for a biogas plant in Denmark. Co-digestion of manure with other substrates can 

increase the yield of biogas, and thus may lead to a decrease in cost (Foged et al., 2011). 
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Several assessments have indicated that subsidies are necessary for the successful adoption of 

anaerobic digestion, when the price of fossil energy remains as low as during the period 2010-

2016 (Chinese et al., 2014; CDM, 2015; Chapter 6). Installation of an incineration plant 

requires a vast investment and also requires subsidies in order to make it economically 

feasible. The poultry incineration plant in the Netherlands relies on the MEP (Environmental 

Quality of Electricity Production) subsidy of more than €20 million per year. In addition, 

there are economic returns from sales of electricity, ash (PK-fertilizer), and from a gate fee for 

the poultry manure. This gate fee ranges from €4 to €21 per ton of poultry manure, depending 

on the quality of the manure, the distance to the plant and the duration of the contract. 

Table 7-4. Ammonia emission abatement measures and estimated costs for farmers in Europe and 

North America (summarized from the UNECE guidance document; Bittman et al., 2014). 

Abatement measures Management stages Cost (€/kg NH3-N 

reduced)
 b
  

Low-protein feeding
a
 whole chain -2.0-2.0 

Covered storages   

-tight lid, tent structure slurry storage 1.0-2.5 

-plastic cover slurry storage 0.5-1.3 

-floating cover slurry storage 0.3-5.0 

-straw cover slurry storage - 

Low-emission application application to land  

-trailing hose  -0.5-1.5 

-trailing shoe arable land/grassland -0.5-1.5 

-injection, open slot grassland -0.5-1.5 

-injection, closed slot arable land/grassland -0.5-1.2 

-Incorporation of surface applied slurry arable land  

(immediately by ploughing)  -0.5-1.0 

(within 4 hours)  -0.5-1.0 

(within 24 hours)  -0.5-2.0 

-Incorporation of surface applied solid 

manure 

arable land  

(immediately by ploughing)  -0.5-1.0 

(within 4 hours)  0.5-1.5 

(within 12-24 hours)  0.5-2.0 
a
 a decrease of 1% in protein content in feed (absolute value). 

b 
negative costs indicate net gains, mainly through feed savings (low-protein feeding measures) or fertilizer N 

savings (low-emission application measures). 

Implementation of NH3 emission abatement measures and manure treatment increases the 

cost of livestock farming, and may have significant effects on farmers’ income (Oenema et al., 

2009). Because of the perceived high costs, farmers may be reluctant to implement these 

measures, which in part contributes to the variable and slow responses of Member States to 

environmental policies in agriculture (Oenema et al., 2011). Economic costs and cost-

effectiveness of abatement measures are the key factor affecting farmers’ decisions. Costs of 
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NH3 emission abatement measures at different stages of the manure management chain are 

summarized in Table 7-4. 

The cost of diet manipulations depend on the initial animal feed composition and on the 

market prices of feed ingredients and synthetic amino acids (Bittman et al., 2014; Reis et al., 

2015). Low-N animal feeding is mostly applicable to housed animals and less to grassland-

based systems with grazing animals. In EU-27, about 65% of N excretion is currently 

produced in animal houses, and 35% is from grazing animals in pastures (Chapter 5). The 

costs of low-emission manure application technologies are related to investment, depreciation 

and maintenance costs (spreader, use of heavier tractor), labor costs (increased labor time), 

and the size of the farm area. The additional costs of low-emission application are partially 

outweighed by the financial benefits of higher yields and yield consistency, reduced mineral 

fertilizer requirements, and by a reduction of odor and crop contamination (Webb et al., 2006; 

Bittman et al., 2014). 

7.8 Some concluding remarks 

Scientific research on manure and manure treatment started more than a century ago (e.g. 

Kolenbrander and De la Lande Cremer, 1967; Russell, 1978). For a long time, the research 

was focused on its fertilizing and soil quality improvement values. Bussink and Oenema 

(1998) reviewed that possible NH3 losses from manures have been known since early 19
th

 

century, while the full environmental impacts of N losses from animal manure have been 

examined seriously only from the 1980s. Emission mitigation measures have been 

implemented in practice from the 1990s, while the idea of a manure management chain 

approach was developed from the 2000s (e.g. Velthof et al., 2009). 

My PhD thesis research has been built on a long history of research. The most novel aspects 

of my PhD thesis research are  

 The consistent application of a manure management chain approach, which allows a 

coherent analysis and estimation of the effects (including side-effects) introduced 

through interventions in this chain, 

 A systematic comparison of methodologies used for the estimation of manure N 

production per animal category in EU-countries, 

 The development of a harmonized and transparent methodology for the estimation of 

manure N and P production at country and EU levels, 
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 A systematic analysis of the effects of the main NH3 emission mitigation measures on 

NH3 and GHG emissions,  

 A systematic analysis of the effects of the main manure treatment technologies on 

nutrient recovery and gaseous emissions, 

 A survey on stakeholder perceptions related to manure treatment technologies, 

 An integrated assessment of emission mitigation measures and manure treatment 

techniques at national level and EU level. 

The findings reported in this thesis are important for scientists, policy makers, industry, 

extension services, as well as farmers and farmers’ organizations. The amounts of N and P 

in animal manures produced annually are large in the EU-27 (similar to the amounts of 

fertilizer N and P used annually), while emissions of NH3, N2O and CH4, and N and P 

losses from the whole manure management chain have significant environmental impacts. 

Various emission mitigation measures and manure treatment techniques exist, but the 

effectiveness and costs of these measures and techniques vary greatly. The 

implementation of measures and techniques will not happen overnight; they require 

incentives, guidance and cooperation. 

7.9 Recommendations for future research 

My research has identified also a number of topics that would benefit from further studies. 

 Country and regional specific NH3 and GHG emission factors for manure treatment 

techniques, considering also possible temporal (seasonal) variations in emissions. 

 Quantification of the N and P fertilizer replacement values of manure treatment 

products for different crops. 

 Quantification of P losses from manure storages and manure treatment techniques 

across EU-27. 

 Further investigating barriers to the implementation of emission mitigation measures 

and manure treatment technologies in different countries, including those that have 

(e.g. Germany, Belgium, Netherlands, and UK) and do not have much experiences 

with these measures and technologies. 

 Further development of treatment technologies that minimize unwanted side-effects 

and lower the cost (through increases in energy efficiency, and maximizing the 

mitigation potential). In the ReUseWaste research project, improved approaches for 
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manure treatment have been developed for manure separation, energy recovery, 

emission mitigation during manure storage and field application, which may increase 

the fertilizer value of manure products (see http://www.reusewaste.eu/). Further 

validation of these improved technologies and products in pilot and commercial scales 

are needed. The results of these additional tests will contribute also to improving the 

MITERRA-Europe model used for integrated assessments at national and EU levels. 

  

http://www.reusewaste.eu/
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Summary 

Animal manures are major sources of nutrients and organic matter, to be used to fertilize 

crops and improve soil quality. However, when not properly managed, these manures release 

considerable amounts of ammonia (NH3), nitrous oxide (N2O) and methane (CH4) into the air, 

and nitrogen (N) and phosphorus (P) to water bodies, which create a range of unwanted 

environment impacts. Emissions of NH3 contribute to the acidification and eutrophication of 

nitrogen-limited ecosystems, and can have negative effects on human health. Emissions of 

N2O and CH4 contribute considerably to the radiative forcing; the global warming potentials 

of N2O and CH4 are 298 and 25 times higher, respectively, than that of CO2 per kg. 

Approximately 40% of the global anthropogenic NH3 and N2O emissions and about 10% of 

the global anthropogenic CH4 emissions are associated with animal manures. N and P losses 

from manure decrease also its fertilization value. 

Emissions of NH3, CH4 and N2O to air and leaching losses of N and P to water bodies from 

manure depend on the management activities and techniques used at different stages of the 

whole manure management chain, from animal feeding up to manure application to land. A 

large number of emission mitigation measures and manure treatment technologies have been 

developed during the last decades, and part of these have been implemented in practice in 

Europe. Introducing a measure or technology to mitigate emissions from one source may 

affect emissions downstream in the chain (so-called ‘pollution swapping’), or emissions of 

other pollutants. The trade-offs and co-benefits of emission mitigation measures and manure 

treatment technologies are as yet poorly understood, especially when taking the whole manure 

management chain into account. Moreover, the effects of combinations of measures and 

technologies have not been well analyzed, and analyses at national scales are lacking. 

The overall objective of this PhD thesis research is (i) to enhance the quantitative insight into 

the effects of emission mitigation measures and treatment technologies on emissions of NH3, 

N2O and CH4, and the recovery of N and P from animal manure in the whole chain from 

animal feeding to manure application to land, and (ii) to explore the effects of combinations 

of measures and technologies to mitigate these emissions and to increase the N and P 

recovery. The research was part of the Marie Curie Training Program ReUseWaste (Recovery 

and Use of Nutrients, Energy and Organic Matter from Animal Waste). In total eleven PhD 

students and two post docs have been working on various specific mitigation measures and 

treatment technologies. The research reported in this thesis focused on the integral analysis of 
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the whole manure management chain, and on the up-scaling and synthesis of research results, 

including those from literature. This thesis has 5 research chapters, next to a general 

introduction (Chapter 1) and a general discussion (Chapter 7) 

In Chapter 2, methodologies for estimating N excretion factors for the main animal categories 

in member states of the European Union (EU) were reviewed. The review included the 

guidelines and methodologies suggested by the EU Nitrates Directive, the OECD/Eurostat 

gross N balance guidebook, the EMEP/EEA Guidebook and the IPCC Guidelines. In addition, 

approaches used in modeling studies were reviewed. Nitrogen excretion factors (or 

coefficients) are defined as the total amount of N excreted by a well-defined livestock 

category per year via urine and faeces. Results show that N excretion factors for dairy cattle, 

other cattle, pigs, laying hens, broilers, sheep, and goats differ significantly between countries 

and also within countries between policy reports. Part of these differences may be related to 

differences in animal breeds and animal productivity, size/weight of the animals, and feed 

composition. Another part of the differences in N excretion factors is related to differences in 

methodologies and the aggregation of livestock categories. The methodologies and data used 

by member states are often not well described. It is concluded that there is a need for a 

common, harmonized methodology and procedure for the estimation of N excretion factors, to 

arrive at a common basis for the estimation of the production of manure N, and for the 

estimation of N balances and emissions of NH3 and N2O across the EU. 

In Chapter 3, a transparent and uniform methodology for estimating annual feed use and N 

excretion per animal category for all countries of the EU-27 was developed, based on the 

energy and protein requirements of the animals and statistics of feed use and composition, 

animal number and productivity. The calculated total feed use in the EU-27 was 506 Tg dry 

mass in 2010. Dairy cows used 29%, other cattle 34%, pigs 17%, chicken 9%, sheep and 

goats 8%, and other animal categories 3% of the total feed use. Grass and annual forages were 

mainly used by dairy cows (30 and 49%, respectively) and other cattle (55 and 44%); pigs 

used most of the feed cereals (53%); protein-rich feed (e.g., soybean meal) were mostly used 

by pigs (34%) and chicken (24%). Differences between countries in feed use were large, 

which are mainly related to variations in national feed supply and animal productivity. The 

calculated total N excretion of the animals amounted to 9.7 Tg in 2010, and varied between 

countries from 14 in Bulgaria to 291 in Netherlands kg N ha
-1

 of utilized agricultural land. 

The method developed in this Chapter addresses various key livestock categories 
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simultaneously, using a uniform methodology and common national statistics, and provides 

national averages, which allow direct comparison of feed use and N excretion coefficients 

among countries. 

In Chapter 4, firstly the impacts of a suite of NH3 mitigation measures on emissions of NH3, 

N2O and CH4 at individual stages of the manure management chain were analyzed by means 

of a meta-analysis of published data (derived from 126 published studies). Secondly, the 

overall impacts of alternative combinations of mitigation measures on NH3, CH4, and N2O 

emissions from the whole chain were evaluated through scenario analysis. Significant NH3 

emission reduction was estimated for i) housing via lowering the dietary crude protein (CP) 

content (emission reduction of 24-65%, depending on the reduction rate of CP), for ii) 

external slurry storages via acidification (83%) and covers of straw (78%) or artificial films 

(98%), for iii) solid manure storages via compaction and covering (61%, compared to 

composting), and for iv) manure application to land via band spreading (55%, compared to 

surface application), via incorporation into the soil (70%) and via injection into the soil (80%). 

Acidification decreased CH4 emissions from stored slurry by 87%. Significant increases in 

N2O emissions were found for straw-covered slurry storages (by two orders of magnitude) 

and manure injection (by 26-199%). Compaction, static stockpiling and covering of solid 

manure tend to decrease NH3 emissions and increase CH4 and N2O emissions compared to 

manure heaps subjected to composting. However, the number of observations underlying 

these latter effects is low. Lowering the protein content of feed and acidifying slurry are 

strategies that consistently reduce NH3 and GHG emissions in the whole chain. Other 

strategies may reduce emissions of a specific gas or emissions source, by which there is a risk 

of unwanted trade-offs in the manure management chain. Proper combinations of mitigation 

measures at farm level are therefore important to minimize emissions of NH3 and GHG from 

animal manure. 

Chapter 5 reports on an integrated assessment of the effects of manure treatment on NH3, N2O 

and CH4 emissions from manure management chains in EU-27 at the national level for the 

year 2010, using the improved model MITERRA-Europe. Whole-chain effects of 

implementing twelve treatment technologies in EU-27 on emissions and nutrient (N and P) 

recovery were further explored through scenario analyses; the level of implementation 

corresponded to levels currently achieved by forerunner countries (i.e. 20% of total manure 

production from housings for each technique). The scenario analyses included an uncertainty 
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analysis. Results show that total NH3 emissions from the manure management chain in EU-27 

were 2.5 Tg N and GHG emissions were 86.9 Tg CO2-eq in 2010, with a relative uncertainty 

(coefficient of variation) of 16% and 20%, respectively. Manure treatment decreased GHG 

emissions from 0 to 17% depending on country in 2010, with the largest reduction from 

anaerobic digestion (especially in Germany, Denmark and Italy). Manure treatment effects on 

NH3 emissions were small in 2010. Scenario analyses indicate that acidification, thermal 

drying, incineration and pyrolysis can consistently decrease both NH3 (9-11%) and GHG (11-

18%) emissions from the management chain of EU-27 (compared to the reference without 

manure treatment). Nitrification-denitrification treatment decreased NH3 emissions, but 

increased GHG emissions, due to increased N2O emissions. Composting had no significant 

effects on total emissions of NH3 and GHG from the chain. Anaerobic digestion decreased 

GHG emissions (19%), but only marginally affected overall NH3 emissions. Combining 

anaerobic digestion with acidification (i.e. acidifying digested slurry) resulted in significant 

reductions in both NH3 and GHG emissions. The N recovery (% of nitrogen excreted in 

animal housings that is applied to land) in EU-27 would increase from a mean of 57% (in 

2010) to 61% in the acidification scenario, but would decrease to 48% in the incineration 

scenario and to 52% in the nitrification and denitrification treatment scenario. Other 

technologies (solid-liquid separation, anaerobic digestion, drying, composting etc.) only 

marginally affect the N recovery. The P recovery was estimated at 98% in 2010, and was not 

significantly affected by the manure treatment scenarios. 

Chapter 6 reports on a survey conducted under various stakeholder groups with expertise in 

the domain of manure treatment in four European countries (Denmark, Italy, the Netherlands 

and Spain) that have regions of high animal density. The survey addressed questions related 

to i) which factors facilitate and hinder the implementation of treatment technologies in 

practice, ii) which technologies have the most potential for successful adoption, and iii) how 

farm characteristics and the scale of the treatment operation affect priorities for adoption. 

Results show that pressure from governmental regulations was perceived as a key factor that 

stimulated manure treatment in all four countries (70% of respondents). Processing manure to 

produce bioenergy was considered important in Denmark and Italy, but less important in 

Spain and the Netherlands. The major barriers to technology adoption were related to 

economic factors (lack of investment capital, high processing cost and a long payback time; 

45-60% of respondents), while there was relatively little concern regarding transport, noise 

burden and health risk. Slurry separation and anaerobic digestion were perceived to have the 
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greatest potential for a common adoption in practice in all four countries. Other preferred 

technologies were more country-specific (e.g. acidification in Denmark, composting in Spain, 

and drying and reverse osmosis in Netherlands), which is related to the differences between 

regions/nations in livestock densities and socio-economic, political and environmental 

conditions. Farm characteristics and scale of operation were identified as important factors 

that can influence the decision of farmers and investors for technology adoption. 

The main conclusions of this PhD thesis are as follows: 

 In EU-27, the amounts of N and P in manure are as large as or larger than the total 

amounts of fertilizer N and P used annually. However, there is a huge spatial variation 

in manure production. Nutrient excretion factors per animal category also vary 

between countries, as a result of variations in feed use and animal productivity. 

Clearly, for accurate inventories of national emission there is a need for estimating 

nutrient excretion using country-specific feed use data. There is a need for a common 

methodology and protocol for the estimation of N and P excretion factors per animal 

category, because some differences between countries in reported excretion factors 

were related to differences in methodology and aggregation/upscaling. 

 Increasing the effectiveness of measures to mitigate NH3 and GHG emissions from 

animal manure requires proper combination of measures in the manure management 

chain. Lowering the dietary protein content in animal feed is an effective measure to 

reduce NH3 emissions and other N emissions at all stages of the manure management 

chain. Other measures may reduce emissions of a specific gas or emissions source, by 

which there is a risk of unwanted trade-offs in the manure management chain. Joint 

adoption of these measures with low-N feeding strategies and slurry acidification can 

greatly decrease the risk of pollution swapping. 

 Implementation of manure treatment is on average still limited in EU-27. Effects of 

manure treatment on NH3 and GHG emissions are therefore relatively small at EU 

level. Increasing the implementation of treatment technologies, including acidification, 

incineration and thermal drying, or optimized combinations of treatment technologies, 

can significantly contribute to achieving NH3 and GHG emission targets of EU 

environmental policies. 

 Implementation of manure treatment technologies provides opportunities to improve 

the use of plant nutrients in manures, because of the release of manure products with 
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different N/P ratios. Applying acidification technology and optimized combination of 

NH3 emission mitigation measures increase the N recovery from animal manure, and 

can decrease the demand of mineral fertilizers. However, some technologies decrease 

the N and P recovery and/or decrease the availability of the N and P in manure 

products to plants. 

 Implementation of manure treatment in practice is forced by the pressure from EU 

environmental regulations, and is hindered by financial barriers. To encourage the 

adoption of manure treatment, policies must be economically appealing to attract new 

adopters (farmers and industries). Long-term financial support schemes (e.g. subsidies) 

seem to be necessary, especially with the current low prices for fossil fuels. Outreach 

strategies are required to convey the knowledge to stakeholders from both the supply 

and the demand side, with respect to the economic, technical and environmental 

aspects of manure treatment technologies. 
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Dierlijk mest is een belangrijk bron van nutriënten en organisch materiaal. De mest dient om 

gewassen te bemesten en om de bodemkwaliteit te verbeteren. Echter, als mest niet goed 

wordt opgeslagen en/of behandeld, dan kunnen nutriënten en broeikasgassen naar het milieu 

lekken. Het gaat daarbij om de gasvormige verbindingen ammoniak (NH3), lachgas (N2O) en 

methaan (CH4) die naar de lucht kunnen ontsnappen, en om nutriënten  die uit mestopslagen 

en na toediening op het land naar grondwater en oppervlaktewater kunnen uitspoelen. Deze 

emissies hebben een reeks van milieukundige effecten.  

Emissies van NH3 leiden tot verzuring en eutrofiëring van stikstof-gelimiteerde ecosystemen. 

In de lucht heeft NH3 een negatief effect op de menselijke gezondheid. Lachgas (N2O) en 

methaan (CH4) zijn broeikasgassen. Het broeikasgaseffect van N2O en CH4 is respectievelijk 

298 en 25 keer sterker dan dat van CO2 per kg. Op wereldschaal is circa 40% van de totale 

antropogene NH3- en N2O-emissies en bijna 10% van de antropogene CH4-emissies 

afkomstig van dierlijk mest. Het verlies van stikstof (N) en fosfor (P) uit mest leidt bovendien 

tot een vermindering van de bemestende waarde van mest. 

De risico’s van emissies van NH3, CH4 en N2O uit mest naar de lucht en van de uitspoeling 

van N en P uit mest naar grondwater en oppervlaktewater hangt af van de opslag en 

behandeling van mest in de gehele mestketen. De mestketen begint bij het voeren van de 

dieren en eindigt bij de toediening van de mest op het land.  

Er zijn verschillende maatregelen en technieken beschikbaar om mest te bewerken en 

emissies uit mest te reduceren. De introductie van een maatregel in het begin van de 

mestketen kan effect hebben op de emissies in een later deel van de mestketen, en het kan de 

emissie van andere vervuilende stoffen veroorzaken. De effecten van en interacties tussen 

maatregelen op emissies uit mest in de mestketen zijn slechts in beperkte mate bekend. 

Bovendien zijn de gevolgen van combinaties van maatregelen en technieken op emissies 

nauwelijks onderzocht. 

Het onderzoek, dat in dit proefschrift is beschreven, had tot doel (i) het inzicht te verbeteren 

in de effecten van emissiebeperkende maatregelen en mestbewerkingstechnieken op de 

emissies van NH3, N2O en CH4 naar de lucht en op de resterende hoeveelheden N en P in de 

mest in de mestketen, en (ii) om de effecten te verkennen van combinaties van maatregelen en 

technieken om de emissies verder te verminderen en de resterende hoeveelheden N en P in de 

mest te verhogen.  
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Het onderzoek maakte deel uit van het Marie Curie Trainings Programma “ReUseWaste” 

(Winning en gebruik van nutriënten, energie en organisch materiaal uit dierlijke mest). In 

totaal waren elf promovendi en twee postdocs betrokken bij dit project; er zijn diverse 

specifieke emissiebeperkende maatregelen en mestbewerkingstechnieken onderzocht en 

verbeterd. Het onderzoek beschreven in dit proefschrift richtte zich op de integrale analyse 

van mogelijke maatregelen op de emissies in de gehele mestketen en op de opschaling en de 

synthese van de onderzoeksresultaten uit ReUseWaste en de literatuur. Het proefschrift heeft 

5 hoofdstukken met specifieke resultaten van het onderzoek, een algemene inleiding 

(hoofdstuk 1) en een algemene discussie (hoofdstuk 7). 

In hoofdstuk 2 is een studie beschreven waarin verschillende methodes voor de berekening 

van de N-excretie door vee werden beoordeeld. De stikstofexcretiefactor is gedefinieerd als de 

totale hoeveelheid N die gemiddeld per diersoort per jaar via de urine en feces wordt 

uitgescheiden. In de studie zijn de methoden en richtlijnen, die door de Nitraatrichtlijn, 

OECD/Eurostat, EMEP/EEA, IPCC en lidstaten worden voorgeschreven, geanalyseerd en met 

elkaar vergeleken. De resultaten tonen aan dat N-excretiefactoren voor melkvee, varkens, 

leghennen, vleeskuikens, schapen en geiten aanzienlijk verschilden tussen lidstaten, en ook 

binnen landen tussen verschillende rapportages ten behoeve van nitraat-, ammoniak- en 

klimaatbeleid. Een deel van deze verschillen worden veroorzaakt door verschillende in 

veerassen (grootte/gewicht van de dieren), productiviteit, en in voersamenstelling. Een ander 

deel van de verschillen in N-excretiefactoren wordt veroorzaakt door verschillen in 

rekenmethoden en in de methode van aggregatie van diercategorieën. De methoden en 

gegevens die worden gebruikt door de lidstaten in de EU zijn vaak niet goed beschreven. Er is 

behoefte aan geharmoniseerde en goed gedocumenteerde rekenmethoden en procedures voor 

de vaststelling van N-excretiefactoren. Uniforme methoden en procedures vormen de basis 

voor een nauwkeurige schatting van de productie van N in mest, van N-balansen in de 

landbouw en de uitstoot van NH3, N2O en CH4 uit mest in de EU. 

Hoofdstuk 3 beschrijft een studie waarin een robuuste en uniform toepasbare methode is 

ontwikkeld om de N-excretie per diercategorie per jaar voor alle landen van de EU-27 te 

berekenen. Deze methode is gebaseerd op de energie- en eiwitbehoefte van de dieren en op 

statistische data en informatie over voersamenstelling, dieraantallen en productiviteit. In de 

EU-27 werd in 2010 in totaal 506 Tg voer gebruikt (1 Tg = 10
12

 = 1 miljoen ton). Melkkoeien 

gebruikten 29%, jongvee en mestvee 34%, varkens 17%, kippen 9%, schapen en geiten 8%, 

en andere diercategorieën 3% van het voerverbruik in de EU. Gras en andere ruwvoeders 
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werden voornamelijk gebruikt door melkkoeien (30 en 49%, respectievelijk) en ander rundvee 

(55 en 44%). Varkens gebruikten vooral voergranen (53%). Eiwitrijke diervoeders 

(bijvoorbeeld sojameel) werden vooral door varkens (34%) en kippen (24%) gegeten. Er 

waren grote verschillen tussen de landen in diervoeding, voornamelijk veroorzaakt door de 

variaties tussen landen in voerbeschikbaarheid en in de productiviteit van de dieren. De 

berekende N-excretie door alle landbouwdieren bedroeg 9,7 Tg in EU-27 in 2010. De N-

excretie varieerde van 14 kg N ha
-1

 landbouwgrond in Bulgarije tot 291 kg N ha
-1

 in 

Nederland. De ontwikkelde methode maakt het mogelijk om N-excretiefactoren van landen te 

valideren en om verschillen tussen landen te duiden. 

In hoofdstuk 4 wordt een studie beschreven waarin de effecten zijn geanalyseerd van NH3-

emissie beperkende maatregelen op de emissies van NH3, N2O en CH4 uit mest. De analyse 

werd uitgevoerd via een meta-analyse van gepubliceerde gegevens (afkomstig van 126 

gepubliceerde studies). Ook zijn de effecten van alternatieve combinaties van 

emissiebeperkende maatregelen op NH3-, CH4,- en N2O-emissies in de mestketen geëvalueerd 

via scenario-analyses. De volgende maatregelen leidden tot een significante reductie van 

NH3-emissies i) het verlagen van het ruw-eiwitgehalte in het voer (emissiereductie 24-65%, 

afhankelijk van de reductie in ruw-eiwitgehalte), ii) het aanzuren van dunne mest in de 

mestopslag (83%), het afdekken van dunne mest in de opslag met stro (78%) of met een zeil 

(98%), iii) het verdichten en afdekken van vaste mest in de opslag (61%), en iv) het 

emissiearm toedienen van mest op het land via een sleepvoet-machine (55%), via het 

inwerken van de mest in de grond (70%) of via injectie van de mest in de grond (80%). Door 

het aanzuren van de mest daalt ook de CH4-emissie uit mest in opslag (met 87%). Het 

bedekken van dunne mest met stro leidt tot een forse stijging van de N2O-emissie (met een 

factor honderd). Ook mestinjectie leidt tot hogere N2O-emissies (26-199%). Bij opslag van 

vaste (stapelbare) mest leidt het verdichten van de mest (via het berijden met een zwaar 

voertuig) en het afdekken met een tentzeil gemiddeld tot een verlaging van NH3-emissies, 

maar nemen de CH4- en N2O-emissies toe. Het aantal waarnemingen is echter gering dat ten 

grondslag ligt aan de laatst genoemde bevindingen. Het verlagen van het eiwitgehalte van 

rantsoenen en het aanzuren van dunne mest zijn strategieën die alle emissies (NH3 , N2O en 

CH4) in de mestketen verminderen. Verschillende andere strategieën beperken de emissies 

van een specifiek gas of emissiebron, maar hebben ongewenste neveneffecten elders in de 

mestketen. Door te kiezen voor een juiste combinaties van maatregelen op bedrijfsniveau kan 

de uitstoot van NH3 en broeikasgassen uit dierlijke mest tot een minimum worden beperkt. 
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Hoofdstuk 5 beschrijft een integrale analyse van maatregelen om de NH3-, N2O- en CH4-

emissies uit de mestketens te verminderen op nationaal niveau in EU-27 voor 2010. Hierbij is 

gebruik gemaakt van een aangepaste versie van het model MITERRA-EUROPE. De effecten 

van 12 mestbehandelingstechnieken op de emissies van NH3, N2O en CH4 en de resterende 

hoeveelheden N en P in de mest werden verkend door middel van scenario-analyses. De 

effecten van maatregelen werden berekend bij een uniforme implementatiegraad van 20% in 

alle landen. Deze implementatiegraad werd in 2015 voor enkele maatregelen gerealiseerd in 

landen die voorop lopen met mestbehandeling. Er is ook een onzekerheidsanalyse uitgevoerd. 

De totale NH3-emissie uit de mestketen in EU-27 in 2010 was 2.5 Tg N en de totale 

broeikasgasemissie was 86.9 Tg CO2-equivalenten, met een relatieve onzekerheid 

(variatiecoëfficiënt) van respectievelijk 16% en 20%. De behandeling van mest reduceerde de 

broeikasgasemissies van 0 tot 17% in 2010, afhankelijk van het land. De grootste reductie 

werd verkregen door mestvergisting (met name in Duitsland, Denemarken en Italië). De 

effecten van mestbehandeling op NH3-emissies waren klein in 2010. De scenario analyses 

laten zien dat aanzuren, thermisch drogen, verbranden en pyrolyse tot een reductie van zowel 

NH3-emissies (9-11%) als broeikasgasemissies (11-18%) leiden in de EU-27 (in vergelijking 

tot een referentie zonder mestbehandeling). Mestbehandeling via nitrificatie-denitrificatie 

reduceerde de NH3-emissies, maar verhoogde de broeikasgasemissies (omdat N2O emissie 

toeneemt bij deze techniek). Composteren had geen significant effect op de totale emissies 

van NH3 en broeikasgassen. Mestvergisting reduceerde de broeikasgasemissie met 19%, maar 

had amper een effect op de totale NH3-emissie. De combinatie van mestvergisting en het 

aanzuren van mest resulteerde in een significante vermindering in zowel NH3– als 

broeikasgasemissies. De hoeveelheid N in de mest die uiteindelijk wordt toegediend op het 

land (in % van de N-excretie in de stal) in EU-27 neemt toe van gemiddeld 57% in 2010 tot 

61% bij het scenario ‘aanzuren’, maar neemt af tot 48% in het scenario ‘mestverbranding’ en 

tot 52% bij behandeling via nitrificatie-denitrificatie. Andere technieken, zoals het scheiden 

van mest in een dikke en dunne fractie, mestvergisting, drogen en composteren, hadden 

slechts een beperkt effect op de resterende hoeveelheid N in de mest. De hoeveelheid P die 

uiteindelijk via de mest op het land wordt toegediend (in % van de P-excretie in de stal) is 

geschat op 98% in 2010; deze hoeveelheid werd niet significant beïnvloed door 

mestbehandeling.  

Hoofdstuk 6 beschrijft de resultaten van een enquête onder verschillende groepen 

belanghebbenden en actoren op het gebied van mestbehandeling in vier landen met een hoge 
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veedichtheid (Denemarken, Italië, Nederland en Spanje). De enquête was gericht op vragen 

betreffende i) succes- en faalfactoren bij de toepassing van mestbehandeling in de praktijk, ii) 

technieken die de meeste perspectieven bieden voor toepassing in de praktijk en iii) 

bedrijfskarakteristieken en de schaalgrootte van mestbehandeling die de toepassing van 

mestbehandeling beïnvloeden. Regelgeving van overheden wordt gezien als de belangrijkste 

factor die mestbehandeling in de praktijk stimuleert in de vier landen (70% van de 

respondenten).  De grootste obstakels voor de toepassing van technieken zijn gerelateerd aan 

economische factoren; gebrek aan investeringskapitaal, hoge kosten voor mestbehandeling en 

een lange terugverdientijd (45-60% van de respondenten). Er waren relatief weinig zorgen 

over transport, geluidsoverlast en gezondheidsrisico’s bij mestbehandeling. Mestscheiding en 

mestvergisting bieden het meeste perspectief voor toepassing in alle vier landen. De 

perspectieven van andere technieken waren meer land-specifiek, zoals het aanzuren in 

Denemarken, composteren in Spanje en het drogen en omgekeerde osmose in Nederland. 

Deze verschillen worden veroorzaakt door verschillen tussen landen en regio’s in 

veedichtheid en in sociale, economische, politieke en milieukundige factoren.  

Bedrijfskarakteristieken en de schaal van toepassing van mestbehandeling werden genoemd 

als de belangrijke factoren bij het kiezen van een bepaalde techniek. 

De belangrijkste conclusies van dit proefschrift zijn:  

 De hoeveelheden N en P in mest in EU-27 zijn vergelijkbaar met of groter dan de 

hoeveelheden N en P die via kunstmest worden gebruikt. Er is echter een grote 

ruimtelijke variatie in mestproductie binnen EU-27. Ook de omvang van de excretie 

van N en P per landbouwdier varieert sterk tussen landen. Dit wordt vooral 

veroorzaakt door verschillen in rantsoensamenstelling en productiviteit van de dieren. 

Voor een nauwkeurige bepaling van de emissies van stikstof en broeikasgassen op 

nationaal niveau is het noodzakelijk om de excreties van N en P nauwkeurig te 

berekenen op basis van landen-specifieke data, een algemeen toepasbare 

rekenmethode en een transparent protocol. Een deel van de huidige verschillen tussen 

landen in gerapporteerde excretiefactoren en emissies wordt veroorzaakt door 

verschillen in rekenmethoden en aggregatiemethoden.  

 Combinaties van effective maatregelen in de mestketen zijn nodig en mogelijk om de 

bemestende waarde van mest te verhogen en om de emissies van NH3 en 

broeikasgassen uit dierlijke mest te verlagen. Het verlagen van het eiwitgehalte in 

rantsoenen tot aanbevolen niveaus is een effectieve maatregel om de emissies van NH3 
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en andere N-verbindingen in alle delen van de mestketen te verminderen. Andere 

maatregelen leiden vaak tot vermindering van de emissie van een specifiek gas of van 

een specifieke emissiebron, maar hebben een risico op afwenteling naar emissies van 

andere gassen of veroorzaken een toename van de emissie elders in de mestketen. Een 

combinatie van het verlagen van het eiwitgehalte in het voer en het aanzuren van mest 

kunnen het risco op afwenteling van emissies sterk beperken. 

 De implementatie van mestbehandeling in EU-landen is divers en in het algemeen nog 

beperkt. De effecten van mestbehandeling op NH3- en broeikasgasemissies zijn 

daardoor relatief klein op EU-schaal. Een grotere implementatie van de 

mestbehandelingstechnieken, inclusief aanzuren, verbranden, thermisch drogen, en 

vooral een geoptimaliseerde combinatie van technieken kan significant bijdragen tot 

het realiseren van de beleidsdoelstellingen met betrekking tot de reductie van NH3- en 

broeikasemissies in de EU. 

 De implementatie van mestbehandelingstechnieken geeft mogelijkheden om de 

benutting van N en P uit mest voor bemesting te verbeteren, omdat er producten 

vrijkomen met een andere N/P-verhouding. Het toepassen van een geoptimaliseerde 

combinatie van technieken om NH3-emissie te reduceren, leidt er toe dat meer N in de 

mest resteert, waardoor minder kunstmest N nodig is. Sommige technieken leiden 

echter tot minder N en P in mest en/of verminderen de beschikbaarheid van N en P in 

de mest voor gewassen. 

 De implementation van mestbehandelingstechnieken in de EU wordt indirect 

gestimuleerd door EU-milieurichtlijnen en wordt beperkt door economische barrières. 

Technieken moeten economisch attractief zijn om toegepast te kunnen worden. 

Mestvergisting biedt inkomsten uit de productie van bio-energie, maar is zonder 

subsidies momenteel nauwelijks attractief vanwege de huidige lage prijzen voor 

fossiele brandstoffen. Er zijn slimme strategieën nodig om de kennis over 

mestbehandeling  met betrekking tot de economische, technische en milieukundige 

aspecten te verbeteren en te verspreiden onder de belanghebbenden.
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