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Abstract
Bacterial spores are extremely robust survival vehicles that are highly resistant towards 
environmental stress conditions including heat, UV radiation and other stresses commonly 
applied during food production and preservation. Spores, including those of the toxin-producing 
food-borne human pathogen Bacillus cereus, are ubiquitously present in a wide range of 
environmental niches such as soil, plant rhizosphere, intestinal tract of insects and animals, and it 
is virtually impossible to prevent contamination at the primary production level. Heat treatments 
are conventionally applied in food processing to reduce the microbial load of food products, 
however, to comply with consumer desire for products with higher sensory and nutritional 
values, the treatment intensity may become milder. Consequently, subpopulations of spores may 
emerge that are sublethally damaged rather than inactivated conceivably causing quality and 
safety issues following repair and outgrowth. In this thesis, a functional genomics approach was 
used in combination with subpopulation and single spore analysis to identify factors involved in 
recovery of heat damaged spores, and to link B. cereus genotypes to nutrient-induced germination 
capacity and carbohydrate utilisation capacity. 

Using comparative analysis of B. cereus ATCC 14579 wild type and targeted mutants, putative 
damage repair factors were identified such as putative transcriptional regulator CdnL, that 
supported recovery of spores in a range of conditions including model foods. The majority of 
identified genes encoding putative damage repair factors appeared to be unique for B. cereus 
group members. This novel information on spore recovery adds to further insights in versatility 
of survival strategies of B. cereus.

Different types of foods may contain different types and levels of nutrients including amino 
acids and carbohydrates, that can affect spore germination capacity and subsequent outgrowth 
performance of vegetative B. cereus cells. Nutrient germinants present in food products can 
trigger specific germinant receptors (GRs) located in the spore inner membrane leading to 
spore germination, a critical step before growth resumes. Combined analysis of genotypes and 
nutrient-induced germination phenotypes using high throughput flow cytometry analysis at the 
level of individual spores, revealed substantial diversity in germination capacity with a subset 
of strains showing a very weak germination response even in nutrient-rich media containing 
high levels of amino acids. Phylogenetically, these B. cereus strains grouped in subgroup IIIA 
encompassing strains containing pseudogenes or variants of some of the Ger clusters and two 
strains containing the recently identified SpoVA2mob transposon, that induced heat resistance with 
concomitant reduced germination response in Bacillus subtilis spores. The same B. cereus isolates 
were also used to link genotypes with carbohydrate utilisation clusters present on the genomes, 
and this revealed representatives of subgroup IIIA to lack specific carbohydrate utilisation 
clusters (starch, glycogen, aryl beta-glucosides; salicin, arbutin and esculin) suggesting a reduced 
capacity to utilise plant-associated carbohydrates for growth. Since these B. cereus subgroup 
IIIA representatives contain host-associated carbohydrate utilisation gene clusters and a subset 
of unique Ger clusters, their qualification as poor germinators may require revision following 
assessment of spore germination efficacy using host-derived compounds as germinants.

The research described in this thesis has added novel insights in B. cereus capacity to cope with 
spore damage and provided novel overviews of the distribution and putative functionality of 
(sub)clusters of GRs and carbohydrate utilisation clusters. Knowledge on spore damage repair, 
germination and metabolism capacity adds to further understanding of B. cereus ecology 
including niche occupation and transmission capacity.
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Abstract

This chapter provides an introduction to the world of spore forming bacteria, starting with 
a brief description of the life cycle of spore formers from spore formation, via germination 
to outgrowth and vegetative cell growth. The highly stress resistant nature of spores, their 
structure and other specific properties are described together with their impact on quality 
and safety issues in food industry. In particular, the role of Bacillus cereus, a causative agent 
of foodborne illnesses and food spoilage, is discussed. Aspects affecting the predictability of 
spore behaviour including strain diversity, population heterogeneity and damage recovery 
are introduced. Finally, the outline of this thesis is provided.
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Impact of spore forming bacteria on food quality and safety

Spore forming bacteria are ubiquitously present in a wide range of environmental niches such 
as soil, plant rhizosphere, intestines of insects and animals, and this facilitates transmission 
of their spores to food processing environments. Once spores enter the food chain, they 
are difficult to eradicate since spores are highly resistant towards environmental stress 
conditions including heat, UV radiation and other stresses commonly applied during food 
production and preservation [1-5]. Since spores act as extremely robust survival vehicles, it 
is not surprising that even today, the challenge remains to develop and implement efficient 
(minimal) processing and preservation strategies to prevent food quality and safety issues 
[6]. Although metabolically inactive, dormant spores are able to monitor their environment 
and respond to availability of nutrients by activation of the germination process as a first 
step towards resumption of vegetative growth. Favourable conditions for germination and 
outgrowth can be encountered in food products, and therefore additional preservation 
measures are required [6, 7].

Spore forming bacteria belong to the Firmicutes phylum, which encompasses a highly 
diverse group including pathogenic and non-pathogenic organisms. Bacillus cereus, 
Clostridium perfringens and Clostridium botulinum are representatives of the pathogenic 
group and are traditionally associated with a number of food borne outbreaks in Europe 
[8]. Non-pathogenic spore formers can cause product defects or spoilage i.e. gas production 
and strong off flavours leading to severe economic losses [9]. Due to the high diversity in 
metabolic capacity of spore forming bacteria, and despite measures taken at the level of 
packaging and storage conditions, many types of food products are vulnerable to spoilage 
and safety issues. Anaerobic Clostridia are more likely to cause spoilage in vacuum packed or 
canned products while Bacillus species can also cause spoilage in the presence of oxygen and 
in modified atmosphere packaged (MAP) products. Notably, even mildly acidic and acidic 
food products are at risk of spoilage by acidophilic spore formers such as Bacillus coagulans 
or Alicyclobacillus acidoterrestris [10, 11], whereas refrigerated products with neutral pH 
are challenged by psychrotrophic spore formers including Bacillus weihenstephanensis, 
some strains of B. cereus [12] and C. perfringens [13], Clostridium tyrobutyricum [14] 
and other members of the Bacillus or Paenibacillus species [15]. Thermophilic species 
i.e. Geobacillus spp. [16] require higher growth temperatures encountered in specific 
environmental niches including silage, and can form heat resistant spores that may cause 
spoilage of dairy products and a range of other food products [17].

Spore structure and resistance

In response to unfavourable conditions, spore forming bacteria can initiate the sporulation 
process in which the cell transforms into a dormant, highly resistant form, called spore or 
endospore (Figure 1.1). Spore formation is initiated by asymmetric cell division resulting 
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in a smaller forespore that is engulfed by the mother cell. The correct engulfment of the 
forespore and formation of spore specific components requires compartment specific 
gene expression under the control of several spore specific sigma factors, and inter-
compartmental communication [5]. During the steps following engulfment, the forespore 
(at this stage called prespore) prepares for dormancy, the internal pH drops (indirectly 
leading to accumulation of 3-phosphoglycerate (3PGA)) while the prespore accumulates 
spore specific proteins, α/β-type small acid soluble proteins (SASPs), and pyridine-2,6-
carboxylic acid (dipicolinic acid, DPA) chelated with divalent cations thereby lowering the 
spore water content. At the same time, the typical multi-layered spore structure is formed, 
followed by spore maturation. Finally, the spore is released into the environment upon 
lysis of the mother cell [18]. The resultant dormant spores are generally considered to 
have no (or very low) metabolic activity [19, 20] and are highly resistant to environmental 
stresses including heat, salinity, acidity, radiation, oxygen and/or water depletion [1-3]. 

Sporulation

Outgrowth
Chapters 3, 4 & 5

Germination
Chapters 2 & 5

Vegetative
growth

Chapters 5 & 6

Figure 1.1. Life cycle of spore forming bacteria. Four main processes, sporulation, germination, outgrowth 
into a vegetative cell and vegetative growth, are depicted. Processes for B. cereus covered in the thesis research 
chapters are indicated.

The multi-layered structure of bacterial spores (Figure 1.2) provides resistance against 
environmental insults and, combined with the limited metabolic activity provides the basis 
for spores longevity [2]. Several specific characteristics provide resistance properties to 
the spores. Firstly, the genetic material in the spore core is protected by dehydration, 
which largely immobilizes the proteins present in the spore [21]. The integrity of the 
spores genetic material is furthermore protected by SASPs and the presence of DPA 
chelated with divalent cations (mainly calcium) in the spore core [2]. The inner membrane 
surrounds the spore and provides protection against chemicals [22] and contains specific 
proteins required for germination (discussed below) [7]. Outside the inner membrane, the 
germ cell wall, which becomes the vegetative cell wall after germination, and the cortex, 
which consists of spore-specific peptidoglycan and is required for the development of 
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full resistance towards wet heat [7] are located. The cortex is surrounded by an outer 
membrane for which no clear role in resistance is known to date [23]. The outer layer, 
the spore coat, contains various proteins that provide protection against different threats 
including lysozyme, toxic chemicals, and grazing protozoa [3]. Finally, in some species 
including B. cereus and Clostridium spp., the spore is covered by an exosporium which is in 
direct contact with the environment and is potentially involved in pathogenicity [24, 25]. 

Core

Cortex
Coat

Exosporium

Inner membrane

Outer membrane

Inner membrane integrity
(Oxidative stress, Acid stress)

DNA damage
(Oxidative stress, Dry heat (90-120°C), UV)

Protein denaturation
(Wet heat, Dry heat (>200°C))

Structure of the spore Targets of treatments

Germ cell wall

Figure 1.2. Schematic representation of the spore structure. On the left side: the different spore components 
are depictured. The thickness of the layers can vary between species, and not all species are equipped with 
an exosporium. The magnified box shows the schematic structure of the three subunits forming the typical 
germinant receptor in Bacillus spp. On the right side: spore components targeted by commonly applied 
treatments are shown (Adopted from PhD thesis of Hornstra [26] and van Melis [27]).

Spore germination and outgrowth

Dormant spores are able to monitor the surrounding environment for conditions 
that may be favourable for growth, as for example availability of amino acids, sugars, 
nucleosides, and salts typically present in food products. These compounds, also called 
germinants, can trigger specific germinant receptors (GRs) initiating the germination 
process (Figure 1.1). In addition, the presence of peptidoglycan fragments, indicative for 
bacterial growth, can also trigger germination [28]. Germination is a physical process 
during which the spore rapidly loses its dormancy and resistance properties concomitant 
with the resumption of metabolic activity. Next, spores grow out and eventually resume 
vegetative cell growth [29, 30].
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Genomes of almost all spore formers contain at least one, but usually several GRs [30, 
31]. The GRs of the model strain B. subtilis 168 are best studied. This strain carries three 
functional GRs, namely GerA, GerB and GerK. GerA responds to L-alanine while GerB and 
GerK both respond to a mixture of L-asparagine, D-glucose, D-fructose, and K+ (AGFK) 
[29]. B. cereus strains usually carry a higher number of GRs [31, 32] with the B. cereus 
ATCC 14579 genome encoding seven GRs. B. cereus germinates fast in response to the 
combination of L-alanine and inosine. Notably, only a limited number of germinant-GR 
relations have been identified. GRs can act either individually, with a single GR responding 
to a given germinant, but also interaction of two or more GRs might be required for a 
germination response [33, 34]. Moreover, some GR require multiple germinants to trigger 
germination in a ration and concentration dependant manner [20, 30, 33]. Nowadays, the 
exact mechanism of GR-germinant(s) interactions remain to be elucidated.

GRs are usually composed of three subunits (A, B, and C) (Figure 1.2), but for some species, 
more subunits may be present as for example in Clostridia, operons of 4 or 5 subunits 
occur [35]. The spore GRs subunits A and B are integral membrane proteins composed of 
5 to 8 and 10 to 12 predicted membrane spanning domains, respectively [20, 32]. Subunit 
B belongs to a subfamily of single component membrane transporters and it is speculated 
that this unit is involved in germinant recognition [32]. Subunit C is membrane associated 
and conceivably bound to the A and B subunits [32]. Until now it is not clear how the 
GR subunits interact and what is their individual function [20]. In B. subtilis, GRs were 
shown to co-localize together with SpoVA proteins and GerD in the inner membrane of 
the spore in a structure termed the germinosome [20]. GerD is a lipoprotein required 
for maintaining GR-dependent germination rate, while SpoVA proteins are suggested to 
form SpoVA channels involved in DPA movement during sporulation and germination 
[20]. The signalling from the GR(s) to the putative SpoVA channel(s) remains to be 
elucidated. Notably, the presence and functionality of germinosomes in other Bacillus 
spp. and Clostridium spp. remains to be elucidated, especially, since the number and types 
of GRs can vary significantly across the different species and even within strains [31, 36]. 

Shortly after the GR is triggered by its germinant, the spore is committed to the germination 
process (Figure 1.1). At first, spores release the monovalent cations (H+, Na+, and K+) and 
DPA and partially rehydrate, and thereby loose most of their wet heat resistance [20, 
37]. The germination event can be recognized by the transition of spores from phase 
bright to phase dark with phase contrast microscopy [38]. Subsequently, the cortex lytic 
enzymes CwlJ and SleB are activated in Bacilli, allowing for degradation of the cortex, 
further water uptake and spore swelling. After full core rehydration, additional enzymes 
reactivate that are involved in ATP synthesis and degradation of SASPs. The resulting 
free DNA, allows the onset of RNA and protein synthesis during the outgrowth phase. The 
initial germination step does not require energy, while during the early outgrowth (after 
increase in pH) energy is conceivably obtained from metabolism of 3-phosphoglycerate 
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(3PGA) present in the spore. In contrast, the late outgrowth phase is an energy demanding 
process requiring utilisation of extracellular carbon and energy sources to complete the 
emergence of the new cell (Figure 1.1) [19, 29, 30, 39]. 

Germination of spores can be enhanced by an activation step. Usually this is achieved 
by a short mild heat treatment ranging from 60 to 100°C, depending on the species, and 
this can result in a dramatic increase in the fraction of germinating spores and enhance 
homogeneity of this process [40, 41]. Specific targets affected by heat activation have 
not been identified, but super-dormant spores were shown to require higher activation 
temperatures than dormant ones [20, 42].

Besides nutrient induction, germination can be initiated by chemical treatments with 
the cationic surfactant dodecylamine and Ca2+DPA, or by exposure to high hydrostatic 
pressure [29]. In addition, lytic enzymes such as lysozyme [29] or the presence of 
peptidoglycan fragments (also referred to as muropeptides) [28] may trigger germination. 
Such non-nutrient triggers were shown to by-pass GRs and target directly release of ions 
and Ca2+DPA or activation of cortex lytic enzymes in B. subtilis and several other spore 
formers [29, 30], with the muropeptide signalling pathway conceivably depending on a 
eukaryotic-like Ser/Thr membrane kinase [28]. Notably, the underlying mechanism of 
the latter activation pathway still remains to be elucidated.

So called super-dormant spores, that respond slower or not at all to conditions commonly 
triggering germination may evoke extended heterogeneity during germination. Moreover, 
heterogeneity in germination may arise from the sporulation conditions. Sporulation 
conditions might affect gene expression and translation efficiency conceivably resulting 
in changes in the number of functional GRs and in more general terms, the protein 
composition of individual spores [43-46]. In practice, sporulation conditions may differ 
greatly as e.g. water activity, pH, oxygen availability, and nutrient availability can affect 
the properties of the resulting spores [47, 48]. Such intrinsic heterogeneity within the 
spore population could be further enhanced by exposure to sublethal treatments that 
cause spore damage. The degree of damage and/or repair capacity may vary for individual 
spores. Obviously, optimum recovery conditions can differ for different spore forming 
species, strains and conceivably even individual spores. 

Bacillus cereus as food contaminant

B. cereus is a spore forming, gram positive, rod shaped, and facultative anaerobic food-
borne pathogen belonging to the genus Bacillus. B. cereus displays high adaptive capacity 
to different environmental condition making it a survival expert in diverse environments. 
Historically, B. cereus has been considered a soil dwelling organism, however, the 
available genomic sequences of B. cereus strains [49, 50] reveal an extended capacity 
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for amino acid and peptide utilisation, indicating adaptation towards a symbiotic or 
parasitic life cycle within animals and insects. Even though B. cereus seems to be better 
adapted to growth on protein sources, it carries an extended repertoire of substrate 
transport and utilisation systems to survive and grow in soil matter [51], rhizosphere 
[52], insect gut [53], and in the mammalian gastrointestinal tract [54, 55]. The diverse 
metabolic capacity also enables B. cereus to grow in a variety of food products including 
rice [56], vegetables [57], meat, milk and dairy products [58] and consequently, this 
bacterium is frequently associated with food spoilage and food-borne disease [9, 55]. 
Nowadays, a wide range of food products is stored at low temperatures ranging from 
4 - 7°C. In particular, spoilage of dairy products stored at refrigeration temperatures is 
often associated with psychrotolerant B. cereus strains able to grow below 7°C, thereby 
causing “sweet curdling” and “bitty cream” defects [59, 60]. The ability of B. cereus to 
grow anaerobically poses also a risk of spoilage for vacuum or modified atmosphere 
packed (MAP) foods [61]. 

Association of B. cereus with food-borne diseases was first recognized in 1906 when staff 
and patients of a sanatorium developed diarrhoea and vomiting linked to presence of 
Bacillus ssp. in the incriminated meal [62]. B. cereus is recognised as one of the leading 
causative agents of food-borne diseases among spore formers [8], its symptoms are 
usually mild and self-limiting resulting in under reporting of the number of B. cereus 
cases, but in rare instances fatal outcomes can occur [63-65]. The vegetative cells of B. 
cereus can produce a range of virulence factors associated with two gastro-intestinal 
syndromes, namely emetic and diarrhoeal syndrome [54, 55, 66-68].

The emetic syndrome can be caused by consumption of food, particularly starchy 
products, in which a heat-stable toxin, cereulide, has been produced [55, 66, 68]. Cereulide 
is a cyclic peptide, resistant to low pH and proteolytic enzymes, toxic to mitochondria 
by acting as a potassium ionophore and it has been reported to inhibit human natural 
killer cells [68]. The emetic syndrome presents itself 0.5 – 5 h after ingestion, and usually 
mild symptoms like nausea, vomiting and malaise can last up to 24 h [54, 66, 67]. In 
contrast, the diarrhoeal syndrome is a toxico-infection, caused by enterotoxin secretion 
by vegetative cells present in the small intestine. Symptoms like abdominal pain, watery 
diarrhoea and occasionally nausea occur usually 8 to 16 h after ingestion and can last one 
up to several days. Meat products, soups, vegetables, dried herbs and spices, puddings, 
sauces and milk products were most frequently associated with the diarrheic syndrome 
[55, 66]. Several B. cereus enterotoxins have been identified that affect the integrity of 
membranes of epithelial cells including the well-studied haemolysin BL (Hbl) [69], the 
non-haemolytic enterotoxin (Nhe) [70] and the single component cytotoxin K (CytK) 
[64]. B. cereus can also be the causative agent of non-food related diseases, such as local 
or systemic infections like periodontitis, eye infections, fulminant endophthalmitis, and 
meningitis in immunocompromised patients, neonates and drug addicts [54, 55, 71].
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Notably, rather high numbers (105 - 108 cfu/g) of B. cereus cells have been found in food 
products linked to reported cases [8]. Next to safety issues, B. cereus can also cause food 
spoilage and affect production due to equipment failure [9]. Already in 1930, a cheese 
spoilage study led to isolation of B. cereus ATCC 10987 [72], a B. cereus type strain with 
high biofilm forming capacity [73]. A biofilm, is a complex multicellular structure in which 
cells are protected by matrix components from cleaning and disinfection procedures. 
Eventual dispersal of the cells or spores from the biofilm into the production line may 
lead to contamination or recontamination of the food products. Additionally, B. cereus 
spores are highly hydrophobic which may facilitate the initial attachment of the spores to 
the surfaces, supporting B. cereus persistence.

B. cereus group

B. cereus belongs to the Bacillus cereus group, also called Bacillus cereus sensu lato 
group, which is composed of seven closely related but diverse species of spore formers. 
Besides B. cereus sensu stricto, the sensu lato group includes Bacillus mycoides, Bacillus 
pseudomycoides, B. weihenstephanensis, Bacillus thuringiensis, Bacillus anthracis [74], 
and more recently, Bacillus cytotoxicus [75]. Classification of species within the B. cereus 
group is still under debate [49, 50, 76-78], species within B. cereus group can generally 
be distinguished based on morphology, physiology and/or virulence characteristics 
including genes encoding toxins that are often located on plasmids.

B. mycoides and B. pseudomycoides can be phenotypically recognised by the formation of 
a rhizoidal colony morphology, further phenotypic distinction between those two species 
requires analysis of fatty acids composition [79]. B. weihenstephanensis is characterised as 
a psychrotolerant species able to grow below 7°C, but not at 43°C. Not all psychrotolerant 
strains within the B. cereus group belong to this species, also B. cereus strains able to 
grow at low temperatures have been identified [12]. B. thuringiensis is an insecticidal 
bacterium producing crystal proteins. B. thuringiensis is used in biological pest control 
directly or by introducing insecticidal protein-encoding genes into transgenic crops. Even 
though B. thuringiensis is considered harmless to humans, cases of infections in mammals 
have been reported [80]. By contrast, B. anthracis, is a causative agent of anthrax, a fatal 
illness in animals and humans [81]. Finally, B. cytotoxicus is a thermotolerant species that 
contains a gene encoding for the production of CytK-1, a cytotoxic variant of cytotoxin K 
[75].

Notably, diversity in characteristics of strains of the same species has been studied 
extensively and revealed differences in growth performance [82, 83] and stress resistance 
[84], but also in spore properties. The strain diversity in spore heat resistance was recently 
shown by Berendsen et al. for B. subtilis spores [85]. Spores derived from B. subtilis food 
isolates displayed a high diversity in resistance to one hour exposure to 100°C, ranging 
from 0.1 to 10.2 log reduction [85]. The germination capacity of B. subtilis [86] and B. cereus 
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spores [32, 87, 88] is also highly divers, and minimal concentrations of germinants required 
for full spore germination are ranging for example from 1 to above 200 mM of L-alanine for 
different B. cereus strains [87]. This illustrates the importance of taking strain diversity 
into account to understand and predict microbial behaviour in designing new products and 
processes, or when performing challenge tests.

In recent years, growing attention was devoted to classification of species/strains within 
the B. cereus group based on phylogeny of group members. Guinebretière et al. [74] 
introduced seven phylogenetic groups (Figure 1.3), namely B. pseudomycoides belonging to 
group I, B. anthracis belongs to group III, B. cytotoxicus belongs to group VII, B. mycoides and 
B. weihenstephanensis belong to group VI, and groups II, III, IV, V and VI encompass B. cereus 
and B. thuringiensis strains. The seven phylogenetic groups cover the entire spectrum of 
growth temperatures observed for strains within the B. cereus group [74]. 

Spores in the era of mild food preservation processes

Ideally, spores are prevented from entering the food chain, but this is difficult to achieve 
in practice due to the ubiquitous presence of spore formers in the environment, and given 
their robustness towards stress conditions, control strategies aim for both reduction of 
microbial load of ingredients and prevention of vegetative growth (secondary stresses). 
Traditionally, thermal sterilisation processes have been applied to target heat resistant 
spores, aiming for production of commercially sterile foods with extended shelf life at 
ambient conditions. Hence, highly heat resistant spores may still survive such processes and 
may cause spoilage [16, 89]. Next to high heat treated products such as sterilised canned 
foods (e.g. meat, fish, vegetables) and ultra-high temperature (UHT) treated liquids (juices 
and milk) [7], there is a demand for fresher, more natural and nutritious products [90]. 
Consequently, milder processing techniques are applied often including an inactivation 
treatment (e.g. heat) to reduce microbial loads, in combination with factors that control 
growth of microbes throughout shelf life [91]. Control measures include intrinsic foods 
factors such as water activity, pH, presence of organic acids but also storage and packaging 
conditions such as temperature and oxygen limitations in e.g. MAP - packaging [91]. At 
the same time, consumers as well as governments desire a reduction in use of salt and/or 
sugar which are traditionally applied preservatives [90]. Increasing complexity of applied 
strategies poses new challenges in assuring the stability and safety of a variety of foods, and 
particularly in predicting combined effects of individual treatments.

Damaged but viable spores: repair prior to outgrowth

Spores are well protected against injury, nevertheless they can be damaged during most 
commonly used food processing and preservation treatments. Exposure to chemical 
(e.g. disinfectants) or physical (e.g. high hydrostatic pressure) treatments to inactivate 
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dormant spores in foods or on food contact materials can increase the inherent variation 
(resulting from the genetic makeup and conditions during sporulation) in the capacity of 
spores to germinate. Spores may survive such treatments but encounter damage to DNA 
and/or proteins (Figure 1.2). Generally, it is assumed that repair cannot take place during 
long lasting dormancy owing to lack of (or very low) metabolic activity in the spore [20, 
93, 94], consequently, damage accumulates until repair processes become active once 
metabolic activity resumes [7].
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Figure 1.3. Genetic diversity of the B. cereus group. (A) Simplified dendrogram showing the genotypic 
relationship between bacterial strains of the B. cereus group, based on fAFLP data analysis. BpT, B. 
pseudomycoides DSM 12442; Ba, B. anthracis CEB 94–0040; BcT, B. cereus ATCC 14579; BtT, B. thuringiensis CIP 
53.137; BwT, B. weihenstephanensis WSBC 10204; BmT, B. mycoides CIP 103472. Used with permission from 
Guinebretière et al. [74] (B) Characteristics of strains in each genetic group based on data from Guinebretière 
et al. [74, 92].

Molecular mechanisms involved in repair of damaged DNA in germinating spores have 
been studied, capitalizing on knowledge available for vegetative cells (reviewed in [95, 96]). 
Apurinic/apyrimidinic (AP) endonucleases (Nfo and ExoA) are thought to play a role, as 
their absence in B. subtilis severely delayed spore revival [93]. DNA repair and outgrowth 
processes appear to be aligned, as the DNA integrity scanning protein (DisA) was reported to 
delay B. subtilis spore outgrowth until oxidative damage repair of DNA was completed [93]. 
Exposure of B. cereus spores to DNA-damaging treatments such as pulsed light or irradiation 
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resulted not only in longer lag times to spore outgrowth but also in reduced growth 
rates, possibly owing to mutations [97]. DNA damage in Bacillus spores has furthermore 
been reported to result from UV exposure or application of dry heat at moderately high 
temperatures of 80 to 100°C [98]. At temperatures exceeding 200°C, dry heat also appears 
to lead to protein damage, in particular damage to the spore core proteins, which points to 
the temperature-dependent damaging effects of dry heat [98]. Wet heat, on the other hand, 
is thought to cause protein damage that may include the germination machinery of spores. 
In contrast, acid treatment inactivates spores due to inner membrane damage resulting in 
spore rupturing during germination. While oxidative stress results in damage to the inner 
membrane or DNA damage, depending on the compound used [2]. Various processing 
conditions may lead to spore damage, however, in most cases location and underlying 
mechanisms of damage remain to be elucidated [2, 7, 99]. More general information on 
protein damage and repair is provided in reviews by Chondrogianni et al. [100] and Visick 
& Clarke [101].

Although most repair processes are thought to be activated upon germination, spores may 
already be equipped with repair enzymes (produced during endospore formation) that allow 
for quick repair upon germination. Recently, it was suggested that protein synthesis already 
occurs during the early stages of germination [102], although it remains to be elucidated if 
factors involved also can play a role in repair processes [7].

Notably, the extent of spore injury can be quantified by studying spore recovery on optimal 
media and selective media containing antimicrobials, such as organic acids, sodium chloride 
or nitrite, as sublethally injured spores have an increased sensitivity to these antimicrobials 
[99, 103]. Moreover, certain antimicrobials may act in the spore outgrowth phase, including 
nisin [104] and sorbic acid [105] by dissipation of ion and pH gradients. The variety of 
conditions and antimicrobials affecting the outgrowth phase offer opportunities to study 
underlying mechanisms of repair in a range of recovery media including (model) foods [57].

Individual spores may vary in the degree of damage, resulting in a heterogeneous population. 
Single cell approaches including Anopore, time-lapse microscopy and flow cytometry 
have been applied to study behaviour of individual spores [7, 20, 105-107]. For example, 
application of Anopore technology, revealed that heat treated B. cereus spores showed 
more heterogeneous germination and outgrowth than non-heat stressed spores [105]. 
Such findings highlight the impact of different (model) food recovery media on outgrowth 
efficiency and heterogeneity of non-heat treated and heat damaged B. cereus spores.

Thesis outline

In this thesis, factors contributing to the germination and outgrowth capacity of B. cereus 
spores derived from genome sequenced food isolates and the model strains, B. cereus 
ATCC 14579 and ATCC 10987, were assessed in a range of conditions. Selected functional 
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genomics approaches were used including comparative analyses of full genome 
sequences and transcriptome analysis of untreated and heat treated outgrowing spores 
of B. cereus ATCC 14579. Moreover, performance was assessed at single spore/cell and 
subpopulation level using Anopore technology and flow cytometry. Special attention 
was devoted to assess the impact of strain diversity on nutrient-induced germination 
efficiency and carbohydrate utilisation capacity. Using B. cereus ATCC 14579 wild type 
and selected mutants, genes encoding putative functions in spore damage repair and 
recovery were identified. 

To assess the impact of strain diversity in B. cereus spore germination, a high throughput 
flow cytometric approach was used (Chapter 2) to analyse nutrient-induced germination 
of individual spores from 17 B. cereus strains and link responses to the genomic content 
of the strains. The approach revealed diversity in germinant receptors (GRs) and their 
contributions to the observed germination responses. 

Next, outgrowth of untreated and heat-treated spores was evaluated in Chapter 3 using 
the direct-imaging-based Anopore approach which allows monitoring of initial outgrowth 
and microcolony formation from individual spores on selected media including model 
foods. Conditions were selected such that a high fraction of damaged spores were 
obtained allowing for investigation of the effect of recovery/food media on the outgrowth 
heterogeneity of damaged spores.

In Chapter 4, both germination and outgrowth of heat damaged spores of B. cereus 
ATCC 14579 were studied at the population level, revealing delayed and heterogeneous 
germination and outgrowth compared to untreated spores. Transcriptomic approaches 
were applied to identify cellular parameters involved in spore damage repair and 
recovery. The role of identified genes in recovery of heat damaged B. cereus ATCC 14579 
spores was assessed in this chapter and Chapter 5 and identified factors such as putative 
transcriptional regulator CdnL and BC5242, a gene encoding a membrane protein with 
C2C2 zinc finger, that supported recovery of spores in a range of conditions including 
model foods.

Spore recovery was shown to depend on recovery media (Chapter 3) and ability to repair 
(Chapters 4 and 5). Additionally, recovery and outgrowth capacity may be associated with 
carbohydrate transport and utilisation capacity which conceivably links to transmission 
efficiency and occupation of environmental niches. Therefore, Chapter 6 focuses on the ability 
of 20 B. cereus food isolates to grow on various carbohydrate sources. The genomes and 
carbohydrate utilisation capacities were evaluated revealing a core set of compounds that 
could be used by all B. cereus strains, whereas utilisation of other carbohydrates, particularly 
related to specific niches such as the human host, was less widespread and could be linked to 
specific phylogenetic groups previously proposed by Guinebretière et al. [74]. 

Finally, Chapter 7 presents a general discussion, concluding remarks, and future directions 
based on the research described in this thesis.
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Abstract

Germination of bacterial spores is a critical step before vegetative growth can resume. 
Food products, may contain nutrient germinants that trigger germination and 
outgrowth of Bacillus spp. spores possibly leading to food spoilage or foodborne illness. 
Prediction of spore germination behaviour is however very challenging, especially for 
spores of natural isolates that tend to show more diverse germination responses than 
laboratory strains. In this study, we evaluated Bacillus cereus spore germination using 
flow cytometry analysis in combination with fluorescent staining at a single spore level. 
This approach allowed for rapid collection of germination data from 17 whole genome 
sequenced B. cereus food isolates and reference strains, in over 20 conditions. Tested 
variables included heat activation of spores and germination in either complex media 
(BHI and TSB) and exposure to saturating concentrations of single amino acids and 
the combination of alanine and inosine. Whole genome comparisons revealed a total of 
eleven clusters encoding germinant receptors (GRs), with GerK, GerI and GerL shared 
by all strains, whereas the presence of GerR, GerS, GerG, GerQ, GerX, GerF, GerW and 
GerZ (sub)clusters was distributed among different strains or groups of strains. The 
spores of tested strains displayed high diversity with regard to their sensitivity and 
responsiveness to selected germinants and heat activation. The two laboratory strains, 
ATCC 14579 and ATCC 10987, and 11 food isolates showed a good germination response 
in a range of conditions, whereas four other strains (B4085, B4086, B4116 and B4153) 
showed a very weak germination response even in BHI and TSB media containing high 
levels of mixtures of amino acids. Phylogenetic grouping clustered these strains in group 
IIIA. Those four group IIIA strains contained either pseudogenes or variants of subunit 
C in their GerL cluster combined with a pseudogene in the GerK cluster and sub-cluster 
GerRI (B4086, B4153), or combined with the presence of SpoVA2mob transposon (B4085, 
B4116), that was recently shown to induce heat resistance with concomitant reduced 
germination response in Bacillus subtilis spores. High diversity between tested strains in 
the number of Ger clusters (5 - 10) and a possible role for other factors in germination, 
such as cortex enzymes, conceivably hampered assessment of positive correlations 
between Ger cluster(s) and germination response(s). Further studies are required to 
elaborate on these interactions. In conclusion, this study provided information on the 
genetic diversity in GRs and corresponding sub-clusters encoded by B. cereus strains as 
well as their germination behaviour and possible associations with GRs.
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Introduction

Dormant bacterial spores are able to monitor the environment for conditions that 
favour growth, indicated by the presence of specific nutrients such as amino acids, 
which can trigger spore germination. Germination is a relatively fast biophysical 
process required to resume vegetative growth that can be initiated by activation of the 
germinant receptors (GRs) located in inner membrane of the spore [1, 2]. The majority 
of spore formers contain at least one and usually several GRs that may differ in their 
specificity for different nutrients [3, 4]. The model spore former Bacillus subtilis 168 
carries three functional GRs, of which GerA responds specifically to L-alanine, whereas 
GerB and GerK cooperate to respond to the mixture of asparagine, glucose, fructose 
and K+ (AGFK) [1]. Notably, spores of the toxin-producing food-borne human pathogen 
Bacillus cereus ATCC 14579 germinate most efficiently in response to a mixture of 
alanine and inosine and are equipped with seven GRs (GerG, GerI, GerK, GerL, GerQ, 
GerR, and GerS) that show limited similarity to the GRs present in B. subtilis [5]. B. 
cereus ATCC 14579 GerR plays a dominant role in germination, as its disruption 
affected germination in response to many amino acids, purine ribosides and food 
products [5, 6]. GerG appears specifically required for germination with glutamine [5]. 
Additionally, it has been suggested that GRs can respond to more than one germinant, 
and that cooperation of multiple GRs could enhance the germination response with 
specific individual germinants [4, 7-10]. Despite attempts of Ross [11] to standardise 
the nomenclature used for the GR’s, the annotation and naming of GR’s is inconsistent 
across and within spore forming species, this complicates comparative analysis and 
prediction of the GRs specificity. 

GRs are usually composed of three subunits (A, B, and C), and genes encoding these 
subunits are typically arranged in tricistronic operons [12, 13] with some exceptions 
more frequently found in anaerobic Clostridia. The spore GRs subunits A and B are 
integral membrane proteins composed of 5 - 8 and 10 - 12 predicted membrane spanning 
domains, respectively [4, 10]. Subunit B belongs to a subfamily of single component 
membrane transporters and is speculated to be involved in germinant recognition [4]. 
On the other hand, subunit C is membrane associated and conceivably bound to the A 
and B subunits [4]. So far, function of the individual GR subunits and their interaction 
is not clear [10]. GRs are thought to cluster in complexes, so-called germinosomes, 
involving the GerD lipoprotein that influences GR-dependent germination rates [14, 15] 
and possibly the SpoVA channels (located in the spore inner membrane), involved in 
release of small molecules, mainly dipicolinic acid (DPA) and monovalent cations, and 
uptake of water during germination [10]. Recently, it was shown that heat resistance 
and germination rate of B. subtilis spores could be attributed to the number of spoVA2mob 
copies on the genome, with a higher number of copies (up to three) correlating with 
increased heat resistance and reduced germination rate [16, 17]. 
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The spore germination process follows well described sequential steps [9, 10, 18]. Spore 
swelling of germinating spores and full rehydration of the core requires hydrolysis of the 
peptidoglycan cortex layer. In B. subtilis, two germination-specific cortex-lytic enzymes, 
namely, CwlJ and SleB, are responsible for cortex peptidoglycan degradation [1, 13]. 
After full rehydration, metabolic activity is regained, and spore outgrowth is initiated, 
followed by vegetative growth. Heat activation is commonly applied to enhance fast and 
homogeneous spore germination however, the processes involved remain unknown. 
Spore germination can also be initiated by non-nutrient germinants, including chemical 
triggers (Ca-DPA, the cationic surfactant dodecylamine), mechanical triggers (high 
hydrostatic pressure), enzymatic treatment (lysozyme) or bacterial cell wall fragments 
(muropeptides). These non-nutrient triggers usually bypass GRs and directly target 
either release of ions and Ca-DPA or activate cortex lytic enzymes [1, 2].

Traditionally, germination is monitored by measurement of optical density of spore 
suspensions at 600 nm (OD600), with % decrease in OD600 correlating to germination 
efficacy assessed by phase contrast microscopy and/or plate counts [5, 19]. Additional 
methods include measurement of Ca-DPA content by Raman spectroscopy, sometimes 
combined with laser tweezers [20-22], automated phase-contrast or differential 
interference contrast (DIC) microscopy, and time lapse microscopy (for review see Wells-
Bennik et al. [18]). Alternatively, spore staining approaches can be applied in combination 
with high throughput analysis of individual spores using flow cytometry (FCM) [23-25]. 
Germinated spores, but not dormant spores, can be stained by DNA fluorescent dyes such 
as SYTO-9, since spores lose their structural integrity upon germination, which allows for 
access of the dye into the spore core and subsequent binding to DNA [23-26].

In the current study, we applied FCM combined with SYTO-9 fluorescent dye staining of 
germinated spores to evaluate germination responses of 15 whole genome sequenced B. 
cereus food isolates and of two well studied sequenced laboratory strains B. cereus ATCC 
14579 and ATCC 10987 [27, 28], and correlated germination responses to Ger clusters 
in the corresponding genomes. The approach used provided information on the genetic 
diversity in GRs and corresponding sub-clusters encoded by B. cereus strains as well as 
their germination behaviour and possible associations with GRs.

Materials and Methods

Strains used in study

Two laboratory strains, B. cereus ATCC 14579 and B. cereus ATCC 10987, were obtained 
from the American Type Culture Collection (ATCC), and culture collection of the 
Laboratory of Food Microbiology, respectively. In addition, we used 15 sequenced B. 
cereus strains [29, 30] isolated from food products and food processing environment 
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(Table 2.1). Strain B4117 (LJKG00000000.1) was initially included as a B. cereus strain 
but was recently re-classified by NCBI as Bacillus mycoides based on criteria of Average 
Nucleotide Identity (ANI typing; [31]). Strains were cultured in Bacto Brain Heart Infusion 
broth (BHI; Beckton Dickinson, France) at 30°C with aeration at 200 rpm. 

Table 2.1. B. cereus strains and reference genomes used in the study.

Strain Strain 
used for*

Isolation 
source /origin

Phylogenetic 
grouping#

Assembly / WGS 
code or UID

Bacillus_cereus_B4078 E, G Food, unknown III A LCYJ00000000.1
Bacillus_cereus_B4080 E, G Dried onion  IV LCYK00000000.1
Bacillus_cereus_B4082 E, G Asparagus ham sauce II LJKA00000000
Bacillus_cereus_B4084 E, G Indian rice dish IV LJKC00000000
Bacillus_cereus_B4085 E, G Asparagus soup III A LJKD00000000
Bacillus_cereus_B4086 E, G Boiled rice III A LCYL00000000.1
Bacillus_cereus_B4087 E, G Pea soup III B LCYM00000000.1
Bacillus_cereus_B4088 E, G Dressing II LJKE00000000
Bacillus_cereus_B4116 E, G White sauce III A LJKF00000000
Bacillus_cereus_B4117  (B. mycoides) E, G Commerical pasteurised milk VI LJKG00000000
Bacillus_cereus_B4118 E, G Ice cream IV LJKH00000000
Bacillus_cereus_B4147 E, G Cereals, pasta and pastries II LCYN00000000.1
Bacillus_cereus_B4153 E, G Dairy products III A LCYO00000000.1
Bacillus_cereus_B4155 E, G Beef salad IV LJKJ00000000
Bacillus_cereus_B4158 E, G Vegetables IV LCYP01000000  
Bacillus_cereus_ATCC_10987 E, G Cheese spoilage III A uid57673
Bacillus_cereus_ATCC_14579 E, G Unknown; Type Strain IV uid57975
Bacillus_cereus_B4077 G Chilled dessert II LCYI00000000.1
Bacillus_cereus_B4079 G Canned chocolate beverage III A LJIT00000000
Bacillus_cereus_B4081 G Provolone sauce IV LJJZ00000000
Bacillus_cereus_B4083 G Torteloni con fughi VI LJKB00000000
Bacillus_cereus_B4120 G Water IV LJKI00000000
Bacillus_cereus_AH187 G Vomit; emetic outbreak III A uid58753
Bacillus_cereus_E33L G Dead zebra isolate (ZK) III B uid58103
Bacillus_subtilis_168 G Unknown; Type Strain NT uid57675
Bacillus_weihenstephanensis_KBAB4 G Soil isolate VI uid58315
Bacillus_anthracis_Ames G Texas, Cow; plasmids cured III B uid57909
Bacillus_thuringiensis_Al_Hakam G Suspected bioweapons facility III B uid58795
Bacillus_thuringiensis_serovar_
konkukian_97_27

G Severe human tissue necrosis III B uid58089

*Strain used for experiments (E) and/or genome comparisons (G)
#Based on Guinebretière et al. [32], data from Warda et al. [33][Chapter 6]. IIIA and IIIB refer to division 
within group III based on core genome tree (Figure 6.1); NT Not Tested

Sporulation conditions

Spores were prepared on a nutrient-rich, chemically defined sporulation medium, 
designated MSM medium, previously described [34]. Ten ml of sporulation media was 
inoculated with 100 µl of an overnight-grown pre-culture in 100 ml flasks and incubated 
at 30°C with aeration at 200 rpm. When the mid-exponential growth phase was reached 
(corresponding to an optical density of 0.5 measured at 600 nm (OD600 ~ 0.5; Novaspek II, 
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Pharmacia Biotek, United Kingdom)), 200 µl culture was spread on MSM plates (solidified 
with 1.5% agarose) and incubated at 30°C within plastic bags to prevent drying. After seven 
days, chilled phosphate buffer (100 mM, pH 7.4) containing 0.1% Tween80 was added to 
the plates and spores were scrapped off the surface and harvested by 15 min centrifugation 
at 5,000 rpm at 4°C (5804R, Eppendorf, Germany). Spores were washed in decreasing 
concentrations of Tween80 and prepared for use as described previously [35]. A single 
spore crop per strain was used for all the experiments.

Germination assay

Fifty µl of spore suspension containing approximately 108-109 spores/ml in phosphate 
buffer (100 mM, pH 7.4) containing 0.01% Tween80 (further referred as suspension 
buffer) was exposed to germinants by mixing with 50 µl of concentrated stock solution 
of either individual or mixed germinants. Final germinant concentrations used were 20 
mM for valine (Val), isoleucine (Ile), glutamine (Glu), glycine (Gly), cysteine (Cys), and 
inosine (Ino), 100 mM for L-alanine (Ala) and for the mixture of Ala and Ino (AlaIno) final 
concentrations were 10 mM Ala and 2 mM Ino. Amino acid stock solutions were prepared in 
distilled water and filter sterilised. Control experiments were performed using the complex 
media BHI and TSB (Trypthon Soy Broth, Beckton Dickinson, France) and HEPES buffer 
(25 mM, pH 7.4). Spores were exposed to germinants for 30 min at room temperature, 
followed by a centrifugation step for 1 min at 13,000 x g to remove the germinant. 
The resulting spore pellet was resuspended in 100 µl water containing 1 µM SYTO-9 
(Invitrogen, The Netherlands) and incubated in the dark for 10 min at room temperature to 
stain permeabilised spores. Next, the unbound dye was removed by centrifugation and the 
resulting spores were resuspended in HEPES buffer to obtain approximately 1,000 events 
per second after loading to FACSAria III flow cytometer (BD, USA). Each experimental run 
included control spores that were not exposed to germinants. For each sample 10,000 
events were evaluated.

For heat activation, spores were heated for 10 min at 80°C in a thermal cycler (Verity, 
Applied Biosystems, Singapore). 

Data analysis

Flow cytometer data were analysed using the Data Analysis Software FlowJo (vX.0.7, LCC, 
USA), Figure S1 represents the flow chart for data analysis. Approach using SYTO-9 staining 
and FCM for germination evaluation has been previously validated by Cronin and co-workers 
[23]. Scatterplots of Forward Scatter Area (FSC-A) versus a green fluorescence intensity 
(FITC-A) were used to exclude atypical data sets indicating presence of spore clumps or 
strain specific fluorescence i.e. high auto-fluorescence due to presence of DNA on the spore 
surface. Events with fluorescence intensity lower than the spore auto-fluorescence (control 
sample, FITC-A < 101) and higher than FITC-A > 105 were excluded from the analysis. 



Linking germination capacity to GR (sub)clusters  | 33

2

For each strain individually, a maximum fluorescence of dormant spores was determined 
based on the cut off between dormant (unstained) and germinating (stained) spores 
in control samples (not exposed to germinant) and samples exposed to germinant. 
The control samples showed dormancy between 81.8 and 99.4%, while microscopic 
observations prior to the experiment showed a minimum of 95% dormancy. Spores with 
higher fluorescence than maximum value for dormant spores were considered stained/
germinated. Next, a percentage of germinated spores in the population was calculated as 
percentage of stained spores among all events considered (unstained and stained). 

Per strain the average percentage of germinated spores in the control samples and its 
standard deviations were calculated based on three independent measurements, with 
and without heat activation step. Three categories of germination performance were 
defined: spores with < 15 % germination (poor germination), 15 – 50% (intermediate 
germination), and > 50% (good germination).   

Free amino acid analysis

The free amino acid content in BHI and TSB (same lot as used in germination experiments) 
was determined using liquid chromatography as described previously [36].

Genome mining

To investigate whether presence of GR operons correlated with experimentally tested 
germinant-induced spore germination, genomes were mined as described previously 
[33]. The analysis included 20 newly sequenced B. cereus food isolates [29, 30], nine B. 
cereus group strains with publically available genomes sequences and with experimentally 
determined germination responses [4, 34, 37]. The used strains and their isolation sources 
are listed in Table 2.1. To enhance genome comparisons additional genomes previously 
used for B. cereus genome comparison were used [33]. To improve the comperative 
analysis, all genoes were (re)annotated using RAST [38], and for the resulting annotated 
genomes Orthologous Groups (OGs; i.e. genes that are descended from the same gene in 
the last common ancestor of the strains studied, putatively sharing similar functionality) 
were defined using Ortho-MCL [39]. The OGs containing sequences of known germination 
receptor subunits were extracted from the dataset, and additional germination receptor 
subunits were identified manually by keyword searches and inspection of genome 
context. MSA (multiple sequence alignment) files were made with MUSCLE [40] aligning 
the protein sequences within specific OGs to facilitate identification of pseudogenes 
(encoding incomplete proteins) and manual correction of inaccurate auto-annotation 
using Artemis [41] and Jalview [42]. Next, phylogenetic trees of individual GR subunit A, 
B or C based on the aligned amino acid sequences of the 29 B. cereus group strains and 
B. subtilis 168 were constructed using Clustal X [43] and visualized using LOFT [44] (see 
Figures S2-S4). When subunits A, B and C of a given type of GRs clustered consistently 
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in one of the 11 clusters (and their sub-clusters), the candidate GR was assigned the GR 
name/letter of the well-studied strain, preferentially B. cereus ATCC 14579 (Table 2.3). 
Newly identified and known GR operons are summarized in Table 2.4 using the updated 
GR naming system (Table 2.3).

Results and Discussion 

Nutrient-induced germination of B. cereus spores

Germination behaviour of heat activated spores from B. cereus food isolates and 
laboratory strains was evaluated at single spore level for 20 conditions representing 
saturating concentrations of single amino acids and conditions simulating mixtures of 
germinants that can be found in food matrixes (Table 2.2). 

With the exception of strain B4153, heat activated spores of all strains showed good 
germination in response to AlaIno. BHI and TSB supported germination for most strains. 
However, a subset of strains of phylogenetic group IIIA (B4085, B4116, B4153, B4086) 
showed poor germination in tested media (BHI and TSB) and in response to individual 
amino acids. Also non-heat activated spores of these strains show poor germination 
response to AlaIno, next to B4080 and B4087 (Table S2). 

The data presented in Table 2.2, clearly show diversity in sensitivity and responsiveness 
to single amino acids and complex media. We previously showed that strains used in this 
study are representative for the diversity found amongst B. cereus strains with respect 
to carbohydrate utilisation and capacities to occupy different environmental niches (soil, 
food products, and intestinal tract) [33]. The poor germinating group IIIA strains (B4085, 
B4086, B4116 and B4153) were previously shown to lack specific carbohydrate utilisation, 
lacking specific carbohydrate utilisation clusters (starch, glycogen, aryl beta-glucosides; 
salicin, arbutin and esculin), suggesting a reduced capacity to utilise plant-associated 
carbohydrates for growth (see Chapter 6, Figure 6.2) [33]. Since B. cereus subgroup IIIA 
representatives contain host-associated carbohydrate utilisation gene clusters [33] and 
a subset of unique Ger (sub)clusters, additional studies using host-derived compounds as 
germinants may provide further insights in their germination efficacy.

Notably, all B. cereus strains tested carry spoVA1 and spoVA2 operons [16]. Interestingly, 
only two members of the poor germinating group IIIA, strains, B4085 and B4116, 
carry a spoVA2mob operon which occurrence was recently shown to correlate with slow 
germination and increased heat resistance of B. subtilis spores [16, 17].

Without heat activation exposure to Ala resulted in very efficient germination of spores of 
strains B4078 and B4088, and less efficient germination of spores of strains B4155 and B4158. 
A study by Broussolle et al. [45], showed significant germination (measured by OD600 drop) of 
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spores of laboratory strains, i.e. B. cereus ATCC 14579, upon exposure to 1 mM Ala, while 
wild B. cereus isolates typically required concentrations above 1 mM and for some even 
200 mM did not result in maximal OD600 drop [45]. When the maximum germination rate 
was reached, further increase in germinant concentration did not improve germination. 
Both the maximum germination rate and the minimal concentration to reach this were 
shown to be strain and germinant dependent [45]. Notably, the L-alanine-induced 
germination response may be affected by the presence of alanine racemase (encoded by 
the alr gene) that is able to convert germination stimulating L-alanine into germination 
inhibiting D-alanine that competitively binds to L-alanine GRs [46, 47]. Differences in 
L-alanine response (and in the combination with inosine) between strains may be due to 
differences in Alr activity in the spore cortex.

Table 2.2. Germination of heat activated B. cereus spores of 15 food isolates and two laboratory strains exposed 
to either single amino acids, their mixtures or complex media. Spores showing <15% germination are indicated 
in red, 15 – 50% germination in orange, and >50% germination is indicated in green.

Phylogenetic 
group Strain

Heat activated (10 min at 80°C)

AlaIno BHI TSB Ino Ala Cys Glu Gly Val Iso Av. 
Blank

II
B4088 98.6 85.5 97.7 76.6 95.6 95.1 14.0 51.8 22.8 19.2 17.1
B4082 97.5 99.2 97.9 96.0 81.0 56.8 72.4 1.7 6.9 3.0 2.5
B4147 95.2 97.8 27.6 88.6 90.1 42.5 2.6 1.1 56.5 43.0 1.1

III A

B4085 81.8 13.9 4.1 33.3 1.2 3.8 2.2 3.4 2.2 2.0 1.5
B4116 71.2 5.0 8.3 37.3 3.5 11.2 9.5 12.1 12.0 8.5 7.9
B4153 22.2 3.8 4.4 13.2 4.8 4.4 3.4 3.7 4.4 4.1 6.9
B4086 83.7 50.9 46.5 43.7 9.0 13.7 37.4 10.7 11.5 11.1 11.5
B4078 98.8 99.8 98.9 99.3 99.5 83.6 32.5 59.6 49.0 34.4 14.7

ATCC 10987 96.5 95.6 98.4 96.9 97.6 98.5 95.7 77.7 97.1 98.4 36.8
III B B4087 95.3 89.7 82.3 85.9 51.7 62.6 61.8 63.3 64.3 70.2 54.3

IV

B4084 97.4 99.6 98.9 97.3 94.0 60.5 41.2 3.0 7.4 2.9 4.8
B4080 98.4 98.7 98.4 14.9 74.7 25.6 13.8 2.9 4.0 2.7 1.4
B4118 92.4 92.0 96.6 55.5 40.6 15.6 5.6 0.9 5.1 2.8 2.4
B4155 98.3 98.7 75.5 92.9 95.4 90.0 15.2 50.3 6.3 4.9 3.5

ATCC 14579 93.0 95.9 98.6 92.6 93.2 94.6 84.3 58.5 90.4 84.1 56.5
B4158 78.1 80.8 80.1 72.7 78.7 0.0 0.1 0.1 0.1 0.0 6.7

VI B4117 97.3 95.2 97.4 96.6 87.1 18.1 13.6 16.3 16.1 18.1 16.2

Cysteine has been reported as potent germinant in B. cereus strains [5, 48], and significant 
Cys-induced germination was indeed observed for heat-activated spores of the majority 
of the strains tested. Despite the heat activation step, spores of seven strains (B4085, 
B4086, B4116, B4117, B4118, B4153 and B4158) stayed insensitive or responded only 
mildly to one of six individual amino acids Val, Cys, Iso, Gly, and Glu. All other strains 
tested showed enhanced spore germination in response to two or more amino acids 
tested. The applied 20 or 100 mM concentrations of individual amino acids (Ala, Val, Glu, 
Iso, Cys, Gly) and Ino used in this study are unlikely to be encountered in the environment, 
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however, they allow fast germination responses. The poorest germination was observed 
in response to Val and Iso, suggesting that the broader composition of free amino acids in 
BHI and TSB (Table S1) most likely resulted in a cumulative germination response.

Linking presence of specific GRs to spore germination (genotype to phenotype)

GRs are responsible for recognition and binding of the nutrient germinants, however the 
exact mechanism in which GRs subunits interact and proceed upon germinant binding to 
the downstream germination pathway remains to be elucidated. Recognising the fact that 
annotation of GR’s is not a trivial issue and is not consistent across species as well as within 
the species [4, 11], we present an overview of known GRs and their putative germinant 
specificity for nine sequenced and well-studied B. cereus group reference strains in Table 
2.3.

To compare and assign GRs present in the food isolates to the GRs present in well-studied 
strains, phylogenetic trees were composed for each of the GR’s A, B, C subunits of the 
reference strains and B. cereus food isolates (Figures S2-S4). Based on these trees, we have 
identified consistent clustering of corresponding subunits A, B and C of given type of GRs, 
illustrating their coevolution as has been observed previously [2, 11]. The clusters were 
named, when possible after the GR name/letter of the type B. cereus strain, B. cereus ATCC 
14579 (Table 2.3). The GRs of 29 strains could be allocated to 11 main clusters and their 
sub-clusters (Table 2.4).

B. cereus strains typically harbour a relatively high number of GRs as compared to other 
spore forming species. Until now, B. cereus strains were believed to encompass a core group 
of five GRs, namely, GerR, GerL, GerK, GerS and GerI, plus a selection of five additional GRs 
[4, 37]. Indeed, analysis of 29 genomes revealed that all strains contain GerK, GerI, GerL, 
GerR and GerS clusters, albeit that differentiation can be made between sub-clusters of GerR 
(GerRI and GerRII) and GerS (GerSI, GerSII and GerSIII), and that some strains contain one or 
more conceivably inactive pseudogenes (Table 2.4). The great majority of pseudogenes 
and/or variants in GerK and GerL are found in strains belonging to phylogenetic group IIIA 
composed mainly of poorly germinating strains. In fact, both GerK and GerL are pseudogenes 
and/or variants in B4086 and B4153, the two poorly germinating strains (Table S2-S3). 
At the same time two other strains B4085 and B4116 also belonging to the phylogenetic 
group IIIA and producing poorly germinating spores (Table S2) carried a variant of the 
cluster L (subunit C) in a combination with the GerXIII. The combination of those two GRs 
that are possibly non-functional variants could have a negative effect on the germination 
ability. Both, variant of GerL and GerXIII are also present in the B. cereus AH187 that was not 
included in the current germination assays, but spores of this strain were indeed previously 
shown to germinate poorly in response to amino acids or food [37].
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Interestingly, GerR, which is a dominant GR in B. cereus ATCC 14579 that responds to 
most amino acids and to model foods [5, 6], belongs to sub-cluster GerRI. Differentiation 
between sub-cluster GerRI and GerRII might also reflect functional differences between 
the two sub-clusters. In fact, comparative analysis of GerY of B. anthracis with unknown 
function [8] located this Ger receptor in cluster RII although its subunit C is encoded by a 
pseudogene and might be non-functional version of the GR variant (Table 2.4). Moreover, 
subunits C of GerRI of strains B4086 and B4153, which produce poorly germinating 
spores, are pseudogenes. Complementation experiments could provide insights in the 
role of gerR in spore germination of other strains. Despite the differences in GR presence/
absence, the organisation of the GR operons was conserved within the clusters with 
dominating ABC order, three clusters (R, F and Z) followed an ACB organisation, while 
cluster XI and XII revealed a BAC organization, and cluster XIII a unique ACC organisation.

In six of the B. cereus food isolates and B. cereus AH187, a tricistronic ger operon composed 
of one truncated subunit A and two subunits C was found, creating cluster XIII. In B. subtilis, 
the incorporation of subunit C of GerA into the membrane was shown to depend on 
subunit A [51] and B [52]. This suggest that either a different mechanism to form stable 
receptor assembly (e.g. interaction with subunits of other GR in germinosome) is in place 
in B. cereus or the GR could be not functional. Furthermore, subunit B was previously 
suggested to play a role in nutrient recognition and specificity of the germination 
response in B. megaterium [53, 54]. However, the assembly and function of GRs within 
cluster XIII remains to be elucidated.

Spores of strain B4117 (B. mycoides) germinated well, even without heat activation 
in response to AlaIno and Ino alone. Strain B4117 encodes two unique (among tested 
strains) GRs representing cluster QII and cluster SIII. GerQ is known to be involved in 
Ino induced germination in B. cereus [5], and it could be speculated that GerQII version 
present in B4117 may be more responsive than more commonly encountered GerQI. 
Besides B4117, only B. weihenstephanensis KBAB4 carries a GR belonging to cluster SIII. 
In fact, both strains also carry GRs from cluster SII that has been previously referred to as 
GerS2 [37], while most of the GRs within cluster S belonged to cluster SI. Notably, van der 
Voort [37] previously showed that germination of B. weihenstephanensis KBAB4 spores 
with combinations of selected amino acids and inosine was far more efficient than with 
spores from tested B. cereus ATCC 14579 and ATCC 10987 strains.

Our study identified additional putative GRs, a group of GRs creating cluster W including 
a presumptive gerT of B. cereus AH187 [37], and a putative GR found only in B4079 
composing one-item cluster Z. Those putative GRs share the tricistronic architecture and 
homology with known GRs however their functionality would require testing of directed 
deletion mutants. 
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Interestingly, the presence/absence of GRs seems to be related to the phylogenetic 
clustering, we reported previously [33]. All strains encoding GRs belonging to cluster 
GII represented phylogenetic group II (Table 2.3). This group is also characterised by 
high prevalence (75%) of GRs from clusters SII and QI. A phylogenetic tree based on 
core genes of tested strains (reported in Warda et al. [33]) and phenotypic differences 
between the strains of group III suggest its division into two sub-groups IIIA and IIIB. 
In fact, the majority of strains belonging to group IIIA (and only them) encode GRs from 
cluster FII. The high prevalence of FII might be compensating for lack of GRs from cluster 
Q and high numbers of pseudogenes within clusters K and L. Based on the encoded GRs, 
experimentally tested strains within group IIIA seem more comparable to strains within 
group IV than IIIB (Table S3), possibly suggesting similar niche requirements. This may 
also be reflected by encoded carbohydrate utilisation genes that show similarities for 
members within those groups. All the strains within group IIIB encode GRs from clusters 
K, I, L and SI. GRs from all the clusters can be found only in strain belonging to the group 
IV, indicating diversity of this group, with half of the strains encoding GRs from cluster 
FI (not found in other strains tested). Finally, strains belonging to group VI often encode 
alternative GRs, in fact GRs from clusters SIII and QII are present only in this group while 
RII and XI are only found in one other group. Moreover, strains representing group VI do 
not encode GRs belonging to cluster G nor cluster F (Figure 2.3).  

Our study further supports a high degree of diversity in GRs and nutrient induced 
germination in spores of different strains of B. cereus, generating leads for further 
studies. However, despite the different germination conditions tested, we could not 
directly link the presence (or absence) of given GRs to the germination responses such 
that germination behaviour could be predicted. This may be due to the requirement for 
different types or concentrations of certain germinants, or combinations of germinants. 
A number of factors that can affect the GR-dependent germination have been previously 
discussed [10, 18, 55] including accessibility and the number of GRs or the downstream 
germination mechanisms. Moreover, genome based studies may be affected by the 
quality of draft genomes i.e. contigs length, presence of GR’s subunit on short contigs 
(i.e. subunits C) and/or location of GRs or its subunits at the contigs edge (i.e. cluster 
XIII). Nevertheless, despite those limitations, the approach presented in the current study 
allows for inclusion of rapidly increasing numbers of draft genomes.

Previous studies could not link the diversity in spore germination responses with the 
presence and/or similarity of the GRs, most likely due to the large number of factors 
affecting GR-dependent germination [56]. Similarly, Krawczyk et al. [57], found no 
correlation between poor germination of B. subtilis spores with Ala and sequences 
of their GerA subunits. However, the authors did show that “modest germination” 
with AGFK correlated with the presence of several common amino acid substitutions 
in subunits of GerB and GerK [57]. Similarly, diverse germination responses to Ala of 



42  |  Chapter 2 Linking germination capacity to GR (sub)clusters  | 43

2

spores of 46 Bacillus licheniformis strains, which is a close relative of B. subtilis, could 
not be linked to the clusters formed by their gerAB - gerAC sequences [58]. Nevertheless, 
complementation of a gerAA disruption mutant with gerA operons of slow- and fast-
germinating B. licheniformis revealed that differences in gerA family operons are partly 
responsible for the differences in germination efficiency in response to Ala [58]. The 
greater diversity and complexity of GRs and germination responses among B. cereus 
strains and B. cereus group strains compared to for example B. subtilis, creates a challenge 
for future studies.  

In conclusion, our comparative genotyping and phenotyping approach showed four B. 
cereus strains, B4085, B4086, B4116 and B4153, with poor germination responses, to 
cluster in phylogenetic group IIIA. These IIIA group strains contain either pseudogenes or 
variants of subunit C in their GerL cluster combined with pseudogenes in the GerK cluster 
and sub-cluster GerRI (B4086, B4153), or combined with the presence of a SpoVA2mob 
transposon (B4085, B4116), that induced heat resistance with concomitant reduced 
germination response in B. subtilis spores [16, 17]. The approach used has provided 
information on the genetic diversity in GRs and corresponding sub-clusters encoded by 
B. cereus strains as well as their germination behaviour and possible associations with 
GRs, and provides a basis for further extension of the knowledge on the role of GRs in B. 
cereus (group member) ecology and transmission to the host.
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Supporting Information

Control Germinant

4. Visual inspection of FITC-A vs 
SSC-A scatters

5. Transforming scatter plots into 
FITC-A signal intensity histograms

6. Overlapping samples FITC-A
histograms

8. Gating SYTO-9 unstained and 
stained populations

7. Overlapping FITC-A histograms 
of all samples

9. Extracting event number per gate
10. Calculating % of germination

1. Sample preparation 
(germination and staining)

2. Loading samples in FACS
3. Recording 10.000 events per sampleFACS

Figure S1. Schematic representation of data analysis from germination assay.
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[145] up_Bacillus_cereus_B4158.faa~B4158_4732/43-474
[151] Bacillus_cereus_NIZO4120.faa~NIZO4120_3219/43-474
[203] up_Bacillus_cereus_NIZO4081.faa~NIZO4081_5298/43-474
[529] up_Bacillus_cereus_NIZO4084.faa~NIZO4084_2277/43-474
[716] Bacillus_cereus_NIZO4155.faa~NIZO4155_4656/43-474

Bacillus_cereus_ATCC_14579_uid57975.faa~BC4731/43-474
Bacillus_cereus_NIZO4088.faa~NIZO4088_4119/43-474

[239]
[510] up_Bacillus_cereus_NIZO4079.faa~NIZO4079_5582/43-474

Bacillus_cereus_ATCC_10987_uid57673.faa~BCE_4874/43-474
[398] Bacillus_cereus_E33L_uid58103.faa~BCZK4483/43-474

up_Bacillus_cereus_group_PEA26_B4087.faa~B4087_4682/43-474
Bacillus_anthracis_Ames_uid57909.faa~BA_4984/43-474
Bacillus_thuringiensis_serovar_konkukian_97_27_uid58089.faa~BT9727_4464/43-474
up_Bacillus_cereus_CMCC2724_B4086.faa~B4086_4655/43-474

up_Bacillus_cereus_NIZO4085.faa~NIZO4085_2968/43-474
up_Bacillus_cereus_B4153.faa~B4153_4943/43-474
Bacillus_cereus_NIZO4116.faa~NIZO4116_2904/43-474
up_Bacillus_cereus_L29_16_B4078.faa~B4078_4575/43-474
up_Bacillus_cereus_AH187_uid58753.faa~BCAH187_A4869/43-474
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Figure S2. Neighbour-joining clustering of the A subunit protein of the GR. 
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Bacillus_thuringiensis_serovar_konkukian_97_27_uid58089.faa~BT9727_0545/5-360
Bacillus_cereus_E33L_uid58103.faa~BCZK0545/5-360
Bacillus_cereus_NIZO4120.faa~NIZO4120_5776/5-360

[59]

[329]
[341] Bacillus_cereus_ATCC_14579_uid57975.faa~BC0634/5-360

Bacillus_cereus_NIZO4155.faa~NIZO4155_3328/5-360

[145]

[241] Bacillus_cereus_BCM2_134A_B4077.faa~B4077_0592/5-360

[514]
[860]

Bacillus_cereus_L29_16_B4078.faa~B4078_0571/5-360
Bacillus_cereus_NIZO4085.faa~NIZO4085_5065/5-360
Bacillus_cereus_NIZO4116.faa~NIZO4116_0279/5-360
Bacillus_cereus_NIZO4081.faa~NIZO4081_2741/5-360
Bacillus_cereus_NIZO4118.faa~NIZO4118_2881/5-360
Bacillus_cereus_NIZO4079.faa~NIZO4079_1420/5-360

[306]
[958] Bacillus_cereus_NIZO4083.faa~NIZO4083_2911/5-360

Bacillus_cereus_NIZO4117.faa~NIZO4117_0516/5-360
Bacillus_weihenstephanensis_KBAB4_uid58315.faa~BcerKBAB4_0547/5-360
Bacillus_cereus_CMCC2724_B4086.faa~B4086_0617/5-360

[588] Bacillus_cereus_B4147.faa~B4147_0777/5-360
Bacillus_cereus_group_PEA26_B4087.faa~B4087_0730/5-360

[665] Bacillus_cereus_NIZO4084.faa~NIZO4084_1055/5-360
Bacillus_thuringiensis_Al_Hakam_uid58795.faa~BALH_0571/8-363

[701] Bacillus_cereus_B4158.faa~B4158_0537/5-360
Bacillus_cereus_CMCC2818_B4080.faa~B4080_0561/5-360
Bacillus_cereus_ATCC_10987_uid57673.faa~BCE_0702/6-361
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Bacillus_thuringiensis_Al_Hakam_uid58795.faa~BALH_0645/8-368
Bacillus_cereus_ATCC_10987_uid57673.faa~BCE_0779/8-368
Bacillus_cereus_NIZO4079.faa~NIZO4079_2937/8-368
Bacillus_cereus_CMCC2818_B4080.faa~B4080_0641/8-368

[259] Bacillus_cereus_E33L_uid58103.faa~BCZK0620/8-368

[973] Bacillus_cereus_group_PEA26_B4087.faa~B4087_0808/8-368
Bacillus_thuringiensis_serovar_konkukian_97_27_uid58089.faa~BT9727_0620/8-368
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[861]
[306]
[996]

Bacillus_cereus_AH187_uid58753.faa~BCAH187_A0838/8-368
Bacillus_cereus_B4153.faa~B4153_0693/8-368
Bacillus_cereus_NIZO4085.faa~NIZO4085_4991/8-368
Bacillus_cereus_NIZO4116.faa~NIZO4116_0353/8-368
Bacillus_cereus_CMCC2724_B4086.faa~B4086_0653/8-368
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[666] Bacillus_cereus_ATCC_14579_uid57975.faa~BC0705/8-368

Bacillus_cereus_NIZO4081.faa~NIZO4081_2817/8-368
Bacillus_cereus_B4158.faa~B4158_0612/8-368

[495] Bacillus_cereus_NIZO4084.faa~NIZO4084_0979/8-368

[383] Bacillus_cereus_NIZO4118.faa~NIZO4118_1253/8-368
Bacillus_cereus_NIZO4155.faa~NIZO4155_3255/8-368
Bacillus_cereus_NIZO4120.faa~NIZO4120_5705/8-368

[1000] Bacillus_cereus_B4147.faa~B4147_0695/8-368
Bacillus_cereus_BCM2_134A_B4077.faa~B4077_0514/8-368

[863] Bacillus_cereus_NIZO4083.faa~NIZO4083_2828/8-368
[848] Bacillus_cereus_NIZO4117.faa~NIZO4117_0590/8-368

Bacillus_weihenstephanensis_KBAB4_uid58315.faa~BcerKBAB4_0625/8-368
Bacillus_cereus_NIZO4082.faa~NIZO4082_5588/8-368
Bacillus_cereus_NIZO4088.faa~NIZO4088_6642/8-367
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Bacillus_cereus_L29_16_B4078.faa~B4078_2906/6-363
Bacillus_cereus_NIZO4085.faa~NIZO4085_0751/6-363
Bacillus_cereus_NIZO4116.faa~NIZO4116_5544/6-363
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[458] Bacillus_cereus_CMCC2724_B4086.faa~B4086_2995/6-363

Bacillus_cereus_E33L_uid58103.faa~BCZK2852/6-363
Bacillus_cereus_NIZO4081.faa~NIZO4081_0532/6-363

[866] Bacillus_cereus_ATCC_14579_uid57975.faa~BC3111/6-363
Bacillus_cereus_NIZO4155.faa~NIZO4155_1637/6-363
Bacillus_cereus_NIZO4120.faa~NIZO4120_4492/6-363
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Bacillus_cereus_NIZO4118.faa~NIZO4118_0098/6-363
Bacillus_thuringiensis_serovar_konkukian_97_27_uid58089.faa~BT9727_2903/6-363

[435] Bacillus_cereus_CMCC2818_B4080.faa~B4080_2271/6-363
Bacillus_cereus_NIZO4082.faa~NIZO4082_5457/6-363

[1000] up_Bacillus_cereus_B4147.faa~B4147_2055/6-363
up_Bacillus_cereus_BCM2_134A_B4077.faa~B4077_2313/6-363

Bacillus_subtilis_168_uid57675.faa~BSU17760/5-362
NC_000964|BSU33060|3392199_3393296|366aa/7-364
NC_000964|BSU35810|3690269_3691375|369aa/5-363
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Bacillus_cereus_NIZO4085.faa~NIZO4085_5499/4-366
Bacillus_cereus_NIZO4116.faa~NIZO4116_1769/4-366
Bacillus_cereus_CMCC2724_B4086.faa~B4086_3018/4-366

[713]

[483] Bacillus_cereus_CMCC2818_B4080.faa~B4080_3188/4-366

[509] Bacillus_cereus_NIZO4081.faa~NIZO4081_0569/4-366
Bacillus_cereus_NIZO4120.faa~NIZO4120_4456/4-366
Bacillus_cereus_NIZO4118.faa~NIZO4118_0137/4-366

[223]
[998] Bacillus_cereus_E33L_uid58103.faa~pE33L466_0135/2-362

Bacillus_subtilis_168_uid57675.faa~BSU03720/3-363
Bacillus_cereus_E33L_uid58103.faa~pE33L466_0136/4-360
Bacillus_subtilis_168_uid57675.faa~BSU07760/1-353
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[1000] Bacillus_cereus_ATCC_10987_uid57673.faa~BCE_2754/7-363

Bacillus_cereus_NIZO4083.faa~NIZO4083_3765/3-359
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[620] Bacillus_cereus_B4153.faa~B4153_1505/2-358

Bacillus_cereus_NIZO4081.faa~NIZO4081_0001/2-358
Bacillus_cereus_group_PEA26_B4087.faa~B4087_5863/2-358
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[919]
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[380] Bacillus_anthracis_Ames_uid57909.faa~BA_3634/6-361
[332] Bacillus_cereus_E33L_uid58103.faa~BCZK3283/6-361

Bacillus_cereus_group_PEA26_B4087.faa~B4087_3611/6-361
Bacillus_thuringiensis_Al_Hakam_uid58795.faa~BALH_3214/6-361
Bacillus_cereus_CMCC2818_B4080.faa~B4080_3830/6-361

Bacillus_cereus_NIZO4082.faa~NIZO4082_0481/6-361

[843]
[994]

[610]
[564]

[553]

Bacillus_cereus_AH187_uid58753.faa~BCAH187_A3600/6-361
Bacillus_cereus_CMCC2724_B4086.faa~B4086_3256/6-361
Bacillus_cereus_L29_16_B4078.faa~B4078_3262/6-361
Bacillus_cereus_NIZO4085.faa~NIZO4085_0545/6-361
Bacillus_cereus_NIZO4116.faa~NIZO4116_0460/6-361
Bacillus_cereus_B4153.faa~B4153_3674/6-361
Bacillus_cereus_ATCC_10987_uid57673.faa~BCE_3591/6-361
Bacillus_cereus_NIZO4079.faa~NIZO4079_1307/6-361

[996]

[986] Bacillus_cereus_ATCC_14579_uid57975.faa~BC3575/6-361

[780]
Bacillus_cereus_NIZO4081.faa~NIZO4081_5479/6-361
Bacillus_cereus_NIZO4120.faa~NIZO4120_5538/6-361
Bacillus_cereus_NIZO4155.faa~NIZO4155_4493/6-361
Bacillus_cereus_NIZO4118.faa~NIZO4118_3912/6-361
Bacillus_cereus_NIZO4084.faa~NIZO4084_3569/6-361

[1000] Bacillus_cereus_NIZO4088.faa~NIZO4088_4747/6-361
Bacillus_thuringiensis_serovar_konkukian_97_27_uid58089.faa~BT9727_3333/6-361

[1000] Bacillus_cereus_NIZO4117.faa~NIZO4117_4275/6-362
Bacillus_weihenstephanensis_KBAB4_uid58315.faa~BcerKBAB4_5574/6-362

[1000]
[1000] NC_010184|BcerKBAB4_2340|2412435_2413538|368aa/6-362

scaffold4|NIZO4117_3641|71140_72243|368aa/6-362

[998]
[357] NODE_141|B4080_3702|3425_4528|368aa/6-362

scaffold13|NIZO4082_1934|90195_91298|368aa/6-362

[482]
[759] NODE_163|B4147_0215|114324_115427|368aa/6-362

B4158_3448_NODE_227/6-362
NODE_19|B4077_3446|154519_155622|368aa/6-362

[1000]
[411]

[839] NC_011655|BCAH187_C0235|156391_157485|365aa/5-358
scaffold55|NIZO4085_4889|2103_3197|365aa/5-358
scaffold58|NIZO4116_4186|3394_4488|365aa/5-358
NODE_60|B4153_3424|2360_3454|365aa/5-358
scaffold42|NIZO4081_4680|6072_7166|365aa/5-358
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[446]

Bacillus_cereus_AH187_uid58753.faa~BCAH187_A0924/7-359
Bacillus_cereus_NIZO4116.faa~NIZO4116_4752/7-359
Bacillus_cereus_NIZO4085.faa~NIZO4085_2697/7-359
Bacillus_cereus_L29_16_B4078.faa~B4078_0710/7-359
Bacillus_cereus_B4153.faa~B4153_0711/7-359
Bacillus_cereus_CMCC2724_B4086.faa~B4086_0734/7-359
Bacillus_thuringiensis_Al_Hakam_uid58795.faa~BALH_0696/7-359
Bacillus_cereus_NIZO4079.faa~NIZO4079_1611/7-359
Bacillus_cereus_NIZO4082.faa~NIZO4082_3792/7-359

[1000] Bacillus_cereus_ATCC_14579_uid57975.faa~BC0782/7-359
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[280] Bacillus_cereus_NIZO4084.faa~NIZO4084_1706/7-359
[972] Bacillus_cereus_NIZO4120.faa~NIZO4120_1356/7-359

Bacillus_cereus_NIZO4155.faa~NIZO4155_1194/7-359
Bacillus_cereus_CMCC2818_B4080.faa~B4080_0699/4-356

[1000] Bacillus_cereus_B4147.faa~B4147_0930/7-359
Bacillus_cereus_BCM2_134A_B4077.faa~B4077_0767/7-359
Bacillus_cereus_NIZO4088.faa~NIZO4088_6213/7-359

[1000]

[1000] Bacillus_cereus_E33L_uid58103.faa~BCZK0663/7-359
[661] Bacillus_cereus_group_PEA26_B4087.faa~B4087_0541/7-359

Bacillus_thuringiensis_serovar_konkukian_97_27_uid58089.faa~BT9727_0675/7-359

[1000]
[709] Bacillus_cereus_NIZO4083.faa~NIZO4083_2557/7-359

Bacillus_cereus_NIZO4117.faa~NIZO4117_2725/7-359
Bacillus_weihenstephanensis_KBAB4_uid58315.faa~BcerKBAB4_0675/7-359
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Bacillus_cereus_NIZO4081.faa~NIZO4081_2196/7-360
Bacillus_cereus_NIZO4118.faa~NIZO4118_0084/7-360
Bacillus_cereus_NIZO4120.faa~NIZO4120_4507/7-360
Bacillus_cereus_NIZO4155.faa~NIZO4155_1623/7-360
Bacillus_thuringiensis_serovar_konkukian_97_27_uid58089.faa~BT9727_2887/7-360

[256] Bacillus_cereus_CMCC2818_B4080.faa~B4080_2254/7-360
[343] Bacillus_cereus_NIZO4082.faa~NIZO4082_5476/7-360

Bacillus_thuringiensis_Al_Hakam_uid58795.faa~BALH_2800/15-368
Bacillus_cereus_NIZO4084.faa~NIZO4084_4697/7-360

[498] Bacillus_cereus_B4147.faa~B4147_5834/7-360
Bacillus_cereus_BCM2_134A_B4077.faa~B4077_3191/7-360

Bacillus_cereus_NIZO4117.faa~NIZO4117_1791/7-360
scaffold15|NIZO4079_1820|59116_60201|362aa/8-361

[1000] Bacillus_cereus_ATCC_14579_uid57975.faa~BC4732/8-361
Bacillus_thuringiensis_Al_Hakam_uid58795.faa~BALH_4308/8-361

[821]
[999] Bacillus_cereus_NIZO4082.faa~NIZO4082_3656/7-360

Bacillus_cereus_NIZO4083.faa~NIZO4083_2478/7-360
Bacillus_weihenstephanensis_KBAB4_uid58315.faa~BcerKBAB4_4564/7-360

[359]
[1000] Bacillus_cereus_B4147.faa~B4147_4810/7-360

Bacillus_cereus_BCM2_134A_B4077.faa~B4077_4327/7-360
Bacillus_cereus_NIZO4117.faa~NIZO4117_2361/7-360

[993]
[787] Bacillus_cereus_NIZO4081.faa~NIZO4081_5299/7-360

Bacillus_cereus_NIZO4155.faa~NIZO4155_4655/7-360
Bacillus_cereus_NIZO4120.faa~NIZO4120_3218/7-360
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[619] Bacillus_cereus_E33L_uid58103.faa~BCZK4484/7-360

Bacillus_cereus_group_PEA26_B4087.faa~B4087_4681/7-360
Bacillus_thuringiensis_serovar_konkukian_97_27_uid58089.faa~BT9727_4465/7-360

Bacillus_cereus_NIZO4116.faa~NIZO4116_2903/7-360
Bacillus_cereus_AH187_uid58753.faa~BCAH187_A4870/7-360
Bacillus_cereus_L29_16_B4078.faa~B4078_4576/7-360
Bacillus_cereus_B4153.faa~B4153_4944/7-360
Bacillus_cereus_CMCC2724_B4086.faa~B4086_4656/7-360
Bacillus_cereus_NIZO4085.faa~NIZO4085_2967/7-360
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Figure S3. Neighbour-joining clustering of the B subunit protein of the GR. 
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Bacillus_anthracis_Ames_uid57909.faa~BA_0711/9-383
Bacillus_cereus_E33L_uid58103.faa~BCZK0621/12-386
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Bacillus_cereus_ATCC_10987_uid57673.faa~BCE_0780/9-383
Bacillus_cereus_NIZO4120.faa~NIZO4120_5704/9-383

[1000]

[995] Bacillus_cereus_NIZO4155.faa~NIZO4155_2608/12-384

[783]

Bacillus_cereus_NIZO4120.faa~NIZO4120_4627/12-384
Bacillus_cereus_NIZO4116.faa~NIZO4116_0396/12-384
Bacillus_cereus_NIZO4085.faa~NIZO4085_2616/12-384
Bacillus_cereus_NIZO4079.faa~NIZO4079_2930/11-383
Bacillus_cereus_AH187_uid58753.faa~BCAH187_C0249/11-383
Bacillus_cereus_NIZO4088.faa~NIZO4088_3709/11-383

[724]

[1000] NC_000964|BSU17770|1910167_1911381|405aa/13-402

[998]

[1000] [541]

[576] Bacillus_thuringiensis_serovar_konkukian_97_27_uid58089.faa~BT9727_2902/14-394

[867]

[392]
[964] Bacillus_cereus_NIZO4155.faa~NIZO4155_1636/14-394

Bacillus_cereus_ATCC_14579_uid57975.faa~BC3110/14-394

[467]
[900] Bacillus_cereus_NIZO4120.faa~NIZO4120_4493/14-394

Bacillus_cereus_NIZO4081.faa~NIZO4081_0531/14-394

[928] Bacillus_cereus_NIZO4118.faa~NIZO4118_0097/14-394
Bacillus_cereus_NIZO4084.faa~NIZO4084_4713/14-394

[937]

[838] Bacillus_cereus_NIZO4116.faa~NIZO4116_5543/14-394
Bacillus_cereus_NIZO4085.faa~NIZO4085_0752/14-394
Bacillus_cereus_L29_16_B4078.faa~B4078_2905/14-394
Bacillus_cereus_CMCC2724_B4086.faa~B4086_2996/14-394
Bacillus_cereus_B4153.faa~B4153_2063/14-394
Bacillus_cereus_AH187_uid58753.faa~BCAH187_A3165/14-394
Bacillus_cereus_E33L_uid58103.faa~BCZK2851/14-394
Bacillus_cereus_CMCC2818_B4080.faa~B4080_2270/14-394
Bacillus_cereus_NIZO4082.faa~NIZO4082_5458/14-394

[1000]
Bacillus_cereus_BCM2_134A_B4077.faa~B4077_2312/14-400
Bacillus_cereus_B4147.faa~B4147_2056/14-400

Bacillus_subtilis_168_uid57675.faa~BSU35820/11-373

[450]

[549] Bacillus_subtilis_168_uid57675.faa~BSU07780/9-379

[512]
[599] Bacillus_subtilis_168_uid57675.faa~BSU03710/9-397

Bacillus_cereus_E33L_uid58103.faa~pE33L466_0138/23-398

[1000]

[1000] [393]
[911] Bacillus_cereus_NIZO4120.faa~NIZO4120_4455/1-354

Bacillus_cereus_NIZO4081.faa~NIZO4081_0570/1-354
Bacillus_cereus_CMCC2818_B4080.faa~B4080_3189/1-354
Bacillus_cereus_NIZO4118.faa~NIZO4118_0138/1-354

[1000]

[988] Bacillus_cereus_NIZO4116.faa~NIZO4116_1768/9-383
Bacillus_cereus_NIZO4085.faa~NIZO4085_5500/9-383
Bacillus_cereus_L29_16_B4078.faa~B4078_2940/9-383
Bacillus_cereus_B4153.faa~B4153_3199/9-383
Bacillus_cereus_AH187_uid58753.faa~BCAH187_A3201/9-383
Bacillus_cereus_CMCC2724_B4086.faa~B4086_3019/9-383

[1000]

[1000]

Bacillus_cereus_group_PEA26_B4087.faa~B4087_5861/10-379
Bacillus_cereus_NIZO4155.faa~NIZO4155_2607/10-379
Bacillus_cereus_NIZO4120.faa~NIZO4120_4628/10-379
Bacillus_cereus_NIZO4116.faa~NIZO4116_0397/10-379
Bacillus_cereus_NIZO4088.faa~NIZO4088_3708/10-379
Bacillus_cereus_NIZO4085.faa~NIZO4085_2617/10-379
Bacillus_cereus_NIZO4081.faa~NIZO4081_0003/10-379
Bacillus_cereus_NIZO4079.faa~NIZO4079_2931/10-379
Bacillus_cereus_B4153.faa~B4153_1507/10-379
Bacillus_cereus_AH187_uid58753.faa~BCAH187_C0247/10-379

[1000]
Bacillus_cereus_NIZO4083.faa~NIZO4083_3763/9-378
Bacillus_cereus_ATCC_10987_uid57673.faa~BCE_2752/9-378

Bacillus_subtilis_168_uid57675.faa~BSU33070/7-373

[971]

[1000]
[1000] scaffold4|NIZO4117_3640|70016_71143|376aa/6-374

NC_010184|BcerKBAB4_2339|2411311_2412438|376aa/6-374

[1000]

[638] scaffold13|NIZO4082_1935|91295_92422|376aa/6-374

[887]
[964] NODE_163|B4147_0214|113200_114327|376aa/6-374

B4158_3449_NODE_227/6-374
NODE_141|B4080_3701|2301_3428|376aa/6-374
NODE_19|B4077_3447|155619_156746|376aa/6-374

[983]
[1000] Bacillus_weihenstephanensis_KBAB4_uid58315.faa~BcerKBAB4_5575/1-352

Bacillus_cereus_NIZO4117.faa~NIZO4117_4276/7-367

[1000]

[883]

[888]
[773]
[978]

[693]
[704] Bacillus_thuringiensis_serovar_konkukian_97_27_uid58089.faa~BT9727_3334/9-378

Bacillus_cereus_group_PEA26_B4087.faa~B4087_3612/9-378
Bacillus_anthracis_Ames_uid57909.faa~BA_3635/9-378
Bacillus_thuringiensis_Al_Hakam_uid58795.faa~BALH_3215/9-378
Bacillus_cereus_CMCC2818_B4080.faa~B4080_3831/9-378

[726]
[340]
[582]

[368]
[841]
[479]
[440]
[335]

Bacillus_cereus_NIZO4155.faa~NIZO4155_4494/9-378
Bacillus_cereus_NIZO4081.faa~NIZO4081_5480/9-378
Bacillus_cereus_ATCC_14579_uid57975.faa~BC3576/9-378
Bacillus_cereus_NIZO4120.faa~NIZO4120_5537/9-378
Bacillus_cereus_NIZO4118.faa~NIZO4118_3911/9-378
Bacillus_cereus_B4158.faa~B4158_3510/9-378

[978]
[644]

Bacillus_cereus_NIZO4116.faa~NIZO4116_0459/9-378
Bacillus_cereus_NIZO4085.faa~NIZO4085_0546/9-378
Bacillus_cereus_L29_16_B4078.faa~B4078_3261/9-378
Bacillus_cereus_B4153.faa~B4153_3673/9-378
Bacillus_cereus_AH187_uid58753.faa~BCAH187_A3601/9-378

[644] Bacillus_cereus_NIZO4079.faa~NIZO4079_1308/9-378
Bacillus_cereus_ATCC_10987_uid57673.faa~BCE_3592/9-378
Bacillus_cereus_CMCC2724_B4086.faa~B4086_3255/9-378
Bacillus_cereus_E33L_uid58103.faa~BCZK3284/9-378
Bacillus_cereus_NIZO4082.faa~NIZO4082_0482/9-378

[556] Bacillus_cereus_NIZO4088.faa~NIZO4088_4746/8-378
Bacillus_cereus_BCM2_134A_B4077.faa~B4077_3698/9-378
Bacillus_cereus_NIZO4084.faa~NIZO4084_3568/9-378

[803]

[987]
[983]

[1000]

[1000]
[1000]

[1000] up_Bacillus_cereus_BCM2_134A_B4077.faa~B4077_0766/7-360
up_Bacillus_cereus_B4147.faa~B4147_0931/7-360
NC_003909|BCE_0827|854267_855349|361aa/7-360

[797]

[990] Bacillus_thuringiensis_Al_Hakam_uid58795.faa~BALH_0697/7-360

[127]

[102]

[92]
[984] Bacillus_cereus_NIZO4155.faa~NIZO4155_1193/8-361

Bacillus_cereus_NIZO4120.faa~NIZO4120_1357/8-361

[254]

[990]
[820] Bacillus_cereus_NIZO4116.faa~NIZO4116_4751/7-360

Bacillus_cereus_NIZO4085.faa~NIZO4085_2696/7-360

[811] Bacillus_cereus_L29_16_B4078.faa~B4078_0711/7-360
Bacillus_cereus_AH187_uid58753.faa~BCAH187_A0925/7-360
Bacillus_cereus_NIZO4079.faa~NIZO4079_1612/7-360

[999] Bacillus_cereus_NIZO4118.faa~NIZO4118_0274/8-361
Bacillus_cereus_ATCC_14579_uid57975.faa~BC0783/8-361

[242]
[791]

[551] Bacillus_cereus_NIZO4084.faa~NIZO4084_1707/7-360

[866] Bacillus_cereus_NIZO4081.faa~NIZO4081_1433/7-360
Bacillus_cereus_B4158.faa~B4158_0667/7-360
Bacillus_cereus_CMCC2818_B4080.faa~B4080_0700/7-360
Bacillus_cereus_NIZO4082.faa~NIZO4082_3793/7-360
Bacillus_cereus_NIZO4088.faa~NIZO4088_6214/7-360

[1000]
[1000]

[988]
[637] up_Bacillus_anthracis_Ames_uid57909.faa~BA_0762/7-360

Bacillus_cereus_group_PEA26_B4087.faa~B4087_0542/7-360
Bacillus_thuringiensis_serovar_konkukian_97_27_uid58089.faa~BT9727_0676/7-360
Bacillus_cereus_E33L_uid58103.faa~BCZK0664/7-360

[929] Bacillus_weihenstephanensis_KBAB4_uid58315.faa~BcerKBAB4_0676/7-360

[1000] Bacillus_cereus_NIZO4117.faa~NIZO4117_2726/7-360
Bacillus_cereus_NIZO4083.faa~NIZO4083_2558/7-360
scaffold15|NIZO4079_1821|60224_61300|359aa/7-358

[809]

[1000]

[997] Bacillus_weihenstephanensis_KBAB4_uid58315.faa~BcerKBAB4_4565/10-359

[1000] Bacillus_cereus_NIZO4083.faa~NIZO4083_2479/10-359
Bacillus_cereus_NIZO4082.faa~NIZO4082_3657/10-359

[566]

[961]

[996]

[274]

[394]

[521]
[768]
[998] Bacillus_thuringiensis_serovar_konkukian_97_27_uid58089.faa~BT9727_4466/12-361

Bacillus_cereus_group_PEA26_B4087.faa~B4087_4680/12-361
Bacillus_cereus_E33L_uid58103.faa~BCZK4485/12-361

[1000] Bacillus_cereus_BCM2_134A_B4077.faa~B4077_4326/12-361
Bacillus_cereus_B4147.faa~B4147_4809/12-361

[994] Bacillus_cereus_NIZO4079.faa~NIZO4079_5580/12-361
Bacillus_cereus_ATCC_10987_uid57673.faa~BCE_4876/12-361

[713]

[378]
[554]
[584]
[795]
[953] Bacillus_cereus_NIZO4155.faa~NIZO4155_4654/12-361

Bacillus_cereus_ATCC_14579_uid57975.faa~BC4733/12-361
Bacillus_cereus_NIZO4081.faa~NIZO4081_5300/12-361
Bacillus_cereus_NIZO4120.faa~NIZO4120_3217/12-361
Bacillus_cereus_B4158.faa~B4158_4734/12-361

[984]
[563]

[516]

Bacillus_cereus_NIZO4116.faa~NIZO4116_2902/12-361
Bacillus_cereus_NIZO4085.faa~NIZO4085_2966/12-361
Bacillus_cereus_CMCC2724_B4086.faa~B4086_4657/12-361
Bacillus_cereus_B4153.faa~B4153_4945/12-361
Bacillus_cereus_AH187_uid58753.faa~BCAH187_A4871/12-361
Bacillus_cereus_L29_16_B4078.faa~B4078_4577/1-311
Bacillus_anthracis_Ames_uid57909.faa~BA_4986/10-359

[524] Bacillus_cereus_NIZO4117.faa~NIZO4117_2362/10-359
Bacillus_cereus_NIZO4088.faa~NIZO4088_4121/10-359

[1000]
[808] Bacillus_cereus_NIZO4118.faa~NIZO4118_4209/10-359

Bacillus_cereus_NIZO4084.faa~NIZO4084_2275/10-359
Bacillus_cereus_CMCC2818_B4080.faa~B4080_5219/10-359

Bacillus_thuringiensis_Al_Hakam_uid58795.faa~BALH_4309/29-378

[1000]
[1000]

[998]

[426]
[605]
[440]
[545]
[670]

Bacillus_thuringiensis_serovar_konkukian_97_27_uid58089.faa~BT9727_2886/6-359
Bacillus_cereus_NIZO4155.faa~NIZO4155_1622/6-359
Bacillus_cereus_NIZO4081.faa~NIZO4081_2195/6-359
Bacillus_cereus_ATCC_14579_uid57975.faa~BC3097/6-359
Bacillus_cereus_NIZO4118.faa~NIZO4118_0083/6-359
Bacillus_cereus_NIZO4120.faa~NIZO4120_4508/6-359

[246] Bacillus_cereus_NIZO4084.faa~NIZO4084_4696/6-359

[511] Bacillus_cereus_NIZO4082.faa~NIZO4082_5477/6-359
Bacillus_cereus_CMCC2818_B4080.faa~B4080_2253/6-359

[430] Bacillus_cereus_BCM2_134A_B4077.faa~B4077_3192/6-359
Bacillus_cereus_B4147.faa~B4147_5835/6-359
Bacillus_thuringiensis_Al_Hakam_uid58795.faa~BALH_2799/36-390
Bacillus_cereus_NIZO4117.faa~NIZO4117_1790/6-359

[1000]
[1000]

scaffold96|NIZO4079_3926|4491_5621|377aa/10-376
scaffold88|NIZO4088_4971|965_2095|377aa/10-376
scaffold58|NIZO4116_4187|4493_5623|377aa/10-376
scaffold55|NIZO4085_4888|968_2098|377aa/10-376
scaffold51|NIZO4120_3534|4492_5622|377aa/10-376
scaffold50|NIZO4155_5264|963_2093|377aa/10-376
scaffold42|NIZO4081_4681|7171_8301|377aa/10-376

NC_011655|BCAH187_C0234|155256_156386|377aa/10-376
NODE_60|B4153_3423|1222_2355|378aa/11-377

[893]
[526] Bacillus_weihenstephanensis_KBAB4_uid58315.faa~BcerKBAB4_0546/10-374

Bacillus_cereus_NIZO4083.faa~NIZO4083_2912/10-374
Bacillus_cereus_NIZO4117.faa~NIZO4117_0515/10-374

[140]
[528] Bacillus_cereus_NIZO4088.faa~NIZO4088_3254/10-374

Bacillus_cereus_B4158.faa~B4158_0536/10-374
Bacillus_cereus_NIZO4084.faa~NIZO4084_1056/10-374

[318]
[381]
[545]
[932] Bacillus_thuringiensis_serovar_konkukian_97_27_uid58089.faa~BT9727_0544/10-374

Bacillus_anthracis_Ames_uid57909.faa~BA_0633/10-374
Bacillus_cereus_E33L_uid58103.faa~BCZK0544/10-374

Bacillus_cereus_NIZO4082.faa~NIZO4082_5663/10-374

[1000]
[742] Bacillus_cereus_NIZO4116.faa~NIZO4116_0278/10-374

Bacillus_cereus_NIZO4085.faa~NIZO4085_5066/10-374
Bacillus_cereus_L29_16_B4078.faa~B4078_0572/10-374
Bacillus_cereus_B4153.faa~B4153_0616/10-374
Bacillus_cereus_AH187_uid58753.faa~BCAH187_A0762/10-374

[105] Bacillus_cereus_group_PEA26_B4087.faa~B4087_0729/10-374
Bacillus_cereus_CMCC2818_B4080.faa~B4080_0560/10-374
Bacillus_thuringiensis_Al_Hakam_uid58795.faa~BALH_0570/10-374

[45]

[141]
[218]
[337]

[724] Bacillus_cereus_NIZO4155.faa~NIZO4155_3329/10-374

[713] Bacillus_cereus_NIZO4120.faa~NIZO4120_5777/10-374
Bacillus_cereus_NIZO4081.faa~NIZO4081_2740/10-374

Bacillus_cereus_NIZO4118.faa~NIZO4118_2880/10-374
Bacillus_cereus_ATCC_14579_uid57975.faa~BC0633/10-374

[404]
[702] Bacillus_cereus_BCM2_134A_B4077.faa~B4077_0593/10-374

Bacillus_cereus_B4147.faa~B4147_0778/10-374
Bacillus_cereus_ATCC_10987_uid57673.faa~BCE_0701/10-374

Bacillus_cereus_NIZO4079.faa~NIZO4079_1419/10-356
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Figure S4. Neighbour-joining clustering of the C subunit protein of the GR.
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Table S1. Free amino acid composition of BHI and TSB used in this study. The composition of reach medium 
varies according to its production lot/batch.

Free amino acid
Average BHI 

[mmol/l]
SD BHI

Average TSB 
[mmol/l]

SD TSB

Alanine 5.80 0.11 1.03 0.00
Arginine 2.85 0.06 3.07 0.00
Asparagine 1.54 0.02 0.38 0.00
Aspartic Acid 2.32 0.04 0.44 0.00
Glutamic Acid 5.37 0.09 0.86 0.01
Glycine 2.13 0.04 0.49 0.01
Histidine 0.72 0.02 0.37 0.01
Isoleucine 2.72 0.04 0.96 0.01
Leucine 8.07 0.14 5.36 0.01
Lysine 5.40 0.10 5.33 0.00
Methionine 1.25 0.02 0.83 0.02
Phenylalanine 3.63 0.06 2.53 0.00
Serine 2.73 0.08 0.80 0.00
Threonine 2.30 0.04 0.67 0.01
Tyrosine 0.98 0.01 0.86 0.01
Valine 3.89 0.08 1.39 0.01
γ-Aminobutyric Acid 0.35 0.00 <0.13
Citrulline 0.15 0.00 N.D.
Proline 1.24 0.03 N.D.
Ornithine 0.49 0.01 N.D.
Cysteine N.D. N.D.
Cystine N.D. N.D.
Glutamine N.D. N.D.
ND Not Detected
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Abstract

Spoilage of heat treated foods can be caused by the presence of surviving spore formers. 
It is virtually impossible to prevent contamination at the primary production level as 
spores are ubiquitous present in the environment and can contaminate raw products. As 
a result, spore inactivation treatments are widely used by food producing industries to 
reduce the microbial spore loads. However, consumers prefer mildly processed products 
that have less impact on its quality and this trend steers industry towards milder 
preservation treatments. Such treatments may result in damaged instead of inactivated 
spores, and these spores may germinate, repair, and grow out, possibly leading to quality 
and safety issues. The ability to repair and grow out is influenced by the properties of the 
food matrix. In the current communication we studied the outgrowth from heat damaged 
Bacillus cereus ATCC 14579 spores on Anopore membrane, which allowed to follow 
outgrowth heterogeneity of individual spores on broccoli and rice-based media as well 
as standard and mildly acidified (pH 5.5) meat-based BHI. Rice, broccoli and BHI pH 5.5 
media resulted in delayed outgrowth from untreated spores, and increased heterogeneity 
compared to BHI pH 7.4, with the most pronounced effect in rice media. Exposure to wet 
heat for 1 min at 95°C caused 2 log inactivation and approximately 95% of the spores in 
the surviving fraction were damaged resulting in substantial delay in outgrowth based on 
the time required to reach a maximum microcolony size of 256 cells. The delay was most 
pronounced for heat treated spores on broccoli medium followed by spores on rice media 
(both untreated and treated). Interestingly, the increase in outgrowth heterogeneity of 
heat treated spores on BHI pH 7.4 was more pronounced than on rice, broccoli and BHI 
pH 5.5 conceivably reflecting that conditions in BHI pH 7.4 better support spore damage 
repair. This study compares effects of three main factors, namely heat treatment, pH of 
BHI and effect of food matrix highlighting the impact of different (model) food recovery 
media on outgrowth efficiency and heterogeneity of non-heat treated and heat damaged 
B. cereus spores. 
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Introduction

Bacterial spores are widely present in the environment and are often identified as a source 
of contamination in the food industry. Highly resistant dormant spores that survived 
processing treatments can be present in final products and may germinate and grow out 
leading to food-borne illness or (premature) spoilage. The resistance of spores is lost 
when germination is initiated under nutrient rich conditions or when spores are exposed 
to specific physical or chemical triggers [1, 2]. However, spores may remain dormant for 
years until the initiation of germination, a phenomenon that makes the eradication and 
control of spores difficult for food producing industries.

The control of spores is further complicated by the tendency to use less intense 
preservation and processing strategies such as the use of milder heat treatments in 
combination with secondary mild preservation hurdles. However, reduction of the heat 
treatment intensity may lead to a subpopulation of spores that are sublethally damaged 
rather than inactivated. Such spores may eventually grow out after repair of the damage. 
This phenomenon conceivably contributes to increased heterogeneity in the population 
resulting in less accurate prediction of spore outgrowth behaviour. Knowledge on the 
behaviour of individual spores and its variability could assist in more accurate prediction 
of spore behaviour for shelf life prediction and refinement of risk assessments. 

Spore germination is a relatively fast process that can be triggered by the presence of 
nutrients including sugars, single amino acids or combinations thereof [1-5]. Non-
nutrient germination triggers have been described including chemical components 
such as pyridine-2,6-dicarboxylic acid chelated with calcium and the cationic surfactant 
dodecylamine. In addition, lytic enzymes such as lysozyme and high hydrostatic pressure 
treatments may trigger germination [6]. 

The sequential events in germination and outgrowth can be highly heterogeneous, as 
the precise fine tuning of the process is related to several intrinsic spore characteristics 
that may differ between individual spores depending on the sporulation conditions [7]. 
Individual spores may vary in sensitivity to heat and other processing treatments [8] and 
in superdormancy [9]. Also the food matrix composition may have considerable impact 
on the germination and outgrowth efficiency of spores. Commonly applied preservation 
strategies used by food industry to control spores (and vegetative cells) include the 
reduction of the water activity by using elevated concentrations of salt or sugar, or 
lowering of pH with organic acids [10], which might affect heat resistance [11-13]. In 
addition, stress conditions encountered during spore dormancy such as heat treatment, 
UV and disinfectant treatment can cause sublethal damage to spores that may increase 
variability in spore behaviour, especially in combination with non-optimal outgrowth 
conditions such as low pH, presence of salt or other inhibitory compounds that originate 
from food. As a result, spore germination and outgrowth can be significantly affected.
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The spore former Bacillus cereus has been associated with food spoilage [14] and food-
borne disease [15]. Depending on the type of toxin produced, B. cereus can cause two 
distinct syndromes. The emetic syndrome is caused by ingestion of the preformed 
heat stable toxin cereulide whereas the diarrheic syndrome is caused by enterotoxins 
secreted by vegetative cells present in the small intestine. Symptoms are usually mild 
and self-limiting, but in rare instances they can lead to life-threatening situations [15-19]. 
Effective heat preservation strategies are required to prevent B. cereus proliferation. A 
number of studies focussed on germination and/or outgrowth heterogeneity after heat 
treatment but the conditions used were relatively mild that either lead to heat activation 
or to marginal inactivation such as 10 min at 90°C (B. cereus), 10 min at 95°C (B. subtilis) 
or 20 s at 80°C (Clostridium botulinum) and laboratory media of optimal compositions 
were used to monitor outgrowth [20-22]. In this study, we focus on conditions that result 
in a 1.5-2 log inactivation and a severe heat damage in the surviving spores. Outgrowth 
capacity and heterogeneity of individual non-heated and heat damaged B. cereus ATCC 
14579 spores was subsequently assessed using the Anopore approach described 
previously [22-24] with meat-based BHI, and food-matrices based on rice and broccoli, 
to mimic conditions that may be encountered in food processing. 

Materials and Methods

Strain and sporulation conditions

B. cereus ATCC 14579 obtained from the American Type Culture Collection (ATCC) 
was cultured in Brain Heart Infusion broth (BHI; Beckton Dickinson, Le Point de Claix, 
France) at 30°C with aeration at 200 rpm. Spores were prepared in a nutrient-rich, 
chemically defined sporulation medium designated MSM medium that was described 
previously [25]. One ml of an overnight-grown pre-culture was used to inoculate 100 ml 
of sporulation media in 500 ml flasks and incubated at 30°C with aeration at 200 rpm. 
Sporulation was monitored during 2-3 days by phase contrast microscopy until release of 
over 99% of spores from the mother cell. Spores were harvested by 15 min centrifugation 
at 5,000 rpm at 4°C (5804R, Eppendorf, Germany) and washed with chilled phosphate 
buffer (100 mM, pH 7.4) containing 0.1% Tween80 to prevent spore clumping. Spores 
were washed twice a day over a period of 2 weeks with phosphate buffer with gradually 
decreasing Tween80 concentration until a final concentration of 0.01% (further referred 
as suspension buffer). Spores cleared from vegetative cells and debris were stored at 4°C 
and used for a maximum of six months.

Heat treatment

Hundred twenty µl of a spore suspension containing approximately 108 spores/ml 
in suspension buffer were transferred into capillary tubes (Micropipettes 200 µl max, 
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Blaubrand intraMARK, Germany) and heat-sealed at both ends. The capillary tubes 
were placed in an oil bath (Julabo MC-12, Germany) set at 95˚C for 1 min, followed by 
immediate cooling in ice-cold water. The heat treated spore suspension was recovered 
from the capillary tubes and decimally diluted in suspension buffer. Fifty µl of appropriate 
dilutions were plated in duplicate on BHI pH 7.4 and BHI pH 7.4 supplemented with 5.5% 
salt as previously used to estimate the degree of damage by Cazemier et al. [26]. Plates 
were incubated at 30˚C and colonies were counted after 24, 48 h and a week (no increase 
in colony counts after a week). For the surviving population, the percentage of damaged 
spores was calculated by the following formula:

( ) ( )
( )

5 5
100

−
=

Number of cfu’s BHI  Number of cfu’s BHI . % NaCl
%  *

Number of cfu’s BHI
Damaged spores

Food based media used in this study

Rice based media were prepared by boiling ready-to-cook pouches filled with 125 g rice 
produced by the manufacturer (Lassie B.V, The Netherlands) in demineralised water 
(5:32 w/v) for 45 min. The rice bags were removed and 1.5% (w/v) Bacteriological Agar 
was added and boiled twice to dissolve the agar before pouring into petri dishes. The 
final pH of the prepared rice medium was 7.2. Broccoli based media were prepared by 
mixing sterile 5% (w/v) agar solution with Olvarit broccoli baby food (4 months baby 
food, (60% broccoli, 17% rice, 17% water, 6% apple juice)) (Nutricia, The Netherlands) 
puree to reach a final concentration of 1.5% (w/v) agar. The final pH of the prepared 
broccoli medium was 5.8. BHI acidified with HCl to pH 5.5 was selected to simulate mild 
acid stress. The water activity of the three media ranged from 0.993 - 0.995 and was 
comparable to the water activity of BHI pH 7.4, while addition of 5.5% salt to BHI pH 7.4 
resulted in a drop to 0.958. All media were prepared one day before the experiments.

Anopore

Anopore strips (8 by 36 mm by 60 μm, 0.2-μm-diameter pore size, pore density of up to 
50%; Whatman, the Netherlands) were prepared as described previously [23, 24] and 
were placed on agar based media. Both heat treated and untreated spores were diluted 
in suspension buffer, and were spotted on the Anopore strips and incubated at 30˚C. At 
regular sampling times (30 min after spotting, followed by 30 or 60 min intervals after 
outgrowth), individual Anopore strips were transferred onto an agarose pad consisting 
of a microscope slide covered with a 1-mm-thick film of 1% (w/v) solidified low-melting-
point agarose (Invitrogen, The Netherlands) dissolved in demineralized water containing 
1 µM of the fluorescent reporter dye SYTO-9 (Invitrogen, The Netherlands). Following 
10 min staining in the dark, the Anopore strip was transferred for 10 min to an agarose 
pad without SYTO-9 dye, to reduce background signals and placed under a fluorescence 
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microscope as described previously [22] and routinely for each time point 100 to 1,000 
events (spores or microcolonies) were imaged. For comparative purposes time points 
30 min, 4.5, 5.5 and 6.5 h for untreated spores are presented, with an additional time 
point of 3.5 h for BHI pH 7.4 presented in Figure A.2. For heat treated spores, the 
number of images was adjusted such that 100 microcolonies could be processed. Image 
analysis and quantification of heterogeneity was performed as previously described 
[22-24]. Briefly, the distribution of the microcolony area per imaging time point for each 
experimental condition was calculated in Microsoft Excel and the observed frequency 
distributions were presented in histograms. For the visualisation purposes the number 
of cells per microcolony was determined by dividing the microcolony area (excluding the 
intercellular area) by average size of a single cell. All areas that were smaller than that of 
one cell were grouped together into one bin (represented by the letter “S” in the figures), 
representing both germinated (phase dark), swollen and outgrowing spores. The impact 
of recovery media and/or heat treatment on heterogeneity was quantified by calculating 
variances for the time points approaching the maximal microcolony size (256 cells per 
microcolony) and was based on log2 values of area of each microcolony. Additionally, a 
non-parametric Levene’s test was used to verify the equality of variances in the samples 
(p>0.05) [27, 28].

Vegetative cells on Anopore

To evaluate the impact of the food based media on the microcolony formation starting 
from vegetative cells, 30 µl of an overnight-grown pre-culture was used to inoculate 100 
ml Erlenmeyer flasks containing 20 ml of fresh BHI pH 7.4 broth and were incubated 
in a shaking water bath at 30°C for approximately 3 h, until reaching an optical density 
(measured at 600 nm) of approximately 0.5 (OD600 ~ 0.5; Novaspek II, Pharmacia Biotek, 
United Kingdom), which corresponds to cells in mid-exponential growth phase. At this 
point the culture was diluted in peptone physiological salt solution (PPS, 1 g/l neutralized 
bacteriological peptone [Oxoid, England] and 8.5 g/l NaCl). Appropriately diluted samples 
were spotted onto Anopore strips, and the development of microcolonies was monitored 
as described above.

Results

Effect of food media on spore outgrowth

Four different media representing a meat based (BHI pH 7.4), vegetable based (broccoli) 
and rice based matrix were selected to investigate the influence of matrix composition 
on spore outgrowth behaviour. To verify whether these media supported growth from B. 
cereus spores, non-heated B. cereus ATCC 14579 spores were plated in an initial screening 
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on either BHI pH 7.4, BHI pH 7.4 supplemented with 5.5% NaCl, rice, broccoli and BHI 
pH 5.5 agar based media to allow germination and outgrowth. All media supported 
germination and outgrowth from untreated B. cereus spores leading to final colony counts 
that were rather comparable to those on BHI pH 7.4 media (Figure 3.1). To evaluate the 
effect of different (food based) media on outgrowth from unstressed spores in more 
detail, diluted spore suspensions were inoculated on Anopore strips placed on the four 
selected media to allow germination and outgrowth. The formation of microcolonies for 
each condition was visualised by SYTO-9 staining and capturing of fluorescent pictures 
(Figure 3.2A). On BHI pH 7.4 medium, outgrowing spores formed characteristic spherical-
shaped single layered microcolonies, while food based media led to the development of 
different morphological structures (Figure 3.2A). On rice medium, cells were elongated 
and formed non-spherical microcolonies resembling structured spaghetti threads. Such 
structures are typical for stressed cells and were reported previously for B. cereus ATCC 
14579 vegetative cells grown in the presence of high salt concentrations [24], however, 
the colony morphology on rice could not be attributed to osmotic stress since the water 
activity was not affected. Similar observations were made for mid-exponential (Figure 
A.1.) and stationary phase cells (data not shown) cultured on Anopore strips and this 
suggests that the observed microcolony morphology on rice media is related to vegetative 
cell growth and not specific for spore outgrowth.
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Figure 3.1. The relative impact of (food based) media on colony formation of non-heat treated (black bars) 
and heat treated (grey bars) B. cereus ATCC 14579 spores. Spores heat treated (one min at 95°C) or non-
heated were plated on BHI pH 7.4, BHI pH 7.4 supplemented with 5.5% salt, BHI pH 5.5 or broccoli-based and 
rice-based media. The number of colonies formed by untreated or heat treated spores on BHI pH 7.4 was set 
as 100%, and all the other percentages for untreated or heat treated spores respectively are relative to these 
percentages (100% of heat treated spores represents counts on BHI pH 7.4 meaning a 2 log reduction from 
the 100% unheated spores). Results represent the averages of at least two repetitions.
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Figure 3.2. The effect of (food based) media on morphology and microcolony formation (A) and frequency 
distributions of microcolony size (B) on B. cereus ATCC 14579 spores. Dormant spores were placed on 
Anopore strips set on BHI pH 7.4 (black bars), rice (dark grey bars), broccoli (grey bars) or BHI pH 5.5 (light 
grey bars) plates. Samples were visualised after 30 min, 4.5, 5.5 and 6.5 h. The numbers of each bin on the 
x-axis represent number of cells per microcolony, “S” indicates germinated (phase dark) spores stained with 
SYTO-9 as well as outgrowing spores until reaching size of one vegetative cell. Distributions represent actual 
number of visualised individual spores/microcolonies per condition.
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Figure 3.2B represents the microcolony size distribution of untreated B. cereus ATCC 
14579 spores in time for the different matrices. Within 30 min, the untreated spores 
germinated which coincides with fluorescent staining of the phase dark spores 
(represented by the “S” bin in the Figure). The microcolony formation on BHI pH 7.4 
displayed a homogenous pattern resulting in outgrowth from all germinated (stained) 
spores and reaching a maximal microcolony size (256 cells per microcolony) within 
5.5 h (Figure 3.2B). The rice and broccoli media readily supported germination but the 
initial formation of microcolonies (time to reach the first bin) appeared to be delayed for 
2 h (broccoli) and 2.5 h (rice) compared to BHI pH 7.4 (data not shown). Additionally, 
untreated spores on BHI pH 7.4 reached the maximal microcolony size fastest followed 
by BHI pH 5.5, broccoli and rice. Moreover, on food based media the spore outgrowth 
displayed a more heterogeneous microcolony size distribution, in particular on rice media 
as indicated by an about 5 times increase of variance compared to BHI pH 7.4 (Table 3.1). 
On BHI pH 5.5, germination and outgrowth from spores was delayed leading to a smaller 
though significant increase in heterogeneity compared to BHI pH 7.4. Reaching maximal 
microcolony size was slightly delayed for untreated spores on the broccoli media (of 
comparable pH) compared to BHI pH 5.5, while it was most retarded for untreated spores 
on rice media. Remarkably, even after 6.5 h incubation, a fraction of the untreated spores 
on rice, broccoli and BHI pH 5.5 remained in the germinated phase and did not grow out 
to the vegetative state.

Table 3.1. Variances of frequency distributions approaching maximum microcolony size of 256 cells for non-
heated and heat treated B. cereus ATCC 14579 spores recovering on BHI pH 7.4, rice, broccoli and BHI pH5.5 
based on log2 values of area of each microcolony. Variances are given for different time points at which fastest 
growing microcolony approached 256 cells.

Variance non-heat treated Variance heat treated

BHI pH 7.4 1.29 3.75

Rice 6.70 7.26

Broccoli 2.19 3.02

BHI pH 5.5 4.74 3.72

Effect of heat treatment on microcolony formation (on food media)

Wet heat treatment of dormant B. cereus ATCC 14579 spores for 1 min at 95°C led to 2 
(for BHI pH 7.4 and rice media) and 3 log (for BHI pH 5.5 and broccoli media) reduction 
in viable counts (Figure 3.1). Such reduction in recovery compared to untreated spores, 
indicates that only a small fraction of the spore population could germinate and grow 
out. The surviving population of this treatment consisted of approximately 95% damaged 
spores. However, we noticed that the majority of heat treated spores were stained by 
SYTO-9. The SYTO-9 is known to stain germinated spores only since it cannot penetrate 
dormant spores [29]. Our data suggest that the heat treatment permeabilized the spores 
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and allowed penetration of SYTO-9. The inactivated spores are not able to germinate 
and grow out, and thus, do not contribute to heterogeneity in outgrowth. In practice, 
the small spore population surviving a (heat) treatment may grow out and this spores 
are therefore of relevance for product shelf life and safety. Emphasis was therefore in 
this study on microcolony formation and development of the small surviving fraction on 
different media (Figure 3.3). 

As observed for the untreated spores, formation of microcolonies of heat treated spores 
was the fastest on BHI pH 7.4. To focus on the outgrowth from heat treated spores we 
compared the time to outgrowth (a time to reach average size of one cell). In this way 
we showed that outgrowth of heated spores varied in different media and was least 
supported by broccoli media, showing a strong delay in microcolony development 
(Figure 3.3), while BHI pH 5.5 and rice based media were in the middle range. Similarly, 
the time to reach the maximum microcolony size, a measure for cell division, varied 
depending on the type of recovery medium. Microcolonies on BHI pH 7.4 reached 
maximum microcolony size within 6 h, while on BHI pH 5.5 this took approximately 6.5 
h, followed by rice media (7 - 7.5 h) and finally at least 8.5 h for broccoli media. After 
heat treatment, the outgrowth heterogeneity was increased for most media compared 
to non-heated spores, this was most pronounced for BHI pH 7.4 where heat treatment 
widened the distribution from 5 to 10 bins, resulting in an almost three times increase in 
variance compared to non-heated spores on BHI pH 7.4 (Table 3.1). Remarkably, increase 
in outgrowth heterogeneity of heat treated spores was not significant on rice, but it was 
significant although less pronounced on broccoli and BHI pH 5.5 compared to BHI pH 7.4, 
conceivably because those media already led to a more heterogeneous outgrowth from 
untreated spores, especially in case of BHI pH 5.5, where a negatively skewed distribution 
was observed. 
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Figure 3.3. The effect of heat treatment and (food based) media on morphology and microcolony formation 
(A) and frequency distributions of microcolony size (B) on B. cereus ATCC 14579 spores. Spores heat treated 
for one min at 95°C were placed on Anopore strips positioned on BHI pH 7.4 (black bars), rice (dark grey 
bars), broccoli (grey bars) or BHI pH 5.5 (light grey bars) plates. Samples were visualised after 4.5, 6.5 and 
7.5 h. The numbers of each bin on the x-axis represent the number of cells per microcolony. Distributions 
represent actual number of visualised individual microcolonies per condition.
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Discussion

The impact of matrix composition on spore survival has been mostly studied using 
plate counting methods [30-34], however, these methods do not provide information 
on heterogeneity during the initial outgrowth phase of single spores to microcolonies. 
Outgrowth from spores requires conditions that support initiation of spore germination as 
well as supporting outgrowth to vegetative cells. Thus, varying levels of individual matrix 
compounds can affect both the process of germination and outgrowth and may result 
in a heterogenic response of the population. In the present study, we used an Anopore 
approach [22-24], which allowed to assess the influence of four different food based media 
on germination and outgrowth from untreated and heat treated B. cereus spores. 

We showed that rice, broccoli and BHI pH 5.5 facilitated spore germination but also growth 
of vegetative cells of B. cereus ATCC 14579 and the number of spores that formed a colony 
on the food media was comparable to BHI pH 7.4. A limited number of studies investigated 
the impact of food matrix on spore outgrowth. It was previously shown that vegetable 
based media (broccoli, potato, and courgette) readily facilitate vegetative growth of a 
number of B. cereus strains which was not different from laboratory media when cultivated 
at optimal growth temperature [30]. However, other studies report an effect of media 
composition on spore outgrowth, for example B. cereus spores showed 1 log higher counts 
on nutrient agar (pH 5.2) compared to nutrient agar supplemented with carrot extract (pH 
5.2) [11], while in courgette puree an extended lag phase and reduced growth compared 
to J-broth (laboratory medium) was observed [31]. These observations are in line with 
our finding that on broccoli media (pH 5.8) and rice media the time required for colony 
formation was extended compared to BHI pH 5.5 and BHI pH 7.4 respectively, indicating 
that vegetables may contain additional factors delaying germination and/or outgrowth or 
contain suboptimal concentrations of required components.

In a previous study, meat bouillon and rice water were shown to initiate germination albeit 
less efficiently compared to the addition of individual germinants alanine and/or inosine 
at mM level [35]. However, the germination efficiency cannot always predict outgrowth 
efficiency, as studies showed that the first spores to germinate are not necessarily the first 
ones to grow out [8, 36]. Although the food media supported germination and outgrowth, 
colony size and morphology of the microcolonies was different from those observed on 
BHI pH 7.4 media. Such morphological changes were previously observed for salt-stressed 
B. cereus ATCC 14579 microcolonies [24], and suggest stressful conditions conceivably 
linked to suboptimal nutrient composition and/or presence of inhibitory components. 
The outgrowth from untreated B. cereus spores showed a delay on rice and broccoli media 
compared to BHI pH 7.4, although the delay on broccoli medium was less pronounced 
compared to BHI pH 5.5. Besides the delay, also the heterogeneity in outgrowth from 
untreated B. cereus ATCC 14579 spores was increased when subjected to low pH (BHI pH 



Influence of food matrix on outgrowth heterogeneity  | 65

3

5.5) and/or broccoli and rice media, with the largest heterogeneity in the latter condition. 
Notably, previous studies on performance of individual B. cereus ATCC 14579 spores also 
showed increased outgrowth heterogeneity in BHI pH 5.5 compared to BHI pH 7 [22, 36].

The heterogeneity within a population may be increased by the presence of damaged 
spores resulting from severe heat treatment. Increasing intensity of wet heat treatment 
of B. cereus spores was previously shown to be proportional to the degree of damage 
as quantified by selective (PEMBA) and non-selective (NA) plating [37]. Moreover, the 
lag time of B. cereus spores was shown to be related to duration and intensity of heat 
treatment and/or decrease of pH during heating [38]. Damaged spores form a challenge 
for food producing industries as they can show delayed responses and therefore may 
be overlooked in commonly used (shelf life/challenge) testing methods. However, 
those spores are still capable of germination and outgrowth albeit delayed and more 
heterogeneously and therefore behaviour of damaged spores cannot easily be predicted. 
Under favouring conditions spores may undergo repair processes that conceivably take 
place between germination (and resumption of metabolic activity) and first doubling times 
[8, 39]. For this reason, the Anopore technique is highly suitable since it specifically allows 
analysis of initiation of outgrowth at single spore level, assessment of first doubling times 
and microcolony development up to 256 cells on different (food) media. The heterogeneity 
in outgrowth from B. cereus ATCC 14579 spores was considerably higher after a 1 min 
heat treatment at 95°C, in particular a wider distribution of the microcolony sizes was 
observed for BHI pH 7.4 and variance increased almost 3 fold. The impact of different 
food-like matrices on survival during the heating of spores was investigated previously 
for several media including beef, poultry, milk and cream [1, 12, 40-42], however these 
studies did not include recovery of individual spore or effect of recovery conditions.

Depending on the applied intensity, heat treatment can affect spores in multiple ways. 
Moderate heat conditions, typically between 65 and 75°C [1, 3, 4, 9] for B. cereus spores, 
activate its germination. More intense heating conditions may either inactivate or damage 
spores. Within a heat treated spore population, individual spores may be affected differently. 
A number of authors focused on germination and outgrowth heterogeneity of heat treated 
C. botulinum spores (treatment of 20 s at 80°C (1D inactivation)) leading to induced 
heterogeneity in time required to germinate, increased variability in time to outgrowth, 
and an increased lag time in laboratory media [21]. It has been shown previously that 
the heat treatment intensity (time and temperature combination) has a (proportional) 
impact on germination and outgrowth behaviour of spores [8, 43]. In these studies on 
heterogeneity in spore germination and outgrowth relatively mild heat treatments in the 
range of 70 to 90°C aiming for heat activation and/or reducing heterogeneous behaviour 
in the B. subtilis [44] and C. botulinum [8] spore population were applied. Mild heat 
treatment (10 min at 70°C) resulted in the acceleration of spore germination for B. cereus 
ATCC 14579 at pH 7 and 5.5 but did not affect outgrowth and its heterogeneity [36] but 
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at higher temperatures (10 min at 90°C), van Melis et al. [22] showed a delayed and more 
heterogeneous outgrowth from B. cereus ATCC 14579 spores at the lower pH. In both 
cases, the presence of secondary stresses (pH, sorbic acid, salt) resulted in outgrowth 
delay and/or heterogeneity within spore populations. The heterogeneity in lab media 
(van Melis et al. [22] and this study) as well as food media (this study), as expressed by the 
variance introduced by secondary stress or by heat treatment was of the same magnitude. 
Similarly Aguirre et al. [42] showed a correlation between heat intensity and estimated 
heterogeneity as well as lag phase in outgrowth from B. cereus ATCC 10876 spores in TSB 
and milk.

We showed that in more propitious recovery conditions, the heat treatment displayed 
a larger influence on B. cereus ATCC 14579 spore behaviour than the type of recovery 
media. For example, heat treatment caused delayed outgrowth on BHI pH 7.4, broccoli, 
and BHI pH 5.5. Interestingly, the effect of heat treatment on population heterogeneity 
was most pronounced on BHI pH 7.4 (optimal recovery conditions). Similar findings 
were reported for C. botulinum spores where heat treatment displayed a larger effect 
on delay and heterogeneity of the germination and outgrowth process in comparison 
to either sporulation conditions or outgrowth in the presence of salt, suggesting that 
the heat treatment has more impact on spore outgrowth than recovery conditions 
[8]. In the present study with B. cereus ATCC 14579 spores, both unheated and heated 
spore populations showed a highly heterogeneous behaviour on rice based media, 
with comparable variance, and no additional delay in formation of fastest developing 
microcolony due to heat treatment. Heat treatment does not affect heterogeneity on rice 
media possibly because this media evokes a heterogeneous outgrowth from untreated 
spores already, possibly due to nutrient limitation, presence of inhibitors. In conclusion, 
the impact of heat treatment on the heterogeneity and recovery is influenced by the tested 
media composition, but in media that are not optimal for homogeneous germination and 
outgrowth the influence of heat on heterogeneity appears less pronounced.

The data presented in this communication focussed on severe heat treatment leading 
to substantial spore inactivation, that may be encountered during food processing and 
show the relevance of recovery conditions in studies on outgrowth from heat treated 
spores. Moreover, the recovery of spores after exposure to other types of stresses, 
such as disinfectants, would be of interest for industry. Future studies will be extended 
including next to B. cereus ATCC 14579, also industrial isolates and other spore formers. 
The reported findings are of relevance to food producers as outgrowth from a limited 
number of sublethally damaged spores can eventually be responsible for spoilage or 
illness. Particularly in food industry where one surviving/damaged spore per package can 
cause spoilage, and substantial economic losses especially in the context of mass (bulk) 
production.
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Abstract

Spores are widely present in the environment and are common contaminants in the food 
chain, creating a challenge for food industry. Nowadays, heat treatments conventionally 
applied in food processing may become milder to comply with consumer desire for 
products with higher sensory and nutritional values. Consequently, subpopulations of 
spores may emerge that are sublethally damaged rather than inactivated. Such spores 
may germinate, repair damage, and eventually grow out leading to uncontrolled spoilage 
and safety issues. To gain insight into both the behaviour of damaged Bacillus cereus 
spores, and the process of damage repair, we assessed the germination and outgrowth 
performance using OD595 measurements and microscopy combined with genome-wide 
transcription analysis of untreated and heat treated spores. The first two methods 
showed delayed germination and outgrowth of heat damaged B. cereus ATCC 14579 
spores. A subset of genes uniquely expressed in heat treated spores was identified with 
putative roles in the outgrowth of damaged spores, including cdnL (BC4714) encoding 
the putative transcriptional regulator CdnL. Next, a B. cereus ATCC 14579 cdnL (BC4714) 
deletion mutant was constructed and assessment of outgrowth from heat treated spores 
under food relevant conditions showed increased damage compared to wild type spores. 
The approach used in this study allows for identification of candidate genes involved in 
spore damage repair. Further identification of cellular parameters and characterisation 
of the molecular processes contributing to spore damage repair may provide leads for 
better control of spore outgrowth in foods.
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Introduction

Spore forming bacteria are commonly present in the environment and difficult to 
eradicate because they produce highly resistant spores that may remain dormant for 
years until germination. The high resistance towards a diverse range of stresses make 
spores an important target for food industry processes aimed to produce safe, ambient 
stable products. Dormant spores that can be present on raw material or ingredients and 
survive the heat processing treatments may eventually germinate and grow out, leading 
to food-borne illness upon consumption of those food products or result in product 
spoilage. The current practice of industry is to use intense heating regimes to minimize 
the risk of surviving spores but consumers prefer milder processes which have less effect 
on sensory and nutritional values of products.

A tendency to use milder heat treatments increases the risk of spores surviving the 
process and may lead to a subpopulation of spores that are sublethally damaged rather 
than inactivated. Sublethally damaged spores may still have the capacity to grow out if 
conditions allow for repair of the damage. Repair of spore damage is conceivably taking 
place between germination and outgrowth [1], however the processes involved in damage 
repair have not been studied extensively. A number of factors have been hypothesised 
to be involved in spore damage repair. Firstly, dormant spores may be equipped with 
transcripts resulting from late sporulation processes that on the one hand could support 
early repair of damage accumulated during dormancy, or alternatively, could serve as a 
reservoir of nucleotides in the germination process [1-5]. Secondly, spore damage repair 
may involve known repair systems for DNA damage such as AP endonucleases (Nfo and 
ExoA) or nucleotide excision repair enzymes (UvrA) described for Bacillus subtilis [1, 
6-9]. Spore DNA damage may accumulate during dormancy and (sub)lethal processing 
treatments with subsequent outgrowth requiring the activation of DNA repair systems. 
Despite the possible impact of spore damage repair on subsequent spore outgrowth and 
associated food quality and safety issues, the frequency and underlying mechanisms of 
this phenomenon have gained limited attention up to now [10].

The events associated with spore germination appear to occur via a tightly controlled 
spore outgrowth program [1, 5]. Transcriptomic approaches have been performed to 
understand the processes and genes involved in the wake up of dormant spores and 
resumption of metabolic activity for the Bacillus genus [1, 5] and in Clostridia [2-4]. A 
common finding among those studies is that mRNA levels of the majority of genes on 
the chromosome increase rapidly during the initial germination processes showing a 
highly dynamic expression pattern. Transcriptome analyses of spore germination and 
outgrowth performed so far, predominantly involved the use of optimal conditions in 
nutrient-rich media at neutral pH values. Few studies, including van Melis et al. [5] for 
B. cereus spores, focus on gene expression during germination and outgrowth under less 
favourable conditions such as presence of the preservative sorbic acid in mildly acidic 
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conditions. Nevertheless, suboptimal conditions are typically encountered in practice in 
processed foods, for example when spores are damaged upon exposure to heat, and their 
fate is influenced by matrix composition, temperature and/or pH.

In this study, we focus on germination and outgrowth of heat damaged spores of B. 
cereus, a microorganism that has been associated with food spoilage [11] and food-
borne disease [12]. B. cereus associated diseases are usually mild and self-limiting but 
in rare instances fatal outcomes have been reported [12-17]. The vegetative cells of B. 
cereus can cause disease either by the production of a heat-stable toxin (cereulide) in 
food before ingestion resulting in emetic syndrome or by secretion of enterotoxins in 
the small intestine, causing the diarrheic syndrome. We assessed the germination and 
outgrowth performance of untreated and heat damaged B. cereus spores using optical 
density measurements and microscopy analysis at selected time points. Transcriptome 
profiling was used to identify genes and putative molecular mechanisms involved in the 
repair and recovery of heat damaged spores. To validate this approach, one candidate 
gene with a potential role in recovery and repair of outgrowing damaged spores was 
selected for mutant construction and subsequent phenotype analysis. The resulting 
targeted deletion mutant, ∆cdnL (BC4714), showed a higher fraction of severely damaged 
spores compared to wild type. The work presents the feasibility of the applied approach 
for identification of novel cellular parameters involved in repair and recovery of heat 
damaged spores. 

Materials and Methods

Strain and sporulation conditions

B. cereus ATCC 14579 was obtained from the American Type Culture Collection (ATCC) 
and routinely cultured in Bacto Brain Heart Infusion broth (BHI; standard BHI media 
contains 0.5% NaCl; Beckton Dickinson, Le Point de Claix, France) at 30°C with aeration 
at 200 rpm. Spores were prepared in a nutrient-rich, chemically defined sporulation 
medium (MSM medium) described previously [18]. The sporulation process and handling 
of resulting spores were performed as described previously [19], briefly one ml of an 
overnight-grown pre-culture was used to inoculate 100 ml of MSM media in 500 ml flasks 
and incubated at 30°C with aeration at 200 rpm. Sporulation was monitored over 2-3 
days by phase contrast microscopy until over 99% of the spores were released from the 
mother cell. Spores were then harvested by centrifugation at 5,000 rpm at 4°C (5804R, 
Eppendorf, Germany) for 15 min and washed with chilled phosphate buffer (100 mM, pH 
7.4) containing 0.1% Tween80 to prevent spore clumping. Spores were washed twice 
a day for 2 weeks with a phosphate buffer that was gradually decreased in Tween80 
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concentration until a final concentration of 0.01% (further referred as suspension 
buffer). Spore suspensions free of vegetative cells and debris were stored at 4°C and used 
within six months.

Heat treatment

A 120 µl aliquot of the spore suspension containing approximately 1X108 spores/ml 
in suspension buffer was transferred into capillary tubes (Micropipettes 200µl max, 
Blaubrand intraMARK, Germany) and heat-sealed at both ends. The capillary tubes 
were placed either on ice or in a 95˚C oil bath (Julabo MC-12, Germany) for 1 min and 
immediately cooled in ice-cold water. The heat treated spore suspension was recovered 
from the capillary tubes and directly decimally diluted in suspension buffer. For several 
spore formers, including B. cereus, B. subtilis, Bacillus stearothermophilus, Clostridium spp 
addition of stressful substances such as sodium chloride has been used to assess spore 
damage, as sublethally injured spores appear to have an increased sensitivity to those 
substances [20-24]. 5.5% NaCl was added to BHI, resulting in 6% final concentration, 
which did not affect outgrowth of untreated spores as indicated by Cazemier et al. [23] 
and own data ([19], S4 Table). A dose dependent sensitivity of damaged spores towards 
salt can be used to differentiate between severely and mildly damaged spores. Based on 
preliminary experiments we selected supplementation with 1.5% NaCl as an intermediate 
cut off providing sufficient resolution to evaluate different degrees of damage for the heat 
treated spores. In short, 50 µl of serially diluted samples were plated in duplicate on BHI 
plates and BHI plates supplemented with 1.5% and 5.5% salt followed by incubation up to 
seven days at 30˚C. To evaluate possible delay in colony formation, colonies were counted 
after 1, 2 and 7 days (further extension did not affect colony counts). Obtained colony 
forming units (cfu‘s) were used to calculate the total damage as reported previously [19] 
(see formula below). Fractions of mildly and severely damaged spores were calculated 
using the following formulas: 

( ) ( )
( )

5 5
100

−
=

Number of cfu’s BHI  Number of cfu’s BHI . % NaCl
%  *

Number of cfu’s BHI
Total damage

( ) ( )
( )

1 5 5 5
100

−
=

Number of cfu’s BHI . % NaCl  Number of cfu’s BHI . % NaCl
%  *

Number of cfu’s BHI
Mild damage

( ) ( )
( )

1 5
100

−
=

Number of cfu’s BHI  Number of cfu’s BHI . % NaCl
%  *

Number of cfu’s BHI
Severedamage
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OD595 measurement and microscopy

To initiate spore germination and outgrowth, 180 µl of 1.1 times concentrated BHI was added 
to the wells of a 96 – well plate containing either 20 µl of untreated or heat treated spore 
suspension containing approximately 1X108 spores/ml resulting in a final concentration 
of 1X107 spores/ml. Plates were immediately transferred to a plate reader (Tecan Infinite 
F200 Pro, Austria) for incubation at 30˚C at approximately 200 rpm. OD595 was measured 
every 10 min and read outs were used to calculate the relative change in OD595. Duplicate 
plates were incubated at 30˚C at approximately 200 rpm (IKA KS 250, Germany), allowing 
for microscopic observations and imaging at regular intervals. 

Sampling for microarray and qPCR experiments

Samples for RNA isolation were gathered from germinating and outgrowing spores in BHI 
after 10 (t10), 20 (t20), 30 (t30) and 50 (t50) min for untreated spores and 50 (t50), 90 
(t90), 120 (t120) and 150 (t150) min for heat treated spores. The time points were selected 
based on microscopic observations and the relative change in OD595. Eight hundred µl of 
concentrated spore suspension containing approximately 1X1010 spores/ml was injected 
into either pre-heated (95˚C; oil bath) or ice cold glass tubes filled with 5 ml suspension buffer. 
After 1 min, the content of the tube was cooled by mixing with 40 ml of ice cold suspension 
buffer, followed by centrifugation (5804R, Eppendorf, Germany) for 5 min at 5,000 rpm at 
4°C and resuspension in 8 ml of suspension buffer. Two ml of this spore solution was used to 
inoculate four flasks with 18 ml of 1.1x BHI reaching a final concentration of 1X108 spores/
ml. Flasks were then incubated at 30°C with aeration at 200 rpm. At each sampling point, the 
content of one flask was rapidly pelleted by centrifugation (5804R, Eppendorf, Germany) 
at maximum speed at 4°C for 30 s and the resulting pellet was resuspended in 1 ml TRI-
reagent (Applied Biosystems, United Kingdom) and rapidly frozen in liquid nitrogen. The 
frozen samples were stored at −80°C until RNA extraction. Sampling was performed from 
two independent experiments. Samples were collected for microarray analysis from the 
first spore batch and to support the specific expression of genes in heat treated spores the 
samples for qPCR experiments were collected from a second spore batch that was prepared 
independently.

RNA isolation for microarray and qPCR experiments

RNA was extracted from the samples in TRI-reagent by defrosting on ice followed by 
mechanically disrupting the spores by exposing them to 6 rounds of 45 s of bead beating 
(FastPrep-24, MP Biomedicals, Germany) at maximal settings in the presence of Lysing 
Matrix B beads (MP Biomedicals, Germany). A direct-zol RNA MiniPrep kit (Zymo Research, 
United States) was used according to the manufacturer’s instructions for on column RNA 
purification. Residual chromosomal DNA was removed from the samples by a 30 min off 
column treatment using the TURBO DNA-free Kit (Ambion, United Kingdom). The resulting 
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total RNA was subsequently cleaned with RNeasy Mini Kit (Qiagen, Germany). The RNA 
quantity and quality were checked by UV spectroscopy (Biophotometer, Eppendorf, 
Germany) and by analysis on a RNA 6000 Nano chip (Agilent, United States). Examples of 
RNA profiles are shown in S1 Figure. The RNA samples were stored in 70% ethanol with 83 
mM sodium acetate buffer (pH5.2) at −80°C. 

cDNA synthesis, labelling and microarray hybridization and design

Fluorescently-labelled cDNA was prepared from the extracted RNA following an indirect 
labelling approach with amino-allyl-labelled dUTP (Ambion, United Kingdom) and 
Superscript III (Invitrogen, The Netherlands) as described previously [25]. Two hundred ng 
of appropriately Cy3 and Cy5 -labelled cDNA was used for each sample hybridization. For 
each time point, independent biological duplicates were used in combination with a dye-
swap approach. Array hybridisation followed a loop design (S2 Figure). Hybridization and 
removal of the unbound cDNA was performed as described previously [5]. The microarrays 
used in this study were custom-made B. cereus microarrays (8 × 15 K, Agilent, GEO accession 
number GPL9493, 3rd design) based on B. cereus ATCC 14579 genome sequence (NCBI 
accession number NC_0044722).

Microarray scanning and data analysis

The microarray slides were scanned using an Agilent microarray scanner (G2565BA), and 
the raw data were extracted using Agilent’s Feature Extraction software (version 10.7.3.1). 
Microarrays were normalized using the approach reported for germinating spores involving 
the creation of so called synthetic microarrays [5]. Namely, the background-corrected, 
raw signals (Cy3 and Cy5 channel) of all arrays were hierarchically clustered (Pearson 
correlation, complete linkage) using Genemaths XT (version 1.6.1, Applied Maths, Belgium). 
New synthetic arrays (S1 Table) were defined from sample pairs showing the highest 
similarity in the clustering. In a next step, the synthetic microarrays were normalized (Lowess 
normalisation), based on normalised values three experimental samples were excluded (see 
S1 Table). Gene expression levels were calculated relative to that of untreated samples after 
10 min (t10). This approach was chosen to exclude genes massively expressed as part of 
the germination programme (as observed by Melis et al. [5]) and focus on genes specifically 
expressed in heat treated spores in the phase after germination and before outgrowth. Genes 
were included for further analysis when the following criteria were met: log2 values should 
be higher than 1 or lower than -1, with a false discovery rate (FDR) smaller than 0.05 in at 
least one time point.

To select for candidate genes uniquely expressed in heat damaged spores (and potentially 
involved in heat damage repair) the following three criteria should be met: i. upregulation 
(log2 above 1; FDR < 0.05) at all-time points relative to t10 for heat treated spores, ii. 
downregulation (log2 below -1; FDR < 0.05) at all time points relative to t10 for untreated 
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spores, and iii. confirmation of expression of genes selected after step i and ii, using qPCR 
(see section 2.8).

Special attention was given to dormant spore transcripts, putative DNA damage repair genes, 
and novel genes involved in damage repair. Expression of spore specific mRNAs reported for 
B. cereus [5] was analysed for untreated and heat treated spores, and ratios over germinated 
untreated spores (t10) and heat treated spores (t50) were plotted. Furthermore, genes 
known to be involved in DNA damage repair in B. subtilis were extracted from SubtiWiki 
[26] and supplemented with B. cereus ATCC 14579 genes with predicted roles in DNA repair 
based on their annotation (S2 Table).

Microarray accession number

The data discussed in this publication have been deposited in NCBI’s Gene Expression 
Omnibus [27] and are accessible through GEO Series accession number GSE73043 (http://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE73043).

qPCR

RNA was isolated from untreated (t10, t30) and heat treated (t120) germinating and 
outgrowing spores in BHI as described above. Primers (S3 Table) were designed targeting 
the 21 selected genes that were specifically expressed in outgrowth of heat damaged spores 
and five candidate genes for normalisation (BC0257, BC0544, BC1409, BC4471, and BC4743) 
were selected based on their constant expression levels across the different conditions used 
on the DNA microarrays. Due to the high number of target genes, two mixes (Mix A and Mix 
B) were used for first-strand cDNA synthesis using the SuperScript III reverse transcriptase 
(Invitrogen, United States). Two hundred ng of total RNA, 0.25 μM (final concentration) 
of each gene-specific reverse primer (Mix A 16 genes, Mix B 15 genes) and 0.5 mM (final 
concentration) of dNTP in a total volume of 14.5 μl were incubated for 5 min at 65°C and 
chilled on ice. After addition of 4 μl of First Strand Buffer, 1 μl of DTT (0.1 M) and 1 μl of 
SuperScript reverse transcriptase III (200 units/μl), the reaction was incubated for 1 h at 
55°C and, finally, for 15 min at 70°C. The obtained cDNA was diluted 1:10 before use in real-
time PCR.

qPCR was performed in a total volume of 25 µl using a C1000 Touch Thermal cycler (BioRad, 
CFX 96 Real-Time Systems). A final concentration of 0.2 µM of each primer, 12.5 µl of Power 
SYBR Green (Applied Biosystems, United Kingdom) and 5 µl of diluted cDNA was used as a 
template. The optimal annealing temperature was established at 61°C in a pre-test for primer 
efficiencies. The qPCR program included an initial 10 min polymerase activation step at 95°C 
followed by 40 cycles of denaturation (15 s at 95°C) and annealing/extension (1 min at 61°C). 
For each run the melting curve was checked to assure amplification of the correct target. The 
efficiency of the primer combinations were checked and showed good performance.



Identification of CdnL  | 79

4

For the selection of suitable normalisation genes, two cDNA primer mixes were analysed 
separately. All genes in each mix were considered as potential normalisation genes and 
were evaluated according to the criteria defined by GeNorm [28]. Expression within Mix 
A was normalised with three (V3/4=0.142) highly stable (M<0.5) genes BC0854, BC1409 
and BC4471. Expression within Mix B was normalised with five (V5/6=0.137) stable genes 
BC0257, BC0544, BC3391, BC3991, and BC4471. Normalised values were represented in 
relation to untreated t10 and fold change in expression was plotted. Candidate repair 
genes were selected based on upregulation in heat treated spores and downregulation in 
untreated spores, relative to t10.

Deletion mutant construction

A targeted mutant was constructed for a candidate gene involved in outgrowth of heat 
damaged spores designated ∆cdnL (BC4714), using the temperature-sensitive plasmid 
pMAD [29]. To this end, a chloramphenicol resistance cassette was amplified from plasmid 
pNZ124 using primers CM_fwd and CM_rev (S3 Table), and the resulting fragment was 
digested with restriction enzymes KpnI and XhoI. The 1.3 kb flanking regions of the 
BC4714 gene were amplified using primers BC4714_up_fwd and BC4714_up_rev for 
upstream (fragment A) and, BC4714_down_fwd and BC4714_down_rev for downstream 
flanking regions (fragment B) (S3 Table). The resulting fragments were digested with KpnI 
for fragment A and with XhoI for fragment B. Fragment A, fragment B and the digested 
chloramphenicol resistance cassette were ligated overnight at 16°C using T4 DNA ligase. 
The expected 3.6 kb amplicon encompassing fragment A, B and the cassette was obtained 
by PCR amplification (with primers BC4714_up_fwd and BC4714_down_rev) directly on 
the ligation mixture. The resulting purified PCR product and pMAD plasmid were digested 
with EcoRI and ligated together using T4 DNA ligase. The resulting vector (plasmid 
pBC002), was transferred into competent E. coli TOP10 (Invitrogen) cells and four 
erythromycin and chloramphenicol resistant clones were selected. The presence of the 
correct insert was checked by PCR using primer combinations BC4714_up_fwd/BC4714_
down_rev, CM_rev/BC4714_down_rev and CM_fwd/BC4714_up_fwd. Plasmid pBC002 
was purified using the Maxiprep Kit (Qiagen) and was transferred into electroporated 
(400Ω, 25 μF, 1.2 kV) B. cereus ATCC 14579 cells as described previously [30], followed 
by plating on Luria Bertani (LB) agar with 5 µg/ml chloramphenicol (Cm5) and 3 µg/ml 
erythromycin (Ery3). A single colony harbouring plasmid pBC002 was inoculated in LB 
broth without antibiotics and incubated at 39°C overnight. The culture was diluted 100 
fold in fresh LB medium without antibiotics and propagated for 17 generations at 39°C. 
Appropriate dilutions were plated on LB with Cm5 and incubated overnight at 37°C to 
obtain single colonies. Resulting colonies were replica plated on LB with Cm5 or Ery3 
and incubated at 37°C overnight. Candidates were selected based on chloramphenicol 
resistance and erythromycin sensitivity resulting from desired double cross over events. 
Five candidate colonies displaying the desired Cm-resistant and erythromycin-sensitive 
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phenotype were verified by PCR using primer combinations BC4714_mu_up/Cm_fwd and 
BC4714_mu_down combined with Cm_rev and resulted in expected fragment lengths of 
2.7 and 2.6 kb, respectively. Correct disruption of the gene was further confirmed by DNA 
sequencing.

Phenotype of a cdnL mutant

Spores of the deletion mutant were prepared and heat treated as described in Materials 
and Methods. Additionally, wild type and deletion mutant spores were exposed for 5 min 
to oxidative stress using hydrogen peroxide (5%; Merck) or sodium hypochlorite (0.002% 
active chlorite; Sigma Aldrich). One hundred µl of concentrated disinfectant solution 
was added to 400 µl of spore suspension containing approximately 1.2X108 spores/
ml. After 5 min incubation, 100 µl was transferred to 900 µl of inactivation solution 
containing respectively catalase solution (500 U/ml; Sigma) or sodium thiosulphate (10 
g/L; Merck). This 10 min inactivation step was followed by serial dilution in suspension 
buffer and plating. Survival and degree of damage of heat, hydrogen peroxide and sodium 
hypochlorite treated spores were evaluated as described above. Experiments were 
performed in triplicate at room temperature.

Results and discussion

Impact of heat treatment on germination and outgrowth

The impact of heat treatment on germination and outgrowth of B. cereus ATCC 14579 
spores was assessed using spores in suspension buffer heated for one min at 95°C. This 
heat treatment resulted in 2 log inactivation with a significant fraction (>90%) of damaged 
spores among the survivors (data not shown) which agrees with our previously reported 
data [19]. 

Germination and outgrowth of untreated and heat treated spores was monitored by 
microscopic observation and by the relative change in optical density at 595 nm (OD595) 
that reflects the transition from phase bright to phase dark spores. For the untreated 
spores, a rapid drop in OD595 was observed within 30 min from the addition of BHI (Figure 
4.1A) resulting from the uptake of water and this coincided with the presence of phase 
dark spores observed by microscopy (Figure 4.1B). After the initial rapid drop, indicating 
homogeneous germination (Figure 4.1B), the OD595 increased corresponding with spore 
outgrowth.

Compared to untreated spores, heat treated spores showed a delayed drop in OD595 as 
well as slower decrease in OD595 corresponding to a delayed germination process (Figure 
4.1A). These observations were in line with microscopy observations (Figure 4.1B), and 
were conceivably caused by the presence of a high number of heat inactivated spores 
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that became permeabilised and susceptible to water influx as shown previously [19]. 
The majority of heat treated spores showed a slow peripheral loss of spore brightness, 
eventually reaching phase grey within the time frame of the experiment (Figure 4.1B). 
The number of spores showing this behaviour corresponded to the presence of 2 logs of 
inactivated spores as determined by plate counting. The remaining population completed 
germination and outgrowth though the whole process was delayed, slower and more 
heterogeneous compared to untreated spores (Figure 4.1B). Eventually, rapid exponential 
growth of surviving germinated outgrown spores for both untreated and heat treated 
spores was observed (Figure 4.1A).

A

B

Figure 4.1. Impact of heat treatment on germination and outgrowth of B. cereus ATCC 14579 spores. (A) 
Relative change in OD595 for untreated (circles) and heat treated for 1 min at 95°C (squares) dormant 
spores was monitored in time in BHI broth at 30°C. Closed symbols indicate the sampling points selected 
for transcriptome analysis. The starting OD595 was 0.15-0.2 (B) Microscopy analysis of samples taken before 
initiation of germination (t0) and at indicated time points (10 up to 150 min) thereafter. 

A number of studies have described the effect of heat treatment on germination efficiency 
and/or outgrowth capacity of dormant spores of Bacilli [31-33] and Clostridia [34]. As 
expected, the intensity of the heat treatment has a large effect on the behaviour of treated 
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spores, i.e., milder treatments aiming at spore activation resulted in faster germination 
and outgrowth, while more intense treatments resulted in inactivation and extended 
times to outgrowth of surviving spores suggesting spore damage.

The heat damaged spores conceivably activate repair mechanisms leading to recovery and 
subsequent vegetative growth at growth rates comparable to unstressed populations [34, 
35]. It is generally assumed that damage repair takes place between germination (and 
resumption of metabolic activity) and outgrowth during transition phase (by some authors 
referred to as ripening time) [34, 36]. Recent findings point to synthesis of a subset of 
proteins during early germination [37] but the majority of the proteins were synthesized 
during the transition phase and early outgrowth and therefore we chose to focus on this 
transition stage. An additional argument is that spores with partly degraded and/or 
damaged mRNAs displayed an extended transition phase leading to delayed outgrowth 
[38, 39] which also suggests that repair processes may take place during this stage.

Transcriptome analysis of outgrowth from heat treated spores 

A transcriptome analysis was performed for untreated and heat treated spores aiming at 
identification of genes uniquely expressed during the transition phase and early outgrowth 
in heat treated spores. Because the timeline of spore germination and outgrowth phases 
varied between untreated and heat treated spores, we selected time points for microarray 
sampling based on microscopy and OD595 measurements thereby aiming for conditions 
representing comparable stages in the recovery phase. Based on data presented in Figure 
4.1, untreated spores were sampled at time points 10, 20, 30 and 50 min after addition of 
BHI, and heat treated spores were sampled at time points 50, 90, 120 and 150 min. The 
time point at 10 min after addition of BHI (t10) was selected as a reference point since a 
difference in responses was expected in transition phase and not in the germination phase 
where the majority of the genes are expressed (as observed by Melis et al. [5]). Even with 
these procedures a high number of genes was (temporarily) affected, with at least 1,000 
genes being differently expressed at each time point relative to t10 (data not shown). For 
heat treated spores, this number was twice as high (data not shown); this increase likely 
reflects a delay in the germination and outgrowth process but may also include genes 
specifically expressed to repair damage. Various studies show that spore germination and 
outgrowth are complex and tightly regulated processes [1, 36, 37]. Dormant spores contain 
a limited number of transcripts, typically 46 transcripts are present in the dormant spores 
of B. cereus [5] but upon germination 80% of the genomic content of the dormant spore 
is expressed. Previous studies in B. subtilis [1] and Clostridium difficile [4] presented gene 
expression of germinating spores relative to that of mid exponential cells to identify genes 
specifically expressed in outgrowing spores showing that 27% and 14% of the genes were 
uniquely expressed at one or more points during outgrowth, respectively. A common 
finding among all those approaches is that expression of a large proportion of the genome 
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is initiated during germination and outgrowth, resulting in expression of genes required 
to resume metabolic activity including transcription, translation and metabolic activities 
[1, 4, 5]. 

Spore specific transcripts

Spores contain a relatively small set of transcripts, and for B. cereus [5] and B. subtilis [1], 
46 and 23 transcripts have been identified, respectively. These transcripts, that encode 
hypothetical proteins and some proteins associated with spore coat composition, are 
rapidly broken down upon germination [1, 5] suggesting that this phenomenon can be used 
as a marker for onset of germination. In the current study, 41 of the 46 spore transcripts 
reported previously for B. cereus by van Melis et al. [5] were identified. However, the level 
of spore transcripts generally decreased rapidly upon germination of untreated spores, 
while spore transcripts in the heat treated spores decreased at a slower rate (Figure 4.2) 
being in line with the presumed delayed turnover of the mRNAs in spores arrested in 
germination [5]. Based on these data, the spore transcripts were not selected for further 
study.
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Figure 4.2. Expression profiles (log2 values) of reported spore specific transcripts during germination and 
outgrowth of untreated (white diamonds) and heat treated (black diamonds) B. cereus ATCC 14579 spores. 
Expression ratio’s for untreated spores are relative to untreated germinating control spores at t10, and for heat 
treated spores relative to heat treated germinating spores at t50.
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Expression analysis of putative DNA damage repair genes 

Transcriptomes of untreated and heat treated spores were analysed for expression of 
known DNA repair genes reported in the literature for B. subtilis and/or present in B. 
cereus (S2 Table) [1, 9, 40]. During the sporulation process, spores may be equipped with 
DNA repair enzymes that allow for fast repair upon germination [8]. In addition, genes 
encoding DNA repair enzymes may be activated during germination and outgrowth of 
heat damaged spores.

During germination and outgrowth of untreated and heat treated spores, 49 putative 
DNA repair genes were differently expressed at least at one time point including 33 
genes that also showed expression during outgrowth of untreated spores. Previous 
studies in B. subtilis showed significant number of these genes to be differently expressed 
during spore germination and outgrowth including addAB, urvA, mutS, nth and nfo [1]. 
Notably, both untreated and heat treated B. cereus ATCC 14579 spores display a similar 
expression pattern for the DNA repair genes during germination and outgrowth albeit 
that the response was delayed in the latter case. A recent study in B. subtilis shows that 
DNA repair and outgrowth processes may be aligned to each other mediated by a specific 
DNA integrity scanning protein (DisA), that was found to delay spore outgrowth until 
oxidative DNA damage is repaired [7]. Both untreated and heat damaged B. cereus spores 
expressed disA during germination (data not shown). Since expression patterns of DNA 
repair genes did not meet the criteria set in the current study they were not selected for 
further analysis. Nevertheless, lack of differential expression of known DNA repair genes 
in outgrowing heat treated spores is in line with previously reported data [10, 41-43] 
suggesting that wet heat treatment leads mainly to protein damage, in contrast to dry 
heat treatment that causes DNA damage. However, the exact effect of protein damage and 
repair processes involved remain to be elucidated.

Novel genes involved in spore damage repair

Transcriptome data were screened for genes specifically upregulated in heat treated 
spores following the criteria defined in the Materials and Methods section. Expression of 
21 genes that met the initial criteria was verified by qPCR using independently prepared 
spore batches (S3 Figure) to confirm genes specifically expressed in heat treated spores. 
Using this criterion, 8 genes were selected that displayed the desired expression profile, 
i.e., gene expressed in heat treated spores while downregulated in untreated spores (see 
Table 4.1). 

The putative functions of candidate genes include transcriptional regulator (4 genes), 
membrane protein (2 genes), lyase and a hypothetical protein (Table 4.1). Interestingly, 
only three genes have an orthologue in B. subtilis 168 including hypothetical protein 
BC3921 with an N-acyltransferase motif such as in ylbP (BSU15100) and an ArsR family 
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transcriptional regulator (BC4834) orthologous to SdpR, a transcriptional repressor of 
the sdpR-sdpI operon (BSU33790). The SdpR autorepressor belongs to the ArsR/SmtB 
family of repressors, whose prototypical member, ArsR, inhibits the transcription of genes 
involved in resistance to arsenate [44]. Finally, a CarD_CdnL_TRCF family transcriptional 
regulator (BC4714), with unknown function in B. cereus was identified. An orthologue is 
present in the B. subtilis genome, i.e., YdeB (BSU05130), but its role is also unknown. This 
candidate gene, further referred to as cdnL (BC4714), was also upregulated in vegetative 
cells of B. cereus in response to different stresses including cold shock, salt, acid and 
disinfectants [45]. Therefore, cdnL (BC4714) was selected to validate its potential role in 
spore damage repair. The ∆cdnL (BC4714) deletion mutant was constructed and spores 
were prepared. Wild type and cdnL (BC4714) mutant strain spores were heat treated for 
one min at 95°C resulting in a 2 log inactivation and more than 90% of damaged spores 
among the surviving fraction for both wild type and ∆cdnL (BC4714) spores (Table 4.2). 
The heat resistance of ∆cdnL (BC4714) spores, and the kinetics of spore recovery (S4 
Table) were comparable to that of wild type spores. However, plate counting with and 
without salt supplementation showed significant differences in the fraction of mildly and 
severely damaged spores, with wild type spores and ∆cdnL (BC4714) spores showing 
approximately 45% and 74% of severely damaged spores, respectively. The increased 
fraction of severely damaged spores in the mutant point to a role for cdnL (BC4714) in 
recovery of heat damaged B. cereus ATCC 14579 spores. Deletion of cdnL (BC4714) did not 
result in increased salt sensitivity of untreated spores (S4 Table), and nor was the growth 
rate of vegetative cells affected in the presence of salt (data not shown) confirming the 
role of cdnL (BC4714) in recovery of heat damaged B. cereus ATCC 14579 spores.

Table 4.1. Array expression ratios (log2 values) of candidate genes displaying specific upregulation during 
germination and outgrowth of heat treated B. cereus ATCC 14579 spores and verified by qPCR. False Discovery 
Rates below 0.05 are indicated in bold.

Gene Function

Log2 values over T10 untreated

Untreated Heat treated

T20 T30 T50 T50 T90 T120 T150

BC1312 3-hydroxybutyryl-CoA dehydratase -1.39 -1.34 -1.29 3.49 3.73 3.49 2.93

BC3437 cytoplasmic protein -1.18 -1.34 -1.97 3.91 4.65 4.36 3.63

BC3438 PadR family transcriptional regulator -1.09 -1.25 -1.97 4.33 4.96 4.61 3.72

BC3921 hypothetical protein -2.31 -3.23 -3.86 1.39 1.79 1.64 1.07

BC4714 CarD_CdnL_TRCF family transcriptional regulator -1.35 -1.66 -2.59 2.60 3.20 2.76 1.91

BC4834 ArsR family transcriptional regulator -1.09 -1.29 -1.35 2.25 2.51 1.97 1.12

BC5038 MarR family transcriptional regulator -1.82 -2.21 -2.74 1.50 2.08 1.68 1.06

BC5242 membrane protein with C2C2 zinc finger -1.09 -1.01 -1.28 1.73 1.34 1.04 1.20
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It is possible that the cdnL gene (BC4714) is induced in response to heat damaged 
proteins however in vegetative B. cereus cells, cdnL (BC4714) is induced upon exposure 
to salt and cold stress, and to a lesser extent to acid and oxidative stress, but not in 
response to heat [45]. The precise function of cdnL (BC4714) in those conditions remains 
to be elucidated. Heat treatment was shown previously to cause secondary oxidative 
stress in B. cereus vegetative cells [46]. To elaborate on the role of cdnL (BC4714) in the 
recovery from stresses other than heat, spores were exposed to an oxidative treatment 
with hydrogen peroxide (HP) and a combination of oxidative and chloraminating action 
of sodium hypochlorite (SH). In both cases, deletion of cdnL (BC4714) did not result in 
increased inactivation or altered degrees of spore damage (Table 4.2). This suggests that 
cdnL (BC4714) plays a specific role in repair of heat-induced B. cereus spore damage. It 
cannot be excluded that cdnL-deficient spores lack one or more specific proteins that 
makes them more susceptible to heat damage, however, high upregulation of the cdnL 
gene in heat treated spores supports our finding that its activity is also required during 
spore outgrowth. 

Table 4.2. Surviving and mildly and severely heat damaged spore fractions in B. cereus ATCC 14579 and 
its mutant derivative strain ∆cdnL (BC4714) upon exposure to wet heat, hydrogen peroxide and sodium 
hypochlorite treatments. Averages of three independent experiments are represented.

      Damage in surviving fraction

  Survival Total damage
Mildly 

damaged spores
Severely 

damaged spores

Treatment Strain % SD % SD % SD % SD 

95°C
WT 8 1 91 2 46 1 45 2

∆cdnL (BC4714) 5 0 99 2 25 9 74 9

Hydrogen peroxide
WT 9 2 99 0 17 2 82 3

∆cdnL (BC4714) 7 3 99 1 16 11 83 11

Sodium hypochlorite
WT 7 1 98 0 25 6 74 7

∆cdnL (BC4714) 11 4 99 0 23 6 76 7

CdnL (BC4714) belongs to CarD_CdnL_TRCF family of bacterial RNA polymerase-binding 
proteins. A family archetype, CarD, is associated with carotenogenesis and fruiting body 
formation in Myxococcus xanthus, and is one of two prokaryotic examples of high-mobility 
group A (HMGA) proteins [47-49]. The C-terminus of CarD contains a HMGA domain 
responsible for DNA binding and the N-terminus contains a transcription repair coupling 
factor (TRCF) domain that shares a binding site with the RNAP β subunit [50]. A more 
common member of the bacterial CarD family is represented by the CarD N-terminal like 
protein (CdnL) that lacks a DNA-binding domain and is also present in M. xanthus and 
Mycobacterium tuberculosis where it has an important role in stress resistance [49]. In 
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particular, the M. tuberculosis cdnL gene shows high up-regulation after DNA damaging 
and starvation treatments, indicating its possible link with damage repair [47, 48, 51, 
52]. In B. cereus strain ATCC 14579, two paralogs of the cdnL gene (BC3648 and BC4714) 
are present, but both genes share limited similarity. Given differences in regulatory 
processes between B. cereus and B. subtilis [25, 45] it is not surprising that YdeB, a B. 
subtilis orthologue of CdnL (BC3648 and BC4714) also shows limited similarity and is 
believed not be functionally equivalent. Future studies in B. cereus will assess the role 
of the other selected genes in spore damage repair including single and double mutant 
analysis of the BC3648 (paralogue) and BC4714 genes.

The high number of protection systems and spore structures involved in spore resistance 
stresses the importance of damage prevention for spore survival. Despite these defence 
systems, the occurrence of spore damage cannot be prevented and a repertoire of repair 
mechanisms is required, including genes involved in DNA repair [1, 9, 40]. The common 
consensus is that damage repair take place during transition phase between germination 
and outgrowth, however, the processes involved are still largely unknown. The existence 
of multiple systems acting in parallel is conceivable as we identified here 8 candidate 
genes with four of these having a possible regulatory role. The relatively mild effect of 
cdnL deletion could be explained by the presence of additional regulators and systems 
involved in repair.

In conclusion, using transcriptome analysis 8 candidate genes with putative roles in the 
outgrowth from heat damaged B. cereus spores were identified. Comparative analysis of 
the wild type and a cdnL (BC4714) mutant shows that this gene is contributing to heat-
induced spore damage repair whereas wild type and mutant spores displayed similar 
sensitivity to damage caused by oxidative agents indicating that we identified a novel 
player in heat-induced B. cereus spore damage repair. This work provided a new strategy 
to study and identify putative cellular parameters involved in spore damage repair, 
applicable not only for heat-induced damage but also for other food relevant conditions. 
Insights obtained may contribute to development of more efficient strategies to control 
outgrowth of damaged spores.

Supporting Information

Supplementary Tables S1 – S4 and Figures S1 – S3 can be found in the online version of 
the article.
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Abstract

The ability of spores to recover and grow out after food processing is affected by cellular 
factors and by the outgrowth conditions. In the current communication we studied the 
recovery and outgrowth of individually sorted spores in BHI and rice broth media and on 
agar plates using flow cytometry (FCM). We show that recovery of wet heat treated Bacillus 
cereus ATCC 14579 spores is affected by matrix composition with highest recovery in BHI 
broth or on rice agar plates, compared to BHI agar plates and rice broth. Data show that 
not only media composition but also its liquid or solid state affect the recovery of heat 
treated spores. To determine the impact of factors with putative roles in recovery of heat 
treated spores, specific genes previously shown to be highly expressed in outgrowing 
heat treated spores were selected for mutant construction. Spores of nine B. cereus ATCC 
14579 deletion mutants were obtained and their recovery from wet heat treatment was 
evaluated using BHI and rice broth and agar plates. Deletion mutant spores showed 
different capacity to recover from heat treatment compared to wild type with the most 
pronounced effect for a mutant lacking BC5242, a gene encoding a membrane protein 
with C2C2 zinc finger which resulted in over 95% reduction in recovery compared to the 
wild type in BHI broth. Notably, similar relative performance of wild type and mutants 
was observed using the other recovery conditions. We obtained insights on the impact 
of matrix composition and state on recovery of individually sorted heat treated spores 
and identified cellular factors with putative roles in this process. These results may 
provide leads for future developments in design of more efficient combined preservation 
treatments. 
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Introduction

An increased demand for food with improved freshness, sensorial and nutritional values 
has directed food processing towards the use of milder heat treatments that require 
secondary mild preservation hurdles to assure stability and safety of the products [1]. 
As a result, these products are challenged by resistant microbial spores, that survive 
heat and other preservation hurdles used in food processing [2-4]. Reduction of the heat 
treatment intensity may lead to subpopulations of spores that are sublethally damaged 
rather than inactivated resulting in increased heterogeneity in the population [5, 6]. 
Damaged spores retain the capacity to germinate, repair, and eventually grow out leading 
to spoilage and safety issues [6-9]. Heterogeneity in spore populations can originate from 
differences in sensitivity of individual spores to inactivating treatments [10] and/or from 
differences in repair capacity of individual damaged spores. In addition, the presence 
of superdormant spores may further increase heterogeneity [11], and this conceivably 
results in less accurate prediction of spore outgrowth behavior. 

Wet heat treatment is a common practice in food processing intended to reduce the 
microbial load of food products. Thermal pasteurization processes aim for inactivation 
of vegetative cells but are insufficient to kill spores. Sterilization processes aim for spore 
inactivation but may result in spore damage when target process conditions are not 
reached or when products contain highly heat resistant spores. The exact mechanism 
of wet heat killing of the spores and concomitant wet heat damage are not yet fully 
understood. Wet heat resistance of spores, mainly investigated in Bacillus subtilis, is 
determined by a number of factors including the spore structural components (small 
acid-soluble proteins (SASP), dipicolinic acid (DPA), metal ions, low core water content) 
but also the sporulation conditions (temperature, liquid or solid state of medium) 
affect its resistance [12-14]. Wet heat treatment is thought to kill spores by damaging 
one or more key spore proteins, however the identity of those proteins remains to be 
determined [12]. Analysis of single wet heat treated spores of Clostridium botulinum [10] 
and Bacillus species [15] revealed a delayed initiation of germination and/or reduced 
rate of germination, but also the subsequent outgrowth was delayed indicating not 
only damage to the germination system but also to other spore components affecting 
outgrowth. The time required for germination and outgrowth of spores was shown to 
correlate with the wet heat treatment intensity [16]. Heterogeneity in germination and 
outgrowth of surviving C. botulinum and B. cereus spore populations is more pronounced 
in the presence of a secondary mild stress factor such as low pH without and with sorbic 
acid, and increasing levels of salt [6, 10, 17] or the natural components of food media 
[6]. In general, damaged spores were shown to be more sensitive to secondary stresses 
including sodium chloride, pH, sorbic acid compared to undamaged spores [5, 6, 8, 17-
21]. Some studies suggest a pre-plating recovery step in optimal (perhaps strain and 
treatment specific) conditions to allow recovery of injured cells [22] or spores [23]. For 
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example, a 7 h incubation step of heat treated Clostridium difficile spores in BHI broth 
prior to plating resulted in increased recovery of ethanol resistant fraction (dormant 
spores) on blood agar [23].

In this study we focus on B. cereus, a spore former of concern in processed foods. Its 
spores are widely present in the environment and are common contaminants in the food 
chain. B. cereus has been associated with food spoilage [24] and food-borne disease [25]. 
The vegetative cells of B. cereus can cause disease either by secretion of enterotoxins in 
the small intestine, causing the diarrheic syndrome or by the production of a heat-stable 
toxin (cereulide) in food before ingestion resulting in an emetic syndrome. B. cereus 
associated diseases are usually mild and self-limiting but in rare instances they can lead 
to fatal outcomes [25-29]. 

Using a transcriptome approach, we previously identified 21 genes putatively involved 
in heat damage repair in B. cereus. For one of these candidate genes, cdnL (now referred 
as cdnL1), a role in spore damage repair was further confirmed using a targeted deletion 
mutant [21]. Here we report on behavior of eight newly and one previously [21] 
constructed mutant to assess respective putative roles in recovery efficiency of heat 
treated B. cereus spores.

To this end, B. cereus ATCC 14579 wild type and its mutant derivative spores were 
exposed to a wet heat treatment resulting in over 95% of damaged spores in the surviving 
fractions. The recovery and outgrowth of spores was followed using flow cytometry 
(FCM) in combination with single spore sorting and a Most Probable Number (MPN) 
approach. To quantify the effect of matrix conditions on recovery capacity of wild type 
and mutant spores BHI and rice media, both in solid and liquid form were included. This 
approach allows for identification of candidate genes that may contribute to recovery 
capacity of heat treated B. cereus spores.

Materials and methods

Strains and sporulation conditions

B. cereus ATCC 14579 obtained from the American Type Culture Collection (ATCC), and 
its mutant derivatives used in this study (Table 5.1) were cultured in Bacto Brain Hart 
Infusion broth (BHI, Beckton Dickinson) at 30°C with aeration at 200 rpm. A nutrient-
rich, chemically defined sporulation medium (MSM medium) described previously [30] 
was used to obtain spores. Sporulation and spore handling were performed as described 
previously [6], briefly one ml of an overnight-grown pre-culture was used to inoculate 
100 ml of MSM media in 500 ml flasks and incubated at 30°C with aeration at 200 rpm. 
Sporulation was monitored by phase contrast microscopy until over 99% of the spores 
were released from the mother cell (typically after 2-3 days). Released spores were 



Recovery of heat treated B. cereus spores  | 95

5

harvested by centrifugation at 5,000 rpm at 4°C (5804R, Eppendorf, Germany) for 15 min 
and washed with chilled phosphate buffer (100 mM, pH 7.4) containing 0.1% Tween80 to 
prevent spore clumping. Spores were washed twice a day for 2 weeks with a phosphate 
buffer that was gradually decreased in Tween80 concentration until a final concentration 
of 0.01% (further referred as suspension buffer). Spores free of vegetative cells, debris 
and mother cells residues were stored at 4°C and used within six months. A single spore 
crop per strain was used for all the experiments.

Table 5.1. Overview of B. cereus ATCC 14579 deletion mutants used in this study.

Strain/Genotype Sorting Function Reference

B. cereus ATCC 14579 (wild type) +

∆BC0460 + Hypothetical protein this study

∆BC0690 + PbsX family transcriptional regulator this study

∆BC0852 + Quaternary ammonium compound-resistance 
protein/SugE

this study

∆BC0853 + Quaternary ammonium compound-resistance 
protein/SugE

this study

∆BC1312 -a 3-hydroxybutyryl-CoA dehydratase this study

∆BC1314 + PhaQ/PadR family transcriptional regulator this study

∆BC3437 -b Cytoplasmic protein this study

∆BC3921 -b Hypothetical protein this study

∆BC4834 -a ArsR family transcriptional regulator this study

∆BC5242 + Membrane protein with C2C2 zinc finger this study

∆cdnL1 (BC4714), Cmr + CarD_CdnL_TRCF family transcriptional regulator [21]

∆cdnL2 (BC3648) + CarD_CdnL_TRCF family transcriptional regulator this study

∆cdnL1 (BC4714), ∆cdnL2 (BC3648), Cmr + this study
a no sporulation, b poor spore quality, Cmr chloramphenicol resistance

Construction of deletion mutants

Deletion mutants (Table 5.1) were constructed using the temperature-sensitive suicide 
plasmid pAUL-A [31]. Flanking regions of the individual genes were amplified using KAPA 
HiFi Hotstart ReadyMix (KAPA Biosystems, USA) and the primers UP_enzyme_F/UP_NotI_R 
and DOWN_NotI_F/DOWN_enzyme_R (Table S1) for upstream and downstream flanking 
regions, respectively. The resulting fragments were fused in frame via a NotI digestion 
site introduced with the indicated primers. The resulting plasmid was transferred via 
electroporation (400 Ω, 25 μF, 1.2 kV, 0.2 cm Gene Pulser Cuvette: BIORAD) in B. cereus 
ATCC 14579 cells, and plated on BHI agar at 30°C with 10 µg/ml erythromycin (E10) to 
select for the desired transformants. Two erythromycin resistant colonies were selected 
and grown overnight in BHI at 30°C in the presence of E10. The resulting culture was 
diluted (1:200) in fresh LB with E10 and grown overnight at 42°C to select for plasmid 
integration. Selected strains resulting from a single cross-over integration event were 



96  |  Chapter 5 Recovery of heat treated B. cereus spores  | 97

5

grown overnight in BHI at 30°C to induce double crossover events and subsequently 
plated and grown at 30°C. Resulting colonies were replica plated on BHI with and 
without E10 and incubated at 37°C. Colonies sensitive to E10 were selected. PCR 
analyses (using primers UPFlank_F, DOWNFlank_R, checkINTERNAL_R, check_F, and 
check_R) (Table S1) and DNA sequencing of erythromycin sensitive colonies confirmed 
the correct internal in-frame deletion of the gene and lack of other mutations in the 
targeted region. 

A double deletion mutant (∆cdnL1/∆cdnL2) was obtained as described above with the 
exception that the cdnL2 knock out plasmid was transformed into a B. cereus ∆cdnL1 
(BC4714) mutant strain constructed previously [21] and 5 µg/ml chloramphenicol was 
included as selective pressure preventing excision of the chloramphenicol resistance 
cassette that disrupted the cdnL1. 

Heat treatment

One hundred µl of spore suspension containing approximately 108 spores/ml in 
suspension buffer was transferred, in duplicate, to thin-walled PCR tubes (VWR, The 
Netherlands). The PCR tubes were kept for 1 min at 4°C followed by a step at 95°C for 
45 s and finally cooled for 1 min at 4°C in a thermal cycler (Veriti, Applied Biosystems). 
The duplicates were pooled and 100 µl of this pooled fraction was used as sample 
for spore sorting experiments. The same pooled fraction was diluted decimally in 
suspension buffer and 50 µl samples were used for spore enumeration on BHI plates 
(in duplicate) and incubated at 30˚C up to 3 days with daily enumeration of resulting 
colonies. For each strain, from the same spore preparation, at least four independent 
heating experiments were performed. 

Quantification of spore damage

To evaluate the degree of spore damage, the method previously reported by Warda 
et al. [21] was used. Briefly, 50 µl of decimally diluted heat treated samples were 
enumerated in duplicate on BHI plates and BHI plates supplemented with 1.5% and 
5.5% salt following incubation at 30˚C. To evaluate possible delay in colony formation, 
colonies were counted after 1, 2 and 7 days (further extension did not affect colony 
counts). Obtained colony forming units (CFUs) were used to calculate the total damage 
and fractions of mildly and severely damaged spores as described previously [21] 
according to the following formulas:
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Flow cytometry and cell/spore sorting

Flow cytometry was performed with a FACSAriaIII cell sorter (BD Biosciences) using 
a fiber launched solid state air-cooled laser operating at 488 nm. Only forward scatter 
(FSC) and side scatter (SSC) functionality was used. The machine was calibrated using 
standard Cytometer Setup & Tracking beads and Accudrop beads (BD Biosciences). All 
parameters were measured using logarithmic amplification. During the procedures a 85 
micron nozzle (drop driving frequency was ~45 kHz/s) was used with flow rate one and 
during sorting a maximum event rate of 2,000 events/s was used. Cells and spores were 
discriminated from electronic noise using both SSC and FSC. Sorting criteria and gating 
strategy were based on FSC and SSC populations (data collection equals 50,000 events) 
excluding remaining doublets. In order to achieve high purity and recovery, the “Single 
Cell” precision mode (Purity mask 32 and Phase mask 16) was used for sorting. Cells or 
spores were sorted on solid and in liquid media.

Cell sorting

Five µl of an overnight grown culture was diluted in 3 ml of HEPES buffer and loaded into 
the flow cytometer. Individual vegetative cells of B. cereus ATCC 14579 and the mutant 
derivatives were spotted in duplicate on a single BHI and rice agar plate (according to the 
scheme in Figure S1C) and incubated at 30°C up to 3 days to confirm that growth was not 
affected in the deletion mutants.

Spore sorting

One hundred µl of unheated or heat treated spore suspension (containing non-damaged, 
damaged and dead spores) was diluted in 1.5 ml of HEPES buffer (pH 7.4) in 5 ml 
polystyrene falcon tube (BD, USA) and loaded into the flow cytometer. For heat treated 
spores, a series of one, 10 and 100 individual spores were sorted either into wells of 
384-well plates (Greiner Bio-One, USA) containing 50 µl of BHI or rice broth or on one 
of the 52 available locations on standard BHI or rice agar plates. The resulting growth 
data representing three consecutive decimal dilutions were used as input for the MPN 
quantification method [32, 33]. For heat treated spores, for each sorting series of one, 
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10 or 100 spores approximately 754 replicates were performed for liquid media and at 
least 520 replicates for solid media (Table S2). A single replicate is defined as one well or 
location on agar plate to which either one, 10 or 100 spores were sorted. For untreated 
spores, only single spores were spotted on 188 and 104 locations (Table S2) for liquid 
or solid media, respectively. The resulting plates were incubated at 30°C up to 3 days 
with daily visual scoring for growth, i.e. colony formation on solid media or appearance 
of turbidity for liquid media. Wells that were positive for turbidity ranged from OD600 0.2 
to 0.3 for rice media (OD600 of fresh media 0.16), and in case of BHI values from OD600 0.2 
to 0.8 (OD600 of fresh media 0.1). The MPN values and their upper and lower limits were 
calculated using MPN Calculator (http://www.i2workout.com/mcuriale/mpn/).

Model food media used in this study

A rice based medium was prepared according to the method reported previously [6] 
by boiling ready-to-cook pouches filled with 125 g rice produced by the manufacturer 
(Lassie B.V, The Netherlands) in demineralized water (5:32 w/v) for 45 min. The rice 
bags were removed and the remaining liquid was allowed to cool down. The method 
was modified by addition of a centrifugation step [(AVANTI J-25, Beckman Coulter, USA) 
for 5 min at 16,000 rpm at 22°C] and filtering of the resulting supernatant (Filter paper, 
Whatman, England) to remove the big particles and improve the clarity of the solution. 
Finally, the suspension was pooled and autoclaved. Sterile rice broth was stored in the 
dark until use. For preparation of rice agar plates, 1.5% (w/v) Bacteriological Agar was 
added prior to a second autoclaving step. The final pH of rice broth was 6.7, while the pH 
of rice agar plates was 7.

Results

Impact of matrix on the growth of B. cereus spores

The impact of the liquid and solid media composition on the growth of B. cereus spores 
was evaluated using flow cytometry (FCM) in combination with single spore sorting. The 
single untreated B. cereus spores were sorted into four different media namely BHI broth, 
rice broth, BHI agar plates and rice agar plates. Besides BHI, a rice media was selected 
as this food matrix was shown previously to support growth from B. cereus spores on 
agar plates [6] and on Anopore strips [6] that resemble growth in broth [34]. All four 
media allowed outgrowth of 94 up to 99% of the sorted spores within three days (Figure 
5.1, Table S2). In rice broth, growth was delayed compared to BHI broth, which was not 
observed for the corresponding agar media (Figure 5.1). In general, smaller colonies were 
formed on rice agar plates compared to BHI agar plates for both outgrowing untreated 
spores (data not shown) and vegetative cells (Figure S1). However, after 3 days, the 
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percentage of outgrowing spores on rice agar plates reached 99.1% while on BHI agar 
plates 94.4% was reached (Figure 5.1).

Impact of matrix on the recovery of heat treated B. cereus spores

To allow for high throughput heat treatment of spores, spores were treated in thin-wall 
tubes in a PCR machine. Using this approach, a 45 s holding time at 95°C resulted in 
approximately 2 log inactivation and 99% of damaged spores in the surviving population 
of wild type spores (Figure S2). This number is  comparable to previous results (91 
to above 95%) obtained with capillary tubes in an oil bath [6, 21]. In the surviving 
population, 13% of spores were mildly damaged, whereas 86% were severely damaged. 
In previous findings, these numbers were 46% and 45%, for mildly and severely damaged 
spores, respectively [21]. We previously showed that a cdnL1 mutant was affected in the 
ratio between mildly and severely damaged spores [21]. However, the slightly different 
heating conditions in the high throughput method resulted in a higher fraction of severely 
damaged spores in the wild type spores. Using shorter holding times, an increased survival 
was obtained but again a relatively high percentage of severely damaged spores was 
observed (data not shown), therefore further experiments were performed using a holding 
time of 45 s. 
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Figure 5.1. Percentage of growth from single untreated spores (plain bars) and percentage of growth from 
heat treated for 45 s at 95°C spores (pattern bars) of B. cereus ATCC 14579 after one (white), two (grey) and 
three (black) days of incubation in liquid (BHI and rice broth) and on solid (BHI and rice agar plates) media. 
Values indicated for untreated spores were calculated based on 188 individual spores for recovery in liquid 
media and 104 individual spores for recovery in solid media. Values for heat treated spores were calculated 
based on at least 750 wells for each of one, 10 and 100 spores in liquid media and at least 520 locations for 
each of one, 10 and 100 spores on solid media using the MPN based approach. Error bars for heat treated 
spores represent the lower and upper limits of the MPN values expressed in percentage.
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To evaluate recovery of sorted heat treated spores in a high throughput format, a combination 
of single spore sorting with MPN method was applied. Sorting of spores in series of one, 10 
and 100 of heat treated spores at individual locations (well or spot) increased the resolution 
of the measurements allowing to observe significant differences within expected 2 log 
inactivation range. Interestingly, for the heat treated spores a comparable recovery in BHI 
broth and on rice agar plates was observed while rice broth and BHI agar plate supported 
recovery of approximately 50% of the surviving spores compared to BHI broth (Figure 5.2). 
This indicated that not only the composition of the media but also its liquid or solid state 
has an effect on the recovery of the spores.
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Figure 5.2. Recovery of heat treated B. cereus ATCC 14579 spores in BHI broth (black), rice broth (light grey), 
BHI agar plates (dark grey), and rice agar plates (white) after three days of incubation. Values represent the 
percentage recovery relative to BHI broth (100% corresponds to 6.4% survival of wild type). Error bars 
represent the lower and upper limits of the MPN values expressed in percentage relative to BHI broth.

Role of spore damage repair associated genes in recovery of heat treated B. 
cereus spores

Previously, genes expressed during germination and outgrowth of heat treated B. cereus 
spores were studied in a transcriptome study resulting in a set of 21 genes that were 
highly expressed in heat treated spores relative to the reference time point at 10 min 
but either temporally or not expressed in untreated spores. Further evaluation with 
qPCR [21] to confirm the microarray data resulted in selection of 13 target genes that 
were downregulated in untreated spores and/or upregulated in heat treated spores with 
expression ratio below minus two or above two. This selection included the eight genes 
previously shown to be specifically upregulated during germination and outgrowth of heat 
damaged B. cereus spores, namely BC1312, BC3437, BC3438, BC3921, cdnL1 (BC4714), 
BC4834, BC5038, and BC5242 [21]. A mutant strain in one of those candidate genes (cdnL1 
(BC4714)), a putative transcriptional regulator, was slightly but significantly affected in 
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repair and outgrowth of heat treated B. cereus spores [21]. A paralogue of cdnL1, cdnL2 
(BC3648) is encoded on the B. cereus ATCC 14579 genome and it was hypothesized that 
its gene product masked effects on spore damage recovery in the cdnL1 deletion mutant. 
Therefore, a cdnL2 (BC3648) mutant and a combined cdnL1/cdnL2 mutant were included 
in the present study.

Attempts to construct mutants in BC3438 and BC5038 were unsuccessful. Of the 13 
successfully constructed mutants (Table 5.1), four displayed various sporulation defects, 
mutants either did not sporulate (∆BC4834), displayed an incomplete sporulation process 
(∆BC1312) or the resulting spores were not fully released form the mother cell (∆BC3437 
and ∆BC3921). Therefore, these mutants were excluded from further analysis.

Spores of B. cereus ATCC 14579 and its mutant derivatives, were exposed to wet heat 
treatment for 45 s at 95°C. The reduction in survival of deletion mutants ranged from one 
up to two log with over 95% of surviving spores being damaged. The fractions of mildly and 
severely damaged spores were comparable to the wild type (Figure S2). The high fraction 
of damaged spores allows for the assessment of the roles of candidate genes in recovery of 
heat treated B. cereus in different outgrowth conditions i.e. liquid and solid forms of rice 
and BHI media.

One, 10 and 100 of heat treated spores were sorted either in individual wells of a 384 
well plate or onto agar plates resulting in four recovery conditions, namely BHI broth, rice 
broth, BHI agar plates or rice agar plates. Deletion mutants ∆BC5242 and ∆BC0853 were 
highly affected reaching only 3.6% and 9.4% recovery in BHI broth compared to that of 
wild type spores, respectively (Figure 5.3A). Deletion of ∆BC5242 and ∆BC0853 led to the 
highest reduction in recovery for all tested media (Figure 5.3) suggesting that effects of 
these genes on recovery and possibly damage repair were media independent. In contrast, 
deletion of BC0690 resulted in higher recovery compared to the wild type in both BHI broth 
(50% increase) and on BHI agar plates (150% increase) (Figure 5.3AC). Deletion of cdnL1 
(BC4714) resulted in a recovery in BHI broth comparable to that of the wild type, albeit that 
time to growth was delayed in BHI broth and to a lesser extent on BHI agar plates (Figure 
S3, data not shown). Deletion of cdnL2 (BC3648) resulted in a slight reduction in recovery 
compared to wild type in BHI broth, while recovery of the cdnL1/cdnL2 double mutant 
(∆BC4714/∆BC3648) was reduced by approximately 50% in all tested media compared to 
wild type (Figure 5.3C). BC0852 and BC0460 mutants displayed a comparable reduction in 
recovery as the cdnL1/cdnL2 double mutant. Finally, the recovery of ∆BC1314 depended on 
the recovery media, in rice broth the recovery was comparable to wild type (Figure 5.3B), 
while in BHI broth deletion led to over 50% reduction in recovery compared to wild type.  
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Recovery of heat treated spores of all but two (∆BC0460 and ∆BC0690) deletion mutants 
was higher on rice agar plates, compared to BHI broth (Figure S4). The recovery of 
those mutant spores improved also in rice broth and on BHI agar plates when compared 
to relative recovery of the wild type. This suggests that conditions supporting slower 
growth favor recovery of spores possibly by providing additional time for damage repair.

Discussion

The capacity of spores to repair damage and grow out is not only affected by the processing 
conditions, but also by spore history and recovery conditions. Although, several studies 
report on impact of food components on spore survival and cell growth [35-37], mainly 
plate counting methods that do not allow for analysis of individual spores have been 
applied. Moreover, the standard plate counting methods are generally not sensitive 
enough to show changes within the 10-fold range. In practice, product spoilage may 
result from a single surviving spore and knowledge on behaviour of individual spores can 
assist in risk evaluation. Here we applied a flow cytometry supported single spore sorting 
approach in combination with MPN methodology, allowing for evaluation of behaviour of 
individually sorted spores with high resolution for both untreated as well as heat treated 
spores. 

The 45 s heat treatment at 95°C of B. cereus wild type and mutant spores resulted in 
approximately 2 log inactivation, and above 95% damaged spores in the surviving 
population, which is comparable to previously reported survival and total damage at this 
temperature [6, 21]. Limited information is available on the effect of the recovery media 
on outgrowth of single damaged spores. In the present study, we focused on the effect of 
media composition, either liquid or solid state, on the combined process of germination, 
outgrowth and vegetative growth of individually sorted untreated and heat treated B. 
cereus ATCC 14579 wild type and mutant spores. Firstly, we showed for wild type spores 
that rice broth was least supporting the growth and recovery of heat treated spores while 
rice agar plates provided comparable recovery as BHI broth, indicating that not only 
the composition but also the liquid or solid state of media effects the recovery of heat 
treated spores. Both heat treated and untreated B. cereus spores showed similar recovery 
when plated on BHI and rice agar plates [6]. However, the formation of microcolonies 
from individual spores on Anopore (a porous membrane allowing nutrient transfer that 
provides surface for spore/cell growth) conditions, which is more close to conditions 
in a broth [34] were found different for BHI and rice [6]. More specifically, rice media 
increased heterogeneity and delayed outgrowth of untreated spores compared to BHI, 
and also a heat treatment had a limited additional effect on the behavior of surviving 
spores [6]. Now we show that outgrowth from untreated single spores was slower in rice 
based media compared to BHI, but final counts for untreated single sorted spores on rice 
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plates were 99.1% while on BHI plates 94.4%. In line with our previous observations, 
the time required for colony formation from untreated B. cereus spores on rice media 
was extended compared to BHI, indicating that rice media may contain additional 
factors delaying germination and/or outgrowth or contain suboptimal concentrations of 
required components [6].

Comparative analysis of wild type and selected mutants lacking genes with putative roles 
in damage repair, showed different capacity to recover from heat stress compared to 
wild type. The most pronounced effect was observed for a deletion mutant, lacking a 
membrane protein with C2C2 zinc finger (BC5242). This mutation resulted in reduction 
in recovery down to 3.6% of the wild type recovery in BHI broth. The function of BC5242 
is unknown, but orthologues of its gene product can be found in many B. cereus group 
strains though not in B. subtilis 168. In eukaryotes, zinc finger containing proteins function 
in gene transcription, translation, mRNA trafficking, cytoskeleton organization, epithelial 
development, cell adhesion, protein folding, chromatin remodeling and zinc sensing [38, 
39]. In prokaryotes, zinc finger motifs (C4 superfamily) are found in proteins involved in 
DNA damage recognition i.e. UvrA, Ada, RecR [40], however the diversity in functionality 
of zinc finger carrying proteins and the zinc finger domains does not allow for prediction 
of a role for BC5242 in B. cereus. Notably, BC5242 was not upregulated in vegetative cells 
of B. cereus ATCC 14579 in response to different stresses including cold, ethanol, some 
disinfectants and mild acid [41]. 

BC1314 was found to be highly upregulated during germination and outgrowth of heat 
damaged B. cereus spores [21]. The recovery of ∆BC1314 spores after a heat treatment 
was decreased with 50% compared to wild type in BHI broth, and on BHI and rice agar 
plates, albeit less severe for the latter two media, thus suggesting a role of BC1314 in the 
recovery of heat treated spores. Analysis of the B. cereus ATCC 14579 genome sequence 
suggested that BC1314 (and BC1315) result from a frame-shift mutation in the phaQ gene 
(Figure S5). The B. cereus phaQ gene is part of a poly-β-hydroxybutyrate (PHB) synthesis 
cluster, and PHB was previously shown to be accumulated in cells in the form of granules 
that serve as a carbon and energy source during the late sporulation process in B. cereus 
[42] and B. megaterium [43]. In B. megaterium, PHB accumulation involves five genes, 
namely phaP (encoding a phasin protein), phaQ (encoding a repressor of phaP expression), 
phaB (acetoacetyl-CoA reductase), phaR and phaC (subunits of PHB synthase) (Figure 
S5) [44, 45]. Furthermore, in B. thuringiensis accumulation of PHB via phaPQRBC was 
shown to be under the control of the sporulation transcription factors sigH and Spo0A 
[46]. In strains belonging to the B. cereus group, orthologues of the phaPQRBC system are 
commonly present, while being absent in B. subtilis 168, pointing to a special role for this 
system in the indicated group. 

The cdnL1/cdnL2 double deletion mutant (∆BC4714/∆BC3648), lacking genes encoding 
both CdnL transcriptional regulators present in B. cereus ATCC 14579 showed 60% 
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reduction in recovery in BHI broth compared to the wild type. Deletion of cdnL1 (BC4714) 
was shown previously to increase the fraction of severely damaged spores in the surviving 
population after a heat treatment of 1 min at 95°C [21]. Since the heat treatments applied 
in the present study led to a dominant fraction of severely damaged spores already in the 
wild type, we could not observe the increase in percentage of severely damaged spores 
in ∆cdnL1 (BC4714). However, outgrowth from heat treated ∆cdnL1 spores was delayed 
in BHI broth compared to the wild type spores, eventually reaching comparable recovery 
efficiency. The ∆cdnL2 mutant (BC3648) showed lower recovery compared to ∆cdnL1 
(BC4714), and this was most pronounced in liquid media. Nevertheless, both ∆cdnL1 and 
∆cdnL2 in media other than BHI broth show improved recovery compared to wild type. 
It remains to be determined whether the observed increase in recovery of the individual 
cdnL mutants could be explained by cross regulation of the counterpart. Both cdnL1 
and cdnL2 genes are induced in vegetative cells in response to various environmental 
stresses, including salt and cold stress, whereas acid and oxidative stress specifically 
induced expression of cdnL1 and not cdnL2 [41]. Our findings suggest partly overlapping 
functionalities of cdnL1 and cdnL2 in recovery and possibly repair of heat damage.

Spores of the ∆BC0690 mutant, lacking a putative PbsX family transcriptional regulator 
of unknown function, showed higher recovery compared to wild type spores in all tested 
conditions, with increase of up to 150% on BHI agar plates. Orthologues of BC0690 are 
commonly found among B. cereus group strains, but absent in B. subtilis 168, pointing 
possibly to a unique, but up to now unknown role in heat stress survival in B. cereus 
group members. 

Deletion of BC0852 and BC0853, both encoding putative quaternary ammonium 
compound resistance proteins annotated as sugE, resulted in reduction in recovery 
of spores to 9.4 and 28.1% of the wild type in BHI broth, respectively. Orthologues of 
BC0852 and BC0853 are present in B. cereus group strains, while being absent in B. 
subtilis 168. Besides BC0852 and BC0853, the B. cereus ATCC 14579 genome encodes a 
second orthologues pair of small multidrug resistance proteins (BC4213 and BC4214) 
orthologues to ykkC (BSU13090) and ykkD (BSU13100) of B. subtilis 168. ykkC and ykkD 
are a paired small multidrug resistance (PSMR) members, and their co-expression in 
Escherichia coli led to a multidrug-resistant phenotype [47]. Still, not all PSMR members 
have demonstrated drug resistance, e.g. B. subtilis YvaD/YvaE and YvdR/YvdS, and small 
multidrug resistance homologues were suggested to be involved in transport of yet 
unidentified compounds [48]. 

In the current study, the applied heat treatment resulted in at least 95% of damaged spores 
in the surviving wild type and deletion mutant spore populations, based on the fact that 
these spores were not able to grow out on salt supplemented plates (compared to BHI 
agar plates). At the moment it cannot be excluded that differences in spore recovery in BHI 
broth are due to lack of one or more specific proteins in spores of tested deletion mutants 
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that makes them more or less resistant and/or susceptible to heat damage. However, 
application of rice media and BHI agar plates compared to BHI broth for sorted spores 
also revealed differences in recovery between media suggesting different requirements 
for recovery. Particularly deletion of BC0460 or BC0690 resulted in reduced recovery on 
rice plates while spores of remaining seven deletion mutants showed improved recovery 
on rice plates compared to BHI broth (Figure S4). As the recovery of the various deletion 
mutants spores appears matrix dependent, this suggests that mutations conceivably 
affected different type of damage and/or repair targets as was suggested previously by 
Adams [49]. Apparently, high numbers of damaged spores were present in the surviving 
wild type and mutant spore population, but nevertheless, subtle effects of mutations in 
putative repair genes were noted, resulting in a shift from the fraction of mildly damaged 
to the fraction of severely damaged spores [21] and in differences in recovery between 
different media (this study). Still, recovery of heat treated spores is a complex process 
conceivably involving many different systems, and more studies are required to elucidate 
the full repertoire of repair systems and the impact of matrix composition and its solid or 
liquid state on this process.

In conclusion, we have shown that recovery of heat treated B. cereus spores is affected by 
the matrix composition with highest recovery of wild type spores in BHI broth or on rice 
agar plates, followed by BHI agar plates and rice broth. The comparative analysis of the 
wild type and newly constructed deletion mutants provided new insights in the putative 
role of the deleted genes in the recovery of heat treated B. cereus spores. 
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Abstract

We characterised carbohydrate utilisation of 20 newly sequenced Bacillus cereus strains 
isolated from food products and food processing environments and two laboratory strains 
B. cereus ATCC 10987 and B. cereus ATCC 14579. Subsequently, genome sequences of 
these strains were analysed together with 11 additional B. cereus reference genomes to 
provide an overview of the different types of carbohydrate transporters and utilization 
systems found in B. cereus strains. The combined application of API tests, defined growth 
media experiments and comparative genomics enabled us to link the carbohydrate 
utilisation capacity of 22 B. cereus strains with their genome content and in some cases to 
the panC phylogenetic grouping. A core set of carbohydrates including glucose, fructose, 
maltose, trehalose, N-acetyl-glucosamine, and ribose could be used by all strains, whereas 
utilisation of other carbohydrates like xylose, galactose, and lactose, and typical host-
derived carbohydrates such as fucose, mannose, N-acetyl-galactosamine and inositol is 
limited to a subsets of strains. Finally, the roles of selected carbohydrate transporters and 
utilisation systems in specific niches such as soil, foods and the human host are discussed.
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Introduction

Metabolic activity and growth of bacteria requires energy that can be acquired during 
carbohydrate catabolism. Carbohydrates can be present in nature in complex forms 
such as polysaccharides including starch, cellulose or glycogen, but also as mono- 
and disaccharides exemplified by glucose and sucrose. Efficient use of available 
carbohydrates by microorganisms is determined by the different types of carbohydrate 
transporters and utilization systems encoded by chromosome- and plasmid-located 
genes and gene clusters [1, 2]. In addition, expression and regulation of sugar utilisation 
systems can be affected by environmental conditions such as oxygen availability and 
temperature, and carbon catabolite repression (CCR) [1, 3, 4].

Systems for carbohydrate uptake and metabolism predicted based on genome analysis 
can vary significantly between species and strains as shown for Escherichia coli [5], 
Bacillus subtilis [6], Shewanella spp. [7] and lactic acid bacteria including Lactobacillus 
plantarum [2, 8], Lactobacillus casei [9], Oenococcus oeni [10] and Lactococcus lactis 
[11]. In gram-positive bacteria, these genes are generally organized in functional 
gene cassettes or modules, encoding a single or multi-component transporter (1-4 
subunits), enzymes for sugar breakdown and a transcriptional regulator, with each 
cassette (semi)-specific for a certain carbohydrate [2, 12, 13]. A cassette is a functional 
unit, and can consist of more than one operon. The presence or absence of entire 
cassettes can be highly variable, and is thought to reflect adaptation to growth on 
particular sugar substrates in specific niches such as soil and plant rhizosphere, 
foods and food processing environments, and the human host [1, 13, 14]. Often 
carbohydrate metabolism cassettes are clustered together on the chromosome, in so-
called lifestyle or sugar islands associated with colonisation of specific niches such as 
dairy environments [8, 11, 13, 15]. The deviating base composition of these genomic 
islands and cassettes suggests their acquisition via horizontal gene transfer [16]. The 
increasing availability of microbial genome sequences has stimulated comparative 
analysis of carbohydrate utilisation capacity, on the one hand to optimize performance 
of fermentation starter bacteria and probiotics, and on the other hand, to understand 
pathogen behaviour in the environment and inside the host, enabling development of 
better preservation and control measurements in food processing and clinical settings 
[12, 14, 17]. 

Three main types of carbohydrate transporters can be found in bacteria: ATP-binding 
cassette (ABC) transporters, permeases and phosphoenol-pyruvate (PEP)-dependent 
carbohydrate phosphotransferase systems (PTS) that catalyse the transport and 
phosphorylation of numerous monosaccharides, disaccharides, amino sugars, polyols, 
and other sugar derivatives. To carry out its catalytic function in sugar transport and 
phosphorylation, the PTS uses PEP as an energy source and phosphoryl donor. The 
phosphoryl group of PEP is usually transferred via four distinct proteins (domains) 
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to the transported sugar bound to the respective membrane component(s) (EIIC 
and EIID) of the PTS [4]. Notably, the PTS have also numerous regulatory roles for 
example in carbon and nitrogen metabolism, antibiotic resistance, biofilm formation, 
toxin production and virulence [4, 18, 19]. Recently sugar acids were shown also to 
be transported by tripartite ATP-independent periplasmic transporters (TRAPs) [20].

Utilisation of a broad range of carbon and energy resources, either commonly present 
in the environment or associated with specific niches, can support not only ubiquitous 
presence but also facilitate transmission and pathogenicity of food-borne pathogens 
such as Bacillus cereus [21]. The ability to thrive in different environments such as soil, 
food and food processing environments and human gastrointestinal tract is supported 
by a range of carbohydrate transport and utilisation systems that indirectly facilitate 
transmission from these environments to the human gastrointestinal tract.

B. cereus is a representative of the Bacillus cereus sensu lato group comprising seven 
closely related species of spore formers that are associated with different environments 
and contain both non-pathogenic and pathogenic bacteria including Bacillus mycoides, 
Bacillus pseudomycoides, Bacillus weihenstephanensis, Bacillus thuringiensis, Bacillus 
anthracis, B. cereus, and the recently identified Bacillus cytotoxicus [22, 23]. B. cereus 
sensu lato group members have been classified into one of seven phylogenetic groups 
introduced by Guinebrettiere et al. [22], according to which B. cereus strains can be 
found in five of these groups, i.e., group II, III, IV, V and VI, covering a broad range of 
growth temperatures from 5 to 50°C.

B. cereus is often associated with spices and foods such as rice, cereals and dairy 
products [21]. Transmission of B. cereus is facilitated by the production of highly 
stress resistant dormant spores that are triggered to germinate in nutrient-rich 
conditions via an interplay of (combinations of) germinants and a variety of so-called 
nutrient germinant receptors [24]. Germination and outgrowth of B. cereus spores 
into vegetative cells in foods may lead to food spoilage and safety issues [25, 26]. The 
vegetative cells of B. cereus produce toxins in food before the ingestion or in the small 
intestine leading usually to mild and self-limiting symptoms but in rare instances it can 
lead to life-threatening situations [27]. B. cereus clinical isolates have been associated 
with gastrointestinal infections and non-gastrointestinal infections particularly in 
immune compromised patients or neonates resulting in wound infections, ocular 
infections and bacteraemia [21, 25-27]. Genome analysis of selected model strains 
pointed to B. cereus specialisation in protein metabolism, suggesting that it has 
adapted towards a symbiotic or parasitic life cycle [25, 28-30]. B. cereus strains carry 
genes for utilisation of mono- and disaccharides such as glucose and trehalose [28, 
31], and polysaccharides such as starch [31]. Moreover performance in selected niches 
has been associated with transport and metabolism of specific carbohydrates such as 
glucose-6-phosphate [32]. 
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Despite the putative role of selected carbohydrates in growth and survival in a range of 
environments, a detailed comparative genotypic and phenotypic analysis that includes 
multiple genome-sequenced B. cereus strains representing the different phylogenetic 
groups described by Guinebrettiere et al. [22] has not been reported up to now.

The current study provides an overview of the different types of carbohydrate 
transporters and utilization systems in 20 newly sequenced B. cereus food isolates 
and model B. cereus strains ATCC 14579 and ATCC 10987, and links these to metabolic 
capacity using API tests and/or defined media with selected carbohydrates as carbon 
and energy sources. Additionally, roles of selected carbohydrate transporters and 
utilisation systems in specific niches are discussed.

Materials and Methods

Strains used 

Twenty B. cereus strains previously isolated from food products and food processing 
environment (NIZO Culture Collection, Ede, the Netherlands) and two reference 
strains B. cereus ATCC 14579 and B. cereus ATCC 10987 obtained from the American 
Type Culture Collection (ATCC) (S1 Table) [33, 34] were streaked from -80°C stock on 
Bacto Brain Heart Infusion (BHI; Beckton Dickinson, Le Point de Claix, France) agar 
plates and incubated at 30°C overnight to obtain single colonies. Based on Average 
Nucleotide Identity (ANI typing; [35]) criteria strain B4117 (LJKG00000000.1), 
was recently re-classified by NCBI as B. mycoides, phenotype information should be 
included to confirm this.

API growth tests

API 50CH (BioMerieux, France) test was used in combination with API 50CHB/E 
medium (BioMerieux, France) according to manufacturer’s instruction. Shortly, single 
colonies were used to inoculate API 50CHB/E medium to a turbidity equivalent of 2 
McFarland. Test strips were filled with inoculated medium, incubated at 30°C, and 
checked for media colour change after 24 and 48 h. For each strain, three independent 
repetitions were performed.

Defined media growth experiments

Ten ml of BHI was inoculated with a single colony and incubated overnight at 30°C 
with aeration at 200 rpm. One ml of overnight grown culture was pelleted in a table 
top centrifuge (4,000 rpm, 1 min), washed with Peptone Physiological Salt buffer 
(PFZ; Tritium Microbiologie, the Netherlands) and resuspended in 1 ml of PFZ. 96-well 



114  |  Chapter 6 Linking genotypes and carbohydrate utilization  | 115

6

plates were filled with 20 µl of 10x diluted washed culture and 180 µl of test media. 
Plates were then transferred into a plate reader (Tecan Infinite F200 Pro, Austria) for 
incubation at approximately 200 rpm at 30˚C. OD595 was measured every 10 min and 
read outs were used to score for positive or negative growth. Chemically defined Y1 
medium [36] was slightly modified by omission of lactic acid and glucose, and lowering 
glutamate concentration down to 1 mM. The modified medium was supplemented 
with one of the following carbon sources (final concentrations in mM): glucose (12.5 
mM), sodium gluconate (25 mM), glycerol (50 mM), L-fucose (25 mM), glucose-6-
phosphate (25 mM), myo-D-inositol (25 mM), and N-acetyl-D-galactosamine (18 mM). 
Non-supplemented modified medium was used as control. Three technical replicates 
were performed for each condition.

Comparative genomics

In total, the genomes of 33 B. cereus strains were included in the comparative analysis. 
Next to the 20 newly sequenced food-spoilage B. cereus strains [33, 34] used in the 
growth experiments, also 13 B. cereus genomes including B. cereus ATCC 14579 and 
B. cereus ATCC 10987 were obtained from the NCBI-Genbank database (http://www.
ncbi.nlm.nih.gov/genome/genomes/157) and compared to each other and to the 
genome of reference strain Bacillus subtilis 168 (S1 Table). All genomes were (re)
annotated using RAST [37] to allow a better comparison of all annotations.

Orthologous groups (OGs; i.e. gene families) in the genomes were determined using 
OrthoMCL [38]. A database (in MS Excel) was built containing aligned information 
about the location and length of orthologous genes and proteins (i.e. on which 
contig and base pair position on the assembled genome it is present) of the newly 
sequenced and published reference genomes. Moreover, for every OG a multiple 
sequence alignment was made on the amino acid level using Muscle [39] to facilitate 
identification of pseudogenes (encoding incomplete proteins). 

The carbohydrate utilization systems of B. subtilis 168 listed in the Subtiwiki database 
(highly curated) [40] were initially used to search for orthologous systems in the B. 
cereus OG table. Additional genes and systems were found with keyword searches 
and genome context analysis. Subsequently, selected genes/proteins were manually 
curated by comparison against sequence databases (using e.g. NCBI-BLASTP; http://
blast.ncbi.nlm.nih.gov/), family/domain databases (using e.g. InterPro [41]), enzyme 
databases (using e.g. Brenda [42]) and pathway databases (using e.g. KEGG [43]). Gene 
cassettes and gene synteny were visualized using MGcV (Microbial Genome context 
Viewer [44]). Details of the carbohydrate utilization cassettes in the OG database can 
be found in supplementary S2 and S3 Tables.

http://blast.ncbi.nlm.nih.gov/
http://blast.ncbi.nlm.nih.gov/
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Phylogeny

For the construction of a phylogenetic tree, next to the genomes of 33 B. cereus strains 
and B. subtilis 168, additional circular reference genomes of 18 strains from the B. 
cereus sensu lato group were included, i.e. 6 B. anthracis strains, 11 B. thuringiensis 
strains and 1 B. weinenstephanensis strain. On the basis of an OrthoMCL analysis of 
all these genomes, all OGs were selected with a single orthologous gene in each of the 
different genomes. The protein sequences of these core OGs were aligned using Muscle 
[39] and alignment positions with amino acid differences were selected and stored 
in a single artificial protein sequence. This protein sequence was used as a basis to 
generate a whole-genome MLST phylogenetic tree using FastTree [45].

Affiliation of 51 B. cereus sensu lato group strains to the phylogenetic groups (I to 
VII) proposed by Guinebretière et al. [22] was performed by extraction of panC gene 
sequences from the OG group and implementing in the online tool (https://www.
tools.symprevius.org/Bcereus/english.php).

Results

Genome statistics and phylogeny

The 33 B. cereus genomes were found to contain 1775 core ortholog groups (OGs), 
i.e., orthologous genes that occur in all genomes only in one copy. A phylogenetic tree 
was built based on differences in all encoded core proteins derived from 33 B. cereus 
genomes and an additional 18 reference genomes from the B. cereus sensu lato group 
and B. subtilis 168 (Figure 6.1). The phylogenetic clustering of the strains is in line 
with the phylogenetic division of the B. cereus sensu lato group members based on the 
panC polymorphism published by Guinebretière [22] and the B. cereus strains of our 
study were found to belong to groups II, III, IV and VI.

https://www.tools.symprevius.org/Bcereus/english.php
https://www.tools.symprevius.org/Bcereus/english.php
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Figure 6.1. A phylogenetic tree based on the core genome of 20 newly sequenced B. cereus strains used in 
this study and 31 previously described strains of the B. cereus sensu lato group used for reference purposes; 
B. subtilis 168 was used as outgroup. Roman numbers indicate phylogenetic groups defined previously by 
Guinebretière [22].

Growth experiments

In the API assay, all 22 tested B. cereus strains were found to grow on D-glucose, 
D-fructose, D-maltose, D-trehalose, N-acetylglucosamine and D-ribose, with the majority 
of the strains growing on sucrose, arbutin, esculin, salicin, and starch/glycogen. Only 
some of the strains grew on other carbohydrates, such as, lactose, mannose, galactose, 
cellobiose, and only B. cereus ATCC 10987 grew on xylose (Figure 6.2A). Growth studies 
in aerated defined media showed additional growth on fucose, glycerol, inositol, and 
gluconate for subsets of strains.
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Genome mining

The B. cereus genomes were explored for presence of genes and gene cassettes encoding 
enzymes required for growth on the tested carbohydrates. The carbohydrate utilization 
systems of B. subtilis 168 listed in the Subtiwiki database (highly curated) were used 
to search for ortholog systems in the B. cereus OG table, and additional cassettes 
were identified by keyword searches and manual annotation. The identified cassettes 
are shown schematically in Figure 6.3, and the encoded functions are summarized 
in S2 Table. In general, very few pseudogenes were identified, and hence nearly all 
carbohydrate utilisation systems are predicted to be functional (details in S3 Table). 
Most of the pseudogenes were found in the B. cereus ATCC 14579 genome, but since the 
corresponding genes are functional based on the experimental data, the non-interrupted 
fragments of the pseudogenes may still be functional. The various B. cereus carbohydrate 
utilization systems are described below.

Carbohydrates commonly utilised by B. cereus

All of the 22 tested B. cereus strains grow on glucose (Figure 6.2) corresponding to 
the presence of a gene cassette encoding a glucose-specific PTS and a BglG family 
transcriptional anti-terminator (Figure 6.3A, Table A in S2 File). Moreover, all B. 
cereus genomes harbour a cassette encoding a glucose permease GlcU and a glucose 
1-dehydrogenase Gdh (Figure 6.3C, Table C in S2 File). In addition, a permease annotated 
as glucose/mannose:H+ symporter (OG_5022) is present in 5 of the experimentally 
tested strains and reference strains 03BB102, AH820, and F837_76 (S3 Table).

All B. cereus strains carry four gene cassettes, each encoding a PTS transporter, an 
enzyme for sugar catabolism, and a transcriptional repressor, specific for transport and 
utilisation of fructose (fruRKA), trehalose (trePAR), N-acetyl-glucosamine (nagABR) and 
N-acetyl-muramic acid (MurNAc; murPQR) (Figure 6.3A, S2 and S3 Tables). Presence 
of those gene cassettes corresponds with the ability to utilise fructose, trehalose, and 
N-acetyl-glucosamine by all experimentally validated strains (Figure 6.2).

Additionally, all tested B. cereus strains grow on maltose, a disaccharide (Figure 6.2). 
The two gene cassettes for utilization of maltose present in B. subtilis genomes, malARP 
and yvdEFGHIJKLM, are absent in the B. cereus genomes. However, there is an equivalent, 
but different maltose/maltodextrin utilization cassette in all selected B. cereus 
genomes, encoding a maltose/maltodextrin ABC transporter MalEFGK, two enzymes for 
degradation of maltose polymers (i.e. an alpha-glucosidase/oligo-1,6-glucosidase, and a 
neopullulanase/alpha-amylase), and a maltose operon transcriptional regulator MalR 
(Figure 6.3B, Table B in S2 File, S3 Table).
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Finally, a complete and intact ribose utilization gene cassette rbsRKDACB, encoding an 
ABC transporter (RbsDACB), a ribokinase RbsK and a ribose operon transcriptional 
regulator RbsR is present in all B. cereus as well as in all considered B. cereus sensu lato 
group genomes and B. subtilis 168. All B. cereus strains grow on ribose (Figure 6.2), with 
API tests of five strains being not conclusive. The latter observation may be linked to the 
in general poor readability of the ribose reaction in the API test.

Soil/plant related carbohydrates

Cellobiose and xylose can function as energy sources and are common components of 
plant cell walls that due to the plant decay process can be found in soil, while sucrose is a 
naturally occurring carbohydrate found in many plants. 

B. cereus genomes encode four gene cassettes annotated as cellobiose-specific PTS 
(Figure 6.3A, Table A in S2 File, S3 Table) with three of these found in all selected B. 
cereus strains. The fourth putative cellobiose-specific cassette is present only in strains 
B4082 and AH820, and consists of a PTS transporter, a 6-phospho-beta-glucosidase and 
a phosphoglycerate mutase. The conserved presence of the first three PTS cassettes in 
all B. cereus genomes does not correlate with growth in the API test, as only 5 B. cereus 
strains were positive for growth on cellobiose (Figure 6.2). This could be explained by 
incorrect annotation of these PTS. For example, alternative annotations given in NCBI 
data base are diacetylchitobiose-specific (= glucosamine units) for the first gene cluster, 
and lichenan-specific (= complex branched glucose polymer) PTS for the second and 
third gene clusters. The beta-glucoside PTS (bglP, OG_5777) is another candidate for the 
import of cellobiose (a beta-glucoside), but the bglP gene was found only in B. cereus 
strains B4077, B4083, B4088, B4117, E33L and FRI_35, which also does not agree with 
the API growth results on cellobiose. Thus further work is required to elucidate the roles 
of these clusters in carbohydrate transport and metabolism.

Notably, the previously identified gene cassette for xylose uptake and utilization [31] 
was found only in ATCC 10987 (and few other B. cereus strains (i.e. FT9, F3162-04) not 
included in our study) and this was indeed the only strain growing on D-xylose (Figure 
6.2). The corresponding cassette encodes a xylose permease XylP, a xylose isomerase 
XylA, a xylulose kinase XylB, a xylose 1-epimerase XylE and a ROK family transcription 
regulator XylR (Figure 6.3C, Table C in S2 File, S3 Table). The origin of the cassette is not 
known, but it replaces gene cassettes for nitrate reductase and molybdenum cofactor 
biosynthesis [28] which are present in that genomic region in all other B. cereus genomes 
studied here, except strains B4079, B4081 and B4147.

Fourteen B. cereus strains were found to grow on sucrose, whereas 8 strains did not grow 
(Figure 6.2). Mols et al. [31] suggested that growth of B. cereus ATCC 14579 on sucrose 
was linked to a gene cassette composed of a sucrose-specific PTS named SacP, a sucrose-
6-phosphate hydrolase SacA, a fructokinase FruC, and a sucrose operon repressor SacR 
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(BC0773-BC0776). The corresponding 4 genes are also present in B. subtilis 168 (but not 
in a single cassette) and are known to be responsible for growth on sucrose [46]. Indeed, 
an almost perfect correlation was found between the presence of this sucrose utilization 
cassette in B. cereus strains and their ability to grow on sucrose (13 of 14 strains) (Figure 
6.3A, Table A in S2 File). Half of the publicly available B. cereus genomes also contain this 
cassette, suggesting that growth on sucrose is not a rare trait in B. cereus (S3 Table).

fruR fruK fruAFructose

Glucose glcT ptsG hpr ptsI

Trehalose treR treB treC*

GlcNAc nagE nagA nagB nagR

MurNAc murR murQ murP

Mannose manB* manR manP manA

Sucrose scrR scrA scrB scrK

(aryl-)
β-glucosides bglG bglP bglH

α-glucosides aglA agl aglP

Cellobiose I celCbglG ..A ..B

Cellobiose II

Cellobiose III

Cellobiose IV

Lactose

..B celC ..A bglA ydjC

..B ..AlicC

..B pgm celC ..A bglC2

lacE ..F lacR lacA lacBlacG lacDlacC

A

Maltose malGmalFmalL amyA malEmalK malR

Ribose

GalNAc

Fucose

Glycerol-3P

Gal-GalNAc

talrbsBrbsKrbsR rbsA rbsC..D

..AfcsB*..U*fcsR* fcsD* fcsC* fcsIfcsK* aldA* alfA*

ugpAugpC..R ugpBugpE

agaYagaAmviMagaC* agaR agaSagaB* agaZagaD* agaK*

agaAagaSlnbPagaD*agaB* agaC* agaY agaM2*agaM1*agaZ galTaraC

Inositol

Xylose

iolA iolJ*iolCiolR iolT* iolG iolBiolD* iolE

xylPxylE*xylR xylA xylB

Sugar-P

Glycerol

Gluconate III

Gluconate II

Gluconate I

Glucose

Gluconate IV

spsKspsR spsA* spsB spsC*

glpDglpP glpF glpK

glcU gdh

gndgntR gntK gntP

gntK gntP gnd

kdgK gntR gntP

gntPtalzwf tkt gnd gntK pgl

B

C

agaK*

kdgK* gntR gntP**

Figure 6.3. Predicted carbohydrate utilization gene cassettes. (A) PTS transporters. (B) ABC transporters. 
(C) secondary transporters (permeases). Colour coding for encoded proteins: green, transporters; yellow, 
intracellular enzymes; light blue, extracellular enzymes; orange, regulators; purple, two-component regulator. 
* genes with newly predicted function. 
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Food related carbohydrates

Bacteria present in soil are commonly transmitted via raw materials of plant (vegetable) 
or animal (milk, egg, meat) origin into food products. In general, raw materials and final 
food products are considered nutritious commodities. However, some groups of products 
may offer limited carbohydrate supplies, for example staple foods contain mainly starch 
while dairy products contain mainly lactose.

Starch is a polymer of glucose units, and consists of the linear-chain amylose and the 
branched-chain amylopectin. An analogue of starch, glycogen, has a similar structure to 
amylopectin, but more extensively branched and compact than starch. There is a glycogen 
biosynthesis gene cassette glgPADCB present in all B. cereus genomes, however 8 of the 
B. cereus strains are not able to utilise glycogen and starch (Figure 6.2). The genome of 
B. cereus ATCC 14579 contains an alpha-amylase gene (amyS, BC3482, COG0366) which 
was proposed to support growth on starch [31]. Alpha-amylase (EC 3.2.1.1) breaks down 
polysaccharides, ultimately yielding maltotriose and maltose from amylose, or maltose 
and glucose from amylopectin. The presence of the amyS gene (OG_4318) in the B. cereus 
strains correlates exactly with growth on starch or glycogen, indicating that this is the sole 
gene responsible for degradation of these polymeric substrates (Figure 6.2B, S3 Table). 
Moreover, this gene is absent in the B. cereus genomes available in the public database 
(strains E33L, FRI_35, NC7401, AH187 and Q1), suggesting that these strains will also 
not grow on starch/glycogen. The encoded protein AmyS of 513 residues is most likely 
secreted, since it has a signal peptide and a typical signal peptidase cleavage site (AYA|D). 
The extracellular degradation of starch or glycogen will lead to release of glucose units 
which can be accumulated by the maltose and glucose uptake systems and subsequently 
metabolised as described above.

B. cereus is commonly associated with dairy environments, and therefore we tested for 
utilisation of lactose, the main carbohydrate present in milk [47]. From our set of isolates, 
strains B4081 (isolated from Provolone sauce) and B4087 (isolated from pea soup) 
consistently grow on lactose (Figure 6.2), corresponding exactly with the presence of a 
lactose utilization gene cassette lacGEFRABCD in their genomes (Figure 6.3A). This cassette 
encodes a lactose PTS (LacEF), a 6-phospho-beta-galactosidase LacG, a lactose operon 
repressor LacR, a galactose-6P isomerase LacAB, a glucokinase and two enzymes of the 
tagatose pathway, i.e. tagatose-6-phosphate kinase LacC and tagatose 1,6-bisphosphate 
aldolase LacD. In both cases, the lactose utilization genes are predicted to be located on 
a 26-28 kb plasmid, and all encoded proteins are highly similar, suggesting that these 2 
strains contain the same lactose plasmid. The 9-kb lactose utilization cassette is located 
on a 16-kb transposon which is flanked by Tn1546 transposases and resolvases. Parts 
of this plasmid, but not the lactose cassette, are also present in genomes of other B. 
cereus strains of this study (data not shown). A BLASTP analysis to the NCBI database 
shows presence and 100% protein sequence identity of this lactose cassette in B. cereus 
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strains m1293, VD102, VD140, NVH 0075-95, and MHI 86 (S4 Table). The next matches 
to these proteins are found in Carnobacterium and various Bacilli, with 55-75% amino 
acid sequence identity, while the corresponding proteins on Lactococcus lactis plasmids 
have only 45-65% identity.

Notably, only strains B4087 and B4081, though poorly, grow on galactose (Figure 
6.2). We could not find any genes or gene cassettes annotated as specific for uptake of 
galactose in any B. cereus genome. Since these are the only two strains that also grow on 
lactose, they may also be able to utilize free galactose via the lactose PTS, as lactose PTS 
was previously shown to transport galactose, albeit less efficiently in lactococci [48] and 
streptococci [49, 50].

Host related carbohydrates

Food-borne human pathogens invading the intestinal tract and/or host cells depend 
on the availability of simple carbohydrates and/or degradation of complex host-
associated carbohydrates/polymers, present for example in mucus. Typical host-derived 
carbohydrates may include fucose, mannose, N-acetyl-galactosamine and inositol [51-53].

L-fucose is a sugar present in human milk as building block of oligosaccharides, mucins 
and other glycoconjugates in the intestinal epithelium [54]. None of the strains grew on 
D-fucose or L-fucose in the API test, but in the defined medium growth experiments with 
aeration 8 strains showed growth on L-fucose, while 4 strains showed questionable growth 
(Figure 6.2). Fucose transport via a permease, an ABC transporter or a PTS transporter and 
subsequent utilization have been described in Gram-negative [55-57] and Gram-positive 
bacteria [54, 58]. Additionally, extracellular alpha-fucosidases have been characterized 
from several bacilli [59-61], including B. cereus [62]. We identified a cassette comprising 10 
genes for fucose utilization (Figure 6.3B, S3 Table), that includes a fucose ABC transporter 
FcsBCD, in seven of experimentally verified B. cereus strains and in genomes of Q1, NC7401, 
and AH187. This cassette encodes an extracellular alpha-L-fucosidase AlfA (Table B in S2 
File), suggesting that fucose can be cleaved from complex oligosaccharides, and then taken 
up into the cell and metabolized, ultimately to dihydroxyacetone phosphate and lactate, 
since a lactaldehyde dehydrogenase AldA is also encoded, next to an L-fucose isomerase FcsI, 
an L-fuculose kinase FcsK, an L-fuculose-6P aldolase FcsA, and a LacI family transcription 
regulator FcsR. Not all strains caring the complete cassette were able to grow on fucose 
(Figure 6.2), while some strains lacking this cassette did grow on fucose, indicating that 
additional genes may be involved in fucose utilization.

Four B. cereus strains were found to grow on mannose, i.e strains B4077, B4081, B4087, 
and B4120 (Figure 6.2). A mannose utilization cassette manRPA is present in genomes of 
three of those tested strains (B4077, B4081 and B4087) and in genomes of B. cereus strains 
03BB102, F837_76, Q1 and in B. subtilis 168. The cassette encodes a mannose-specific 
PTS transporter ManP, a mannose-6P isomerase ManA and a BglB family transcriptional 
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antiterminator ManR (S2 Table). The manRPA cassette, as well as any other gene cassette 
annotated as “mannose” utilization, was not found in strain B4120.

A 9-gene cassette iolRTGCADEJB for myo-inositol utilization, orthologous to that of B. 
subtilis 168, is present in three of the 22 experimentally verified strains B4077, B4082, 
B4083 and in genomes of B. cereus reference strains 03BB102, AH820, BCM2_134A, CI, 
E33L (with an additional plasmid-located cassette), F837_76 and FRI_35. None of the 
strains grew on inositol in the API test, but 11 strains were found to grow in the aerobic 
growth experiment in defined medium (Figure 6.2) including two strains harbouring 
the iol cassette (i.e. B4077, B4082). Therefore, there must be an additional cassette for 
inositol utilization.

Additionally, 8 strains were observed to grow on N-acetyl-galactosamine in aerated 
medium, while 3 strains showed possible growth (Figure 6.2). The annotation of 
most of the genes in a 10-gene cassette (BCE1899-BCE1908 of strain ATCC 10987), 
previously suggested to be related to growth on tagatose [31], suggests that the actual 
substrate could be N-acetyl-galactosamine. The cassette encodes a 3-component ABC 
transporter (putatively for N-acetylhexosamines; OG_9457, OG_6509, OG_6510), and all 
enzymes required for degradation of N-acetyl-galactosamine via the tagatose pathway 
to glyceraldehyde-3P (Table B in S2 File) [63]. However, we find this complete gene 
cassette only in B. cereus strains B4079, ATCC 10987, E33L, and FRI_35 which does not 
correlate well with observed growth on N-acetyl-galactosamine. Nevertheless, none of 
the strains grow on tagatose in static conditions (Figure 6.2), therefore it seems unlikely 
that this gene cluster is related to growth on tagatose. We found another 14-gene cassette 
presumably for utilization of the disaccharide Gal-(1->3)-beta-GalNAc (galactose 
linked to N-acetyl-galactosamine) (Table B in S2 File). Gal-GalNAc is bound to proteins 
in mucins (O-linked to Ser/Thr), and can be released by extracellular endo-alpha-N-
acetylgalactosaminidases. This cassette is very similar to the cassette described above for 
utilization of N-acetyl-galactosamine, but it has 2 additional genes encoding extracellular 
endo-alpha-N-acetyl-galactosaminidases, and a gene encoding an intracellular 1,3-beta-
galactosyl-N-acetylhexosamine phosphorylase which cleaves Gal-(1->3)-beta-GalNAc 
into alpha-D-galactose-1P and N-acetyl-D-galactosamine. This cassette is found in 8 of 22 
experimentally verified B. cereus strains and two reference genomes (Q1 and NC7401) 
(S3 Table), but it could not explain utilisation of Gal-GalNAc nor N-acetyl-galactosamine 
by strains B4083, B4087, B4118, and B4147.

Recently, a new sugar phosphate uptake system specific for glucose-6-phosphate and 
fructose-6-phosphate has been described in B. cereus [64]. This 5-gene cassette includes 
a transporter SpsABC and a two-component sensor system SpsKR which responds to 
extracellular sugar phosphate levels. The spsA gene was specifically expressed during oral 
infection of Galleria mellonella [65]. The cassette was found in all the B. cereus genomes, 
and all but three (B4083, B4117, ATCC 14579) experimentally validated strains were 
observed to grow on glucose-6-phosphate (Figure 6.2).
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Other carbohydrates

In B. cereus genomes there are several putative gluconate uptake and utilization systems, 
based on the gluconate permease GntP. The annotation of these systems suggests that the 
substrate is gluconate, but it could also be glucuronate or galacturonate, or derivatives of 
these acids. Orthologs of the gluconate utilization gene cassette gntRKPZ of B. subtilis 168 
[66] were found in 8 of 22 experimentally verified strains and in additional 8 genomes 
(S3 Table). All but one (ATCC 10987) experimentally validated strains belonging to 
phylogenetic group III carried this cassette encoding a gluconate permease GntP, a 
gluconate kinase GntK, a 6-phosphogluconate dehydrogenase GntZ, and a gluconate 
operon repressor GntR. A second cassette (system II), not present in B. subtilis or B. 
anthracis, is the same as system I but lacks the regulator, and is present in 16 out of 
22 experimentally validated strains, mainly not belonging to phylogenetic group III, 
and five additional genomes (S3 Table). A third cassette (system III) with a gluconate 
permease GntP is present in all considered B. cereus sensu lato group genomes, but not 
in B. subtilis. This cassette also encodes a GntR family transcription regulator, a 2-keto-
3-deoxygluconate kinase, an amidohydrolase, an aldolase and a pyridoxal phosphate-
dependent enzyme, suggesting that this cassette may encode utilization of a derivative 
of gluconate such as D-glucosaminate. Finally, a fourth 7-gene cassette (system IV) is 
present in all B.cereus genomes, and next to the gntP, gntK and gntZ genes it contains 
genes encoding 6-phosphogluconolactonase Pgl, glucose-6-phosphate 1-dehydrogenase, 
transketolase, and transaldolase (Table C in S2 File). However, in a few strains, i.e. B. 
cereus strains B4083, B4088, B4117, and G9842, this cassette lacks both the gntP and 
transketolase genes, suggesting that this cassette represents a breakdown pathway of 
glucose-6P via gluconate-6P, and not an uptake system for gluconate. 

None of the strains grew on potassium gluconate in the API test, but in the growth 
experiments with aeration most strains showed growth (Figure 6.2) suggesting that 
metabolism of this carbohydrate requires oxygen. Only strains B4083, B4088, and 
B4155 showed poor or no growth on gluconate. This phenotype correlates best with 
the gluconate cassette system IV, and therefore this cassette may represent the main 
gluconate utilization system under these growth conditions.

Arbutin, esculin and salicin are aryl beta-glucosides (or aromatic beta-glucosides), 
consisting of a glucose moiety linked to an aromatic ring. The B. subtilis 168 genome 
encompasses 3 genes encoding intracellular (aryl-) phospho-beta-D-glucosidases, i.e. 
bglA (BSU40110), bglC/yckE (BSU03410), and bglH (BSU39260) [67]. In the B. cereus 
genomes there is no equivalent of bglA of B. subtilis. The bglC gene (OG_4907) of B. subtilis 
168 has one ortholog in 11 B. cereus strains, but it is not part of a sugar utilisation cassette, 
while a second ortholog of bglC is found only in strains B4082 and AH820 as part of a 
7-gene cassette for cellobiose utilization. Finally, B. cereus strains B4077, B4083, B4088, 
B4117, E33L and FRI_35 carried orthologues of B. subtilis 168 bglPH operon encoding 
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a beta-glucoside-specific PTS system BglP, and an aryl-phospho-beta-D-glucosidase or 
aryl-6-phospho-beta-glucosidase BglH [68] additionally encoding also a beta-glucoside 
bgl operon antiterminator BglG. Taken together, there are 14 B. cereus strains that 
have 1 or 2 genes encoding an aryl-6-phospho-beta-glucosidase. It is not clear what the 
transporter is for aryl beta-glucosides in these strains, but it is possibly a more general 
PTS for beta-glucosides, such as for cellobiose (see above for 3 putative PTS cellobiose 
utilization cassettes). This occurrence of one or more aryl-6-phospho-beta-glucosidases 
in 12 B. cereus strains correlates almost perfectly with the growth observed on salicin 
(Figure 6.2). The only discrepancies correspond to uncertainties in the API test. On the 
other hand, there are 20 strains that grow on arbutin and esculin, suggesting that there 
may be an additional system in the other strains which is more specific for arbutin and 
esculin, but not for salicin.

None of the strains grew on glycerol in the API test, but in the growth experiments 
with aeration all but three (B4077, B4085, and ATCC 10987) strains showed growth 
(Figure 6.2). A glycerol utilization cassette, equivalent to the glpPFKD genes (BSU09270-
BSU09300) of B. subtilis 168, was found to be present in all B. cereus genomes. The cassette 
encodes a glycerol uptake facilitator protein GlpF, a glycerol kinase GlpK, an aerobic 
glycerol-3-phosphate dehydrogenase GlpD, and a glycerol uptake operon regulator Glp 
(Table C in S2 File). Therefore, all strains have the potential to grow on glycerol in aerobic 
conditions.

A glycerol-phosphate uptake system, based on an ABC transporter UgpBEAC, was found 
in most of B. cereus genomes, but not in strains B4082, B4083, B4088, B4147, 03BB102, 
and F837_76. Moreover, all B. cereus genomes encode a glycerol-3-phosphate permease 
(OG_511). However, this substrate was not experimentally tested.

Absent sugar utilization systems

There are a few sugar utilization cassettes of B. subtilis 168 which did not have 
ortholog cassettes in any of the B. cereus strains. These include the mannitol cassette 
mtlAFD (BSU03981, BSU03982, BSU03900), the sorbitol/glucitol cassette gutRBP-
fruC (BSU06140-BSU06170), the arabinan/arabinose cassette abnA-araABDLMNPQ-
apfA (BSU28720-BSU28810), the L-rhamnose cassette rhaAMBR(EW) (BSU31180-
BSU31220), and the oligomannoside cassette gmuBACDREFG (BSU05810-BSU05880). In 
agreement with this lack of genes, the selected B. cereus strains in our study did not grow 
on mannitol, sorbitol, arabinose or rhamnose (Figure 6.2).

Orthologs of the levan/fructose-specific PTS system levDEFG of B. subtilis 168 are only 
found in B. cereus strain E33L on a plasmid. However, the cassette in E33L is much larger 
(12 genes) and may be specific for breakdown of more complex polysaccharides as levan 
is a fructose polymer (fructan).
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Discussion

Equipment of ubiquitous food-borne human pathogens such as B. cereus with a broad 
range of carbohydrate transporter and utilisation systems supports their transmission 
from soil to host. Comparative analysis of genotypic and phenotypic diversity of 
carbohydrate utilisation among 20 newly sequenced B. cereus food isolates and B. cereus 
ATCC 14579 and ATCC 10987 suggests an adaptative metabolic capacity to different 
environmental niches represented by carbohydrates such as cellobiose or xylose found 
in soil, starch or lactose in food and dairy products, and fucose and glucose-6-phosphate 
found in intestinal tracts of animal and human hosts. In addition to such strain-specific 
features, all the strains could utilise compounds typically reported to support growth of 
B. cereus such as glucose, fructose, maltose, trehalose, N-acetyl-glucosamine, and ribose 
[23, 69, 70]. 

The diversity in sugars utilised by B. cereus isolates may correspond to the classification 
of the isolates to four of the phylogenetic groups identified previously by Guinebretière 
[22] within the B. cereus sensu lato group. For example, strains in groups VI and II show 
a broader substrate utilisation capacity compared to strains belonging to group III. 
Members of the latter group, with exception of strain B4087, did not grow on glycogen, 
starch or salicin. In addition, the genomes of these strains lack aryl-6-phospho-beta-
glucosidases involved in the utilisation of two other aromatic glucosidases, esculin 
and arbutin. Notably, strain B4087 displayed a distinctive growth pattern and genome 
potential compared to the other members of group III. Within group IV, a sub-branch 
encompassing strains isolated from vegetables (B4080, B4084, B4158), showed limited 
substrate utilisation. Interestingly, two strains (B4079 and ATCC 10987) representing 
a sub-branch within group III showed the least carbohydrate utilisation capacity, and 
both strains originate from spoilage incidents, namely from a retorted can with chocolate 
beverage and spoiled cheese, respectively.

Carbohydrate uptake in bacteria is mediated by different transport mechanisms including 
phosphoenol-pyruvate-dependent phosphotransferase systems (PTS systems), ATP-
binding transporters (ABC transporters) and secondary transporters (permeases). We 
searched for transporters and associated metabolic enzymes in the genomes of newly 
sequenced B. cereus isolates and identified a significant number of new carbohydrate 
utilisation cassettes. The collective capacity of B. cereus strains to utilise carbohydrates 
is visualised in Figure 6.4. Carbohydrate uptake in bacilli occurs mainly by PTS systems 
as indicated by identification of 15 PTS cassettes in B. cereus genomes (see worksheet 
PTS systems in S3 File), while ABC transporters and permeases for carbohydrate uptake 
contribute with 6 and 11 identified systems, respectively (see worksheet ABC-permeases 
in S3 File).
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The possible roles of specific carbohydrate transporter and utilisation systems in 
transmission of B. cereus from soil, via food processing environments and food, to the host, 
is discussed below.

The soil environment is rich in chitin, a constituent of insects exoskeletons and cuticles 
but also fungal cell walls. Chitin is a 1-4 polymer of N-acetyl-glucosamine and by activity 
of commonly found chitinases, simple amino sugars can be released and become available 
for soil bacteria [3]. Amino sugars such as N-acetyl-glucosamine and N-acetyl-muramic 
acid are also the major components of bacterial peptido-glycan. The presence of nagEABR 
and murRQP cassettes in all tested isolates perfectly correlates with the observed growth 
on these substrates.

Cellobiose is a catabolite of cellulose degradation, and is therefore also present in soil 
and decaying vegetation. While all the B. cereus isolates possess three or four cassettes 
for cellobiose utilisation, only five B. cereus isolates were found to utilise cellobiose in 
static conditions, which suggests that activation of cellobiose systems is not achieved in 
most cases. Conceivably, activation of cellobiose uptake and utilisation systems requires 
specific conditions that remain to be elucidated. In Listeria monocytogenes presence of 
β-glucosides (cellobiose, salicin but not arbutine) in the environment causes repression of 
virulence genes via a specific regulatory pathway (involving bvr locus) independent from 
carbon catabolite repression (CCR) mechanism [71, 72] as well as via a CCR mechanism. A 
specific role for cellobiose in repression of B. cereus enterotoxin production has not been 
reported up to now.

Notably, growth on xylose, another common plant-derived carbohydrate was only 
observed for B. cereus ATCC 10987, and this perfectly matched the unique presence of the 
previously described cassette for xylose utilisation in this strain [28].

Concerning transport and utilisation systems related to food, the capacity to grow on 
lactose, a common carbohydrate in milk and dairy environment, is restricted to only 
two of 22 tested B. cereus strains. This is in line with previous observations, that showed 
limited ability to utilise lactose among B. cereus dairy farm isolates, although prevalence 
increased along the production chain, reaching 20% lactose-positive strains among B. 
cereus household milk isolates [47], pointing to the selection and adaptation of the strains 
in the dairy chain. The two lactose-positive strains in our study contain a lactose utilisation 
cassette predicted to be on a plasmid. This lactose cassette is also present in genomes of a 
few other B. cereus strains not included in this study (S4 Table). Similarity with cassettes 
present in other bacteria is limited, suggesting that mobility of this B. cereus specific lactose 
cassette may be responsible for the increasing prevalence of lactose-positive strains.

Notably, B. cereus potential to growth on starch was found to depend on the presence of 
a single gene encoding alpha-amylase, AmyS. This extracellular enzyme degrades starch 
releasing glucose that can be transported and utilised by one of the glucose uptake systems 
commonly found in B. cereus strains. 
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Concomitant with milk or other food products B. cereus can enter the host gastro-intestinal 
tract and encounter a nutrient-limited and competitive environment. One of the available 
substrates is fucose, a major component of mucin glycoproteins. Fucose is abundant 
in the human intestine [73] and is often associated with biologically active molecules 
such as serum glycoproteins, immunoglobulins, blood group substances, or gastric and 
submaxillary mucins [61]. Of the 22 tested B. cereus strains, seven contained a fcs fucose 
utilisation cassette in their genomes, whereas 12 strains showed growth or poor growth 
on fucose, suggesting the presence of an additional or alternative system. The Fcs system 
includes extracellular α-L-fucosidase that may liberate fucose from natural substrates e.g. 
host mucin, but not always from artificial substrates such as p-nitrophenyl or α-L-fucoside 
as used in our assay. However, several soil isolated Bacilli are able to utilise both categories 
of substrates by producing more types of α-L-fucosidases [60-62]. Although fucose and 
the fcs system influence Streptococcus pneumoniae virulence [74] and the human gut 
microbe Bacteroides thetaiotaomicron can harvest monomeric fucose from host Fucα1,2-
Galβ-containing structures [73], the role of the Fcs system in B. cereus performance in the 
intestine and/or pathogenicity remains to be elucidated.

A disaccharide Gal-GalNAc (galactose linked to N-acetyl-galactosamine) is also bound 
to proteins in mucins. Prior to uptake and utilisation these mucin-bound sugars can be 
released by endo-alpha-N-acetylgalactosaminidases which are generally found in the 
human gut. Notably, 8 of the tested B. cereus strains encode this extracellular enzyme. 
The cassette for Gal-GalNAc utilisation possess also the genes required for utilisation 
of N-acetyl-galactosamine. Theoretically if GalNAc would be transported into the cell, it 
could be utilised by those 8 strains. However, that still does not explain growth of 11 of the 
tested B. cereus strains on GalNAc. Interestingly all but one of the strains utilising GalNAc 
could also use inositol, and the majority of them could use fucose as well suggesting their 
adaptation to the gut environment.

Finally, 19 of tested B. cereus strains were shown to utilise glucose-6-phosphate, while 
genomes of all the strains carry the conserved sugar-phosphate specific spsRKABC cassette 
[64]. Sugar phosphates can be found in a range of hosts including the perithropic matrix 
separating food bolus from the mid-gut epithelium cells of insects, possibly facilitating 
initial multiplication of bacteria in the gut and their persistence, an initial step for host 
infection [75]. In particular the Sps system was shown to play a role in B. cereus sugar 
phosphate sensing and uptake during growth in the intestinal environment of Galleria 
mellonella larvae [64]. Moreover, glucose-6-phosphate was shown to inhibit expression 
of hlyII, encoding the pore-forming toxin haemolysin II, by activation of HlyIIR in plasmid-
curated acrystalliferous B. thuringiensis [32].

Besides the effect of available carbohydrates on the expression of virulence factors, that 
may facilitate the host infection as well as outcompeting competitive flora, carbohydrates 
were shown to affect biofilm formation both in gram-positive and gram-negative bacteria 
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[76-78]. Formation of biofilms can facilitate colonisation of environmental niches 
including soil, food-processing environments and host intestine [79]. Roles of the different 
carbohydrates in B. cereus biofilm formation and virulence remain to be established.

The analysis of complete carbohydrate transporter and utilization cassettes allowed for 
the prediction of substrate utilization. Particularly for carbohydrate substrates used by 
only small numbers of strains such as xylose, lactose, mannose, sucrose, starch/glycogen, 
and salicin, there is an excellent correlation with the presence of the corresponding gene 
cassettes. Discrepancies between observations and predictions are conceivably due 
to: i. lack of expression of cassettes in tested conditions, e. g. availability of oxygen, as 
the number of strains utilising gluconate, L-fucose and inositol was higher in defined, 
aerated media compared to static API tests; ii. miss-identification of cassettes based 
on incorrect or incomplete prediction of carbohydrate specificity of transporters; and 
iii. lack of identification of cassettes e.g. presence of several ABC transporters with 
unknown specificity and proteins annotated only as “membrane proteins” may function 
as transporters (e.g. permeases). The latter two points of the genome-mining approach 
are clearly limitations for the identification of novel sugar utilization pathways which have 
not been described in literature earlier.

In conclusion, this study provides extensive information on the genetic potential of B. 
cereus strains as well as the corresponding potential to utilise carbohydrates for growth, 
reflecting strain diversity and the capacity to occupy different niches including soil, food 
products as well as intestinal tract of insects and mammals.
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Bacterial spores are ubiquitously present in the environment and are therefore inevitable 
contaminants in food and food ingredients, causing a risk of spoilage and/or foodborne 
illness. Spores can withstand harsh environmental conditions including treatments 
commonly applied in food processing. Due to their resistance properties, effective 
preservation treatments are required to inactivate spores, but the desire for milder 
production processes and reduction of preservatives creates an additional challenge for 
food industry. Thus, milder processing requires good understanding of spore behaviour 
to design milder preservation concepts. For research purposes, laboratory conditions 
are tightly controlled and include a limited number of variables to limit batch to batch 
variation of produced spores. However, in practice heterogeneity could be much larger, 
and this illustrates the complexity of spores produced outside the laboratory since 
environmental sporulation conditions can be highly diverse next to a variety of other 
factors that may determine spore characteristics. It is well known that sporulation history 
can affect spore behaviour. Moreover, diversity within a single species or even within a 
spore population of a single strain can have substantial impact on outgrowth potential 
and associated spoilage and/or safety risks. 

In the thesis project, factors contributing to delayed outgrowth of dormant spores at the 
germination stage (Chapter 2), the outgrowth stage (Chapter 3), and processes involved 
in spore damage and repair (Chapters 4 & 5) were identified. Additional aspects with 
impact on spore germination and outgrowth such as recovery conditions including food 
matrices (Chapters 3 & 5) and strain specific growth requirements (Chapter 6) were 
characterized. Figure 7.1 presents an overview of factors investigated that underlie spore 
performance at various stages of the germination and outgrowth process in this thesis and 
corresponding thesis chapters. Findings for laboratory B. cereus strains were extended to 
food isolates to address how diversity, both on genotypic as well as phenotypic level, 
affects behaviour (Chapters 2 & 6).
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Figure 7.1. Overview of research themes addressed in this thesis. 

Genes potentially involved in recovery from spore damage

Thermal treatment is a commonly applied method to inactivate spores in food industry 
but also at home in the kitchen. Notably, in contrast to other stresses i.e. dry heat, acid, 
disinfectants and UV treatment, the mechanisms involved in inactivation of spores by 
wet heat treatment are still poorly understood at the mechanistic level and this requires 
more research. Wet heat treatment is assumed to cause damage to single or multiple spore 
proteins, however the identity of the damaged protein(s) is still unknown. Available data 
in literature suggest that proteins involved in both germination and outgrowth of spores 
are affected by wet heat treatment [1]. 

At the start of this thesis project, delayed and/or unpredicted outgrowth of spores was 
frequently ascribed to the presence of damaged spores [2-5]. Selective plating using 
sub-optimal recovery conditions, typically achieved by addition of growth inhibiting 
compounds as for example salt or acid, has been used to quantify the number of damaged 
spores in surviving populations upon exposure to sublethal treatments i.e. heat and 
disinfectant [6-10]. In this thesis, salt supplementation was successfully used to search 
for heat treatment conditions that result in a high fraction of damaged spores (Chapter 2). 
By using a gradient of salt, supplemented to media used for plating of untreated and heat 
treated spores, severely and mildly damaged fractions in the spore population could be 
discriminated (Chapter 4).

Heat treatment conditions were selected that led to a high fraction of damaged spores to 
study outgrowth behaviour of the damaged spores at the population level. Relative change 
in OD595 during the germination and outgrowth of heat treated spores in combination with 
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microscopic observations, was used to demonstrate a delay in germination and outgrowth 
of heat treated spores compared to untreated spores (Chapter 4). To date, it remains a 
challenge to discriminate outgrowth from heat damaged spores and outgrowth from a 
small fraction of undamaged spores that survived the heat treatment. The advantages and 
limitations of available single spore/cell approaches are discussed in a separate section 
on available tools to study behaviour of damaged spores at single spore level (see below).

To gain insight in molecular mechanisms involved in outgrowth and recovery of heat 
treated spores, transcriptome profiling was performed during the germination and 
outgrowth process of heat treated versus untreated B. cereus spores. In the approach 
taken, we focussed on genes specifically expressed during outgrowth of heat damaged 
spores (Chapter 4). This approach allowed for identification of genes potentially involved 
in outgrowth of damaged B. cereus spores, including a gene encoding CdnL1, a putative 
CarD_CdnL_TRCF family transcriptional regulator. In the selected heat treatment 
conditions used, deletion of cdnL1 resulted in a higher fraction of severely damaged spores 
compared to the wild type.

A possible role of additional putative damage repair factors was assessed by comparative 
analysis of damage recovery of wild type and a range of targeted deletion mutants (Chapter 
5). In the tested conditions, with the fraction of damaged spores mainly composed of 
severely damaged spores, mutants lacking cdnL1 or cdnL2, encoding CdnL paralogues 
(orthologues to YdeB of B. subtilis), showed improved or comparable recovery as the wild 
type, while a double cdnL1/cdnL2 deletion mutant showed reduced recovery in laboratory 
as well as food based media, indicating that overlap in functionality between the two 
paralogues may take place (Chapter 5). The role of the individual cdnL1 and cdnL2 genes 
as well as their interactions and regulons remain to be elucidated. According to the string 
network [11] based on neighbourhood of homologue genes in other genomes, both cdnL1 
and cdnL2 can be linked to ispD/ispF involved in terpenoid metabolism and to BC0105, 
an orthologue of yacL of B. subtilis. Indirectly, via BC0105 (or its equivalent yacL in B. 
subtilis) both cdnL1 and cdnL2 genes (or in case of B. subtilis cdnL2 orthologue ydeB) are 
associated with disA, encoding a DNA integrity scanning protein DisA that was shown to 
delay outgrowth of B. subtilis oxidatively damaged spores until repair of DNA has occurred 
[12]. B. cereus also expresses disA upon spore outgrowth from both untreated and heat 
treated spores, which suggests a role of DisA in DNA repair in this species (Chapter 4). 
In B. subtilis yacL connects (via gene neighborhood and/or co-occurrence) to two more 
interesting genes, radA encoding DNA repair protein RadA that may play a role in the 
repair of endogenous alkylation damage, and ctsR, encoding CtsR transcriptional regulator 
controlling the expression of the cellular protein quality control genes clpC, clpE and clpP.

Interestingly, the sporulation process was affected in a number of deletion mutants lacking 
genes with putative role in outgrowth of damaged B. cereus spores (Chapter 5). For the 
BC1312 mutant, deletion led to disruption of the sporulation process and formation of 
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multiple granules within the cell (data not shown). The constructed deletion in BC1312 
was in-frame but polar effects on the BC1311 gene, located 148 bp down-stream, and 
encoding one of the α/β-type small acid-soluble spore proteins (SASPs), cannot be 
excluded. The BC1311 gene encodes an orthologue of a minor SASP [13], sspD of B. subtilis. 
SASPs are synthesized during late sporulation, and compose up to 20% of total spore 
core proteins and play an important role in protecting DNA from damage [14]. However, 
deletion of genes encoding one or more minor α/β-type SASP displayed no obvious 
phenotypic effect in the B. subtilis sporulation [15]. Alternatively, the gene product of 
BC1312 may be required for utilization of poly-β-hydroxybutyrate (PHB), a compound 
known to accumulate in the form of granules in bacterial cells, serving as a carbon and 
energy source during the late sporulation process in B. cereus and other species [16]. One 
could speculate that when PHB synthesis is initiated during sporulation [17], in a strain 
with a non-functional repressor (BC1314 appears to be a pseudogene) it would result 
in uncontrolled PHB synthesis. Together with the inability to utilize PHB, i.e. by deletion 
of BC1312, it may result in disruption of the sporulation process due to lack of energy. 
During sporulation of the ∆BC1312 mutant, granule formation was observed which may 
be linked to excessive accumulation of PHB. Clearly the transcriptome approach used led 
to identification of genes involved in wide range of processes and their contribution at 
different stages of spore formers life cycle indicating importance of the newly identified 
factors. Their roles in recovery of heat treated spores and other physiological processes 
remains to be determined. 

Tools to study behaviour of damaged spores at single spore level

Most studies on spore inactivation use plate counting methods to evaluate the impact of 
recovery conditions on spore survival and to quantify the number of damaged spores, 
whereas the relative changes in OD595 are mainly used to determine the kinetics of 
germination and/or outgrowth [9, 18-20]. Despite their usefulness at the population 
level, both methods are limited by the fact that the outcome represents the average 
behaviour of the population, and not the behaviour of individual spores. In the past 
decade, new techniques to follow single spores/cells were developed and resulted in the 
intensification of studies on single spore germination and to a lesser extent on outgrowth 
from single spores. Germination and early outgrowth is traditionally followed with 
microscopy, in particular phase contrast microscopy can be used to follow the gradual 
shift from dormant phase bright spores into the germinated phase dark spores, the 
decrease in refraction is associated with uptake of water during the germination process. 
Figure 7.2 represents tools used in this thesis to study behaviour and processes in heat 
damaged spores at population and single spore level. 
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Figure 7.2. Tools to study spore damage at population and single spore level used in this thesis.

Time-lapse phase contrast or fluorescence microscopy is a tool that can be used to study 
the spore developmental processes in time. In combination with software developed to 
track individual spores, the behaviour of multiple spores can be simultaneously analysed. 
Time-lapse approaches are widely used to study germination kinetics, in particular the 
length of the lag time of multiple individual spores [21-23]. Recently, media of increasing 
complexity are applied, for example with added tea extracts [24], for evaluation 
of germination and outgrowth of individual spores. However, the requirement for 
transparency of the medium remains a limitation of time-laps phase contrast microscopy 
as well as OD measurements for studies in complex media or food matrixes. 

As an alternative, the Anopore technique can be used to monitor outgrowth from single 
germinated spores until the microcolony stage, typically consisting of up to 256 cells. 
Anopore has been applied to test heterogeneity in spore outgrowth of heat treated 
and control B. cereus spores in the presence of secondary stresses [25]. In contrast to 
phase contrast microscopy, it can be used with complex media such as food matrices as 
media transparency is not required. The Anopore technique was used to study outgrow 
heterogeneity in complex food based media i.e. rice and broccoli for both untreated and 
severely heat treated spores (Chapter 3). Still, picture capturing and the data processing 
remain time consuming activities.
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Although useful to study the early outgrowth events, the Anopore approach cannot be used 
to examine the germination process as dormant and early germination phases cannot be 
visualised as spores are impermeable to fluorescent probes. Alternative methods to study 
early germination events include surface enhanced Raman spectroscopy in combination 
with laser tweezers allowing for measurement of Ca-DPA levels in individual trapped 
spore and following Ca-DPA release kinetics during germination [26, 27]. More recently, 
it was demonstrated that the intensity of phase-contrast images is directly proportional 
to the level of the Ca-DPA inside the spore suggesting that phase-contrast microscopy 
alone could be used to estimate Ca-DPA levels in individual spores and to measure 
kinetics of its release [26]. In fact, differential interference contrast (DIC) microscopy and 
phase-contrast microscopy have been used to monitor simultaneous germination of up to 
hundreds of individual spores adhered to the microscope cover slip or agarose pads [28-
30]. Despite clear developments in this field, it remains a challenge to study germination 
and outgrowth in non-transparent media and/or complex food matrixes.

Additionally, flow cytometry has been used to evaluate germination and/or outgrowth 
of individual spores. Flow cytometry in combination with fluorescent probes as for 
example SYTO-9 that stains DNA, can be used to monitor germination and early stage 
outgrowth of B. cereus spores under sublethal conditions [31]. In contrast to vegetative 
cells, dormant spores are considered impermeable to membrane-permeant fluorescent 
dyes such as SYTO-9 [31-34] and this fact was utilised in Chapter 2, where SYTO-9 
staining of germinating spores was used to evaluate nutrient induced germination of B. 
cereus laboratory strains and food isolates. This method allowed high trough put testing 
of germination of spores from 17 strains in response to 20 conditions at single spore 
level. The speed and accuracy of the method improved the recognition of diversity and 
heterogeneity of spore germination among B. cereus strains. 

It is important to realise that severe heat treatments inactivate and permeabilise spores, 
with concomitant water influx, also facilitate entrance of fluorescent dyes such as 
SYTO-9 targeting the DNA (Chapters 3 & 4). As a consequence, for severely heat treated 
spores, DNA binding dyes, even in combination with side/forward scatter, do not permit 
discrimination between outgrowing spores (representing signal intensity in between 
dormant and germinated spore signal) and inactivated spores. Further work is required 
to identify conditions allowing for reliable discrimination of the two fractions, ideally 
not affecting the downstream germination and/or outgrowth. Under ideal conditions, 
targeted subpopulations could be identified and separated by spore sorting, followed by 
further characterisation of their germination and outgrowth behaviour.

Behaviour of spores may be different in food matrices compared to laboratory media 
[2, 35], due to the presence of germination and/or growth inhibiting compounds or 
lack of other required compounds for these processes (discussed in more detail in the 
next section). To investigate the behaviour of individual spores or cells in food relevant 
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conditions, often a combination of conventional techniques is used at population level i.e. 
plate counting and measurement of change in OD is used with single spore/cell approaches. 
The presence of a single cell or spore in a well can be obtained using appropriate dilutions 
of the suspension [23, 36], but the most efficient approach is offered by flow cytometry in 
combination with high capacity cell sorting ([37] and Chapter 5). A range of growth related 
parameters can be obtained and variability between the individual outgrowth curves can 
be used to determine the outgrowth behaviour of single spores. Additionally, behaviour 
of single spores can be evaluated on non-transparent media including food matrixes, as 
spores can be sorted on solid media and evaluated for their colony formation. Such sorting 
approaches have been mainly used to study mildly heat treated or more commonly heat 
activated spores in presence or absences of secondary stresses [38]. 

Advanced methods to assess behaviour of single spores have allowed for direct observation 
of heterogeneous germination and outgrowth behaviour of spores, contributing to our 
knowledge on for example effect of different inactivation treatments on Ca-DPA release, 
commitment to germination or resistance to germination treatments. Despite the clear 
benefits, available methods have their limitations regarding conditions that can be tested, 
throughput, or the possibly destructive (i.e. intensive staining) process [33, 34]. Some of 
the limitations could be overcome by developments in Raman flow cytometry [39] and 
microfluidics [40, 41].

The growing number of publically available genomes enables to link genomic content of a 
strain or group of strains to observed phenotypes. Gene-trait-matching approaches aim for 
correlations between a presence/absence of a gene and considered phenotype. Despite the 
fact that identified correlations are not equivalent to causative effects, this approach can 
provide leads for less characterised phenotypes as well as lead to identification of novel 
players. Such approaches may also be used to identify genes putatively involved in recovery 
of damaged spores as discussed below.

Impact of the food matrix on germination and outgrowth of 
damaged spores

Germination and outgrowth of spores, and in particular damaged spores, is largely 
determined by environmental conditions including the food matrix composition. The effect 
of food matrix on behaviour of spores has been reported in a number of studies mainly 
focussing on impact of the heating matrix on spore survival [2, 42, 43]. The effect of food 
matrix on germination and outgrowth of spores remains largely unknown. In Chapter 3, we 
show that outgrowth of untreated B. cereus spores was affected by food matrix composition, 
in particular outgrowth heterogeneity was higher in rice based media. In fact, the slower 
(out)growth of B. cereus on rice media compared to laboratory media could be related to 
in general slower germination of B. cereus spores in rice media (data not shown), while 
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for heat treated spores additional time is available for repair of damaged spores, thereby 
supporting outgrowth from damaged spores (Chapter 5).

Germination of B. cereus spores in response to meat-, soy- and milk protein-based media 
was evaluated and compared with a selection of free amino acids commonly encountered, 
though in lower concentrations, in the environment (Chapter 2), demonstrating a higher 
germination triggering capacity of complex media than single compounds at saturating 
concentrations. Those observations stress the importance to include media composition as 
a parameter that can affect the efficiency of germination and outgrowth processes. 

Food matrixes are usually rich in carbohydrates and therefore considered to support 
growth of microorganisms in foods. The ability to utilise different carbohydrates requires 
specific transporters and utilisation clusters, and such ability can reflect the adaptation 
to particular environmental conditions e.g. rhizosphere, foods or gastro intestinal (GI) 
tract. However, certain compounds such as glycerol and inositol can be both linked to the 
plant or root environment and to the GI tract, and consequently the capacity to metabolize 
these compounds cannot be directly linked to a specific niche. Additionally, activation of 
utilisation clusters may also depend on other environmental conditions such as oxygen 
availability, pH and other conditions as indicated in Chapter 6. Nevertheless, a core set of 
carbohydrates that could be used by all strains has been identified, whereas utilisation of 
other carbohydrates like xylose, galactose, and lactose, and host-derived carbohydrates 
such as fucose, mannose and N-acetyl-galactosamine is limited to subsets of strains. Known 
genes encoding utilisation of the later ones are carried mainly by strains belonging to 
phylogenetic group III, to which all emetic B. cereus strains initially tested by Guinebretière 
and co-workers were classified [44]. In fact, carbohydrate utilisation systems and their 
activity have been linked to the toxicity and virulence of emetic B. cereus strains. A complex 
interplay of fatty acids, C-sources, N-sources, micro- and macro-nutritional environments 
in combination with global factors such as pH and water availability was suggested to 
determine the risk of food-borne intoxications, either by stimulating or inhibiting cereulide 
synthesis by emetic B. cereus [45].

Species and strain diversity 

For many years, B. subtilis has been used as model spore forming organism to investigate 
sporulation, germination, outgrowth and resistance mechanisms [14, 46-48]. However, not 
all physiological responses can be extrapolated from model strain to other strains and/or 
species. The development of genetic tools for other spore forming species and the increasing 
number of genome data has contributed to better understanding of molecular mechanisms. 
Not only the differences between Bacillus and Clostridia species [49, 50], but also within the 
Bacillus genera, including differences between B. subtilis and B. cereus become disclosed.
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The majority of genes potentially involved in recovery of heat damaged B. cereus spores 
(Chapters 4 & 5), have no orthologues in B. subtilis, but are well represented within the 
B. cereus group. The majority of the identified genes in Chapter 5 encode transcription 
regulators for which the regulon is still unknown and can be highly different between 
species. As an example, the σB regulon members of B. subtilis, involved in the general 
stress  response, exceed that of B. cereus by a factor four with only eight genes shared 
between two species [51]. 

The GRs encoded by B. cereus group strains revealed a large diversity (Chapter 2), pointing 
to possible differences between the phylogenetic groups which in turn may reflect their 
potential to germinate in different environments. Growth in those environments would 
imply utilisation of carbohydrates present therein, and indirectly requiring designated 
transporters and metabolic enzymes. A diverse set of B. cereus carbohydrate utilisation 
systems was described (Chapter 6) reflecting the capacity to obtain energy from multiple 
sources. Despite the clear assignment of B. cereus strains to the phylogenetic groups (I 
to VII) defined by Guinebretière et al. [52] the phylogenetic tree based on core genomes 
(Figure 6.1) presented a clear division of group III into two sub-groups, referred as IIIA 
and IIIB. Not only core genes but also the genes or gene cassettes present in a selection 
of strains (Table 2.4 and 7.3) indicate the differences between sub-groups IIIA and IIIB.

Next to absence/presence of genes, gene expression is tightly controlled particularly 
for genes encoding proteins used in specific environments. Not surprisingly, linking of 
phenotypic and genotypic characteristics is challenging, for example illustrated by the 
fact that germination response could only be partially linked to GRs encoded by the B. 
cereus genome (Chapter 2). By contrast, carbohydrate utilisation showed good agreement 
with the presence of genes involved in carbohydrate utilisation (Chapter 6).

Final remarks

The results presented in this thesis have been obtained using a wide range of tools 
enabling assessment of B. cereus spore germination and outgrowth, and provide novel 
insights in spore behaviour in (model) foods including damage recovery and outgrowth. 
Furthermore, first time overviews are presented of the distribution and putative 
functionality of (sub)clusters of GRs and carbohydrate utilisation clusters. Knowledge on 
spore damage repair, germination and metabolism capacity adds to further understanding 
of B. cereus ecology including niche occupation and transmission capacity and provides 
leads for future studies. Insights obtained in this study may support the design of novel 
(combination) treatments to control these notorious spoilage and pathogenic bacteria. 
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