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Objectives 
The world population is expected to reach 9 billion inhabitants by 2050. Producing food to feed such a 

large population will significantly increase the strain already in place on production environments and 

inputs, especially land and water. It furthermore proves to be difficult already now to find skilled and 

motivated workers and to keep the production costs low. To meet this important societal challenge, 

research and development in the agri-food sector is of utmost importance. One important direction is 

towards increasing automation and robotisation of the industry to improve the efficiency of its processes, 

reduce waste and costs, and improve food quality and safety. 

The challenge of natural variation 
Where some other industries, such as the automotive industry, are already highly robotized, the agri-

food industry is still very labor intensive. This discrepancy is mainly due by the fact that agricultural 

robots need to deal with natural products in natural environments. The main challenges for robotics in 

this area lie with the variation in (a) products (between and within species), (b) environmental 

parameters (light, soil, humidity, seasonal factors etc.), and (c) tasks (pre-harvest maintenance, 

harvesting, and post-harvest processing). Although automation and robotic system exist for performing 

specific tasks on specific crops in specific environments, these are often not economically viable due to 

their limited application. We therefore believe that the main research challenge in agri-food robotics is to 

improve flexibility and robustness to deal with these variations. 

With recent advances in horticulture and food production, agri-food is more and more being produced in 

semi-controlled environments. Examples include high-density orchards, where fruit literally grows in 

“fruit walls,” modern greenhouses, etc. Parts of the environments are controlled, such as the type of 

product, and cultivation parameters,  but on the other hand, there is always the previously-discussed 

variability of the product and the environment due to the inherent biological nature which is unstructured 

and uncontrolled. Semi-controlled environments allow the use of top-down model-based design methods, 

whereas uncontrolled environments need methods that are robust to the variability. The agri-food 

domain requires robotic research in both areas combined. 

Application domains can range from more controlled, e.g., food inspection and packaging, to more 

uncontrolled, e.g., crop maintenance and harvesting in the open field, where the more controlled 

domains have potential to develop applications on short term, whereas more long-term fundamental 

research is required to handle less controlled situations. 

Workshop’s aims 
In this workshop, we aim to bring together IROS attendees dedicated to or interested in solving some of 

the more pressing agri-food sector problems, specifically towards improved robustness and flexibility in 

dealing with variability in products, environments, and tasks. Our goal is furthermore to increase 

awareness of the important research topics and challenges in agri-food robotics and to promote 

interaction between researchers from different backgrounds in order to propel research in this area. 

Topics of interest 
Topics of interest addressed by this workshop include, but are not limited to robotic research in the 

following application domains: 

- Crop maintenance 

- Crop inspection 

- Weed detection and removal 

- Indoor navigation (greenhouses) 

- Outdoor navigation (open field) 

- Crop thinning and pruning 

- Crop yield estimation 

- Disease detection 

- Harvesting 

- Food-quality inspection 

- Food grasping and manipulation 

- Packaging 
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Abstract— Achieving a low cost robotic arm is crucial in 

agricultural applications. Task based optimization of the robot 

kinematics influence the robot simplicity and cost. Nevertheless, 

the environment of the robot also has a major influence on its 

simplicity. We have simulated a variety of orchard 

architectures and searched for an optimal robot design for each 

architecture. From the training systems which we considered, 

the Tall Spindle system provides the minimal average time for 

fruit picking and thus is preferable for robotic harvesting.  

I. INTRODUCTION 

Despite decades of research on robotic applications in 
agriculture, commercial agricultural harvesters are sparse or 
even nonexistent [1], [2]. Among others, the two main 
reasons are high cost of existing (industrial) robots and 
serviceability, making them unprofitable for farmers; and 
agricultural environment complexity, causing the sensing and 
motion planning of the robot to be complicated, time 
consuming and therefore impractical. 

For agricultural applications, robotic arms are often tailor 
designed. They strive to be “light, simple and cheap” such as 
the arm for kiwi harvester [3]. Moreover, the robots are in 
some cases optimized for a specific task, such as an optimal 
robot for cucumber harvesting [4], or an optimal robot for 
eggplant harvesting [5]. However, up until now, the 
optimization was focused mainly on the robot component of 
the robot-environment system. 

In the manufacturing domain, the robot environment is 
defined as the robot cell. Design of the robotic cells intended 
for throughput optimization is well studied and helps to solve 
numerous industrial challenges [6]. The main methods of the 
cell design are effective scheduling, multiple gripper usage, 
and parallel working robot usage.  

Simplification and structuration of the agricultural 
environment is noted [2]. Nevertheless, design or 
optimization of the environment has not been performed. 
Such optimization is difficult because of the large number of 
optimization parameters, the difficulty in reaching the desired 
design, the extensive work required to design a tree and the 
required knowledge of the plant behavior (e.g., parameters of 
the L-systems [7]). Evaluation of the effectiveness of the 
existing environment types is performed in this paper as a 
preliminary step to the environment optimization. 

 
Victor Bloch and Amir Degani are with Faculty of Civil and 

Environment Engineering, Technion, 32000 Haifa, Israel (Tel: 972-

48292632; e-mail: {victorc, adegani}@technion.ac.il). 
Victor Bloch and Avital Bechar are with Agricultural Research 

Organization (ARO), Volcani Center, Agricultural Engineering, 50250 Bet-

Dagan, (e-mail: avital@volcani.agri.gov.il). 

Different training systems (orchard architectures) of the 
fruit trees represent clearly different robotic environments. 
Modern high plant density training systems, such as the Tall 
Spindle (Figure 1 b), and Y-trellis (Figure 1 c), were 
developed mainly for increasing the yields and quality of fruit 
[8], [9]. In addition, they save labor time during harvesting, 
providing a convenient environment for the human harvesters. 
This advantage can also be used to provide an environment 
suitable to robotic harvesters, turning them into a profitable 
harvesting solution. The goal of this research is to evaluate 
the fitness of these training systems to robotic harvesting. 

II. PROBLEM DESCRIPTION AND FORMULATION 

A. Environment Modelling 

Three apple trees trained by Central Leader (CL), Tall 
Spindle (TS) and Y-trellis (YT) training systems were 
modeled as the robot environment (Figure 1). The tree model 
consists of cylinders modeling the segments of the branches 
and the trellis parts, ellipsoids modeling the fruits and a plane 
modeling the ground. The leaves were not modeled in this 
preliminary examination. The environment coordinate system 
has its origin in the point of intersection of the ground plane 
with the tree trunk. The Z-axis is directed upward 
perpendicular to the ground plane, the Y-axis is parallel to the 
tree row, and the X-axis complements the right handed 
system. 

The CL tree was modeled with the help of a mechanical 
digitizer developed for this purpose [10], the TS tree was 
reconstructed from pictures, and the YT tree was 
approximated by tuning the parameters of the L-systems and 
Markov chain. Future comprehensive studies will be based on 
tree models achieved by the digitizer. 

B. Robot Performance Cost Function 

Robot performance cost function is used to evaluate the 
effectiveness of the robot. The effectiveness depends on the 
customer’s demands, thus, the cost function cannot be strictly 
defined for the general case. One of the most common 
requirements in robotic applications is minimization of the 
robot performance time, which we use in this research. We 
study the mechanical aspect of the robot performance, hence, 
we consider only the time of the robot motion, which is 
defined here as the robot performance cost function F. This 
function depends on the robot geometry and the power of the 
robot actuators. 

 Exact calculation of the performance time is also nearly 
impossible in the general case. The time depends on 
parameters such as actuator power and weight, construction 
material, etc., which are defined by the designer. In order to 
find the optimal robot for our case study, the performance 
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time is evaluated by making several assumptions on the robot 
actuators and structure.   

 Robot arm kinematics is predefined as a 3-degrees of 
freedom (DOF) with revolute or prismatic joints and 
general Denavit–Hartenberg (DH) parameters table. 
The number of DOF is denoted as NDOF.  

 Actuators are considered massless, assuming that the 
actuators are mounted on the robot base and are 
transmitting forces through beams or cords similar to 
the actuating system presented in [3].  

 The length density of the robot links is taken as 
1.5kg/m (similar to the density of a 3mm thick 
aluminum tube with a diameter of 60mm).  

 The mass of the load is taken as 0.1kg (assumed as 
the mass of an average apple).  

 The power of the robot actuators is taken with 
specific values: 100W is the power of the actuator in 
the first robot joint actuating the weight of the entire 
robot. The power of the rest of the actuators decreases 
proportionally to the weight of the link moved by the 
actuator.  

 Time spent moving the mobile platform is not 
included in the cost function (because of the large 
variety of platform types). Nevertheless, a designer 
working with a specific mobile robot can take the 
moving time into account while evaluating the total 
robot cost function.  

 The robot places the picked fruit in a gathering bin 
adjusted to the robot platform. Thus, the robot task 
must consist of the following stages: moving the end-
effector from the robot home configuration to a fruit, 
approaching the lower hemisphere of the fruit, and 
retracting back to the home configuration. 

The precise computation of the time and energy of motion 
is cumbersome for mechanical systems with three or more 
DOF. Therefore, the time is approximated with the help of 
basic physical expressions. Assuming the robot geometry, 
link masses and inertia and actuator power, the time spent for 
picking a specific fruit is 

 tfr,i = max(Ei/Wi)  

where Ei is the energy consumed by the i’s actuator, and Wi is 
the power of the i’s actuator. 

The energy 𝐸𝑓𝑟 = ∑ 𝐸𝑖∀𝑖  needed for the picking of a 

single fruit is the energy of the robot’s movement from its 
initial home configuration qi to a final configuration qf  set for 
picking the fruit. Therefore, the energy is calculated as  

 Efr = Ed + Es + Edamp 

where Ed is the dynamic work against the inertia of the robot 
and the load, Es  is the static work against the load and the 
robot’s weight, and Edamp is the damping work against the 
friction in the robot joints. Friction in the robot joints depends 
on the gearbox parameters chosen by the designer, hence, it is 
disregarded therein. The static work is evaluated as 

 𝐸𝑠 = ∫ 𝜏(𝑞)
𝑞𝑓

𝑞𝑖
𝑑𝑞 

The torques produced by the actuators τ are calculated with 
the help of the transposed Jacobian 

 τ JT 
P 

where P is the force acting on the robot, consisting of the 
weight of the load and of the robot links, which are all 
directed in the negative Z-axis direction. The mass of each 
link is calculated by the link length and length density, with 
the weight applied at the middle of each link. 

The dynamic work, 𝐸𝑑 , is calculated by 

 𝐸𝑑 = ∫ 𝐼(𝑞)
𝑞𝑓

𝑞𝑖
�̈�𝑑𝑞 

where I is the inertia of the robot links and load, depending on 
the robot configuration. It is assumed that the acceleration has 
a maximal value (bang-bang control), hence, it is taken as a 
constant. Finally, the dynamic work can be approximated as 

 𝐸𝑑 = �̈�𝑚𝑎𝑥 ∫ 𝐼(𝑞)
𝑞𝑓

𝑞𝑖
𝑑𝑞 

The cost function F is the average fruit picking time for all 
picked fruits Npicked  

 𝐹 = (∑ 𝑡𝑓𝑟,𝑖
𝑁𝑝𝑖𝑐𝑘𝑒𝑑

𝑖=1
) /𝑁𝑝𝑖𝑐𝑘𝑒𝑑  

The cost function F is measured in units of time 
(seconds). The time calculation is approximated and 
simplified, and does not include important, but non-
mechanical and difficult to define factors such as fruit 
recognition time, trajectory planning time, time for fruit 

   
         (a)                                                                    (b)                                              (c) 

Figure 1. Three actual task environments and their models: apple trees trained by Central Leader (a), Tall Spindle (b) and Y-trellis (c) training systems. 
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detachment and placement in the gathering bin, etc. 
Therefore, the achieved time values are different from the 
values reported in previous researches, such as [4]. 

C. Optimization Parameters 

The parameters of the optimization are the known DH 
convention parameters α, θ, a and d [12]. The total number of 
parameters defining the robot kinematics is 4xNDOF. The 
parameters representing the robot’s degrees of freedom (θ and 
d) are found by solving the inverse kinematics at a specific 
configuration of the robot. Thus, the total number of free 
unconstrained optimization parameters is 3xNDOF. 

Type and order of the robot joints can strongly affect the 
applicability of the robot structure to different environments. 
For a 3-DOF robot we checked the following orders: RRR, 
RRP and PPP. 

The location of the robot base constitutes additional 
optimization parameters. Each location is defined by two 
parameters: X and Y coordinate on the ground plane. 
Searching the optimal base location is decoupled from the 
optimization of the robot kinematics, and is found for a given 
number of robot locations Nloc by the grid search method with 
the branch and bound algorithm [11].  

We also define the limits of the optimization parameters 
fitted to the task as follows: 

 α parameter is in the interval [-π, π], 

 θ parameter is in the interval [-π, π], 

 a and d parameters are taken in the interval [0,3], 
considering that the height and width of orchard trees 
do not exceed 3m, 

 similarly, the X and Y coordinates of the robot base 
location are taken from the interval [-3, 3]. 

 The limits of the robot DOF depend on the 
mechanical design of the robot. Hence, in this paper 
the robot revolute parameters Θ are inside the interval 
[-π, π], and the robot prismatic parameter d is taken 
from the interval [0,3]. 

D. Optimization Constraint 

The environment constraint is a set of geometric models 
of all obstacles and targets in the robot task environment. 
Interaction with these objects influences the robot motion: the 
robot must approach a target without collision with the 
obstacles.  

To make the environment constraint more realistic, the 
allowed unpicked fruit percentage is defined. This percentage 
depends on the economic aspects of the fruit picking. In this 
paper, the percentage is taken 5%, meaning that in order to 
fulfill the task, the robot must be able to approach at least 
95% of the targets. 

E. Optimization and Navigation Algorithm 

The optimization problem has a relatively large number of 
parameters, 3NDOF=3x3=9, and a long function evaluation 
time: 2 to 20 minutes, depending on the tree. On average, the 
inverse kinematics solution takes 10% of this period of time, 
and the robot navigation solution with collision check takes 

90%. To solve this problem, a Genetic Algorithm is used with 
a population size of 200 and a mutation rate of 20%. 

The rapidly exploring random tree (RRT) algorithm [13] 
is used as the planner of trajectories between the robot home 
position and the robot targets (fruit). The RRT uses 100 
vertices and an incremental distance of 0.03m. The original 
version of RRT was implemented. 

F. Environment Fitness Evaluation 

The agronomical and economical aspects of the tree 
shaping, such as fruit quality and yields, are out of scope of 
this research. Hence, these aspects are not considered in the 
evaluation of the environment fitness to the robot 
performance (especially, considering the fact that originally 
the tree training was being performed for purposes not 
connected with robotic harvesting). 

In order to find the environment fitness evaluation, we 
calculate a single fruit picking average time. The lower the 
average time is, the more fitted the environment is to the 
robotic harvester. 

III. RESULTS AND DISCUSSION 

A. Optimal Robots for Different Environments 

Three optimal robots for different environments are 
shown in Figure 2. For illustrations of the robot kinematics 
for each robot location, several fruits and robot homing 
configurations are presented in the upper part of Figure 2. The 
unpicked fruit are colored in black. 

The trajectories of the end-effector from the homing 
configuration to the fruit picking configuration are shown in 
the lower part. We can observe that the shorter the trajectories 
are, the shorter the motion time is and, therefore, the robot is 
more optimized. 

Table 1 shows the relation between the environment types, 
the robot cost function F, the order and type of the joints, and 
the number of robot locations around the tree Nloc. 

In all the environments and robot types we can observe 
that the cost function value decreases as the number of 
locations around the tree Nloc, increases. The reason for this 
dependence is that the robot working volume is divided into 
smaller parts as the number of the robot locations increases.  
As a consequence, the smaller the working volume, the 
shorter the lengths of the robot links and the smaller their  

TABLE I.  AVERAGE COST OF THE FRUIT PICKING BY THE OPTIMAL 

ROBOT FOR DIFFERENT ENVIRONMENTS 

 Central Leader Tall Spindle Y-Trellis 

Joint type Nloc F [second] 

RRR 2 0.81 0.35 0.44 

4 0.64 0.3 0.42 

6 0.58 0.24 0.38 

8 0.55 0.23 0.37 

RRP 2 0.33 0.17 0.27 

4 0.27 0.15 0.25 

6 0.26 0.12 0.21 

8 0.26 0.1 0.2 

PPP 2 No solution 0.085 0.22 

4 0.4 0.079 0.17 

6 0.32 0.06 0.16 

8 0.32 0.06 0.16 
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(a)                                                        (b)                                                          (c) 

          

(d)                                                                  (e)                                                (f) 

 

masses are, resulting in a decrease in the energy and the time 
needed for their motion. 

However, while the cost function decreases as the number 
of robot locations increases till six, for eight locations the cost 
function almost does not change. This can be observed in all 
robot types, and points at the fact that the larger number of 
robot locations has smaller efficiency. 

Comparison of the robot types for each environment type 
shows that each environment has its most effective robot type, 
where the cost functions have minimal values: TS and YT 
environments have PPP, and CL environment has RRP. This 
is due to the geometrical features of the environments. Trees 
shaped by the TS and YT methods have relatively structured 
environments. As a result, most of the fruit is surrounded by 
open space without obstacles, which enables the robot to 
approach the fruit by a straight line in the workspace from any 
robot base location. This type of motion is typical for the PPP 
type robot. Trees shaped by the CL method have more fruit 
hidden by branches which constitute obstacles to the robot 
motion on a straight line. To approach them, revolute joints 
must be involved in the robot structure. The RRP type robot is 
suitable for this type of motion. 

The fact that each environment type has a specific robot 
type best suited to operate in it enables an evaluation of the 
fitness of the environment to robotic harvesting. The simpler 

the optimal robot is, the better fitted its designated 
environment will be to robotic harvesting.  

Thus, according to the defined cost function, a prismatic 
joint is more effective than a revolute joint, since during the 
motion it changes only the position of its link and end-
effector, while the revolute joint changes orientation as well 
as position for the same motion. Hence, the more prismatic 
joints a robot has, the more efficient it is. Consequently, TS 
and YT training systems are more effective than CL training 
systems, and, according to the cost function values, the TS 
method is more effective than the YT method. 

B. Total Robot Motion Time Evaluation 

The movements between the robot base locations must 
also be considered in the evaluation of the cost function for a 
row or entire orchard. The time of the movement depends on 
the platform carrying the robotic arm and is not evaluated 
here for the general case. To understand its influence, we 
propose to define the average movement time as 3 seconds 
(denoted as Tmov) and evaluate the time needed for picking 
7920 fruit in orchards shaped by the considered methods. 

We assume that the orchard consists of the modeled trees 
duplicated and located along the rows. The number of fruit on 
each tree, Nfruit, is given in Table 2. Hence, to model 7920 
fruit, the row must include the following number of trees 
Ntree=7920/Nfruit (given in Table 2). The total time for the  

Figure 2. Optimal robots and their end-effector trajectories for Central Leader (a, d), Tall Spindle (b, e), and Y-trellis (c, f) apple trees. The robots are 

presented in the several configurations for fruit picking (upper row) and homing configurations (lower row). 
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TABLE II.  AVERAGE COST OF THE FRUIT PICKING BY THE OPTIMAL 

ROBOT FOR DIFFERENT ENVIRONMENTS 

 Environment and Tree Type 

 CL, RRP TS, PPP YT, PPP 

Nfruit 144 30 66 

Ntree 55 264 120 

Ttot, Nloc=2 2944 sec 2257 sec 2462 sec 

Ttot, Nloc=4 2798 sec 3794 sec 2786 sec 

Ttot, Nloc=6 3049 sec 5227 sec 3427 sec 

Ttot, Nloc=8 3379 sec 6811 sec 4147 sec 

 

fruit picking is calculated according to 

 Ttot =TfruitNfruit + TmovNtreeNloc 

where Tfruit is the average time for the fruit picking equal to 
the cost function value F. The total time for different Nloc  and 
specific robot types is presented in Table 2. 

The results presented in Table 2 show that the TS training 
system is the most effective. The total fruit picking time 
depends on the number of trees and the number of locations 
around a single tree, and has an optimal value (shown in 
bold), which is the tradeoff between the average fruit picking 
time and the number of movements. 

IV. CONCLUSION 

We propose to evaluate the fitness of the orchard tree 
architecture to robotic harvesting. The comparison of the 
robot performance cost function for different tree training 
systems shows that high density training systems have a 
structure that demands a simpler optimal robot to perform the 
fruit picking in less time. Therefore, these systems are better 
fitted to robotic harvesting than the conventional systems. In 
addition to the agronomical advantages of high density 
training systems [8], they provide automation advantages.  

Tree training according to high density training systems is 
performed by growing high trees in high density and 
eliminating small branches. This provides three main 
advantages. Concentration of the fruit in a compact volume 
(near the row plane at TS and along the trellis at YT) shortens 
the robot’s link lengths and enables the robot to shorten the 
time of movement between the locations around the tree. In 
addition, a plane-shaped tree (so called “fruit wall”) enables 
the positioning of the robot close to its targets and orients its 
joints along the plane, making the end-effector motion close 
to two-dimensional and allowing the use of prismatic joints. 
Finally, the decreased number of branches provides a working 
volume with minimum obstacles. An additional non-
mechanical advantage of tree training according to high 
density training systems is the decreased number of branches 
and leafs occluding the fruit, which can simplify fruit 
recognition. 

The stochastic nature of the agricultural environment, 
which includes a large number of unordered objects, makes 
the designing process extremely time consuming. To 
complete a design in an acceptable amount of time, more 
effective methods, such as environment characterization [10], 
should be applied. 

Future work must consider the following generalizations. 
Agricultural environment has a large deviation in its 
geometrical features even for trees taken from the same row 
in an orchard [10]. Hence, a single plant cannot represent the 
entire orchard. To achieve an optimal and robust robot and a 
reliable evaluation of the training system fitness, we must 
collect enough sampled data (tree models) characterizing the 
tree training system. Nevertheless, we have to take into 
account that a large dataset leads to a growth in the 
computation time. To address this problem and to shorten the 
optimization time, our method described in [10] can be used. 
The method is based on building an average, characteristic 
tree model with the help of the minimal amount of data 
sufficient for the optimization. 

Trellis cables and supports represent obstacles for the 
robot. We will try to offer engineering recommendations 
defining the positioning of these supports in a way which 
minimizes their interference with the operation of the robot. 

Methods of describing the environment, such as L-systems 
and Markov chains, can be used as parameters for an 
optimization of the environment best suitable to robotic 
harvesting. 
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The Heat Based Rump Descriptor for Identification of Very Thin Goats
in Dairy Farms

Susana Brandão1, Ana Vieira2, João P. Costeira3, Manuela Veloso4

Abstract— In this paper we address the problem of identi-
fying goats in dairy farms with sub-optimal values of Body
Condition Score (BCS). The BCS conveys information on
whether an animal is fat or thin and its identification has a
strong economic impact as very thin animals have poorer milk
production and associated health problems. Albeit its important
implications, not only there is no automated way of assessing the
BCS in dairy farms, but current available techniques require
specially trained personnel. However, the recently introduced
Pictorial Scale for BCS assessment in dairy goats shows that
the rump region has several visual cues strongly correlated
with animal’s BCS values. In this paper we move towards the
automatic assessment of BCS by developing a descriptor for
rump’s 3D surfaces, collected by an RGB-D camera. The use
of 3D surfaces as the basis for identification is fundamental, as
it allows data collection without requiring animal handling to
ensure careful alignment between camera and animal. However,
the identification of the rump region in the 3D surfaces is
very difficult, which leads to a large variability in the type of
surfaces associated with the same BCS value. The descriptor we
here introduce, the Heat Based Rump Descriptor (HBRD), uses
diffusion geometry concepts to seamlessly handle the difficulty
in defining a rump region and the resulting large variability of
shapes. We test our descriptor in a dataset of 32 dairy goats
and show that our descriptor is able to effectively cluster all
the very thin animals.

I. INTRODUCTION

The Body Condition Score (BCS) is correlated with an
animal fat deposits and is an important animal-based in-
dicator of animal welfare. Furthermore, very low BCS, as
those represented in Fig. 1(a), are also correlated with low
milk production [1] and are not in adherence with consumers
expectations on animal’s welfare [2].

European Union, having recognized the farm animals’
right of freedom from hunger and thirst, is currently moving
towards the introduction of BCS as a key indicator on wel-
fare assessment protocols on goat farms. However, standard
techniques for estimating the BCS in goats , e.g., as those
presented in [8], cannot be used in large scale assessments,
as they require restraining and handling of each animal
individually by specially trained assessors.

The recently introduced Visual Body Condition Scoring
System, [15], addresses the scalability problem by creating
illustrations to allow non-experts to assess the BCS by visual

1Susana Brandão is with ECE at CMU, USA and IST-UL, Portugal.
sbrandao@ece.cmu.edu

2Ana Vieira is with Veterinary School at FMV-UL, Portugal.
ana.lopesvieira@gmail.com

3João P. Costeira is with Faculty with ECE at IST, Portugal.
jpc@isr.ist.utl.pt

4Manuela Veloso is with Faculty with CS, CMU USA.
mmv@cs.cmu.edu

(a) Very thin (b) Normal (c) Very Fat
Fig. 1. Examples of very thin, normal and very fat animals at different dis-
tances and orientations from a RGB-D camera. Each animal was manually
evaluated to assess its BCS score.

inspection. For the construction of the Pictorial Scale, authors
identified several visual features in the rump region that
are strongly correlated with the animal BCS. Those features
correspond to distances between bones and muscle folds,
which are easy to visually identify. The features were used
to define a standard individual of each class, from which a
professional illustrator generated drawings for the Pictorial
scale. The Pictorial scale can now be used in farms, but still
requires trained evaluators.

The features identified in [15] worked well for the pur-
pose of creating visually accurate illustrations. However, to
retrieve such features, authors acquired photographs taking
careful control on conditions such as: i) animals’ stillness;
and ii) rumps’ alignment with the camera, which are difficult
to ensure without animal handling. In this paper we move
towards a scenario where no handling is required by using
RGB-D cameras, as 3D information handles better changes
in the orientation between camera and animal. Such cameras
can be fixed on top of the animals’ normal path, and can
accurately collect data at roughly 2m from the animal.

RGB-D cameras, such as the Kinect camera, provide both
an RGB image and a depth image, from which we can
recover 3D surfaces corresponding to the animal surface.
From the whole animal, we extract the rump as showed in
Fig. 2 using a manual labeling approach similar to the one
presented in [15].

As noted in [15], the main difference between different
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Fig. 2. Acquiring rumps’ 3D surfaces.

BCS categories are the fat reserves in the rump, which yield
a bulkier appearance in fatter animals. To correctly assess the
animal class, we focus on descriptors that represent changes
in the volume between rumps of different animals. Fur-
thermore, the most noticeable changes in the rump volume
concern its upper part, near the hip.

However, the direct comparison of volume between rumps
3D surfaces is very challenging, as: (i) rump shapes vary
considerably between animals, regardless of BCS, as showed
in Fig.1; and (ii) it is difficult to consistently define the rump
region in a meaningful and consistent way.

Without a clear definition of the region of interest, we
cannot compare two surfaces. In fact, from the several
descriptors available for the recognition of 3D shapes,[16],
[10], [3], none that we are aware of handles the problem of
representing a shape that itself is ill defined. We thus propose
to assess the changes in volume from one surface to another
based on how much they differ from a plane. Animals with
rumps that are more similar to a plane, have smaller fat
deposits, i.e., are thinner. By introducing an intermediary
shape, we avoid mapping and registration between rumps.

To capture changes in this vague region of the upper
part of the rump, without having to specifically segment it,
we use multi-scale descriptors, i.e., descriptors that provide
information on how a given point in the surface is related to
the whole surface by considering increasingly large neigh-
borhoods for that point. An example of such descriptors are
Heat Kernel Signatures [13].

Heat Kernel Signatures and other heat based descriptors
describe how connected a point is to its neighborhood by
simulating heat propagating over a surface. In Fig. 3 we show
several snapshots of the process of heat propagating from an
initial heat source to the whole surface. At each fixed time
instant, the temperature of a point in the surface is related to
its distance to the initial source. Furthermore, as time passes,
the temperature in points further from the source increases,
while the temperature at the source decreases. The change
in the temperature is more significant in the first instants,
when there are sharp contrasts over the surface, than in the

end, when the temperature over the whole surface becomes
constant, regardless of the surface shape.

Fig. 3. Heat diffusion over a goat’s 3D rump. Red corresponds to higher
temperatures and blue to colder ones.

Thus, heat diffusion has two characteristics that make it
the ideal choice of representation: (i) naturally introduces
a notion of scale, and (ii) temperatures can be used as a
surrogate to distances[3], specially when surfaces are noisy
and have a poor resolution such as those from common RGB-
D cameras.

In this paper we move towards the automatic identification
of the body condition score of farm goats by introducing a
Heat Based Rump Descriptor (HBRD) that:
• represents regions at different scales, allowing to focus

on the upper part of the rump, without having to
explicitly segment the region;

• describes the rump by comparing it against a default
shape, in this case a plane.

Such descriptor allows to handle the variability in the an-
imals’ shape and the difficulty in defining the region of
interest.

In the following we show how we obtain an initial seg-
mentation of the rump region given the output of an RGB-D
sensor, and we provide full detail on how to estimate HBRD
descriptors in any given rump.

II. DATA ACQUISITION

While leaving the milking room, animals pass one by one
through a narrow corridor. We placed a calibrated RGB-D
sensor on a fixed point above the animals’ path. An expert
manually evaluated the animals’ BCS to provide ground truth
using the simplified 3 points scale defined in [15].

While we cannot identify accurately the rump region in the
different animals, we follow [15] and define the region based
on the rump bone structure, namely the tuber sacrale (hip or
hook bones) and the tuber ischia (pin bones), represented
in Fig. 4(a). The tips of these bones correspond to easily
identifiable features in the RGB images of animals of all
categories, as we show in Fig. 4(b)-(d).

From the depth image, D, we can recreate the goat 3D
surface, as illustrated in Fig. 2. The surface corresponds
to a set of triangles, represented by a list of vertex coor-
dinates X =

[
x̄T

1 , x̄
T
2 , ..., x̄

T
N
]

and a set of edges E = {e1 =
(1,2), ...,eNe = (k,N)}. Each vertex corresponds to a pixel
in the depth image, and the coordinates are obtained by
calibrating the sensor. We construct the set of edges based
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(a) Detail on the rump bone structure. (b) Examples of photographs with annotated hip and pin bones.

Fig. 4. Rump identification: Detail on the bone structure of a goat rump, showing that hip and pin bones are part of the same structure and lay on the
same plane, and photographs showing that the bones are easy to identify.

on adjacency relations between pixels in the depth image,
creating a mesh of triangles that cover the surface, without
overlap. From the camera calibration, we can also map the
annotations in the RGB image, I, to the depth image, D, to
obtain the 3D coordinates of the left and right hip bones,
b̄l,r, and pin bones p̄l,r.

When the goat is standing, the four bone tips approxi-
mately define a plane, as the hip and pin bones are rigidly
connected. By finding the orientation of the plane defined
by the four bone tips with respect to the floor, we rotate
the whole surface, so the bone tips lay in the x− y plane.
We define the rump as all the points with a positive z. This
segmentation is reproducible and consistent, albeit it may
lead to the inclusion of other parts of the animal in the rump,
e.g., the tail.

To account for changes in the animal size, we nor-
malize both x and y coordinates of all vertices, so that
the bone tips of all the animals are in the same posi-
tion h̄′l,r p̄′l,r in the x− y plane. To account for possible
hip or tip bones miss-alignment, we normalize using a
projective transformation. The resulting normalized coordi-
nates, Xnorm = [x̄norm

1 = [xnorm
1 ,ynorm

1 ,z1], ..., x̄norm
N ], maintain

the same z-coordinate. The edges in the normalize surface
connect the same vertices as the edges in the original one.

After segmentation and normalization, we obtain a set of
rumps similar to those represented in Fig. 5.

III. RUMP DESCRIPTION

A. Representing variable surfaces

Rumps in Fig. 5 highlight that the most distinct feature
among all rumps is that thin goats are almost flat. The
rumps also illustrate the intra-class variation resulting from
the natural variability of goats shapes and sizes. In particular,
it shows that goats have different features that are not related
with the BCS, e.g., rump boundaries change considerably

across animals, and in some animals the tail is included in
our estimation of the rump region. We must also account for
errors in the segmentation process, such as (i) there is a large
uncertainty in the identification of hip and pin bones on the
animals rump, (ii) it is difficult to ensure that the bone tips
are in a plane, and (iii) errors in camera calibration result in
errors in the map between RGB and depth images.

Common approaches for 3D shape representation, such as
bag of features or 3D holistic representations are not effective
in describing these variations, as they all assume that any
input shape is fully explained by the category they want to
represent and eventually classify. As far as we are aware,
there is no previous work on the representation of 3D shapes
where the shape itself was not explicitly defined.

We compare the differences in volume by extracting shape
information, e.g., distances between points and areas, and
compare it with the same information extracted from a
planar projection, as showed in Fig. 6. The planar projection
corresponds to the same mesh, but with z-coordinate set to
zero, Xplane =

[
x̄plane

1 = [xplane
i ,yplane

i ,0], ..., x̄plane
N

]
.

The comparison between the two surfaces is possible
because there is a natural bijection relating the two surfaces,
i.e., there is an one to one relation between points in the
rump and in the planar projection. We thus compare the
two surfaces by computing a geometry dependent function at
each point and compare the values of both surfaces at related
points.

As stated, in this work we use the temperature resulting
from a heat diffusion process, as it provides a natural
segmentation of the interest region and depends on the
geometry of each surface, as it occurs faster in planar
surfaces. Other functions, e.g., the distance to a point, also
depend on the geometry of each surface, however require a
rigorous definition of the interest region. We thus assess if
the geometry of the two surfaces is similar by comparing the
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(a) Thin (b) Thin (c) Normal (d) Normal (e) Fat (f) Fat
Fig. 5. Example of rumps from different animals. The top image represent a view from the z-axis, while the bottom view from the x-axis.

Fig. 6. Example of a planar rump, on the left, built from the regular rump
on the right.

temperature at equivalent points in both surfaces.

B. Heat Diffusion on Discrete Surfaces

Heat based descriptors have shown good results at rep-
resenting surfaces retrieved from depth sensor [3], [4], [5]
and other 3D shapes [13], [6]. We here briefly review the
necessary steps to compute a temperature T̄ (t) ∈ RN on all
the vertices in the surface, at each time instant t. The familiar
reader may skip to section III-C.

Heat diffusion in discrete surfaces, such as the one ob-
tained from depth images, is described by eq.1, [9]

∂t T̄ (t) =−LT̄ (t) (1)

where L is the discrete Laplacian matrix, which is related
with the Laplace-Beltrami operator defined in continuous
surfaces [13]. Such operator returns the temperature second
derivative as defined over the surface, i.e., taking into account
that the surface is not necessarily a plane.

The discrete version we use in this work is associated with
a graph interpretation of the organized set of points in the
depth image. As showed in Fig. 7, each pixel i in the depth
image leads to a vertex in the graph with coordinates x̄i. The
vertices are connected by the triangle edges E and to each

edge e = (i, j) connecting a vertex i to a vertex j there is an
associated weight wi, j = ‖1/‖x̄i− x̄ j‖2.

Fig. 7. Graph structure of surfaces retrieved with an RGB-D camera.

For a graph/surface with N vertices, the Laplacian is the
N ×N symmetrical matrix L = D−W , with [W ]i, j = wi, j
if there is an edge connecting the vertex i and j, i.e., if
e = (i, j) ∈ E, and 0 otherwise. D is a diagonal matrix,
with [D]i,i = ∑

N
j=1[W ]i, j. The resulting L matrix, using the

above definition for the weights, corresponds to the finite
differences approximation to the second derivative.

With Newman boundary conditions and an initial temper-
ature over the surface equal to T̄ (0), the temperature at any
other time instant T̄ (t) can be written in close form with
respect to the eigenvalues λi and eigenvectors φ̄i of L:

T̄ (t) =
NV

∑
i=1

φ̄i exp{−λit}φ̄ T
i T̄ (0). (2)

C. Heat Based Rump Descriptors

We evaluate how much a rump differs from a plane by
considering a heat diffusion process starting at its center and
the equivalent vertex on its planar projection. Thus, the initial
condition for both the temperature in the normalized surface
T̄ (0) and in the plane, T̄ ′(0) will be equal to each other and
be zero everywhere except for some vertex c in the center
of the rump, i.e., [T̄ ]c = 1 and [T̄ ]i = 0 ∀i 6= c.
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The vertices at the center of both rumps, with coordinates
x̄c, and x̄plane,c, are those closest to the center of the quadrilat-
eral defined by h̄′l,r, p̄′l,r in both Xnorm and Xplane respectively.

For each animal, given the set of edges E and the two
sets of vertex coordinates Xnorm and Xplane, we compute
the Laplacian for each surface, Lnorm and Lplane. From each
Laplacian we compute the first 300 eigenvectors and eigen-
values and, given the initial condition, T̄ (0), we propagate
the temperature at both surfaces using eq. 2. As to each
point in the original surface corresponds a single point in
the planar surface, we can compute the difference between
the temperature at both surfaces, ∆T̄ (t) = T̄norm(t)− T̄plane(t)
at each time instant.

We evaluate the time difference at exponentially large
time intervals, as changes in temperature occur faster in the
beginning. In particular, we use time instants tk = 0.1e−kδ t ,
spanning from 1/700 to 1/10. We focus on the rump upper
part by assessing ∆T̄ (t) at a subset of vertices S that form
the shortest path in the planar mesh between x̄c and h̄′l , which
we compute using the Dijkstra algorithm [7].

Finally we construct the descriptor, z̄ by considering, for
each time instant tk, the maximum of ∆T̄ (tk) over the subset
of vertices S , i.e.,

z̄ : [z̄]k = max
x∈S

[∆T (tk)]x (3)

The main steps for computing HBRD are highlighted in
Algorithm 1. The algorithm requires as input an RGB image,
I, a Depth image, D, which we here assume that is already
mapped into the RGB image. As fixed input parameters,
the algorithm further requires the time instants at which
we compute the temperature, t̄, and the coordinates of the
left and right hip and pin bones in the normalized rump,
h̄′l,r, p̄′l,r. In this study, the position of the bone tips in the
RGB image h̄l,r, p̄l,r is provided by the user, however we
expect that this step can be automated using feature matching
and taking advantage of the 3D information provided by the
depth image, as in [12].

IV. RESULTS

We used Algorithm 1 to describe different animals.
Fig. 8 shows that temperature in thinner animals converges

faster to that the planar rump. The figure represents four
rumps, two very thin and two normal. The colors represent
the absolute difference between the temperature in the rump
to the planar rump. The black line in the upper left part of
each rump corresponds to the shortest path S .

Fig. 9 shows the descriptors for the animals in Fig. 8.
There is a clear difference over the maximum of the differ-
ence between normal and thin animals. Furthermore, we note
that by looking only into what happens on the top part of the
rump, the animal’s tail has little impact on the temperature
on the top part of the rump.

Finally, we show that HBRD differentiates thin animals
among a dataset of 32 animals, 9 thin, 17 normal and 6
fat. Fig. 10 shows the 3D-Isomap projection[14] of the set
of descriptors. The Isomap projection, similarly to PCA
projections[11] allows to visualize data of high dimension.

Algorithm 1: Heat Based Rump Descriptor (HBRD).
Input: RGB image: I; Depth image: D; Time instants:

t̄; bone tips in the normalized rump: h̄′l,r, p̄′l,r

Output: Rump descriptor, z̄r.

Manually Annotate Hip and Pin Bones in the RGB
Image:
[h̄l,r, p̄l,r]← annotate(I)
Segment and Normalize depth image:
[Xnorm,E]← segmentNormalize(D, h̄l,r, p̄l,r, h̄′l,r, p̄′l,r)
Xplane← project(Xnorm)
Find Path Between Center and Left hip bone:
x̄c← centroid(h̄′l , h̄

′
r, p̄′l , p̄′r)

S ← dijkstraShortestPath(mesh,Xplane, h̄′l , x̄c)
for i = 1; i < size(t̄); i++ do

Estimate both temperatures distributions, from eq 2:
T̄ S

norm← propagateHeat(Xnorm,E,S , [t̄]i)
T̄ S

plane← propagateHeat(Xplane,E,S , [t̄]i)
∆T ([t̄]i) = T̄norm− T̄plane
Get descriptor, from eq 3:
[z̄r]i←max(∆T ([t̄]i))

end

However, Isomap provides a representation which minimizes
distortion of the distances over nonlinear subspaces, in
contrast to PCA that assumes linear subspaces and euclidian
norms.

Results show that very thin animals are well clustered, i.e.,
that the Heat Based Rump Descriptor captures a very elusive
characteristic. Some supervised machine learning algorithm
can then be trained using these descriptors and used used for
automatic classification. Support vector machines would be
good candidates for classification. We further note that, by
introducing a comparison surface that shares with the original
rump most of the characteristics that are not intrinsic to the
class, e.g., the tail, we obtained a descriptor that correctly
represents the class dependent characteristics.

V. CONCLUSIONS AND FUTURE WORK

In this paper we introduced the Heat Based Rump De-
scriptor (HBRD) for the identification of very thin goats
in dairy farms. The identification of such animals is of
utmost relevance not only by the economic implications of
the decrease in the milk production associated with a low
BCS, as it is in direct violation of the animal’s rights.

The HBRD assesses the BCS by the rump volume. To
handle the large variability of animal shapes and the difficulty
of exactly setting the limits of the relevant part of the rump,
HBRD uses heat diffusion to represent distances between
points in two equivalent surfaces. The volume is assessed by
having the surfaces differ only on the characteristic that we
want to measure, i.e., the volume. The use of heat diffusion
allows to soft segment the region of interest, as the difference
in temperature in both surfaces will be more significant in
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Fig. 8. Difference over time between the temperature over the rump and
over the planar rump.

Fig. 9. Maximum difference over time and over the path marked in Fig. 8.

initial time instants, where only the regions close to the
source have a significant impact on the temperature.

Using a dataset of 32 animals, we showed that HBRD
provides a good representation for the problem, as all the
very thin animals in the dataset were clustered together.

By the introduction of relevant descriptors, the work here
presented is an important step towards the automation of
BCS assessment in dairy goats. Future work should then
focus on the automatic identification of the hip and pin bones

Fig. 10. 3D Isomap projection of the rump descriptors on a dataset of 32
animals. The blue points correspond to thin animals, while red correspond
to normal and very fat.

in the RGB images.
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chèvres. 1999.

[9] D. A. Levin, Y. Peres, and E. L. Wilmer. Markov Chains and Mixing
Times. American Mathematical Society, 2006.

[10] R. B. Rusu, G. Bradski, R. Thibaux, and J. Hsu. Fast 3D Recognition
and Pose Using the Viewpoint Feature Histogram. In IROS, October
18-22 2010.

[11] J. Shlens. A tutorial on principal component analysis. In Systems
Neurobiology Laboratory, Salk Institute for Biological Studies, 2005.

[12] X. Song, J. Schuttea, P. van der Tol, F. van Halsema, and P. Groot Ko-
erkampa. Body measurements of dairy calf using a 3-d camera in an
automatic feeding system. In International Conference of Agricultural
Engineering, 2014.

[13] J. Sun, M. Ovsjanikov, and L. Guibas. A concise and provably
informative multi-scale signature based on heat diffusion. In SGP,
2009.

[14] J. Tenenbaum, V. de Silva, and J. Langford. A global geometric
framework for nonlinear dimensionality reduction. Science, 2000.

[15] A. Vieira, S. B. ao, A. Monteiro, I. Ajuda, and G. Stilwell. Devel-
opment and validation of a visual body condition scoring system for
dairy goats with picture-based training. J. of Dairy Sci., 2015.

[16] W. Wohlkinger and M. Vincze. Ensemble of shape functions for 3d
object classification. In ROBIO, 2011.

16



  

 

Abstract – The reconstruction of 3D models of plant shoots is a 

challenging problem central to the emerging discipline of plant 

phenomics – the quantitative measurement of plant structure and 

function. Current approaches are, however, often limited by the use 

of static cameras.  We propose an automated active phenotyping 

cell to reconstruct plant shoots from multiple images using a 

turntable capable of rotating 360 degrees and camera mounted robot 

arm. To overcome the problem of static camera positions we 

develop an algorithm capable of analysing the environment and 

determining viewpoints from which to capture initial images 

suitable for use by a structure from motion technique. 

 

I. BACKGROUND AND MOTIVATION 

The global population is expected to reach 9 billion by 

2050 and the spread of prosperity throughout the world is 

increasing the food intake per capita, driving the demand for 

a richer, more varied diet. At the same time, changes in 

climate are causing more frequent and severe flooding, 

destroying crop yields and shortage of arable land constitutes 

an additional challenge. It has been widely predicted that 

without crop climate adaption the production of food will 

deteriorate [1], [2]. The long-term goal of this work is to 

provide the innovative approach to sustainable agriculture 

necessary to adapt to the fluctuating environment and 

increased demand for food.  

The identification of more productive and/or resilient crop 

species requires connections to be made between the genetic 

and physical structures of the plant. While significant 

progress has been made in the study of the genome in recent 

years, the creation and quantitative analysis of plant 

phenotypes (structures) has become a major bottleneck. 

Though some plant traits (e.g. leaf area) can be estimated 

using a single carefully placed camera and 2D image analysis 

methods, the ability to produce accurate 3D models of plants 

would support a wide variety of phenotyping tasks. 

Image-based reconstruction methods are attractive in this 

context. Plants are easily disturbed; non-invasive sensing 

techniques capable of capturing information across the whole 

object are required. Plant shoots are, however, a challenging 

target for image-based reconstruction. Individual variation 

within species is often large, making it difficult to predict 

structures a priori. Individual leaves can be very similar in 

appearance, and densely-packed, occluding each other from 

many viewpoints: plants can be very crowded scenes. The 

leaves of many species are quite highly reflective, and often 

lack the strong texture needed by some techniques.  

The starting point for the work described here is the 

hypothesis that active vision can aid in the generation of 

high-quality plant models by providing improved, and 

responsive, image acquisition strategies. Active vision 

systems automatically control and manipulate camera 

viewpoints to provide images which best support the task at 

hand. Active methods have played a role in other plant-

related tasks. For example, [3] attach a camera to a robot arm 

in order to identify peppers to be collected. The effect of 

camera placement on fruit picking has been investigated [4], 

and active vision used to address the problem of occlusion. 

The large-scale phenotyping systems now finding application 

in plant and crop science, however, typically rely on fixed 

viewpoints that are not adapted to the specific plant being 

modelled. Some systems rotate the plant during imaging, but 

still use static camera positions. This means that, in many 

cases, the images captured are far from optimal, adversely 

affecting the results obtained. The ability to adjust sensors in 

response to emerging plant properties (e.g. size) is vital if 

accurate representations are to be obtained of a wide variety 

of plant species, ages and conditions.  

We aim to produce a fully automated, active system that is 

capable of manipulating a camera’s viewpoint to produce 

high quality 3D models of a wide range of plants by adapting 

to the visual information available, without user interaction, 

with the longer-term goal of improved plant phenotyping. 

The approach proposed here offers more flexibility than 

existing large scale phenotyping systems by adapting to the 

natural variation of individual plants in order to obtain 

optimal data.  

 The remainder of the paper is organized as follows; we 

first introduce the reader to 3D plant reconstruction, 

discussing current approaches and the challenges they face. 

We then provide a concise overview of active vision and the 

various components that are necessary, before discussing the 

approach used in this work. Results obtained from real and 

artificial plants are presented. Finally, we conclude with a 

summary of progress and plans for future work. 

II. 3D PLANT RECONSTRUCTION 

Until the late 1960s botanical drawings were the primary 

means of capturing plant architecture. Today a variety of 

approaches are available. Rule-based methods use a set of 

rules to define the structure of a particular species or class of 

plant. Varying the parameters of these systems produces 

models of single plants, but rule-based approaches cannot 

easily be used to produce the descriptions of specific, 

existing plants needed to support phenotyping. 

 Image based approaches seek plant geometry directly, 

analysing a set of images to reconstruct representations of 

actual plants. Image based models can be used to support 

simulations and enable the extraction of trait measurements. 

 Some approaches, such as Light Detection and Ranging 

(LiDAR) [5], custom illuminate the target object by emitting 

Three-Dimensional Reconstruction of Plant Shoots from Multiple 

Images using an Active Vision System 

Jonathon A. Gibbs, Michael Pound, Darren M. Wells, Erik Murchie, Andrew French, Tony Pridmore 
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radiation into the scene. LIDAR is commonly used in the 

airborne reconstruction of field based plants, trees in 

particular. For example, [6] describe the forest canopy as a 

series of cones fitted to a raw LiDAR point cloud, then apply 

simple geometric operations to adjust and correct its height. 

Similar methods can be applied to smaller plants; [7] model 

rice plants using a three-dimensional sonic digitiser to 

capture a 3D point cloud. The digitisation process is reported 

to take up to an hour to complete, and [8] note that the 

digitisation process for their approach to reconstruct White 

Clover canopies required between 3 to 7 hours. They used 

electromagnetic digitising apparatus with corner flags to aid 

calibration, applying a destructive approach and pruning the 

canopy from the top downwards. 

The recovery of 3D descriptions from images captured 

under natural illumination is a longstanding research topic in 

the computer vision community. A range of approaches such 

as structure from motion, shape-from-silhouette and space 

carving, have been developed and can be used for plant 

reconstruction. For example [9] combine a volumetric 

opacity estimate with view-dependent texturing and 

successfully model trees from a series of images whilst [10] 

use a space carving approach with particle flows to estimate 

tree volume.  [13] use a stereovision approach to reconstruct 

plant models using automated segmentation. User input is, 

however, often required. [11] adopt the less common 

approach of sketching to create plant models. Other 

interactive approaches construct models directly from 

images. [12] obtain a point cloud from 35 images of a plant, 

though user input is required in the form of segmentation to 

separate leaves, and the image acquisition process is manual.  

 Fully automatic reconstruction of plants from natural 

images is challenging due to the intricate phyllotaxis (leaf 

structure) and continuous reorganization of plant foliage. 

Many problems arise during the image acquisition and 

reconstruction processes. Determining the number of images 

required, and their viewpoints, such that all the required plant 

features are visible remains difficult. Too few or poorly 

chosen images results in the loss of data, whilst too many 

results in increased computational requirements. 

 Occlusions are a common side effect of complex 

structures such as plants and can be overcome by capturing 

an increased number of images, though in some cases 

approximation techniques must be used. Some approaches 

rely on intrusive/destructive approaches to obtain more 

information, however this means the plant cannot return to 

its original configuration, preventing the comparison of 

descriptions obtained at different times. Invasive methods 

can also increase reconstruction time and encourage 

irreversible errors. Multiple side image methods also exist 

but often don’t support 3D modelling as there is no overlap 

between images. 

 An active vision approach can alleviate the problems 

associated with plant modelling. By manipulating the 

camera(s) to optimise image number and viewpoint it can 

help overcome occlusion. By analysing a developing point 

cloud and moving to view a region that has been identified as 

unexpectedly sparse, it can help to obtain missing data. 

Selecting camera positions on the basis of emerging data can 

also prevent multiple, unnecessary views of the same regions 

being collected, both reducing the computational 

requirements and explicitly reacting to natural variation. 

    

III. AN ACTIVE PHENOTYPING CELL 

A. Hardware and Calibration  

 We present a nonintrusive and nondestructive active 

vision approach to 3D plant modelling using a camera 

mounted robot arm and a turntable. The approach is based on 

a structure from motion method that derives 3D descriptions 

of the plant surface from sets of colour images. Our active 

phenotyping cell comprises a Universal Robot 5 (UR5), with 

a standard handheld camera, Canon 650D, and a high 

precision turntable, the LT360 EX. The UR5 offers 6 degrees 

of freedom whilst the turntable enables a full 360 degrees of 

rotation ensuring it is possible to see the entire plant, both of 

which are necessary as it is not always possible for the robot 

arm to move around the entire plant, for example a large rice 

plant. Our setup is illustrated in Figure 1. 

 

 

 
 

FIGURE 1. HARDWARE SETUP OF ROBOT, TURNTABLE AND CAMERA 

We calibrate the camera using a checkerboard approach 

[14], in which 15 arbitrary images of the checkerboard are 

captured. We calculate the forward kinematics using Denavit 

Hartenberg (DH) parameters [15] with joint angles obtained 

directly from the robot. The remaining transformations are 

calculated using a simultaneous closed-form quaternion 

approach [16].  

 In order to use the turntable with our fully calibrated 

system we need to take into consideration the rotations 

performed by the turntable. To achieve this we project to the 

centre of the turntable, which is known from our calibration 

process. From this we can calculate 𝑌𝑗 where 𝑌𝑟, the rotation 

of 𝑌, is calculated using Eq. 1, 𝑗 is the number of degrees that 

the turntable has rotated and function RotZ is a rotation 

around the Z axis. 

 
YRj= (Y'RotZ(j))

'

 
 

(Eq. 1) 

The translation, 𝑌𝑡, requires that the difference between 

the rotation matrix before and after a rotation is known; Eq. 
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2, where c⃗ is the homogeneous position of the centre of the 

turntable. Finally, we multiply 𝑥’ and 𝑦’ by 𝑌𝑟 with its 

original translation from Y0 to obtain Yj 

 

 

p⃗⃗= c⃗-(RotZ(j)c⃗ ) 

x'= -cx⃗⃗⃗⃗ +(-px⃗⃗ ⃗⃗ ) 

y'= -cy⃗⃗⃗⃗ +(py⃗⃗ ⃗⃗ ) 

Ytj
⃗⃗⃗⃗⃗⃗ =[x'y'0 1]' 

 

 

 

 

 

 

(Eq. 2) 

Yj can then be calculated as 

 Yj=[YRjYt0
⃗⃗⃗⃗⃗⃗⃗]*Ytj

⃗⃗⃗⃗⃗⃗  (Eq. 3) 

Once we have a fully calibrated system we are able to 

remove the checkerboard from the scene and calculate our 

camera position from the remaining variables.  

B. Image acquisition strategies 

 To obtain accurate 3D models via structure from motion 

the camera needs to be in a position to collect an optimal 

number of images of the highest quality. This is a 

challenging problem due to the vast number of possible 

viewpoints and the lack of prior knowledge of the shape and 

size of the object. We have developed a proof-of-concept 

image acquisition strategy that uses a simple threshold-based 

method to identify the plant in order to calculate initial 

camera positions. There are two primary constraints; 1. The 

camera must be facing the plant in the robot’s starting 

position, approximately placing the plant in the centre of the 

view. 2. A white background must be used with no other 

colour visible, which allows us to calculate the position of 

any given plant. These constraints are commonly satisfied 

and/or are easily achievable in controlled phenotyping 

environments. More powerful segmentation methods could 

be used in less constrained environments. 

The role of image analysis in the proposed system is to 

identify four points on the boundary of the plant region; 

those nearest the four edges of the image. The coordinates of 

these points provide measures, TX, BX, LX, RX, of the 

shortest distances from the plant region to top, bottom left 

and right edges respectively. A user-defined threshold is 

applied to separate plant from (white) background, and plant 

pixels with the highest and lowest x and y coordinates are 

identified. To reduce the likelihood of selecting a noise-

generated false-positive plant pixel we examine 400 pixels 

around each candidate (approximately 0.01% of the total 

pixels). Only if 75% or more are of those pixels are above 

threshold is the pixel accepted as lying on and near the 

boundary of the plant (Figure 2). This heuristic is simple, but 

effective and computationally efficient.  

To initialise and parameterise the system the camera is 

first moved to a start position facing the turntable. It is then 

moved in a plane normal to the image plane to define four 

points. These points define the corners of a quadrilateral 

normal to the image and passing through the start position. 

The points are chosen to be the furthest from the start point 

in each direction from which the turntable remains visible. 

Throughout image acquisition all translational movements of 

the camera take place within the plane defined by this 

quadrilateral. Camera rotations may take it outside the plane, 

but it remains close to it at all times.  

 

 
 FIGURE 2. TOP LEFT: ORIGINAL IMAGE, TOP RIGHT: IMAGE SEPARATED 

FROM BACKGROUND WITH DISCARDED OUTLIERS, BOTTOM LEFT: 

EVALUATION OF A PIXEL, BOTTOM RIGHT: THE RESULTING BORDER 

DEFINING VALUES RX, LX, TX, BX 

The centre of the quadrilateral is used to define a set of n 

initial points from which the search for suitable viewpoints 

begins. These are evenly spaced along a vertical line through 

the quadrilateral centre; the image acquisition process is run 

from these points in fixed (lowest to highest) order, 

providing n images for each turntable position. The 

dimensions of the quadrilateral determine the size of the 

camera translations made during image acquisition. Large 

translations towards (forward) or away from the plant 

(backwards) are 30% of the width of the quadrilateral, small 

movements 10%. Camera rotations (up, down, left, right) are 

of a small, fixed size (typically 2 deg.) set by the user. 

 Active image acquisition begins with the camera in one of 

the initial positions described above. Images are repeatedly 

captured, thresholded, plant boundary points identified, and 

the camera moved under the control of a set of heuristic rules 

until the plant is either fully enclosed by the image boundary 

but without excess space or the arm is at its maximum reach. 

 The rules employed are intuitive, but effective: 

 

 If there are 50 or more pixels of white space 

surrounding the plant (TX, LX, BX, RX all > 50) a 

forward movement is made. 

 If the plant region is close to the boundary at either 

the top and bottom or left and right a backward 

movement is made. 

 Forward and backwards movements are large unless 

a movement in the opposite direction has just been 

made, in which case they are small. This introduces 

a degree of fine-tuning and prevents oscillation. 
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 If LX is large and RX is small, rotate left. 

 If RX is large and LX is large, rotate right. 

 If TX is large and BX is small, rotate upwards. 

 If TB is large and TX is small, rotate downwards. 

 

 These rules are applied to each of the vertical stack of 

initial points. Once an improved camera position has been 

identified for each such point, images are captured and the 

turntable is rotated.  The size of the rotation is set to ensure 

that at least 60 images are captured in total. In a typical 

experiment 6 vertical positions are used, and the turntable 

rotated 36 degrees, between capture sessions. During image 

capture camera files are created containing the camera matrix 

that transforms a 3D point to a 2D point on the image plane. 

Plant structure varies significantly between species; when 

modelling those expected to be rotationally symmetric the 

search for camera locations need only be performed once and 

the same positions used at each turntable rotation. Given 

species that may not be rotationally symmetric a new search 

may be performed for each turntable setting.  

C. Reconstruction methods 

 A point cloud is first generated from the images and 

corresponding transformation matrices using Patch-based 

Multi-view Stereo [17]. The point cloud is the starting point 

for further reconstruction and is a common input for many 

software packages and surface reconstruction algorithms.  

We also apply Pound et al’s Canopy Reconstruction 

method [18] which accepts a point cloud as input and 

generates a surface using alpha-shapes and level set methods, 

aiding the process by revisiting the images to ensure 

consistency. Note that this final stage is not possible when 

using a direct 3D sensor such as a laser scanner. 

Surface reconstruction is fully automated and only 

requires user interaction if the hardware is moved, in which 

case the calibration stage needs to be performed. Patch-

Based Multi-View Stereo (PMVS) and Canopy 

Reconstruction have been integrated into our cell to create a 

smooth workflow that can run unattended, taking a step 

towards reducing the phenotyping bottleneck. PMVS takes a 

set of images and camera parameters and reconstructs the 3D 

structure and Canopy Reconstruction takes the output to 

generate a surface-based description.  

IV. RESULTS AND DISCUSSION 

We conducted experiments on four artificial plants of 

varying sizes and densities (Figure 3). Models of each plant 

were built using a set of fixed camera positions, defined such 

that the largest of our plants is fully visible in each image, 

and results compared to those obtained from our active 

vision system, which reacts to the size of the plant. A set of 

60 images were used for each reconstruction. 

This initial study focuses first on the point cloud data 

provided by PMVS. Comparison of the number of high 

quality points generated from static and actively captured 

images by this state of the art method gives some insight into 

the potential benefits of the active approach. Figure 4 shows 

the point clouds obtained from each image set, for clarity we 

have manually removed, using Meshlab, the excess data 

obtained from under the plant, mainly from the plant pot.  

 

 
FIGURE 3. ORIGINAL PLANTS, TOP ROW PLANTS A AND B, SECOND ROW 

PLANTS C AND D 

We compare the number of points obtained by static and 

active vision for each plant; Plant A active 120,422 whereas 

static produces significantly less at 35,872. Plant C active has 

99,570 points compared to 26,668 static and Plant D active 

51,267 points and 17,388 static. The static camera positions 

were in fact obtained by running the active method over plant 

B, ensuring that the largest plant is fully visible in the images 

and therefore has the same number of points for both static 

and active; 168,344. Active vision provides significantly 

more valuable points for each plant, which is particularly 

useful for the small dense plants in this study.  

Though point clouds capture the broad structure of the 

target object, surface reconstruction is essential for plant 

phenotyping, as many desirable traits must be measured over 

leaves.  The canopy reconstruction method of [18] was 

applied to the actively acquired image sets generated here; 

results are shown in Figure 5. Our artificial test plants are 

particularly challenging, with only very small 3D and colour 

differences between their very close packed, uniform leaves. 

[18] employs an image-based surface patch extension 

method which produced an acceptable surface 

reconstruction, but tended to over-extend leaves. We applied 

the same techniques to a dense domestic plant (Figure 6). 

The noise present in the point cloud (middle) has 

successfully been removed by [18] which uses a colour 

threshold to remove noisy points. The point clouds and 

images obtained from our initial active phenotyping cell can 

support fully automatic 3D modelling of real plants.  

More complex reconstruction algorithms such as [18] may 

also benefit from the integration of active image acquisition 

strategies, but have different requirements than point cloud 

recovery methods. Though [18] builds on data supplied by 

PMVS, choosing images to simply increase the number of 

points may not be the best strategy. [18] operates within 

planar patches fitted to point clusters – increasing the number 

of points available need not improve the plane descriptions, 

and could add noise. The points provided by PMVS arise 

from textured leaf areas; [18] may benefit more from 

strategies that provide clearer views and higher resolution 

20



  

images of smoother (less textured) areas, allowing a greater 

degree of patch extension while making leaf boundaries more 

easily identifiable. This could be achieved by exploiting 

initial surface reconstruction data to guide acquisition of new 

images, rather than selecting them from a pre-acquired set as 

is currently the approach in [18]. 

 

 

 

 
FIGURE 4. LEFT HAND SIDE ACTIVE VISION POINT CLOUDS, RIGHT SIDE 

STATIC. THE PLANTS FROM TOP TO BOTTOM ARE A, B, C, D 

 
FIGURE 5. SURFACE RECONSTRUCTION FOR THE FOUR ARTIFICIAL PLANTS 

CORRESPONDING TO THOSE SHOWN IN FIGURE 3 

Point cloud data may also be used to guide image 

acquisition. Though point clouds provide a relatively crude 

representation of complex plant architectures, they can 

capture plants’ broad structure. Models of the expected 

distribution of points in different species might highlight 

regions of the target volume that are not sufficiently explored 

by an initial image set, allowing the camera to viewpoints 

that will produce more complete plant descriptions. 

 

 
FIGURE 6. SURFACE RECONSTRUCTION OF A  REAL PLANT FROM ACTIVELY 

ACQUIRED IMAGES. TOP; ACTUAL PLANT, MIDDLE; THE POINT CLOUD 

ACQUIRED, BOTTOM; SURFACE RECONSTRUCTION 

V. CONCLUSION 

 

 We present initial work towards an active plant 

phenotyping cell capable of recovering 3D descriptions of 

plant shoots from multiple colour images. An automatic 

image acquisition technique is described which provides 

improved point cloud data and supports the 3D 

reconstruction of leaf surfaces. After the initial calibration of 

the system, which need only be done if hardware is replaced 

or moved, no user input is necessary and the process can 

continuously run through a custom designed interface. 

Experimental results show that by using an active vision 

approach, rather than a traditional static set of camera 

positions we are able to gather significantly more data on the 

plant and its structure from the same number of images.  

The active vision approach provides significant 

opportunities to enhance and extend the scope of surface 

reconstruction methods such as [18]. Careful selection of 

views focusing on areas of ambiguity will, we believe, 

produce both more accurate point clouds and higher quality 

image data from which surfaces can be produced. Active 
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vision may also reduce the number of unnecessary images 

captured, those adding little to the reconstruction, improving 

throughput.  

Cameras and multi-view stereo are employed here, rather 

than e.g. laser scanners, as the image sets involved carry 

information on plant appearance missing from a point cloud. 

In addition to providing 3D structure, multiple colour images 

could be used e.g. to assess plant health. We would suggest, 

however, that an active sensing approach could aid the 

integration of the 2½D data produced by such devices. 

 Future work will more closely integrate active image 

acquisition into the reconstruction process, allowing a wide 

range of camera movements and focusing on areas of 

ambiguity, occlusion and those likely to be missing data. 

Evaluation of the models produced is difficult as ground 

truth data is required. Future work will also investigate the 

possibility of using X-ray CT data to produce reference data. 

In the longer term we aim to provide improved, active 

phenotyping of a wide range of complex plant species.  
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Abstract— The results of the i-LEED project should 

demonstrate an advanced pasture management combining a 

pasture care and management robot with the i-LEED software 

in order to provide significantly improved pasture regrowth, 

biomass quality and consequently better feeding of the grazing 

cattle. The information from the barn and the pasture 

complementing one another will lead to a more balanced and 

demand driven feed supply to the cattle, particularly affecting 

the improved amount of valuable milk components of the dairy 

cattle. Besides the positive effects for the pasture and cattle, the 

required working time for pasture care and management should 

decrease. Furthermore, less greenhouse gas emissions are 

expected due to avoiding of open and compacted soil, as well as 

better nutrient distribution and a higher productivity. 

I. INTRODUCTION 

Contemporary agricultural production faces new 
challenges. The world population increases steadily with a 
trend to surpass the 9 billion mark by 2050. This will affect 
the demand for meat and dairy products globally and cause 
higher retail prices in Europe. The higher living standard, 
rising incomes and urbanisation are often associated with the 
addition of protein to the diet and increased consumption of 
higher value meats, such as bovine and dairy products. Not 
only the quantity but ever more the quality is demanded. In 
the past 50 years the meat production has increased by 300% 
whereas the number of bovine, porcine, poultry and ovine 
animals has grown, at 57%, 137%, 400% and 49%, 
respectively. By 2050 compared with production levels in 
2005/07 the required increase of the meat production is 
estimated to 200Mt a year [1], which is a reason why the 
meat is anticipated to be one of the fastest growing 
commodities in the coming years. The consumption of dairy 
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products in the coming years until 2020 is expected to 
increase modestly in developed countries. Milk and dairy 
products are anticipated to be one of the fastest growing 
sectors in the coming years, increasing demands on 
agricultural resources. In the context of the reformed 
Common Agricultural Policy (CAP) the animal products 
from EU should become more competitive on the world 
market and ensure a fair standard of living for farmers [2]. 

The required additional production needs to be provided 
by increased productivity and the real and essential challenge 
lies in meeting the rising demands in a more sustainable 
manner. The productivity gains will depend on protecting the 
available resources, R&D, and on the ability of the industrial 
sector to adopt the latest technologies. 

A possible solution to stay sustainably competitive is 
based on continuous grazing farms, which can be considered 
as low-input farming systems (LIFS). Mostly in 
disadvantaged areas of some EU countries, a stronger 
tendency of LIFS was noticeable in the previous period 
aiming at aspects of sustainability [3]. In such systems high 
pasture graze portions (35-60%) of the total annual feeding 
ration are preferred. Hence the management of the pasture 
has a high relevance, because under optimal conditions with 
constant grazing the grass growth remains very young and 
shows high energy values (9,8-11,3MJ ME). In some cases a 
complete dispense on concentrate during the grazing period 
can cause a decrease in fat- and protein percentage as well as 
an increase of urea content in milk. For this reason a 
continuous monitoring of the pasture and milk parameters 
needs to be striven for, in order to provide better quality of 
the products as well as animal health and welfare. One of 
LIFS disadvantages is a significant amount of work required 
in order to stay manageable. 

On the contrary to conventional high-input farming 
system HIFS, LIFS provokes less negative impacts on the 
environment and the quality of life of rural and neighbouring 
communities. Fewer changes on the landscape can be 
observed, decreasing its homogenisation and destruction of 
traditional landscape elements and, consequently, loss of 
habitats. Furthermore, the general public likes to see the dairy 
cows on the pasture, and therefore the dairy industry tries to 
keep grazing to remain the standard [4]. 

In the civil society ever more people are worrying about 
animal welfare conditions and the negative effects of 
livestock production units on the appreciation of the 
landscape [4]. Accurate data about feeding, animal health and 
welfare can be achieved only by using ICT and thus, it is 
possible to optimise the production and make it more 
sustainable. In spite of the growing population the 
demographic trends indicate that the number of the well 
versed agricultural workers will either remind static or even 
decrease especially in the developed countries and cause 
additional expenditures in agricultural production. 
Considering these facts the implementation of ICT and 
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robotics also for livestock husbandry on pasture should be 
striven for in order to make this method more competitive. 

Introduction of field robots in the agricultural or off-road 
sector with relatively high working speed (range up to 3m/s), 
which have been considered as optimal for carrying out 
selected operation with the pasture robot, are rarely 
addressed in the literature. Associated accurate path 
following and integrity considerations of a robot moving at 
high speed under harsh conditions (slope, sliding, varying 
soil conditions, obstacles, rollover risk) poses in fact many 
challenging problems. The main existing approaches [5, 6] 
assume currently a known and non-varying environment, 
such as road conditions or very low speeds, and the robot 
stability is generally only addressed from a passive point of 
view, using rollover protective structure, or thanks to 
mechanical design properties [7]. In off-road conditions 
(varying soil properties, slope, sliding), large lateral errors 
are usually observed if a classical control approach is used 
[8], usually based on the pure rolling without sliding 
assumption, and the robot stability need to be addressed with 
respect to the rollover risk. Moreover, the robot must be able 
to detect and avoid potential obstacles during its motions in 
the pasture (e.g. machines, animals, humans). Many methods 
have been proposed in the literature for this function [9] but 
their performances are often limited to robots moving at very 
low speeds, neglecting the sliding and skipping effects in the 
obstacle avoidance reaction in off-road conditions. Making 
mobile robots safe and reliable is an absolute necessity for 
them to find their market. 

II. OBJECTIVES 

The aim of the project is to optimise the feeding of cattle 
on pasture as well as the management of the pasture through 
introduction and fusion of innovative tools. The new i-LEED 
software, which will be developed within the frame of the 
project, will interact with a global Herd Management 
Software (HMS) and provide control of the pasture robot as 
well as providing calculations of the optimal feeding strategy 
for cattle and maintenance of the pasture providing support 
for the farm manager by decision making. 

Within the project a concept of pasture robot including 
several variants will be developed based on existing wheeled 
robotic platforms. The pasture robots will be redesigned in 
order to allow stable movement under difficult terrain 
conditions. During the optimisation phase aspects of energy 
consumption, energy availability and mobility management 
will be particularly considered. The pasture robot should be 
able to move under specific circumstances at relatively high 
speed (up to 3m/s) in the pasture with a high-precision, in 
order to obtain an economically viable solution. In the same 
time the accuracy of defined path following should stay 
stable with a lateral error not higher than 20cm. 

Furthermore, different actuators (mulcher and seeder) and 
adequate sensors for pasture care will be implemented on the 
robot platform. The sensors should provide information about 
the biomass to ensure optimised feeding of cattle and allow 
detection of cowpats and leftovers, heading gramineous 
plants, undesired plants (nettles, crowfoot etc.) or areas 

without vegetation, in order to carry out selective 
improvement of the pasture condition after grazing. This task 
have to be done by mulching only the areas with cowpats, 
leftovers and heading gramineous plants as well as by 
seeding on areas without vegetation. 

III. MATERIALS AND METHODS 

The literature survey and analysis considering the basic 
concept for pasture robot, which will be adapted within the 
frame of the i-LEED project, indicated that a solution with a 
caterpillar track can cause considerable damages on the 
pasture, in particular during the sharp turns and manoeuvres 
[10]. The wheeled robots in general have lower amortisation 
and maintenance cost, steering with high-precision is more 
reliable especially during turns at high speed in presence of 
sliding, their energy consumption is considerably lower (to 
speed up the outside track during turns requires considerably 
more power), and finally, to repair a wheeled system is under 
certain conditions much easier. The better distribution of 
total weight, one of the main advantages of a vehicle with 
tracks, plays a subordinate role because a light weight low-
energy consuming solution is pursued in the i-LEED project. 
Based on these facts, similar decisions made by other authors 
[11, 12, 13] and ideas to consider further agricultural field 
tasks (not only on pasture) using the same robot platform, a 
wheeled platform was chosen. 

The stability problem will be approached based on 
adaptive and predictive control techniques, designed to 
compensate for the perturbations encountered in a natural 
environment and perform accurate path following. Certain 
approaches [14, 15] can lead to an oscillating behaviour of 
the robot, even at limited speed, but the improved algorithms 
presented in [16] can handle this problem. 

A. Pasture robot 

To avoid problems considering conflicts between the 
pasture robot and cows, all the missions will be carried out 
on the paddocks not occupied by animals. The robot will 
access the paddocks from the opposite site than the cows, 
because cows need to return to the automatic milking systems 
(AMS) two to three times per day along the passageway and 
in case the robot would use the same passageway 
unnecessary robot-cow encounters, with unknown 
implications, could not be avoided. In the advanced phase of 
the project the cohabitation of cows and robot in the same 
paddock could be also an interesting constellation which 
needs to be considered to experience feedback for future 
work, before the product introduction on the market. 

One version of the pasture robot will be developed using 
the platform RobuFast [16](IRSTEA) another version will be 
developed based on a commercial available mobile, remotely 
controlled mulcher [17] (LfL) and a third version of the 
pasture robot will be developed based on the RoboTurk 
platform [18] (EGE) see Figure 1. The conditions on pasture 
which can affect the kinematical and dynamical behaviour of 
the pasture robot were analysed and the requirements defined 
in order to choose or rather develop the pasture robot. 
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Figure 1.  : Robotic platforms: RobuFast - IRSTEA (top), i-LEED LfL 

(middle), RoboTurk (bottom left) and rendering of the novel konzept of 

EGE (bottom right) 

Considering the functionality which the pasture robot has 
to fulfill, two main tasks are defined: scouting – data 
collection about the condition of the pasture, and pasture 
maintenance – sowing and mulching. Figure 2 illustrates the 
process of the functionality of the robot for one paddock. 

 

Figure 2.  Process of the robot for one paddock 

1) Scouting 
Scouting operations take place during the period of 

growth before grazing, optionally during the grazing period 
(if additional feeding after a grazing day is applied) and 
immediately after grazing. The aim of scouting is to collect 
information about forage quality and biomass quantity, as 

well as to locate suboptimal zones on a pasture in order to 
provide the necessary information for controlling the 
agricultural implements mounted to the pasture robot and 
thus gain optimal maintenance of the pasture. 

Commercially available sensors for these tasks will be 
evaluated, tested and integrated in the pasture robot, if 
applicable. E.g. an approach for determining the biomass 
quantity using a 2D laser scanner (wavelength 660 nm) was 
carried out. For this purpose the sensor was attached to a 
framework for scanning a defined area of grass, whereas the 
scanning plane was perpendicular to the direction of motion 
and the sensor traversed over the area with constant speed. 
After scanning the grass was cut, collected, the samples were 
weighted and later dried (method of the Association of 
German Agricultural Analytic and Research Institutes - 
VDLUFA) to determine the dry mass as reference. Moreover 
a NIR sensor (wavelength range of 950-1650 nm) is tested in 
regard to the identification of dry matter content and feed 
substances (e.g. nitrogen) of the grass on pasture. 

In order to localise the spots on the pasture on which 
maintenance operations are desired test with the 2D-laser 
scanner were carried out, too. With the regard to the 
detection of faults in the sward, so-called seeding spots, 
output dimensionless echo amplitude values depending on 
the surface properties of the target object are used. In 
principle amplitude data can deliver an estimate of the 
relative reflectivity of an object [19]. With the first test series 
under model conditions the difference between the 
reflectance of the areas covered with grass and soil was 
proven. The laser scanner was installed stationary above a cut 
dry lawn area (z = 740 mm), so that the scanning plane was 
perpendicular to the ground level. The scanning zone was 
split into two areas: the first was covered with 30 mm high 
cut lawn (see Figure 3 on the right) and in the second trays 
filled with local dry topsoil were placed onto the grass (see 
Figure 3 on the right). The trays simulated faults in the sward, 
e.g. caused by trampling of the cattle or other animals. In this 
test series the both zones have approximately the same 
height. The trays were total covered to assure a laser beam 
reflection on the soil. A width of 1200 mm was scanned, 
which corresponds to the working and scanning width of the 
pasture robot. 

 

Figure 3.  Experimental arrangement (left); amplitude values collected 

with Pepperl&Fuchs R2000 laser scanner for one laser head rotation in 

relation to the y-coordinate and mean values in defined intervals for 500 

repetitions 
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2) Mulching and seeding 
The maintenance operations: mulching and seeding take 

place after grazing. Because of the plant growth and the 
impending weed infestation, the maintenance operations, 
especially mulching, have to be finished within two days after 
animals have left the pasture. The maintenance operations 
include mulching of leftovers and heading gramineous plants, 
seeding of faults areas without vegetation and spreading 
cowpats. 

B. i-LEED Software 

The i-LEED pasture management software (PMS) should 
allow planning and managing the entire grazing activities in 
combination with one or more pasture robots. For this 
purpose it combines data from the mission planning software, 
the attached sensors, the herd management system and the 
feed ration software. The aim of the software is to support the 
farmer by decision making in order to increase the efficiency 
of the pasture utilisation while reducing the risk for the 
animals’ health and negative environmental impacts due to 
grazing activities. The PMS is supposed to be a 
comprehensive repository of all relevant information about 
grazing activities. Moreover it allows scheduling of the 
grazing rotation and supports the operation of the pasture 
robots. 

1) Mission planning 
In addition to scheduling the operations to be performed 

by the pasture robot in the different paddocks, one of the 
main issues of the mission planner is to generate the 
trajectories to be followed by the robot with respect to the 
needs of the mission (e.g. full or partial coverage of a 
paddock, reach successive areas, speed reference), while 
taking into account and adapting to both the constraints of the 
environment (e.g. shape of the paddocks, static obstacles, 
fences) and kinematic and dynamic constraints of the 
considered robot (e.g. wheelbase, maximum wheels steering 
angle and rate). 

Based on a prior knowledge of the environment, fences 
location and identification of several kinematic and dynamic 
parameters of the robot, the proposed planning approach is 
based on the junction of elementary primitives (arc of circles, 
line segments) with arc of clothoids to generate continuous 
curvature trajectories feasible for the pasture robot [20]. 

2) Robot control 
The control algorithm of the robot must perform three 

main functions, namely the accurate path following of 
previously planned trajectories, the management of obstacles, 
and the conservation of the robot stability. 

To accurately guide the pasture robot along the 
previously planned trajectories at the speed requested by the 
mission, the control algorithm needs to continuously adapt 
the parameters considering the encountered off-road 
environment, in particular the soil conditions that may lead to 
important sliding phenomena. 

Compared to indoor rigid and asphalted ground, the 
displacement with wheels on agricultural grounds, by nature 
(structure, compaction, humidity etc.) and varied topology 
(slope), can lead to uncertain kinematic and dynamic 

behaviours of a mobile robot, in particular when the speed of 
displacement is relatively high. In such conditions, the pure 
rolling without sliding assumption (widely used in mobile 
robotics because it significantly simplifies the modelling of 
vehicle based on conventional wheels), cannot be directly 
exploited without obtaining low guidance performances. In 
order to adapt the control algorithm accordingly, the 
understanding of the interaction of the robot with the ground 
is essential. However, describing the physical phenomena 
during the interaction of the wheels of the vehicle with the 
ground is particularly complex, all the more on natural 
grounds. The models of such interactions are generally 
dedicated to the automobile industry (e.g. analytic approach 
based on the detailed description of the physical phenomena 
inside the tire, or empirical approaches from 
experimentations performing on test bench), and thus 
difficult to simply adapt for a vehicle rolling on a natural 
ground. Nonetheless, without aiming to come back to the 
forces occurring at the wheel level, the sliding phenomena at 
the interface of the wheel with the ground can be represented 
through the sideslip angle representing the difference 
between the theoretical direction of the linear velocity vector 
at the wheel centre (described by the wheel plane) and its 
actual direction. Assuming that this angle robustly represent 
the sliding influence on vehicle dynamics, the approach can 
be used to indirectly estimate the sideslip angles of the 
wheels of the robot within of a suited observation algorithm. 

Although the trajectory planner generates obstacle-free 
trajectories, the robot must have capabilities to detect 
obstacles and avoid them (or immediately stop if not 
possible). Considering an example of an isolated obstacle 
inside one paddock, a simple approach can be defined to 
change the reference of the lateral deviation with respect to 
the current trajectory, taking the advantage of the capabilities 
of the previously developed controllers [16]. Another 
approach could be to redefine the trajectory to new feasible 
one which avoids the obstacle. This approach will be 
necessary to choose in case when the robot counteracts to 
several obstacles simultaneously and finding a feasible 
obstacle-free path between several obstacles in real-time is 
required. 

IV. RESULTS 

A. Development of the pasture robot 

1) Specification 
After an analysis of the surface and terrain conditions on 

pasture by detection of the soil profile vehicle parameter like 
ground clearance, track gauge, wheel base and axle 
articulation were defined (see Table 1). 

TABLE I.   REQUIREMENTS FOR THE ROBOT PLATFORM 

Parameter  Value (up to) 

Climbing ability [°] 35 

Possible cross slope [°] 35 

Min. axle articulation [mm] 150  

Min. ground clearance [mm] 150 

Wading depth [mm] 150 
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2) Scouting 
Tests on cultivated grassland have shown that the 

estimation of the biomass quantity based on the grass height 
using a 2D-laser scanning technology (wavelength of 660nm) 
is possible. Figure 4 shows the result of measurements on 
cultivated grassland within one season (3 repetitions per 
sample area of 1 m²): 

 

Figure 4.   Relationship between measured grass height using the 

laserscanner and the actually measured dry matter 

A linear regression resulted in a correlation coefficient R² 
of 0.79. Similar measurements are running on pasture areas 
to develop an algorithm for determining biomass on the basis 
of grass height data. 

In regard to the detection of seeding spots for example , 
measurements under model conditions have shown that the 
2D laser scanner R2000 (Pepperl&Fuchs) is able to 
distinguish between grass and soil spots under the described 
conditions via the in section III mentioned dimensionless 
echo amplitude value. The results are illustrated in diagram 
on Figure 3, showing inter alia amplitude values for one laser 
head rotation (resolution 1°) in relation to the y-position of 
the measured surface, calculated using the distance values of 
the laser for each measuring point. 

The different scattering around a particular mean value 
(see Figure 3) of the measuring points for the two zones is 
clearly visible. The scattering of the amplitude values in the 
grass zone is much higher in comparison to the values of the 
soil zone. It is apparent that only one amplitude value cannot 
be used to state something about the surface zone. To 
determine the type of zone several neighbouring measuring 
values must be considered, especially their mean value and 
scattering. In the diagram calculated mean values in defined 
intervals (yn1 < y < yn2) with an interval length of ∆y = 100 
mm were calculated for 500 repetitions. For the robot 
operation on pasture a resolution of ∆y = 100 mm is 
necessary to detect sward faults in the size of a cattle 
footstep. Because of the circular movement of the laser beam 
the distances between neighboured points in y direction on 
the flat reference level (z = 0) increase with |y|. Consequently 
with increasing |y| the intervals contain a lower number of 
measuring values. The depicted coefficients of variation of 
the amplitude values for the grass zone (-600 < y < 0 mm) are 
in the range from ±10.8% to ±19.8%. The values for the soil 
zone (0 < y < 600 mm) vary in a smaller range between 
±2.8% and ±6.6%. The relative high mean value for area y = 

[-500 to -400] mm () confirms the necessity to observe the 
scatteringof measured values to identify the surface type. 

The method for detection of seeding spots can be used 
under certain circumstances, (the definition of the amplitude 
as parameter needs to be considered [19]) for detection of 
suboptimal zones on pasture, like faults in the sward. 
Especially the scattering and the average values of echo 
amplitude data can be characteristic parameters of soil or 
rather grass zones. Further tests, considering different 
environmental and physical conditions (illumination, 
moisture of soil, sensor position etc.) and combination with 
additional sensors as well as measurements in motion are 
necessary to develop an algorithm, which can deliver enough 
information to identify zones on pasture. 

3) Mulching and seeding 
One of the most important criteria by using a mulcher 

implemented on an autonomous robot is safety. Objects 
appearing on the pasture such as stones etc. should not be 
thrown uncontrolled by the moving tools of the mulcher. If 
there is an animal or even a person near of the operating area, 
the mulcher has to stop immediately. Another very important 
point for the operation of the pasture robot is reliability. 
Objects appearing on the pasture such as stones etc., should 
not restrict the functionality or damage the machine. Under 
difficult conditions, e.g. lying vegetation, the machine should 
not be blocked with organic material, which under certain 
circumstances can lead to loss of functionality. Furthermore, 
due to the power autonomy and operational costs the energy 
consumption of the mulcher should be as low as possible. On 
pasture the surface can be quite rough and hilly. For this 
reason the mulcher must have appropriate height guidance 
and has to be designed quite short to avoid damaging the 
grass sward. The shorter the better is the ground adjustment 
of the tools of the mulcher. Large quantities of grass should 
be chopped as fine as possible spread evenly. Accumulation 
and clumping of chopped plants biomass have to be avoided, 
especially under wet conditions. Considering the energy 
consumption and the problems related to soil compaction, 
low weight of the mulcher is preferable. An evaluation of the 
mulcher types based on the above mentioned requirement 
criteria, resulted with a conclusion that the flail mulcher 
would be the most suitable one for mulching operations on 
cattle pasture. 

The seeder should similarly have low energy 
consumption. Consequently, the drill seeding is not suitable, 
because of its traction power requirement for soil tillage. 
Broadcast seeding, methodology in which the seeds are 
casted onto the soil surface, corresponds more closely to the 
conditions of pasture maintenance. Considering the problems 
appearing by soil compaction low weight of the seeder is 
preferred. Furthermore, the seeding rate needs be adjustable 
and the farmer has to have a possibility to change it before 
the robot starts its operation on the paddock. Considering 
different growth intensities within one paddock the final 
product of the pasture robot should provide variable seeding 
rates on different paddock zones. As there is a mixture of 
different seed types, a segregation of the seeds by vibrations 
during the transport on the rough pasture must be avoided by 
e.g. a stirrer if applicable. Under windy weather conditions 
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an even distribution must be provided. That means the flight 
path of the seed must be minimised by placing it very close to 
the ground. Finally the seed container must protect the seeds 
against rain or damp air. Based on these requirements a 
fertilizer spreader, which was developed at the Bavarian State 
Research Center for Agriculture [21], will be modified in 
order to provide controlled seeding on the pasture.  

B. i-LEED Software 

1) Mission planning 
The mission planning interface allows either: selecting of 

waypoints on a georeferenced map directly, in order to define 
the trajectories for the robot, or generating of parallel 
trajectories to cover a whole paddock automatically, with 
respect to a chosen spacing. As an example, Figure 6 
illustrates automatically generated trajectories to cover an 
entire paddock with 1.5m and 10m spacing respectively. At 
the end of each track, the half-turn (180 degrees turn) 
trajectories however needs to be calculated carefully, taking 
into account different parameters such as the dimensions of 
the vehicle wheel-base, the maximum front-wheel steering 
angle, the maximum angular velocity of the front-wheels with 
respect to the vertical axis and the velocity of the vehicle 
during the manoeuvre. Figure 5 presents several half-turn 
trajectories, calculated for differently defined working widths 
(spacing between adjacent trajectories). The tightest half-turn 
is illustrated with the thick black line, and the turn which 
reaches the null curvature at 90 degrees, allowing to insert a 
line segment at that point if higher spacing is required, with 
thick light grey line. If the distance between the adjacent 
trajectories needs to be arranged between these two 
previously described cases, a half turn with a slight 
overlapping of the headland is needed, as presented with the 
doted black line. If the defined working width is too tight, a 
loop-turn (bulb-turn) is calculated, as presented with the 
doted grey line. 

 

Figure 5.  Half turn with respect to different inter-distances 

 

Figure 6.  Full and partial coverage 

1) Robot control 
The classical kinematic modelling of a car-like vehicle 

can be complemented by sliding parameters. The approach is 
described through equations of motion of the robot with 
respect to the path to be followed (i.e. in terms of curvilinear 
abscissa, and lateral and angular deviations). This model can 
be converted into an almost linear one using the theory of 
chained forms [22]. The derivations with respect to the time 
are replaced by derivations with respect to the curvilinear 
abscissa, aiming to obtain control performances independent 
from the vehicle velocity. This step is essential while it 
enables in particular independent development of steering 
and speed controllers. The control theory of linear systems 
complemented with model predictive control techniques can 
then be used to compensate the delay of the steering actuator. 
The delay needs to be avoided because it could lead to 
significant overshoot, especially at each beginning and end of 
curves. 

To ensure the stability of the robot and prevent the risk of 
rollover, for example during sharp turns at high speed, the 
proposed approach use the on-line estimation and prediction 
of a stability criterion - the lateral load transfer (LLT) [23], in 
order to limit and slow down the robot velocity in case of risk 
situations. The LLT represents the repartition of the normal 
components of the tire-ground contact forces. It can be 
calculated from the roll-model of the vehicle, requiring the 
knowledge of different parameters as the mass and track of 
the vehicle, the location of the center of gravity, but also the 
lateral acceleration. To predict the evolution of the LLT, it is 
therefore necessary to predict the lateral acceleration. For 
that, a yaw model of the vehicle is considered, which 
includes some variables which cannot be directly measured 
e.g. the global sideslip angle and the front and rear cornering 
stiffnesses. These variables can nevertheless be estimated 
through the design of observers. 

V. CONCLUSIONS AND FURTHER WORK 

The i-LEED project contributes to the following goals of 
the CAP and the Standing Committee on Agricultural 
Research (SCAR) of the European Commission: 

1. Maintenance of permanent pasture [control of certain 
unfavourable plants (nettles, shrubs, trees etc.) without using 
herbicides; maintenance of a dense sward in order to avoid 
soil erosion and sward degeneration and enhancement of the 
pasture productivity for high quality products of ruminants 
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2. Sustainable agricultural production and resource 
conservation [optimised feed supply for the cattle due to 
known amount of available pasture, avoiding oversupply or 
feed shortages and therefore metabolism and health problems 
for animals; enhancement of the ecosystem permanent 
grassland by using site specific, indigenous seeds and site and 
phytocenosis specific management; better distribution of 
cowpats (and nutrients) and therefore reduced loss of 
nutrients due to higher growth rates and earlier grazing of 
areas around cowpats after regrowth and affecting and killing 
fewer insects with the mulcher, because with the robot only 
parts of the paddock, where it is necessary, will be mulched] 

3. Facilitating the establishment of young farmers, fostering 
the employment in rural areas and improving the quality of 
life in rural areas [work activities shift to more control tasks 
involving modern technology, therefore the farm as the 
workplace will become more attractive for young farmers; 
acquired skills involving modern technologies will open 
opportunities for the young farmer for extra income from 
non-agricultural activities and better competitiveness of 
permanent grassland due to higher productivity, lower 
working time requirements and the proposed higher direct 
payment]. 

Highly automated machine function is an emerging 
technology within the agricultural sector. No standards exist 
today relating to this domain. Currently for outdoor 
agricultural robotic applications, the main referential to link 
up is the 2006/42/CE machine directive dedicated on health 
and safety protection of operators. This directive demands 
from the manufacturer to take all relevant solutions and 
necessary measures to reduce as much as possible the risks 
after a failure mode and effects analysis (FMEA), but without 
any considerations of robotic issues at the time of this 
directive elaboration in the last century. One important issue 
will be the further development of guidelines, directives and 
standardisation e.g. within the ISO working group 
“Agricultural autonomous machines”, in order to allow 
straight forward development of robotics in field of 
agriculture. 
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Abstract— Much effort has been put into developing robotic
systems for the agricultural domain that are able to perform
specific tasks such as yield estimation, phenotyping, sampling,
precise application of pesticides, and so on. Some robots have
also been developed for more energy-demanding tasks such as
seeding, but little work has been done to make more versatile
systems that are able to perform tasks of great variety in energy
demand, required precision, operation speed, etc. In this paper
we present a novel robotic platform capable of performing both
the energy-demanding tasks previously performed by heavy
tractors, and in addition the more precise around-the-clock
operations normally identified with agricultural robotics. We
present results from a field experiment on seeding patterns
and densities, and from field-tests done in cooperation with
researchers working in phenotyping of cereals. We also show
that the robot is well suited for monitoring tasks, and that
we can obtain valuable information about the condition of
the plants and weed by a standard camera and simple image
analysis.

I. INTRODUCTION

In agricultural robotics, effort is often put into developing
task-specific robots. That is, robots that are custom built to
solve one specific task in the field, like mechanical weeding,
crop scouting or applying herbicides by precision spraying.
There are many impressive robots and concepts, but most are
not designed with exchangeable tools and energy demanding
tasks in mind. There are some exceptions to this though, such
as Robotti by Kongskilde [1]; a tracked robot which can be
fitted with multiple implements. Robotti’s effective traction
capability is 10 hp, and it has a mass of less than 500 kg.

It is our belief that the farmer will not replace his or her
tractors with robots, partially or completely, if it does not
make sense economically. Robotic solutions are generally
expensive, and will probably continue to be so in the foresee-
able future. Independently of the task to be performed, they
need to be equipped with advanced sensory systems such as
RTK GNSS, LIDAR and cameras that represent a substantial
cost increase. One way to make robotic solution more
economically viable, is to make them more versatile. We
believe strongly in developing robotic systems that are able
to perform several different tasks, and in this way represent
an added value to the farmer, both economically and in
increased life quality, and to the consumer, in improved food
quality and lower prices.

Another important aspect in this setting is the fact that
heavy machinery damages the soil by causing soil com-

paction [2], [3]. Balckmore et al. [4] estimates that as much
as 80-90 % of the energy input in the field may be eliminated
by using lightweight machines. This is why efforts should be
put into designing complete solutions based on lightweight
robots that are capable of solving all required tasks, from
seeding to harvesting, eliminating heavy machines from as
much of the field as possible.

Robots that are to perform energy-demanding tasks in the
field need to be constructed differently from robots that are
merely made for collecting data. Even though some robots
that are able to perform several different tasks are presented
in literature, they are normally not capable of performing
a wide variety of tasks. Robots that are constructed for
monitoring are generally not powerful enough or the center
of mass is too high for them to perform energy-demanding
tasks in the soil. One example of such a robot is the BoniRob
[5], [6], which can be fitted with several different tools for
monitoring, data collection, and other tasks that are not too
energy-demanding.

On the other end of the scale, we have large and heavy
robots, or autonomous tractors for that sake, powerful enough
to perform any task, but lack the benefits represented by the
lightweight robots. Examples of such robots are the APU
module [7] and the Spirit autonomous tractor [8].

We present Thorvald, a novel robotic platform that is
powerful enough to perform energy-demanding operation in
the soil, and at the same time has the beneficial properties
of lightweight, autonomous robots. The Thorvald platform
was designed and built at the Norwegian University of
Life Sciences. It has a low center of gravity, and a total
mass of approx. 150 kg. It uses four 600 W brushless
motors connected via toothed belts to in-wheel gearboxes
for propulsion, which is believed to sufficient to perform the
most critical tasks in the field. Even though the robot itself
is lightweight, the tools that are attached to the robot will
add the necessary weight to perform each task. Thus, for
monitoring and surveillance, the robot is sufficiently light
weight not to damage the plants and the soil and to maintain
a long operation time, while for more energy-demanding
tasks, such as seeding, the seeding tool will add the necessary
weight to obtain the required traction and stability.

The robot has individual steering motors for each wheel,
which makes it highly maneuverable, and the frame members
and frame joints are made somewhat flexible to ensure that
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TABLE I: Thorvald Key Specifications

Drive power 4 x 600 W
Battery 48 V, 30 Ah, LiFePO4

(capacity can be doubled if needed)
Mass ∼ 150 kg
Payload 200 kg
Ground clerance 59 cm

Fig. 1: The Thorvald platform. Attached is an early prototype
of a precision seeding tool.

all wheels will remain in contact with the ground, even in
rough terrain. This is critical for traction, which is especially
important on Norwegian farms, where the fields often are
uneven and hilly. The flexible frame design was chosen as
it is lighter, less expensive and less complex than traditional
suspension systems.

Thorvald has a waterproof on-board computer from Small
PC, which runs ROS (Robotic Operating System) on Linux
Ubuntu. A heavy-duty, weather-proof, high brightness touch
screen from Small PC has been installed for easy opera-
tion together with an emergency stop button. The steering
motors from JVL have built in motor controllers while the
four propulsion motors are connected to two dual channel
motor controllers from Roboteq. All motor controllers are
connected to, and communicate with the on-board computer
via a CANopen network. Table I lists the robot’s key speci-
fications. The Thorvald platform is depicted in Figure 1.

We are currently developing our own precision seeder as
described in [9], which distributes the seeds evenly across
the field in a hexagonal circle packing pattern. This paper
presents results from a small experiment conducted in con-
nection with the development of this tool.

The robot is equipped with all sensors required for reliable,
autonomous navigation, and different tools, or implements,
are attached within the robot frame according to the task that
is to be performed. The tool is installed by backing the robot
towards the tool until the tool is within the robot frame. The
tool will then connect to the frame at three different points,
as shown in Figure 2. Currently the tool is fastened manually,
but inn the future this will be done automatically.

We wish to show that with our simple design, we are
able to perform both energy-demanding tasks and also the
monitoring and information gathering part using the same
robot.

Fig. 2: Thorvald is designed to be used with multiple
implements

The reader should note that we do not intend to plow the
field, as plowing is highly energy demanding, and leaves
the soil vulnerable to the elements, which in turns leads to
soil erosion. Instead we wish to use no-till practices. By not
plowing, there will be an increased problem with weeds. It is
our belief that this problem can be reduced by seeding in a
more uniform pattern, and by developing precision weeding
tools to be used together with the robotic platform.

An important part of robotic farming is data collection.
Modern technology allows us to do work in the field on a
single-plant level, as opposed to treating all plants in a field
or sub-field in the same way. The Thorvald platform will
therefore be equipped with sensors for crop scouting, and
the robot is currently being tested by researchers working in
cereal phenotyping.

The paper is organized as follows: In Section II we
discuss the effect of different seeding patterns and seeding
densities, while Section III addresses crop scouting. Section
IV presents results from a small experiment on seeding
patterns conducted at our research farm, and Section V
results from field-tests conducted in cooperation with plant
researchers.

II. PRECISION SEEDING

Conventional seeding places seeds in rows, with short
spacing within the row, and considerably larger spacing
between rows. This means that inter-row weeds are free to
develop while the crop is competing against itself within the
rows (Figure 3a). The reason the seeds are placed in this
way has to do with the way the machinery works (i.e., what
is most easily obtained mechanically), and not what is ideal
for growth and weed suppression. Studies show that seeds
that are placed in a more uniform pattern (Figure 3b) are
more capable of suppressing weeds, which can be directly
translated into increased yield. For example, in Weiner et
al. [10], [11] it is shown that the advantages of initial size
in competition among individual plants is highly favorable
to the crops and that weed is considerably more suppressed
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(a) Row (b) Evenly destributed

Fig. 3: With conventional row seeding, weeds (red circles)
are free to develop undisturbed by the crop

when the crop density is increased and the crop is uniformly
distributed in the field, as opposed to rows. Heege et al. [12]
presents a detailed discussion on the effects of row distances
from a more mechanical point of view. More resent studies
show the same effects on crops normally sown with lower
densities, such as maize [13].

Based on the the strong indications found in literature
showing that crops can substantially gain from a more
uniformly distributed seeding pattern, especially under high
weed pressure and asymmetry, we believe there is a lot to
gain from developing seeding tools that are able to place
the seeds more uniformly and accurately. We are currently
working on several different approaches that allow us to
place seeds in this way. The main advantage, as we see it,
is that by using a robot that is substantially cheaper than
existing tractor-based systems, and therefore can be scaled
up in numbers and not in size, and also allows for 24 hour
operation, we can develop systems with less pressure on
productivity (per unit) and speed. This allows for far more
accurate seeding machines that are able to accurately place
the seeds in a required pattern.

The first step of this process is to get a better understand-
ing of what is the ideal density and pattern for different kinds
of crops under different weed pressure. By distributing the
seeds more evenly across the field, each plant will have more
room to develop in all directions, not just on each side of
a dense row. The plant will then be able to collect more
sunlight, and of course take sunlight from slower developing
plants such as most weeds. We study the effects of changing
the seeding pattern in Section IV.

The seeder being developed for Thorvald, seeds in an
hexagonal pattern. An early prototype is currently being
tested with the robot (Figure 4). Based on the results from
the experiment described in this paper, the seeder will be
modified to place seeds in the optimal pattern, and the
experiments will be repeated on a larger field and under
different conditions, such a weed pressure, soil structure,
fertilization practices, etc.

III. MONITORING

An ongoing project is to enable the robot to be used for
crop scouting. A downward facing camera has therefore been

Fig. 4: Thorvald with an early precision seeding tool proto-
type

Fig. 5: Thorvald is taking pictures in the field

mounted on the robot (Figure 5). The camera is connected
to the on-board computer via USB. A 2D laser scanner has
been acquired. This will make the robot able to measure crop
height and other parameters related to crop health, and also
enable the robot to identify weed, calculate plant coverage
and so on. All data collected will be tagged with position
using the on-board RTK-GNSS system, which is also to be
used for navigation.

Figure 6 shows early results from a test plot seeded with a
hexagonal circle packing pattern. Image processing software,
ImageJ [15] is used to separate the green plants form the
surrounding ground (color thresholds in the HSB color space,
no other filters are applied). Today plant coverage is often
measured just by visual inspection, so the requirements for
accuracy are not particularly high. With this dense pattern,
we see that approx. 37 % of the ground is covered by the
plants. Here the plants are still at an early stage, as the picture
was captured only 16 days after seeding.

In the future we also wish to extend the robots sensor sys-
tems to include a pH-meter for measuring soil pH. If the pH
gets too low, the yield will be affected in a negative manner.
For best results, pH should be measured continuously and on
site [14]. Measuring the pH across the field, will then allow
us to apply the correct amount of lime where this is needed,
and keep the entire field within the acceptable pH level.
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Fig. 6: Hexagonal pattern with 2.5 cm seed spacing (pattern
3), with plant coverage of approx. 37 %. Picture with and
without highlighted plants.

TABLE II: Number of crop and weed in a 25x25 cm area
for the different sowing patterns

Pattern Crop Weed Crop-weed ratio
Row, 2 cm 21 45 0.47
Uniform, 5 cm 30 47 0.64
Uniform, 2.5 cm 92 30 3.1

IV. SEEDING EXPERIMENT

To investigate the benefits of seeding in a more uniform
pattern, simple tools for seeding (by hand) was designed and
3D printed. Some of the tools are depicted in Figure 7. The
tools were made so that each seed would be placed at 3 cm
depth with the correct spacing to neighboring seeds. Spring
wheat was then seeded by hand in three different patterns
using these tools:

1) Row: 12.5 cm between rows with 2 cm seed spacing
(400 seeds/m2)

2) Hexagonal circle packing pattern: 5.0 cm seed spacing
(462 seeds/m2)

3) Hexagonal circle packing pattern: 2.5 cm seed spacing
(1848 seeds/m2)

Figure 8 shows examples of row and hexagonal patterns.
For pattern 1 and 2, 1.5 m x 1.5 m squares were seeded.
Because of the high number of seeds required for pattern 3,
a smaller area was used for this plot.

Pattern 3 turned out to be difficult to seed with the
aforementioned hand seeding tool, and the resulting plant
pattern, although uniform, did not fully resemble the targeted
hexagonal pattern.

Two months after seeding, four 25x25 cm squares were
randomly selected for each seeding pattern, and the heights

Fig. 7: Tools used for seeding in different patterns

Fig. 8: Hexagonal (left) and row seeding pattern

of wheat plants and weeds were measured. We also counted
the number of wheat plants and weeds in each case. The
results were as follows:

• The 2 cm row pattern had the highest plants, with
average wheat height of 55 cm and average weed height
of 11 cm.

• The uniform 5 cm pattern had medium sized plants,
with average wheat height of 48 cm and average weed
height of 7.4 cm.

• The uniform pattern with 2.5 cm spacing had the
smallest weeds size and a substantially better crop-weed
ratio compared to the other plots, but it also had the
smallest wheat plants.

Figure 9 and 10 compare the wheat height and weed
height of the 2 cm row pattern and the 5 cm uniform pattern
in more detail, as these have approximately the same seed
density. From the figures we see that the wheat plants are
somewhat higher for the row pattern, but for the weed the
relative difference in size is considerably larger with an
average size of about 11 cm for the row pattern and 7.4
cm for the uniform pattern. This is a strong indication that
the uniform pattern is better than rows when it comes to
suppressing weeds. However, it is not possible to draw a
conclusion that this advantage in weed suppression translates
in an advantage in growing conditions for the crop. Further
experiments with larger test areas and where the plant density
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Fig. 9: Wheat size in 25x25 cm area of 2 cm row, and 5 cm
uniform patterns. The dotted lines show the average heights.

Fig. 10: Weed size in 25x25 cm area of 2 cm row, 5 cm and
uniform patterns. The dotted lines show the average heights.

for the different patterns are equal are needed to conclude on
this. The number of crop plants and weeds is shown in table
II. We see that the crop-weed ratio is better for the uniform
patterns.

V. FIELD-TESTS

In order to identify requirements for the aforementioned
crop scouting system, Thorvald has been used in cooperation
with researchers working with phenotyping of cereals. Dur-
ing these tests, the robot was teleoperated, taking pictures
with the on-board camera at different locations in the test
fields. Figure 11 shows pictures that have been captured by
the robot in the field for an experiment on seeding density
and fertilization. The pictures are used to estimate the plant
coverage.

The feedback regarding the robot’s performance was
mainly positive, but as the researchers who used it are
working with cereal, they found it to be somewhat low.
During the tests the plants were still young and the robot was
able to drive over the crop without any danger of harming
the plants, but the researchers also require the robot to be

Fig. 11: Images captured by Thorvald’s on-board camera

able to drive over fully grown crops. Fully grown crops are
about 1 m high, and can in some cases reach heights of 1.5
m.

As Thorvald is designed to be used on farms, and not by
plant researchers, a low center of gravity is more important
than the ability to drive over fully grown cereal crops. The
robot’s ground clearance is similar to what one finds on a
regular tractor, and it will be able to perform scouting and
weed control tasks until the crop has grown to a size where
it prevents sunlight from reaching the ground, and thus stops
new weeds from developing.

The researchers also found the wheel modules to be a bit
wide. Again the concern was that plants could get damaged.
This is an issue we will address, and improvements to the
design will be made.

As for the maneuverability and traction, the robot per-
formed better than expected. It drives up steep slopes with
ease and have good traction capabilities on a range of
different surfaces. In rough terrain, all four wheels maintain
contact with the ground, and the robot did not get stuck once
during the tests.

Thorvald is frequently out in the field to test algorithms as
well as the mechanical design of the platform and the tools.
It is also recording data to be used in the development of
new tools and systems, e.g. recording video of cereal crops
to be used as reference when developing algorithms for weed
identification. The development of the Thorvald platform will
continue during the fall and winter of 2015/2016, and more
extensive field-tests will be carried out in the spring and
summer of 2016.

VI. CONCLUSION

The Thorvald project aims to develop a lightweight robot
that is capable of performing all tasks in the field, also
the energy demanding ones. Thus, we have constructed a
powerful robot with low mass and a low center of gravity.
The latter of these properties also renders it unsuited for
phenotyping of cereal, as the robot is too low. However,
Thorvald has a ground clearance similar to what one can
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find on a normal tractor, and we therefore believe the height
to be adequate for the average farmer.

The results from our small experiment on seeding patterns
suggest that it may be beneficial to seed in a uniform pattern
as opposed to seeding in rows, as the experiments show that a
uniform seeding pattern can suppress weed more efficiently.
It is, however, not possible to draw any conclusions from
the experiments whether this advantage in weed suppression
translates into improved growing conditions for the crop.
Large-scale experiments need to be carried out to confirm,
and better quantify the potential gain by utilizing the pro-
posed seeding patterns.

The first field-tests of the Thorvald platform show promis-
ing results. The mechanical design, maneuverability and
traction capabilities are shown to be as expected and in some
cases somewhat better than expected.
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Increasing the Precision of Generic Crop Row Detection and Tracking
and Row End Detection*

Georg Halmetschlager Johann Prankl Markus Vincze 1

Abstract— Agricultural field robots need to navigate within
crop rows. In order to efficiently perform cultivation work
and to avoid damaging plants precise crop row detection and
tracking is essential. Hence, we propose a probabilistic crop row
detection and tracking approach that fuses visual odometry
data with the results of the crop row measurement using
a Kalman filter. However, before the Kalman filter can be
integrated into our system, we have to explore if our existing
solutions comply with several requirements. We test – with real-
life in-field data – if and how the row information can be tracked
with the information of the visual odometry and investigate if
the estimated probability density of the row measurement can
be used to adapt the corresponding covariance matrix entries
of the Kalman filter. Preliminary results indicate that the fusion
of the visual odometry data with the row measurement improve
the tracking results and that the probability density of the row
measurement can be used to determine its reliability.

I. INTRODUCTION

Most agricultural robots and guided tractors utilize real-
time kinematic global positioning systems (RTK-GPS) or
laser-based sensors to solve the task of autonomous nav-
igation [1]. Vision systems promise to offer outstanding
advantages compared to pure GPS solutions, as they provide
higher dimensional information and are inexpensive com-
pared to laser range finders [2]. Hence, we propose a pure
machine vision system to solve the task of navigation in row-
organized fields. Therefore, the crop rows have to be detected
relatively to the robot for the determination of the negotiable
track.

Most of the developed vision-based detection algorithms
consist of a segmentation step and a subsequent state-of-the-
art line detection algorithm such as the Hough transformation
[3], [4], [5], [6], [7].

We introduced in [8] a near infrared and depth (NIRD)
data based segmentation that enables a height-bias-free de-
tection of the rows within the ground plane and is insensitive
to geometric and season caused changes of the plants. The
parameter free row detection is realized with a 3D cascaded
particle filter and enables online crop row detection. Each
hypothesis in the 3D state space describes a parallel line
pattern within a 2D plane and consists of the orientation θ,
the offset r, and the distance between the lines d. θ and
r define a vector that is perpendicular to the closest line
and points from the origin of the coordinate system to the

*This work was funded by Sparkling Science - a programme of the
Federal Ministry of Science and Research of Austria (SPA 04/84 - FRANC).

1All authors are with Faculty of Electrical Engineering,
Automation and Control Institute, Vision for Robotics Laboratory,
Vienna University of Technology, A-1040 Vienna, Austria.
{gh,jp,mv}@acin.tuwien.ac.at
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Fig. 1: Geometric model of the crop rows.

point q (cf. Fig. 1). The algorithm offers high detection rates
for image sequences that show elongated row structures.

The introduced algorithm can be used to detect and track
rows as long as they are in the field of view of the sensor
system. However, at the end of the field a turning maneuver
has to be executed and the rows disappear. Therefore, an
additional solution is needed to track the rows even if they are
no longer visible. Moreover, the additional tracking solution
could be used to improve and filter the results of the inherent
tracking.

Since our vision is to find a GPS-free, pure camera-based,
adaptive, overall navigation solution for row organized fields
that is independent from a-priori information, we extend our
previous approach [8]. We propose to consider the movement
of the robot by fusing the data of the (visual) odometry and
the result of the row measurement with a Kalman filter to
get more stable results.

First tests indicated that the Kalman filter improves the
tracking results. Hence, we consider the Kalman filter to
be an efficient overall crop row tracking solution even and
especially during turn maneuvers at field ends where the
row information is completely missing. For this purpose it is
necessary to explore if the odometry and row measurement
solutions comply with additional requirements. We come
up with an approach how the two measurements can be
combined within a Kalman filter, we investigate if the visual
odometry data can be used to track the detected rows
for a short period of time, and if the particle and cluster
distribution indicate the reliability of the particle-filter-based
crop row detection and how it can be quantized to adapt the
covariance matrix of the Kalman filter.

Hence, our contributions are (i) a model to fuse tracked
rows from a particle filter with visual odometry data, (ii) an
evaluation of the particle filter with the goal to adapt the
covariance matrix of the Kalman filter depending on the par-
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ticle distribution, which is further used (iii) to automatically
switch from row tracking to odometry based navigation at
the field endings.

II. APPROACH

The selected geometric representation of the crop rows
allows modeling the orientation θ and the offset r of the
crop rows with a single static point qw that lies inside the
global coordinate system. In an undisturbed closed system
that provides error free robot pose data, the equivalent
position of qw inside the coordinate system of the robot qb

can be directly derived from qw and tracked without any
additional measurement data (cf. Fig. 2a). However, the
available position data is in our application derived from
the visual odometry, is noise afflicted, and the position error
accumulates over time.

The probabilistic crop row detection determines the best
crop row parameter configuration for the observed scene
and has the ability to compensate natural row failures like
gaps or plant displacements. However, it can end in a wrong
crop row measurement especially if the current scene is not
representative for the rest of the field.

Therefore, we fuse the data of the pose measurement with
the particle filter based row measurement, to compensate the
errors of the one method with additional information from
the other. In other words, our goal is to determine and track
the position of qb based on both, the odometry data and the
row measurement (cf. Fig. 1).

First, we come up with a linear model and the correspond-
ing Kalman filter equations for the position (change) of qb,k.

Second, we approach the necessary equations for the
odometry based row tracking for an undisturbed system.

Third, we analyze the particle distribution inside a particle
filter and check if the modeled probability density functions
allows determining the reliability of a measurement.

We introduce with (1) - (4) a linear model for the position
and movement of qb within the coordinate system of the
robot (subsequently the index b is omitted). With the kth

state xk that contains the position [qx, qy]
T, the first time

derivative (velocity) [q̇x, q̇y]
T, and the second time derivative

(acceleration) [q̈x, q̈y]
T which is assumed to be zero, aside

white noise. wk represents the disturbance of the system.
Φ represents the dynamic matrix and the matrix G models
the influence of the disturbance on the state change. yk

contains the kth measurement and consists of the result of
the current row measurement [qx,m, qy,m]

T and the odometry
based prediction of the position including its first derivative
[qx,odo, qy,odo, q̇x,odo, q̇y,odo]

T. vk represents the measure-
ment noise and the matrix H models the influence of wk

on the measurement. Ts represents the constant sampling
interval and E the identity matrix.

xk+1 = Φxk + Gwk

yk = Cxk + Hwk + vk

(1)

xk =


qx,k
qy,k
q̇x,k
q̇y,k
q̈x,k
q̈y,k

 yk =


qx,m
qy,m
qx,odo
qy,odo
q̇x,odo
q̇y,odo

 (2)

Φ =


1 0 Ts 0 0 0
0 1 0 Ts 0 0
0 0 1 0 Ts 0
0 0 0 1 0 Ts
0 0 0 0 1 0
0 0 0 0 0 1

C =


1 0 0 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

 (3)

G = E H = E (4)

Equation (5)-(7) describe the approached Kalman filter.

x̂k+1 = Φx̂k + K̂k (yk − Cx̂k) (5)

K̂k = ΦPkCT(CPkCT + Q + R)−1 , (6)

with the best estimation x̂k+1 for xk+1, based on k mea-
surements, and the covariance of the estimation error Pk+1

that can be calculated with the discrete Ricatti equation. The
covariance matrices

cov(vk) = Rδkj cov(wk) = Qδkj , (7)

with the [6× 6] matrices R and Q, and δkj = 1 for k = j,
else δkj = 0. The covariance matrix R is used to model the
reliability of the measurement and influences the significance
of the measurement for the state estimation x̂k+1. Hence,
the reliability of the current row measurement has to be
determined.

A. Row Tracking With Position Data

Equation (8)-(10) describe the position and velocity of qb

dependent on the position and velocity of the robot. Figure 2b
depicts the position change of qb if the robot drives along
the x axes.

yb
xb

FRANC

qbqw

yw

xw

(a)

FRANC

x

y qb,p

qb,h

vr

(b)

Fig. 2: (a) Parametrization vector for a crop row in the global
coordinate system qw and inside the coordinate system of
the robot qb. (b) Movement of the hypotheses depicted
with a vectorfield, if the robot moves along its x axes.
qb,h: line equation vector of a horizontal line, qb,p: line
equation vector of a parallel line, vr: velocity of the robot,
vectorfield: velocity vectors of the hypotheses in the state
space for the given vr.
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rb,t = xb,tcos(θw) + yb,tsin(θw)− rwsin(θw) (8)
θb,t = αb,t − θw (9)

q =

[
qx
qy

]
=

[
rb,tsin(θb,t)
rb,tcos(θb,t)

]
(10)

rb,t represents the offset of the coordinate system of the
robot relative to the line that is static in the world coordinate
system, modeled with θw and rw. xb,t, yb,t and αb,t describe
the pose of the robot inside the world coordinate system, the
index b stands for the base of the robot, and t indicates that
the variable is time variant.

B. Reliability of the Row Measurement

We aim to derive the reliability of the row measurement
dependent on the probability of the parameter configuration
for the observed scene.

We sample the state space initially with N randomly
generated hypotheses. After each iteration, we redraw N−M
hypotheses and reseed M randomly generated hypotheses.
The reseeding avoids a degeneration of the particle filter
and keeps the estimation dynamic and adaptable. Hence,
the particle filter models the probability density function
of the parameter configurations for the current observed
scene [9]. If the segmentation results in clear row structures,
the particles will accumulate in a single region that offers a
high particle concentration. If the segmented image contains
only sparse information, the particle filter will model the
probability density function for the current measurement with
several particle clusters that represent different configuration.

III. TESTS AND RESULTS

We tested the row tracking and analyzed the particle
distribution of the probabilistic crop row detection with real-
life data recorded with the robot FRANC1 during in-field
trials (cf. Fig. 3). We implemented the necessary algorithms
in the robot operation system and used an existing visual
odometry solution (LIBVISO2, [10]) to gather the position
data.

Fig. 3: FRANC during in-field trials.

A. Row Tracking With Position Data

The recorded data contain several turn maneuvers at the
end of rows. We selected exactly one of those sequences
because of two reasons.

• The turn maneuver offers the biggest variation in the
movement of the robot compared to a straight motion
parallel to the crop rows.

1http://franc.acin.tuwien.ac.at

• The crop row detection cannot provide a reliable mea-
surement at the end of a field because the necessary
information is missing. However, an overall tracking
solution has to provide information even at field ends.
Hence, the tracking has to rely on the pure odometry
data during turn maneuvers.

We determined the ground truth crop row parameters at the
beginning and end of the sequence and compare the results
(cf. Fig. 4). The visual odometry fails to track the offset with
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(a) Position change of
the robot during the turn
maneuver.

−3 −2 −1 0

−2

−1

0

yl [m]

x l
[m

]

(b) Visual odometry
based crop row tracking
(blue). Green dot:
ground truth at start,
red dot: ground truth at
the end.
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(c) Orientation αb of
the robot during the turn
maneuver. Green line:
ground truth at start, red
line: ground truth at the
end.
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(d) y position of the
robot during the turn
maneuver. Blue: 1strun,
black: 2nd run, green
line: ground truth at
start, red line: ground
truth at end.

Fig. 4: Odometry data and tracking results.

a sufficient accuracy (tracking error: 0.1m to 0.4m) but offers
good results for the tracking of the crop row orientation
(tracking error: 0.055rad to 0.088rad).

B. Probability Densities of Different Row Measurements

Figure 5 shows several results of the crop row measure-
ment, the better the provided information of the segmenta-
tion, the more definite is the row measurement result.

IV. CONCLUSION AND OUTLOOK

We introduced a simple linear model and approach a
Kalman filter as crop row tracking solution to enable a
precise GPS-free navigation. Our preliminary results indicate
that an odometry based crop row tracking can be used at field
endings and have the ability to improve the tracking results
of in-field row measurements. However, a better and more
precise visual odometry algorithm can further improve the
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(a) Upper images: dense (left) and
sparse (right) segmentation results.
Lower images: field ending (left)
and corresponding segmentation re-
sult (right).

(b) Correct and stable row parameter
estimation for dense segmentation
results and clear row structures.

(c) Correct estimation for sparse seg-
mentation results, the two biggest
cluster can be transformed into each
other, a third cluster starts to appear
on the right side.

(d) Transition between crop rows
and a field ending. The particle fil-
ter contains several clusters and the
probability that the biggest cluster
represents a correct measurement de-
creases.

Fig. 5: Particle distribution for different field regions and segmentation results.

tracking results. Furthermore, our tests lead to the conclusion
that the modeled probability density can be used to determine
the reliability of the current crop row parameter estimation,
hence enables automatic switching from row tracking to
odometry based navigation at the field endings.
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Studying Phenotypic Variability in Crops
using a Hand-held Sensor Platform

Raghav Khanna, Joern Rehder, Martin Möller, Enric Galceran and Roland Siegwart

Abstract—Recent developments in visual-inertial and LiDAR
sensors and simultaneous localization and mapping (SLAM)
enable recording and digital reconstruction of the physical world.
In this paper we utilize a hand-held multi-sensor platform for
remotely recording and characterizing physical properties of
crops on a field. The platform consists of a visual-inertial sensor,
color camera and 2D LiDAR. We syncronize the data from this
platform and fuse them in a standard SLAM framework to obtain
a detailed model of the field environment in the form of a 3D
point cloud. Such a model is then fed into semi-automated crop
parameter estimation pipelines to extract the spatio-temporal
variation of physical crop height and canopy cover, which may
be used to support decision making for breeding and precision
agriculture. We present experimental results with data collected
on a winter wheat field in Eschikon, Switzerland, showing the
utility of our approach towards automating variability studies in
crops.

Index Terms—Precision agriculture, visual-inertial sensor, 3D
reconstruction, agricultural robotics, crop phenotyping, point
cloud processing

I. INTRODUCTION

Remote, non-invasive monitoring of crops has garnered
significant interest in recent times. Crop phenotyping, the
application of high throughput methods to characterize plant
architecture and performance, is currently a focus in crop
research and breeding programs [1], [2]. However, most crop
breeding programs currently employ human expert breeders
who primarily evaluate plant growth visually. This process is
time consuming and expensive, and may be error prone. High
throughput phenotyping facilities allow crop variability data
collection in controlled environments that can be extrapolated
to large-scale crops. These facilities are typically run by large
seed and crop care companies and plant research institutions
within large, controlled environments, such as greenhouses or
growth chambers. This limits their ability to extrapolate and
predict plant behavior under heterogeneous field conditions
[3]. Large-scale field phenotyping platforms are typically
expensive, take a long time for construction and are limited
in their area of operation. The increased demand for on-
field phenotyping to support breeding [4] has spurred the
development of mobile platforms, [5], [6] and [7], based
on ground vehicles. Ground vehicles, however, are intrusive,
limiting the frequency of the measurements, and have an
adverse impact on the soil.

This research was sponsored by the European Communitys framework
programme Horizon 2020 under grant agreement no. 644227-Flourish.
The authors are with the Autonomous Systems Lab at ETH Zürich
(e-mail: {raghav.khanna, joern.rehder, enric.galceran}@mavt.ethz.ch, mar-
moell@student.ethz.ch, r.siegwart@ieee.org).

Fig. 1. The hand-held sensor platform used in this work for studying crop
variability, comprising of a visual-inertial sensor, a color camera and laser
range finder.

Therefore, an easy-to-use, flexible and mobile sensor plat-
form (such as the one shown in Figure 1) can enable breeders
and agronomists to quickly and frequently collect real world
data about their crops, offering valuable insights into crop
status and field variation.

In light of these considerations, we present a light-weight,
hand-held system consisting of a high resolution color camera,
a laser scanner and a visual-inertial sensor, offering flexibility
and ease of use to monitor crops. We show preliminary results
in the form of user-readable crop height and canopy cover
maps which can be used to study the spatio-temporal growth
of the crops on the field. Our height estimates, based on the
sensor platform measurements, are also shown to compare
favorably with manual measurements. An overview of the
pipeline is shown in Figure 2.

II. SENSOR PLATFORM AND CALIBRATION

We employed a combination of the visual-inertial sensor
developed at the Autonomous Systems Lab [8], a Hokuyo
UTM-30LX laser range finder (LRF) and a rigidly attached
Point Grey Flea3 color camera for data collection, as shown
in Figure 1. The visual-inertial sensor and LRF were synchro-
nized in hardware, while software synchronization according
to Zhang et al. [9] was performed for the color camera. We
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Fig. 2. A schematic overview of our hand-held scanner based phenotypic
pipeline.

used the kalibr1[10] framework for calibrating the cameras
intrinsically and extrinsically with respect to the inertial mea-
surement unit (IMU), and for determining the communication
delay of the color camera. The transformation between IMU
and LRF was estimated according to our previous work [11].

Our plant segmentation is based on data acquired with the
color camera, exploiting that the spectra of light reflected
by plants and soil are generally different. Besides irradiance,
image intensity is dependent on the camera response function
as well as on the optical transmission of the lense system. We
estimated these quantities using the well established empirical
model of response [12] as well as a simple polynomial model
for vignetting [13], and subsequently compensated for these
influences to facilitate segmentation.

III. 3D RECONSTRUCTION

Our 3D reconstruction follows a two-step procedure. In a
first step, non-linear optimization [14] over a sliding window
of measurements from the visual-inertial sensor provides an
initial estimate of the sensor trajectory. While this approach is
real-time capable and has been demonstrated to provide state-
of-the-art accuracy, we subject the initial trajectory estimate to
a full batch optimization [15] in a second step, taking all visual
and inertial measurements into account. This offline post-
processing step further improves the accuracy of the recon-
struction. Given the sensor trajectory, range measurements are
transformed into the coordinate frame of our map to produce a
point cloud. Subsequently, an irradiance2 value is sampled for
every point by projecting it into the temporally closest color
image.

1Available at https://github.com/ethz-asl/kalibr
2We follow Debevec et al. [16] in using this term. For insights on why this

term is not strictly correct and a justification for its use, please see their work.

Fig. 3. 3D reconstructions of the winter wheat field on 10-04-2015 (top) and
12-05-2015 (bottom). The plot sizes are 1.5 m x 1 m with different genotypes
planted for breeding experiments. One can observe the dramatic variation
in the appearance of the crops which presents a challenge for automated
segmentation and analysis pipelines.

IV. QUANTIFYING PHENOTYPIC VARIATION ON THE FIELD

There exist well established parameters to characterize the
differences between crops growing on the field, such as
height, canopy cover, leaf area index (LAI) and chlorophyll
fluorescence. We use the point clouds generated using our
hand-held platform to estimate the crop height and canopy
cover. These estimates, converted into human-readable maps,
can be used to assist and verify breeders’ rating values for
different plots and provide an estimate of the growth rate of
plants and its spatial variation.

A. Height Estimation

We use our previously developed height estimation pipeline,
described in detail in [17]. An overview is provided here
for completeness. The point clouds are first segmented using
a color threshold to separate the vegetation from the soil.
A linear regression surface is then fitted through all the
soil points to get the global orientation of the scene. For
height estimation, a finer tessellation of this ground surface
is performed and a local multinomial regression surface is fit
through the soil points in each region. The ground plane is
further subdivided into regions with dimensions approximating
the plant size of the crop under study. The height of each plant
region is then estimated as the height of the vegetation point
corresponding to the 99th percentile within that region.
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B. Canopy Cover Estimation

We define canopy cover as the percentage of the ground
covered by vegetation when looking down along the normal to
the ground plane. We compute it by subdividing the field into
small areas, each of which we consider covered by vegetation,
if we find at least one plant vertex above them. The canopy
cover is then found as the ratio of the sum of all covered
areas to the area of the entire field. The challenge now lies in
accurately choosing the tessellation size. If chosen too high,
large areas would inadvertently be considered covered even
if they contained only one point (which might be an outlier
from the reconstruction). On the other hand, a leaf can only be
represented by a finite number of points which have no volume
themselves. Thus, if the tile size is chosen too small the areas
between closely neighboring points would not be considered
covered even though it is quite likely that the points belong
to the same leaf. In the limit, the estimated crop cover would
eventually converge towards zero when the tile size approaches
zero.

It is therefore reasonable to choose the tile size based on
the individual density of each point cloud. For this purpose
we compute the distances from all points in the point cloud to
their corresponding nearest neighbor. Among all these inter-
vertex distances we look for the median. We then subdivide
the field into squares and choose their side-length as twice the
median found in the previous step. Finally the canopy cover is
found as the ratio of the number of squares that have at least
one plant vertex above them to the overall number of squares.

V. RESULTS AND DISCUSSION

We collected two datasets on an experimental winter wheat
field at Lindau, Eschikon in Switzerland. An overview of the
field is shown in Figure 4. The field is used for breeding
experiments and consists of 1.5 m x 1 m plots with different
wheat genotypes. The purpose of such experiments is to
determine which of the genotypes are better suited to a
certain type of environment or abiotic stress, by measuring and
quantifying plant growth over time and comparing the different
plots. The datasets were collected on April 10 and May 12,
2015 during the growth period of the plants. Data collection
was performed in a nadir configuration, recording images at
20 Hz, range scans at 40 Hz and inertial measurements at
800 Hz. We oriented the sensor suite in a way that optimized
coverage for our push-broom approach to reconstruction and
walked at normal speed (approximately 1m/s).

The point clouds for one row of plots for both days are
shown in Figure 3. One can clearly observe the large variability
in the visual appearance of the crops at different times. This
is attributed to the ambient illumination and the change in the
physical structure of the plants which has an influence on the
shadows and occlusions. The dramatic change was observed
to cause issues with automated segmentation procedures and
hence the segmentation thresholds had to be set manually. One
can observe that the number of soil points reduces dramatically
in the second point cloud due to occlusions caused by plant
growth. While a limited number of ground points makes it

Fig. 4. Aerial orthomosaic of the research field at Lindau, Eschikon. The red
rectangle shows the area where the data was collected.

Fig. 5. Image of the winter wheat plots within the field. The red lines depict
the area where the data was collected.

difficult to obtain an accurate reconstruction of the ground
profile, there are still enough points for our regression method
to generate the height estimates. A height map of 5 selected
plots on the field is shown in Figure 6 for the two days. The
canopy cover is estimated using the procedure described in
section IV-B. Figure 7 shows a top view of the field with
squares classified as vegetation depicted in green. Using the
point clouds, we seek to simulate traditional imaging-based
canopy cover estimation techniques which estimate the canopy
cover based on images of the field taken using a camera
looking down towards the plots. However, as seen in Figure 7,
it is difficult to acccurately assess the spatial variation of
the canopy cover between different plots using such a binary
map with high resolution. In order to support discrimination
between the different plots, average canopy cover values over
a larger ground area are calculated and depicted in Figure 8.
This averaging makes it easy to identify the plots with higher
canopy density compared to the others.

From these height and canopy cover maps, one can observe
the relative growth of the plants over time in all three dimen-
sions and the variation between the different plots becomes
apparent, enabling better decision making while rating differ-
ent plots or identifying areas of high/low growth within a large
farm.

In order to determine the accuracy and reliability of the
height estimates, 5 plant heights were measured for each plot
using a yardstick on both days. The average height per plot
was determined by averaging these plant heights for each plot.
These were then compared with the average height per plot
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Fig. 6. Height map of a winter wheat field. The plot sizes are 1.5m x 1m
and different genotypes are planted for a breeding experiment.

Fig. 7. Image showing a top down view of the winter wheat plot canopy.
Green represents pixels covered by plant and yellow the ground. The pixel
size is defined adaptively based on the density of the point cloud.

computed by averaging the maximum plant heights in five
areas in the reconstruction corresponding to the spatial location
of the plants used for the yardstick measurements. The results
are shown in Figure 9 in the form of a bar chart with the mean
and standard deviation of the yardstick and scanner based
height estimates per plot for the 5 plots.

VI. CONCLUSION AND FUTURE WORK

In this work we have proposed using a flexible, hand-held
multi-sensor platform for collecting crop data on a winter
wheat field. Preliminary results show that the collected data
and semi-automated post processing of the point clouds enable
the quantification of important phenotypic parameters of the
crops. Average crop height and canopy cover are estimated
and presented in the form of user readable maps, such as those
in Figures 6 and 8, useful for agronomists, farmers and crop
scientists.

While our work shows promising preliminary results, it
also highlights some limitations. Errors affecting reconstruc-
tion and subsequently crop height estimation may arise from
inaccuracies in the estimated sensor trajectory and in the range
measurements. In the first case, noise on estimating roll and
pitch angle as well as drift in the estimated height of the sensor
will presumably have the largest effect. Range measurements
are corrupted by different deterministic biases [18] as well as
random noise. In addition, the laser beam covers a certain solid
angle, and depth discontinuities inside this cone yield ”mixed
pixels”, weighted averages of the sampled depths. Since floral
environments are rich in discontinuities, we expect a signifi-
cant amount of these artifacts. For plants with sufficient leaf
area, the effect of this is mitigated by taking the 99th percentile,
as there is a high probability of acquring samples that are not

Fig. 8. User readable map for canopy cover density. One can easily observe
the relative variation between different plots and their growth over time.

Fig. 9. Comparison of average height per plot using yardstick measurements
and our sensor setup for both days.

affected by discontinuities. Improved robustness of the ground
plane estimation process to outliers in the segmentation may
be obtained by replacing the linear regression by fitting based
on a RANSAC scheme [19].

Future work will focus on integrating additional sensors
to overcome the challenges mentioned above. Segmentation
based on normalized difference vegetation index (NDVI) us-
ing a multi-spectral camera could improve the accuracy and
robustness of the soil-plant segmentation. The addition of an
RTK GPS system can improve the robustness of the localiza-
tion and prevent drifts, leading to more accurate trajectories
and longer operating times with which larger areas may be
covered in one cycle.
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[17] R. Khanna, M. Möller, J. Pfeifer, F. Liebisch, A. Walter, and R. Siegwart,
“Beyond point clouds - 3d mapping and field parameter measurements
using uavs,” p. to appear, 2015.

[18] P. Demski, M. Mikulski, and R. Koteras, “Characterization of hokuyo
utm-30lx laser range finder for an autonomous mobile robot,” in Ad-
vanced Technologies for Intelligent Systems of National Border Security.
Springer, 2013, pp. 143–153.

[19] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography,” Communications of the ACM, vol. 24, no. 6, pp. 381–395,
1981.

44



  

 

Abstract—There is an increased interest in measuring the 

amount of greenhouse gases produced by farming practices . This 

paper describes an integrated solar powered Unmanned Air 

Vehicles (UAV) and Wireless Sensor Network (WSN) gas sensing 

system for greenhouse gas emissions in agricultural lands. The 

system uses a generic gas sensing system for CH4 and CO2 

concentrations using metal oxide (MoX) and non-dispersive 

infrared sensors, and a new solar cell encapsulation method to 

power the unmanned aerial system (UAS)as well as a data 

management platform to store, analyze and share the 

information with operators and external users. The system was 

successfully field tested at ground and low altitudes, collecting, 

storing and transmitting data in real time to a central node for 

analysis and 3D mapping. The system can be used in a wide range 

of outdoor applications at a relatively low operational cost. In 

particular, agricultural environments are increasingly subject to 

emissions mitigation policies. Accurate measurements of CH4 

and CO2 with its temporal and spatial variability can provide 

farm managers key information to plan agricultural practices. A 

video of the bench and flight test performed can be seen in the 

following link: 

 https://www.youtube.com/watch?v=Bwas7stYIxQ. 

 

I. INTRODUCTION 

 Agricultural greenhouse gas emissions can come from 

several sources; soil management, enteric fermentation, 

manure management as well as C02 from fossil fuel 

consumption, Agricultural soil management emissions for 

instance are nitrous oxide emissions which can account for 

about 55-65% of the total emissions from the agricultural 

sector. The large increase in the use of nitrogen fertilizer for 

the production of high nitrogen consuming crops like corn or 

wheat has increased the emissions of nitrous oxide. The use of 

nitrogen fertilizer is essential for profitable crop production.  

Some practices that use nitrogen fertilizer more efficiently 

have the potential to reduce nitrous oxide emissions while 

reducing production costs. Additionally reducing nitrogen 

fertilizer volumes reduces the risk of polluting ground waters. 

Methane is produced by ruminant animals such as cattle, goats 

and sheep during the digestive process as a result of a microbial 

fermentation. Beef cattle for example can account for about 70 

percent and dairy cattle for about 25 percent of methane 

emissions. If beef and dairy cattle numbers increase, methane 

emissions will also increase [1].  

 
 
 Queensland Government through the NIRAP project. 

  ARCAA for their technical support. 

Even though there are several methods used for 

measuring emissions in farms they have some limitations 

mainly in  being restricted to be at a static location and cost of 

deploying several measuring stations around a farm also 

presents some changes in limited available power around a 

large broad acre farm [2].  

This paper discusses the development, integration, and 

flight testing of a gas sensing system installed on a UAV and a 

WSN. This methodology represents a new opportunity to 

measure the spatial and temporal distribution of emissions. By 

monitoring the variability of agricultural emissions, farm 

managers can adapt agricultural practices to existing and future 

emissions mitigation policies. Figure 1 illustrates the concept 

developed. 
 

 

 

 

 

 

 

 

 

 

Figure 1 – Concept of a solar powered WSN and UAV gas sensing system. 

 

UAVs have been used as an aerial remote sensing 

platform to measure environmental gases. UAV technologies 

are becoming a low cost but  powerful tool to reach remote 

areas and survey relatively large regions [3,4]. In recent years, 

optical gas sensing devices have been widely integrated into 

UAV platforms. Watai et al.[5] for instance discussed  a non-

dispersive infrared (NDIR) sensing system to monitor 

atmospheric CO2 concentration onboard a small UAV, and 

designed an economic and accurate gas sensor system (± 0.26 

ppm precision).The system performed several flight tests and 

achieved one hour flight autonomy with a 3.5 kg payload. 

McGonigle et al.[6] reported the first measurements of 

volcanic gases with a helicopter UAV at La Fossa crater, 

Volcano, Italy using an ultraviolet and infrared spectrometer to 
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measure SO2 and CO2 gas concentrations. The UAV had 12 

minutes of flight autonomy, carrying a 3 kg payload. Astuti et 

al.[7] developed a UAV for volcanic monitoring on Mt Etna 

using a fixed wing UAV to carry a CO2 infrared spectrometer 

and a SO2 electrochemical sensor. All these earlier research 

have achieved to autonomously sense gases using UAVs but 

the need to design and develop an efficient integrated system 

to continuously monitor and estimate gas concentrations has 

not been undertaken. Hence this paper is intended to tackle this 

issue by combining UAVs and WSN.  The rest of the paper is 

organized as follows: section 2 discuses Solar Powered 

Wireless Sensor Network (WSN) Subsystem, section 4 

describes the solar powered UAV, section 4 discuses WSN and 

UAV field tests, and section 5 presents conclusions and future 

work. 

 

II. SOLAR POWERED WIRELESS SENSORS 

NETWORK (WSN) SUBSYSTEM 

Malaver et al described a generic gas sensing system and 

its application to WSN [8], developed as part of a collaborative 

research project between Brescia University (Italy) and QUT 

(Australia). We integrate a CO2  NDIR sensor also termed as 

the nano-sensor (CDM30K, Figaro Inc., Osaka, Japan), which 

is pre-calibrated from factory at 0 and 400 ppm, however the 

accuracy of the reading were cross checked with a LI-840A 

CO2 analyzer showing an overall error in the measurements 

of 5%. The signal output of the module is a DC voltage 

between 0 and 4 V, which represents 0–2000 ppm, 

respectively [9].  

In This paper we extend the earlier work by adapting the 

gas sensor system to be installed on a Solar Powered UAV. 

The four principal components of the gas sensor system are 

shown in Figure 2: a network board, a gas sensor and sensor 

board interface, a humidity sensor, a heat sensor and control 

and solar panel and power electronics. The network card 

acquires the signal from the gas sensors and is able to 

propagate the data throughout multiple wireless sensor nodes 

in order to reach the base node. The base node communicates 

the data to the field computer, data of which can be stored, 

displayed and shared on a live webpage. 

 

 

 

 

 

 

 

Figure 2 – Wireless gas sensing system node and base node configuration. 

 

III. SOLAR POWERED UAV 

The UAV has three main sub-systems that are integrated 

with the airframe in order to estimate gas concentration, 

navigate, and keep powered during operations. These sub-

systems are depicted in Figure 3. 

 

          

 

 

 

 

 

 

Figure 3 – General configuration of the UAV avionics integrated with the 
gas sensing system. 

 

A.  Gas Sensing System 

  The same gas sensing technology described in section 2 

and used on the WSN was integrated to the UAV platform 

with some modifications in size, weight and power. Figure 4 

illustrates these adaptations. The sample intake was adapted to 

allow the volume of gas volume for measurements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4 – Airborne gas sensing system: aerodynamic fin shell, gas sensor, 

sensor socket, gas chamber and solenoid valve. 

The power for the gas sensing system is provided by an  

electronic battery eliminator circuit (BEC) that provides up to 

5 VDC, 2 A. The 6 V required by the solenoid valve is provided 

by a step-up converter circuit attached to the BEC. Once the 

sensor board acquires the sensor signal, the information is 

transmitted to the base node using the radio module, antenna of 

which is installed on the top of the airframe. 
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B. UAV and Navigation System 

The UAS developed in this work was based on the Green 

Falcon UAV[8,10]. The UAV airframe is easy to transport for 

fast deployment and hand launch. It has a wingspan of 2.52 m, 

AR of 13, and fuselage length of 960 mm.  

The main component of the navigation system is the 

autopilot, which is equipped with an air speed sensor, gyro 

sensor, accelerometer, magnetometer, barometric pressure, 

GPS, airspeed and fail safe system. The principal goal of this 

device is to navigate the aircraft by controlling the altitude, 

speed, and direction. The autopilot used for the UAS was the 

ArduPilot Mega 2.5, which is a complete open source 

autopilot system with a high benefit/cost ratio and low weight 

(23 g). The autopilot system works mainly in three modes: (i) 

autonomous mode to fully perform unmanned mission by pre-

programing waypoints from the ground control station (GCS); 

(ii) stabilised mode to assist a ground pilot in controlling and 

stabilising the flight of an aircraft where the pilot has partial 

control of the aircraft and when there is no pilot input the 

autopilot will maintain a level flight; (iii) and manual mode, 

which is useful to perform the pre-flight check as the autopilot 

acts as a pass-through for all RC commands and also allows 

the pilot to freely preform manual take-offs, manoeuvres and 

landings when the autopilot is not pre-programed to perform 

these tasks. In all modes, the autopilot is capable of 

transmitting relevant flight information such as roll, pitch, 

yaw, airspeed, GPS position and battery status to the GCS by 

using the telemetry module.  The GPS system used was a 

LEA-6 (UBlox), which consumes low power, is small and 

lightweight (16.8 g) it has an update rate up to 5 Hz and is ideal 

for UAV applications. When the GPS is connected to the 

autopilot the coordinates are transmitted to the GCS using the 

same telemetry module of the autopilot. The GPS connects 

directly to the autopilot GPS port, and uses the RX, TX, GND 

and 5 V connections. 

C. Power Management and Solar Wing 

The total energy demand of the UAV was calculated 

based on the power consumption of the avionics, motor and 

gas sensing system, plus the lost energy caused by the 

efficiency of electronics and avionics (equation 1).  

 

𝑬𝒅𝒆𝒎𝒂𝒏𝒅_𝒕𝒐𝒕𝒂𝒍 =  
(𝑬𝒂𝒗𝒊𝒐𝒏𝒊𝒄𝒔 +  𝑬𝒈𝒂𝒔_𝒔)

𝜼𝒑𝒐𝒘𝒆𝒓 𝒆𝒍𝒆𝒄𝒕𝒓𝒐𝒏𝒊𝒄𝒔×  𝜼𝒂𝒗𝒊𝒐𝒏𝒊𝒄𝒔
     (1) 

 

Where the efficiency of the power electronics 

(𝜂𝑝𝑒) is 0.86, and the avionics (𝜂𝑎𝑣) is 0.90.  

Replacing values in Equation (1):  

𝑬𝒅𝒆𝒎𝒂𝒏𝒅𝒕𝒐𝒕𝒂𝒍
=  

(𝟒𝟐. 𝟏𝟐 𝑾𝒉 +  𝟎. 𝟖 𝑾𝒉)

𝟎. 𝟖𝟔 × 𝟎. 𝟗
 

𝑬𝒅𝒆𝒎𝒂𝒏𝒅_𝒕𝒐𝒕𝒂𝒍 = 𝟓𝟓. 𝟒 𝑾𝒉 

The total energy demand (55.4 Wh) needs to be supplied 

by the solar wing and the battery. The solar wing was 

constructed using small silicon solar cell (SSC) ribbons 

connected in serial and parallel configuration to achieve the 

voltage and current required. Each SSC ribbon has an area of 

0.00375 m2 and an average of 12 % efficiency. The maximum 

area for the solar panels is limited by the wing area (490 cm2), 

ailerons, narrow ends, and the area allocated for the gas sensor 

system (53 cm2). Careful analysis of the location and 

configuration of the solar panels lead to 70 SSC ribbons were 

distributed along the three parts of the wing by placing 19 

units on each side wing (total 38), and 32 units in the middle, 

for a total of 70 SSC units (0.2625 m2). The weight density of 

a single SSC ribbon with the tabbing wire installed is 0.53 

kg/m2. A flexible capsule with the shape of the wing was made 

to allocate the SSC panels, to avoid losses in aerodynamic 

performance and to withstand mechanical stress due to in 

flight vibrations of the UAV. The solar panels were 

encapsulated using a clear resin, which is flexible and totally 

transparent to avoid output power losses. Figure 5 shows the 

UAV with the solar wing in flight. 

The internal connections are in serial configuration to 

obtain the desired voltage of each panel. The side wing panels 

were connected in series to reach a Voc of 19 V, which 

produced a current flow of 1.16 A. The middle wing panel is 

the main section, and consisted of 32 SSC ribbons in serial 

configuration to produce a Voc of 16 V, and Isc of 1.16 A. The 

right and the left wing panels in serial configuration were 

connected in parallel to the middle wing panel to produce a 

final Voc and Isc value between 16-19 V, 2 A, respectively.   

 

 

 

 

 

 

 

 

Figure 5 – Green Falcon UAV in flight at Christmas Creek farm. 

 

The total wing weight is 1610 g which means that 650 g 

is due to the SSC panel and encapsulation mass. 

A commercial battery that complements the solar panel 

to meet the energy demand of the aircraft is a 4 cell, 3.0 Ah 

lithium polymer battery, which provides a nominal energy 

output of 44.4 Wh. However, for safety reasons and technical 

limitations, only 80 % of the battery capacity (35.52 Wh) was 
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taken into account. The total energy available is therefore 

59.14 Wh, which is enough energy to satisfy the demand of 

55.4 Wh.  The electronic board used to manage the solar and 

battery power is based on the BQ 24650 EVB from Texas 

Instruments [11]. The board works as a Maximum Power 

Point Tracker (MPPT), battery charger, and power path 

manager. This chip is from the same family as the nodes used 

for the WSN, with a battery charge/discharge efficiency of 86 

%. The system is easy to setup, as the circuit board has only 

three ports; one for the solar power inlet, one for the lithium 

battery, and the output power to energise the UAV systems. 

D. Some Propulsion System and Total Aircraft System  

The main components of the propulsion group of the aircraft 

are the electronics speed controller (ESC); the brushless 

motor; and the propeller. The ESC used was the Plush 40 A, 

which can provide up to 40 A to the motor with a smooth 

throttle response, integrated battery eliminator circuit (BEC, 

5V/3A), small size, weights 33 g, and is compatible with 

lithium polymer batteries with 2 to 6 cells.  

The ESC regulates the power from the battery to run the 

avionics and gas sensing system simultaneously. In the case 

of an energy shortage, the ESC cuts the motor off and 

maintains a minimum power to allow the pilot manoeuver an 

emergency landing. The brushless motor used was the 

Plettenberg HP/220/20/A3 P6 SL 5:1.  

The weight distribution of the UAS with the sensing 

system installed is illustrated in Figure 6 which shows the 

breakdown for the CO2 system only,  similar results were 

obtained for the nano-sensor system. The total weight of the 

UAS with the CO2 system was 2573 g, and with the nano-

sensor system 2615 g. It is clear from Figure 6 that the wing 

and fuselage were the heaviest parts in the UAV, while the 

CO2 gas sensing system or the nano-sensor system represents 

only 12 % and 14 % of the total weight, respectively. 

The power electronics had an average output voltage of 

14.2 V, and the current intensity reached its maximum peak of 

about 6.5 A (consuming about 80 W), during take-off 

manoeuvres; however the average current consumption 

fluctuated between 1 A to 3 A (about 15 to 40 W), during 

regular flight operation. 

According to the GCS, the energy consumption of the 

UAV during the flight operation was in average 25 Wh, which 

is lower than the average energy measured in the bench test of 

about 40 Wh. The possible reason for this lower consumption 

is that the throttle of the motor was more active during the 

bench test than in the real flight operation, which is a positive 

feedback for the final design of the solar powered UAV for 

continuous flight during sun-light hours. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 – Weight distribution of the Green Falcon UAV with CO2 gas 

sensing system. 

IV. WSN AND UAV FIELD TEST 

The target gas of the experiments was CO2 

measurements due to the availability of the gas in the field 

testing area and the possibility of creating a contaminant 

source. Testing NO2 and CH4 in the field requires a different 

scenario that will be considered in future work. The WSN was 

calibrated and tested at Samford Ecological Research Facility 

(SERF]  [8] however nly two of the four nodes developed for 

the WSN were tested in conjunction with the UAV as a proof 

of concept.  

The complete system was tested at Christmas Creek, 

QLD, 23th July, 2013. The base station was located at the 

beginning of the airstrip, the pollutant source was located 30 

m from the GCS, the CO2 ground node and the weather station 

was deployed 20 m from the GCS, all south of the base node. 

The UAV mission was to fly in a circular trajectory up to an 

altitude of 50 m above ground level over the area monitored, 

above the sensor node and pollutant source. The CO2 was 

released for 6 min at 0.0027 kg/s rate and average wind speed 

of 1.09 m/s. 

CO2 concentration values taken from ground and aerial 

nodes during the experiments are plotted in figure 7. The 

average CO2 concentration registered by the ground node was 

404 ppm during the first 164 s. Then, the average 

concentration increased slightly until it reached a peak of 442 

ppm at the end of the experiment. The average CO2 

concentration registered by the aerial node was 400 ppm, with 

few CO2 peaks above the average. The volume monitored by 

the UAV was 0.0012 km3, based on the circular area travelled 

and flight altitude (~50 m AGL). The horizontal sampling 

resolution of the UAV was 88 m/s as the average cruise speed 

was 12.6 m/s and sampling frequency 7s. Vertical resolution 

of the samples was 10 m based on the uncertainty of the GPS 

and autopilot navigation. Figure 8 shows the UAV tracks 

during the experiment, the contaminant source origin and 

direction of the dispersion due to wind effect. The average 

wind speed was 1.5 m/s, mostly  in North-east direction. 
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Figure 7 – CO2 readings from the ground and aerial nodes during the 

experiment at Christmas Creek, QLD, Australia in 23/07/2013. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 8 – GPS tracks of the UAV during the mission, the source of 

contamination and the wind direction. 

 

Figure 9 shows the latitude and longitude coordinates of 

each sample with its respective CO2 concentration. The fact 

that the CO2 readings from the UAV did not show significant 

variations indicates that the contaminant release rate and 

duration were not long enough to affect significantly a volume 

of 0.0012 km3 within the time span of the experiment (6 min). 

In addition, the wind strength diluted the pollutant emissions 

to levels below the sensitivity of the equipment. Geo-location 

of each sample was achieved by synchronising the logs of the 

network board and autopilot before the mission started. The 

ability to geo-locate the sample and register the time allows 

the reconstruction of the samples in three dimensions and 

facilitates the visualisation of local concentrations, analysis of 

their dynamics and correlations with variables such as 

temperature and pressure.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9 – Readings of the CO2 gas sensing system on board Green Falcon 

UAV, showing the latitude, longitude and concentration of each sample. 

 

 

V. CONCLUSION 

This paper described a generic gas sensing and 

monitoring system of a solar powered WSN and UAV for 

environmental monitoring. The solar powered UAV was 

assembled, equipped with the gas sensing system, and 

successfully tested in the field.  It is recommended for further 

experiments to increase the contaminant rate release and 

duration to produce significant CO2 variation in the volume 

monitored by the UAV.  Faster sampling frequency is also 

desirable, especially when the wind blows in a specific 

direction, which narrows the detection area.  

A video of the extensive bench test performed for this 

work on the Green Falcon UAV can be seen in the following 

link https://www.youtube.com/watch?v=Bwas7stYIxQ.  

VI. ACKNOWLEDGMENT 

The authors would like to acknowledge the financial 

support from the Queensland Government through the NIRAP 

project, “Solar powered Nano sensors”, ARCAA for their 

technical support, Fazl Alabodi and Mandeep Saini as well as 

the support from Steven Bulmer the Green Falcon pilot. 

REFERENCES 

[1] Takle, Eugene, Hofstrand D., "Global Warming - 

Agriculture’s Impact on Greenhouse Gas Emissions." 
http://www.extension.iastate.edu/agdm/homepage.html. 

Iowa State University: University Extension, 20 Apr. 

2008. Web. 7 June 2015. 

[2] Jaichandran, R., and A. Anthony Irudhayarj. "Prototype 

system for monitoring and computing greenhouse gases." 

Carbon 1998 2005.  

[3] Hung, J. Y. and Gonzalez, L. F. On parallel hybrid-electric 

propulsion system for unmanned aerial vehicles. Progress 

in Aerospace Sciences, 51, pp. 1-17, 2012.  

 

 

 

49

https://www.youtube.com/watch?v=Bwas7stYIxQ
http://eprints.qut.edu.au/65197/
http://eprints.qut.edu.au/65197/


  

[4] Gonzalez, F., Castro, M. P. G.,Narayan, P., Walker, R., & 

Zeller,L. (2011). Development of an autonomous 

unmannedaerial system to collect time-stamped samples 

from theatmosphere and localize potential pathogen 

sources. Journal of Field Robotics, 28(6), 961–976. 

[5] Watai, T. Machida, T. Ishizaki, N. Inoue, G. A Lightweight 

Observation System for Atmospheric Carbon Dioxide 

Concentration Using a Small Unmanned Aerial Vehicle. 

Journal of Atmospheric and Oceanic Technology, 23(5): 

p. 700-710, 2005. 

[6] McGonigle, A. J. S. Giudice, G. Tamburello, A. Hodson, 

J. Gurrieri, S. Unmanned aerial vehicle measurements of 

volcanic carbon dioxide fluxes. Geophysical Research 

Letters, 35(6),  2008. 

[7] Astuti, G. Longo, D. Melita, C.D. Muscato, G. Orlando, A. 

HIL tuning of UAV for exploration of risky environments. 

International Journal of Advanced Robotic Systems, 5(4): 

p. 419-424, 2008. 

[8] Malaver Rojas, J.A. Motta, N. Gonzalez, L. F. Corke, P. 

Depari, A. Towards the development of a gas sensor 

system for monitoring pollutant gases in the low 

troposphere using small unmanned aerial vehicles. 

Workshop on Robotics for Environmental Monitoring, 

2012. 

[9] FIGARO. CDM30K Carbon Dioxide Sensor Module. 

Available online: http://www.figaro.co.jp/ 

en/topic/2012/01/announcement-of-co2-gas-sensor-

module-cdm30k.html (accessed on 9 September 2014) 

[10] Malaver Rojas, J.A. Motta, N. Corke, P. Bell, J. 

Development of a gas nanosensor node powered by solar 

cells. In Solar2011, the 49th AuSES Annual Conference, 

Australian Solar Energy Society, 2011. 

[11] bq24650EVM Synchronous, Switch-Mode, Battery 

Charge Controller for Solar Power, T. Instrument, Editor. 

2010. 

 

50



Attentively Finding and Moving Among Apples

Çağatay Odabaşı and H. Işıl Bozma

Abstract— An apple harvesting robot needs to detect apples
and visually move among them as to be able process each apple
in detail. This is a difficult problem since orchard scenes are
generally complicated. This paper proposes a novel approach
to this problem based on attentive vision. The robot processes
each subimage in an incoming scene attentively in order to find
the apples and visually move between candidate apple locations
via a family of artificial potential functions where each artificial
potential function encodes saliency in a given subimage based
on unvisited and visited apple locations. The robot then visually
moves from the current apple location to the next via following
the closed-loop dynamics of the corresponding gradient vector
field. Experimental results demonstrate that - differing from
previous work - the proposed approach is robust with respect
to specular reflection and background vegetation.

I. INTRODUCTION

One of the integral problems in robotic apple harvesting
is finding the fruits and visually moving among them as to
process as many of the apples as possible [9]. This is a
difficult problem since apples of same orchard or even same
tree can differ dramatically in shape or color. Furthermore,
the background vegetation may be confusing.

The proposed approaches may be divided into two groups.
Those in the first group focus mainly on the color property of
apples. In particular, red apples have distinguishable colors;
however the reliability of using color is decreased by specular
reflection. Approaches in the second group view the prob-
lem as an object detection problem and use state-of-the-art
object detection algorithms. While these may precisely put
bounding boxes around the apples, they are generally compu-
tationally expensive. Furthermore, in all of these approaches,
the problem of detecting apples is considered separately from
that of moving among them efficiently. The visual processing
of apple harvester robot must not only enable it to identify
the precise location of fruits, but also attend to it covertly as
to be able to process each fruit in detail.

Fig. 1: The flow of processing.

Ç. Odabaşı & H.I. Bozma with the Intelligent Systems Laboratory,
Electric Electronic Engineering Department, Boğaziçi University, Istanbul,
Turkey {cagatay.odabasi, bozma}@boun.edu.tr

In this paper, we propose a novel approach that addresses
both issues simultaneously. We assume a robot equipped
with a color camera mounted on a pan-tilt mechanism. In
this approach, the robot divides an incoming image into
subimages and processes each subimage attentively in order
to find the apples and visually move among them. This is
achieved via a family of artificial potential functions based on
previous work [8]. Each artificial potential function encodes
saliency in a given subimage based on unvisited and visited
apple locations. The robot then moves its optical axis from
the current apple location to the next via following the
closed-loop dynamics of the corresponding gradient vector
field - in a manner similar to [8]. This is repeated until the
scene is sufficiently covered. The advantage of this approach
is that as the robot is able to focus on each individual fruit, it
sets up a basis for picking them. If the robot actually moves
its optical axis, this movement corresponds to overt attention
[4]. On the other hand, if its optical axis remains fixed, the
corresponding movement is known as covert orienting. Of
course, such a system will need to consider the integration
of the proposed approach with an arm-gripper mechanism
on a mobile robot along with the appropriate range sensing
and motion control algorithms.

The outline of the paper is as follows: First, we briefly
review the related literature in Section II. Next, we explain
the construction of a family of artificial potential functions in
Section III. The movement algorithm is then explained in in
Section IV. Experimental results as presented in Section V
demonstrate that the proposed approach enables the robot
to find and move among apples with high coverage of the
harvest region. The paper concludes with a brief summary
and future directions.

II. RELATED LITERATURE

There has been growing interest in robotic fruit harvesting.
The proposed approaches are categorized into two groups -
namely local based and shape based [1], [10].

In local approaches, image acquisition is followed by pre-
processing in order to improve the quality of images followed
by segmentation and localization. As such, color has played
a major role in the segmentation part. For example, hue and
saturation components are used as chrominance information
in order to segment the fruits from the background [3], [14].
Some color indices have been applied to segment the image
data using a combination of color and texture properties
[19]. In [18], color information is used together with depth
information. While these approaches enable fruit detection
with around 70-90% detection rates in certain scenarios, their
robustness is greatly affected by fruit size, proximity, density
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and illumination conditions [18]. Furthermore, the robot has
to do additional reasoning in order to decide how to move
between apples during harvesting.

Alternatively, in shape based approach, the input scene is
searched for apples. However this is a highly computational
process since most classifiers are generally non-linear. While
some algorithms are exact via considering exhaustive search
[6], most approaches are inexact as to reduce the complexity
[17]. In this perspective, approaches that selectively search
have been proposed [16]. These are based on attentive vision
which enables agents to react to natural environments like
human visual system via constantly directing its optical axis
towards most salient areas. As the whole scene need not to be
processed with high accuracy, computational efficiency be-
comes possible. In this framework, saccades swiftly change
fixated regions [11], [12], [5], [8]. In this work, we integrate
color-based reasoning and attentive processing in order to
enable the robot to find apples and move between them.

III. FAMILY OF ARTIFICIAL POTENTIAL FUNCTIONS

Consider the robot’s camera with an image plane P . Each
artificial potential function ϕk : P → [0, 1] encodes saliency
and inhibition on P during t ∈ [tk, tk+1] when the robot
moves from one region to the next.

Salient locations are candidate apple locations C ⊂ P . The
set C can be determined using a variety of visual cues. Here,
we consider color as the primary cue. Suppose the color of
apples is specified as a given hue Hg . First we define salient
regions X ⊂ P as:

X =
{
x ∈ P | (H(x)−Hg)

2 ≤ τh, V (x) ≤ τv
}

where H(x) and V (x) denote the hue and value associated
with the given pixel x ∈ P . They are subjected to a
priori specified thresholds τh and τv respectively. The latter
threshold is used to eliminate regions where hue value is not
meaningful. Next, connected component analysis is applied
on X followed by opening to find a set of components
{Ci}Nci=1. The respective centroids µi are used to define C
as:

C =

{
µi ∈ X | µi =

1

|Ci|
∑
x∈Ci

x, i = 1, . . . , Nc

}
The weight a(µi) associated with each component µi ∈ C is
defined based on the size of the respective component Ci as:

a(µi) = |Ci|

Next, inhibition is considered based on visited apple loca-
tions Vk as:

Vk = {µ(l) | 0 ≤ l < k}

Each artificial potential function is defined based on C and
Vk as:

ϕk(x) =
∑

µ∈C−Vk

a(µ)e
1

2σ2
(x−µ)T (x−µ) (1)

Initially, V0 = ∅, because there are no visited apple locations.
The construction of each artificial potential function is such

that it is minimal at the candidate apple locations. This is
preferred over being maximal since the flow field properties
of gradient systems dictate that maximal points are unstable
equilibrium points which means under little perturbations the
system starts moving away from these points.

(a) Scene 1 (b) X (c) ϕ0

(d) Scene 2 (e) X (f) ϕ0

(g) Scene 3 (h) X (i) ϕ0

Fig. 2: Saliency via artificial potential function.

Three varying scenes are considered in Fig. 2. The first
considers a typical scene as seen in Fig. 2(a). Salient regions
X are shown in Fig. 2(b) with the corresponding ϕ0 given
in Fig. 2(c). As such, most of the apples are covered. In
a second scene of two big apples as seen in Fig. 2(d), as
one occludes the other, there is only one salient region as
encoded by the corresponding ϕ0 as seen in Fig. 2(f). In
Scene 3 of Fig. 2(g), some apples are badly illuminated. As
such, there are missing salient locations as seen in Fig. 2(i).

IV. MOVING BETWEEN APPLES

While the robot is engaged in harvesting, its camera moves
from one apple location xk ∈ C to the next xk+1 ∈ C. The
system dynamics is defined based on the negative gradient
field of ϕk as:

ẋ(t) = −Dxϕk(x) (2)

starting at initial point

x(0) = xk (3)

The camera motion is accomplished simply by “sliding” into
the equilibrium point of the associated dynamical system:

Dxϕk(x) = 0 (4)

The equilibrium point is then designated as the next apple
location xk+1. Note that the termination time tk+1 is defined
implicitly by the time taken to reach to xk+1. This closed
loop system inherits the critical qualitative behavior of gra-
dient rajectories.
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(a) ϕ0 (b) ϕ1 (c) ϕ2 (d) ϕ3

Fig. 3: Sample evolution of ϕk, k = 0, 1, 2, 3 as the robot moves between different apples.

The robot’s visual behavior during harvesting is generated
via the sequential composition of camera movements. Each
visited location xk gets added to Vk where Nv ≤ Nc denotes
the number of apple locations that have been visited. Once
one movement terminates, the robot switches to the controller
induced by the artificial potential function ϕk+1 associated
with the new apple location xk+1 and the movement process
is repeated. For a sample image as given in Fig. 2(a), the
first couple of ϕk, k = 0, 1, 2, 2 are as shown in Fig. 3(a)-
3(c) respectively. The scanpath trajectory x : [t0, tNV ] → P
is given by the concatenation of the state maps x for each
interval [tk, tk+1] as defined by Eq. 2. The corresponding tra-
jectory may look jagged and even become non-differentiable
at times.

V. EXPERIMENTAL RESULTS

We conduct experiments with a wide range of images
of red apple orchards and trees as obtained from ImageNet
dataset[7] and varying in the proximity and the number of
apples as well as illumination conditions. We consider 4
equally sized subregions in each of the test images.

Our results for four different scenes are given in Fig. 4.
Each sub-figure (4(a), 4(b), 4(c), 4(d)) presents an apple
orchard scene which are selected to cover a variety of sce-
narios for an apple harvester robot. The first scene Fig. 4(a)
contains both close and far range apples where most are
visible without any occlusion of leafs, branches or other
apples. It is observed that the proposed algorithm is able to
cover most of the apples. Some of the further away apples
are eliminated by the morphological operations - such as
those in the bottom-right sub-image of Fig. 4(a). However,
this is actually desirable as these apples are too far to be
picked by an harvester robot in practical applications. As
such, the resulting path goes from larger apples to smaller
apples which suggests that larger and thereby closer apples
will be picked up first. Fig. 4(b) contains a scene of apples
from medium range under bright illumination. This scene is
more complicated as compared to the first as there are many
apples that are partly occluded by leafs or other apples. As
expected, leafs or branches divide an apple into several parts.
Thus, a single apple may be seen as multiple apples. Again,
the resulting path goes through the majority of apples in
scene in spite of the confusing background. The scene in
Fig. 4(c) contains a high number of apples whose count is

difficult even for human. Some of the apples in the bottom-
left sub-image of Fig. 4(c) are not detected since they are
in the shadows and are relatively darker than other apples.
Another observation is the occlusion by other apples due to
the huge number of apples in scene so that a group may be
counted as one. Even so, the picking path covers nearly all
apples in scene in spite of bright illumination. When apples
are visually clear as in Fig. 4(d), nearly all of apples are
visited. It is observed that occlusion by leafs or branches also
poses problems in close-up scenes since different parts of
apples may be counted separately such as seen in bottom-left
sub-image of Fig. 4(d). However, in practical applications,
this may not be a problem since once such apples are picked,
the artificial potential function will be updated accordingly.

A simple analysis of coverage performance with respect
to the number of apples as counted by a human is presented
in Table I. In the human count, just too small or too far
apples are not taken into account, because counting them
won’t give us a practical result. It is observed that the
coverage percentage varies between 54-75% with the two
scenes while this number goes up to 153-200% with the
remaining two in scenes of Fig. 4(b) and Fig. 4(d). This
situation is due to counting some of the fruits multiple
times since they appear as multiple components due to
the illumination difference on their surfaces. In practical
applications, this is less likely to be problematic since the
location of apples that are picked up are completely inhibited.
In the literature, apple coverage rates are cited to be between
70% and 90% [13]. For example, assuming that apples have
diameters between 6 - 11 cm, a coverage rate of 80% is
reported in [2]. A rate of 93.04% is achieved in laboratory
environment [15]. As such, our results are comparable with
the state-of-the art approaches with respect to the coverage of
apples. Furthermore, the robot is automatically guided from
one apple to the next.

TABLE I: Visited apple locations Nv vs number of apples
Na.

Nv Na

Image (a) 51 95
Image (b) 61 40
Image (c) 98 130
Image (d) 28 14
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(a) Apples with close and far range.

(b) Apples from medium range under bright illumination

(c) High volume apples from medium range under bright illumination

(d) Apples from close-up

Fig. 4: Apple picking paths.

VI. CONCLUSION

Detecting apples or other fruits in an orchard is integral
to fruit harvester robots. However, the detection problem
is difficult since fruits can vary in size and color in same
orchard or even same tree. Furthermore, the harvester robot
must not only locate the fruit, but also visually move between
them as to process as many fruit as possible in detail. This
paper proposes a novel approach that addresses both issues
simultaneously. The robot processes each subimage in an

incoming scene attentively in order to find the apples and
visually move between candidate apple locations. This is
achieved via a family of artificial potential functions where
each artificial potential function encodes saliency in a given
subimage based on unvisited and visited apple locations. The
robot then visually moves from the current apple location
to the next via following the closed-loop dynamics of the
corresponding gradient vector field. This is repeated until
enough image coverage is achieved. Experimental results
demonstrate that the robot is able to covertly move its
visual system so that it covers a high percentage of apples
- regardless of the proximity of the scene, density of apples
and illumination. Thus, as the robot is able to focus on each
individual fruit, the proposed approach sets up a basis for
picking them. We are currently working on improving the
robustness of the proposed approach via addressing prob-
lems that arise due to occlusion and varying illumination.
However, both are difficult problems in machine vision in
general. In future work, we plan to implement the proposed
approach on an attentive robot in order to assess real-
time applicability. The attentive robot will use closed loop
dynamics in order to overtly orient its visual system on many
apples as possible. Our ultimate goal is to develop a complete
automated picking system on a mobile robot equipped with
an arm-gripper mechanism where the proposed approach will
be integrated with the appropriate range sensing and motion
control algorithms.
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Abstract— In agriculture, mowing operation is used to cut
the grass before collecting for feed or non-food purposes.
Mowers  cut  the  grass  and  the  grass  is  left  on  the  field  for
wilting, to decrease the moisture content before collection. In
this study, a drum type mower was used, which cuts the grass
on knife impact without counter shears and therefore the
velocity of blades needs to be high, up to 80 m/s. The required
power to drive the drums depends on the driving speed. On
the other hand, the grass fields are not homogenous, so higher
speeds may be used in the areas of light grass density and vice
versa. In this study, the autonomous tractor was equipped
with an agricultural size mower. The system requires various
subsystems to be autonomous and durable. The subsystem
discussed in this paper is adaptive cruise control for an
autonomous mower, to maximize operational efficiency with
constrained power available. The system utilizes a mechanical
torque sensing of the power train and coupled with the
dynamics of the vehicle, an automatic control system was
developed.

I. INTRODUCTION

In agricultural operations, autonomous and
semiautonomous machines are considered becoming
common in the near future. Currently, the fields are
considered partially open structure, even if the boundaries
of the field plot are known in global coordinate system, the
conditions are changing year to year and operation to
operation. Another challenge is that the field plots are not
usually bounded by fences that guarantee keeping human
beings or large wildlife off the field. Therefore, robotics in
arable farming is still under development.

Agricultural fields are not only used for crop production,
but also for energy production. In this study, the focus is in
harvesting grass from the areas that are not suitable for crop
farming, to be used for bio gas production. Lightweight
robotic vehicles enable utilizing such land areas that are not
otherwise suitable for production, like wetlands.

The main function of an autonomous mower is the
mowing system itself. The mower has two tasks: cut the
plant and transport it to form a windrow, for wilting.
Mowers cut the grass, either by using knives with or
without countershear. In this study, we use a mower without
countershear and in that type of mower the cutting is based
on impact,  so the velocity of blade tip needs to be high,  up
to 80 m/s. Both drum mowers and disc mowers cut the plant
with the same principle. [1]

T. Oksanen is University Lecturer at Aalto University, Dept. of Electrical
Engineering and Automation, Espoo, Finland. phone: +358947001, email:
timo.oksanen@aalto.fi

The basic shape of power consumption of a drum mower
depends on power losses which is constant and on the
forward speed of the mower which increases power
consumption linearly. The power loss can be divided into
two parts, for a tip speed related factor and a constant
describing the internal friction. However, it is not necessary
to  split  the  power  loss  as  long  as  the  angular  speed  is
constant in mowing. [2]

To control the driving speed based on biomass density,
two approaches to sensing can be used: direct or indirect
measurement. The direct measurement requires a
mechanical  torque sensor and thus it  is  possible to create a
feedback control system for regulation. The indirect
measurement could be based on other sensors measuring the
biomass, like pendulum-meter [3] or grass weight
measurement in mower-conditioner [4]. In indirect
measurement, the control principle has to be feed-forward;
or estimation methods are required to estimate the power.

The function in a vehicle regulating the speed is
commonly called the cruise control system, or auto-cruise.
These  are  common  not  only  in  passenger  cars,  but  also  in
modern tractors [5]. Automotive industry has used a term
adaptive cruise control (ACC) for any system that has some
ability to adjust the speed, not only regulate to fixed level.
For instance, a system that is using a sensor to detect the
distance to the car in front and keeping the distance fixed is
an example of ACC.

In this paper, we use direct measurement to regulate the
mowing power in the drum type mower. An adaptive cruise
control  system  for  a  mower  is  presented.  The  objective  of
the  system  is  to  regulate  the  power  used  by  the  mower  by
adapting the forward speed of the autonomous tractor.

The main motivation to regulate the power of the mower
by controlling the driving speed is to prevent the continuous
overloading of the mower parts and to maximize the
operational efficiency with the set constraint. For
autonomous usage, the durability of the system is crucial for
continuous operation, as there is no human being to replace
the parts.

II. MATERIALS

The autonomous tractor is a prototype, originally built in
1990’s and completely refurbished and modernized in the
years 2009-2013. The tractor is powered with a diesel
engine and the power train is hydrostatic. The tractor
weighs 5800 kg and standard agricultural implements may
be attached to three point hitch with category 2. The tractor

Robotic mowing of agricultural grass fields with spatial variability
using adaptive cruise control system

Timo Oksanen
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provides power for the implements with 540 RPM power
take-off (PTO) and auxiliary hydraulic valves.

The mower used in the study was JF 265 F (model 2013)
manufactured by Kongskilde Industries A/S. The mower
was connected to the tractor with three point hitch and 540
RPM type 1 PTO shaft. The measured working width of the
mower as 2.62 m. The mower consists of four drums, three
blades / knives attached to each of them, for impact cutting.
The internal drive train of the mower contains three
gearings: 13:23 angular gear, 25:34 belt drive and 17:23
rotor gearbox on top of drums. With the nominal PTO
speed, the peripheral velocity of blades is 60 m/s. The
system is presented in Fig. 1.

Figure 1. The autonomous tractor and the mower

The tractor is equipped with four wheel steering and the
maximum steering angle is 17 degrees. The wheelbase is
2.7 m, which leads into the minimum turning radius of 4.4
m. The internal speed control of the vehicle limits the
acceleration to 1.0 m/s2 electronically, to prevent failures.
Fig. 2. presents the velocity response of the vehicle, with the
stepwise input signal which is filtered to 1.0 m/s2 rate. The
figure shows that the response follows the trajectory well,
but a clear time delay is identified. The identified transfer
function to explain the dynamics is presented in (1).
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III. MEASUREMENT

The mower is powered with PTO shaft. A torque sensor
was installed on PTO drive shaft, to measure the maximum
torque of 1800 Nm at 100 Hz (Datum 420-series with RS-

232 interface). The sensor also transmits the angular speed
of the shaft, or RPM.

The speed of the tractor is measured both in the wheels
of the tractor, by using encoders. However, the encoders
have some mechanical backlash [6], which causes error
while changing the direction of travel. In one way driving,
the backlash is closed on the other side constantly.

The other measurement, for speed, is based on RTK-
GPS receiver with the virtual base station. The speed of
GPS antenna measures the course of the tractor, so it is not
the true forward speed of the mower when the steering
angles are non-zero. On the other hand, GPS speed is on
average the true speed, but contains shorter term noise
compared with the encoders.

To fuse the encoder and GPS speeds, a full Kalman
filter was done, to fuse both the wheel encoders with the
steering angles of each wheel, to GPS speed and course and
also GPS position signals. The extended Kalman filter also
estimates the longitudinal wheel slip, but with the mower
the slip is relatively small. Fig. 3. shows a snapshot of
measurements and the estimated (fused) speed.

Figure 3. Example of fused signal with Kalman filter.

IV. CONTROL DESIGN

The control design is feedback-feedforward.

The model for the needed for the feedforward part was
derived in the tests of the first test plot. The test was carried
out autonomously, by using pseudo-random step-wise input
for the forward speed and the by measuring the power
consumption of the mower, in PTO shaft. The
measurements are presented in Fig. 4, showing the linear
trend as expected by the model presented in [2]. The linear
function identified by using robust regression is presented in
(2), the unit of vf is m/s and the unit of P is kW.
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Figure 4. Example of fused signal with Kalman filter.

 
ff vvP 94.18.7)( +=  (2) 

Thus, the inverse function of (2) is utilized in the
feedforward part.

Due to the maximum acceleration of the tractor drive, or
rate limited speed control reference signal, it was decided to
use the differential form of PID controller in the feedback.
That form supports better the differential constraint of the
reference signal to the speed controller of the vehicle. The
feedback controller incorporates the saturation of the output,
with the anti-windup function.

The overall design architecture is presented in Fig. 5. rP
indicates the reference power for the mower, yP is the
measured power and uv is the control signal to the vehicle,
for the setpoint of velocity. The feedback controller is type
P. The driving speed is constrained to range 0.8 to 2.2 m/s
externally, to prevent the vehicle from stopping in case of a
small blockage and on the other hand the maximum speed
for navigation is 2.2 m/s.

Figure 5. The control design architecture.

V. RESULTS

The control system was tested in the test plot, with light
grass. The test plot was prepared by removing the grass in
the middle of test swaths, to create a stepwise pattern to the
field to mimic maximal variation. The width of the step was
27.6 m and before and after the natural variation of the
grass field appeared.

During the test, the autonomous mode of the tractor was
used. The guidance system is able to navigate with accuracy
of +/- 10 cm [7]. In the test, the swath width was set to 2.5
m, which results in 12 cm overlap. However, in each swath
the mowed width was 2.5 m, except in the first one.

Fig.  6.  presents the control  result  of  a single swath.  On
the top, the true driving speed is presented, the dashed lines
show the constraints. On the bottom, the measured power
for the mower is presented. The intentionally created step is
in the range from 1296 to 1311 s. During that period, the
control system accelerates and reaches the maximum speed
and after decreases the speed back to the level before. At the
end of the swath the natural variation and previous tests in
the field cause acceleration. Fig. 7. illustrates the setup
where the autonomous tractor is approaching the step,
approximate at time 1290 s.

Figure 6. The control response.

Figure 7. The autonomous tractor-mower is approaching the the cleaned area
in the test plot.

VI. CONCLUSIONS

For  the  type  of  mower  used,  it  is  necessary  to  regulate
the tractor speed to reduce the stress on the mower when
mowing dense grass. An experimental adaptive cruise
control system for the autonomous mower tractor was
developed and tested in the field. It was found that the
power consumption response to the forward speed follows
the textbook pattern and the parameters for the model were
found in the test plot. For the system with rate limitation, a
control design with the differential form of PID controller
with feedforward was utilized.
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Abstract— We present a simple and robust method for pixel 
segmentation based on spectral reflectance properties. Of four 
object categories that are relevant for PoultryBot, a mobile 
robot for poultry housings, the spectral reflectance was 
measured at wavelengths between 400 and 1000 nm. From this 
information, the distribution of reflectance values was 
determined for each combination of object category and 
wavelength band measured. From this, the wavelength band 
could be selected where the overlap between objects was lowest. 
This was found to be around 467 nm, with 16% overlap for 
chickens vs. eggs, 12% overlap for housing vs. litter, and lower 
overlap for other combinations. Images were taken with a 
standard monochrome camera and a band pass filter around 
470 nm in a commercial poultry house, to test segmentation 
using this method. Preliminary results indicate that this method 
is a promising direction for future work. 

I. INTRODUCTION 

A. Background 

In current poultry production systems in western Europe, 
but also in increasing amounts in other parts of the world, 
laying hens have freedom to move around. Compared to cage 
housing, this requires more advanced management, and more 
manual labour under unfavourable conditions, for example 
for the collection of floor eggs [1, 2]. In previous work, a 
poultry house robot (PoultryBot) was introduced that should 
assist in such tasks. For this robot, localisation and path 
planning methods were presented and evaluated in [3, 4]. In 
order to allow autonomous function of such robot, it should 
also be aware of which objects surround it. In this work, we 
explore the possibility of using spectral information for this 
task, by analysing the spectral features of objects that are 
common in poultry houses. Environmental conditions in a 
poultry house are described in [1, 4, 5]. With respect to the 
application of vision methods, the low amounts of light 
(around 5 to 20 lux), in combination with a crowded 
environment are the most problematic. When functioning 
inside a poultry house, four main object categories are of 
relevance for PoultryBot: 1) eggs, being target objects that 
have to be collected, 2) chickens, being moving obstacles that 
can be ignored while driving, because they move away from 
the robot themselves, 3) housing, being static obstacles that 
should be avoided, like metal poles and walls, and 4) litter, 
covering the floor area and indicating the driveable surface. 

B. Object detection  

For the detection of objects around a mobile robot, 
various methods exist, such as tactile feedback and distance 
sensors. Most methods however, rely on vision systems as 
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they can provide much more information on what kind of 
obstacle is observed. Main disadvantage of vision sensors is 
that sophisticated processing is required to come up with 
correct and reliable results under varying conditions. This not 
only relates to computation time, but involves also more 
complex algorithms, which might still suffer from variation 
in objects and environment. In the computer vision domain, 
much work is done on improving the methods used, by 
evaluating them on standard sets of images. Common 
methods make us of color, texture, shape or SIFT/SURF, 
combined with classifiers like support vector machines or 
neural networks to locate and classify features or objects. 
More information can be found in [6], while [7] is one of 
many examples present. Another variety of vision methods 
takes advantage of spectral information on objects. In 
agriculture, this method has been applied for example to 
distinguish between various kinds of green plants [8, 9]. Van 
Henten et al. [10] used a known difference between the 
spectral reflectance of cucumbers and leafs to distinguish 
these two object types in cucumber harvesting. In egg quality 
inspection, the transmission spectrum of eggs is used to assed 
internal quality parameters, like age and contamination [11-
13]. Although methods based on spectral properties require 
more effort and complex equipment in the development 
stage, the resulting method is usually more simple and robust, 
and works with common and cheap equipment like 
monochrome cameras. Furthermore, if only specific 
wavelength bands are used, the results are less sensitive 
towards the color and intensity of the environmental light, as 
long as it is evenly distributed over the area. If required, other 
object detection methods can still be added in a later stage to 
increase detection performance.  

With respect to our problem of object detection for 
PoultryBot, already some information on spectral properties 
of the relevant object categories can be found in literature. 
Prescott and Wathes [14] have presented an extensive review 
of reflective properties of poultry, their housing and the light 
characteristics therein. They presented results of 15 hen 
species, of which several are closely related to current 
commercial hybrids. Furthermore, they showed spectral 
results of various materials present in commercial poultry 
houses. Thus, their results provide a good starting point for 
our research. Spectral characteristics of hen eggs were used 
mainly for transmission measurements to determine the 
quality of shelled eggs [11, 12]. Less work has been done on 
spectral reflectance of eggs. In [14], only the spectral 
reflectance of a brown egg was reported. Gloag et al. [15] 
presented also other egg colors (although from a different 
bird), with similar results. 

C. Contribution and paper outline 

To see whether these results still hold in our conditions, 
we sampled spectral reflectance of the four object categories 
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relevant to PoultryBot. Based on the sampled spectral 
reflectance, we segmented images from a monochrome 
camera with a wavelength filter into these four categories. 
For a reliable operation of PoultryBot, it is desired that in the 
initial stage, at least 80% of the pixels (so not objects) in 
these four categories are correctly segmented. Most likely, 
this will lead to at least partial detection of the objects present 
in the image. Further processing can then be used to ensure 
that all objects are correctly identified. Finally, objects can 
appear in more than one image, so their chance of being 
detected is not completely depending on the results of 
processing a single image only. 

Our main contribution is a generic method to develop 
simple and robust segmentation based on spectral 
information. Furthermore, we demonstrate its applicability to 
the segmentation of four object categories present in a 
modern aviary poultry house with white hens. Although other 
objects and environments (like greenhouse crops or arable 
fields) could be tested as well, we decided to limit ourselves 
to the poultry house. In Section II, we present the methods 
and materials used. In Section III, we offer the results, which 
are then discussed in Section IV. Conclusions and indications 
for future work are given in Section V. 

II. MATERIALS & METHODS 

The approach used in this work consists of the 10 steps 
below, and leads from the selection of relevant objects to the 
definition of threshold values for image segmentation.  

1. Define which objects are relevant. 

2. Measure the spectral reflection for each object 
category at all relevant wavelengths. 

3. Select which measurements have to be included in 
the sample for each object category. 

4. Find the distribution of reflections for each 
combination of wavelength and object category, 
based on the selected measurements. 

5. Find the wavelength with the largest discriminative 
power, i.e. the one with the least overlap in 
reflection between the object categories. 

6. Select a suitable band pass filter for this wavelength. 

7. Acquire images using this band pass filter and a 
standard monochrome camera. 

8. Find the distribution of intensity values for each 
object category in these images. 

9. Use this information to define threshold values for 
segmentation. 

10. Segment the image on pixel-level using these 
thresholds. 

A. Materials tested 

In step 1, the four main object categories considered 
relevant in this research where eggs, chickens, housing, and 
litter. As representatives of these, white eggs, feathers of 
white hens (Dekalb White), galvanized steel, and a litter 
sample from a poultry house were used. In step 2, spectral 
reflection of these objects was measured using the setup 

described below. For this, the objects were placed on a white 
cardboard plate in the imaging setup. Other instances of the 
object categories (like brown eggs and feathers and clean 
wood shavings) were also measured in step 2, but not used in 
further processing. 

B. Spectral measurement setup 

The data on spectral reflection was collected using a 
hyperspectral line scan setup, based on the one mentioned in 
[16, 17] and shown in Fig. 1. This setup used an ImSpector 
V10E spectrograph (Spectral Imaging Ltd.) with a slit size of 
30 µm, attached to a Photonfocus MV1_DV1320 camera and 
a 25 mm lens. Data was binned by 2 cells spatially and 4 cells 
spectrally, and the outside spectral cells were removed as 
they contained no relevant data. Thus, each scan contained a 
line of 656 pixels with 192 spectral bands between 400 and 
1000 nm. As light source two tungsten halogen lamps of 150 
W with a fibre and a rod lens were placed below the camera. 
The camera/spectrograph and the light source were attached 
to a stepper motor, such that they moved over the object with 
a fixed step size (0.5 mm), and an area with a length of 150 
mm  and a width of about 300 mm was measured. Before 
measurements, the camera and light source were on for at 
least 20 minutes to avoid start-up effects. Furthermore, a dark 
room was used to avoid influence from ambient light. In the 
setup, the reflectance of the object R  is normalized from the 
measured intensity I . It is corrected for the background 
noise B , and expressed as fraction of the white reference W  
using 

 
I - B

R =
W - B

 (1) 

which is based on [17]. This normalization was performed 
automatically in the ISAAC2 software that controlled the 
imaging setup. Both references were acquired at the start of 
the measurement. The background noise B  was acquired 
using a covered lens, while the white reference W  was 
acquired using a 98% reflecting white plate. 

C. Processing methods used 

Processing of the spectral data was performed using 
Matlab. For each object category, between 38000 and 45000 
pixels were manually selected from the acquired spectral 

 
Figure 1: The hyperspectral imaging setup used for the experiments in 
step 2. On the left, the full setup is shown, with an  indication of the 
linear motion of the camera (blue arrow) and the scan line (red 
triangle). The blue box is used to place the sample upon, in this case a 
brown egg on wood shavings. On the right, a close up of the moving 
construction for the camera, spectrograph and light source. 
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data. By using such a large number of pixels, the sample set 
covers more of the variation in the objects. For this, 
reconstructed RGB images were used to identify the objects, 
on which rectangles were drawn manually to select pixels to 
include in the sample (step 3). From these samples, the 
reflectance distribution at each wavelength band was 
determined (step 4). Next, a normal distribution was fitted on 
this data. From these results, the percentage of overlap 
between the distributions was calculated, for both the 
measured and fitted distributions. This was done for all 192 
wavelength bands by Riemann integration of the overlapping 
area on the measured distributions and by trapezoidal 
integration on the fitted distributions. Next, the total amount 
of overlap per wavelength band was calculated by summing 
the values of all object categories. Based on this, the 
wavelength band could be selected where the sum of the 
overlap between the four groups was lowest (step 5). 

D. Application of filtering at the selected wavelength 
band  

The next step was to evaluate whether the chosen 
wavelength band was also effective under the conditions 
found in a commercial poultry house. Thus, images were 
acquired under such conditions, in the same poultry house as 
used in [3, 4]. In the house, animals of the same breed as used 
for the collection of the spectral data (Dekalb White) were 
present. Ambient light intensities were measured using a 
Voltcraft MS-1300 photometer, and ranged between 5 and 15 
lux. 

For image acquisition (step 7), a standard monochrome 
camera and a band pass filter at the selected wavelength band 
suffice. Thus, a band pass filter (470 nm, with a spectral 
width of 85 nm FWHM) was attached to an Ueye UI148xSE 
monochrome camera equipped with a lens with 4 mm focal 
distance. Frame rate was set to 3 fps, with the diaphragm 
fully opened and a fixed gain was applied inside the camera. 
Additional light was added to the scene using a 14-led white-
blue light source, to better distribute the measured pixel 
intensities over the available sensor range. 

Processing was performed with LabVIEW and started by 
taking the square root of each pixel, to correct for the uneven 

illumination in the images. Next, the threshold levels for the 
various object categories were empirically determined from 
the images using visual feedback (step 9). Using these 
intensity values, pixel-wise segmentation was applied, to 
distinguish between the object categories (step 10). To 
improve the segmentation results, and allow for object 
detection, more (advanced) processing steps can be added in 
a later stage. Furthermore, a corresponding ground-truth 
image was obtained by manually labelling all pixels in the 
image into 5 categories: eggs, hens, housing, litter, and 
unknown. 

III. RESULTS 

The hyperspectral imaging (step 2) resulted for each pixel 
in a stack of 192 wavelength bands a 2D frame. From this, 
explanatory pictures like Fig. 2 could be made to inspect the 
results, before continuing to process them. Fig. 2 shows on 
the left side an RGB image (reconstructed from the 
wavelength bands), containing the four main object 
categories. On the right side, the spectra corresponding to 
locations indicated on the left are given. It can be seen that 
eggs had the highest reflectance, followed by chickens, 
housing and litter, although the latter two switch order in the 
second half of the spectrum. Furthermore, the difference 
between litter and both eggs and chickens was large at lower 
wavelengths, but reduced with increasing wavelengths. For 
housing and litter, the difference was initially small, but 
increased at larger wavelengths. 

In step 3, multiple pixels for the same object category 
were selected, as described in Section IIC. The resulting 
reflectance distributions for the four object categories and 
two wavelength bands are shown in Fig. 3, together with 
normal distributions fitted to this data (step 4). Clear 
differences exist in the distribution of data. Litter and housing 
have narrower distributions than chickens and eggs. In 
addition, there is some overlap between litter and housing, as 
well as between feathers and eggs. Furthermore, this overlap 
turns out to differ between the various wavelength bands.  

In step 5, overlap between all combinations of object 
types was quantified for each wavelength band, as described 
in section IIC. The least overlap was found for wavelength 

Figure 2:  Results of hyperspectral imaging for the four object categories. On the left side an RGB image reconstructed from the spectral data, 
on the right side the spectra that correspond to the locations indicated on the left.

62



  

bands between 430 and 515 nm. Among this range, the 
lowest overlap is found at the 467 nm band. In Table I, the 
overlap percentages are given for the best wavelength band 
(467 nm) and a clearly deviating one (663 nm), on both the 
measured and fitted data. Data in Table I corresponds to Fig. 
3. There are clear differences in overlap between both 
wavelength bands and the various object combinations. At 
the 467 nm band, the overlap is quite evenly distributed over 
the categories, whereas at other wavelength bands, it has 
moved more towards one or two combinations. Most overlap 
is found between eggs vs. chickens and housing vs. litter, 
whereas the combinations eggs vs. housing, eggs vs. litter 
and chickens vs. litter have hardly any overlap.  

Based on the lowest amount of overlap, a band pass filter 
around 470 nm was selected for image acquisition in the 
poultry house (step 6-7). Two of the acquired images are 
shown in Fig. 4, together with the preliminary results from 
segmentation (step 9) and the associated ground truth. The 
artificial illumination pattern that is visible in the images 
affected the segmentation results. For example, part of the 
litter was segmented as hens or housing and some mixing of 
object categories was present on pixel level. In some images, 
housing objects had similar intensities as hens and litter, and 
could thus not be segmented separately. Also, ambient light 
intensity varied considerably within some images, which 
made accurate setting of the threshold values difficult. 
Depending on the object category, the requirement of 
correctly segmenting 80% of the pixels in the correct group 
seemed possible. 

DISCUSSION 

In the results, significant variation in the reflectance can 
be observed at the ends of the measured spectra. A likely 
explanation is the limited amount of light available at these 
wavelengths, especially around 400 nm, as the light source 
emitted hardly any UV light. Combined with limited 
sensitivity of the camera chip at the ends of its spectral range, 
this might result in reflectance values that are largely 
determined by sensor noise [17]. Prescott and Wathes [14] 
indicate similar findings from their measurements, especially 
around 400 nm. They did not indicate whether this originated 
from technical limitations of their setup instead or if it was a 
specific feature of the sample measured. To investigate 
whether any relevant features are present in the wavelength 
range below 450 nm, it is advised to add a UV light source to 
the hyperspectral imaging setup. However, the amount of UV 
available in a poultry house is limited, and artificially adding 
UV light might have undesirable consequences for animal 
welfare. Thus, investigating or using UV wavelengths seems 
of limited use for our case.  

Furthermore, measurements on housing material were 
performed using relatively clean materials. In the poultry 
house however, it can be expected that there is some 
contamination with dust and poultry droppings. As result, the 
reflectance of objects might vary from the values presented 
and the spectral response might change. Also, reflectance of 
housing was constant throughout the spectrum, but sensitive 
to the angle towards the light source during hyperspectral 
imaging. Thus, this requires substantial attention when using 

TABLE I.  RESULTS OF WAVELENGTH SELECTION, SHOWING THE OVERLAP BETWEEN VARIOUS CATEGORIES IN 
PERCENTAGES. DATA IS PRESENTED FOR BOTH MEASURED AND FITTED DISTRIBUTIONS, AT THE BEST WAVELENGTH BAND 
(467 NM) AND A LESS SUITABLE WAVELENGTH BAND (663 NM). 

Wavelength 
Data 
type 

Eggs vs. 
Chickens 

Eggs vs. 
Housing 

Eggs vs. 
Litter 

Chickens vs. 
Housing 

Chickens vs. 
Litter 

Housing vs. 
Litter Summed 

467 measured 16.2 1.7 0.0 6.9 0.2 11.5 36.5 

467 fitted 14.2 0.2 0.0 8.8 0.3 18.1 41.6 

663 measured 23.0 1.0 0.3 2.7 0.8 78.1 105.7 

663 fitted 24.4 0.0 0.0 1.1 0.6 79.1 105.3 

 

 
Figure 3: Distribution of reflectance for the 4 main object categories, at the 467 nm (left) and 663 nm (right) wavelength bands. Points indicate 
measured data, while lines represent the fitted distributions. 
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the presented approach and data to test and develop methods 
for practical applications. 

For the selection of the most suitable wavelength band, 
the sum of the overlap percentage was used. Here, 
segmentation was weighted equally for each object 
combination. For practical applications however, it might be 
relevant to apply different weight factors, to allow better 
discrimination of objects that are of higher importance. For 
improving the segmentation results, using multiple spectral 
bands simultaneously seems also promising. In this way, 
separate wavelength bands can be selected for different 
object categories, such that differences in reflectance become 
more distinct. Initial testing on segmentation for brown eggs 
indicated that overlap could be reduced from 40 to 10% using 
this method.  

Initial results from applying this approach in a poultry 
house show that segmenting multiple object categories using 
this method is quite promising. However, still some 
difficulties arise, especially with respect to the light 
distribution in the image and setting the thresholds for the 
segmentation of housing. Both problems might be related, 
and have to do with the low amounts of ambient light. Thus, 
additional illumination was required. As a result, illumination 
spots appear, which require correction during processing. 
Also, they lead to a wider range of intensities for a single 
object category than was expected from step 4. Thus, object 
categories tend to overlap more, which makes it more 
difficult to segment them correctly. Possible options to deal 
with this are the adding of more homogeneous illumination 
or an improved illumination correction to improve the input 
image. As processing is currently done using a very simple 
threshold, segmenting by more advanced methods like 
considering adjacent pixels or using fuzzy methods to relate 
pixels to multiple object categories might be used as well. 

Such methods can be combined with morphologic image 
processing like erode, dilate and shape filtering to reconstruct 
object shapes and thus improve the final classification result. 
The first results of the method presented are promising, and 
can be extended to reach the desired level of 80% correctly 
segmented pixels. Future work will address improvement of 
results by adding more advanced processing, and evaluation 
under a wider range of conditions.  

CONCLUSION 

In this work, a simple and robust segmentation method 
based on spectral reflectance properties was presented. 
Spectral reflectance of four object categories that are relevant 
for PoultryBot (eggs, chickens, housing and litter) was 
investigated in the range between 400 and 1000 nm. Between 
the four object categories that are relevant for PoultryBot 
(eggs, chickens, housing, and litter), clear differences could 
be observed in the amount of reflectance. At the wavelength 
band around 467 nm, the overlap of the four object categories 
was found to be the lowest, and was 16% for chickens and 
eggs, 12% for litter and housing, and lower for the other 
combinations. Images taken in a commercial poultry house, 
using a standard monochrome camera and a band pass filter 
around 470 nm, indicated that pixel-based segmentation of 
the object categories is possible using this method. First 
results showed that the desired level of 80% correctly 
segmented pixels seems possible, making this method a 
promising direction for future work. 
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Figure 4: First segmentation results. From left to right: original image (brightness increased by 100), segmentation result, ground truth. 
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Recognizing Apples by Piecing Together the Segmentation Puzzle

Kyle Wilshusen1 and Stephen Nuske2

Abstract— This paper presents a system that can provide
yield estimates in apple orchards. This is done by collecting and
processing image datasets of the apple orchard. The algorithm
introduced in this paper provides 3 contributions. First, the
apple detection algorithm is shown to provide a very high level
of apple segmentation and classification accuracy. Second, the
algorithm is an automated system that requires mask images,
instead of user specified parameters to create an apple detection
classifier. Finally, the algorithm labels semantic information
such as apple parts, such as apple edges, which is unique from
previous apple detection methods.

I. PREVIOUS WORK

The problem of apple detection in orchards is still a

relatively new problem. The largest strides have been made

using image detection models that use multiple cameras and

very accurate state estimation to estimate the position of

individual apples within an orchard [6]. This previous work

requires calibrated saturation and hue values, which vary

by dataset and are set manually in configuration files. In

contrast to this previous approach, this work aims to evaluate

detection performance in images only, and is not extended

to apple registration on the ground. Our algorithm requires

user annotated training images, which are input to a machine

learning algorithm to dynamically learn a classifier.

A larger body of research has been completed on grape de-

tection in vineyards. Accurate solutions have been developed

that can correctly count grape yield to within 10% of the

actual yield on the ground (Nuske, et al. 2014). The system

used to detect grapes does not focus on calculating individual

fruit positions throughout the vineyard, but instead calculates

a fruit per meter estimate for every position that the vehicle

traverses. To detect fruit in images for this approach, texture

and color features are used to create the grape/non-grape

classifier, and a focus on detecting grape keypoints takes

presidence over batch processing of pixel values from accross

the image.

There are other processes that are more focused on the

batch processing approach, where many pixels are analyzed

with texture descriptors before being considered as possible

fruit locations. One such method uses superpixels to create

certainty maps for fruits such as pineapples. This idea

directly influenced our work, and is the reason that we create

superpixel certainty maps for green apples [2]. In another set

of work, green fruit’s are detected on plants, which is similar

to the problem that we approach of detecting green apples

in orchards [1]. In this work, a less exhaustive approach

1Kyle is a PhD student at University of Pennsylvania
wilshusen.kyle@gmail.com

2Stephen Nuske is a Systems Scientist at Carnegie Mellon University

is employed, as an attempt is made to focus the search on

particular areas of the image that are likely to have fruit.

A number of research works have mentioned the theory

that in orchard environments there is a constant occlusion

factor, which can be used to calibrate detections from the

visible fruit that is detected in images to the actual fruit that

occurs on the ground[4], [6]. This paper aims to both increase

the accuracy of detection of fruit that is in full view through

structural features, and also introduce the idea of ”partial”

apple detection that represent partial fruit detections, allow-

ing highly uncertain fruit detections to contribute an amount

to the total fruit estimate that is less than one.

One of the most important cues on fruit that has been

imaged at night is the spot of specular reflectance [4], [6].

Methods using a point of specular reflectance require that a

point of specular reflectance be in full view of the camera

imaging the fruit. For both methods, the intensity is evaluated

to steadily decrease off the sides of the maximal point. While

the steady descent of intensity is telling, this steady descent

can be observed on any part of a spherical fruit in the form of

intensity rings on a particular edge of the fruit. These rings

can both be used to evaluate the spherical shape of the fruit

and also to find the edge of the fruit by evaluating when the

intensity decrease pattern stops at an abrupt edge. This paper

creates a ”maximal detector” similar to the detector used in

[4], which is adaptable for use anywhere on the apple. This

method isolates apple edges, instead of apple peaks.

The previous apple segmentation approach of [6] was to

filter every pixel in the image through hue and saturation

filters. Processing every pixel is reasonable for color pro-

cessing, but for more advanced machine learning operations

it can take too long. An alternative is to representatively

subsample an image. We follow the subsampling technique

that was developed in the work of [5]. The idea is that

powerful machine learning techniques are often required

to accurately segment an image, but because of processing

constraints these techniques cannot be computed on the pixel

level over large images. Superpixels can be computed to

group image features into homogeneous groups of color and

texture features before additional processing is completed.

This paper utilizes the current state of the art in 2015: SLIC

superpixels [7].

II. METHODOLOGY

A. Three Goals

The three goals of this work are to increase the accuracy of

apple segmentation algorithms, to create an apple classifier

through the use of user annotated images, in place of user

specified classification parameters, and to semantically label
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image features that are not full apples, specifically to find

the edges of heavily occluded apple segments.

B. User Annotated Classifier Creation

A training set is the one piece of user input that is required

by our algorithm. A training set is created by the user. This

training set consists of mask images that specify the pixels in

an image that are fruit and the pixels in an image that are not

fruit. A supervised training method is used to setup a random

forest classifier from these training images. A grid of features

is extracted over the image with a 10 pixel spacing between

grid points for 2 MegaPixel images. Features are extracted

over the grid, and then a label for each of the features

extracted is determined from the training mask images that

correspond to the raw images in the training set. The training

set can be seen below, including the grid configuration that

shows feature extraction locations.

Fig. 1. Training Images are Mask
Images

Fig. 2. Automatically label a grid
of points to sample

Fig. 3. Raw Image Fig. 4. SLIC Superpixels

Over each grid location, color and texture features are

extracted. In our implementation, HSV features are used to

quantify color and SURF features are used to quantify tex-

ture. These training set features are normalized and combined

together using a PCA transform to reduce the feature set

size. The random forest classifier is then created from the

normalized and reduced feature set.

To segment images into apple and non-apple pixels, a four

step process is completed. First, superpixels are computed

Fig. 5. Individual Superpixel Fig. 6. Features are extracted in
a grid pattern over each superpixel.
The SIFT feature descriptor is de-
picted here, but any filter could be
used.

Fig. 7. Apple segmen-
tation

Fig. 8. Apple parts Fig. 9. Apple parts
grouping to full apple
detection

using the SLIC superpixel algorithm. Second, features are

extracted in a grid over each superpixel. Third, grid points are

classified using the random forest classifier created at train

time. Fourth, the ratio of apple to non-apple pixels within

each superpixel is computed, and is recorded in the apple

confidence map, which can be seen in section III-A.

After apple confidence is determined over the image,

apple pixels can be segmented into different levels of apple

certainty. Individual apple detection then becomes the goal.

We use a two step process, whereby full apples are labelled

first, and heavily occluded apples are labelled afterwards with

detection magnitudes less than 1.

Fruit detection from this point forward in our method

is completed exclusively by analyzing the direction and

magnitude of the image’s intensity gradient. Gradients classi-

fications are used to identify an apple’s spherical shape. Gra-

dients could belong to four different classifications: upward

gradient, right gradient, left gradient, or downward gradient.

There is a correct orientation for these apple components

in a valid apple. For example, a downward sloping region

is likely below an upward sloping apple region, as apples

are spherical. The superpixels that were used earlier to

group pixel classifications are used again to group gradient

classifications into configurations that make sense and agree

with one another.

Full Apple Detection Process:

• Superpixels are Computed.

• SURF and HSV Features are Extracted Accross Super-

pixels.
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• Superpixels are Labelled as ”Apple” or ”Non-Apple”

by Querying the Classifier

• Apple Superpixels are Labelled by Regions Classifica-

tions (Upward Left, etc.).

• Merge Neighboring Region Classifications w/ Valid Re-

lationships (Downward Gradient Region below Upward

Gradient Regiion, etc.).

• Merged Groups with Sufficient Area are Individual Fruit

Detections.

After full apple detections have been identified, the ob-

jective is to label apples that are not in full view but are

partially visible. Previous apple detection approaches have

labelled partial apple detections as full apples, but this is a

tricky and risky business, as often leaves can be classified as

green apples. Partial apple detections can be completed by

evaluating apples to find the dominant gradient direction if

available, and hopefully finding part of the apple’s edge. The

dominant gradient can be found by obtaining the maximal

gradient in the region and ensuring that the normalized

standard deviation of the gradients within the region is under

a certain value.

While the intensity gradient within a region is important,

the edge of the region is also important. The maximal

keypoint descriptor described in [4] was used to detect points

of maximal specular reflectance. The method is accurate

if a maximal point is visible. Often in orchards a clear

maximal specular reflectance point is not visible, due to

occlusion. A maximal point can be interpreted from the

decreasing intensity. Edge detection is used to verify partial

apple detection regions. The region can be verified and the

edge of the region can be labelled by verifying that the

intensity rings decrease in a predictable way from the apple

center until a very strong intensity change is encountered.

Partial Apple Detection Process: Completed After Full

Apple Detection Process

• Removal of Pixels Corresponding to Full Apple Detec-

tions from Data

• Connected Components (CC) of Remaining Pixels Form

the Search Space for Partial Detections

• Obtain the Dominant Gradient Direction (DGD) of each

CC

• Verify the CC is Consistent Relative to its DGD (Apple

Edges match DGD, Absence of Conflicting Gradient

Directions, Size of CC )

Semantic labeling throughout orchard images is important

beyond apple curves as in the highly occluded, highly

similar scene correlations are needed to label objects. Apple

orchards often have guidewire that supports the orchard trees.

The guidewire is identified by locating points that form a

sharp horizontal line and have high intensity. With a hough

transform, it is very simple to find these lines consistently.

The stereo pair for this dataset was setup vertically, so

the horizontal guidewires occur at different heights in both

stereo images. 3D lines can be calculated from the guidewire

appearances in both images of the stereo pair.

Fig. 10. Finding the Apple’s Edge is Vital to Detecting Occluded Apples
in Images.

III. RESULTS

Results start with the segmentation of apple pixels from

non-apple pixels. Second, semantic labelling performance

and apple detection performance are evaluated. And, finally,

apples are registered to ground detections.

A. Apple Segmentation

From the confidence map, it is easy to see that the apple

pixels are very brightly illuminated, signifying the classifier

has some understanding of the difference between apple and

non-apple.

An evaluation over the training set can be done with

the confidence map and the labelled mask image. Using

both the confidence map and the labelled mask image, a

precision/recall curve can be produced to quantify the results.

This is done by including different points in the confidence

map. From the pixels that are 100% likely to be apple to the

pixels that just might be apple. The precision/recall curve

shows that apple segmentation is stable and quite accurate.

B. Apple Detection

Apple segmentation is only important for apple detection.

In natural environments, there are a number of problems

that arise in apple detection. First, apples occur in different

orientations and scales. Second, many apples are occluded by

other objects in the orchard. This means that many apples

will not be detected by any other features other than hue and

saturation. The bounding box images are shown below. Apple
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Fig. 11. Raw Image Fig. 12. Confidence Map

Fig. 13. Segmentation: Precision Recall Curve

Detection performance is also shown below and seen to

be high. Detection performance is higher than segmentation

performance because not all apple pixels need to be identified

by gain an accurate apple detection.

C. Semantic Apple Labelling

Labelling apples in previous works has focused heavily on

color information. In the image below, it can be seen that a

majority of the apple edges have been detected and there are

predicted locations for unidentified apple edges that can be

seen in magenta, which are very close to their true locations.

Identifying apple edges near occlusions is a task for the

future. Apple edge detection is important because edges

delineate the fruit from other objects and give information

on the orientation of the apple.

D. Apple Registration

Of course, the eventual goal of yield estimation is to detect

fruit on the ground, instead of in images. Here, we evaluate

against a dataset that was collected at the Fruit Research and

Extension Center in Biglerville, PA in 2012. Six orchard

Fig. 14. Bounding Boxes for the Visual Apple Counting Trial.

Fig. 15. Detection: Precision Recall Curve

Fig. 16. Raw Image Fig. 17. Apple edge detection is
in many cases successful (as seen to
the right and bottom of the image).
Right now, we are often unable to
overcome occlusions that result from
branch or leaf occlusions.
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Fig. 18. Initial guidewire detections
have low recall, but high precision.

Fig. 19. The guidewire detections
can be extrapolated accross the en-
tire image with a very high degree
of accuracy.

sections were sampled by hand and by the algorithm to

account for occlussion. This was done by computing an

”occlusion ratio” that would translate 2D yield estimates

to 3D predictions of fruit on the ground. The overall error

is seen to be low, as the algorithm undercounted by just 6

percent.

Fig. 20. Our method can confuse
full apple detections with partial ap-
ple detections, as seen by the large
blue box shown here.

Fig. 21. Our approach can detect
apples with hues that are slightly
different and also label apple parts
for heavily occluded apples (blue
box w/ arrow).

IV. CONCLUSION

This paper has provided three contributions to the research

community. It has increased the segmentation accuracy of

green apples from backgrounds using the concept of com-

bining confidence maps and superpixels. It has created a

supervised learning method that only requires a set of anno-

tated images and takes the user involvement out of creating

calibration values. And, finally, this work has started the

Fig. 22. A new dataset of Honeycrisp apples is used to evaluate yield
estimates.

Fig. 23. This graph shows overall error prediction rates for the newly
processed Honeycrisp dataset.
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work of semantically labelling entire orchards environments,

which will help to move towards classifying specialty crops

in more advanced ways than just using color to identify fruit.

While this method has only been tested on apple datasets, the

core infrastructure of the method could be used to identify

all specialty crops that have distinguishing color and texture

from their environments.
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