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INTRODUCTION 

 

In developing countries, where rural population is often more than 80 %, assessment of erosion focuses 

mainly towards on-site effects of erosion. This on-site erosion strongly affects crop yields, undermines 

the long term sustainability of farming systems, and represents a major threat to the livelihood of 

farmers and rural communities.  In the industrialized countries, more attention is being paid to assess 

off-site effects of erosion, which are of interest for the society at large, e.g. in flood prevention, water 

reservoir preservation and water pollution control (Garen et al., 1999). Whether the main concern of 

Soil and Water Conservation (SWC) planning is toward prevention of on-site or off-site effects of 

erosion, there is a growing need for tools that enable to define the spatial distribution of erosion within 

a catchment or a water basin, i.e. to locate sources of soil sediment where to invest most SWC efforts 

(Ritchie et al., 2003).  Indeed, the location of sediment sources and sinks can be more important than 

the quantification of soil losses, as it is more cost effective to over-dimension erosion control measures 

than to locate them in the wrong place (Jetten and de Roo, 2001; Jetten et al., 2003). In this context, the 

appropriate scale for erosion assessment is the catchment, i. e. the natural geomorphologic unit where 

sources of soil losses and surface runoff are topographically linked to areas of sedimentation, and 

where therefore both on-site and off-site effects of erosion can be appreciated (Morgan, 1995). 

Models are vital tools for soil erosion assessment and watershed conservation planning (Garen et al., 

1999; Ritchie et al., 2003). They may be used for erosion risk assessment, but also for evaluating the 

possible effects of changes in land use or adoption of SWC measures. Extension services and 

environmental agencies increasingly make use of models for assessing the intensity of erosion before 

SWC activities are implemented and to estimate the possible outcomes of the SWC plan. 

Depending on the approach adopted to represent erosion processes, erosion models can be broadly 

classified as empirical, physics-based or conceptual (Wheater et al., 1993; Merritt et al., 2003). This 

classification refers to the main structure of the model and is largely subjective, as in all models a 

certain degree of empiricism can not be avoided (Merritt et al., 2003).  Empirical models consists of 

regression equations that relate the rate of erosion to its determining factors, like climate, topography, 

vegetation and soil characteristics. Empirical models, of which the Universal Soil Loss Equation 

(USLE; Wischmeier and Smith, 1978) is the most famous example, have long been used for SWC 

planning purposes. They are simple to use and require limited data. However, the empirical 

relationships they embed are built from site-specific observations. As the mechanisms of erosion 

processes are not dealt with explicitly, and the relationships between soil losses and erosion factors are 

derived from the aggregated response of the natural system, empirical models may not perform well 

when applied under different conditions.  

Physics-based models, instead, represent flow and sediment processes and their interactions on the 

basis of physics laws of mass and momentum conservation. Physics-based models include the state-of-

the-art knowledge of the system and provide good tools to understand the interactions occurring 

between erosion processes. However, they also suffer from some main drawbacks. Physics-based 

models are composed of a large number of sub-processes, the solution of whose describing equations 
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requires huge amounts of input data and computational power. These describing equations often refer 

to physics laws that were originally formulated at a scale different from the model scale. Moreover, 

erosion models are highly nonlinear, thus errors in any part of the model may propagate to the final 

results in ways that are difficult to foresee. Because of these shortcomings, model parameters need to 

be locally calibrated and validated (Jetten et al., 1999). However, the parameters to be calibrated often 

outnumber the data available, so that unequivocal identification of the parameters can not be achieved 

(over-parameterisation). In practice, error propagation and uncertainties in the estimation of input data 

often more than compensate for the theoretically more accurate description of the system (Jetten et al., 

2003). 

Placed somewhere in between these two opposite approaches, conceptual (or semi-empirical) 

models incorporate transfer mechanisms of sediment and overland flow generation, but do not include 

specific details of process interactions (Merritt et al., 2003). Conceptual models aim at reflecting the 

physical processes governing the system, but describe them with empirical relationships. They thus 

combine a physical interpretability of modelling results with a simple structure. Conceptual models 

tend to suffer less of parameters identifiably and over-parameterisation problems, but may suffer of 

aggregation problems (Merritt et al., 2003). They generally require calibration and validation, and a 

good number of observations. However, their limited number of parameters and processes reduces 

computational requirements, simplifies the assessment of model prediction uncertainties, and facilitates 

the implementation by user agencies and in data poor environments (Garen et al., 1999; Merritt et al., 

2003; Jetten et al., 2003).  

In hydrology, a fourth type of models can be distinguished: the hybrid-metric models, which rely on 

robust statistical techniques to characterise the dominant processes at work in the system (Wheater et 

al., 1993; Young, 1998). Hybrid-metric models adopt an inferring approach: they identify the modal 

response of a system and interpret it according to physics paradigms. However, they require long time-

series data to extract the dominant response information, and no equivalent in erosion modelling was 

found in the literature. 

With the advent and spread of Geographic Information Systems (GIS), erosion modelling 

increasingly aimed at providing spatially distributed predictions. GIS tools enhanced exponentially the 

possibilities of handling spatial information such as topography, soil and land use, thus simplifying the 

implementation of spatially distributed models, sometimes so much that scaling considerations would 

be overlooked. However, the capabilities of gathering information on the spatial distribution (spatial 

pattern) of environmental data evolved less quickly than the capabilities to manipulate the spatial 

information (Grayson and Blöschl, 2000). Probably because of this, the reliability of erosion model 

predictions in depicting the spatial patterns of erosion and deposition within a catchment has not been 

questioned until recently. Unfortunately, recent assessments showed that erosion models performances 

in this respect are generally poor (Jetten et al., 1999; Jetten et al., 2003; Merritt et al., 2003). As in 

other environmental modelling areas, difficulties in distributed erosion modelling arises from the 

natural complexity of the landscape system, spatial heterogeneity and lack of available data (Merritt et 

al., 2003).  
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Figure 1. Characteristics space-time scales for some hydrological and erosion processes and relevant soil 
properties. Adapted from Blöschl and Sivapalan (1995) and Renschler and Harbor (2002).  

Erosion processes consist of complex ecological interactions that are strongly scale-dependent. Fig. 

1 shows the characteristic lengths of some important hydrologic and erosion processes in the space and 

time dimensions. The scale for erosion modelling aiming at SWC planning can be roughly positioned at 

the event-annual time range (from less than one hour to 10 year) and the hillslope-catchment space 

range (from 100 m to 10 km). This scale frame encompasses different mechanisms of water flow, from 

infiltration excess overland flow to channel flow, and erosion mechanisms, from splash detachment by 

raindrops to soil transport and deposition in shallow water and channels, to bank erosion. Even though 

all ecologic processes interact at any moment and at any place, their relative importance changes with 

the time-scale frame adopted to describe them. As a consequence, the relative importance of forces and 

resistances applied to the system change, and the factors required to describe the processes change with 

them.  

The time-space scale dimension is also crucial to observe erosion processes and their factors. 

Unfortunately, measurement techniques seldom match the optimal modelling time-space scale frame 

(i.e. the event and the catchment). Often, the temporal and spatial support of measurements, i.e. the size 

on which measurements are conducted, is small in comparison to model requirements (Blöschl and 

Sivapalan, 1995; Grayson and Blöschl, 2000). Moreover, erosion processes proved to be extremely 
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variable even under controlled conditions. Studies conducted on ‘homogeneous’ plots reported a 

natural (or unexplained) variability of overland flow depth and soil loss that resulted in coefficient of 

variations per rainfall event larger than 65 %. This variability was spatially inconsistent among plots 

during different events and was larger for the smaller events (Hjelmfelt and Burwell, 1984; Wendt et 

al., 1986; Nearing et al., 1999).  

In the face of the spatial and temporal heterogeneity of the erosion processes, measurement 

strategies may point at increasing the extent of the monitoring scheme (i.e. the overall coverage of the 

data; Grayson and Blöschl, 2000), by repeating measurements either in time or in space. Time and 

capital constrains seldom allow for both large and long (if any) monitoring campaigns. It follows that 

in virtually all situations, the data available for erosion modelling is usually much below the 

requirements for adequate calibration and validation of complex models (e.g. Quinton, 1997). This is 

especially true for applications of erosion models aiming at SWC planning, for which data consist 

mainly of general databases created at national or regional level instead of well-equipped experimental 

catchments (Renschler and Harbor, 2002). The problem is particularly crucial in developing countries, 

where erosion data are seldom available (e.g. Dregne, 1989). 

In practice, the environmental data that are usually available contain information to characterize 

only the dominant processes active in a given system, which may then be described effectively by 

conceptual approaches (Young, 1998). Indeed, conceptual (semi-empirical) models offer a compromise 

between the need to explicitly deal with the main processes and the limited data availability, and may 

therefore be appropriate in characterizing the distribution of erosion within a catchment (Viney and 

Sivapalan, 1999; Jetten et al., 2003). For example, Desmet and Govers (1995) obtained some 

encouraging results with a simple transport-limited erosion model whose main driving factor was 

topography. 

Because of the largely unknown interactions between parts of the natural system, the simplifications 

necessarily assumed by any model, and the limited availability of data, model predictive errors may be 

large. In SWC planning, model outputs guide important decisions. Therefore, the uncertainties of 

model predictions should be made explicit to policy and decision makers (Garen et al., 1999; Merritt et 

al., 2003), in the form, for example, of output bands (Quinton, 1997) or maps showing where model 

predictions are most uncertain.  

The inherent structure of GIS favoured the mathematical processing of spatial information and the 

handling of quantitative (hard) data, thus the development of spatially distributed models have so far 

mainly concentrated on quantitative approaches. However, opportunities for the improvement of 

spatially distributed predictions may lay in less explored sources of information. One of these sources 

is represented by the analysis of landscape spatial patterns (Grayson and Blöschl, 2000). Spatial 

patterns reveal, very much like a picture of landscape processes, the spatial organization of 

environmental processes and can be considered the integrated response of the system to its main 

drivers. Spatial patterns therefore represent a source of information for landscape research that is 

largely unexploited, also because tools to analyse them are still very much under development 

(Grayson and Blöschl, 2000; Jetten et al., 2003). 
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Another potential source of information is the qualitative (soft) information offered by farmers’ and 

experts’ knowledge. Farmers’ knowledge of their environment is linked to land management 

experience and land use history  (Payton et al., 2003; Murage et al., 2000; Habarurema and Steiner, 

1997; Warren et al., 2003). Though acknowledged as scientifically valid, soft information has often 

been overlooked, probably because it is difficult to integrate it into the existing landscape analysis 

systems and methodology studies that focus on integrating local and scientific knowledge are still few 

(Niemeijer and Mazzuccato, 2003; Payton et al., 2003). 

Aim 

The study reported in this thesis aimed at developing a semi-empirical, spatially distributed erosion 

model to locate sources of sediment within a catchment in data scarce environments. Three specific 

objectives were defined: (i) identifying the main physical processes affecting the distribution of 

erosion, (ii) by describing them with simple equations, enabling the estimation of the spatial 

uncertainties of model predictions, and (iii) exploring the potential use of alternative sources of 

information, such as observed spatial patterns of erosion and overland flow and farmers’ indicators of 

erosion, for the improvement of spatially distributed erosion modelling. 

Research area 

Most of the data reported in the thesis were collected during four fieldwork periods conducted from 

2001 till 2003 in Kwalei catchment, located in the humid-warm agro-ecological zone of the West 

Usambara Mountains, in North-east Tanzania. 

The West Usambara Mountains lay between latitude 4º24´-5º00´ S and longitude 38º10´-38º36´ E 

and are an important zone of agricultural production, comprising staple food, cash crops and timber. 

The farming system is mixed: farmers are involved in rain-fed agriculture, traditional irrigation in 

valley bottoms, livestock keeping and off-farm activities (Tenge et al., 2004). Tea, coffee and 

vegetables are the main cash crops; whereas banana, maize, bean, and round potato are the main food 

crops. Intercropping is a common farming practice. Major cropping systems are coffee-banana 

intercrop with other tree species, e.g. temperate fruits and yam below the coffee, maize and bean, and 

patches of sweet potatoes, cassava and sugarcane (Tenge et al., 2004). Tea, instead, is cultivated as 

monocrop by both smallholder farmers and large-scale estates. 

Population density ranges from 200 to 400 inhabitants per km
2
 (Kaoneka et al., 2000). People live in 

villages consisting of clusters of homesteads (hamlets) with about 60-80 households. Hamlets are often 

placed on the ridge shoulders, and the fields run downhill (Mbaga-Semgalawe, 1998).  The main ethic 

group is the Sambaa tribe, which accounts for 79% of the population, followed by Pare (14%), Mbugu 

(8%) and Taita. Traditionally, Sambaa are mainly smallholder farmers, while Pare are agropastoralists 

and Mbugu are pastoralists (Kaoneka et al., 2000). Smallholder farm size varies between 0.7 and 4.1 ha 

per household, fragmented in several small plots at average walking distance of around 40 minutes 

from the homestead (Mbaga-Semgalawe and Folmer, 2000). 
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The West Usambara Mountains have been inhabited since at least 2000 years. Until the end of the 

19
th

 century most of them were covered by mountain rain forest (Kaoneka et al., 2000). Agriculture 

practice consisted of shifting cultivation, whereby after two years of cultivation the land was left for 

long fallow periods, and agroforestry techniques, whereby the multi-storey cultivation of selected 

species reproduced the structure of the forest. Land management changed drastically under the rule of 

the German colonial government. The new government established large plantations of coffee and tea, 

demarcated forest reserves, and reallocated land to the new European settlers. At the same time, the 

local population started to grow at a very fast rate. Land availability decreased quickly. The trend did 

not change under the British administration, and by 1936 all arable land was under cultivation. 

Population adapted to land scarcity by reducing and abandoning shifting cultivation and fallow 

practices, by cultivating food crops in the low-lands or on steep slopes, and by encroaching forests, 

valley bottoms and wetlands. The intensification of agriculture led to accelerated soil erosion, reduced 

water availability and decreased soil chemical fertility, ultimately reducing land productivity and 

triggering a vicious circle of land degradation (Mbaga-Semgalawe and Folmer, 2000).  

At the end of the 1940s, the British colonial government, concerned with the consequences of 

accelerated soil erosion, enforced soil conservation plans aiming to intensify the agricultural production 

systems while rehabilitating the degraded natural resources. Farmers, however, experienced the  

coercive conservation activities as heavy duties that were devoid of any tangible benefit. Population 

reacted with passive resistance and anger, which at times exploded into open riot and alimented the 

opposition to the colonial government. Quite naturally, with the independence the soil conservation 

plans were abandoned and for around ten years land degradation disappeared from the political agenda. 

In the 1970s, however, the severe degradation of natural resources became evident in the reduction of 

forest cover, the appearance of denuded patches of land, and the drying up of springs and rivers. 

Almost 10000 ha, roughly equal to six per cent of arable land, were estimated to be affected by severe 

erosion (TIRDEP, 1977). In answer to the crisis, the government engaged in several conservation 

programs planned in collaboration with international donor agencies. Project approaches changed over 

time, moving from top-down schemes to more participatory planning (Johansson, 2001). While these 

programmes have certainly had an impact in improving the awareness and perception of the erosion 

problem among farmers (Johansson, 2001), the adoption rate of SWC measures has remained below 

expectations and the resources available for intervention are still critically below the needs for proper 

SWC implementation. 

Study outline 

Environmental data of the study area at the beginning of the research were limited and scattered. The 

first fieldwork period (March-May 2001) was mainly devoted to the collection of basic bio-physical 

information and secondary data, and to the identification of the main erosion processes at work. The 

most substantial climatic information consisted of 75 years of monthly rainfall records from Sakarani 

Mission, located at about five km from the catchment. A set of false colour aero photos (approx. scales 

1:27000 dating September 1996) was used to derive a Digital Terrain Model (DTM) of the catchment 
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by aerophotogrammetric techniques. From the DTM, a 20 m pixel size Digital Elevation Model (DEM) 

and a one m pixel size ortophoto image, which constituted the base of the land use map, were derived. 

At the same time, a rectangular flume was built at the catchment outlet, and equipped with an 

automatic recording station for continuous measurement of water level and for sampling sediment 

concentrations during rainfall events. The team of scientists of the Agricultural Research Institute of 

Tanzania (ARI-Mlingano) provided the soil map of the catchment (Meliyo et al., 2001) and conducted 

a Participatory Rural Appraisal focused on erosion problems. In the following short rainy season (Oct-

Nov 2001) an erosion assessment survey that covered one fifth of the catchment was carried out to 

complete the appraisal of basic information of the Kwalei catchment. These data were used to test the 

capability of an empirical erosion model, the Morgan, Morgan and Finney model (MMF, Morgan, 

2001), to locate erosion in Kwalei. The analysis was expanded by including another experimental area, 

Gikuuri catchment in Kenya, where a parallel research had provided a similar dataset (chapter 2). 

One of the main problems of erosion modelling is to model correctly the distribution of overland 

flow in space and time. The fieldwork period of March-May 2002 focused on overland flow processes, 

monitoring the spatial pattern of overland flow occurrence and exploring whether field measurements 

of infiltration could help to model it (chapter 3).  

These observations allowed to formulate hypotheses on the catchment hydrology that needed 

confirmation; at the same time the focus had to shift once again from the hydrologic to the erosion 

processes. The last fieldwork period (Dec 2002-May 2003) was devoted to (i) verify and enlarge the 

observations of overland flow occurrence in other areas of the catchment, (ii) quantify erosion within 

the catchment, and (iii) re-assess and enlarge the spatial distribution of erosion in the catchment. 

Intensive observations concentrated along two longitudinal transects in the lower and middle slopes of 

the catchment, where overland flow occurrence and depth, soil losses, presence and intensity of erosion 

features were monitored. At the catchment scale, the erosion assessment survey was repeated and 

expanded, recording also the presence of farmers’ indicators of erosion and presence and coverage of 

soil surface crusts.  

The observations of overland flow occurrence at the hillslope scale were linked to the rainfall-

discharge relationship observed at the catchment outlet to build a hybrid-metric, semi-distributed 

hydrologic model to predict overland flow distribution within the catchment (chapter 4). This model 

was then coupled with the sediment phase of the MMF model to simulate the distribution of soil 

erosion within a catchment. The uncertainty of model predictions due to the choice of sediment 

transport parameters was estimated with a Monte Carlo simulation experiment (chapter 5).  

The limited improvements in the erosion distribution achieved by the better hydrologic 

characterisation called for a critical reflection on erosion modelling, especially in the light of similar 

problems experienced by other models in the same area (Hessel et al., 2005). Farmers’ knowledge 

showed to be a promising alternative source of information, as the presence of farmers’ indicators of 

erosion matched well the observed pattern of erosion (chapter 6). The analysis of spatial patterns of 

observations and model simulations, together with farmers’ indicators of erosion and other data 

collected during the fieldwork shed a new light on scale issues that erosion modelling research should 

address in the future (chapter 7). 
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MODELLING CATCHMENT-SCALE EROSION PATTERNS IN THE 
EAST AFRICAN HIGHLANDS 

Abstract 

Prompt location of areas exposed to high erosion is of the utmost importance for soil and water 

conservation planning. Erosion models can be useful tools to locate sources of sediment and areas of 

deposition within a catchment, but the reliability of model predictions of spatial patterns of erosion at 

catchment scale has seldom been validated against observations. This study aimed to evaluate the 

performance of a simple empirical model (Morgan, Morgan and Finney model, MMF) in predicting 

spatial patterns of erosion at two small catchments in the East African Highlands: Kwalei (Tanzania) 

and Gikuuri (Kenya). Erosion maps predicted by the MMF model were compared with erosion maps 

obtained by direct survey. In Kwalei, erosion features were especially frequent in fields of annual 

crops. In Gikuuri, slope was the critical erosion factor, with estimated erosion rates > 10 kg m
-2 

y
-1

 on 

slopes > 18%. Predicted erosion rates were mainly transport-limited and ranged from < 0.01 to 13.50 

kg m
-2 

y
-1 

in Kwalei and 9.29 kg m
-2 

y
-1

 in Gikuuri. The performance of the MMF model in predicting 

the spatial patterns of erosion was acceptable in Kwalei, but poor in Gikuuri. However, by excluding 

the elements at the valley bottoms in Gikuuri Catchment, the performance of the model improved 

dramatically. The spatial pattern of erosion predicted by the MMF model was driven by the 

accumulation of surface runoff, which did not consider the possibility of re-infiltration along the slope. 

As a result, the MMF erosion patterns predicted by the model increased invariably from the ridges to 

the valley bottoms, hampering the model suitability for locating areas subjected to high and very high 

erosion. It is concluded that the model predictions could be substantially improved by introducing a 

more realistic hydrological component for the prediction of surface runoff along the hillslope.  

 

Keywords: spatial pattern of erosion; empirical modelling; Morgan, Morgan and Finney model; 

erosion assessment; East African Highlands. 

 

Introduction 

The East African Highlands constitute more than 76 % of the Highland ecosystems of Tropical Africa 

(Pfeiffer, 1990). Thanks to a favourable climate and fertile soils, these areas have a high potential for 

crop production, and are very important sources of staple food, forest products and export crops 

(Lundgren, 1980). However, population densities are generally > 100 persons per km
2
. Because of this 

heavy pressure on land resources, soil erosion is widespread and a major cause of land degradation 

(Tiffen et al., 1994). Reported soil losses from runoff plots ranged from 4.3 kg m
-2 

y
-1

 in coffee 
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plantations in Tanzanian Highlands (Mitchell, 1965) to 25.5 kg m
-2 

y
-1

 under tea plantations in Kenya 

(Othieno, 1975). 

Soil and Water Conservation (SWC) projects are active in these areas since the colonial period, 

experiencing various degrees of success. Past experiences showed that SWC planning should be 

approached at catchment level, instead of at individual farm or administrative districts (Pretty et al., 

1995). The catchment has the advantage of being a natural geomorphologic unit, in which sources of 

soil losses and surface runoff are topographically linked to areas of sedimentation, and therefore both 

on-site and off-site effects of erosion can be appreciated (Morgan, 1995). The catchment is at the core 

of the SWC planning method introduced by the Government of Kenya and now adopted by six East 

African Countries: the so-called Catchment Approach (Pretty et al., 1995; Kamar, 1998). The method 

consists of a participatory community planning process, with actual planning of SWC measures at farm 

level. At the beginning, the catchment scale was selected in order to efficiently use the limited available 

sources of capital and labour, but it eventually evolved into a focal area where a community is willing 

to work towards a more conservative utilisation of natural resources. Since its introduction in the 

1980s, the Catchment Approach gave positive results in the improvement of soil productivity, together 

with reduced resource degradation (Pretty et al., 1995; Kizunguto and Shelukindo, 2002). However, 

capital, technical skills and labour availability are still limited in comparison with the needs (Pretty et 

al., 1995).  

Therefore, a method that would allow quick assessment of major sediment sources and sinks within 

catchments would help to prioritise the most affected areas. Tools for locating soil erosion sources and 

areas of deposition are, however, still lacking. An ideal SWC planning tool should be reliable and 

reproducible, able to predict the post-intervention situation, but simple in use and with limited data 

requirements. Field surveys may give the actual erosion status of an area, but surveys are time 

consuming and resource demanding. Moreover, they refer to a situation at a given time and area: their 

results are not reproducible elsewhere, neither can they predict changes after SWC planning. On the 

other hand, erosion models can potentially be used to predict areas within the catchment exposed to 

high erosion. Most catchment-scale erosion models are deterministic models, created since the 1960s to 

evaluate off-sites risks of soil erosion and surface runoff (Morgan, 1995). Even though they are based 

on physical laws, they retain a high level of empiricism in their equations and require much data for 

input, calibration and validation (Morgan, 1995). Their usefulness in quick SWC planning is therefore 

questionable. This explains the popularity and wide use of empirical models, such as the Universal Soil 

Loss Equation (USLE, Wishmeier and Smith, 1978). These empirical models have long been used for 

SWC planning purposes. They are simple to use and require limited data. On the other hand, empirical 

models have been derived using site-specific data and may not perform well if applied under different 

conditions. Moreover, they were usually created for erosion prediction at the field scale, and even if 

they are increasingly used at catchment level, their reliability in depicting soil erosion patterns at this 

scale has seldom been tested. In general, only recently the ability of erosion models in predicting 

spatial patterns of erosion has been explored. Deterministic models proved generally ineffective in 

reproducing spatial patterns of erosion unless a high level of detail in the input data was provided (e.g. 

Takken et al., 1999). On the other hand, Desmet and Govers (1995) obtained some encouraging results 



Chapter 2 

 

17

with a simple transport-limited erosion model whose main driving factor was topography. A simulation 

of 60 years of erosion with their model matched quite closely the erosion data derived from a soil map, 

showing that patterns of soil redistribution could be represented even with a crude process description. 

More recently, van Rompaey et al. (2001) developed an empirical but spatially distributed model for 

the calculation of sediment delivery to river channels (SEDEM). The model predicted erosion at the 

catchment outlet well, but the reliability of the model predictions of the spatial pattern of erosion was 

not assessed.  

Among the empirical models, the Morgan, Morgan and Finney (MMF) model (Morgan et al., 1984) 

was created for tropical conditions, where it performed well (Morgan et al., 1982a). The model was 

recently revised and adapted for applications at the catchment scale (Morgan, 2001). The aim of this 

paper is to evaluate the performance of the revised MMF model for SWC planning at the catchment-

scale in the East African Highlands. The spatial patterns of erosion predicted by the MMF model were 

compared with erosion maps obtained from field surveys for two small catchments representative of the 

East African Highlands: Kwalei Catchment in the West Usambara Mountains (Tanzania) and Gikuuri 

Catchment in Embu District (Kenya). 

 

Materials and methods 

The Morgan, Morgan and Finney Model  

The Morgan, Morgan and Finney model is an empirical model developed to estimate mean annual soil 

loss from field-sized areas on hillslopes (Morgan et al., 1984). The model was selected in our study for 

several reasons. First, the model retains a strong physical base, but is easy to understand and requires 

few parameters. Moreover, the model had been applied successfully over many tropical locations and 

had already been tested in the East African Highlands (West Usambara Mountains, Tanzania; Morgan 

et al., 1984).  

The model is structured into two phases: a water phase (where energy of rainfall and volume of 

surface runoff are calculated), and a sediment phase (where soil detachment and soil transport rates are 

calculated). The lowest of the last two values is taken as the soil loss at a particular location, indicating 

the erosion-limiting factor. The model was recently revised and described in detail (Morgan, 2001). 

The new version presented an improved physical basis by incorporating a more accurate description of 

erosion processes and by enlarging the guidelines for model inputs. Examples with the model applied at 

catchment scale were also included. In our study, this new version of the model was used; in what 

follows only the equations relevant for the application in the East African Highlands are given. 

The rainfall kinetic energy (KE, J m
-2

) is a function of the effective rainfall (ER, mm), i.e. the 

fraction of mean annual rainfall (R, mm) that is not intercepted by the vegetation canopy (INT, fraction 

between 0 and 1). The effective rainfall (ER) is split into direct throughfall (DT), which directly reaches 

the soil, and leaf drainage (LD), which is intercepted by the canopy and reaches the surface by 

stemflow or dripping from leaves. The division is a function of the canopy cover (CC, fraction between 

0 and 1). The kinetic energy of the direct throughfall DT (KEDT, J m
-2

) is a function of rainfall intensity. 
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The kinetic energy of the leaf drainage (KELD, J m
-2

) is a function of canopy height (PH, m). The total 

kinetic energy KE (J m
-2

) is given by the sum of the two fractions: 

 

KE = KEDT  + KELD          (1) 

 

Rainfall kinetic energy KE determines the soil detachment by raindrop impact F (kg m
-2 

y
-1

), which 

is defined as: 

 

F = 10-3 K KE           (2) 

 

where K = soil detachability index (g J
-1

), defined after Quansah (1981).  

In each field, the volume of surface runoff Qi (expressed in mm of runoff depth) is calculated in 

terms of saturation excess runoff: surface runoff is generated when daily rainfall exceeds the soil 

moisture storage capacity. The annual surface runoff is obtained from: 

 

Qi = R exp(-Rc/R0)           (3) 

 

where R = mean annual rainfall (mm), Rc = soil moisture storage capacity, and R0 = mean rainfall per 

rainy day (i.e. mean annual rainfall R divided by the number of rainy days per year, n).  The soil 

moisture storage capacity (Rc) is estimated as:  

 

Rc=1000 MS BD EHD (ETa/ETp)
0.5

        (4) 

 

where MS = soil moisture at field capacity (weight %), BD = soil bulk density (Mg m
-3

), EHD = soil 

effective hydrological depth (m), and ETa/ETp = ratio of actual and potential evapotranspiration. The 

soil effective hydrological depth (EHD) indicates the depth of soil within which the moisture storage 

capacity controls runoff generation and depends on root density and depth, or on the presence of an 

impermeable soil layer (i.e. shallow soils or presence of a crust) that limits water storage capacity 

(Morgan, 2001).  

The application of the model to areas larger than a field requires the introduction of some 

mechanism for accumulation of surface runoff along the slope. Morgan (2001) suggested subdividing 

the catchment into elements of homogeneous land characteristics, i.e. homogeneous slope, soil and land 

use, and arranging them in a cascading sequence of surface runoff accumulation. However, the author 

did not mention how to take into consideration the relative importance of the area of the different 

elements, and how this would affect the accumulation of surface runoff along the slope.  

In our case, the total surface runoff of the element i (Qti) is considered as the sum of the surface 

runoff generated within the element i, Qi (eq. 3), plus the surface runoff received from the immediate 

upslope area (Qup) weighted by the ratio between the upslope element area (Aup) and the area of the 

element i (Ai):  
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Qti  = Qi + Qup (Aup / Ai )          (5) 

 

Eq. 5 takes account of slope divergence and convergence, and for the element surface. 

The total surface runoff Qti is then used to calculate the detachment rate by surface runoff Hi and the 

transport capacity TCi of the element i. Soil detachment by surface runoff Hi (kg m
-2 

y
-1

) is estimated 

as: 

 

Hi  = 10-3 (0.5COH)-1 Qti 
 1.5 sinβ (1-GC)        (6) 

 

where COH = soil cohesion (kPa), Q = volume of surface runoff, sinβ = sine of the slope and GC = 

fraction of vegetation ground cover (0-1). 

The transport capacity TCi (kg m
-2 

y
-1

) is equal to: 

 

TCi = 10-3 CP Qti 
2 sinβ           (7) 

 

where CP = crop cover factor, given by the product of the Universal Soil Loss eq. C and P factors 

(Wishmeier and Smith, 1978). 

Finally, the mean annual soil loss rate of the element i (Ei, kg m
-2 

y
-1

) is estimated as the minimum 

of sediment available and transport capacity:  

 

Ei = min [(F+ Hi +Eup), TCi ]         (8) 

 

where Eup = influx of material from the immediate upslope area. 

Sedimentation occurrs where the influx of material from upslope Eup is larger than the transport 

capacity out of the element TCi, with a net sedimentation SEDi equal to: 

 

SEDi = Eup - TCi            (9) 

 

The study areas 

Two experimental catchments were selected as representative of the East African Highlands for 

morphology, land use and socio-economic conditions: Kwalei Catchment in the West Usambara 

Mountains (Tanzania) and Gikuuri Catchment at Embu District (Kenya) (Fig. 1). 

Kwalei (4°48′ S, 38° 26′E) is situated in Lushoto District, in the West Usambara Mountains, North-

East Tanzania. This catchment has an area of c. 2 km
2
, and is roughly triangular in shape. Elevation 

ranges from 1337 to 1820 m, and the terrain is rough and highly dissected, with one half of hillslopes > 

20 %. Drainage comprises four permanent streams running from Northwest to Southeast (Fig. 1). Mean 

annual rainfall is c. 1000 mm, almost half of which falls during the long rainy season that stretches 

from late February until late May. A shorter and less predictable rainy season occurs from October to 

January. Average daily temperature is 18 ºC, with diurnal temperature ranges (12-25 °C) greater than 

annual ranges (16-20 °C). Five soil types occur in the catchment (FAO-Unesco legend, FAO, 1990): 
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Humic Acrisols at the summits, Haplic Lixisols at the summit footslopes, Haplic Acrisols on the ridges, 

Eutric Fluvisols and Umbric Gleysols in the river valley (Meliyo et al., 2001). In general, topsoils are 

porous and sandy, with medium to high organic carbon contents. Subsoils are clayey and less well-

drained. Poor drainage occurs only in the valley bottom Gleysols (Meliyo et al., 2001). The highest part 

of the catchment is covered by mountain rain forest, whereas the middle and lower slopes are used for 

agriculture. Due to the intense land use and small field sizes, the vegetation cover is complex: annual 

crops are intercropped with perennials, and interspersed with fodder and fruit trees, or fuel and timber 

woodlots. However, cultivation of annual crops concentrates close to the compounds, along the ridge 

shoulders: maize is the most cultivated crop, often intercropped with bean, banana, cassava and 

sugarcane. The two-layer cultivation of banana and coffee is frequent on the steeper slopes along the 

stream incisions. Valley bottoms are intensively cultivated with vegetables, which represent the major 

local cash crops. 

Gikuuri Catchment (00°25′ N, 37° 00′ E) is situated in Embu District, Central Kenya. It covers an 

area of c. 5 km
2
 and presents an elongated stream system that comprises three main permanent streams 

running North-South. Convex-concave slopes, with flat summits, steep midslopes and V-shaped 

valleys, form the landscape (Fig. 1). Slope gradient is from 2 to 55 %, with a mean of 18 %. Mean 

annual rainfall is c. 1100 mm, distributed over the long rainy season (650 mm), from mid-March until 

June, and the short rainy season, from mid-October until December (450 mm). Diurnal temperature 

fluctuates between 10 and 25 °C.  Three major soil types (FAO-Unesco legend, FAO, 1990) occur in 

the catchment: Rhodic Nitisols on the ridge summits and on moderate and steep slopes, Chromic 

Cambisols and Chromic Luvisols on the very steep slopes along the drainage system. Soils are clayey, 

deep, and well-drained, but of poor chemical fertility. Minor soil types comprise Haplic Acrisols in the 

Northern and Western slopes, and Dystric Fluvisols and Gleysols along  valley bottoms (Wanjogu, 

2001). The farm system is composed of coffee-dairy enterprises (Jaetzold and Schmidt, 1983). The 

land use is patchy, but coffee, maize and bean fields cover > 70% of the catchment. Major cash crops 

are coffee, banana, mango and miraa (Cathy edulis L.; a stimulant that forms an excellent cash crop for 

farmers), whereas main food crops are maize, bean, cassava and vegetables. Fodder trees, bushes and 

timber woodlots are also frequent in the area.  

In both catchments, cultivation and clearance of steep slopes expose bare and loose soil to the first 

rainstorms, and intense erosion may occur especially at the onset of the rainy seasons, before 

vegetation cover can protect the soil. Erosion mainly occurs in the form of interrill and rill erosion from 

annual fields. 

 

Data collection 

During the long rainy season (March-June) of 2002 intensive fieldwork took place in the two 

catchments with the double purpose of collecting input data for the MMF model and assessing the 

actual erosion in both catchments. Data collection strategy was different for the two catchments, as 

they differed both in the pre-existing information and geographical characteristics. 
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Figure 1. Location and topography of the study areas: on the left Kwalei Catchment (Tanzania), on the right 
Gikuuri Catchment (Kenya). Shading represents the sine of local slope (sinβ). 

Cartographic environment  

In order to represent the spatial distribution of MMF inputs, outputs and field observation, data were 

organised in a Geographical Information System (ILWIS 3.1, ITC, 2002). For each catchment, four 

basic maps were created for MMF inputs (soil, land use, slope and element map).  

Soil maps were available for both catchments (Meliyo et al., 2001; Wanjogu, 2001). The land use 

map of Kwalei was produced by surveying and on the basis of an orthophotomap. The land use map of 

Gikuuri was created on the basis of a cadastral map. The slope map of Kwalei was derived from a 

Digital Terrain Model (DTM), with a pixel size of 20 m, produced by the aerophototriangulation 

method  with Socet Set software (BAE SYSTEMS, 2003). No DTM was available for Gikuuri, 

therefore slope was estimated in the fields using an inclinometer (Fig. 1).  

The element maps represented elements of homogenous landscape and formed the basis for 

application of the model at catchment scale. In Kwalei, elements represented fields (i.e. areas with 

homogeneous land use and soil type). Mean element size was 0.30 ha. In Gikuuri, elements represented 

portions of hillslope homogeneous per slope direction and gradient: from the water divide to the 

stream, hillslopes were divided in upper, middle, lower slope and valley bottoms. Elements were in this 

case large (mean size = 1.52 ha) and comprised more than one soil and land use type.  

Mean surface runoff Qi and mean detachment rate by raindrops F were calculated per element. The 

elements were then arranged in a cascading sequence of surface runoff accumulation (eq. 5). The 

accumulation of surface runoff proceeded from elements along the slope ridges to the streams. 

However, the actual accumulation of surface runoff along the slopes was checked in the field. Where 

ditches or other obstacles that removed the run-on were present, like roads or well-maintained SWC 

measures, the cascading sequence was adjusted for. If the obstacle were in good working conditions, 
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the surface runoff had reached the drainage system and was removed from the accumulation sequence; 

the elements downstream the obstacle received neither surface runoff nor sediment from the elements 

upstream the obstacle. If the obstacle were badly maintained, surface runoff and sediment were re-

directed toward the element where the obstacle drained.  

 

Soil erosion assessment  

The element maps defined the maximum level of accuracy of the MMF model predictions at the 

catchment scale, therefore these maps were used as the basis for erosion assessment by direct survey. 

Assessment of actual erosion was conducted with the Assessment of Current Erosion Damage method 

(ACED, Herweg, 1996). The method consisted of surveying erosion features, together with major 

causes of erosion, such as land management, surface characteristics, and runon-runoff patterns 

(Herweg, 1996).  

In Kwalei, rills were often removed by frequent weeding operations, which hampered the semi-

quantitative erosion assessment. The ACED method was then applied to assess qualitative classes of 

erosion. Five classes of erosion were defined, from very low to very high, on the basis of erosion 

features presence and intensity, without attaching a quantitative value to the erosion classes. The survey 

took place during the short rainy season (Oct-Nov) 2001, when signs of erosion could be considered 

representative of the past year of rains. The survey did not cover the whole catchment, but only a 

subcatchment of 47.5 ha (Fig. 2). 

In Gikuuri, the ACED method was applied along four longitudinal transects of 2.5 m width. For 

each transect, four segments were identified: upper, middle, lower slope and valley bottom. For each 

segment, rill number, mean depth, mean width and length were monitored during the long rainy season 

(March-June) 2002. Volumes of soil losses from each segment were estimated from these features, and 

multiplied by topsoil bulk density to estimate soil losses in weight. Sets of erosion pins were placed in 

each segment to monitor sheet erosion and re-deposition of soil particles. The ACED erosion map of 

Gikuuri was obtained by extrapolating the transect observations to the element map by using soil type, 

slope and land use. Five classes of erosion, from very low to very high, were defined according to the 

assessed amounts of soil losses from the transect observations. The map was checked in the field, 

where it was verified that it reproduced the actual situation. 

 

MMF input data: rainfall, soil and land use 

Daily rainfall records of at least 10 years were available from pluviometer stations close to both 

catchments.  

Soil detachability index K was estimated from literature data of comparable soils of Kenya and 

Tanzania (Morgan et al., 1982b), using topsoil texture. In the case of clayey soils, however, 

observation of soil detachment in splash cups (Vigiak, unpublished data) indicated that the suggested 

value of 0.02 was too low and raised to 0.05. Soil moisture at field capacity MS and topsoil bulk 

density BD were measured in the laboratory with standard methods (Meliyo et al., 2001; Wanjogu, 
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2001). Cohesion COH was measured on saturated topsoil with a torvane in the fields and averaged per 

soil type.  

Vegetation-related inputs were monitored during the long rainy season 2002 on the major land uses 

in Gikuuri. Vegetation interception INT of maize and bean, coffee, and woodlot was measured by 

splash cups (Morgan, 1981). Canopy cover CC, Plant height PH and ground cover GC were monitored 

every two weeks in 16 fields cultivated with maize and bean, coffee and banana, woodlot and mixtures 

of these crops. In Kwalei, INT, CC, PH, and GC were estimated in the fields, monitoring them twice in 

the long rainy season. Literature values were employed in both catchments for minor land uses 

(Morgan, 1995; Morgan et al., 1982b). No limiting horizons were detected in any soil profile, therefore 

the effective hydrological depth (EHD) was considered a land use dependent input, and set according to 

the model guidelines (Morgan, 2001). The ratio of actual to potential evapotranspiration ETa/ETp was 

estimated as the crop coefficient Kc of the FAO procedure for calculation of crop water requirements 

(Allen et al., 1998).  The crop cover factor C was derived from literature (Morgan, 1995).  

In Kwalei, SWC measures were negligible. In Gikuuri, SWC measures consisted of fanja juu 

terraces (i.e. narrow embankments built by digging a ditch on the contour and throwing the soil 

upslope; Thomas and Biamah, 1991) and grass strips in maize and bean fields, and bench terraces in 

coffee stands. The protection factor P was estimated from measurements of soil losses in Gerlach 

troughs (Gerlach, 1967) and splash cups (Morgan, 1981) placed in 12 fields under maize and bean, 

coffee, and fallow.  

 

Comparison of spatial erosion patterns  

For the comparison of erosion patterns at catchment scale, MMF predictions were reclassified into five 

classes of erosion, from very low to very high. As the purpose of the evaluation was to prove whether 

the model could locate areas subject to high erosion without regards to quantitative erosion assessment, 

model predictions were classified on a qualitative criterion. Instead of establishing limits among classes 

a priori, these limits were chosen so to obtain a number of elements per class comparable to the 

corresponding number of elements per class of the ACED erosion map. For example, if in the ACED 

erosion map x elements were classified in very low erosion class, then the x element with the lowest 

erosion rates predicted by the model were classified as very low erosion class, and so forth.  

The degree of agreement between the (classified) MMF erosion map with the ACED map was 

assessed by the weighted Kappa coefficient of the error matrix (Cohen, 1968). To limit the influence of 

the classification system and to account for uncertainties in the ACED map, one class difference (e.g. 

very low class in the ACED erosion map predicted as low erosion in the MMF erosion map) was 

considered acceptable. In these cases, the weight factors were set = 1. For larger disagreements 

between the two maps (e.g. very low class in the ACED erosion map predicted as moderate erosion in 

the MMF erosion map or worst), the weights were linearly dependent on the distance between classes 

(Table 3a). Kappa coefficients were calculated with kappa.exe software (Bonnardel, 1995). 
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Results and Discussion 

Soil erosion assessment  

In Kwalei, pedestals, tree mounds, rock and tree roots exposure, together with deposition of soil at the 

footslopes and along the roads and paths were frequently observed. Erosion features were especially 

frequent in annual crop fields (cassava, maize and bean). Rills, however, were often removed by 

weeding operations, and gullies were present only close to major roads, where surface runoff 

accumulated and entered as concentrated flow into the fields. The ACED erosion map (Fig. 2a) showed 

that 38 elements out of the 92 surveyed (c. 34 % of the area) could be classified as affected by high or 

very high erosion. Most parts of the forest, the coffee and banana fields and the flat area of the valley 

bottom were classified as low or very low erosion. 

Along the four transects of Gikuuri, soil losses by rill erosion were estimated at between 0.12 – 

27.12 kg m
-2 

y
-1

. Surface lowering measured with erosion pins ranged from 0.4 to 4.0 mm. At the 

footslopes, deposition was always observed. Five classes of erosion were defined according to the slope 

of the transect segments: very low erosion (< 2 kg m
-2 

y
-1

) on flat areas (< 5% gradient, e.g. valley 

bottoms); low erosion (2 - 7.5 kg m
-2 

y
-1

) on very gentle slopes (5–9 %); moderate erosion (7.5 -10 kg 

m
-2 

y
-1

) on gentle slopes (9-18 %); high erosion (10 - 20 kg m
-2 

y
-1

) on steep slopes (18-30 %); and very 

high erosion (> 20 kg m
-2 

y
-1

) on very steep slopes (> 30 %). According to the ACED erosion map (Fig. 

3a), all the valley bottoms and some flat hill summits were classified as subject to very low erosion, 

whereas c. 33 % of the area was affected by high or very high erosion.  

Years 2001 and 2002 were dry in Kwalei Catchment. Rainfall totalled 603 mm in 2001 and 202 mm 

in the long rainy season (March-May) 2002. The probability of non-exceedence of such low rainfall 

amounts is < 10 % according to rainfall records. On the contrary, the long rainy season of Gikuuri 

Catchment was wet: in the period April- June 2002 it rained 624 mm, roughly equal to half of mean 

annual rain. Such a wet season was not exceeded in three out of four years in the last 25 years of 

records. Soil erosion assessment was therefore likely to underestimate the mean situation in Kwalei and 

slightly overestimate it in Gikuuri. However, as rainfall is homogeneously distributed within each 

catchment, the erosion patterns depicted by the ACED maps were considered representative of the 

average situation. 

 

MMF model results 

In Kwalei, mean annual rainfall R was 967.4 mm y
-1

, with a mean number of rainy days per year n of 

89.5. In Gikuuri, mean annual rainfall was 1270 mm y
-1 

and the mean number of rainy days per year n 

was 107. 

Soil input data are summarized in Table 1. Soil bulk densities BD were low in both catchments, but in 

the range of tropical soils (1-1.5 Mg m
-3

, Zoon, 1986). Topsoil bulk densities < 1 Mg m
-3 

may be due to 

high organic carbon content (Meliyo et al., 2001). Soil cohesion COH generally resulted in high values. 

In the case of Kwalei, the values were however in the range of reported literature (2-12 kPa, Morgan, 

2001). In the case of Gikuuri, cohesion was unusually high and indicated very high soil resistance to  
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Table 1. Distribution of soil types and soil input data for MMF model. 

 Soil type Area Topsoil texture K MS BD COH 

  (%)  (gJ-1) (%w/w) (Mg m-3) (kPa) 

Humic Acrisol 47.9 Sandy clay loam 0.35 0.27 0.95 8.06 

Haplic Lixisol 15.4 Sandy clay loam 0.35 0.28 1.05 6.61 

Haplic Acrisol 29.4 Sandy clay 0.30 0.31 1.04 7.06 

Eutric Fluvisol 6.4 Sandy clay loam 0.35 0.26 1.32 8.99 

K
w

al
ei

 

Umbric Gleysol 0.9 Clay 0.05 0.45 1.06 9.51 

Rhodic Nitisol 36.4 Clay 0.05 0.45 0.94 20.1 

Haplic Acrisol 13.9 Clay 0.05 0.45 0.89 15.3 

Chromic Luvisols 8.2 Sandy clay loam 0.35 0.27 0.99 20.2 

Chromic Luvis./Camb. 29.1 Sandy clay loam 0.35 0.27 0.93 20.3 

Dystric Fluvis./Gleys. 6.4 Clay 0.05 0.45 1.03 17.9 

G
ik

u
u

ri
 

Dystric Fluvisols 6.1 Clay 0.05 0.45 1.02 23.1 

K is the soil detachability index, MS is soil moisture at field capacity, BD is bulk density of topsoil and COH is 

cohesion of topsoil. 

shear stress. The high organic matter content and cohesion values of topsoils indicated high resistance 

to soil particle detachment. However, due to a lack of more detailed information, the detachability 

indices K derived from literature were not changed.  

Land use inputs are reported in Table 2. In general, the land use assured a good cover of soil, with 

interception of rainfall INT ranging from 0.12 to 0.34, canopy cover CC from 0.25 to 0.86 and ground 

cover GC from 0.14 to 0.94. Model inputs of annual crops (maize and bean, vegetables, cassava) 

reflected conditions of low soil protection: rainfall interception INT < 0.20, canopy cover CC and 

ground cover GC < 0.50, crop protection factor C > 0.30. Most protective land uses were forest, 

woodlot and grassland, which ensured good rainfall interception and soil cover. In the case of forest 

and woodlot, however, plant height PH was high, enough for leaf drainage to significantly contribute to 

total rainfall kinetic energy.  Among SWC measures, fanja juu terraces were the most effective (P 

factor = 0.19), followed by bench terraces and grass strips. 

In Kwalei, the detachment rate by raindrops (F in eq. 2) ranged from 2.32 kg m
-2 

y
-1 

for grassland to 

7.79 kg m
-2 

y
-1 

under forest, with a mean of 4.44 kg m
-2 

y
-1

 for the whole catchment. Detachment rate 

by raindrops F in Gikuuri ranged from 1.00 kg m
-2 

y
-1 

on clay soils to 7.00 kg m
-2 

y
-1 

on Chromic 

Luvisols and Cambisols, with little variation due to land use. The detachment rate by raindrops F 

depends upon two parameters: soil detachability K and rainfall kinetic energy KE. In the case of clay 

soils, the very low detachability index K (0.05, Table 1) was the most sensitive parameter. On other soil 

types, differences in the kinetic energy of rainfall KE among land uses became important. By 

consequence, in Kwalei, where clay soils occupy only a small part of the catchment (< 1%, Table 1), 

the spatial pattern of the detachment rate by raindrop F reflected more the land use, via the kinetic  
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Table 2. Land use input data for MMF model 

Land use type EHD INT CC PH GC ETa/ETP C P# 

 (m)   (m)     

Maize and beans  0.12 0.17 0.26 0.67 0.44 0.78 0.30 
FJ=0.19; 

GS=0.50 

Banana and maize 0.12 0.16 0.38 1.24 0.30 0.98 0.25  

Bush/fallow 0.15 0.20 0.63 0.60 0.67 0.73 0.05  

Vegetables  0.12 0.15 0.25 0.28 0.50 0.90 0.35  

Woodlot 0.20 0.28 0.45 9.33 0.45 0.95 0.05  

Cassava 0.12 0.12 0.40 0.80 0.49 0.70 0.40  

Coffee and 

banana 
0.15 0.30 0.78 1.75 0.79 1.10 0.20  

Forest 0.20 0.30 0.86 6.43 0.94 0.95 0.01  

Grassland 0.12 0.30 0.62 0.24 0.75 0.80 0.01  

Sugarcane 0.12 0.25 0.30 1.32 0.49 0.90 0.15  

K
w

al
ei

 

Tea 0.12 0.30 0.45 0.47 0.67 0.92 0.20  

Banana 0.18 0.23 0.31 1.38 0.16 1.10 0.40  

Coffee 0.12 0.34 0.29 1.04 0.23 1.08 0.42 BT=0.25 

Coffee and 

maize 
0.12 0.23 0.37 0.95 0.14 1.04 0.42 BT=0.25 

G
ik

u
u

ri
 

Miraa 0.12 0.34 0.25 0.81 0.23 0.86 0.32  

#Soil and water conservation measures: FJ = fanja juu terraces, GS = Grass strips, BT= bench terraces. EHD is 

effective root depth, INT is interception factor, CC is canopy cover fraction, PH is plant height, GC is ground 

cover fraction, ETa/ETP is actual to potential evapotranspiration ratio, C and P are the USLE crop and protection 

parameters. 

energy KE. The area mean rainfall kinetic energy KE amounted to c.14700 J m
-2

, being least on 

grassland (7140 J m
-2

) and largest under woodlot (22750 J m
-2

).  In Gikuuri, instead, clay soils cover > 

60 % of the area (Table 1), therefore detachment rates were lower than in Kwalei, notwithstanding the 

rainfall kinetic energy was higher (area mean = 20000 J m
-2

) and ranged from 13400 J m
-2

 (under long 

term fallow) to 29900 J m
-2 

(under woodlot).  

Soil detachment by surface runoff (Hi in eq. 6) ranged from 0.00 to 1.07 kg m
-2 

y
-1 

(mean = 0.06 kg 

m
-2 

y
-1

) in Kwalei and was even lower in Gikuuri, where it ranged from 0.00 to 0.44 kg m
-2 

y
-1 

per 

element (mean = 0.02 kg m
-2 

y
-1

). The contribution of soil detachment by surface runoff Hi increased 

along the slope due to runoff accumulation, but it was far less important than soil detachment by 

raindrops. Total detachment rates (F + Hi) therefore changed little along the slope, and averaged c. 4.50 

kg m
-2 

y
-1

 in Kwalei and 2.66 kg m
-2 

y
-1

 in Gikuuri. 

Transport capacity rates (TCi  in eq. 7) ranged from < 0.01 to 43.77 kg m
-2 

y
-1 

in Kwalei (mean = 

1.90 kg m
-2 

y
-1

) and from < 0.01 to 78.06 kg m
-2 

y
-1 

in Gikuuri (mean = 2.28 kg m
-2 

y
-1

). 

Erosion rates (Ei in eq. 8) ranged from < 0.01 to 13.50 kg m
-2 

y
-1 

in Kwalei, with a mean of 1.07 kg 

m
-2 

y
-1

. The erosion rates were reclassified into five erosion classes: very low erosion (Ei < 0.025 kg m
-2 

y
-1

), low erosion (0.025–0.065), moderate erosion (0.065-0.350), high erosion (0.350-1.750), and very  
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Figure 2. Spatial patterns of erosion at Kwalei Catchment: asterisk indicates surveyed subcatchment; (a) ACED 
erosion map (white = very low; hatched = low, light grey = moderate, grey = high, dark grey = very high); (b) 
MMF erosion map (legend as above); (c) MMF distribution of surface runoff (legend as above); (d) location and 
type of errors of MMF model predictions (hatched  = overestimates; grey = underestimates) 

high erosion (> 1.750 kg m
-2 

y
-1

). The resulting MMF erosion map (Fig. 2b) showed that, according to 

the MMF model, areas subjected to high erosion were especially located in the downslope elements of 

hills covered by annual crops, and along the streams, i.e. where surface runoff accumulated. 

In Gikuuri, erosion rates Ei ranged from 0.02 to 9.29 kg m
-2 

y
-1

, with a mean of 0.75 kg m
-2 

y
-1

. Model 

erosion rates were similar to figures reported in literature (Mitchell, 1965; Othieno, 1975), but lower 

than observations along Gikuuri transects. However, observations in Gikuuri were limited to one rainy 

season, which was wetter than the average year. Moreover, ACED method allows only semi-

quantitative assessment of erosion and, while it can give the order of magnitude of the problem, is not 
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meant to give accurate quantification of soil losses. Therefore, no conclusion could be drawn on the 

reliability of model quantitative assessment of erosion soil losses. The model erosion rates were 

reclassified into five erosion classes: very low erosion (Ei < 0.050 kg m
-2 

y
-1

), low erosion (0.050-

0.125), moderate (0.125-0.600), high (0.600-1.000), and very high (> 1.000 kg m
-2 

y
-1

). The MMF 

erosion map of Gikuuri (Fig. 3b) showed again that, according to the model, erosion increased along 

the slope, from ridges to valley bottoms, with especially high erosion rates on the Chromic Luvisols 

and Cambisols of the steep slopes of the Southern hillslopes. 

In > 90 % of elements of both catchments, transport capacity was the erosion-limiting factor and 

erosion was detachment-limited only on a few elements at the valley bottoms. Transport capacity 

depends on the second power of surface runoff (eq. 7). Therefore, MMF model predictions of erosion 

were driven by the accumulation of surface runoff along the slopes. Low erosion rates were predicted 

on the ridges, while high erosion rates occurred along the streamlines (Figs. 2b and 3b). 

Surface runoff generated within the elements (Qi in eq. 3) was low and similar in the two 

catchments, c. 35 mm. In Kwalei, where soils are rather homogeneous, the model simulation of surface 

runoff reflected differences in land use. The highest rates of runoff were recorded in the annual crop 

fields on the Haplic Acrisols and Lixisols of the ridges, whereas the lowest surface runoff was 

generated under forest and coffee and banana fields. On the contrary, in Gikuuri because of the 

difference in soil moisture at field capacity MS among soil types (Table 1), surface runoff was much 

higher in Chromic Luvisols and Cambisols than elsewhere. However, due to the accumulation 

sequence (eq. 5), the total surface runoff Qti per element increased systematically along the slopes. In 

Kwalei, where the element map depicted relatively small elements and where slopes were rather short, 

the surface runoff generated within the element Qi was generally more important than incoming runoff 

Qup (Aup /Ai ). The total surface runoff Qti ranged from 6 to 550 mm, with a mean of 92 mm. Fig. 2c 

shows the distribution of total surface runoff Qti in the catchment. Surface runoff generally increased 

along the slope, but the elements in the cascading sequence retained their own characteristics and 

therefore some elements at the footslopes maintained very low or low surface runoff. In Gikuuri, where 

element size were larger and comprised different land uses, the incoming surface runoff Qup (Aup / Ai ) 

had a greater impact on the total surface runoff Qti  than the surface runoff generated within the element 

Qi. As a result, the total surface runoff was larger than for Kwalei, ranging from 16 to > 3000 mm 

(mean = 177 mm) and increased invariably from the ridges to the valley bottoms (Fig. 3c). The 

influence of soil type, very important on the surface runoff generated within the element Qi, i.e. at the 

element scale, was completely lost at the catchment scale. As surface runoff simulation is of saturation-

excess type and no mechanism for reinfiltration along the slope could be taken into account, all the 

footslopes and valley bottoms resulted in having high and very high surface runoff. 

Finally, in Kwalei sedimentation rates (SEDi in eq. 9) occurred on 17 % of the elements, and ranged 

from 0.005-10.83 kg m
-2 

y
-1

, with a mean of 0.65 kg m
-2 

y
-1

. In Gikuuri, sedimentation occurred on 47 

% of the elements, and ranged from 0.005-3.16 kg m
-2 

y
-1

, with a mean of 0.46 kg m
-2 

y
-1

. 

Sedimentation occurred where the influx of material from upslope Eup was consistent and where sudden  
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Figure 3. Spatial patterns of erosion at Gikuuri Catchment. (a) ACED erosion map (white = very low; hatched = 
low, light grey = moderate, grey = high, dark grey = very high); (b) MMF erosion map (legend as above); (c) 
MMF distribution of surface runoff (legend as above); (d) MMF erosion map with the exclusion of valley 
bottoms (legend as above; in black the excluded area). 
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changes in vegetation cover or slope reduced drastically the transport capacity TCi of surface runoff 

(eq. 7). The vegetation cover control on the sedimentation pattern was dominant in Kwalei, where 

sedimentation occurred mainly on the steep coffee and banana stands along the streamlines. The 

topography control was instead dominant in Gikuuri, where sedimentation occurred mainly at the 

footslope elements. 

 

Comparison of erosion maps 

The comparison of the MMF erosion map with the ACED erosion map in Kwalei showed that out of 92 

elements of the ACED erosion map, 30 were correctly classified, 30 were acceptably classified (i.e. one 

class difference) and few major misclassification errors occurred (Table 3b). The weighted Kappa 

coefficient of the error matrix was 0.241, which, according to Landis and Koch (1977), indicates fair 

agreement between the two maps. Fig. 2d showed the location and type of error in the model 

predictions. The model performed better in the upper part of the sub-catchment; errors of model 

predictions consisted of overestimates of erosion along streamlines, and underestimates on ridges.  

In Gikuuri, the spatial pattern of model predictions differed significantly from the ACED 

classification. Out of 65 elements, only 11 were correctly classified and 22 were acceptably classified; 

14 elements were completely misclassified (more than 2 classes of difference, Table 3c). The weighted 

Kappa coefficient in this case was 0.047, indicating very poor agreement between the two maps. 

Besides some ridges that were correctly classified as subject to low erosion, the erosion pattern 

depicted by the model was wrong (Figs. 3a and 3b). In the valley bottoms erosion was highly 

overestimated; along the steep and very steep slopes, erosion was instead generally underestimated.  

Therefore, the pattern of model prediction errors was similar in both catchments and consisted of 

underestimates of erosion on the ridges and overestimates along the streamlines and at the valley 

bottoms.  This associated combination of overestimates in the lower parts and underestimates in the 

upper parts was considered to be independent from the classification system adopted for MMF 

predictions. By setting qualitative limits to classify the model erosion rates, possible overestimates of 

erosion rates at the end of the accumulation sequence should exert only little influence on 

underestimates at the beginning of the sequence.  

More probably, the errors of model predictions depended on the model structure. MMF model 

simulates surface runoff in terms of saturation excess. The occurrence of infiltration excess surface 

runoff on the annual crop fields at the onset of the rainy season cannot be accounted for. This might 

explain the underestimates in the upper parts of the ridges, where the cultivation of annual crops is 

more intense. Moreover, in both catchments, reinfiltration along the slopes and sedimentation at the 

footslopes was observed. However, the mechanism of surface runoff accumulation (eq. 5) did not 

account for reinfiltration. As a result, the model structure resulted in exaggerated flow accumulation 

along the slope, which almost completely drove the simulation of spatial patterns of erosion: the 

erosion patterns predicted by the model increased invariably from the ridges to the valley bottoms. This 

was more dramatic at Gikuuri, where elements of cascading sequences were large and comprised 

different land uses.  
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Table 3. Error matrixes for the comparison of ACED and MMF erosion maps: a) Kappa coefficient weights; b) 
Kwalei error matrix; c) Gikuuri error matrix; and d) Gikuuri error matrix after excluding the elements of valley 
bottoms. n indicates the number of elements per erosion class.  

ACED erosion map 

 Very low Low Moderate High Very high  

Very low 1 1 0.5 0.25 0  

Low 1 1 1 0.5 0.25  

Moderate 0.5 1 1 1 0.5  

High 0.25 0.5 1 1 1  

a)
 W

ei
g

h
ts

 

Very high 0 0.25 0.5 1 1  

 Very low Low Moderate High Very high n 

Very low 5 2 6   13 

Low 4 8 2 5 2 21 

Moderate  3 7 4 7 21 

High 3 3 6 8 3 23 

Very high 3 2 1 6 2 14 b
) 

K
w

al
ei

 M
M

F
 m

ap
 

 

n 15 18 22 23 14 92 

Very low 4 6 7 2 1 20 

Low 2 1 3  2 8 

Moderate 6 1 3 3 5 17 

High 3  3 1 2 9 

Very high 6   2 2 11 

c)
 G

ik
u

u
ri

 M
M

F
 m

ap
 

n 21 8 16 8 12 65 

Very low 3 1    4 

Low 1 3 3   7 

Moderate  3 12 1 1 16 

High    2 3 5 

Very high  1 1 5 8 14 

d
) 

G
ik

u
u

ri
 M

M
F

 m
ap

  

N
o

 v
al

le
y

 b
o

tt
o

m
  

n 4 8 16 8 12 48 

 

 

To verify that the mechanism of accumulation was at the origin of the errors in the model 

predictions, the comparison of the two maps was repeated in Gikuuri catchment after excluding the 

valley bottom elements from the analysis. The resulting MMF erosion map (Fig. 3d) was much closer 

to the ACED erosion map (Table 3c), and the weighted Kappa coefficient increased dramatically 

(0.868), indicating almost perfect agreement between the two maps.  

At the scale of the single element, the MMF retained a good balance between rainfall kinetic energy 

KE and surface runoff Q, the two driving forces behind erosion. However, at the catchment scale, 
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surface runoff became the only important erosive force of the model simulation. The application of 

field models at catchment scale requires careful consideration of scale issues. Topography, which may 

play a relative role at field scale, becomes a major factor controlling erosion at catchment scale 

(Desmet and Govers, 1995). The introduction of a topographic factor that considers the three-

dimensionality of a catchment is crucial for capturing the spatial pattern of erosion at catchment scale 

(Desmet and Govers, 1997; van Rompaey et al., 2001). Successful algorithms incorporate usually the 

upslope draining area and the local slope (Moore et al., 1993). These two parameters are represented in 

the MMF model by the upslope area Aup and the sine of the slope sinβ, but their role in the model 

appears to be unbalanced (eqs. 5 and 7).   Similar scaling problems had been already observed in other 

empirical erosion models. For example, the original LS factor of the USLE model has long been 

substituted with more appropriate algorithms for application at hillslope or catchment scale (Desmet 

and Govers, 1997). Notwithstanding the improvements, the USLE model cannot account yet for 

reinfiltration and sedimentation along the slope and failed in reproducing erosion patterns in a 

catchment in Southern Spain (Vigiak and Sterk, 2001). Only recently, Warren and Mitasova (2003) 

were able to improve the prediction of erosion patterns of a USLE-derived model by introducing a 

sedimentation mechanism. 

In this respect, the structure of MMF model offers an advantage. In eq. 9 both the influx material Eup 

and the transport capacity TCi were affected in a similar way by the accumulation of surface runoff, so 

that their difference was more realistic. Indeed, the patterns of soil sedimentation in the two catchments 

were close to the observations: the model simulated the occurrence of sedimentation in the coffee and 

banana stands along the steep streamlines in Kwalei and at the footslopes in Gikuuri, exactly as it was 

observed in the fields.  

 

Conclusions 

The assessment of erosion showed that areas affected by high and very high erosion covered around 

one third of both catchments. In Kwalei, erosion features were especially frequent in fields of annual 

crops, like cassava, maize and bean. In Gikuuri, soil losses by rill erosion were estimated between 0.12 

– 27.12 kg m
-2 

y
-1

 and surface lowering as measured with erosion pins ranged from 0.4 to 4.0 mm in the 

2002 long rainy season only.  

MMF predictions of erosion indicated that erosion was mainly transport-limited, and erosion rates 

ranged from < 0.01 to 13.50 kg m
-2 

y
-1 

in Kwalei catchment and from 0.02 to 9.29 kg m
-2 

y
-1

 in Gikuuri. 

The model erosion rates were close to figures reported in literature, but lower that the observations at 

Gikuuri. However, the transect observations were of limited accuracy and duration, so no conclusion of 

the quantitative erosion rates of MMF model could be drawn.  

The performance of the MMF model in reproducing spatial pattern of erosion was fair in Kwalei 

(weighted Kappa coefficient 0.241), but poor in Gikuuri (weighted Kappa coefficient 0.047). However, 

by excluding the elements at the valley bottoms in Gikuuri, the performance of the model increased 

dramatically (weighted Kappa coefficient 0.868). Most of model errors consisted of overestimates of 
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erosion rates along the streamlines and underestimates on the ridges. The pattern of sedimentation was 

instead closer to reality: the model simulated sedimentation occurrence in the coffee and banana stands 

along the steep streamlines in Kwalei and at the footslopes in Gikuuri, exactly as it was observed in the 

fields.  

The major cause of model errors was identified in the mechanism of surface runoff accumulation, 

which could not account for the reinfiltration along slopes or footslopes that was instead observed in 

the field. At the scale of the single element, the MMF retained a good balance between rainfall kinetic 

energy and surface runoff, the two driving forces behind erosion. Because of the accumulation along 

the slope, at the catchment scale the importance of surface runoff volume increased in the model 

structure, until it drove almost completely the simulation of spatial patterns of erosion rates.  

At field scale, considering the limited number of model inputs and its simplicity of application, the 

MMF model is well suited for SWC planning purposes. At the catchment scale, the accumulation 

procedure of surface runoff should be applied critically, or even excluded in catchments where 

reinfiltration is frequent. More generally, by introducing a more realistic hydrological component for 

the prediction of surface runoff along the hillslope, the model performance at catchment scale could 

improve substantially and the model could become a very useful tool for SWC planning in the East 

African Highlands catchments.   
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MATCHING HYDROLOGIC RESPONSE TO MEASURED EFFECTIVE 

HYDRAULIC CONDUCTIVITY 

Abstract 

The objective of this study was to test the practicability of defining hydrologic response units as 

combinations of soil, land use and topography for modelling infiltration at the hillslope and catchment 

scales. In an experimental catchment in the East African Highlands (Kwalei, Tanzania), three methods 

of measuring infiltration were compared for their ability to capture the spatial variability of effective 

hydraulic conductivity: the constant head method (CH); the tension infiltration method (TI); and the 

mini-rainfall simulation method (RS). The three methods yielded different probability distributions of 

effective hydraulic conductivity and suggested different types of hydrologic response units. 

Independently from these measurements, the occurrence of infiltration-excess overland flow was 

monitored over an area of six hectares by means of overland flow detectors. The observed pattern of 

overland flow occurrence did not match any of the patterns suggested by the infiltration measurements. 

Instead, clusters of spots with overland flow were practically independent from field borders. 

Geostatistical analysis of the overland flow confirmed the absence of spatial correlation for distances 

over 40 m. The RS method yielded the pattern closest to the observations, probably because the method 

simulated better the processes that trigger infiltration-excess overland flow, i.e. soil sealing and 

infiltration through macroporosity. The RS hydrologic response unit correlated significantly with 

observed overland flow frequency. However, the location of clusters and “hot spots” of overland flow 

remained largely unexplained by land use, soil and topographic variables. It is concluded that using 

such landscape variables to define hydrologic units may create artificial boundaries that do no 

correspond to physical realities, especially if the stochastic component within hydrologic units is 

neglected. 

 

Keywords: overland flow pattern; overland flow detectors; effective hydraulic conductivity 

measurement; hydrologic response units. 

 

Introduction 

Characterization of infiltration is of the utmost importance to understand the occurrence and movement 

of overland flow at the field, hillslope and catchment scales. Infiltration rates are generally high at the 

beginning of the process, and decline gradually until a constant rate is reached, i.e. the so-called 

effective hydraulic conductivity of the soil surface. During a rainfall event, the infiltration rate may fall 

below the rainfall intensity; at this moment ponding starts and overland flow may begin. This 

mechanism of generation of overland flow from excess infiltration is termed Hortonian (Horton, 1933).  
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There are many methods for measuring infiltration experimentally (e.g. Klute and Dirksen, 1986). 

They differ in equipment and technical skill required, and in the accuracy and reproducibility of the 

results. Some require soil cores to be taken for laboratory analysis. Others measure infiltration of water 

in situ. The area of the soil surface on which measurements are taken, i.e. the spatial support of the 

measurement, may be a few square centimetres to several square meters. More importantly, 

measurement methods reproduce the process of infiltration differently: e.g. some methods measure 

infiltration at ponding conditions; others measure infiltration through non-saturated surfaces or under 

simulated rainfall. Not surprisingly, the final steady rates of infiltration measured with different 

methods may differ substantially. This final infiltration capacity can be termed effective hydraulic 

conductivity, but its physical meaning changes with the measurement method, so that methods are 

incommensurable with each other (Beven, 2001). Indeed, comparative studies have generally reported 

a lack of consistency among measurement methods (Clothier and Smettem, 1990; Reynolds et al., 

2000; Bagarello et al., 2004; Paige and Stone, 2003).  

Infiltration and Hortonian overland flow vary greatly in space and time. Most measurement methods 

estimate point-scale steady rate of infiltration. For most practical applications, however, the 

quantification of infiltration is needed at field, hillslope and watershed scales instead of at points. In 

integrated watershed planning in particular, the issue is frequently to locate where (or how often) 

infiltration will be exceeded and where (or how often) the overland flow could be triggered. 

Hydrological modelling at catchment scale requires strategies to simulate infiltration in space 

notwithstanding the limited knowledge of the phenomena and the limited availability of data in both 

space and time (Beven, 1992; Blöschl and Sivapalan, 1995; Karssenberg, 2002). A frequent strategy 

adopted in hydrologic modelling has been to define hydrologic response units, with the idea that 

infiltration (as well as other hydrological processes) will be more similar within the unit than between 

units (Blöschl and Sivapalan, 1995). Effective parameters for each unit can be defined deterministically 

(i.e. single parameter values) or stochastically (i.e. by assuming probability distribution functions of the 

parameters; e.g. Vertessy and Elsenbeer, 1999; Seguis et al., 2002). Either way, effective parameters 

are usually obtained by calibration against measurements; this accounts for the scale of the model 

simulations and compensates for the model’s conceptual and structural limitations.  

An operative definition of the hydrologic response units must rely on data whose spatial patterns, 

and possibly their temporal changes, are available. The spatial information consists usually of 

topographic, soil, and land use maps. As soil porosity and soil surface characteristics are major factors 

affecting infiltration, soil maps are often taken as the basis for the definition of hydrologic response 

units. However, the use of pedo-transfer functions to derive infiltration parameters from soil map data 

has generally yielded very poor results (Jarvis et al., 2002; Tietje and Hennings, 1996; Wösten et al., 

1999). On the other hand, due to the high variability of infiltration within short distances, the 

application of geostatistical approaches requires systematic measurements at very short distances and 

may even result in no spatial correlation (Loague and Gander, 1990; Al-Jabri et al., 2002). Common 

sense suggests then that the available spatial information may guide the identification of the hydrologic 

response units and the design of experimental infiltration measurements aimed to characterize their 

hydrologic behaviour.  
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For subsequent up-scaling, the spatial and temporal supports of the experimental measurements 

should be as close as possible to the modelling scale and to the processes to be simulated (Karssenberg, 

2002). However, large spatial and temporal supports often conflict with the possible number of 

replications. Quick experimental methods yielding many observations in a given time may result more 

informative than methods whose experimental conditions may be closest to the modelling purposes but 

use cumbersome equipment, take more time, and are more expensive  (e.g. Bagarello et al., 2004). 

Moreover, once the idea of incommensurability between measurement data and model parameters and 

the consequent need for re-calibration of model parameters has been accepted, a measurement method 

should better focus on correctly identifying the hydrologic response units rather than on quantifying the 

infiltration parameters. Following this reasoning, the “best” measurement method will (1) identify 

correctly the hydrologic units and (2) provide statistical information on infiltration variability within 

and between the hydrologic units, with limited resource investment in terms of money, people, and 

equipment. 

Few studies have tested the reliability of the identification of hydrologic units for modelling spatial 

patterns of infiltration over a hillslope or a catchment. This is probably because observations of 

infiltration or, more practically, of Hortonian overland flow, are difficult to obtain (van Loon, 2002).  

The spatial pattern of overland flow can be observed after rainfall events through the patterns of 

erosion features, like rills and gullies, provided the rainfall event has been erosive (Takken et al., 

1999). However, this type of observation remains quite subjective. Alternatively, the occurrence of 

overland flow can be observed by means of unbounded devices, such as Gerlach troughs (Morgan, 

1995) or overland flow detectors of various design (Kirkby et al., 1976; Gascuel-Odoux et al., 1996; 

Elsenbeer and Vertessy, 2000; van Loon, 2002). The figures for volumes of overland flow and for 

runoff coefficients obtained using such devices are uncertain as the contributing area is unknown 

(Gascuel-Odoux et al., 1996). However, as they are cheap and can be made locally, overland flow 

detectors are useful in locating overland flow occurrence in quite large areas.  

The objective of our study is to test the common practice of defining hydrologic response units as 

combinations of soil, land use and topography for modelling infiltration and Hortonian overland flow 

distribution at hillslope and catchment scale. 

 

Materials and methods 

Study area – Kwalei catchment 

Kwalei catchment (4°48′ S, 38° 26′ E) is situated in the West Usambara Mountains, North-East 

Tanzania (Fig. 1). The catchment size is around 2 km
2
 and the altitude ranges from 1337 to 1820 m. 

The terrain is very dissected, with more than half of the hillslopes steeper than 20 %. Average annual 

rainfall is approximately 1000 mm, with a bimodal distribution: a long rainy season from March 

through May and a short rainy season from October to January. Average daily temperature is 18 ºC, 

with diurnal temperature ranges (12-25 °C) greater than annual ranges (16-20 °C). Five soil types occur 
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in the catchment (FAO, 1990): Humic Acrisols on the summits (48 % of the catchment), Haplic 

Lixisols on the summit footslopes (15 %), Haplic Acrisols on the ridges (29 %), Eutric Fluvisols (6 %) 

and Umbric Gleysols in the river valleys (1 %) (Meliyo et al., 2001). The soils on the slopes are clayey 

and deep; the topsoils are porous and sandy and overlie clayey, deep, and well-drained horizons. 

Saturation conditions may occur only in the Umbric Gleysols in the valley bottoms. The highest part of 

the catchment is covered by mountain rain forest, whereas the middle and lower slopes are farmed. The 

vegetation cover is complex: annual crops are intercropped with perennials, fodder and fruit trees or 

timber woodlots. Annual crops are concentrated on the ridge shoulders: maize is the most cultivated 

crop, intercropped with bean, banana, cassava, and sugarcane. Soil preparation and weed control is 

done by hand-hoeing. The two-layer cultivation of banana and coffee is frequent on the steeper slopes 

along the incised streams. Irrigation is limited to the vegetable fields of the valley bottoms. The 

cartographic information comprised a soil map (Meliyo et al., 2001); a land use map, and a Digital 

Elevation Model (DEM) of 20 m pixel size (Vigiak et al., 2005). Rainfall was measured with a tipping 

bucket rain gauge recording at two minutes interval and placed at the catchment outlet. 

 

Point measurement of effective hydraulic conductivity 

Surface effective hydraulic conductivity was measured with three point infiltration methods: constant 

head method (CH, infiltrating surface c. 20 cm
2
), tension infiltrometer (TI, infiltrating surface c. 254 

cm
2
) and mini-rainfall simulation (RS, infiltrating surface c. 525 cm

2
). The methods were selected 

because they require easily transportable equipment, use limited amounts of water, consist of relatively 

quick tests, but simulate infiltration in completely different ways. The measurements were done on ten 

fields (Fig. 1), selected to cover all the soil types, different landscape positions, and the main land use 

types occurring in the catchment (Table 1). All the measurements were done during the long rainy 

season of March-May 2002, using stream water for the field tests.  

CONSTANT HEAD METHOD (CH). Effective hydraulic conductivity of soil cores was measured in the 

laboratory with the constant head method (Klute and Dirksen, 1986). Ten samples of five cm depth of 

soil were taken for each field, five at 0-5 cm depth and five at 5-10 cm of depth. The cores were pre-

saturated for 24 hours. The constant head was set  to five cm. The dataset was extended with core 

samples taken in five more locations (two replicates each) at 0-10 cm depth during the period March-

May 2003, after verifying the homogeneity of the samples.  

TENSION INFILTROMETER METHOD (TI). Apparent field-saturated hydraulic conductivity was estimated 

from observations of near-saturated hydraulic conductivity measured with a disk infiltrometer (Perroux 

and White, 1988). To maximize the number of observations per site, the experiment was conducted 

with the single test method, using one disk radius (r = 9 cm) and one tension (h0 = - 30 mm). Sites were 

pre-wetted to limit the influence of initial soil moisture conditions, and a sand layer was interposed to 

ensure good contact between the soil surface and the disk. Soil moisture before and after the disk 

application was measured by the gravimetric method. At least three measurements were repeated in 

each site. Near-saturated hydraulic conductivity Kh at the imposed pressure head h0 was estimated 

according to the Improved White and Sully method proposed by Vandervaere et al. (2000a; 2000b). 



Chapter 3 

 

43

Apparent field-saturated hydraulic conductivity was estimated from Kh by assuming an exponential 

function between hydraulic conductivity and water tension (Gardner, 1958), with the alpha parameter 

αG taken constant between soil types and equal to the average exponent of eight water-retention curves 

(αG = 0.467 cm
-1

). 

 

 

Figure 1. Kwalei catchment: location of the ten fields for infiltration measurement and of the subcatchment 

monitored for occurrence of overland flow (boxed area with dots indicating detectors). Shading represents the 

topography index of the catchment. 
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Table 1. Characteristics of  the effective hydraulic conductivity measurement sites, Kwalei, Tanzania. 

Topography 

Site Soil type Land use type 
Slope 

Slope 

classa 

Topography 

index 

Top. 

index 

classb 

 
FAO 

classification 
  (%)    

1 Umbric Gleysols Vegetables: tomato 2 1 11.28 3 

2 Eutric Fluvisols Maize and beans 7 1 10.28 3 

3 Haplic Acrisols Maize and beans 27 2 5.72 2 

4 Haplic Acrisols Coffee and banana 8 1 6.73 2 

5 Haplic Lixisols Coffee and banana 15 2 8.38 3 

6 Humic Acrisols 
Cassava (mixed with 

sugarcane) 
37 3 4.66 1 

7 Humic Acrisols Forest 48 3 5.89 2 

8 Humic Acrisols Grazing 28 2 5.40 1 

9 Humic Acrisols Tea 38 3 4.89 1 

10 Haplic Acrisols Wattle 17 2 5.30 1 

a The slope classes were: class 1 ( ≤ 10 %), 2 (10 < slope ≤ 30 %), and 3 (> 30 %).  
b The topography index classes were: class 1 (≤ 5.5), 2 (5.5 < topography index ≤ 8), and 3 (>8). 

 

MINI-RAINFALL SIMULATION METHOD (RS). Effective hydraulic conductivity was measured in terms 

of effective steady-state infiltration rates measured during rainfall simulations. A portable rainfall 

simulator (Kamphorst, 1987) was used on rectangular plots of 0.0525 m
2
, bounded on three sides by 

metal strips and by a gutter on the fourth side where runoff was collected. Constant rainfall intensity 

was applied at 300 mm h
-1

. The high rainfall intensity was not meant to reproduce steady-state 

infiltration under natural rainfall, but to induce runoff in all cases to allow comparisons between fields 

and to assure that the whole surface contributed to runoff (Paige and Stone, 2003). Runoff was 

measured every two minutes until a constant rate was measured; two rainfall simulation tests were 

repeated per site.  

STATISTICAL ANALYSIS. The landscape variables for which consistent cartographic data was 

available were soil type, land use type, and topography. Two topographic variables were taken into 

consideration: maximum slope and topography index, defined as ln(a/tanβ), where a is the upslope 

contributing area, and tanβ is the local slope (Beven and Kirkby, 1979). Maximum slope was estimated 

with an inclinometer in the fields. The topography index was calculated from the DEM by applying a 

multiple direction flow algorithm (Quinn et al., 1995), and averaged across fields. The two topographic 

variables were employed as continuous variables and as ordinal classes (Table 1).  
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Surface effective hydraulic conductivity is usually log-normally distributed (Angulo-Jaramillo et al., 

2000). Original and log-transformed data distributions were tested for normality with the non-

parametric Kolmogorov-Smirnov test. Variance of the log-transformed distributions of effective 

hydraulic conductivity was tested against the landscape variables at probability level p = 0.05. Analysis 

of variance were tested with classic ANOVA, if Levene test verified that variance among groups was 

homogeneous, and with Kruskal-Wallis test otherwise. 

The significant landscape variables were employed to identify the hydrologic response units. 

However, landscape variables were correlated. By definition, the two topographic variables were 

correlated, so analysis of variance was conducted on both, but only the most important variable was 

employed to define the hydrologic units. The soil types were strongly correlated with topography 

(correlation coefficients ETA > 0.90). This reflected the real soil and land use distribution in the 

catchment: Umbric Gleysols and Eutric Fluvisols have developed on the central valley bottom, whereas 

Acrisols and Lixisols are concentrated along the slopes. Only two combinations of soil and land use 

types were present in the field sample (Table 1). Because of the high correlation between landscape 

variables, it was not possible to estimate interactions between factors. The classification of effective 

conductivity into hydrologic units was therefore based on the estimated marginal means for each 

independent variable of the univariate general linear model. The noncentrality parameters of the 

univariate tests were used to measure the observed power of the independent variables and to establish 

the hierarchy of classifiers: the main classifier was the variable that resulted in the largest differences 

among groups, and so on. Land use, soil types or topography classes that resulted in no significant 

mean difference in pair wise comparison were merged. In this way, all the possible combination of 

hydrologic response units, i.e. 9 land use types (8 tested + ‘Others’) × 6 soil types × 3 topography 

classes = 162 theoretical combinations, could be related to the cases for which measurements were 

available. 

 

Overland flow observations 

Overland flow occurrence was monitored per rainfall event by means of 50 overland flow detectors 

made locally to a slightly modified design of Vertessy et al. (2000). The detectors consisted of 30 cm 

long PVC tubes connected to a T-junction provided with a removable lid. About 50 holes of 2 mm 

diameter were drilled along one third of the PVC tube surfaces. The detectors were placed on the soil 

surface, with the drilled side facing upslope in order to catch any overland flow from the area 

immediately above (detail in Fig. 1). The overland flow monitoring was concentrated in a small 

subcatchment of around six hectares located in the upper, north-western corner of Kwalei catchment 

(box in Fig. 1). The area is representative for erosive slopes and is subject to frequent overland flow 

incidents. It has seven annual and perennial land use types: vegetables, fallow, tea, cassava, maize and 

bean, sugarcane, and coffee and banana. The area straddles two different soil types (Humic Acrisols on 

the shoulder slopes and Haplic Lixisols on the footslopes). Both soil types have thick, sandy clay loam 

to sandy and well structured topsoils, but Humic Acrisols are generally more gravely than Haplic 

Lixisols (Meliyo et al., 2001). However, no sensitive difference in gravel cover was evident in the area, 
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whose soil properties were therefore considered homogeneous. The slopes were convexo-linear, and 

steep (10-30 %). The 50 detectors were placed in four lines 250 m long along the 1580, 1560, 1545 and 

1530 m contours, and crossing slopes 100 m long. During the period March-May 2002, after each 

rainfall event, the presence of water in the PVC tubes was recorded and interpreted in terms of overland 

flow occurrence (presence or absence).  

The data were analyzed considering time-aggregated frequency, i.e. the number of times per spot 

when overland flow occurred divided by the total number of rainfall events. Time-aggregated 

frequency was analyzed in terms of landscape variables, i.e. land use type, slope and topography index. 

Soil type was excluded because of the apparent homogeneity of soil properties and because the 

available soil map was insufficiently detailed to place exactly the boundary between the Humic 

Acrisols and Haplic Lixisols in relation to the positions of the detectors. Besides classic ANOVA, data 

were analyzed with geostatistical tools. Hierarchical cluster analysis was carried on the original binary 

(present or absent) data for all events, using square Euclidean distance to measure between-group 

linkages. The statistical analysis was done using SPSS 11.5 software (SPSS, 2002), the geo-statistical 

analysis with GSTAT software (Pebesma, 2004), and the geographic analysis with ILWIS 3.1 (ITC, 

2002).  

 

Results and discussion 

Point measurement of effective hydraulic conductivity 

Some measurements of CH effective hydraulic conductivity were discarded because the soil cores had 

not been properly saturated. Also, some TI measurements were rejected because they yielded negative 

steady-state hydraulic conductivity Kh. The effective hydraulic conductivity was log-normally 

distributed for both CH and TI measurements; and normally distributed for RS. However, to keep the 

analysis homogeneous, the RS distribution was also log-transformed.  

The three methods yielded different values of effective hydraulic conductivities (Table 2). The 

geometric means were all statistically different: CH yielded the highest geometric mean, followed by 

RS. TI resulted in the lowest effective hydraulic conductivity values (one order of magnitude lower than 

the other two methods) and in the largest variance and range of the log-transformed distributions. Site-

wise correlation among the methods could only be established between CH and TI (Pearson correlation 

coefficient = 0.37) and between CH and RS (Pearson c.c. = 0.66), but not between RS and TI. These 

results are similar to those reported by Reynolds et al. (2000), who found both lack of consistency 

among effective conductivities estimated with different methods and lower values for TI in very 

permeable soils.  

All the effective conductivity distributions fell within the ranges that can be estimated with pedo-

transfer functions for similar soil conditions (Tietje and Hennings, 1996; Wösten et al., 1999), and 

agreed well with the equation of Brakensiek et al. (1984). The CH and RS effective conductivities fell in  
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Table 2. Statistical results of effective hydraulic conductivity estimated by the three methods: constant head 

method (CH), tension infiltration (TI) and rainfall simulations (RS).  

 

 

 

 

 
CH TI RS 

Sample number  
n 100 37 20 

Geometric mean 
m h-1 0.3687 0.0397 0.1865 

Harmonic mean 
m h-1 0.2744 0.0276 0.1448 

Kolmogorov-Smirnov test of 

original data 
Z 1.488* 2.598* 0.609 

Kolmogorov-Smirnov test of log-

transformed data 
Z 0.825 0.887 0.738 

Mean ln(m h-1) -0.99767 -3.22562 -1.67955 

Min ln(m h-1) -3.32871 -5.09762 -3.25166 

Max ln(m h-1) +0.69099 0.10781 -0.95410 

St deviation ln(m h-1) 0.71240 0.91117 0.65834 

Log-

transformed 

statistical 

moments  

 

Variance [ln(m h-1)]2 0.508 0.830 0.433 

Soil type (d.f. 4) F, χ21 
20.989*, 1 

(55.34) 
1.354 3.725 1 

Land use type  

(d.f. 7) 
F, χ21 

14.134* 

(100.01) 
14.971*, 1 

16.745*, 1 

(244.65) 

Slope class (d.f. 3) F, χ21 8.292* 0.850 2.3661 

Analysis of 

variance 

Topographic index 

class (d.f. 3) 
F, χ21 

15.267*, 1 

(32.58) 
0.366 

3.717* 

(78.15) 

Effective 10-minutes rainfall peak intensity ranged from 3.6 to 85.2 mm h-1 in the observation period.  

* the value is significant at  p = 0.05 

1 for the cases of non-homogeneous variance the value refers to the χ2 of Kruskal-Wallis test, otherwise it is the F 

value of classic 1-way ANOVA. Values in brackets indicate the noncentrality parameter of the variable in the 

univariate general linear model. 

 

the higher part of this range, while the TI conductivities fell in the lower tail of the range. In R S 

measurements,  the high intensities applied, and possibly the use of stream water instead of distilled 

water (Assouline, 2004), induced accelerated sealing of the soil surface. Though at a slower rate, 

surface sealing was observed to develop also under natural rainfall conditions. Therefore, RS 

measurements are likely to overestimates effective infiltration under natural conditions. However, the 

variability among sites, i.e. differences among hydrologic units, should be well represented, as high 

rainfall intensities assured that all the plot surface contributed to runoff (Paige and Stone, 2003). 

Among the three cases, TI estimates of effective hydraulic conductivity were the most uncertain. The 

assumption of a Gardner exponential model with the alpha parameter constant for all soil types and 

equal to the water retention curve exponent, used to extrapolate the effective hydraulic conductivity 

from near-saturated measurements, may have introduced estimation errors. Infiltration tests at two or 
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more head pressures might have yielded higher confidence for the alpha parameter estimation, but 

would have reduced the number of spatial replications. However, the TI distribution of effective 

hydraulic conductivity was consistent with the other soil parameters estimated by the TI method, i.e. 

sorptivity, steady-state infiltration flux, and near-saturated hydraulic conductivity (results not shown 

here). The use of effective hydraulic conductivity, preferred for the sake of comparison with the other 

methods, was therefore considered reliable for defining the TI hydrologic response units. 

 

Identification of hydrologic response units 

The analysis of variance in terms of landscape variables revealed even more differences between the 

three distributions (Table 2).  

All the landscape variables significantly affected the CH effective hydraulic conductivity. Land use 

type was the most powerful classifier, followed by soil type and topography index classes. Pair wise 

comparison allowed us to merge the land use types into 3 groups: forest + coffee and banana + cassava 

+ tea (0.55 m h
-1

on average); maize and bean + vegetables + grassland (0.25 m h
-1

); and wattle (0.04 m 

h
-1

). The soil types could be aggregated into two groups: upper and lower catchment soils. The upper-

catchment soils (Humic Acrisols + Haplic Lixisols) were found to have a high mean effective hydraulic 

conductivity (0.46 m h
-1

). The lower catchment soils (Umbric Gleysols + Eutric Fluvisols + Haplic 

Acrisols) covered the lower hillslopes and the valley bottom of the catchment and had mean effective 

conductivity of 0.29 m h
-1

, i.e. half of that of the upper-catchment soils. Topography was the least 

important classifier.  

The TI tests yielded opposite results. The only landscape variable affecting the variance of effective 

hydraulic conductivity was the land use. The original land use types could be merged into six final 

classes: tea (0.25 m h
-1

), grassland + cassava (0.07 m h
-1

), maize and bean + vegetables (0.04 m h
-1

), 

coffee and banana (0.03 m h
-1

), forest (0.02 m h
-1

), and wattle (0.01 m h
-1

). The very high values for the 

tea field should be treated with caution, as of the three replicates on the tea field, one failed and one 

seemed an outlier of the TI distribution, but was not rejected because it was in the median range of the 

entire set of effective hydraulic conductivity data.  

RS tests revealed a significant effect due to land use and topography index, but no effect due to soil 

types. Again, the major classifier was land use. Land use types could be grouped into: forest + tea + 

coffee and banana (0.31 m h
-1

), maize and bean + vegetables (0.21 m h
-1

); and cassava + wattle (0.12 m 

h
-1

). After classes 2 and 3 had been merged, slight differences between land units were given by 

topography index classes. 

The three methods agreed about the high conductivity of tea fields, the constant association among 

maize and bean + vegetables in the median range of effective hydraulic conductivity, and the very low 

conductivity for wattle. All methods showed a strong effect of land use. Only CH revealed an effect of 

soil types. This may be because this method had the largest sample size, which may have yielded more 

information for differentiating between sites. However, even in this case, soil type had a lower 

classifying power than land use. This is surprising, especially considering that soil type is usually 
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considered the main landscape variable for defining hydraulic parameters (Tietje and Hennings, 1996; 

Wösten et al., 1999).  

 

Overland flow observations 

From 10 March until 10 May 2002, 12 rainfall events caused overland flow and two resulted in no 

overland flow. Rainfall depth of effective rain events ranged from 2.8 to 38.5 mm, with recorded 10-

minutes peak intensities ranging from 3.6 to 85. 2 mm h
-1

. The proportion of spots per effective rain 

event where overland flow occurred varied from 11 % to 94 %.  

The number of times per spot during the entire rainy season when overland flow was detected, i.e. 

the time-aggregated overland flow frequency, was normally distributed and varied from 0 to 71 %, with 

a mean value of 44 %. The ability of overland flow detectors to catch overland flow accurately may be 

questioned. The T-tubes were quite short, so the microtopography and surface roughness of the spots 

where the detectors were located may have affected the probability of detecting overland flow once it 

occurred. To limit this problem, utmost care was taken to place the detectors in small depressions. 

Moreover, splashes of rain might have entered the small holes in the pipes; if this happens, the presence 

of water in the T-tube is not related to the occurrence of overland flow. Therefore, the presence of only 

a few drops of water in the T-tubes was considered evidence of splash water, not of overland flow. In 

future, sheltering the drilled part of the T-tube could avoid the interference of splashing drops. 

Notwithstanding the care we took during the experiment, these, and possibly other sources of errors 

might have occurred, blurring the information about overland flow occurrence. Very few studies have 

made use of this type of detector. Van Loon (2002) estimated that the observation error of the 

quantification of overland flow for such devices is around 18 % of RRMSE. However, in terms of 

presence or absence of overland flow (binary response), the observation error is likely to be much 

smaller.  

Fig. 2 shows the time-aggregated overland flow frequency of the area. The grey background shows 

the actual soil erosion as assessed during the same period with the Assessment of Current Erosion 

Damage method (ACED; Herweg, 1996). ACED classes of erosion spanned from very low, i.e. fields 

with sporadic pedestals and no signs of sheet wash, to very high, i.e. fields with widespread interrills 

and presence of rills with cross sections larger than ten cm
2
 (Vigiak et al., 2005). Overland flow was 

more frequently detected in fields prone to severe erosion, while it was detected only at the upper edges 

of the fields prone to slight erosion. This confirms indirectly that the detectors’ information is reliable.  

Fig. 2 shows that frequency of overland flow was highly variable in space, with large differences 

occurring within small distances. At one spot overland flow was never detected, whereas at its 

neighbouring spots less than 40 m away, overland flow was detected with a frequency that varied from 

14 % to 64 %. Contrary to our expectations, overland flow was more frequent in the upper part of the 

subcatchment than in the lower part: mean frequency of runoff occurrence was 50 % at the highest 

contour lines (1560-1580 m) and 39 % at the lowest ones (1530-1545 m). This confirms that the 

observed overland flow was Hortonian. In fact, runoff resulting from saturation excess should be more  
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Figure 2. Time-aggregated overland flow frequency during rainy season March-May 2002 at Kwalei, Tanzania. 

Field grey shades indicate actual erosion of the fields observed in the same period (very low = sporadic 

pedestals; no signs of sheet wash; very high = widespread interrills; frequent rills with cross sections larger than 

10 cm
2
). The 10 m-contour lines are shown. 

 

frequent on the lower part of the slopes, where soil moisture accumulates and where there might be a 

perched water table at or near ground level. 

Rainfall variability in the area could not be measured, and spatially variable convective 

thunderstorms may occur in Kwalei catchment at the onset of the rainy season. Goodrich et al. (1995) 

showed that spatial variability in rainfall depth may be important even in areas as small as the 

monitored subcatchment. However, overland flow occurrence (not depth) depends more on the rainfall 

peak intensity than rainfall depth. During the rainfall event, it is the relationship between rainfall 

intensity and local infiltration characteristics that may trigger or not Hortonian overland flow in a given 

spot (Woolhiser and Goodrich, 1988). Rainfall variability may be an important component of the 

scatter of overland flow occurrence during a single rainfall event, especially at low rainfall intensities 

(Woolhiser and Goodrich, 1988). However, Goodrich et al. (1995) reported that measured peak rainfall 

intensities did not vary across their small experimental catchment and rainfall depths were shown to 

compensate in time. Moreover, the time-aggregated frequency data indicate a seasonal pattern, for 

which small variations of rainfall depth that may affect the spatial pattern of single rainfall events 

should be compensated. Therefore, rainfall variability, which may contribute to the variability of  
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Table 3. Land cover characteristics in the monitored area (average values per land use type).  

 Canopy cover Ground cover Plant height 

 (%) (%) (m) 

Cassava 29 41 0.76 

Coffee and banana 52 76 1.50 

Fallow 48 70 0.80 

Maize and bean 26 43 0.67 

Sugarcane 38 55 0.91 

Tea 27 37 0.55 

Vegetables 13 22 0.40 

 

overland flow occurrence at the single rainfall event, should exert negligible influence on the seasonal 

pattern. 

Apart from the altitude gradient, no other pattern could be detected by visual inspection. This was 

confirmed by the analysis of variance. Overland flow frequency showed no significant 

relationshipswith land use types, slope or topography index. Soil type may affect the spatial pattern of 

overland flow, but this could not be verified in the monitored area. However, borders between soil 

types are usually gradual and not as abrupt as the observed pattern of overland flow frequency 

suggests. To search for landscape factors that could explain the observed pattern, we tested other 

derived topographic variables: the cumulative upslope area (to the watershed divide and of the 

immediate surroundings), and slope convergence across and along the main direction of slope. None of 

these variables were statistically related to the overland flow frequency.  

The only variable that could significantly explain the variance of overland flow frequency was a re-

classified land use variable that separated coffee and banana stands (i.e. the field classified as prone to 

slight erosion in Fig. 2) from all the other land uses. The average frequency of overland flow was 35 % 

in the coffee and banana stand and 48 % in the other fields (F = 4.771, significant at p = 0.034). This 

reclassification basically reproduced the altitude gradient. The reclassification of land use types, 

however, might explain why overland flow was more frequent on the slope shoulders than on the 

footslopes. Coffee and banana stands differ from the other crops both for canopy structure and land 

management. Table 3 shows the land use characteristics observed in Kwalei catchment during a field 

survey (Vigiak et al., 2005). Canopy cover and ground cover were not significantly correlated to 

overland flow frequency. For example, in the fallow fields frequency of overland flow was 48 %, 

whereas in coffee and banana stands was only 35 %,  notwithstanding the canopy cover and ground 

cover were similar (Table 3). Average plant height was not tested, because it varied a lot among fields, 

depending on the time of survey, the crop management and the degree of intercropping (coefficient of 

variation > 100 %). However, these three parameters are insufficient to describe the differences of 

canopy architecture among land use types. It is intuitive that rainfall interception is larger in the dense 

canopy of coffee and banana stands and on the large leaves of banana trees than in other crop covers. 

Rainfall interception plays a crucial role on the redistribution of rainfall that actually hits the ground. 

Canopy interception is also an extremely variable phenomena both in space and time (Jackson, 1971; 

Jackson, 2000), but while rainfall variability can be considered spatially random, the effect of canopy is  
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Figure 3. Box plots of time-aggregated overland flow frequency associated to clusters (see Figure 4 for 

locations). Cluster B comprised only one spot. 

 

more constant in space. The support of overland flow detectors is small in comparison to such 

heterogeneity: this may explain the presence of spots where overland flow was never detected close to 

spots with mean overland flow occurrence. A second important difference between coffee and banana 

stands versus other crops is land management, which affects soil surface conditions. In coffee and 

banana stands a litter layer a few mm thick usually covers the soil surface. By contrast, the fields on the 

upper slopes (annual crops, fallow, tea, and sugarcane) are frequently hoed to prepare the soil and 

control weeds. This cultivation may temporarily increase soil roughness, but it degrades soil structure 

and removes the litter layer. As a result, the soil surface is more exposed to raindrop impacts and 

sealing. These conditions may favour the occurrence of overland flow notwithstanding that the 

vegetation cover may be high. 

The original binary data, i.e. presence or absence of overland flow per spot and per event, were 

classified into hierarchical clusters. Five clusters could be distinguished, which were associated with 

different frequency distributions (Fig. 3). Cluster A had the lowest frequency and cluster C the highest. 

Clusters A and B (the latter consisting of only one spot) showed some similarities, and will converge at 

the next level of aggregation level. Clusters D and E will also converge at the next level of aggregation. 

Cluster C, however, stood out. It comprised the most “hot spots”, i.e. the points where overland flow 

occurred most frequently. “Hot spots” also appeared in clusters D and E, however. Eventually, at a 

higher level hierarchical level, clusters C, D and E will also merge, leading once again to the main 

pattern of Fig. 2.  

Clusters were very scattered over the area (Fig. 4). This was especially true for cluster C (×), i.e. the  



Chapter 3 

 

53

 
Figure 4. Clusters of overland flow occurrence during rainy season March-May 2002 at Kwalei, Tanzania. The 

grey background indicates the coffee and banana stand,  the other land use types are in white. The 10 m-contour 

lines are shown. 

 

critical spots, where overland flow occurred more frequently. Some spatial structure was also present. 

For example, cluster D (○) had a clear spatial aggregation, with all but one spots belonging to one 

converging slope. The highest spot of Cluster D had a time-aggregated frequency of 71 %, whereas the 

lowest one had a frequency of 43 %. This suggests that once overland flow was triggered somewhere in 

the upper part of the slope, it sometimes flowed far enough to cross into the coffee and banana stands 

on the lower slopes. In a similar way, some spots of cluster A (■), associated with low frequency of 

overland flow occurrence, were located in diverging slopes. The spots of cluster E (◊) in the right part 

of the monitored area also belonged to one single convex-linear slope, where overland flow was quite 

frequent. However, the central part of Fig. 4 is dominated by a mixture of clusters: here spots belonging 

to clusters A, C and E are scattered along and across slopes without apparent spatial order.  

The spatial correlation of overland flow frequency was tested by geostatistical analysis. The best model 

that fitted the observed semi-variance of overland flow frequency was a spherical semi-variogram (Fig. 

5). The semi-variance of the runoff frequency increased with distance up to 40-50 m; thereafter the 

scatter increased, showing that there was little spatial correlation. Visual inspection of clusters (Fig. 4) 

suggested that spatial correlation was around 15-20 m across slopes and 50-60 m along the slopes. 

Unfortunately, the slope direction changed at any spot so that anisotropic geostatistical analysis was not 

possible. 
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Figure 5. Semi-variogram of time-aggregated overland flow frequency. 

 

Comparison of hydrologic response units and observed overland flow pattern  

In Fig. 6a the overland flow clusters are presented in relation to the land use of the monitored area. 

Figs. 6b-d show the three hydrologic response unit patterns, i.e. the patterns of effective hydraulic 

conductivity obtained using the average effective conductivity per land use, soil type and topographic 

index class as defined by the three measurement methods. The darker the shade of grey, the higher the 

average effective conductivity of the field (note that the ranges vary among the methods). We expected 

that the higher the effective conductivity, i.e. the more permeable the soil, the less frequent would be 

the occurrence of Hortonian overland flow. This did not happen. For example, the tea and cassava 

fields were among the areas with the highest overland flow frequency (50 % and 68 %), whilst tea and 

cassava scored the highest CH and TI effective conductivities (Figs. 6b and 6c). RS also yielded a very 

high effective conductivity for the tea field, but at least the cassava field had the lowest effective 

conductivity (Fig. 6d). On the other hand, the coffee and banana stands should be very permeable, as 

their overland flow frequency was 35 %. This agreed with the CH and RS hydrologic units, even if in 

both cases coffee and banana stands were not statistically different from the tea field. The contrast 

between upper fields and the coffee and banana stands was well recognizable in the CH hydrologic 

response units, but less marked in the RS pattern, and even reversed in the TI pattern. TI assigned the 

coffee and banana stands to the least permeable soils. Probably, TI low infiltration rates were caused by 

the impedance of water infiltration along macropores (e.g. Reynolds et al., 2000). In the coffee and  
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Figure 6. Overland flow cluster pattern in comparison with hydrologic response units: a) overland flow cluster 

and land use units of the monitored area; b) CH average effective hydraulic conductivity; c) TI average effective 

hydraulic conductivity; d) RS average effective hydraulic conductivity. Effective conductivity is expressed in m 

h
-1

. 

 

banana stands, macroporosity may be important, as biological activity is high and root systems are well 

developed.  

Fig. 7 shows the stochastic component of the hydrologic response units. Each hydrologic unit is 

represented as a central point given by its average effective conductivity and the average overland flow 

frequency observed in that unit. The error lines indicate one standard deviation around this central 

point. The three distributions of effective conductivity are clearly separated, with TI and CH values at 

the extreme of the range, and RS in the central part. Though the central points of each hydrologic unit 

were separated, most units overlapped in both effective hydraulic conductivity and overland flow 

frequency ranges. The subdivision into hydrologic response units did not correspond to real differences 

in observed overland flow, but was instead mainly an artefact. This was particularly true for CH 

measurements, where all the units merged together. The TI measurement separated at least 1 unit from 

all the others (the cassava field, with high overland flow and high effective conductivity). The position 

of the tea field (the spot at the right) is uncertain, because the standard deviation of its effective 

conductivity could not be calculated. TI generally showed an increase in overland flow frequency 

associated with an increase in the mean effective hydraulic conductivity.  
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Figure 7. Scatter plot of hydrologic response units and overland flow frequency: CH (●), TI (▲) and RS (■). 

Central points indicate the average effective conductivity and the average overland flow frequency observed for 

each hydrologic response unit. Error lines indicate 1 standard deviation range. Black units represent land use 

types whose effective conductivity was directly measured; grey units represent a “generic” land use type (i.e. not 

included in the 10 measurement fields).  

 

The RS hydrologic units appeared to be better separated from each other, with an increase of 

effective conductivity generally associated with a reduction of overland flow frequency. There was a 

low correlation between average RS effective conductivity and overland flow frequency (Pearson c.c. = 

-0.262; significant at p = 0.075), whereas for the CH and TI hydrologic units there was no correlation, 

neither linear nor non-parametric (R. Romanowicz, pers.comm., 2003). The RS units also separated the 

effect of topography: the difference between the two grey spots (a “generic” land use type) reflects a 

difference in topography index classes, with the left-hand spot for areas with topography index < 5.5 

and the right-hand one for areas above this threshold. This separation also corresponded to a slight 

difference in overland flow frequency.  

RS seemed to yield the best results. This was probably because the RS experiment simulated the 

infiltration process in the most pertinent way, simulating the action of raindrops impact and fast wetting 

and sealing of the soil surface. TI measurements at near-saturated condition failed to activate the 

macroporosity that was probably most active in infiltration and reinfiltration processes. The TI method 

also yielded the most uncertain results and required the longest experimental time; it was therefore the 

least appropriate method for this research. It is important to note, however, that TI was the only method 

to provide information on soil infiltration in unsaturated conditions, which is very valuable to 
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understand the soil hydrology. The CH method yielded large variances within groups and failed to 

differentiate among very different land use types, i.e. coffee and banana, tea and cassava. Again, 

measurement support made it impossible to account for large soil pores.  

These conclusions are tempting, but may be misleading. The statistical correlation between RS 

hydrologic units and overland flow frequency was weak, with considerable overlap in overland flow 

frequency ranges of RS units. Basically, the only spatial pattern of overland flow that could be 

associated with land use, soil, and topography was the border between the upper fields and the coffee 

and banana stands on the lower slopes. This border, and the sequence cassava – maize and bean – 

coffee and banana stands were well captured by the RS units. However, no correlation was found 

between RS hydrologic units and overland flow clusters, i.e. the location of clusters and especially of 

“hot spots” remained largely unexplained by the hydrologic units explored in this study. 

 

Conclusions 

The spatial pattern of the overland flow occurrence observed in this study was practically 

independent from the field borders. Overland flow spots more than 40 m apart were not spatially 

correlated. It was particularly difficult to explain the location of “hot spots” of overland flow 

(especially cluster C) in terms of soil, land use or topography. This high spatial variability of overland 

flow is in accordance with reports for both saturation-excess (Elsenbeer and Vertessy, 2000; van Loon, 

2002) and infiltration-excess overland flow (Gascuel-Odoux et al., 1996). Overland flow is very 

variable in space and involves complex non-linear processes that guide the redistribution of overland 

flow along the slopes in complex patterns. Vegetation interception and local ecological characteristics, 

e.g. a local slope convergence, or an opening in the canopy cover, or a slightly compacted soil surface 

due to the passage of an animal, might trigger or not the occurrence of Hortonian overland flow. 

The strategy of defining hydrologic response units in terms of landscape variables (soil, land use, 

and topography) and measuring effective conductivity to characterize their behaviour failed to capture 

the observed pattern of overland flow.  

The causes of the failure are at least twofold. On one side, point infiltration measurements failed to 

account for infiltration through the soil macroporosity. This was particularly true for TI method, where 

impedance of water did not activate the macropores, and CH method, where macroporosity was 

interrupted by the extraction of soil cores. Of the three methods, RS yielded the pattern closest to the 

observations, probably because it most closely simulates the rainfall event processes that may trigger 

Hortonian overland flow in this environment, i.e. infiltration in macropores and fast sealing of the 

surface. These results stress once again the problem of measurement upscaling. Because processes 

differ at different scales, not only the values of effective hydraulic conductivity should not be directly 

used without calibration, but also the identification of the hydrologic response units and the estimation 

of parameter distributions could not be achieved with point-scale measurements.  

A second, and probably more important, reason behind the strategy failure was that it neglected the 

effect of vegetation interception in the distribution of rainfall below the canopy. Rainfall interception 
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was the main process that could explain the only spatial pattern of overland flow that could be 

associated with the landscape variables, i.e. the border between cultivated fields on the slope shoulders 

and the coffee and banana stands at the foot of the slopes.  Unfortunately, rainfall interception is also a 

highly variable phenomenon that is difficult to measure (Jackson, 1971).  

In the face of the spatial heterogeneities of rainfall variability, canopy interception, soil sealing and 

infiltration, and the difficulties of measuring these processes, it is hard to formulate an alternative 

strategy to identify hydrologic response units. If the final modelling aim is the characterization of  

overland flow occurrence, then the use of overland flow detectors may be a valid alternative in defining 

hydrologic response units. Overland flow detectors require little investment and can give the direct 

picture of overland flow occurrence, without the need to extrapolate this information from indirect 

sources such as measurements of effective conductivity. The main drawback is that the detectors 

require occurrence of rainfall, so that observations are needed for a quite long periods (i.e. some 

rainfall events). However, spatial patterns contain hydrologic information, the exploration of whose 

potential has only recently been started (Grayson and Blöschl, 2000). Measurements may give new 

insights to formulate more appropriate modelling approaches (Beven, 2000). It is therefore by 

observing the spatial pattern of overland flow and gathering enough concurrent information that we 

may hope to characterize better the hydrological processes involved in Hortonian flow occurrence. 
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A DISAGGREGATING APPROACH TO DESCRIBE 

OVERLAND FLOW OCCURRENCE WITHIN A CATCHMENT 

Abstract 

A parametrically parsimonious, data-based model simulating the distribution of overland flow within a 

catchment was built on observations at hillslope and catchment scale collected in a small East African 

Highlands catchment (Kwalei, Tanzania). A rainfall-flow Data Based Mechanistic model defined 

catchment effective rainfall and separated two flow components: the quick flow, interpreted as a 

combination of overland flow and reinfiltration at the hillslope scale, and the slow flow, interpreted as 

ground water displacement. Two hydrologic response units (HRUs) were identified: perennial 

(HRU_1) versus other, mainly annual, crops (HRU_2). Observations of overland flow occurrence at the 

hillslope scale were used to derive HRU probability distribution functions (pdf) of overland flow 

occurrence in relation to effective rainfall. The pdfs were employed to disaggregate the catchment 

quick flow into HRU overland flow depth. Reinfiltration was incorporated in the toposequence by 

assuming that only the overland flow generated in the lower part of the field would drain out of it.  

Overland flow pdfs showed that at low effective rainfall, overland flow was more frequent in HRU_2, 

but at high effective rainfall overland flow in the two HRUs was similar. Comparison of model 

simulations versus observations in Gerlach troughs indicated that: 1) the effective reinfiltration length 

was on average 4 m; 2) the reinfiltration length was probably shorter in perennial crops and longer in 

annual crops; and 3) the model overestimated the effect of large rainfall events and underestimated that 

of intense rainfall events. Notwithstanding these limitations and in the face of the high variability of 

overland flow observed at the hillslope scale, model simulations of overland flow distribution within 

the catchment were considered satisfactory. The disaggregating approach pursued in our study 

represents a valid alternative to the more common use of infiltration equations to model overland flow 

within a catchment. 

 

Keywords: DBM modelling; probability distribution functions of overland flow; reinfiltration; 

overland flow spatial pattern; Tanzania.  

 

Introduction 

In humid and wet tropical climates, the mechanisms of runoff generation active in small watersheds are 

multiple and complex (Dubreuil, 1985). Discharge recordings at the gauged outlet are often interpreted 

as combinations of base flow, quick flow and slow flow. Streams often carry water all the year around, 

even when the rainfall season is concentrated in 4-6 months of the year, fed by deep groundwater (base 

flow). Rapid and intense storms may generate a quick rise of the water level at the outlet within an 

hour. Infiltration-excess overland flow (Hortonian type), direct rainfall in the streams and saturation 
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excess overland flow (Dunne type) can all contribute to this rapid discharge (quick flow). Subsurface 

storm flow and return flow may create a secondary discharge component that is delayed by some hours 

after the rainfall event (slow flow; Dubreuil, 1985; Beven, 2001).  

Rainfall-flow relationships have been the subject of much research work and many well established 

modelling methodologies exist (for a review see e.g. Beven, 2001). Among the various approaches, 

data-based mechanistic (DBM) modelling (Young, 1998; Young, 2003) has  been developed in the last 

20 years and has received much attention in recent literature (Young, 2003; Beven, 2001). DBM 

modelling rejects deterministic models (upward approach in the terminology of Sivapalan, 2003) as 

very difficult to identify, estimate and validate, and embraces instead an inductive methodology 

(downward approach). Arguing that rainfall-flow records usually contain information relative to the 

one-three main hydrologic mechanisms active in a given catchment, and therefore that complex models 

are often over parameterised, DBM modelling aims to identify the modal response of catchment 

rainfall-flow systems through robust statistical analysis tools. Statistical analysis of rainfall-flow time-

series is employed to characterize the main hydrologic systems of the catchment, without formulating a 

priori hypotheses that may affect the analysis. In this sense, data analysis is used to suggest an 

appropriate structure of the hydrologic model (data-based modelling). However, to be acceptable, any 

model identified with the statistical tools must be interpretable in physical terms (mechanistic 

modelling). Such an interpretation usually follows established hydrologic paradigms, but sometimes 

may challenge them (Young, 2003).  

DBM modelling has been applied in a wide range of environmental, ecological, economic and 

engineering systems  (Young, 1998). Its application to rainfall-flow processes has been proven in a 

number of cases in both temperate catchments (Young, 1993; Young and Beven, 1994; Young, 2001a; 

Young, 2001b; Young and Tomlin, 2000; Young, 2003), and in tropical environments (Mwakalila et 

al., 2001). The approach is particularly useful where measurements are of poor quality, because the 

statistical analysis applied to the model identification and estimation allows at the same time an 

efficient estimation of the uncertainties of model results (e.g. Mwakalila et al., 2001).   

The DBM approach therefore offers many advantages for catchment rainfall-flow modelling, thanks 

to its straightforward, statistically robust methodology, which makes it appropriate for rainfall-flow 

modelling and flood forecasts of gauged catchments (e.g. Young, 2002). However, it offers little 

insight into the hydrology at the hillslope scale, which in turn determines the pathways of overland 

flow and sediment movement within the catchment. The physical interpretation of a DBM model 

allows us to infer the dominant modes of response in the catchment, but as for any catchment rainfall-

flow model, it is difficult to relate the apparent simplicity of the rainfall-flow relationships at the 

catchment outlet to the hillslope mechanisms of runoff generation (Sivapalan, 2003). Indeed, the 

complexity and heterogeneity of hillslope hydrology have been the main reasons behind the 

development of (upward) physics-based distributed models. Sivapalan (2003) argued that a 

reconciliation of the upward and downward approaches might be achieved through common and 

scalable features linking the hillslope and catchment scales, such as storage-discharge relationships or 

probability distribution functions for governing terrain attributes. The topography similarity index used, 
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for example, in Topmodel (Beven and Kirkby, 1979) offers an example of a linking feature in the case 

of saturation-excess overland flow.  

In the case of infiltration-excess overland flow, however, a similar index has not yet been proposed. 

This is probably a result of the high variability and complexity of processes driving the occurrence of 

infiltration-excess overland flow, which are not yet fully understood (Beven, 2001). The occurrence of 

overland flow is usually modelled through infiltration equations, in which the most sensitive parameter 

is the effective hydraulic conductivity of the uppermost soil layer that governs the rate at which rainfall 

infiltrates into the soil. A strategy often adopted to model the spatial distribution of overland flow 

within a catchment is to assume hydrologic response units (HRU), i.e. areas where infiltration, and thus 

infiltration-excess overland flow, is more similar within the units than between units (Blöschl and 

Sivapalan, 1995), and to estimate for each HRU effective infiltration parameters. Unfortunately, 

infiltration parameters, and particularly the effective hydraulic conductivity, are highly variable in both 

space and time, and very difficult to measure at the appropriate scale (e.g. Karssenberg, 2002). To 

account for this variability, infiltration parameters can be defined stochastically through probability 

distribution functions instead of single deterministic values (e.g. Vertessy and Elsenbeer, 1999; Seguis 

et al., 2002). In any case, as a consequence of the high variability of infiltration in space and time and 

because of scale issues, neither the identification of hydrologic response units nor the estimation of 

effective infiltration parameters can be easily achieved through infiltration measurements (Loague and 

Gander, 1990; Vigiak et al., 2005a). 

Due to the complexities of the hillslope mechanisms, however, an upward approach consisting of 

adopting an explicit infiltration equation with poorly identified parameters is in our view not 

appropriate, or required, for capturing the occurrence of overland flow within a catchment. It has been 

argued that observations of overland flow occurrence at the hillslopes may instead offer more direct 

information on hillslope scale hydrology (Vigiak et al., 2005a). 

The aim of this study was to develop a disaggregating (downward) approach linking catchment and 

hillslope scale observations to describe the spatial distribution of overland flow within a catchment, 

without introducing infiltration equations. This paper is the continuation of a study showing the 

complexity of the spatial patterns of overland flow occurrence observed in a tropical mountain 

environment (Kwalei catchment, Tanzania; Vigiak et al., 2005a). 

 

Materials and Methods 

Study area – Kwalei catchment 

The Kwalei catchment (4°48′ S, 38° 26′E) is situated in the West Usambara Mountains, North-East 

Tanzania (Fig. 1). The catchment size is approx. 2 km
2
, and altitude ranges from 1337 to 1820 m. The 

terrain is rough and highly dissected, with more than half of the hillslopes steeper than 20 %. Drainage 

comprises four permanent streams running north-west to south-east. Average annual rainfall is 

approximately 1000 mm, with a bimodal distribution. The long rainy season stretches from the end of  
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Figure 1. Location of hillslope monitoring areas in Kwalei catchment: the north-western subcatchment set in 
March-May 2002 (box, dots indicate location of runoff detectors), and the two transects set in March-May 2003 
(bold lines). Shading represents the main land use types of the catchment. Grey lines are the 50 m contour lines, 
black lines indicate the drainage system.  
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February to the end of May and the short, less reliable rainy season from October to January. The 

average daily temperature is 20 ºC, with diurnal temperature ranges (12-25 °C) greater than annual 

ranges of mean daily temperatures (16-20 °C) (Vigiak et al., 2005b).  

Soils on the slopes consist mainly of Humic and Haplic Acrisols (FAO-Unesco legend, FAO, 1990). 

They comprise porous, sandy topsoils, and clayey, deep and well-drained subsoils. Saturation may 

occur in the clayey and vertic Umbric Gleysols in  the valley bottoms (Meliyo et al., 2001).  

The highest part of the catchment is covered by mountain rain forest, whereas the middle and lower 

slopes are used for agricultural purposes. Hamlets are located mainly along the ridge shoulders. 

Cultivation of annual crops is concentrated close to the compounds. Maize is the most commonly 

cultivated crop, often intercropped with bean, banana, cassava and sugarcane. The two-layer cultivation 

of banana and coffee is frequent on the steep slopes along the stream incisions. Valley bottoms are 

intensively planted with vegetables, the major cash crops of the area. 

 

Observations at the catchment scale 

Catchment rainfall and discharge were recorded at the catchment outlet in the period August 2001- 

June 2003. Rainfall was recorded using three tipping bucket rain gauges, one placed at the outlet, one 

in the middle valley and one in the upper slopes. The catchment outlet was equipped with a rectangular 

flume where a sonic water level meter recorded the water level at two minute intervals. The flow 

height-rating curve was derived from observations of flow velocity and water level during a major 

rainfall event (21-22 May 2003). The data were analysed using a State Dependent Parameter (SDP) 

method of the Captain Toolbox (Young et al., 2001). The SDP method consisted of a non-parametric 

signal processing technique that is useful when model parameters change with the state of the input 

variables. The analysis involves two stages. First, the state dependency of the signal is identified non-

parametrically by using a recursive Fixed-Interval Smoothing  algorithm (FIS; Young, 2000). Then, the 

resulting non-parametric (look-up table) relationship is parameterised, so that the final estimation of the 

parameters that characterise the nonlinearities is statistically efficient (Young, 2001b). In the case of 

the flume rating curve, the flow and water level relationship was first identified non-parametrically, 

then parameterised in a power law relationship similar to the theoretical curve for rectangular flumes.     

Analysis of the rainfall-flow records indicated that some technical problems occurred during the 

data collection campaign, critically affecting the quality of the data. The rain gauges positioned far 

from the outlet malfunctioned: many records were missing, and little correlation was found between 

their few records and the ones from the rain gauge at the flume. Therefore there was no choice but to 

rely on rainfall records at the flume station. Rainfall heterogeneity was observed, but could not be 

quantified.  

Moreover, the sonic water level meter apparently failed to compensate for air temperature; as a 

result, the discharge records showed daily fluctuations that were not related to discharge changes. To 

limit the influence of poor data quality, rainfall and water level recordings were averaged to one hour 

time intervals. The use of filtering functions to reduce the noise in the measurements was rejected as it 

would affect the estimation of model parameters. Instead, the presence of noise, especially during intra-

event periods, was taken into consideration during the evaluation of model results. 
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Figure 2. Profiles of the two longitudinal transects set for runoff monitoring during season 2003.  

Observations at the hillslope scale 

Observations at the hillslope scale in the long rainy season (March-May) 2002 aimed to gain insight 

into the hydrologic behaviour of the catchment. Overland flow occurrence was monitored by 50 runoff 

detectors (Vigiak et al., 2005a). The detectors consisted of simple devices (30 cm long PVC-perforated 

tubes connected to a T-junction provided with a removable lid) able to catch overland flow occurring in 

their immediate upslope area. The detectors were placed on four, 250-m long contour lines, defining a 

small subcatchment of around six hectares located in the north-western corner of the catchment (Fig. 

1). After each rainfall event, the presence of water in the tubes was recorded and interpreted in terms of 

overland flow occurrence (presence or absence). 

In the long rainy season (March-May) 2003, hillslope scale observations were made to try to 

validate the perceptual hydrologic model defined on the basis of the year 2002 data. Observations 

concentrated on 2 longitudinal transects located at the lower (1380 m) and middle (1450 m) slopes of 

the catchment (Figs. 1 and 2). Transects spanned from the water divide to the drainage line and crossed 

representative sequences of annual and perennial crops on the most frequent soil type of the catchment 

(Haplic Acrisols). Transects consisted of six rows of four runoff detectors each, placed at 10 m 

intervals along the contour line, with a total transect width of around 40 m. Three 0.50 m wide Gerlach 

troughs (Gerlach, 1967) were installed at different positions along each transect. After each rainfall 

event, observations consisted of overland flow occurrence in the runoff detectors (presence or absence) 

and volumes of overland flow collected in the Gerlach troughs. 
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Rainfall-flow DBM modelling 

According to the methodology developed by Young (1993; 2002), the nonlinearity of the rainfall-flow 

process may be filtered by the transformation of measured rainfall into effective rainfall. The 

relationship often assumes a simple power-law form that uses gauged flow as a surrogate measure of 

the soil-water storage in the catchment: 

 

ttt
ryfu )(=            (1) 

 

where ut denotes the effective rainfall and rt  denotes measured rainfall. The scalar function f (yt)  

describes the nonlinearity between the effective rainfall and the flow y
t

, interpreted as a surrogate of 

catchment soil moisture. In our study, the function f (yt)  was characterised using again SDP estimation 

techniques, at first non-parametrically using the recursive FIS algorithm, then parameterised in a power 

law form (Young, 1993; Young and Beven, 1994). The optimisation procedure of this second stage 

included the concurrent estimation of the linear Stochastic Transfer Function (STF) model between 

effective rainfall and flow.   

The effective rainfall is the input variable of the Single Input Single Output STF, whose general 

form is: 
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where 1−
z denotes the time shift operator;  b

i
, i = 0,1 , 2,…, m and a

j
, j = 1, 2, …, n coefficients denote 

the parameters of the n-m STF polynomial; δ denotes the pure, advective time delay present in the 

system; and ξt  denotes the noise (not necessarily white).  

The Steady State Gain (SSG) of the model is given by:  
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and describes the portion of rainfall that reaches the catchment outlet, whereas the loss efficiency, i.e. 

the water lost in the catchment,  is equal to SSG−1 .  

In rainfall-flow modelling the STF is often a second order polynomial that can be decomposed into 

two parallel components, a quick and a slow component. The quick component is usually interpreted in 

terms of surface flow, but may include some fast subsurface responses, whereas the slow component is 

often ascribed to subsurface and groundwater processes (Young and Beven, 1994; Young, 2003). This 

physical interpretation is similar to other linear transfer function models, such as the Bedford-Ouse 
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model (Whitehead et al., 1979) and the IAHCRES model (Jakeman et al., 1990), or more generally to 

their precursor, the unit hydrograph model (Sherman, 1932).  

The decomposition of the discharge into the quick and slow components has the form: 
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 represents the quick flow; 

t
y

,2
 represents the slow flow; α1,α2 ,β1,β2  are parameters derived from 

eq. (2); ut is the effective rainfall (eq. 1) and εt represents the estimation error at the time t. From eq. 

(6), the discrete equivalents of the Steady State Gain (
φ
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SSG ) and the time constant 

(
)log(
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=T ) of the quick (φ = 1) and the slow (φ = 2) flow components can be derived. 

The identification and calibration of the DBM rainfall-flow model was performed on November-

December 2001 hourly data. Model validation was done for March-May 2003 hourly data. 

 

Disaggregating of overland flow among hydrologic response units (HRUs) 

We built a theoretical model to predict HRU overland flow in relation to the catchment outlet 

discharge. According to the interpretation of the DBM model, we assumed that the quick flow 

component of the discharge was the aggregated response of the catchment to predominantly surface 

flow. We further assumed that the contribution of each HRU could be disaggregated by estimating the 

probability density functions (pdf) of overland flow occurrence in each HRU as a function of the 

effective rainfall.  

The first step of the analysis consisted of a non-linear regression analysis that modelled the observed 

HRU frequency of overland flow occurrence as a function of the effective rainfall u. The runoff 

detectors were divided among HRUs. For each observation and HRU, the frequency was given by the 

number of detectors where overland flow was detected divided by the total number of detectors. The 

observed presence-absence of overland flow was assumed as resulting from the peak infiltration-excess 

since the previous observation, and was measured as the maximum (peak) hour effective rainfall ut of 

the intra-observation interval  (umax). The regression assumed the form: 
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Pk linked overland flow occurrence of the kth HRU to the effective rainfall u. At any u, Pk gave the 

HRU mean overland flow occurrence. The information on the variance of overland flow occurrence, 

necessary to characterise the probability distribution function of overland flow in u, was contained in 

the Jacobian matrix associated with the estimated Pk .  

In the second step of the analysis, we assumed that the HRU probability distribution functions of the 

overland flow occurrence ( )uG
k

 were Gaussian at any u. This assumption was justified by the 

observations of Hjelmfelt and Burwell (1984), who reported that the spatial variability of overland flow 

was normally distributed. Mean and standard deviation of ( )uG
k

, 
uk ,

µ  and 
uk ,

σ , were estimated from 

Pk  and the Jacobian matrix associated to Pk, respectively. The HRU fraction contributing to the 

overland flow was then considered equal to ( )uG
k

 integrated between 0 (no occurrence, i.e. nowhere) 

and 1 (complete occurrence, i.e. everywhere). 

At any time step, the overland flow generated by the catchment, i.e., the quick flow component 
t

y
,1

 

(eq. 6) of the discharge, could then be considered equal to the sum of the fractions contributed by all 

HRUs: 
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where wk is the area of the kth HRU. 

From eq. (8), the average overland flow depth Fk,t occurring at the kth HRU at any time step could 

be defined as:   
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where A is the total catchment area. 

 

Modelling of reinfiltration along the slopes 

The disaggregation of quick flow allowed an estimation of average overland flow depth (Fk,t) occurring 

per HRU at each time step. However, the distribution of the overland flow within the catchment 

depended also on the topographic connectivity of the fields. Therefore, an overland flow accumulation 

procedure along the slopes was incorporated into the model.  The reinfiltration of the overland flow 

was accounted for by assuming that only the portion of overland flow generated in the lower part of the 

field could drain out of it (run-off). The maximum field area generating run-off was equal to the length 

of the lower field border times the characteristic reinfiltration length L, i.e. the average length along 

which the overland flow travels along the soil surface before reinfiltrating in the soil. If one field 

drained to more fields, the ratio of the overland flow draining to any receiving field was proportional to 

the fraction of border length common to the draining and the receiving fields. A field land use map of 

the catchment was available (Vigiak et al., 2005b). A connectivity matrix linking fields from the 

upslope (the watershed divide) downwards to the channel streamlines was defined through observations  
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Figure 3. Overview of the hydrologic model: on the left the DBM rainfall-flow model (catchment scale); on the 
right the disaggregation of quick flow among the hydrologic response units (HRUs; hillslope scale); below, the 
accumulation of overland flow along the slopes, taking account of reinfiltration (field scale). 

of flow direction surveyed in the fields. The stream lines were the final collectors of the overland flow 

slope accumulation and drained to the outlet. 

The complete modelling sequence comprised (Fig. 3): 1) the rainfall-flow DBM model deriving 

effective rainfall 
t

u and quick flow
t

y
,1

; 2) the disaggregation of  quick flow 
t

y
,1

 among HRUs, defining 

Fk,t; and 3) the fields’ sequence of run-on and run-off, dependent on the topographic connectivity and 

the characteristic length of reinfiltration L.  

The characteristic reinfiltration length parameter L of the model was assumed equal to the average 

length of the contributing area of the Gerlach troughs placed along the transects. The Gerlach trough 

contributing area, given by the Gerlach trough width times the reinfiltration length L, was then 

estimated by comparison of model simulations against the Gerlach trough observations of overland 

flow depth. 

 

Results and discussion 

The hydrologic perceptual model 

In the long rainy season of 2002, 12 events generated overland flow (Table 1), whereas 14 events were 

recorded in the 2003 season (Table 2). Rainfall events were short, intense and localized at the on-set of 

the rainy season and became progressively longer, less intense and spatially spread toward the end of 

the season. Even small rainfall events triggered occurrence of overland flow, but rainfall events with 

30-minute peak intensities of less than 3 mm h
-1

 generated overland flow in less than 33% of detectors.  
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Table 1. Overland flow occurrence in March-May 2002, Kwalei catchment, Tanzania: rainfall event amount; 30-

minute peak intensity and overland flow frequency in runoff detectors (i.e. fraction of runoff detectors where 

presence of runoff was detected divided by total number of detectors). 

 

Rainfall event 

Date 
Amount Peak I 

Overland flow frequency in 

runoff detectors 

 (mm) (mm h-1)  

10 March 20.0 35.6 0.94 

21 March 4.6 9.2 0.11 

27 March 25.0 42.8 0.52 

2 April 7.4 11.2 0.37 

3 April 7.8 10.8 0.46 

5 April 2.0 3.6 0.59 

9 April 5.2 10.4 0.74 

15 April 1.0 2.0 0.22 

18 April 10.6 10.8 0.87 

22 April 1.6 2.8 0.24 

25 April 3.0 4.8 0.50 

1 May 3.0 3.2 0.72 

 

Table 2. Transect observations in March-May 2003, Kwalei catchment, Tanzania: rainfall event amount and the 
30-minute peak intensity; overland flow frequency in runoff detectors; and overland flow volumes recorded at 
the Gerlach sites (number of Gerlach with overland flow, average volume and coefficient of variation).  

Rainfall event Gerlach troughs 

Date 
Amount Peak I 

Overland flow 

frequency in 

runoff detectors 
n mean c.v. 

 (mm) (mm h-1)   (dm3) (%) 

11 March 1.4 2.8 0.29 1 0.085  

23 March 2.0 2.0 0.27    

24 March 29.8 55.6 0.93 4 0.299 170 

29 March 6.8 5.2 0.91 2 0.009 42 

31 March 15.0 25.2 0.91 6 0.366 119 

2 April 14.4 22.8 0.98 6 0.995 148 

3 April 20.8 32.8 0.98 5 1.423 98 

5 April 10.0 13.2 0.91 1 0.580  

1 May 5.4 7.6 0.38 1 0.125  

7 May 1.8 2.0 0.18    

19 May 16.8 7.6 0.98 3 0.013 141 

20 May 65.2 12.6 1.00 4 0.431 151 

23 May 57.4 8.8 0.98 4 1.606 63 

25 May 2.2 5.4 0.67 4 0.283 100 
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The frequency of overland flow occurrence increased with rainfall amounts and intensities, but no 

simple correlation was found between rainfall characteristics and overland flow occurrence. In the 2003 

season, with the exception of the first storm, overland flow was recorded in the Gerlach troughs only 

when rainfall was above 5 mm, and when overland flow occurrence recorded by the detectors was 

above 50 % (Table 2). Volumes of overland flow were low; the maximum recorded volume was 3.95 

dm
3
, recorded in the lowest field of transect 1 (Gerlach G3). Only in two events all Gerlach troughs 

recorded overland flow. Hillslope observations indicated that overland flow occurrence was highly 

variable, both in location and volumes, especially at small rainfall events. This confirms the high 

variability of hillslope overland flow processes reported in literature (Hjelmfelt and Burwell, 1984; 

Gascuel-Odoux et al., 1996; Elsenbeer and Vertessy, 2000; van Loon, 2002; Vigiak et al., 2005a). 

A more detailed analysis of the hillslope observations was reported elsewhere (Vigiak et al., 2005a). 

The most important conclusions were: 1) the main mechanism of generation of overland flow in the 

fields was of infiltration-excess; 2) reinfiltration along the slope was frequently observed and 

represented an important hillslope hydrological process; 3) no noticeable influence of soil type or 

topography on overland flow occurrence was detected; 4) two hydrologic response units (HRUs) could 

be identified: perennial crops (HRU_1: coffee and banana stands, forest and banana and maize fields) 

versus other crops (HRU_2: mainly annual crops). In HRU_1 overland flow occurrence was observed 

less frequently than in HRU_2, because of a number of concurrent conditions, i.e. higher canopy 

interception, presence of litter, better topsoil conditions in HRU_1 than in HRU_2, which were not 

only related to differences in infiltration as measured in the field (Vigiak et al., 2005a). 

The discharge at Kwalei catchment outlet was interpreted as the combined result of different 

mechanisms of runoff generation: the overland flow generated along the slopes, mainly of Hortonian 

type, reinfiltrated usually within distances shorter than 20 m (Vigiak et al., 2005a). This reinfiltrated 

flow and the subsurface flow contributed to the displacement of ‘old’ water stored in the soils, 

generating the quick flood wave in response to the rainfall event. Rainfall falling directly on the 

perennial streams or on the saturation-prone Gleysols in the valley bottom would probably contribute to 

this first discharge wave, but because of the limited extension of these areas (approximately 1 % of the 

catchment), their contributions were considered negligible. A large portion (> 90 %) of the rainfall did 

replenish the catchment storage, to be partly lost either by evapotranspiration or deep leakage, and 

partly be routed to the outlet (c. 11 %, base flow). This interpretation is in agreement with the 

hydrologic behaviour of many catchments in the wet tropics (Dubreuil, 1985), and implies that the 

catchment discharge is only indirectly related to the generation of overland flow along the slopes, i.e. 

reinfiltration and subsurface storm runoff are important components of the quick flow.  

 

The DBM rainfall-flow model 

For Kwalei catchment, the nonlinearity between rainfall and flow showed a reasonable power-law 

form. Eq. (1) was parameterised as: 

 

t

x

tt
ryu =            (10) 
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Figure 4. Calibration of rainfall-flow (DBM) model, November-December 2001. Solid black line denotes the 
estimated flow and thin dashed lines denote 95% confidence limits of the prediction; grey dots denote the 
measured flow. 

with the optimised power–law coefficient parameter x = 0.6889. As the flow discharge, expressed in m
3 

s
-1

, was low and because the power-law coefficient was below 1, the effective rainfall represented only 

a small fraction (around 5 %) of the measured rainfall. During season 2003, for example, the ratio 

between effective to measured rainfall, equivalent to the scalar function x

t
y , ranged from 0.029 to 0.181 

and was 0.057 on average. Thus, measured rainfall ranged from 0 to 29.2 mm, whereas mean effective 

rainfall was 0.092 mm, the 75th-percentile was 0.11 mm, the 99th-percentile was 0.75 mm, with 

maximum effective rainfall of 1 mm.  

The best STF model was a second order polynomial that was decomposed into a quick and slow 

component, with parameters of eq. (6) equal to: 
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Figure 5. Validation of the DBM model in Feb-May 2003: the upper panel shows slow flow component, the 
middle panel shows the quick flow component and lower panel shows the total simulated flow (solid line) in 
comparison with the observed flow (dashed line). 

The coefficient 0.187 represents the discrete equivalent of Steady State Gain of the STF model, 

which when multiplied by the effective rainfall non-linearity x

t
y  gives the total runoff component, 

whereas its complement (1-SSG) gives the catchment water losses, mainly ascribed to 

evapotranspiration. The quick component had time constant T1 of around 90 minutes and contributed to 

40 % of total flow. The slow component, comprehensive of the base flow, had a time constant T2 of 

approx. 43 hours, and contributed the remaining 60% of the flow. The Young information criterion 

(YIC, Young et al., 2001) of the model was -7.6, indicating that the model was not over parameterised. 

The model explained 86 % of the rainfall-flow data, but model efficiency increased to above 90 % 

during the rainfall event periods, when noise in the data was smaller. Fig. 4 shows the model flow and 

its 95 % confidence interval for the calibration dataset. The presence of noise in the measurements 

(solid line) is clear in the intra-event periods. In the validation dataset, the model explained 73% of the 
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whole dataset and 83% during the rainfall event periods. Fig. 5 shows the flow separation performed by 

the model for the validation dataset: the upper panel shows the slow component, the middle panel the 

quick component and the lower panel the total flow in comparison with measurements (dashed line). 

The model performed badly during the low flow periods, which might indicate that the model did not 

identify correctly the catchment response during the dry periods. During the intra-rainfall periods, it 

was difficult to infer the catchment response because the recordings were of poor quality. However, 

Fig. 5 shows that the model performed well during the rainfall events, which indicates that the 

relationship between effective rainfall and overland flow generation during the rainfall events was well 

simulated. Therefore the DBM model was considered appropriate for the further analysis.  

 

Disaggregating of overland flow among HRUs 

Eleven runoff detectors were placed in HRU_1 in season 2002 and 16 in season 2003, whereas 34 and 

28 detectors were placed in HRU_2 in the two seasons, respectively. The best non-linear regressions Pk 

of HRU overland flow occurrence in relation to effective rainfall u (eq. 7) were hyperbolic tangents, 

parameterised as: 

  

( )uhhP
kkk ,2,1

tanh=                (12) 

 

where h1,1 = 0.925 and h2,1 = 10.390 for HRU_1, and h1,2 = 0.856 and h2,2 = 16.534 for HRU_2. The 

regression functions are presented in Fig. 6, together with the observations.  It is interesting to note that 

the two functions crossed at an effective rainfall u of 0.15 mm: when effective rainfall was small, 

overland flow was mainly generated in the non-perennial crop fields, whereas when effective rainfall 

was high, overland flow was active and quite homogeneous throughout the perennial crop fields. The  

outliers at u = 0.56 mm in Fig. 6 belong to the rainfall event recorded on the 27
th

 March 2002, a storm 

that recorded 25 mm of rainfall in 70 minutes, with a peak 30-minute intensity equal to 42.8 mm h
-1

 

(Table 1). However, on that occasion overland flow was recorded by only 52 % of runoff detectors. 

The storm event was similar in terms of rainfall intensity, amount, duration and 24h antecedent rainfall 

to the event of 11
th

 of March 2002, when the recorded overland flow occurrence was 93 %. The area 

monitored in the season 2002 was quite far from the flume, and at the beginning of the rain season, 

rainfall events consist mainly of localized and very intense storms. It is probable that the event that was 

recorded as very intense at the flume was far less intense on the monitored area, which would explain 

the low occurrence of overland flow observed.  This example shows that the spatial distribution of 

rainfall affected the analysis, enlarging the confidence intervals of Pk, but at the same time, this 

uncertainty was accounted for in the disaggregating of quick flow among HRUs through the shape of 

the Gaussian curves, defined by 
uk ,

σ  as estimated from the Jacobian matrix associated with Pk. 

Fig. 7 shows an enlargement of the regression curves of Fig. 6 for the interval of effective rainfall u 

0 - 0.35 mm and the derived probability density function curves ( )uG
k

 at u = 0.05 mm and 0.25 mm as 

estimated from the Jacobian matrices, multiplied by the HRU areas wk. The dashed line above the HRU 

Gaussian curves is the sum of the two curves and represents the totality of the quick component of  
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Fig. 6. HRU non-linear regression of overland flow probability of occurrence (Pk) as a function of effective 
rainfall u (mm). In black the regression for HRU_1 (perennial crops); in grey the regression for HRU_2 (other 
crops). Dots indicate observations for HRU_1; crosses indicate observations for HRU_2. 

discharge y1,t (eq. 8). The ratio between the surface under the HRU Gaussians curves and the total 

curve gave the fraction of overland flow that was generated by the HRU, which was multiplied by y1,t 

to estimate the average HRU overland flow depth (Fk,t, eq. 9). 

 

The characteristic reinfiltration length 

The average HRU overland flow depths were the input for the field run-on run-off accumulation 

sequence (Fig. 3), to estimate the overland flow accounting for field topographic connectivity. The 

result consists of the simulation of overland flow depth at any time step at any field. 

Table 3 shows the effect of varying the reinfiltration length L on the overland flow depth as 

observed in the Gerlach troughs (Gerlach trough volumes divided by contributing area), and as 

simulated by the model in the six Gerlach trough sites. The range of variation was defined by the 

hillslope observation analysis (Vigiak et al., 2005a), i.e. from 1 to 20 m. The increase in reinfiltration 

length resulted in a larger contributing area of the Gerlach troughs, and therefore in a decrease of the  
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Figure 7. The probability density functions ( )uG

k
 for HRU_1 and HRU_2 at effective rainfall u equal to 0.05 

mm (a) and 0.25 mm (b). The dashed line is the sum of the two components and represents the total quick flow 
at the outlet. 

Table 3. Effect of variation of characteristic reinfiltration length L on model simulation in comparison to 
observation of overland flow depth in the Gerlach troughs. The reinfiltration length determined the accumulation 
area of the Gerlach troughs and the amount of run-off in the model.  

Observations  Model simulation L 

 mean st. deviation  mean st. deviation 

(m) (mm) (mm)  (mm) (mm) 

1 0.806 1.631  0.211 0.296 

5 0.161 0.326  0.259 0.383 

10 0.081 0.163  0.334 0.555 

15 0.054 0.109  0.428 0.807 

20 0.040 0.082  0.505 1.044 
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inferred overland flow depths. At the same time, the increase of reinfiltration length increased the 

proportion of overland flow moving above the surface along the slope. As a result, overland flow 

simulated in the lower fields received increasingly larger volumes of surface run-on, and both the mean 

and the variance of overland flow depth simulated by the model increased. The best agreement between 

mean values of overland flow as inferred from observations and simulated by the model was obtained 

for reinfiltration lengths around 5 m. For the reinfiltration lengths above 20 m the model was not 

anymore sensitive to this parameter, as the field lengths were seldom longer than 20 m; in the range 1-

10 m model simulations were mainly driven by the disaggregation of overland flow among HRUs. 

At 4 m, the distribution of model prediction of overland flow depth overlapped well the distribution 

of the observations, and therefore this reinfiltration length was considered suitable for Kwalei 

catchment. A reinfiltration length of 4 m results in the accumulation areas for the Gerlach trough equal 

to 2 m
2
. This is in good agreement with observations on Gerlach troughs placed in the same area for 

another experiment, and whose accumulation areas were measured in the field and ranged from 2.5 to 

3.5 m
2
 (A. Tenge, pers. comm., 2003). A reinfiltration length L of 4-5 m also indicates that on average 

only the lower quarter of the fields generated run-off, which was in good agreement with the field 

observations. 

 

Evaluation of model simulations 

Fig. 8 shows the scatter plots of simulated versus observed overland flow depths at the six Gerlach 

sites, expressed in cubic root of mm to enlarge the differences at smaller values. The reasons behind the 

scatter between observations and simulations are manifold. In Fig 8a, symbols represent the Gerlach 

sites. Overland flow appeared to be overestimated in HRU_1 (G4 and G6) and underestimated in 

HRU_2 (G1-3 and G5). Two Gerlach troughs show this fact more clearly: Gerlach G3, placed at the 

end of the transect 1, and Gerlach G6, placed at the end of the transect 2. Model simulations of Gerlach 

G3 greatly underestimated overland flow in three cases out of six: the two outliers in the lower right 

side of Fig 8a belong to G3. The G3 site is a degraded tea plantation that is seldom cultivated and 

whose crop cover is less than 50 %. It is also a steep field, with average slope of 30 %. Gerlach G3 

always recorded the highest volumes of overland flow. On the other hand, Gerlach G6 at the end of 

transect 2 hardly showed any overland flow. G6 site consisted of a coffee and banana stand, with crop 

cover above 90%, a thick layer of litter and of gentle slope (< 15 %). The model simulated occurrence 

of overland flow in this field, but only in few occasions any volume was collected in the Gerlach. The 

apparent overestimations for HRU_1 and underestimations for HRU_2 suggests that the reinfiltration 

length may depend on the HRU types. Indeed, this explanation seems to be logical: in HRU_1 the 

overland flow occurrence is less frequent, indicating generally higher rainfall infiltration conditions. 

Consequently overland flow would also quickly reinfiltrate into the soil. Local slope is another 

important factor affecting reinfiltration: on steeper surfaces, overland flow is likely to travel longer 

distances before reinfiltrating.  

Fig. 8 may also indicate that the disaggregation of overland flow does not separate the two 

hydrologic units adequately. In Fig. 8b symbols represent the rainfall event observations. Circles 
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Figure 8. Scatter plot of simulated versus observed overland flow depth at the Gerlach trough sites (data are 
shown in cubic root of mm of overland flow to enhance the differences in the smaller observations). a) symbols 
represent the Gerlach trough sites. G4 and G6 were placed in HRU_1 (perennial crops); G1-3 and G5 were in 
HRU_2 (other crops). b) symbols represent the rainfall event characteristics: circles indicate large rainfall events 
(L: rainfall amount > 15 mm), crosses indicate intense events (I: 30-minute intensity > 20 mm h

-1
); dots indicate 

the other observations. 
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indicate the observations relative to large rainfall events (i.e. rainfall above 15 mm), whereas crosses 

indicate intense rainfall events (i.e. 30-minutes peak intensity above 20 mm h
-1

). Other events are 

represented by dots. The scatter plot looks in this case “organized”. All large events are simulated with 

more than 0.4 mm of overland flow and are mostly overestimated, whereas intense rainfall events are 

mostly underestimated.  

Rainfall intensity was not directly used in the regression analysis, whereas it clearly affected the 

measurements of the overland flow depth in the Gerlach troughs (Table 2). This might be a structural  

problem of the disaggregation approach. However, its effect could be reduced by using a shorter time 

step in the rainfall-flow model, e.g. half an hour or 10 minutes. Unfortunately, the available data did 

not allow a finer resolution of the model. At the catchment level, the poor quality of discharge 

measurements imposed the limitation of the analysis to 1 hour time step intervals. At the hillslope level, 

only 26 useful observations per HRU were available for the regression analysis. Furthermore, in season 

2002, the distance of the monitored area from the flume introduced more uncertainty in the analysis of 

overland flow occurrence in relation to effective rainfall (see Fig. 6). As a result, the standard 

deviations of ( )uG
k

 are quite large.  

Points on the y axis of Fig. 8 indicate the overestimations of the model that can be ascribed to the 

disaggregation of the overland flow, i.e. points where the model predicted overland flow but no volume 

was collected in the Gerlach troughs. This was expected: the model simulates the occurrence of 

overland flow as soon as there is a positive effective rainfall, whereas the Gerlach troughs recorded 

volumes only when rainfall events were above 5 mm (Table 2). This does not unequivocally indicate, 

however, the model error: at low effective rainfall, the variability of overland flow was much higher 

than at high effective rainfall (see Fig. 6). It is therefore possible that overland flow was present but did 

not occur in the upslope area of Gerlach troughs. More Gerlach troughs observations would have been 

required to check this in the field.  

The disaggregation approach models the high variability of overland flow stochastically: the model 

predicts the average HRU conditions at each time step, taking into account the field position along the 

slopes only in part because of the reinfiltration. Local conditions, such as those observed at sites G3 

and G6 for example, cannot be included. A perfect match of the model simulation with observations 

should therefore not be expected. Notwithstanding the high scatter of the points, the order of magnitude 

of overland flow was well simulated. Furthermore, events that were not too intense or too large (dots in 

Fig. 8b) were also well simulated.  

Fig. 9 shows the simulation of Kwalei catchment at the peak hour of the rainfall event of 24.05.03: 

overland flow depth varied from 0.075 mm to 0.47 mm. Most of the areas with overland flow depth 

below 0.15 mm correspond to HRU_1. A sharp difference between HRU_1 and HRU_2 can be noticed 

especially at the border of the forest area, but also on the western side of the catchment, along the 

watershed divide, where coffee and banana stands with low overland flow are interspersed with annual 

crop fields with high overland flow. Overland flow depths above 0.2 mm correspond mainly to areas 

where incoming run-on is important: e.g. in the north-eastern part of the catchment, below the patch of 

rock outcrop and burned forest, and in the long central slopes of the catchment. Many of the dark spots  
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Figure 9. Model simulation of overland flow depth (mm) for Kwalei catchment at 2:00-3:00 of 24.05.03. 
Overland flow depths above 0.3 mm are shown in white. 

scattered around the catchment indicate instead fields that are isolated from the upper slopes by cut-off 

drains or other features diverting the overland flow.  

The effect of field shape on model simulation can be observed in the southern slopes: the western 

and eastern sides of the river have similar land use, but on the eastern side fields are wider than longer 

(the main field axis is along the contour line), whereas in the western side fields are longer than wider 

(the main field axis is along the slope direction) and are generally also larger. The average amount of 

run-off draining out of a field is proportional to the length of the lower field border length times the 

reinfiltration length. The ratio of the field out-draining area to the field total area depends on the field 

shape: reinfiltration is more important in long fields than in wide fields, and in big fields than in small 

fields. As a result, the accumulation of run-off is larger in the eastern side of the catchment than in the 

western side. In this sense, model simulations depend on the spatial discretization applied to represent 

the catchment.  

The representation of the Kwalei catchment using fields was chosen because the survey of overland 

flow direction was produced at this level. A different representation, for example by a raster format of 

homogeneous pixels, would probably result in different simulations. Such an approach would speed up 
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the model implementation, but would rely heavily on the quality of the DEM available, and on the 

absence of flow lines cutting through the slope and diverting the surface flow. Field borders often 

create such discontinuities in the overland flow directions; the use of field border to calculate field run-

off adopted in our modelling approach helped taking this into account. Which representation would 

lead to the best simulation is an issue that will need further investigation in the future. Qualitatively, the 

distribution of overland flow in Kwalei catchment presented in Fig. 9 seems realistic and was 

considered satisfactory. 

Conclusions 

The hydrology of Kwalei catchment comprised many interwoven processes, with a predominance of 

infiltration-excess overland flow, reinfiltration, and subsurface storm-flow. Observations at the 

hillslope scale showed that overland flow occurrence was very variable along the catchment slopes and 

related not only to the differences in soil infiltration, but also to the differences in canopy interception, 

soil cover conditions and land management (Vigiak et al., 2005a). Moreover, overland flow was only 

indirectly related to the catchment discharge. Such complex hydrology is frequent in wet tropical 

environments (Dubreuil, 1985) and poses serious difficulties for hydrologic modelling.  

Our disaggregating approach consisted of an unconventional model that rejected the use of any 

infiltration equation and attempted to reconcile rainfall-flow catchment-scale modelling to hillslope-

scale modelling. The variability of overland flow occurrence was incorporated through the use of 

probability density functions derived from the observations.  

The model was built on many assumptions, some of which are questionable: we assumed that 

overland flow was related to the catchment quick flow through the effective rainfall, and that the 

overland flow occurrence could be modelled through Gaussian probability density functions. The poor 

quality of discharge data imposed the use of one hour time step intervals whereas observations of 

overland flow in the Gerlach troughs showed that rainfall intensities at smaller time step intervals were 

important. The number of the observations at the hillslope scale was probably too small for a good 

estimation of model components and a thorough evaluation of the model performance. A larger dataset 

of hillslope observations would have definitively been useful to improve the reliability of model 

simulations. Notwithstanding the limits of the analysis and of the available data, the model simulations 

were in reasonable agreement with overland flow depths observed in Gerlach troughs, and the overall 

simulation of the spatial distribution of overland flow seemed realistic. 

These results were achieved with a rather limited number of parameters, i.e. five parameters for 

DBM model, three (times two HRUs) for the disaggregation approach, and the reinfiltration length. 

Even so, the risk of over parameterisation is already evident, for example in the difficult interpretation 

of the scatter plot of Fig. 8. The advantage of such a parsimonious model is that it may allow the 

estimation of the uncertainty of model predictions using methodologies that employ Monte Carlo 

simulations, such as e.g. GLUE (Beven and Binley, 1992).  

Model requirements consisted of rainfall-flow time series and observations of overland flow 

occurrence at the hillslope scale. Such hillslope observations are seldom available, but require rather 
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simple and inexpensive devices, therefore the methodology could be easily repeated in other 

catchments. The analysis of overland flow occurrence in relation to catchment discharge through the 

use of effective rainfall allowed the dependency of hillslope scale overland flow on rainfall amount, 

catchment antecedent conditions, and rainfall intensity to be explored.  

It is our opinion that in the future, the insights gained from analysis of overland flow occurrence and 

from pursuing downward modelling approaches linking catchment and hillslope processes may 

improve our understanding of hillslope scale hydrology, and lead eventually to real advances in 

hydrologic modelling.  
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A SEMI-EMPIRICAL MODEL TO ASSESS UNCERTAINTY OF 

SPATIAL PATTERNS OF EROSION 

Abstract 

Distributed erosion models are potentially good tools for locating soil sediment sources and guiding 

efficient Soil and Water Conservation (SWC) planning. Together with the potential location of severely 

eroded areas, decision makers should be informed of the uncertainty of model predictions. In this study, 

a semi-empirical erosion model was employed to predict the distribution of erosion within a catchment. 

The model combined a semi-distributed hydrological model with the Morgan, Morgan and Finney 

(MMF) empirical erosion model. The model was tested in a small catchment of the West Usambara 

Mountains (Kwalei catchment, Tanzania). Comparison of soil detachability rates measured in splash 

cups (0.28-0.67 g J
-1

) matched well model simulations (0.30-0.35 g J
-1

). Net erosion rates measured in 

Gerlach troughs (0.01-1.05 kg m
-2

 per event) were used to calibrate the sediment transport capacity of 

overland flow. The quality of the predicted pattern of erosion was assessed by comparison with the 

actual erosion pattern observed in the field. Uncertainties of model simulations due to parameterisation 

of overland flow sediment transport capacity were assessed with the Generalized Likelihood 

Uncertainty Estimation (GLUE) methodology. The agreement between simulated and observed erosion 

patterns was measured by weighted Kappa coefficients. Behavioural parameter sets, i.e. scoring a 

weighted Kappa above 0.50, were those with short reinfiltration length (< 1.5 m) and with the ratio of 

overland flow power α and local topography power γ close to 0.5. In the dynamic Hortonian hydrologic 

regime and the dissected terrain of Kwalei catchment, topography influenced the distribution of erosion 

more than overland flow. Simulated erosion rates varied from -4 to +2 kg m
-2

 per season. Field 

standard deviation of seasonal erosion rates ranged from 0 to 2.9 kg m
-2

, and was < 0.9 kg m
-2 

in more 

than 95 % of fields. The model simulated correctly around 75 % of erosion pattern; model 

overestimations of erosion occurred mainly in vegetable plots, whereas underestimations occurred in 

tea, sugarcane and grassland fields. The uncertainty of model predictions due to sediment transport 

capacity was high: depending on the transport capacity parameters, around 10 % of the fields were 

attributed to either slight or severe erosion class. SWC planning should focus on severely eroded fields, 

but areas whose spatial uncertainty was large should also be carefully checked in the field. The difficult 

characterisation of effective parameters for sediment transport capacity at the catchment scale 

introduces large uncertainties in model predictions and poses a major limit to distributed erosion 

modelling predicting capabilities. 
 

Keywords: spatial pattern of erosion; Morgan, Morgan and Finney model; catchment erosion 

assessment; uncertainty estimation; Generalized Likelihood Uncertainty Estimation (GLUE). 
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Introduction 

Recent assessments of the quality of erosion models showed that these models generally predict poorly 

the spatial patterns of erosion and deposition within a catchment (Jetten et al., 1999; Jetten et al., 2003; 

Merritt et al., 2003). As in other environmental modelling areas, difficulties in erosion modelling arise 

from the natural complexity of the landscape system, spatial heterogeneity and lack of available data 

(Merritt et al., 2003). The complexity of the natural system has been one driver for the development of 

physics-based models, with the idea that an accurate description of processes would simulate the 

system appropriately. However, it is practically impossible to represent adequately the huge spatial and 

temporal variability of the phenomena for any rainfall event (Quinton, 1997). Moreover, error 

propagation and uncertainties in the estimation of input data of complex models compromise the 

theoretically more accurate description of the system (Jetten et al., 2003). 

Because of these limits of erosion modelling, model predictions are highly uncertain. Uncertainties 

in model predictions, usually quite clear in the modeller’s perception, should be effectively 

communicated to policy and decision makers, and made explicit (Beven, 1993; Garen et al., 1999; 

Merritt et al., 2003). As important decisions may depend on model simulations, model outputs should 

be provided with an estimation of the predictive errors, like output bands of possible outcomes (e.g. 

Quinton, 1997; Brazier et al., 2000). 

The environmental data that are usually available contain information to characterize only the 

dominant processes active in a given system, which may then be described more effectively with 

simpler empirical and conceptual approaches (Young, 1998). Conceptual (or semi-empirical) models 

offer the advantage of combining the physical interpretability of modelling results with a simple 

structure, which makes them less prone to over-parameterisation and error propagation problems, even 

if it exposes them to the risk of aggregation or disaggregation errors (Merritt et al., 2003). A limited 

number of parameters and processes simplifies model implementation by user agencies and in data 

poor environments (Garen et al., 1999; Merritt et al., 2003). It also reduces computational 

requirements, allowing for assessment of model result uncertainties (Merritt et al., 2003; Jetten et al., 

2003). Conceptual models may therefore be appropriate in characterizing the distribution of erosion 

within a catchment (Viney and Sivapalan, 1999). For example, Desmet and Govers (1995) obtained 

some encouraging results with a simple transport-limited erosion model whose main driving factor was 

topography. Improved sediment yield predictions were obtained by von Rompaey et al. (2001) and 

Viney and Sivapalan (1999) by coupling empirical erosion models to hydrologic models, however in 

both studies the quality of the spatially distributed predictions was not assessed. Vigiak et al. (2005a) 

showed that an empirical model, the revised Morgan, Morgan and Finney model (MMF; Morgan, 

2001), had good potential to assess the distribution of erosion within a catchment, provided the 

hydrologic part of the model was improved. 

The aim of this study was to evaluate the ability of a simple semi-empirical erosion model to predict 

the distribution of erosion within a catchment and to assess the uncertainty of model spatially 

distributed predictions due to the choice of sediment transport capacity parameters.  
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Materials and methods 

The study area: Kwalei catchment 

The Kwalei catchment (4°48′ S, 38°26′ E) is situated in the West Usambara Mountains, North-East 

Tanzania. The catchment size is approx. 2 km
2
, and altitude ranges from 1337 to 1820 m. The terrain is 

rough and highly dissected, with more than half of the hillslopes steeper than 20 %. Drainage 

comprises four permanent streams running north-west to south-east. Average annual rainfall is 

approximately 1000 mm, with a bimodal distribution. The long rainy season stretches from the end of 

February to the end of May and the short, less reliable rainy season from October to January (Vigiak et 

al., 2005a). Soils on the slopes consist mainly of Humic and Haplic Acrisols (FAO-Unesco legend, 

FAO, 1990). They comprise porous, sandy topsoils, and clayey, deep and well-drained subsoils. 

Saturation may occur in the clayey and vertic Umbric Gleysols in  the valley bottoms (Meliyo et al., 

2001). The highest part of the catchment is covered by mountain rain forest, whereas the middle and 

lower slopes are used for agricultural purposes. Hamlets are located mainly along the ridge shoulders. 

Cultivation of annual crops is concentrated close to the settlement compounds. Maize is the most 

commonly cultivated crop, often intercropped with bean, banana, cassava and sugarcane. The two-

storey cultivation of banana and coffee is frequent on the steep slopes along the stream incisions. 

Valley bottoms are intensively planted with vegetables, the major cash crops of the area. 

The Kwalei catchment may be considered representative of the East African Highlands 

environment, and has been already the subject of erosion assessment studies (Vigiak et al., 2005a; 

Tenge et al., 2004) and hydrologic characterization (Vigiak et al., 2005b; Vigiak et al., 2005c). An 

erosion assessment survey conducted on part of the catchment showed that areas affected by severe 

erosion covered around one third of the catchment: erosion features were especially frequent in fields 

of annual crops, like cassava, maize and bean, and the main erosion processes were sheet and interrill 

erosion (Vigiak et al., 2005a). The main mechanism of overland flow generation was infiltration-

excess, but reinfiltration was important: overland flow reinfiltrated usually at distances shorter than 20 

m (Vigiak et al., 2005b). Two main Hydrologic Response Units (HRUs, i.e. areas of homogeneous 

hydrology; Blöschl and Sivapalan, 1995) could be defined: perennial crops (HRU_1: coffee and 

banana, forest and banana and maize fields), versus other crops (HRU_2: mainly annual crops) (Fig. 

1A). 

 

Assessment of erosion 

Assessment of erosion comprised measurements of rainfall detachment rates by splash cups at the plot 

scale, of net erosion rates by Gerlach troughs placed along two longitudinal transects at the hillslope 

scale, and surveying the actual status of erosion of fields at the catchment scale.  

Splash detachment was monitored in five main land use types (maize and bean, cassava, banana and 

coffee, tea and vegetables) by means of splash cups (Morgan, 1981). Two fields per land use type were 

selected with two splash cups each. The splash cups had an inner diameter of ten cm from which the 

soil was splashed into the surrounding catching tray. Collection of the splashed material was done at 

monthly intervals, in dry days following at least three days without rain. The soil in the catching tray 
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was collected and weighed. The dry soil weight was estimated assuming soil moisture content equal to 

field capacity. 

In the long rainy season (March-May) of 2003, six 0.50 m wide Gerlach troughs (Gerlach, 1967) 

were installed at different positions in the upper, middle and lower part of two longitudinal transects 

located at the lower (1380 m) and middle (1450 m) slopes of the catchment. The transects spanned 

from the water divide to the drainage line and crossed representative sequences of annual and perennial 

crops on the most frequent soil type of the catchment (Haplic Acrisols). After each rainfall event, the 

total overland flow volume collected in each trough was measured, and a sediment sample was taken to 

the laboratory to be dried at 105° C for 24 hours and weighed.  The sediment load was obtained by 

multiplying the overland flow volume by the sediment concentration of the sample. The results were 

referred to the contributing area of the troughs, which was visually estimated in the field to be around 2 

m
2
 (Vigiak et al., 2005c). 

At the catchment scale, actual erosion was assessed by direct survey using the Assessment of 

Current Erosion Damage method (ACED; Herweg, 1996). ACED consists of surveying erosion 

features and main causes of erosion, such as land management, surface characteristics, and run-on and 

run-off patterns (Herweg, 1996). The method allows semi-quantification of erosion following rainfall 

events. In order to cover the entire catchment, however, less emphasis was given to the measurements 

of erosion features and the model was applied to assess erosion qualitatively. Five classes of erosion 

were defined, from very slight to very severe, on the basis of presence of erosion features and their 

intensity, without attaching a quantitative value to the erosion classes. The survey took place from 

December 2002 till May 2003 and was considered representative of the rainy season.  

 

The semi-empirical model 

The semi-empirical model proposed in this study superposed the structure of an empirical erosion 

model, the Morgan, Morgan and Finney model (MMF, Morgan et al., 1984; Morgan, 2001), to a semi-

empirical hydrologic model that simulates overland flow depth distribution within the catchment 

(Vigiak et al., 2005c). The model was formulated in order to be parametrically parsimonious while 

retaining explicit descriptions of the main erosion processes.  

The MMF retains a good physical base in the identification of the soil detachment and transport 

processes, even if the equations comprise many empirical parameters. The recent version of the model 

used here incorporates a more accurate description of erosion processes and provides broader 

guidelines for model inputs (Morgan, 2001). The model is structured in two phases: a water phase 

(where energy of rainfall and volume of overland flow are calculated), and a sediment phase (where 

soil detachment and soil transport rates are calculated). Erosion is given by the minimum between soil 

detachment and transport rate. The application of the model in two catchments of the East African 

Highlands, one of which was the study area of the present work, showed that the model had good 

potential for identifying erosion patterns, but that the hydrologic part, unable to account for 

reinfiltration along the slopes, was unrealistic for Kwalei catchment (Vigiak et al., 2005a). The same 

study concluded that better simulations of overland flow would improve the model performances in 

depicting soil erosion patterns.  
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Recently, Vigiak et al. (2005c) proposed a parametrically parsimonious model simulating the 

distribution of overland flow within a catchment. The model runs at hourly time step and per field. It 

simulates average overland flow occurring in the main hydrologic response units as a function of the 

effective rainfall and accounts for reinfiltration. The model was created to match Kwalei hydrologic 

conditions and performed well in the catchment (Vigiak et al., 2005c). In the present study, the main 

structure of the MMF model was retained, but the model of Vigiak et al. (2005c) was used to predict 

overland flow. A detailed description of the original MMF model (Morgan, 2001) and parameters 

suitable for Kwalei catchment is given in Vigiak et al. (2005a), whereas the hydrologic model is 

described in Vigiak et al. (2005c).  

The revised MMF model runs at the scale of landscape elements, i.e. for areas with homogeneous 

soil, land use and topography (Morgan, 2001), whereas the model of Vigiak et al. (2005c) runs at the 

field scale. Therefore, the spatial scale of the semi-empirical erosion model was the field, which can be 

considered a single landscape element. Fields were arranged in hillslope sequences; a connectivity 

matrix linking fields from the upslope (the watershed divide) downwards to the channel streamlines 

was defined through observations of flow direction surveyed in the fields. The stream lines were the 

final collectors of the overland flow slope accumulation and drained to the outlet.  

While the MMF is an average annual model, the hydrologic model is a dynamic model with hourly 

time steps. Matching the two models raised temporal scale issues that required careful consideration of 

equations and parameters. In what follows, the equations whose application raises temporal scale issues 

are addressed.  

The MMF method of calculating the rainfall kinetic energy was fully retained. The rainfall kinetic 

energy (KE, J m
-2

) is a function of the fraction of rainfall (R, mm) that is not intercepted by the 

vegetation canopy (INT, fraction between 0 and 1). The kinetic-effective rainfall (ER) is split into direct 

throughfall (DT), which directly reaches the soil, and leaf drainage (LD), which reaches the surface by 

stemflow or dripping from leaves. The division is a function of the canopy cover (CC, fraction between 

0 and 1). The kinetic energy of the direct throughfall DT (KEDT, in J m
-2

) depends on rainfall intensity, 

which for tropical areas is calculated according to the equation of Hudson (1965), developed for 

Zimbabwe. The kinetic energy of the leaf drainage (KELD, in J m
-2

) is a function of the canopy height 

(PH, m; from Brandt, 1990). Both equations were derived from studies on kinetic energy of storms or 

intra-storm intervals. The total kinetic energy KE (J m
-2

) is given by the sum of the two fractions (KE = 

KEDT  + KELD) , and determines the soil detachment by raindrop impact F (kg m
-2

), which is defined 

as: 

 

KEKF ⋅=

−3
10            (1) 

 

where K is the soil detachability index (g J
-1

), defined after Quansah (1981). Eq. (1) has been shown to 

be an acceptable definition of detachment rate (Salles et al., 2000). Because the relationship between 

kinetic energy and rainfall detachment rate (eq. 1) is linear, the application of the detachment rate 

module at daily or hourly time step does not stretch the use of equations beyond their limits. However,  
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Table 1. Land use input data for the semi-empirical model: INT is interception factor, CC is canopy cover 
fraction, PH is plant height, GC is ground cover fraction, CP is the combination (multiplication) of USLE crop 
and protection factors, HRU is the Hydrologic Response Unit of the hydrologic model. 

Land use type INT CC GC PH CP HRU 

    (m)   

Banana and maize 0.16 0.27 0.49 1.31 0.25 1 

Bush/fallow 0.20 0.67 0.79 1.20 0.05 2 

Cassava (and other annuals) 0.12 0.30 0.45 0.60 0.40 2 

Coffee and banana 0.30 0.52 0.77 1.50 0.20 1 

Forest 0.30 0.67 0.89 3.93 0.01 1 

Grassland 0.30 0.20 0.60 0.08 0.01 2 

Maize and beans  0.17 0.26 0.43 0.67 0.30 2 

Sugarcane 0.25 0.37 0.55 0.91 0.15 2 

Tea 0.30 0.27 0.37 0.50 0.20 2 

Vegetables  0.15 0.13 0.22 0.43 0.35 2 

Wattle 0.28 0.38 0.73 1.55 0.05 2 

Woodlot 0.28 0.30 0.73 8.00 0.05 2 

 

 

seasonal changes in the land use parameters may be important. In perennial crops, such as coffee and 

banana stands, land use parameters may be assumed constant; but for annual crops this assumption is 

questionable. In the Kwalei catchment, however, the high rate of intercropping and the lack of well 

defined crop calendars make changes in land cover characteristics in the season extremely difficult to 

characterize. Seasonality of land use parameters was therefore not considered further, and constant 

values were employed for the whole simulation period (Table 1). Similarly, soil detachability changes 

in time (Rudra et al., 1998), but very little information is available on temporal changes of soil rainfall 

detachability indexes, which were then kept constant throughout the simulation.   

The simulation of overland flow depth as per the original MMF, was substituted by the model of 

Vigiak et al. (2005c). The field overland flow QTOT (in mm per time step) was modelled as a function 

of the effective rainfall (ue, in mm), i.e. the amount of rainfall that generates discharge at the catchment 

outlet, the Hydrologic Response Unit (HRU: perennial or other crops), and the field topographic 

connectivity (run-on and run-off). The model accounted for reinfiltration by assuming that only a 

portion of the total overland flow of the field (QTOT) would drain out of it (run-off, QOUT in mm per 

time step). The maximum field area generating run-off was equal to the length of the lower field border 

(BF, in m) times the characteristic reinfiltration length L, i.e. the average length (m) along which the 

overland flow travels on the soil surface before reinfiltrating in the soil: 

 

⎥
⎦

⎤
⎢
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⎡
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⎞
⎜⎜
⎝

⎛
=

F

F

TOTOUT
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where AF is the field area (m
2
), and min indicates the minimum between the elements in brackets. 
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The field overland flow QTOT was used in the original MMF equation to calculate the overland flow 

detachment rate H (kg m
-2

): 

 

)1(sin
5.0

1
10 5.13

GCQ
COH

H
TOT

−=

− β         (3) 

 

where COH is the soil cohesion (kPa), sinβ  is the sine of local slope and GC is the fraction of 

vegetation ground cover (0-1). Eq. (3) is based on the laboratory experimental work of Quansah (1981), 

valid at storm basis. Vigiak et al. (2005a) showed that in the MMF model overland flow detachment 

rates account for no more than 2 % of total detachment in this environment. Thus, eq. (3) was retained 

without changes for use with the daily data available here, since in most events the daily QTOT  will 

represent the storm overland flow. 

The transport capacity rate TC (kg m
-2

) of the run-off overland flow (QOUT) was equal to: 

 

βsin10
23

OUT
CPQTC −

=           (4) 

 

where CP is the crop cover factor, given by the product of the Universal Soil Loss Equation (USLE) C 

and P factors (Wischmeier and Smith, 1978).  

The sediment output (Eout, kg m
-2

) was given by the minimum of sediment available and transport 

capacity:  

 

Eout = min [(F+ H +Ein), TC ]         (5) 

 

where Ein is the influx of sediment transported in the field by the incoming run-on. The net erosion (soil 

loss rate) E was given by the difference between incoming and outgoing sediment and was negative 

when sedimentation occurred:  

 

inout
EEE −=            (6) 

 

Rainfall and discharge records were available for the period Feb-May 2003; the total erosion of this 

period gave the erosion rates of the long rainy season 2003.  

To choose the model simulation time step the following assumptions were made: (i) most model 

equations could be considered valid at the event (daily) time scale; (ii) in the hydrologic model, the 

accumulation of overland flow along the hillslope is linear (i.e. QOUT is a constant fraction of the QTOT , 

eq. 2); and (iii) field observations were conducted on event basis. The event scale is an interesting scale 

for erosion modelling because most of soil losses occurring in a season are due to few severe erosive 

events (e.g. Larson et al., 1997); it also represents the upper limit to which most erosion equations 

established for instantaneous conditions may hold (Morgan, 1995). The event scale (i.e. daily time 

steps) was therefore chosen as a good compromise between modelling issues, available observations 

and computing time requirements.  
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However, the sediment transport capacity TC (eq. 4) is nonlinearly dependent on overland flow and 

is therefore sensitive to the choice of the temporal scale. Because of this sensitivity and because 

sediment transport capacity determines the distribution of erosion in the case of transport-limited 

erosion (eq. 5), the choice of the effective parameters for these equations introduces considerable 

uncertainty in the model predictions. Effective parameter values may as well compensate for 

deficiencies of the model representation of the fluxes at the event scale. Thus, effective values might be 

not commensurate to field measurements.  

 

Uncertainty of sediment transport capacity 

In the literature, overland flow sediment transport capacity has been related to different hydraulic 

variables (shear stress, stream power, effective stream power, and unit stream power). The performance 

of the equations depends mainly on the overland flow regime (laminar or turbulent; Julien and Simons, 

1985). However, where rainfall is spatially uniform, all sediment transport equations can ultimately be 

defined as (Julien and Simons, 1985): 

 
γα βsin

,

qkq
TCTCs

=           (7) 

 

where qs.TC is the sediment transport capacity per unit width of slope, q is the discharge per unit width, 

sinβ is the local topographic gradient, and kTC parameter is a scaling factor that represents soil 

erodibility and comprises gravitational acceleration, water density, sediment cohesion, density and 

particle size (Prosser and Rustomji, 2000). According to eq. (7), the distribution of overland flow 

sediment transport capacity, and thus of erosion, depends ultimately on catchment topography (Desmet 

and Govers, 1995), and on the spatial pattern of overland flow, which in turn is mainly a function of the 

land use and soil management (e.g. Takken et al., 1999; Rustomji and Prosser, 2001). The parameters 

α and γ depend on the hydraulic variable used in the original formulation and on experimental 

conditions, but express the control that the hydrologic regime and topography exert on the spatial 

distribution of erosion (Rustomji and Prosser, 2001). Physical conditions affecting the choice of 

parameters α and γ in eq. (7) change in space and time within a catchment, but catchment-scale 

effective parameters should capture the dominant sediment transport conditions. 

Because of the importance of sediment transport capacity on the spatial distribution of erosion 

within the catchment, the uncertainty of model predictions due to sediment transport capacity 

parameters on the distribution of erosion was explored using the Generalized Likelihood Uncertainty 

Estimation (GLUE) methodology (Beven and Binley, 1992; Beven, 2001). The GLUE methodology 

assumes that many different parameter sets may result in equally acceptable model performances as 

measured with given criteria (equifinality thesis). The method is based on Monte Carlo (MC) 

simulations, with uniform parameter sampling. A likelihood measure, which is chosen according to the 

purpose of modelling, is used to assess the ‘goodness of fit’ of model output to observed data. 

Behavioural parameter sets are those that fulfil the minimum threshold set for the appropriate 

likelihood measure. The behavioural parameter sets can then be used to assess the predictive 

uncertainty of the model. 
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In this study, the GLUE methodology was applied to assess the predictive uncertainty associated 

with the parameterisation of the sediment transport capacity of overland flow. The generic formulation 

of eq. (7) was embedded in the semi-empirical model by transforming eq. (4) into: 

 
γα βsin

OUTTC
CPQkTC ′=           (8) 

 

where QOUT is defined by (eq. 2) and CP is the USLE crop and protection cover factor. The three key 

parameters of eq. (8) were the reinfiltration length L, which determines the amount of overland flow 

draining out of the fields (eq. 2), α and γ. A characteristic reinfiltration length L of 4 m was considered 

suitable for Kwalei catchment (Vigiak et al., 2005c), however some uncertainty in the parameter 

should be allowed, as the reinfiltration length is likely to vary with rainfall event characteristics, soil 

conditions, land use, and slope. Rejman (2003) recently reported that effective distances for soil 

transport in runoff plots varied between two and 13 m. A suitable range of reinfiltration length L was 

estimated in the interval [2, 10] m for Kwalei catchment. In a recent review, Prosser and Rustomij 

(2000) showed that the intervals of [1, 1.8] for α and [0.9, 1.8] for γ  contain 85 % of the equations 

proposed in literature. In our study, the range [0.9, 2] was set for α and [0.9, 1.8] for γ, thus slightly 

enlarging Rustomij and Prosser’s (2001) set to include the original MMF equation. The parameters 

were sampled independently and uniformly in these ranges. The parameter 
TC
k ′  acted as a pure scaling 

factor and was calibrated against the Gerlach trough observations, after accounting for the effect of 

crop management on the distribution of erosion, which was assumed to be realistically represented by 

the CP factor. Each MC simulation consisted of three steps: first the model was run with the parameter 

set {L α γ 
TC
k ′ } equal to {Ln αn γn 1}, where the subscript n indicates the nth MC random realization of 

the parameter set; then 
TCn
k ′  was estimated as the ratio of the median of the sediment load distribution 

observed in the Gerlach troughs and the median of the sediment load distribution simulated by the 

model for the same sites; finally the model was run with the {Ln αn  γn TCn
k ′ } for the whole catchment. 

Eleven thousand MC simulations were performed. 

The simulation performance criterion was based on the comparison of simulated erosion patterns 

against the observed one (ACED map). Model simulations were reclassified into five qualitative 

erosion classes; thresholds among classes were chosen in such a way that the number of fields per class 

(regardless of their location) matched that of the ACED map. The measure of agreement between the 

classified model map with the ACED map was assessed by the weighted Kappa coefficient of the 

contingency table (Cohen, 1968). Given a contingency table of two classification systems of r classes, 

in this case the five classes of erosion assessed during erosion survey (i) or predicted by the model (j), 

the weighted Kappa coefficient (wK) is defined by:  
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Table 2. Weights (wij) applied to the contingency table to calculate the weighted Kappa to measure of agreement 
between maps (from Vigiak et al., 2005a). 

 ACED map 
 

  Very low Low Moderate High Very High 

Very low  1 1 0.5 0.25 0 

Low  1 1 1 0.5 0.25 

Moderate  0.5 1 1 1 0.5 

High  0.25 0.5 1 1 1 

M
o

d
el

 m
ap

 

Very high  0 0.25 0.5 1 1 

 

is the weighted observed distribution, and 
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is the weighted chance-expected distribution, with pij = 
m

m
ij

, pi. = 
m

m
i , p.j = 

m

m
j

, mij is the number of 

fields classified in classes i and j; mi is the total number of fields classified in the class i; mj is the total 

number of objects classified in the class j and m is the total number of fields (Cohen, 1968).  

The weights wij were set to limit the influence of the classification system and to account for 

uncertainties in the ACED map. One class difference (e.g. very low class in the ACED erosion map 

predicted as low erosion in the MMF erosion map) was considered acceptable (weight factors = 1), 

whereas for larger disagreements between the two maps, the weights were linearly dependent on the 

distance between classes (Table 2; Vigiak et al., 2005a).  

Parameter sets whose simulation scored a weighted Kappa (wK) value equal or larger than a 

minimal threshold were considered behavioural, whereas parameter sets whose simulation was below 

the threshold were rejected as non-behavioural.  

 

Results and Discussion 

Assessment of erosion 

Rainfall detachment 

Collection of splashed material was done once in the long rainy season 2002 and twice in the season 

2003, after exposing the splash cups to the rainfall for periods of 34-42 days. Rainfall detachment rates 

were generally high, especially at the beginning of the rainy season, and ranged on average from 14.8 g 

m
-2

 per mm of rain in April 2002 to 6.9 g m
-2

 mm
-1

 in April 2003 and 2.7 g m
-2

 mm
-1

 in May 2003. The 

splashed dry soil per unit area was divided by the kinetic energy of the observation periods calculated 

according to the MMF model (eq. 1); Table 3 shows average and standard deviation of the observed 
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Table 3. Observed rainfall detachment rate measured in splash cups, in Kwalei catchment, Tanzania. The 
acceptable range for the soil detachability index was given by the average of observed detachment rate minus 
and plus one standard deviation. The column K shows the MMF detachability index for Kwalei soils (after 
Vigiak et al., 2005a). 

Land use type Rainfall detachment rate  Acceptable range  MMF K 

 n mean st dev  min max   

  (g J
-1

) (g J
-1

)  (g J
-1

) (g J
-1

)  (g J
-1

) 

Maize and beans 6 0.674 0.344  0.330 1.018  0.3-0.35 

Cassava 4 0.281 0.262  0.019 0.544  0.3-0.35 

Coffee and Banana 6 0.624 0.581  0.043 1.206  0.3-0.35 

Tea 4 0.308 0.515  0.000 0.823  0.3-0.35 

Vegetables 5 0.408 0.307  0.100 0.715  0.05 

 

 

detachment rates per land use type and per Joule of kinetic energy (g J
-1

). Rainfall detachment was very 

variable, even within the same field, reflecting the natural variability of erosion processes. Moreover, 

notwithstanding the good collaboration from the farmers at the field sites, sometimes the splash cups 

were disturbed by tillage operations (in these cases observations were discarded), and the available 

number of observations (four to six per land use) was very limited. Figures in Table 3 should therefore 

be considered only as indicative of the erosion detachment phenomenon in Kwalei catchment.  

The high natural variability of erosion must be taken into consideration when comparing model 

simulations to observations (Nearing, 2000). Similarly to Nearing’s approach, the acceptable range of 

the soil detachability index was considered to be the interval defined by the average of observations ± 1 

standard deviation.  In Table 3 the acceptable ranges per land use type are shown, together with the 

MMF soil detachability index (K of eq. 1) suggested for Kwalei soils (Quansah, 1981; Vigiak et al., 

2005a). The ranges were wide, especially for the tea fields, but soil detachability indexes were in good 

agreement with observations and close to 0.3 g J
-1

, confirming that the MMF calculation of rainfall 

detachment rate was acceptable, at least in the light of the high variability of measurements. The only 

exception was given by the vegetable fields, located on the Umbric Gleysols of the valley bottom. In 

this case, the observed detachment rates were much higher than those estimated from the high clay 

content of this soil type. As detachment rates did not differ from other soils, the soil detachability index 

for the Gleysols was raised to 0.3 g J
-1

.  

 

Erosion rates at the Gerlach trough sites 

In Table 4 the event and seasonal (March-June 2003) observations of overland flow depth and sediment 

load per Gerlach trough are reported. Only in two of the 13 effective rainfall events recorded in Feb-

June 2003, did all the Gerlach troughs collect overland flow. The distributions of observed overland 

flow depth and sediment load were skewed and log-distributed. The median overland flow per event 

was equal to 0.148 mm, and ranged from 0 to 1.97 mm. The median sediment load was 0.02 kg m
-2

, 
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Table 4. Observations of erosion rates at Gerlach sites, Kwalei catchment.  

Gerlach trough n
#
 Overland flow depth  Sediment load 

  Event mean  cv total  mean cv Total 

  (mm) (%) (mm)  (kg m
-2

)
  
 (%) (kg m

-2
) 

G1 3 0.260 63 0.780  0.122 143 0.367 

G2 8 0.288 104 2.302  0.017 92 0.136 

G3 10 0.675 115 6.744  0.146 165 1.314 

G4 10 0.083 118 0.832  0.080 270 0.801 

G5 12 0.436 82 5.669  0.058 68 0.759 

G6 3 0.026 17 0.079  0.010 133 0.020 

#
 number of events during which the trough collected overland flow and sediment. 

and ranged from 0.001 to 0.738 kg m
-2

. Observed event overland flow and sediment load values 

compared well with measurements conducted in the same areas with Gerlach troughs located in maize 

and bean fields (0.16 mm and 0.81 kg m
-2

; A. Tenge, pers. comm.). Variabilities of overland flow and 

sediment load were high, confirming the extreme spatial and temporal variability of event scale plot 

measurements (Hjelmfelt and Burwell, 1984; Wendt et al., 1986; Nearing, 2000), especially 

considering that Gerlach troughs were unbounded and placed at different locations. 

The rainfall season was drier than the average year, with 330 mm of rain in Feb-May 2003 against 

the 510 mm of long term average for the same period (1981-2001 Sakarani mission data). The median 

observed overland flow depth for the whole season March-June 2003 was 1.57 mm, being generally 

larger in annual crops (sites G1, G2, and G5) than for perennial crops (sites G4 and G6). The largest 

amounts of overland flow were recorded in a degraded tea field in the lower part of transect 1 (site G3). 

Overland flow depths were generally low, but comparable to the 0.6 mm y
-1

 reported by Lundgren 

(1980) for the West Usambara Mountains. Observed erosion rates were rather low (Table 4), but close 

to the estimations of Pfeiffer (1990) of 1.6-2.1 kg m
-2

 y
-1

 for arable land of the West Usambara 

Mountains. 

 

Catchment scale assessment 

The qualitative assessment of current erosion damage (ACED) survey covered 80 % of the catchment 

area. Of the remaining fifth of the catchment, some fields had been hoed recently before the survey. 

Their erosion status could not be directly assessed, but was estimated considering other information 

available, such as land use, slope steepness, and the status of upslope and neighbouring areas. Other 

fields had been surveyed in the 2002 rainy season, and this information completed the assessment map 

of the catchment. According to the survey, 39 % of the fields (around 21 % of the catchment area, Fig. 

1B) were affected by severe erosion. Except for an area that was burned some years ago, the forest 

showed little signs of erosion. Most coffee and banana stands also showed little erosion. The survey 

therefore confirmed the spatial distribution of erosion reported by Vigiak et al. (2005a). 
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Figure 1. Land characteristics of Kwalei catchment: A) the Hydrologic response units (HRUs), i.e. perennial vs. 
other crops, in black the hamlets; black lines indicate the perennial streams and 50 m contour lines; B) the 
assessment of actual erosion map (ACED), from very slight to very severe erosion. 

Uncertainty of model simulations 

The choice of parameters of eq. (8) strongly affected the estimated distribution of overland flow. The 

most sensitive parameter affecting the distribution of erosion was the reinfiltration length L. This was 

expected as L determines the volume of runoff that leaves the fields QOUT (eq. 2). Most behavioural 

simulations were at reinfiltration lengths below five meters. The agreement between observed and 

simulated pattern degraded quickly from a weighted Kappa (wK) above 0.30 at reinfiltration lengths L 

= 2 m to wK < 0.2 at L = 10 m. A similar trend was depicted for the parameter α, for which, beside few 

exceptions, best simulations were concentrated at α < 1.5. The parameter γ gave an opposite trend, with 

best simulations concentrated at γ > 1.4. The parameter 
TCn
k ′  acted as a scaling factor that was 

calibrated against the Gerlach observations. Because both overland flow (QOUT) and local slope (sinβ) 

values were below the unity, increases of the powers of α or γ resulted in geometrical increases of 
TCn
k ′ . 

The best simulation of the model scored a weighted Kappa of 0.34, which indicates a fair agreement 

between the two maps at best.  

The best simulations were concentrated near the edges of the selected ranges. Therefore, it was 

decided to enlarge the sampling ranges for other 6.000 new MC simulations, sampling the reinfiltration 

length L for a logarithmic distribution in the interval [0, 10] m, and sampling the other two parameters  
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Figure 2. Dotty plots of 6.000 MC simulations (L = [0, 10] m; α = [0.5, 1.5] and γ = [1, 3]) , ��Kwalei catchment, 

Tanzania. Weighted Kappa of model simulations are presented in relation to the three parameters selected for 

the simulation: (A) reinfiltration length L (in logarithmic scale); (B) overland flow power parameter α and C) 

local slope power parameter γ 

 

uniformly in the intervals [0.5, 1.5] for α and [1, 3] for γ. With the new ranges, weighted Kappa raised 

above 0.50, which indicates good agreement between the model predictions and the ACED map. The 

best simulation scored wK = 0.55. Fig. 2 shows the dotty plots relating the weighted Kappa values to 

the three investigated parameters. Dotty plots are scatter plots of the performance measure against the 

parameter values and represent a projection of sampled goodness of fit response surface of a model 

onto an individual parameter dimension (Beven, 2001). Fig. 2 shows that the best simulations were at 

short reinfiltration length L, and relatively high γ values, whereas α gave good simulations along the 

whole range. The trends observed in the first MC runs were thus confirmed.  

Fig. 3 shows the scatter plot of the ratio α/γ versus the reinfiltration length L (in logarithmic scale) at 

different wK intervals. Increasingly better agreement between the two maps was reached when 

reinfiltration length L was short and the ratio α/γ was close to 0.5. By defining as behavioural the 

simulations that yielded a weighted Kappa above 0.50, 277 of the 6.000 (second set) MC simulations 

were selected. Behavioural parameter sets comprised the following ranges: [0.002, 1.06] m for L, [0.5, 

1.5] for α and [1, 3] for γ. The behavioural parameter sets represent an aggregated response of the  
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Figure 3. Scatter plot of power α/γ ratio versus reinfiltration length L at different intervals of weighted Kappa. 
Short reinfiltration length L (in logarithmic scale) in combination with the ratio α/γ close to 0.5 resulted in the 
best simulations (black dots; wK > 0.50). 

catchment to the prevailing hydrologic and topographic conditions, but account as well for internal 

adjustments of the model. Therefore a physical interpretation is always difficult. However, the three 

parameter trends were consistent with each other and indicated a strong control of local topography 

above the hydrologic conditions in controlling the pattern of erosion.  

The reinfiltration length governs the accumulation of overland flow along the hillslope and accounts 

for the influence of incoming run-on in the lower fields. Reinfiltration lengths below 5 m resulted also 

in better simulations of overland flow measurements at the Gerlach sites (Vigiak et al., 2005c) and 

confirmed the importance of reinfiltration in the hydrology of Kwalei catchment (Vigiak et al., 2005b). 

The small range for behavioural reinfiltration lengths confirm that there is little movement of overland 

flow among Hydrologic Response Units. It also indicates that the reinfiltration lengths required by the 

model are shorter than those measured in the field. This can be a result of the hydrologic model 

distribution mechanism. The redistribution of overland flow done by the model of Vigiak et al. (2005c) 

is derived from observations of overland flow occurrence, and implicitly accounts in part for the 
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limited travel distance along the soil surface. The model results, however, are in agreement with 

Bergkamp (1998), who observed very short reinfiltration lengths (about 0.30 m) in a Mediterranean 

catchment. 

The dynamic Hortonian regime was reinforced by the better agreement of the erosion patterns at low 

parameter α. Kirkby (1988) showed that when the overland flow longest travel distance is shorter than 

the hillslope length, not all the upslope area contributes to the field segment overland flow and the 

parameter α is small. The stronger the reinfiltration, the lower the effective value of the parameter α, 

approaching zero in the extreme cases when overland flow travel distances are very short (Rustomji 

and Prosser, 2001). Such scenarios have been reported in some forest and semi-arid environments, and 

seem extreme for Kwalei conditions. Relatively higher values of parameter γ indicated at the same time 

that local slope exerted a strong control on sediment transport and on the distribution of erosion. With 

reference to the values reported by Prosser and Rustomji (2000), low α and high γ parameters 

correspond generally better to equations that calculate sediment transport in terms of mean stream 

power of overland flow. However, Figs. 2 and 3 show that more than absolute figures for α and γ, the 

important factor in depicting the pattern of erosion correctly is the ratio α/γ, which defines the relative 

importance of overland flow and topography in affecting the distribution of erosion. In the dynamic 

Hortonian hydrologic regime and in the strongly dissected terrain conditions of Kwalei catchment, it is 

not surprising that the topography controlled the distribution of erosion. 

Field predictions of erosion of the behavioural parameter sets give information on the predictive 

uncertainty of model simulations. The field average rates of net erosion predicted by the model ranged 

from -4.2 to +2.2 kg m
-2

 for the whole long rainy season (February-May) of 2003. Field estimations 

varied among fields (Fig. 4). Standard deviation of estimations ranged from 0 to 2.86 kg m
-2

 in 

behavioural simulations, but was < 0.93  kg m
-2

 in more than 95 % of fields. The scatter of model 

predictions was large especially at the middle and low values of erosion rates and gradually decreased 

toward the highest erosion rates. Therefore, the highest uncertainty was in the slightly and moderately 

eroded fields, where changes in sediment transport capacity parameters may switch the model 

predictions from conditions of erosion to sedimentation and vice-versa. This is on one side reassuring: 

model simulations were more consistent in indicating fields where erosion was high than where erosion 

was low. On the other side, it cannot be excluded that some fields that were on average classified as 

subject to slight erosion, or even where the model simulated deposition of incoming sediment, might be 

wrongly classified: a higher uncertainty was linked to these fields.  

Fig. 5A shows the average erosion class per field of the behavioural simulations, i.e. the average 

pattern of erosion predicted by the model. Table 5 shows the contingency table of the average model 

predictions against the ACED map. By considering acceptable a one class difference, 75 % of fields 

were correctly classified. Different type of errors could be distinguished: large model overestimations, 

where the error was larger than two classes (ACED map class – model map class < -1), small 

overestimations, where there was only one class of difference (-1), correct classification (0), small 

underestimations (+1), and large underestimations (> +1). Table 5 shows that both large 

overestimations, i.e. the model classified a field as subject to very severe erosion when the survey  
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Figure 4. Predictive uncertainty of behavioural model simulations: dots indicate the outcome of field erosion of 
the behavioural simulations, fields are sorted by the seasonal average erosion rate. 

 

 
Table 5. Contingency table of ACED map and the average output of model behavioural simulations. 

 ACED map 
 

  Very low Low Moderate High Very High 

Very low  33 21 8 5 4 

Low  24 19 18 10 11 

Moderate  16 21 30 16 8 

High  4 9 16 14 26 

M
o

d
el
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ap

 

Very high  2 9 9 22 35 
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Figure 5. The model outputs. (A) The average classification of behavioural simulations (very slight = class 1; 
very severe = class 5). (B) The uncertainty of model simulations expressed by the field classification range (= 
highest class – lowest class attributed to the field by behavioural simulations): a classification range of four 
means that a given field was classified by some simulations as subject to very low erosion (class 1) and in other 
behavioural simulations as subject to very severe erosion (class 5). 

indicated low or very low erosion, and large underestimations, where the model predicted very low 

erosion on fields that were actually subject to severe erosion, were present. Still, 64 % of severely and 

very severely eroded fields were correctly predicted by the model. 

The uncertainty of erosion predicted by behavioural parameter sets caused changes in the 

distribution of erosion within the catchment: depending on the parameter sets, some fields were 

classified into different classes at each simulation, whereas others were consistently classified into the 

same class. The consistency of erosion class attribution for the behavioural model simulations can be 

measured with the classification range, i.e. the difference between the highest class attributed to a given 

field minus the lowest class attributed to the same field. A classification range of zero indicates that the 

field was consistently classified into the same class throughout the behavioural simulations, whereas a 

classification range of four indicates that, depending on the parameter sets, the field was either 

classified as subject to very slight erosion (class 1), to very severe erosion (class 5), or to any class in 

between. The classification ranges are shown in Fig. 5B; the classification range was zero in 31 % of 

fields, whereas 46 % of fields showed one class of difference. Around 10 % of fields resulted in a 

classification range larger than two. In particular, 3 % of fields had a classification range of four, i.e  
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Table 6. Error of model map classification in comparison with model uncertainty (classification range). The type 
of error is given by the difference between ACED map class and model map class: large overestimation of model 
(ACED map – model map < -1), small overestimation (-1), correct classification (0), small underestimation (+1), 
and large underestimations (> +1). 

 Difference  (ACED map class – Model map class) 
 

  < -1 -1 0 +1 > +1 

0  16 27 54 16 7 

1  19 38 53 43 26 

2  7 12 10 13 11 

3  5 3 10 6 2 

C
la

ss
if

ic
at

io
n

 

ra
n

g
e 

4  2 3 4 3 0 

 

 

model predictions were most uncertain. These areas generally corresponded to the valley bottoms, i.e. 

the receivers of the run-off coming from the slopes. 

It is interesting to verify whether the model prediction errors were consistent, i.e. if the classification 

ranges of the erroneously classified fields was small (< 2). Table 6 shows the model prediction errors in 

comparison with the classification range. Around 10 % of all fields were consistently overestimated 

and 8.5 % of the fields were consistently underestimated. These model errors did not depend on the 

formulation of sediment transport capacity equation, but were either due to erroneous choice of other 

model parameters or were structural, i.e. some processes that are important in determining the 

distribution of erosion were not properly taken into account. The analysis of variance of model 

prediction error versus the cartographic variables available (i.e. soil type, land use and topography, both 

in terms of local slope and physiographic position) showed that the only variable significantly related 

to the model error was the land use. In particular, in vegetable parcels erosion was generally 

overestimated, whereas in patches of grassland, sugarcane and tea fields erosion was underestimated. 

Overestimations of erosion in the vegetable parcels are probably due to an incorrect model assumption: 

vegetable fields are located in the valley bottom, and according to the model they should receive run-on 

and sediment from the upper slopes. In reality, these fields are irrigated and separated in small parcels 

of around ten m
2
 by irrigation channels. Incoming run-on and sediment probably drain into these 

channels and do not damage the vegetables plots. However, this information was not implemented in 

the model, causing the overestimation of erosion. Underestimations of erosion in tea, sugarcane and 

grassland were probably due to incorrect estimations of land use parameters. Only two land use 

parameters were correlated to model errors: INT (Pearson correlation coefficient = -0.38) and CP 

(Pearson c. c. = 0.16), which were also correlated (Pearson c.c. = -0.69). Both parameters were 

retrieved from literature (Morgan, 2001; Morgan, 1995) and apparently overestimated the protective 

effects of grassland, tea and sugarcane. Unfortunately, for these tropical crops there are not many 

values reported in the literature. 
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Conclusions 

The semi-empirical erosion model proposed in this study was formulated to predict spatial patterns of 

erosion within a catchment in data scarce environments. The model included detachment by raindrops 

and overland flow, and sediment transport by overland flow. The formulation of processes was kept as 

simple as possible, but the structure of the model was verified to be acceptable for the study area. Soil 

detachment mechanisms were acceptably predicted and indicated soil detachability rates of 0.3 g J
-1

. 

The uncertainty of model predictions focused on the choice of sediment transport capacity 

parameters and was assessed with the GLUE methodology. The effects of other sources of uncertainty 

in model predictions, linked to soil and land use parameters, were considered of more local nature, 

which may depend on the distribution of soil and land use types, and, though they might be important 

and add further uncertainty in model predictions, were not addressed here. The parameterisation of the 

sediment transport capacity was crucial for defining the distribution of erosion within the catchment. 

The dotty plots revealed that distribution of erosion was well predicted when reinfiltration length was 

short (L < 3 m) and the ratio of the overland flow depth power α and the local topography power γ, was� 

close to 0.5. Our results contrast with the conclusion of Prosser and Rustomji (2000) who suggested to 

use α = γ = 1.4 for modelling sediment transport at the catchment scale. However, the optimal α/γ ratio 

depends on environmental conditions and should not be generalized. In Kwalei conditions, because of 

the dynamic Hortonian hydrologic regime and the dissected terrain, topography controlled the 

distribution of erosion more than overland flow distribution. 

Erosion rates predicted by behavioural simulations varied from -5.2 to +2.1 kg m
-2

 per season. The 

model simulated well 75 % of the classified pattern of erosion, and 64 % of severely eroded fields were 

well predicted. Uncertainties due to sediment transport capacity parameters were high; the standard 

deviation of net erosion rates ranged from 0 to 2.86 kg m
-2

 per season and was below 0.93 kg m
-2 

in 

more than 95 % of fields. Most uncertain estimations concentrated in the low and middle range of 

erosion rates, where small changes in sediment transport capacity induced a switch from erosion to 

sedimentation conditions. As a consequence, the classification of model predictions in classes of 

erosion varied with the parameter sets and 10 % of the fields showed a classification range larger than 

two.  

SWC planning should focus on fields classified as affected by severe erosion. However, areas whose 

classification ranges are large should be checked carefully in the field. Still, the model consistently 

overpredicted erosion rates in around 10 % of fields and underpredicted erosion rates in 8.5 % of the 

fields. Overestimations of erosion occurred mainly in the vegetable plots, whereas underestimations of 

erosion were high in sugarcane, tea and grassland fields. The difficult estimation of land use 

parameters, especially CP and INT, contributed to the model prediction errors. Model structural errors 

must also contribute to the prediction errors. Such a simple model was expected to show various 

shortcomings. However, notwithstanding its simple structure, 65 % of severely eroded fields were well 

localized. 

The application of the MC-based uncertainty estimation methodology showed the importance of 

sediment transport capacity parameters in defining the distribution of erosion within a catchment. 
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Notwithstanding the large literature available, the choice of sediment transport capacity parameters is 

still highly uncertain, and little research has been addressed on defining effective parameters for 

catchment scale distributed modelling. This is a major issue to be addressed to achieve real 

improvements of distributed erosion modelling at the catchment scale. 
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WATER EROSION ASSESSMENT USING FARMERS’ INDICATORS IN 
THE WEST USAMBARA MOUNTAINS, TANZANIA 

Abstract 

The contribution of local knowledge to ecological sciences has not been fully exploited: there is still a 

gap between the recognition of farmers’ knowledge as valid and an effective use of such knowledge in 

activities aimed at sustainable development. This study explores the use of farmers’ indicators of 

erosion for developing a rapid tool for water erosion assessment at field level in the West Usambara 

Mountains (Tanzania). Two extensive field surveys were conducted in the research area concurrently. 

One survey consisted of applying an established erosion assessment method, the Assessment of Current 

Erosion Damage (ACED). According to the erosion features observed, fields were classified into five 

erosion classes, from very slightly eroded to very severely eroded. The second survey consisted of 

recording the type and number of indicators of erosion listed by farmers and present in the fields. The 

number of farmers’ indicators per field increased with erosion intensity, from less than four in slightly 

eroded fields to more than eight in severely eroded fields. All farmers’ indicators were positively 

correlated to the ACED erosion assessment classes. However, two groups of farmers’ indicators could 

be distinguished in terms of erosion assessment: strong indicators, which were observed in more than 

70 % of cases in severely eroded fields, and weak indicators, which were observed more frequently in 

slightly and moderately eroded fields. Weak indicators appeared to be indicative of other land 

degradation phenomena, such as chemical fertility decline. Strong indicators and number of indicators 

were used to create a field erosion assessment tool in the form of a classification tree. The tree was 

built using one half of the field survey data and validated using the other half. The tree consisted of a 

hierarchical sequence of questions. Presence of rills and number of farmers’ indicators were the most 

important factors of the tree. The validation yielded a highly significant Spearman rho correlation 

coefficient (0.81). The contingency table showed that more than 80 % of very severely eroded fields 

were correctly classified, whereas most misclassification occurred among slightly and moderately 

eroded fields. Farmers include land degradation phenomena and soil fertility decline in their definition 

of soil erosion. SWC planning should address this broader farmers’ perception by including e.g. soil 

fertility improvements beside soil conservation. The distinction between strong and weak indicators of 

erosion is important in recommending the right intervention in the right spot, e.g. by counteracting soil 

erosion where strong indicators are present and by improving chemical fertility where weak indicators 

are present. The classification tree is of empirical nature and may need adaptation before being applied 

to other areas. The proposed methodology can be easily replicated and showed a high potential to 

provide extensionists with a field tool for erosion assessment. The classification tree was a successful 

example of integrating different types of knowledge for enhancing the co-operation between 

stakeholders involved in the erosion-control activities.  
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Introduction 

In planning erosion control activities prompt and positive interventions are critical to establish a good 

co-operation between extension workers and farmers. Therefore, soil and water conservation (SWC) 

planning must take into account farmers needs and priorities and requires information on the 

effectiveness of SWC practices. The assessment of erosion prior to intervention and the effective 

location of sites where erosion is most severe should form the basis of any SWC planning.  

Soil erosion by water can be assessed through a survey campaign, which is generally time- and 

resource-demanding. Survey methods usually consist of assessing the presence and intensity of erosion 

features, as well as recording factors that may cause erosion (Herweg, 1996; Morgan, 1995). Air photo 

interpretation may guide the sampling of fields or transects, but field work is still the most consistent, 

yet demanding activity in erosion assessment (Morgan, 1995). Moreover, the timing of the survey is 

critical: erosion features can be assessed only shortly after erosive events, whereas planning of SWC 

should be conducted as much in advance as possible before the onset of the critical rainy season.  

Data scarcity is, however, a common problem in tropical rural areas. In addition, capital and human 

resources are usually much below the demand, and extensionists must often cover large areas, that may 

comprise very different ecological and socio-economic conditions and where their experience may be 

limited. Integration of the broader experience of the extensionists with the site-specific knowledge of 

the farmers may then become a key factor for successful interventions.  

Local knowledge has been described as experiential, rooted in place, empirical and dynamic (Ellen 

and Harris, 2000). In particular, farmers’ perception and description of their environment are often 

linked to land management experience and land use history  (e.g. Payton et al., 2003). Research has 

already shown the usefulness of employing farmers’ knowledge to assess soil fertility (e.g. Murage et 

al., 2000). Among others, Habarurema and Steiner (1997), and Murage et al. (2000) documented 

extensive knowledge of farmers on landscape processes, and relations between soil productivity and 

relief position. Positive experiences have also been reported in the use of indigenous knowledge for 

erosion assessment (e.g. Warren et al., 2003). As farmers’ and scientists’ perceptions sometimes 

mismatch (Kiome and Stocking, 1995; Ostberg, 1995),  van Dissel and de Graaff (1998) suggested that 

the adoption and adaptation of farmers’ knowledge into a scientific framework could only be achieved 

by thorough assessment of farmers’ perceptions of ecological degradation. 

The importance of the contribution of local knowledge to ecological sciences has been 

acknowledged (WinklerPrins and Sandor, 2003), but difficulties remains in how to integrate effectively 

local and scientific knowledge systems. Methodological studies that focus on integrating local and 

scientific knowledge are few (Payton et al., 2003). Niemeijer and Mazzuccato (2003) argued that the 

potential of farmers’ knowledge has only been partially exploited and they pleaded for a move from the 

recognition of farmers’ knowledge as a source of information to a more effective use of such 

knowledge for sustainable development. WinklerPrins (1999) stressed that the integration of local and 
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scientific knowledge would be most beneficial in activities aimed at more sustainable land 

management. 

The incorporation of local knowledge in erosion assessment may offer many advantages for SWC 

planning. By incorporating local knowledge in a systematic tool for erosion assessment, extensionists 

would be provided with means to assess erosion, while taking full advantage of the farmers’ 

experiential and dynamic knowledge of their environment. Moreover, the use of farmers’ concepts in 

the description and recognition of erosion phenomena may create a common ‘language’ among 

extension workers and farmers that could strengthen farmers’ participation in the SWC planning 

intervention.  

The objective of this study was to test the use of farmers’ indicators of erosion for developing a 

rapid tool for water erosion assessment at field level in the East African Highlands. 

 

Material and methods 

This research was conducted in the West Usambara Mountains (Tanzania). Thanks to a favourable 

climate and fertile soils, these areas have a high potential for crop production, and are very important 

sources of staple foods, forest products and export crops (Lundgren, 1980). Population densities are 

generally above 100 persons per km
2
. Land scarcity has triggered accelerated soil erosion, which is 

now a widespread phenomenon and a major cause of land degradation (Mbaga-Semgalawe and Fomer, 

2000).  

Soil and Water Conservation (SWC) projects have been implemented in these areas since the 

colonial period, experiencing various degrees of success. In the 1980s, a new SWC planning method 

was introduced by the Government of Kenya, i.e. the Catchment Approach (Admassie, 1992; Pretty et 

al., 1995). The method consists of a participatory community planning process, with actual planning of 

SWC measures at farm level. Since its introduction, the Catchment Approach has given positive results 

in the improvement of soil productivity together with reduced resource degradation and is now adopted 

by six East African countries (Kamar, 1998; Kizunguto and Shelukindo, 2002). However, a critical 

review of the method lamented the low rate of SWC adoption and  highlighted the lack of proper tools 

for soil erosion assessment (Pretty et al., 1995). 

Participatory research conducted in two catchments representative of the East African Highlands, 

Gikuuri in Kenya and Kwalei in Tanzania, resulted in a list of indicators that farmers use to recognize 

and assess erosion in their fields (Okoba et al., 2003; Tenge et al., 2004). The lists of both areas 

concurred with each other and with current literature (Barrios et al., 2001; Swete Kelly and Gomez, 

1998), indicating good potential for the use of these indicators for East African Highland conditions 

(Okoba et al., 2003). A preliminary list (indicators with the symbol * in Table 1) was employed to test 

the usefulness of farmers’ indicators for water erosion assessment in the Kwalei catchment.  

The Kwalei catchment (4º48' S, 38º26' E) is located in the West Usambara Mountains, at an average 

altitude of 1500 m a. s. l. Mean annual rainfall is 1100 mm and mainly falls during two rainy seasons, a  



Water erosion assessment using farmers’ indicators in the West Usambara Mountains 

 

124 

Table 1. List of farmer’s indicators of soil erosion in Kwalei (Tanzania) and Gikuuri (Kenya) catchments. 
Symbol √ means that the indicator was mentioned but the local name was not recorded. Symbol * indicates 
indicators employed in the present assessment survey.  

LOCAL NAMES
#
  Indicator 

Kwalei 

(Kiswahili) 

Gikuuri 

(Kiembu) 

 

 

Soil colour change Udongo mwekundu
#
 Ithetu itune * 

Absence of topsoil √  * 

Soil stoniness Kokoto Tumathiga * 

Rills Michirizi Tumivuko * 

Gullies  Makorongo Mivuko minene * 

Sheetwash Mmonyoko tandazo Muguo  

Brackern fern  Shiuu  * 

Poor crop development Mazao ya rangi njano  * 

Root exposure √ Kuicirurio tumiri * 

Washing crop / seeds √ √ * 

Deposition of soil downslope  Udongo mchanganyiko Gukunikuo * 

Change in water colour Rangi ya maji √  

Patches of bare land Tambarare √ * 

Splash pedestals Matone Matata  

Rock exposure Mawe Mathiga * 

Slope steepness Mteremko mkali  * 

Breakage of SWC Kuvunjika kwa hifadhi Kuomomoka kwa mitaro  

Wind-blown soils  Muthetu muvuthu  

White-soft stones Mashuhee  * 

Poor seed germination √  * 

#
 Farmers’ terms are reported as mentioned, but translated taking into account their practical meanings. 

For instance, udongo mwekundu literally means ‘red soil’: in Kwalei soil changes to reddish when topsoil 

is removed by erosion; with this term farmers therefore refer to soil colour change. 

long one from March to May and a short one from September to November. The average monthly 

temperature ranges between 18º and 23 ºC with the maximum occurring in March and the minimum in 

July.  

The catchment is intensely populated, with a population density of about 400 persons per km
2
 

(Lyamchai et al., 1998). Over 90 % of the catchment population depends on agriculture. The average 

household land size ranges from 1.2 to 1.6 ha (Tenge et al., 2004). Food crops, mainly maize inter-

cropped with banana and bean, are cultivated on the upper slopes. A two-layer cultivation of banana 

and coffee is frequent on the steeper slopes along the stream incisions. Irrigated vegetables are the main 

cash crops and are cultivated in the valley bottoms and on the lower slopes. Soil erosion is one of the 
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major constraints to agricultural production in the area (Meliyo et al., 2001), and occurs especially at 

the onset of the rainy season, when storms are intense and soil cover poor  (Vigiak et al., 2005). 

A team of scientists and farmers crossed the study area along two transects to get acquainted with 

what farmers considered (i) erosion indicators and (ii) an eroded fields. Then, in the period from 

December to May 2003 an extensive erosion assessment survey was conducted with the Assessment of 

Current Erosion Damage method (ACED; Herweg, 1996). ACED requires the observations of type and 

intensity of erosion features, such as pedestals, sheet wash, interrills, rills, gullies, or others features 

(e.g. tree or rock exposure, build-up areas, re-depositions and so forth), together with presence of 

factors causing erosion. The method allows the semi-quantification of soil erosion. However, in order 

to cover the whole catchment, less emphasis was given in the present study to measuring erosion 

features quantitatively and the method was employed to assess erosion qualitatively. Fields were 

classified into five qualitative erosion classes, from very low (class 1) to very high (class 5). 

Concurrently, the surveyor annotated the type and number of the farmers’ indicators as observed in the 

field. 

The distribution and frequency of the farmers’ indicators were first explored with simple descriptive 

statistical analysis. Correlation among indicators was assessed by correlation coefficients of the 

correlation matrix, using SPSS software (2002). Type and number of farmers’ indicators present in a 

field were then cross-tabulated with field erosion class as assessed by the ACED method to explore the 

relation between farmers’ indicators and erosion assessment.  

A measure of the strength of the farmers’ indicator i in terms of erosion assessment was defined as 

the empirical probability pij that the indicator i occurred in an erosion class equal or larger than j: 
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where nij was the number of presence of the indicator i in erosion class j, and ni was the total number of 

presences observed for the indicator i. The higher the probability of occurrence in a high erosion class, 

the stronger was the farmers’ indicator in terms of erosion assessment (Okoba et al., 2003). 

Farmers’ indicators that were shown to be useful for erosion assessment were finally used for 

developing a simple, in-field erosion assessment tool in the form of a classification tree. The  

classification tree is a nonparametric type of regression method. It has the advantage that it does not 

require assumptions of the form of the relationship (linear or otherwise) between the dependent 

variable (i.e. the field erosion class) and the input data set (i.e. the farmers’ indicators).  The survey 

dataset was randomly split in two; one half was used for creating the classification tree; the other half 

for validating it. The classification tree was built using the guidelines of Breiman (1993) in MATLAB 

Statistical Toolbox software (The MathWorks, 2002). The validation set was compared with the ACED 

erosion classification via a contingency table. The degree of agreement between the two classification 

methods was estimated with the Kappa coefficient (Cohen, 1968), which depends on both the observed 

and the chance-expected agreement between the two classifications. The Kappa coefficient was 

calculated with the freeware Kappa.exe (Bonnardel, 1995).  
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Results and discussion 

In total the concurrent surveys covered 336 fields that spanned the whole catchment. The five ACED 

erosion classes were defined as follows:  

1) very slightly eroded fields (class 1, very low): sporadic and shallow (average depth < 1.5 

mm) pedestals, none or sporadic signs of sheet wash;  

2) slightly eroded fields (class 2, low): frequent pedestals (average depth = 2 mm), signs of 

sheet wash, such as interrills, shallow exposure of roots and stones covering part of the field; 

3) moderately eroded fields (class 3, moderate): intense rain splash signs indicated by frequent 

pedestals (average depth = 2.5 mm); widespread interrill signs covering the whole field, 

sporadic rills; 

4) severely eroded fields (class 4, high): frequent pedestals (average depth = 3 mm); 

widespread interrill erosion; rills with cross sections of 1-5 cm
2
 and/or covering 10-20 % of 

the field;  

5) very severely eroded fields (class 5, very high): frequent pedestals (average depth > 3 mm); 

widespread interrill erosion; rills with cross sections of 10 cm
2
 or more, and/or covering 30 

% or more of the field; presence of gullies.  

Fields were equally distributed among the five erosion classes: there were 60 - 80 fields in each 

class. Two thirds of the fields were surveyed during the short rainy season (December 2002 – February 

2003), when most fields were fallow. The remaining third of fields were observed during the long rainy 

season (March-May 2003), when fields were cultivated and the frequent hoeing hampered the 

observation of erosion features and farmers indicators. However, the distribution of fields per erosion 

class was homogeneous in the two periods (one-way analysis of variance test at probability level α = 

0.05), therefore the sample population was analyzed without distinction between the two seasons. 

Farmers’ indicators were classified into four groups according to the frequency of observations, i.e. 

the number of fields where the indicator was present divided by the total number of fields:  

1) most frequent, observed in more than 25 % of the fields: Bracken fern (Pteridium Aquilinum 

L.), slope steepness and white-soft stones (‘mashuhee’; Plate 1); 

2) frequent, observed on the 15-25 % of the fields: soil colour change, absence of topsoil, rills, 

and poor crop development; 

3) occasional, observed on the 5-15% of the fields:  rock exposure, soil stoniness, root 

exposure, patches of bare land, and deposition of soil downslope; 

4) sparsely occurring, observed on less than 5% of the fields: gullies, washing of crops and 

seeds, and poor seed germination.  

Some farmers’ indicators could only be observed during a short time, as after an erosive rainfall 

(e.g. deposition of soil downslope) or during early crop cultivation (e.g. poor seed germination), while 

others could be observed at any time (e.g. slope steepness or rock exposure). 

The number of farmers’ indicators per field increased with erosion intensity (Fig. 1): no field 

belonging to very low or low erosion classes in the ACED scheme showed more than four farmers’  
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Plate 1. Mashuhee: farmers of Kwalei consider this white-soft stone a sign of soil erosion. 
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Figure 1. Number of indicators per field and per erosion class (erosion classes: 1 = very low, 5 = very high), in 
Kwalei, Tanzania. Bubble dimensions are proportional to the frequency of observation for each number of 
indicators / erosion class combination. The grey bubble indicates the modal combination for each class. 
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Table 2. Probabilities pij that an indicator i occurred in a field with erosion class equal or higher than j and total 
number of presences ni observed per farmers’ indicator. 

pij per erosion class j Indicator i 

2 3 4 5 

ni  

Slope steepness 0.94 0.79 0.60 0.39 126 

Bracken fern 0.94 0.77 0.56 0.35 124 

M
o

st
 

fr
eq

u
en

t 

White-soft stones 0.99 0.91 0.72 0.40 92 

Poor crop development 1.00 0.97 0.87 0.58 67 

Rills 1.00 1.00 0.97 0.86 66 

Soil colour change 0.98 0.95 0.79 0.52 66 

F
re

q
u

en
t 

Absence of topsoil 1.00 1.00 0.95 0.62 60 

Patches of bare land 1.00 0.95 0.88 0.59 59 

Root exposure 0.96 0.76 0.60 0.38 45 

Rock exposure 0.95 0.92 0.76 0.58 38 

Deposition soil downslope 1.00 0.97 0.79 0.45 33 O
cc

as
io

n
al

 

Soil stoniness 0.94 0.84 0.68 0.52 31 

Washing crop / seeds 1.00 1.00 1.00 0.78 9 

Poor seed germination 1.00 1.00 1.00 1.00 4 

S
p

ar
se

ly
 

o
cc

u
rr

in
g

 

Gullies 1.00 1.00 1.00 1.00 2 

 

indicators at once, whereas more than eight indicators per field occurred only on very eroded fields 

(class 5, with a maxim of 13 indicators per field). However, cases of highly and severely eroded fields 

in the ACED scheme where no or few farmers’ indicators could be observed also occurred, albeit 

sporadically. 

The presence of any farmers’ indicator was positively correlated with the ACED erosion assessment 

classes. The correlation matrix of the farmers’ indicators showed that a significant correlation (at α = 

0.05) among indicators existed, which was expected since they were all positively correlated to the 

erosion assessment, i.e. all indicators are related to erosion processes. This confirmed that all indicators 

could be considered indicators of erosion (e.g. Swete Kelly and Gomez, 1998). The highest correlation 

coefficients were found for poor crop development with (i) absence of topsoil (correlation coefficient = 

0.33), and (ii) patches of bare land (correlation coefficient = 0.29). As the correlation coefficients were 

significant but low, no indicator was considered being a duplicate of another (redundant). 

Farmers’ indicators probabilities per ACED erosion class as defined in eq. (1) are reported in Table 

2. The most frequent indicators were not very strong: this was expected since they were frequently 

observed and therefore the probability that they were observed in slightly or very slightly eroded fields 

was high. Among these farmers’ indicators, however, the white-soft stones occurred mostly on highly 

and very eroded fields: the probability of its occurrence on fields of ACED class 4 or 5 was larger than  
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Figure 2. Comparison of a strong erosion indicators (soil colour change) versus a weak erosion indicators (root 

exposure). The frequency of strong indicators increased monotonically with assessed erosion. Weak indicators 

were more equally distributed among low or moderately eroded fields.  

70 %. On the other side of the probability distribution, the sparsely occurring indicators were all 

associated with high and very high erosion classes. This was not surprising in the case of gullies, which 

is also a criterion of the ACED method of indicating very high erosion. Similarly, the washing of crop 

and seeds is an effect of sheet wash, which is considered as serious erosion in the ACED scheme. 

However, the case of poor seed germination is more difficult to interpret. The time during which this 

indicator could be observed was very limited, and it may have happened that fields where poor seed 

germination would not be associated with erosion had accidentally not been visited during the survey. 

According to our approach, two types of indicators could be defined: 

1) strong indicators (pi4 ≥ 0.70, i.e. the probability of presence of this indicator in severely and 

very severely eroded fields was at least 70 %). Examples are: rills, absence of topsoil, 

gullies, washing of crop and seeds, and poor seed germination (which could be considered 

very strong indicators, for their probability pi4 were higher than 0.95); and poor crop 

development, patches of bare land, soil colour change, deposition of soil downslope, rock 

exposure, and white-soft stones. 

2) weak indicators (pi4 < 0.70). Examples are:  Bracken fern, root exposure, slope steepness, 

root exposure, soil stoniness. With the exception of soil stoniness, these indicators were 

found in more than 50 % of cases in fields that were not very severely eroded (pi5  < 0.50). 

The presence of strong indicators of erosion increased from slightly to severely eroded fields in the 

ACED scheme, whereas weak indicators were more equally distributed among the slightly or 

moderately eroded fields (ACED classes 2 and 3; Fig. 2). Weak indicators probably indicate conditions 
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of soil degradation or soil erosion hazard more than of soil erosion sensu strictu (Okoba et al., 2003). 

For instance, the presence of Bracken fern is an indicator of poor soil chemical fertility (Barrios et al., 

2001). However, in this study farmers’ indicators were only tested in terms of soil erosion assessment 

and the relationships between weak indicators of erosion and other land degradation problems was not 

addressed.  

Farmers’ concept of soil erosion is broader than extension workers’ and experts’. Our study 

confirms that farmers include ideas of land degradation and land fertility decline when speaking of soil 

erosion (Murage et al., 2000). In SWC planning this difference in perception is important, because 

addressing only soil erosion while disregarding other land degradation problems may reduce the rate of 

adoption, as farmers might not perceive the benefits of the proposed actions. At the same time, it is 

important to distinguish between strong and weak indicators when using farmers’ knowledge for 

assessing erosion in order to give the right advice in the right spot. Extensionists should recommend 

counteracting soil erosion where strong indicators are present and other measures, e.g. improving 

chemical fertility, where weak indicators are present. 

The number of farmers’ indicators and presence of strong farmers’ indicators of erosion were used 

to build a classification tree. The data set comprised ten inputs. The first eight inputs referred to the 

presence (= 1) or absence (= 0) of strong indicators (white-soft stones, poor crop development, rills, 

soil colour change, absence of topsoil, patches of bare land, rock exposure, and deposition of soils 

downslope). The ninth input indicated the presence (= 1) or absence (= 0) of any of the sparsely 

occurring indicators (any of gullies, washing of crops and seeds, and poor seed germination). The tenth 

input was the number of indicators observed in the field (= sum of the previous entries).  The 

classification tree is shown in Fig. 3. The tree consists of a hierarchic sequence of questions: the 

uppermost question must be answered first, and then the next question follows the branch stemming 

from the previous answer. The presence of rills dominates the classification tree: whenever rills are 

spotted, the field is classified as subject to very high erosion. This is valid for the Kwalei catchment, 

where most erosion occurs in the form of interrill erosion, and where rills are not frequent and gullies 

are rare (Vigiak et al., 2005). However, it is doubtful whether such rule could be applied in other areas, 

where other erosion processes can be active. The presence of rills is anyway an important feature of 

erosion assessment survey methods (Herweg, 1996; Stocking and Murnaghan, 2001). The dominant 

role of rills represents therefore a point of good agreement between farmers and scientific knowledge.  

The application of the classification tree to the validation set yielded 49 % of correctly classified 

fields. Spearman rho correlation coefficient was high (0.81) and significant (at α = 0.01). These results 

were particularly satisfactory when examining the contingency table (Table 3). Most of the 

disagreements are in fields that were classified as slightly eroded by the ACED survey (class 2: low) 

and were mainly identified as very slightly eroded by the classification tree (class 1: very low). Fig. 3 

shows that the classification tree never reaches the erosion class “low”, i.e. the farmers’ indicator 

classification tree mainly merged the two lower classes and could not discriminate among the two. This 

agrees with the way farmers perceive erosion in the area: when asked to classify fields into qualitative 

erosion classes, farmers defined only three classes of erosion (low, moderate or high;  
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Figure 3. Classification tree for water erosion assessment using farmers’ indicators of soil erosion (Sparsely 
occurring indicator = any of washing away of crops and seeds, poor seed germination or gullies). 

Table 3. Contingency table of the validation set; columns indicate ACED erosion assessment classes; rows 
indicate the farmers’ indicators classification tree erosion classes. 
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Okoba et al., 2003). Differences between classes may sometimes be subjective for the surveyor as well, 

and originate from comparative considerations rather than from strict rules. For instance, the boundary 

between very low and low erosion is gradual and less sensitive than between low and moderate classes. 

This drawback is not so alarming when the general aim of the survey is to identify highly eroded fields. 

Misjudgements also occurred among the moderately eroded fields, where 12 of the 41 moderately 

eroded fields of the ACED survey were classified as severely eroded by the classification tree. The 

very severely eroded fields were mainly classified correctly, with only six out of 36 cases of ACED 

class 5 fields underestimated by the classification tree. The Kappa coefficient was 0.37 (Cohen, 1968; 

Bonnardel, 1995), which, considering the lack of one class in the classification tree, indicates good 

agreement between the two sets. 

The classification tree classified very severely eroded fields also when rills were absent, but the 

rules in the tree were weaker. The sensitivity of the presence of rills was checked by repeating the 

creation of the classification tree with the exclusion of rills from the set of indicators. In this case, the 

major factor in the classification tree was the total number of indicators, but the goodness of fit of the 

validation set dropped to 39 % (and the Kappa coefficient to 0.23): no other indicator was as strong as 

rills. Indeed, farmers’ indicators of erosion work mainly as a ‘pool’: the second main feature of the 

classification tree is the number of indicators, and only when no farmers’ indicator is present the tree 

yield a ‘very low’ erosion class.   

We envisage two ways of employing the classification tree of Fig. 3 in practice. Extensionists could 

use it during their field visits directly to assess erosion; or, within the participatory framework of their 

interventions, they may ask farmers to map the key indicators, and rely on farmers’ memory to assess 

erosion over the area. The latter use may offer the advantage that farmers recall the presence of 

indicators in their fields even if cultivation has already obliterated them, making the timing of the 

survey less critical. This may eventually lead to a considerable saving of time, better communication 

between experts and farmers, and, hopefully, a larger consensus on sustainable SWC activities.  

 

Conclusions 

This research demonstrated that farmers’ knowledge of indicators of erosion closely matched scientific 

erosion assessment criteria. All indicators mentioned by farmers were positively correlated to erosion, 

and the number of farmers’ indicators per field increased with erosion intensity (Fig. 1).  

Farmers include land degradation and land fertility decline issues in their concept of soil erosion. In 

terms of assessment, a distinction could be made between strong indicators, interpreted as indicators of 

soil erosion sensu strictu, versus weak indicators, interpreted as more general indicators of land 

degradation.  The link between weak indicators and land degradation issues other than soil erosion was 

not assessed in the present study and should be addressed in further research. The presence of weak 

indicators of erosion indicates that proper SWC planning should address the broader farmers’ 

perception and include measures to improve, e.g., soil chemical fertility beside soil conservation. At the 
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same time, it is important to distinguish between strong and weak indicators when using farmers’ 

knowledge for assessing erosion in order to give the right advice in the right place. 

The use of farmers’ indicators of erosion allowed building a simple tool for erosion assessment that 

worked well in the Kwalei catchment (Fig. 3). The classification tree will need further testing before 

expanding its use. The list of farmers’ indicators was similar to other areas of the East African 

Highlands (Okoba et al., 2003), but the importance of each indicator may differ according to the main 

erosion processes at work.  

The classification tree is a successful example of integrating different types of knowledge for 

enhancing the co-operation between all the stakeholders involved in SWC activities. More research 

must be conducted in testing and developing further this approach. The methodology proposed in this 

study can be easily replicated elsewhere. Hopefully, working with farmers will again provide further 

insights for erosion assessment in other areas and other situations. 
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MODELLING SPATIAL SCALE OF WATER EROSION IN THE WEST 
USAMBARA MOUNTAINS 

Abstract 

This study aimed to assess the ability of several models to locate areas affected by severe erosion and 

identify the factors driving the distribution of erosion in a catchment characterised by a dynamic 

Hortonian hydrologic regime. The spatial patterns of severely eroded areas predicted by five erosion 

models were compared to the pattern of erosion observed during an extensive field survey conducted in 

Kwalei catchment (North-Eastern Tanzania). The actual pattern of erosion was also compared with the 

spatial distribution of some erosion factors: overland flow, whose distribution was simulated with a 

hydrologic model that accounted for overland flow reinfiltration, slope, crust, canopy cover and ground 

cover. The patterns of severely eroded areas varied wildly among models. The best predictions were 

those of (i) a classification tree built on farmers’ indicators of erosion (correlation coefficient 0.75); (ii) 

a semi-empirical model that accounted for overland flow reinfiltration (c.c. 0.48); and (iii) a qualitative 

model based on slope and ground cover (c.c. 0.45). The erosion factor mostly correlated with eroded 

areas was crust cover (c.c. 0.57), which was also correlated to vegetation cover. Lacunarity analysis of 

the spatial patterns showed that erosion models could not characterise the spatial scale of eroded areas 

correctly. Instead, the spatial scale of erosion distribution in the catchment coincided with that of the 

overland flow distribution at short reinfiltration length (0.5 - 5 m), even though severely eroded areas 

were not spatially correlated to areas of high overland flow depth (c.c. 0.10). In conclusion, the 

distribution of erosion was strongly correlated to crust cover, and a simple model based on slope and 

ground cover performed well in locating severely eroded areas. However, in the dynamic Hortonian 

regime of Kwalei catchment, the travel distance of overland flow determined the spatial scale of 

severely eroded areas. 

 

Keywords: erosion modelling; spatial pattern; lacunarity analysis; dynamic Hortonian overland flow.  

Introduction 

Hortonian overland flow occurs when rainfall intensity exceeds the rate of water infiltration in the soil 

(Horton, 1933; Kirkby, 1988). After soil ponding conditions are reached, water may at first accumulate 

in the micro-depressions of the soil surface. Once the storage capacity of the soil surface is filled, 

overland flow starts moving in the form of anastomous shallow streamlines, whose hydraulic 

conditions may vary from  laminar to turbulent  (Kirkby, 1988). Along its movement downslope, 

overland flow can either concentrate along preferential stream paths, such as rills, or be slowed down 

and disappear within areas where its movement is hampered and infiltration rates are high. In such 

zones, water reinfiltrates and the transported sediment is deposited. Therefore, the overland flow 
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generated along the slopes does not necessarily reach the streams, but the extension of the area 

contributing overland flow to water bodies changes dynamically according to the conditions that 

precede the rainfall event and the rainfall event characteristics. This hydrologic regime can be termed 

dynamic Hortonian (Kirkby, 1988), and is well recognized as typical of, but not restricted to, many 

semi-arid environments of the world (Puigdefábregas and Sanchez, 1996; Bergkamp, 1998; Ludwig et 

al., 1999; Imeson and Prinsen, 2004). Dubruil (1985) describes many areas of humid tropical Africa 

where such conditions can occur. 

The travel distance of overland flow at the hillslope scale depends on the magnitude of the rainfall 

event, the topography, and the spatial distribution of sources of overland flow, i.e. areas where overland 

flow generation is enhanced, and sinks of overland flow, i.e. areas where water reinfiltrates in the soil 

(e.g. Cammeraat, 2004). When the rainfall event has a high rainfall intensity peak but is of short 

duration, or when soil conditions are very dry, most of the overland flow generated along the slope 

reinfiltrates within the sinks present along the slope. The presence of rills and the distance to the 

channel may influence the amount of overland flow that reaches the streams, but such amount is 

especially determined by the density and the spatial organization of sources and sinks of overland flow 

along the slope (Bergkamp, 1998; Cammeraat, 2004). In sparsely vegetated areas, sinks may be 

tussocks or bands of vegetation (e.g. Bergkamp, 1998; Ludwig et al., 1999), whereas in cultivated areas 

sinks can be field edges, small ditches, hedgerows, or vegetated strips (van Noordwijk et al., 1998; 

Okoth, 2003). When the sinks are mostly located along the main slope direction, overland flow does 

not encounter obstacles and may concentrate into streamlines. When the sinks are located across the 

main direction, overland flow is blocked, and water can reinfiltrate in the soil. The effectiveness of 

sinks in filtering overland flow is dynamic and depends on hydrologic conditions (Bergkamp, 1998; 

Cammeraat, 2004).  

The main mechanism of soil movement across slopes is sediment transport by overland flow. Under 

a dynamic Hortonian overland flow regime, the slope connectivity is interrupted. In these conditions, 

erosion phenomena consist of a redistribution of soil particles, and soil fertility, across the landscape, 

rather than soil removal from the slopes (van Noordwijk et al., 1998). Hence, the sediment delivery 

ratio, i.e. the ratio of net erosion to gross erosion for a certain area, tends to decrease as the spatial area 

that is accounted for increases. The soil redistribution still yields important consequences for farmers, 

because the losses of fertility from the upper fields can be larger than eventual opportunities created in 

the downslope areas (van Noordwijk et al., 1998). Soil and Water Conservation (SWC) aims at 

reducing sediment entrainment and removal, therefore the location of sediment sources and sinks in a 

landscape is an important step for an efficient SWC planning.  

Distributed erosion models are potentially useful tools to predict spatial patterns of erosion (Garen et 

al., 1999). However, the dynamics of a Hortonian hydrologic regime are not easily included in erosion 

models. The configuration of sinks in the landscape is often not accounted for in distributed erosion 

models, even if they have important consequences in the distribution of erosion in the landscape (van 

Noordwijk et al., 1998; Takken et al., 2001; Okoth, 2003). This may have important repercussions on 

the ability of distributed erosion models to locate the spatial patterns of erosion within a catchment.   
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This study aimed to assess the ability of several erosion assessment models to locate areas affected 

by severe erosion and to identify the key factors driving the distribution of erosion in a catchment 

characterised by a dynamic Hortonian hydrologic regime. 

 

Material and methods 

The study area and assessment of the actual erosion 

The study was conducted in the Kwalei catchment (4°48′ S, 38°26′ E), situated in the West Usambara 

Mountains, North-East Tanzania. The catchment size is approx. 2 km
2
, and altitude ranges from 1337 

to 1820 m. The terrain is rough and highly dissected, with more than half of the hillslopes steeper than 

20 %. Average annual rainfall is approximately 1000 mm, distributed in two periods, a long rainy 

season that stretches from the end of February to the end of May and the short, less reliable rainy 

season that goes from October to January (Vigiak et al., 2005a).  Soils on the slopes consist mainly of 

Humic and Haplic Acrisols (FAO-Unesco legend, FAO, 1990). They comprise porous, sandy topsoils, 

and clayey, deep and well-drained subsoils. Saturation may occur in the clayey and vertic Umbric 

Gleysols in  the valley bottoms (Meliyo et al., 2001). The highest part of the catchment is covered by 

mountain rain forest, whereas the middle and lower slopes are mainly cultivated. The main food crops 

are maize, bean, banana, cassava and sugarcane, whereas the main cash crops are vegetables, coffee 

and tea. Cultivation of annual crops is concentrated close to the settlement compounds, along the ridge 

shoulders. The steep slopes along the streams are generally covered by two-storey cultivation of banana 

and coffee.  

At the catchment outlet, rainfall was measured with a tipping bucket rain gauge, discharge with a 

sonic water level meter; and sediment concentration with an automatic water sampler. All 

measurements were set to two minutes intervals (Hessel et al., 2005; Vigiak et al., 2005d). Six Gerlach 

troughs (Gerlach, 1967) were placed along two longitudinal transects in the middle and lower slopes of 

the catchment to measure overland flow volumes and sediment losses after each rainfall event (Vigiak 

et al., 2005b; Vigiak et al., 2005d).  

The erosion status of the Kwalei catchment was assessed qualitatively with a field survey based on 

the Assessment of Current Erosion Damage method (ACED; Herweg, 1996). ACED consists of 

surveying erosion features and main causes of erosion, such as land management, surface 

characteristics, and run-on and run-off patterns. Five qualitative classes of erosion were defined on the 

basis of presence of erosion features and their intensity, from very slight (class 1), to very severe (class 

5). The survey lasted from December 2002 till May 2003 and covered the whole catchment. The 

erosion assessment was considered to be representative for the seasonal erosion status of the fields 

(Vigiak et al., 2005b). 

 

Distribution of erosion factors 

Kwalei catchment is characterised by dynamic Hortonian hydrologic regime: overland flow is 

generated by infiltration excess, but has short travel distances (Vigiak et al., 2005c). The distribution of 
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overland flow was assessed with a hydrologic model that was built to reproduce the observed pattern of 

overland flow occurrence along the hillslopes (Vigiak et al., 2005d). The model runs per field and uses 

time steps of one hour. The total field overland flow QTOT (in mm per time step) was modelled as a 

function of the effective rainfall (ue, in mm), i.e. the amount of rainfall that generates discharge at the 

catchment outlet, the Hydrologic Response Unit, i.e. areas of homogeneous hydrology, and the field 

topographic connectivity (cascading sequence of run-on and run-off). Two Hydrologic Response Units 

were identified in the catcment: perennial crops (HRU_1: coffee and banana, forest and banana and 

maize fields) versus other crops (HRU_2, mainly annual crops) (Vigiak et al., 2005c). The model 

accounted for reinfiltration along the slopes by assuming that only a fraction of the field overland flow 

(QTOT) would drain to the lower fields (run-off, QOUT in mm per time step). This fraction depended on 

the reinfiltration length L (in m), i.e. the average distance at which overland flow travels before 

reinfiltrating. The maximum field area generating run-off was equal to the length of the lower field 

border (BF, in m) times the characteristic reinfiltration length L, i.e. the average length (m) along which 

the overland flow travels on the soil surface before reinfiltrating in the soil: 
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where AF is the field area (m
2
), and min indicates the minimum between the elements in brackets. 

The overland flow accumulation sequence was based on the flow directions observed during the ACED 

survey. From observations at the Gerlach troughs placed along the slopes, the average reinfiltration 

length in Kwalei catchment was estimated to be around 4 m (Vigiak et al., 2005d). However, it is likely 

that reinfiltration length changes within a reasonable range of 0.1 to 10 m, depending on rainfall 

characteristics, soil moisture and surface conditions (e.g. Rejman, 2003; Vigiak et al., 2005b). In this 

experiment, reinfiltration length L was set to 1 m. One-hour QTOT and QOUT of the period March-May 

2003 were summed to get the total overland flow and run-off of the season. 

Slope was derived from a Digital Elevation Model at 20 m pixel size and averaged per field. Crust 

cover (in %) was estimated during the ACED survey, and distributed using the field map created after 

the survey. Canopy cover (CC, in fraction, 0-1) and ground cover (GC, fraction 0-1) were estimated in 

the field during the ACED survey, and subsequently averaged per land use type. Also the average 

fraction of soil not covered by vegetation (1-CC and 1-GC) were calculated per land use type. The 

spatial distribution of the vegetation factors was established on the basis of the land use map (Vigiak et 

al., 2005b). 

 

Erosion assessment models 

Several erosion assessment models were applied to the study area. The models are described in detail 

elsewhere: here only the main differences on the model characteristics, and methods of calibration to 

the study area are given.  

The Morgan, Morgan and Finney model 

The Morgan, Morgan and Finney model (MMF; Morgan, 2001) is an empirical, annual model that 

estimates erosion rates as the minimum between detachment and sediment transport rates. The model 
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runs per field; in the application at the Kwalei catchment, incoming run-on was added to the overland 

flow generated in each field to calculate overland flow detachment and transport rates. Model inputs for 

the application of MMF to the Kwalei conditions were partly estimated in the field and partly derived 

from literature (Vigiak et al., 2005a). The model output consisted of field average annual net erosion 

rates (in kg m
-2 

y
-1

), from which the seasonal estimate (kg m
-2 

s
-1

) for the period March-May 2003 was 

derived using the ratio of actual rainfall observed in the period (330 mm) divided by the annual average 

rainfall (967 mm). 

The Limburg Soil Erosion model 

The Limburg Soil Erosion Model (LISEM; De Roo et al., 1996; De Roo and Jetten, 1999) is a physics-

based erosion model that runs at the event and the catchment scale. Modelled erosion processes 

comprise detachment by rainfall, throughfall, and overland flow, and transport by overland flow. Flow 

routing is modelled using a four-point finite-difference solution of the kinematic wave and Manning’s 

equation (De Roo et al., 1996). In the application for Kwalei catchment, LISEM version 2.154 was 

used, with a time step of 15 seconds on the basis of the DEM of 20 meter pixel size. Infiltration was 

modelled using the Green & Ampt equation. The model was calibrated against discharge and sediment 

concentration measurements at the outlet. Though it generally performed well, the model showed some 

problems in modelling double peaked hydrographs (Hessel et al., 2005). The model output per event 

consisted of the pixel total erosion (in kg m
-2

). LISEM seasonal erosion output (in kg m
-2 

s
-1

) was the 

sum of the five largest rainfall events in the period March-May 2003. 

The Vigiak model  

The Vigiak model (Vigiak et al., 2005b) is a semi-empirical model that runs at the catchment and 

event scale. Overland flow is predicted per field and per event on the basis of the hydrologic model 

explained above. The overland flow was used to predict field net erosion rates according to a slightly 

modified erosion phase of the MMF model. Soil detachability of Umbric Gleysol was calibrated versus 

detachment rates observed in splash cups. The reinfiltration length L of eq. (1) was optimized with a 

Monte Carlo (MC) experiment against spatial patterns of erosion and ranged from 0.01 to 2.5 m 

(average L = 0.10 m; Vigiak et al., 2005b). The model output was the average sum of net erosion rate 

for the period March-May 2003 (kg m
-2 

s
-1

) calculated by the behavioural MC simulations (Vigiak et 

al., 2005b).  

The Farmers’ Indicators Tree 

The Farmers’ Indicators Tree (FIT; Vigiak et al., 2005e) is a field erosion assessment method that 

estimates the qualitative erosion class per field and per year. It consists of a classification tree 

(Breiman, 1993), created on the basis of type and presence of farmers’ indicators of erosion: absence of 

topsoil, rills, gullies, washing of crop and seeds, poor seed germination, poor crop development, 

patches of bare land, soil colour change, deposition of soil downslope, rock exposure, and white-soft 

stones (Vigiak et al., 2005e). The presence and type of farmers’ indicators of erosion were recorded at 

the time of the ACED survey. Calibration of the classification tree was done on half of the ACED 

survey dataset and validated against the other half.  FIT output consists of field erosion classes, from 

very slight (class 1) to very severe (class 5).  
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Moreover, with the exception of the sparsely occurring indicators (gullies, washing of crop and 

seeds, and poor seed germination), which were considered too rare to yield meaningful spatial 

information, the spatial distributions of farmers’ indicators of erosion, i.e. the “building blocks” of the 

FIT model, were studied here in more detail.  

The Okoth model 

Okoth (2003) proposed a simple model to locate areas exposed to high erosion risk. The model consist 

of a logit regression equation that was built on the basis of a field survey conducted in Kiambu District 

(Central Kenya). The equation uses only two input parameters: 

 

GCslopeLogit 08.0*22.018.4 −+=         (2) 

 

where slope is the field slope (in %) and GC is the ground cover (in %). In Kiambu District, areas with 

the logit predictor above five are considered as subject to high erosion risk (Okoth, 2003). Okoth’ study 

area extended over around 600 km
2
 of Kiambu District,  and encompassed different agroecological 

zones, from the drier livestock-sorghum zone in the South-Eastern part to the wetter Coffee-Tea zone 

in the North-Western part (Jaetzold and Schmidt, 1983; Okoth, 2003), which is similar to the West 

Usamabara Mountains for climate, geology and land use.  

 

Analysis of spatial patterns 

The first purpose of the comparison of spatial patterns was to assess the ability of erosion models to 

locate severely eroded areas. The model outputs were reclassified into five classes of erosion, setting 

the class thresholds differently for each model in order to have the same number of fields per class as in 

the ACED survey. The degree of agreement of model prediction maps and ACED was assessed with 

weighted Kappa of the contingency table (Cohen, 1968; Vigiak et al., 2005a). Given a contingency 

table of two classification systems of n classes, in this case the five classes of erosion assessed during 

the ACED survey (i) or predicted by the model (j), the weighted Kappa coefficient (wK) is defined by:  
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Table 1. Weights (wij) applied to the contingency table to calculate the weighted Kappa (from Vigiak et al., 
2005a). 

 ACED map 
 

  Very low Low Moderate High Very High 

Very low  1 1 0.5 0.25 0 

Low  1 1 1 0.5 0.25 

Moderate  0.5 1 1 1 0.5 

High  0.25 0.5 1 1 1 

M
o

d
el

 o
u

tp
u

t 

m
ap

 

Very high  0 0.25 0.5 1 1 

 

 

is the weighted chance-expected distribution, with pij = 
m

m
ij

, pi. = 
m

m
i , p.j = 

m

m
j

, mij is the number of 

fields classified in classes i and j; mi is the total number of fields classified in the class i; mj is the total 

number of objects classified in the class j and m is the total number of fields (Cohen, 1968).  

ACED assessments depend on the field conditions at the time of the survey. Moreover, the presence 

of erosion features depends on the redistribution of soil in the field, which is related, but is not equal, to 

the net erosion losses as assessed by models. Errors of evaluation may as well be present. To account 

for the uncertainties in the ACED map, the weights for the class combinations were set as in Table 1: 

one class difference was considered acceptable (weight factors = 1), whereas for larger disagreements 

between the two maps, the weights were linearly dependent on the distance between classes (Vigiak et 

al., 2005a). 

Weighted Kappa values measure the general agreement between observed and modelled patterns. 

However, for SWC purposes, the main objective is the ability of models to identify severely eroded 

areas (classes 4 and 5). Therefore, the erosion maps were reclassified into binary maps: former classes 

4 and 5 were classified as severe erosion (class 1), whereas former classes from 1 (very slight) to 3 

(moderate erosion) were classified into low erosion (class 0). Similarly, the distribution of erosion 

factors was reclassified to obtain binary maps. The thresholds between high (class 1) or low (class 0) 

erosion factors were set to match the proportion of the ACED severely eroded areas. The forest part of 

the catchment, less interesting for SWC planning, was excluded. Further, to focus on areas instead of 

single fields, the original field vector maps were transformed into raster format. The pixel size was set 

to 5 m, which was small enough to maintain the general field geometry. The agreement between binary 

maps consisted of the correlation coefficients between ACED, model predictions, and erosion factor 

distributions. The elaboration of maps was done with ILWIS 3.2 Academic (Koolhoven et al., 2004). 

Finally, we analysed the lacunarity of the spatial patterns depicted by the binary maps. Lacunarity 

analysis characterises the spatial texture, i.e. the degree of aggregation, of spatial objects. Lacunarity 

measures the distribution of gap sizes of the object geometry, with the object being more lacunar if 

gaps are distributed over a larger range of sizes (Mandelbrot, 1983). The concept of lacunarity was 

introduced in reference to fractals, but can be applied to real objects, and has been used, for example, to 
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measure the spatial texture of habitats in landscape ecology studies (Plotnick et al., 1993; Plotnick et 

al., 1996). Lacunarity was calculated with the gliding box algorithm proposed by Allain and Cloitre 

(1991). For a binary image, the gliding box consists of a moving window of size r that moves across 

the image and count the mass S of the object, i.e. the number of sites (pixels) occupied by the class of 

interest. At the given r, lacunarity Λr is defined as:  

 

1
)(

var
2
+=Λ

r

r

r

S

S
            (6) 

 

where var Sr is the variance of the distribution of the mass S, and rS  is its mean. 

Lacunarity depends on the fraction of the image occupied by the class of interest (the density of the 

class, p), the size of the window r, and the geometry of the object (Plotnick et al., 1993, Plotnick et al., 

1996). Maximum lacunarity is at the window size r equal to the pixel size: at this point lacunarity is 

equal to the inverse of the density p of the binary map. As the size of the window r increases, the 

relative variance of the mass S decreases, so does the lacunarity. When the window size r is equal to 

the whole image, var Sr is zero, and lacunarity is at its minimum, one.  The log-log plot of the 

lacunarity Λr against the window size r gives information on the change of lacunarity across the spatial 

scale range.  For example, in a regularly distributed class, once the  window size r exceeds the size of 

the regular pattern, var Sr drops to zero and lacunarity quickly approaches one. Lacunarity of random 

maps also drops quickly to one as window size r increases, because random maps are statistically 

invariant at larger scales. In the case of a self-similar image, instead, var Sr does not change with the 

window size r, so the log-log plot approaches a straight line with negative slope (Plotnick et al., 1996). 

More in general, lacunarity changes little until the point where the window size r equals to the size of 

the clumps, then it decreases rapidly. In this way, the lacunarity analysis can be used to detect scales: 

changes in slope in the log-log slope curve indicates changes in the spatial scale of the object of interest 

(Plotnick et al., 1996). Moreover, lacunarity curves allows comparing the degree of aggregation of 

spatial objects: at the same window size, the higher the lacunarity, the more aggregate is the spatial 

object at that scale. In contrast with other landscape metrics, lacunarity analysis is not influenced by the 

image boundaries and is effective in detecting scale changes even when the density p is very small. In 

land degradation studies, lacunarity analysis proved effective in studying spatial heterogeneity of 

vegetation patterns in relation to geomorphologic processes (Puigdefábregas and Sanchez, 1996), 

hydrology (Ludwig et al., 1999; Wu et al., 2000) and erosion (Imeson and Prinsen, 2004). Lacunarity 

analysis was performed with the freeware RULE (Gardner, 1999) to detect the degree of aggregation, 

i.e. the spatial scale, of the binary map patterns.  

 

Results and discussion 

Table 2 shows the Kappa values resulting from the comparison of the ACED spatial pattern of erosion 

and the erosion assessment models predictions. The agreement between models and observations went  
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Table 2. Kappa values for the comparison of erosion classes as assessed in the field (ACED) and predicted by 
models. 

 Weighted Kappa 

MMF 0.27 

LISEM 0.26 

Vigiak 0.53 

FIT 0.74 

Okoth 0.45 

 

 

from fair (0.20-0.40) to good (0.40-0.75; Landis and Koch, 1977). Fig. 1 shows the spatial pattern of 

severely eroded areas (former classes 4 and 5) of ACED and the assessment models. The North- 

Western corner area is predicted as subject to severe erosion by all models, but predictions differed 

especially in the middle and lower parts of the catchment.  

Both the MMF and LISEM model scored low Kappa values. MMF mainly predicted severely eroded 

areas at the footslopes, whereas the ACED survey indicated serious erosion also along the slope 

shoulders. Model errors were attributed to the overland flow generation mechanism, which did not 

account for reinfiltration along the slopes (Vigiak et al., 2005a). LISEM predictions were affected by 

difficulties in defining the spatial distribution of inputs, the low resolution of the available DEM, and 

structural limitations of the model, whose hydrologic component can not deal with reinfiltration along 

the slopes yet (Hessel et al., 2005; De Roo and Jetten, 1999). LISEM predicted the high erosion in the 

upper part of the catchment well, but failed to locate severely eroded areas in the lower parts.  

The general good performance of the semi-empirical Vigiak model was expected, because the 

transport capacity parameters of the model had been previously optimized in relation to the spatial 

distribution of the erosion in Kwalei (Vigiak et al., 2005b). It is interesting to note, however, that the 

model could generally locate the spots of erosion in terms of number and position, but failed to capture 

their extent.  

In contrast to the quantitative models, the qualitative erosion assessment models did not require 

huge amount of input data. Nonetheless, these models performed better than the quantitative models in 

several respects. The FIT model showed a very good agreement between observed and predicted 

erosion. However, it should be borne in mind that the  FIT model was created using half of the spatial 

dataset available (Vigiak et al., 2005e), so that the good performance, though promising, should be 

taken with caution. In particular, the model will need recalibration before being used in other areas 

(Vigiak et al., 2005e). In contrast, Okoth two-parameter model resulted in good agreement with the 

ACED observations even without calibration. Okoth model was created for Kiambu District, in 

environmental conditions that are comparable to those of Kwalei catchment. The limits among classes 

set for Kwalei catchment, with severe erosion for areas with logit predictor > 7, were different than 

those set for Kiambu District, with severe erosion set for areas with logit predictor > 5 (Okoth, 2003). 

However, the capacity of this simple model to locate erosion in qualitative terms is surprisingly  
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Figure 1. Comparison of severely eroded areas as assessed in the field (ACED) and predicted by five erosion 
assessment models, Kwalei catchment, Tanzania.  
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Table 3. Correlation matrix of severely eroded areas as assessed in the field (ACED) and predicted by models 

 ACED MMF LISEM Vigiak FIT Okoth 

ACED 1 0.11 0.31 0.48 0.75 0.44 

MMF  1 0.21 0.28 0.02 0.27 

LISEM   1 0.25 0.23 0.35 

Vigiak    1 0.38 0.36 

FIT     1 0.35 

Okoth      1 

 

 

promising. The application to Kwalei condition is a first independent test of Okoth model; as the model 

uses easily available information, i.e. slope and ground cover, this tool may be very interesting for 

quick assessments of erosion in SWC planning studies in the East African Highland areas. 

The location of severely eroded areas differed a lot among prediction models, as the correlation 

coefficients between model prediction maps show (Table 3). The correlation matrix reveals that the 

MMF predictions were in the least agreement with ACED and with the other models. Even if the MMF 

Kappa value was close to that of LISEM, the correlation coefficient for severely eroded areas was 

much lower, indicating that MMF had more problems in locating eroded spots. Also LISEM  

 

 
Figure 2. Standardized lacunarity curves of severely eroded areas as assessed in the field (ACED) and as 

predicted by erosion assessment models.  
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predictions differed substantially from the other models. Some correlation was found between FIT, 

Vigiak and Okoth models. In particular, Okoth model was the one scoring the highest correlation 

coefficients with all the other models, probably because the logit predictor, though empirical, has a 

physical basis that is common to all assessment methods.  

Fig. 2 shows the log-log plot of lacunarity curves against the window size r for the binary maps of 

Fig. 1. To facilitate the comparison, lacunarity Λ was standardized by its highest value (Λ1, at window 

r1 = 5 m) and the window size r was standardized by its lowest value (r1). The window size r went 

from 5 m (ln(r/r1) = 0), the pixel size, to around 750 m (ln(r/r1) = 5), half of the catchment size. The 

ACED map shows a change in lacunarity (inflection point) at around ln(r/r1) = 2, indicating that 

severely eroded areas were aggregated up to a spatial scale of 40 m, slightly larger than the fields. The 

lacunarity of FIT model follows that of ACED closely at the beginning, but decreases at a slower rate 

as window size r increases, indicating that severely eroded areas predicted by FIT are spatially more 

aggregated than the surveyed ones. Okoth model and MMF shows exactly the same lacunarity: this 

suggests that MMF model prediction aggregation levels and Okoth logit predictor (eq. 2) depends 

ultimately on the same spatial variables, namely slope and ground cover. LISEM shows by far the 

highest lacunarity at all scales; indeed, LISEM basically predicts one large clump of severely eroded 

area. The lacunarity of the Vigiak model is the only curve being always below the ACED curve: the 

model is more disaggregated than ACED at all scales. Lacunarity curves revealed that no model could 

capture the spatial scale of severely eroded areas. Beside the Vigiak model, all models predicted a 

larger extent of the severely eroded clumps.  

To explain the spatial scale of eroded areas, we analysed the spatial distribution of erosion factors. 

The ACED map showed that severely eroded areas occupied a fraction of around 30 % of the 

agricultural part of the Kwalei catchment. The highest 30 % of the erosion factor distributions 

corresponded to total overland flow depth of the hydrologic model QTOT > 2.75 mm; field run-off QOUT 

> 0.075 mm; slopes > 38 %; crust cover  > 60 %; canopy cover < 50 % (i.e., 1-CC > 50 %); and ground 

cover < 50 % (i.e., 1-GC > 50 %). Areas above these thresholds were considered as high erosion factor 

(class 1), otherwise the areas were classified as low erosion factor (class 0).  

Fig. 3 shows the binary maps of the erosion factors and Table 4 shows their correlation matrix. 

Areas of higher total overland flow depth (QTOT) did not correspond to severely eroded sites: mostly, 

overland flow was high along the stream line incisions, which are covered by the two-storey coffee and 

banana vegetation, and in the valley bottoms, where slopes are very small. These conditions assure a 

good protection of soil against eroding agents. Field run-off distribution (QOUT) was less correlated to 

the ACED map than total overland flow. In the fields, soil erosion features are created by the soil 

detachment, transport and deposition processes that may occur within the field area. The presence and 

intensity of erosion features, on which the ACED method is based, are therefore related to the total 

overland flow that occurs in the field (QTOT). Instead, the amount of soil that is permanently removed 

from the field, i.e. the field net erosion, depends on the overland flow that leaves the field (run-off, 

QOUT ), but this may not need to coincide with the ACED map. The distribution of field run-off was not 

correlated to erosion factors other than the total overland flow. The amount of field run-off depends  
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Figure 3. Spatial distribution of erosion factors in the Kwalei catchment, Tanzania.  
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Table 4. Correlation matrix of severely eroded areas as assessed in the field (ACED) and erosion factors. 

 ACED QTOT QOUT Slope Crust 1-CC 1-GC 

ACED 1 0.10 -0.02 0.20 0.57 0.51 0.44 

Field overland flow (QTOT) > 2.75 mm  1 0.40 0.03 0.20 0.30 0.21 

Field run-off (QOUT) > 0.075 mm   1 0.01 0.05 0.19 0.07 

Slope > 38 %    1 0.11 -0.07 -0.09 

Crust > 60 %     1 0.46 0.36 

1 - CC > 50 %      1 0.82 

1 - GC > 50 %       1 

 

basically on total overland flow and the geometry of the field: for fields whose lower boundary is long, 

the relative contribution of total overland flow to run-off is relatively large (eq. 1). 

Slope was better related to erosion in the upper part of the catchment than along the middle and 

lower parts. The good protection of vegetation along the steeper slopes, confirmed by the slightly 

negative correlation coefficient between slope and vegetation cover, explains the rather low correlation 

coefficient (0.20) between slope and severe erosion. Crust cover and poor vegetation cover were 

instead widespread in the middle and lower part of the catchment, where annual crops prevail. The 

three factors were well correlated, but crust cover had the highest correlation with severely eroded 

areas (c.c. 0.57). Vegetation cover protects the topsoil from the direct impact of raindrops; its removal, 

for example by tillage operations, exposes the soil surface to the impact of the raindrop and favour the 

formation of structural crusts. The presence of crust may reduce soil infiltration and enhance the 

occurrence of overland flow (Vigiak et al., 2005c). All these conditions may result in higher erosion. 

The good correlation between crust and vegetation cover on one side, and crust and erosion on the 

other, explains in part the good performance of Okoth model, which takes account of the ground cover, 

and hence of the crust distribution.  

Fig. 4 shows the lacunarity curves of the erosion factors in comparison to that of severely eroded 

areas. Crust cover and ground cover lacunarity are quite close to that of the severely eroded areas 

(ACED), confirming the linkage between the two erosion factors and the location of erosion. Erosion 

factors are spatially more aggregated than ACED, with one, important exception: the distribution of 

total overland flow QTOT has exactly the same lacunarity of the severely eroded areas, even when the 

two patterns do not overlap.  

The overland flow is the vector of soil sediment, transporting soil detached particles from sediment 

sources to deposition areas. In a way, it represents the ‘memory’ of the landscape, linking the field to 

what happens in its upper areas. This ‘memory’ can be quantified by the reinfiltration length parameter 

L, which determines the amount of overland flow moving across field borders (eq. 1). Fig. 5 shows the 

change of lacunarity in the overland flow pattern when reinfiltration length parameter L is varied in the 

range from 0.1 m, i.e. virtually no field run-off, till 1000 m, i.e. virtually no reinfiltration along the 

slopes (L = inf). Fig 5a shows the lacunarity of total field overland flow QTOT. At reinfiltration lengths  
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Figure 4. Standardized lacunarity curves of severely eroded areas in comparison with the erosion factors.  

L > 1 m, the lacunarity decreases: as the field run-on increases in the lower part of the fields, the spots 

of high overland flow concentrate progressively in the lower segments of the slope. At first, the change 

is small: lacunarity curves at reinfiltration length of  2.5 and 5 m are close to that of 1 m and to that of 

ACED severely eroded areas. At even longer reinfiltration lengths, the lacunarity strongly decreases, 

especially at the hillslope scale of 100-300 m (3 < ln (r/r1) < 4), definitively diverging from that of 

ACED. Moreover, also at reinfiltration lengths L < 1 m the degree of aggregation of overland flow 

increases: the lacunarity curve at L = 0.5 m is close to that of L = 5 m, and that of 0.1 m is close to the 

lacunarity curve of total overland flow at L = 10 m. The distribution of overland flow according to the 

hydrologic model depends not only on the field topology (eq. 1) but also on the field hydrologic 

conditions, namely on the Hydrologic Response Unit of the field (Vigiak et al., 2005d). The HRU 

distribution reflects the perennial (HRU_1) – annual (HRU_2) crop pattern and largely corresponds to 

the canopy cover pattern of Fig. 3. This explains as well the correlation between overland flow factors 

and canopy cover pattern (1-CC; see Table 4). Indeed, at reinfiltration length L of 0.1 m, the lacunarity 

of overland flow coincides to that of canopy cover (1-CC > 50 %, not shown here). When reinfiltration 

is practically nil, total overland flow depends exclusively on the hydrologic conditions of the field (the 

HRU), and ultimately on the land use. Lacunarity analysis revealed that neither an infinite reinfiltration 

length (classic Hortonian overland flow), nor a nil reinfiltration length (no overland flow connectivity) 

corresponded to the scale of the distribution of severely eroded areas. Rather, effective reinfiltration 

lengths in Kwalei catchment are in the range of 0.5 and 5 m. 
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Figure 5. Standardized lacunarity curves of severely eroded areas in comparison with the highest 30 % of (a) the 

total overland flow (Q
TOT

) and (b) field run-off (Q
OUT

), at different reinfiltration lengths L. 
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Fig. 5b shows the lacunarity curves of the field run-off patterns. In this case, the increase in 

reinfiltration length always resulted in an increase in the aggregation of the areas with higher field run-

off, which concentrate more and more downslope. Erosion features depend on total overland flow more 

than field run-off, but field run-off represents more properly the effect of field topology, i.e. the run-

on/run-off cascade and field geometry, on the spatial distribution of overland flow. The spatial scale of 

field run-off that is closest to the ACED severely eroded areas occurred at reinfiltration lengths L of 5 - 

10 m. This is probably the spatial scale of overland flow movement across fields, the slope ‘memory’ 

that is active in Kwalei catchment. 

Fig. 5 demonstrates the importance of the travel distance of overland flow and of field geometry in 

the distribution of overland flow and erosion under a dynamic Hortonian hydrologic regime. The 

hydrologic model of Vigiak et al. (Vigiak et al., 2005d) refers explicitly to the lower boundary of the 

field (eq. 1), linking the field geometry to the spatial distribution of overland flow and thus of erosion. 

Field boundaries, either marked by a simple vegetated strip, a line of trees or a small ridge, create 

obstacles that reduce the movement of water across fields, and represent landscape discontinuities 

where overland flow can reinfiltrate (van Noordwijk et al., 1998; Okoth, 2003). When the field 

geometry is not accounted for, spatial distribution of physics-based models can be very wrong (Takken 

et al., 2001): the lacunarity of a completely Hortonian overland flow (L = inf in Fig. 5) is very close to 

that of the LISEM model. On the other hand, the curve of the Vigiak model is close to that of field run-

off at reinfiltration length of 2.5 m. The Vigiak model assesses the field soil losses, i.e. the field net 

erosion rates, and therefore tends to underestimates erosion processes in fields where intra-field soil 

redistribution is important. The practical result is that the model could indicate the locations of erosion, 

but not their extent. 

The same phenomenon is probably true also for the distribution of erosion within the field. Intra-

field erosion patterns were not studied here, but it is likely that within the fields vegetation patterns 

create a mosaic of sources and sinks of overland flow that affects the spatial distribution of overland 

flow (Puigdefábregas and Sanchez, 1996; Bergkamp, 1998; Ludwig et al., 1999; Wu et al., 2000; 

Imeson and Prinsen, 2004). 

Our results are in agreement with other studies showing the importance of barriers and sinks in 

scaling the distribution of erosion in a landscape (e.g. Takken et al., 2001; van Noordwijk et al., 1998). 

As van Noordwijk et al. (1998) pointed out, lateral interactions have important consequences on 

erosion soil rates at the landscape scale. On wide slopes, overland flow may spread laterally; the 

redistribution of water and sediments can lead to a consistent reduction of the sediment delivery, as 

water can reinfiltrate more along the slope. Within a field, acceleration of overland flow along the slope 

may prevail, but at the landscape scale, the lateral interactions and the  redistribution of soil usually 

predominate (van Noordwijk et al., 1998). Eq. (1) offers a somewhat rudimental, but simple, solution 

to account for the effect that field geometry exerts on the spatial distribution of erosion in a landscape. 

As an alternative, Imeson and Prinsen (2004) suggest the use of an index of vegetation-bare soil 

connectivity to adjust the potential upstream area of a given site. Theirs is yet another approach to 

include more explicitly the vegetation pattern, in terms of spatial configuration of sources and sinks of 

overland flow, into the hydrologic and erosion dynamics of the landscape. 
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Figure 6. Distribution of severely eroded areas (ACED) and farmers’ indicators of erosion.  

Without doubt, hydrologic dynamics are difficult to characterise. Direct observations of overland 

flow occurrence and distribution require time and technical resources that are seldom available outside 

dedicated research activities. Given its importance, however, retrieving such information, even in 

general terms, may be crucial for effective assessment of erosion in a landscape. In practice, 

information on the spatial distribution of factors of erosion and environmental dynamics might be 

retrieved from the land users. The effectiveness of farmers’ knowledge in locating erosion is  
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Table 5. Correlation coefficients matrix of farmers indicator of erosion and severely eroded areas (ACED), total 
overland flow (QTOT) and field run-off (QOUT) at reinfiltration length L of 1 m. The density p is the fraction (in %) 
of the map occupied by the class of interest.  
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ACED 0.56 0.41 0.33 0.25 0.51 0.64 0.25 0.44 30 

QTOT 0.13 0.08 -0.06 0.10 0.17 0.12 0.07 0.11 32 

QOUT -0.02 -0.16 -0.05 0.02 0 -0.06 0.07 0.01 31 

Absence of topsoil 1 0.39 0.15 0.29 0.55 0.46 0.12 0.28 18 

Deposition soil down.  1 0.1 0.25 0.27 0.37 -0.03 0.35 11 

White-soft stones   1 0.19 0.15 0.30 0.21 0.37 24 

Patches of bare land    1 0.24 0.23 0.07 0.16 6 

Poor crop develop.     1 0.39 0.2 0.18 15 

Rills      1 0.18 0.47 18 

Rock exposure       1 0.12 8 

Soil colour change        1 17 

 

 

exemplified by the good performance of the FIT model. Even if the current FIT model should probably 

not be applied elsewhere without reparameterisation, the methodology used to develop it (Vigiak et al., 

2005e) can be repeated and included within the participatory appraisal activities that extension officers 

usually undertake when planning SWC activities (e.g. Kamar, 1998).  Moreover, many indicators of 

erosion that were mentioned by Kwalei farmers are quite common (Swete Kelly and Gomez, 1998). 

Fig. 6 shows the spatial distribution of the farmers’ indicators that were strongly related to erosion. 

Their correlation matrix is shown in Table 5, where also the density p of the area occupied by the 

indicators is given. Contrary to the maps shown in Figs. 1 and 3, where the density p was equivalent to 

that of ACED severely eroded areas (30 %), the binary maps of Fig. 6 show the actual distribution of 

indicators observed in the field, whose fraction thus varied. The density p affects the correlation 

coefficients: indicators that are less frequently observed, such as deposition of soil downslope, patches 

of bare land and rock exposure have generally lower correlation coefficients. All indicators are 

correlated to erosion, especially absence of topsoil, rills and poor crop development. The former two 

indicators are erosion features. Poor crop development can be either a consequence of erosion, i.e. 

erosion deplete the soil fertility and the water availability, thus crops perform poorly, or a factor of 

erosion, i.e. where crops are poorly developed, soil is less protected against erosion agents. All the 

indicators are poorly correlated with the distribution of field overland flow and field run-off.  
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Figure 7. Standardized lacunarity curves of farmers’ erosion indicators in comparison with the highest 30 % of 
total overland flow (QTOT) at reinfiltration length L = 1 m. 

The density p of the binary maps of Fig. 6 has consequences on their lacunarity: sparse datasets have 

higher lacunarity than dense datasets (Plotnick et al., 1996). However, the shape of the lacunarity curve 

is independent of the density p (Plotnick et al., 1993, Imeson and Prinsen, 2004), thus standardized 

lacunarity curves of objects with different density are comparable (Fig. 7). Lacunarity of farmers’ 

indicators is compared to the total overland flow at reinfiltration length L of 1 m, which is close to that 

of the severely eroded areas. White-soft stones are generally more aggregated: the appearance of white 

soft stones is indeed an effect of the removal of topsoil and the exposure of the B horizon of Humic 

Acrisols, so the distribution of this indicators is also related to the soil type. Patches of bare land and 

rock exposure appear to have a shorter spatial scale than hydrologic and erosion conditions. The 

lacunarity of the other indicators, instead, follow closely the curve of total overland flow: these 

indicators are good candidates to estimate the spatial scale of distribution of erosion and overland flow. 

Among these, there is little point in discussing which indicator would be the best: probably the 

combination of different indicators can give better ideas on the extension of erosion (Okoba and Sterk, 

2005; Vigiak et al., 2005e). More importantly, Fig. 7 shows that farmers have good perception of the 

occurrence and distribution of erosion, and this information can be used to infer the spatial scales of 

hydrologic and erosion conditions. Farmers’ knowledge of their environment could be used as well to 

gather information on the intra-field variability of erosion and other relevant agronomic conditions 

(Dregne, 1989; van Noordwijk et al., 1998; Okoba et al., 2005).  
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In alternative to the regression-type approaches such as the one offered by the FIT model (Vigiak et 

al., 2005e), we can see mainly two other ways of embedding farmers’ knowledge into a scientific 

framework for modelling hydrology and erosion in a landscape. On one side, farmers’ knowledge can 

be directly translated into expert-system models (Davis, 1993). Expert systems for land degradation 

and erosion have been applied with success in tropical countries (e.g. Balachandran, 1995; Suryana, 

1997), as well as in temperate areas (e.g. Boardman et al., 1990). These models can offer valid tools to 

locate erosion, and therefore can counteract the problem of data scarcity that is common to many rural 

areas of the tropics, but can offer little insight in the physical processes involved, and remain difficult 

to export to other areas.  

A more innovative approach is the methodology proposed by Ferreyra (2003) for parameter 

optimization of crop simulation models. In precision agriculture, the retrieval of detailed information 

on the environment is crucial to quantify the spatio-temporal variability of inputs in crop simulation 

models. Ferreyra elicited farmers’ and experts’ knowledge of intra-field ecology in the form of nominal 

relationships of probabilities, i.e. “greater than”, “lower than”, for adjacent soil units. The resulting 

neighbourhood criteria sets were employed to constrain the optimization of soil-water parameters, such 

as saturated hydraulic conductivity, SCS curve number, soil depth and plant density. Ferreyra’s 

methodology helps reducing the over parameterisation problems in physics-based models and 

improving the spatial distribution of inputs and outputs. For example, in the Kwalei case, the lacunarity 

of farmers’ indicators of erosion could have been used to parameterise the effective reinfiltration length 

L of the hydrologic model. Given the promising results of farmers’ knowledge of erosion phenomena in 

Kwalei catchment (Tenge et al., 2005), this framework might successfully couple local knowledge to 

physics-based models, substantially improving the quality of spatially distributed erosion models.    

 

Conclusions 

SWC planners need reliable tools to locate the areas within a catchment that are most affected by water 

erosion. The development of catchment-scale distributed models concentrated on the prediction of 

water discharge and sediment delivery at the outlet more than on quality of spatial patterns (Jetten et 

al., 2003). The poor quality of spatial model predictions can be attributed to the heterogeneous, 

nonlinear behaviour of hydrologic and erosion processes coupled with insufficient quality of spatial 

and temporal datasets (Merritt et al., 2003; Jetten et al., 2003). These shortcomings were without doubt 

present in the Kwalei catchment, where the accuracy of the cartographic information was lower than 

the usual requirements for a complex, physics-based erosion model such as LISEM (e.g. Hessel et al., 

2005). However, the quality of cartographic information was already better than the one usually 

available to SWC planners (Renschler and Harbor, 2002). Where environmental data are of poor 

quality and where the main objective of model predictions is the location of eroded areas, qualitative 

assessment tools such as the FIT model (Vigiak et al., 2005e) and Okoth model (Okoth, 2003) can 

perform better than quantitative models. These empirical approaches would require calibration in areas 
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other than the ones where they were developed, but the research effort to do so would probably be 

more affordable than for proper calibration of more physics-based models.  

The comparison of the distribution of severely eroded areas with erosion factors indicated that 

erosion was spatially correlated with crust cover. We could not distinguish whether crust cover was an 

effect rather than a cause of soil erosion: most probably it is both. The correlation of crust cover with 

vegetation cover also explained the good performance of the Okoth two-parameter model in locating 

the eroded areas of the Kwalei catchment. 

Lacunarity analysis of model predictions, however, revealed a spatial scale deficiency involved in 

the poor performance of the erosion models. While the location of eroded area was correlated to crust 

cover, the spatial scale of their distribution was the same as that of the total overland flow of the fields 

at short reinfiltration lengths L (0.5 - 5 m). In the dynamic Hortonian hydrologic conditions of Kwalei 

catchment, where overland flow occurrence is generally easily triggered but shortly lived, erosion 

phenomena often consists of a redistribution of soil particles within the catchment rather than sediment 

delivery to water bodies.  

The dynamics of overland flow along the slopes, caused by the configuration of the mosaic of 

sources and sinks of overland flow in a landscape, though recognized (Puigdefábregas and Sanchez, 

1996; van Noordwijk et al., 1998; Imeson and Prinsen, 2004), are not sufficiently accounted for in 

erosion models. The semi-empirical Vigiak model embedded a mechanism to account for field 

geometry and reinfiltration along the slopes: the model could locate most spots of eroded areas, even if 

it failed in accounting for their extent. An alternative approach could be the use of vegetation 

connectivity indices to account for potential sinks of overland flow along the slopes (Puigdefábregas 

and Sanchez, 1996; Imeson and Prinsen, 2004). In any case, accounting for the dynamics of the 

overland flow seems fundamental for predicting the spatial scale of erosion under a dynamic Hortonian 

regime. 

Unfortunately, gathering information on the hydrology of new environments requires huge 

investments. In data scarce areas, farmers’ knowledge represent an interesting alternative source of 

information. In the case of the Kwalei catchment, some indicators used by farmers to assess erosion in 

their fields conveyed useful information on the location of eroded areas and on the spatial scale of the 

erosion phenomena. It is possible to further exploit farmers’ spatial knowledge of their environment, 

for example in the optimization of model parameters of semi-empirical and physics-based models with 

the methodology recently proposed by Ferreyra (2003). The combination of qualitative local 

knowledge in quantitative models may thus alleviate the constrains of the chronic data scarcity that 

affects spatially distributed environmental modelling. 
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SUMMARY AND CONCLUSIONS 

 

Watershed management requires prompt location of sources and sinks of sediment within a catchment. 

Pinpointing ‘hot-spots’ of erosion allows concentrating limited resources in the most effective way, and 

positive early results of Soil and Water Conservation (SWC) plans may gain the trust and participation 

of the land users. In this sense, the location of severely eroded areas within the catchment of 

intervention can be more important than the quantification of soil losses from the catchment.  

Distributed erosion models can be valuable tools for watershed planning. However, the quality of 

spatially distributed model predictions is seriously hampered by the natural complexity and spatial 

heterogeneity of the landscape system, coupled with limited availability of spatio-temporal datasets of 

sufficient accuracy. In practice, the environmental data that are usually available contain information to 

characterize only the dominant processes active in a given system, which may then be described 

effectively by conceptual models. In this study, conceptual (semi-empirical) approaches were 

considered as a good compromise between explicit inclusion of dominant physical processes and 

limited availability of spatio-temporal data. The general objective was to improve the quality of 

spatially distributed predictions of erosion modelling in data scarse environments. 

Most of the research fieldwork took place in Kwalei catchment (4°48′ S, 38° 26′E), located in the 

West Usambara Mountains of Tanzania at an average altituted of 1500 m a.s.l. The catchment has an 

area of around 2 km
2
, and is roughly triangular in shape. Terrain is rough and highly dissected, with 

one half of hillslopes > 20 %. Drainage comprises four permanent streams running from Northwest to 

Southeast. Mean annual rainfall is around 1000 mm, almost half of which falls during the long rainy 

season, from late February until late May. A shorter and less predictable rainy season occurs from 

October to January. Average daily temperature is 18 ºC, with diurnal temperature ranges greater than 

annual ranges. Soils along the slopes are well-drained, with porous and sandy topsoil and clayey 

subsoils. In the valley bottom, soils are vertic and may be subject to saturation. The highest part of the 

catchment is covered by mountain rain forest, whereas the middle and lower slopes are used for 

agriculture. The catchment is intensely populated and over 90 % of the catchment population depends 

on agriculture. The average household land size ranges from 1.2 to 1.6 ha. Food crops, mainly maize 

inter-cropped with banana and bean, are cultivated on the upper slopes. A two-layer cultivation of 

banana and coffee is frequent on the steeper slopes along the stream incisions. Irrigated vegetables are 

the main cash crops and are cultivated in the valley bottoms and on the lower slopes. Soil erosion is one 

of the major constraints to agricultural production in the area and occurs especially at the onset of the 

rainy season, when storms are intense and soil cover is poor.  

The empirical model proposed by Morgan, Morgan and Finney (MMF) was selected as a suitable 

base. The model retained a physical basis in the definition of the rate of sediment detachment by 

rainfall and by overland flow, and the rate of sediment transport capacity by overland flow. At the same 

time, the model had a simple structure and required a limited amount of input parameters, which made 

it practical for SWC purposes. The application at catchment-scale required the introduction of a 

mechanism to account for incoming run-on and outgoing run-off. When tested against field 
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observations, however, MMF spatial predictions were fair in Kwalei catchment. Model prediction 

errors consisted of overestimates of erosion rates along the streamlines and underestimates of erosion 

along the ridges. The main cause of prediction errors was the mechanism of overland flow 

accumulation, which ignored the possibility of reinfiltration of overland flow along the slopes that was 

instead observed in the field. 

Correct modelling of the hydrology of a catchment is essential for correct prediction of erosion 

along the slopes. Spatially distributed modelling of overland flow requires the definition of Hydrologic 

Response Units, i.e. areas whose hydrologic behaviour can be considered homogeneous for the 

purposes of the model. Infiltration measurements may guide the definition of HRUs in terms of 

cartographic variables, such as topography, soil and land use. Three methods of point infiltration 

measurements were used to infer the spatial distribution of overland flow: the constant head method, 

the tension infiltration method and mini-rainfall simulation method. The statistical relationship between 

field measurements and cartographic variables (land use, soil and topography) yielded three different 

HRU scenarios. The actual spatial distribution of overland flow occurrence at the hillslope scale was 

observed with overland flow detectors. These are simple devices that indicate whether in a certain spot 

overland flow has occurred (yes or no) during a rainfall event. In March-May 2002, 50 detectors were 

placed on a small subcatchment in the North-Western part of Kwalei catchment, and were regularly 

monitored after each rainfall event. The frequency of overland flow occurrence was highly variable in 

space. The only spatial pattern of overland flow frequency that could be recognized in terms of 

cartographic variables was the limit between annual crops on the upper part of the slopes, where 

overland flow frequency was 48 %, and the coffee and banana stands on the footslopes, where overland 

flow frequency was 35 %. Geostatistic analysis of the data showed no spatial autocorrelation at 

distances longer than 40 m. From the observation of overland flow occurrence, two main Hydrologic 

Response Units (HRUs) could be defined: perennial versus annual crops. Differences in rainfall 

interception, soil properties, especially surface sealing and porosity, and soil management explained the 

relatively lower occurrence of overland flow observed under perennials than in annual crops. None of 

the HRU patterns inferred from infiltration measurements matched the observations. Point 

measurements failed to account for the soil macroporosity, and for hydrology processes other than 

infiltration, such as canopy interception.  

In March-May 2003 the detectors were placed along two longitudinal transects placed in the middle 

and lower slopes of Kwalei catchment. These observations largely confirmed the conclusions of the 

previous season. In the catchment, overland flow may be triggered by short and intense showers, but as 

it moves downward, it quickly reinfiltrates. The average travel distance of overland flow before 

reinfiltration occurs is shorter when rainfall magnitude (intensity, amount and duration) is small, 

canopy interception is large, and the soil is rough, porous or dry.  

A consequence of such a dynamic Hortonian hydrologic regime is that large part of the overland 

flow that is generated along the slopes, reinfiltrates and reaches the catchment outlet as subsurface 

storm flow. Hourly rainfall-discharge data at the catchment outlet were modelled through a Data Based 

Mechanistic model that (i) defined the effective rainfall, i.e. the amount of rainfall that generated a 

response at the outlet; and (ii) partitioned the water discharge at the outlet into slow flow, interpreted as 
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ground water displacement, and quick flow, interpreted as a combination of overland flow and 

subsurface storm flow. The observations of overland flow occurrence at the hillslope scale were used to 

derive HRU probability distribution functions of overland flow in relation to the maximum one-hour 

effective rainfall of the event. At small effective rainfall (< 0.15 mm) annual crops contributed more to 

discharge, whereas at large effective rainfall (> 0.15 mm), perennial crops contributed as much as 

annual crops to the water discharge. These rules allowed estimating the overland flow depth per HRU 

and per mm of effective rainfall. Reinfiltration was accounted for in the toposequence by assuming that 

only the overland flow generated in the lower part of the field could drain out of it. Thus, the amount of 

field run-off depended on rainfall characteristics (via effective rainfall), land use (via HRU), field 

topology (incoming run-on), field geometry (field lower border in relation to the field area), and on the  

reinfiltration length, i.e. the average travel distance of overland flow. Reinfiltration length was assessed 

from observation of contributing area of Gerlach troughs to be around 4 m. However, overland flow 

travel distance is likely to change with rainfall event characteristics, HRUs, local slope and soil surface 

conditions.  

The hydrologic model was coupled with the sediment phase of the MMF model to build a semi-

empirical catchment-scale model to predict the distribution of erosion for single events. Overland flow 

is the main vector of sediment across slopes. This function is modelled through the sediment transport 

capacity rate equation, which depends on overland flow volume and local slope. In the literature, the 

parameterisation of the transport capacity rate equation differs according to hydraulic regime of flow, 

soil characteristics, and scale of observation. Thus, the choice of these parameters is uncertain, but 

yield important consequences in the spatial distribution of erosion. The semi-empirical model was 

employed to assess the uncertainties of spatially distributed predictions due to sediment transport rate 

parameterisation by the Generalized Likelihood Uncertainty Estimation (GLUE) method. Model 

simulations were evaluated against the actual pattern observed with an extensive, qualitative erosion 

survey conducted from December 2002 till May 2003. The survey consisted of assessing erosion status 

in five qualitative classes, from very slightly eroded to very severely eroded, according to the presence 

and intensity of erosion features. The best model simulations were at short reinfiltration length (< 1.5 

m) and with the ratio of overland flow power α and local topography power γ close to 0.5. Acceptable 

simulations predicted correctly around 75 % of erosion pattern; model overestimations of erosion 

occurred mainly in vegetable plots, whereas underestimations occurred in tea, sugarcane and grassland 

fields. Difficulties of the parameterisation of land use inputs were considered at the basis of the model 

errors. The uncertainty of model predictions due to sediment transport capacity was high: depending on 

the transport capacity parameters, around 10 % of the fields were attributed to either slight or severe 

erosion class.   

Beside the semi-empirical model proposed in this thesis, several quantitative and qualitative erosion 

models were compared for their capability of locating erosion in the Kwalei catchment. Two qualitative 

models performed better than the more data-demanding quantitative models. In comparison with the 

distribution of erosion factors, the observed pattern of severely eroded areas was highly correlated to 

fields with crust cover > 60 % (c.c. 0.57), which in turn was correlated to vegetation cover. Thus, a 
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simple regression equation based on slope and ground cover was well correlated (c.c. 0.44) to the 

observed pattern of severely eroded areas. 

Spatial patterns convey useful geographic information about landscape processes. In Kwalei 

catchment, lacunarity analysis showed that severely eroded areas were aggregated up to 40 m. This 

spatial scale was not matched by any of the other erosion models tested in the area. All models but one 

resulted in clumps of eroded areas larger than the observed one. The semi-empirical model developed 

in this thesis could locate almost all the areas, but failed to capture their extent. The spatial scale of 

severely eroded areas coincided with that of the overland flow pattern predicted by the hydrologic 

model at reinfiltration length of 0.5-5 m, despite the fact that the two patterns did not overlap (c.c. 

0.10). Thus, in the Kwalei catchment, the location of severely eroded areas was correlated to crust and 

vegetation cover more than to slope, but the spatial extent of erosion depended upon the overland flow 

travel distance.  

Gathering environmental information requires much time and financial resources, which often are 

not available. However, spatially relevant, even though qualitative, information can be obtained locally 

from the land users. In a Participatory Rural Appraisal exercise, the farmers of Kwalei catchment were 

asked to list indicators they use to assess erosion in the fields. The presence of these farmers’ indicators 

of erosion was recorded at the same time of the qualitative erosion survey. Statistical relationship 

between the indicators and the class of erosion assessed by the expert showed that farmers’ indicators 

could be distinguished in strong or weak indicators. Strong indicators, i.e. those that were recorded in 

more than 70 % of cases in severely eroded fields, were clearly associated with erosion intensity, 

whereas weak indicators were more indicative of soil degradation or soil erosion hazard than of erosion 

sensu strictu. Strong indicators and number of indicators were used to create a field erosion assessment 

tool in the form of a classification tree (Farmers’ Indicators Tree, FIT), which was calibrated against 

half of the fields visited. The validation of the FIT model against the other half of the dataset yielded a 

Spearman rho coefficient of 0.81. The FIT model was the best in locating erosion within the catchment. 

Moreover, the spatial scale of the distribution of some strong indicators of erosion was very close to 

that of eroded areas and overland flow distribution. These findings open up possibilities to integrate 

more effectively farmers' knowledge into hydrologic and erosion distributed modelling. 
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SAMENVATTING EN CONCLUSIES 

 

Beheer van stroomgebieden vereist precieze locatie van de plekken waar bodemdeeltjes verdwijnenen 

waar deze als sediment afgezet wordenbinnen het stroomgebied. Het localiseren van zogenaamde hot-

spots van erosie leidt tot een effectiefen geconcentreerd gebruik van beperkte middelen voor 

erosiebestrijding. Hierdoor leiden Bodem- en Water Conservering (BWC) plannen snel tot positieve 

resultaten waardoor het vertrouwen en de deelname van de landgebruikers bevorderd wordt.. De 

localisering van ernstig geërodeerde plekken binnen het stroomgebied kan belangrijker zijn dan de 

kwantificering van bodemverliezen uit het stroomgebied als geheel. 

Ruimtelijke erosie modellen kunnen waardevolle instrumenten zijn voor de planvorming m.b.t. de 

inrichting van een stroomgebied. Maar de natuurlijke complexiteit en ruimtelijke heterogeniteit van het 

landschap, gekoppeld aan de beperkte beschikbaarheid van nauwkeurige ruimtelijke en temporele 

datasets, belemmeren de kwaliteit van de voorspellingen van ruimtelijke modellen. In de praktijk 

blijken de reeds beschikbare gegevens over het milieu de dominante actieve processen in het systeem al 

te kunnen karakteriseren. Deze processen kunnen vervolgens effectief beschreven worden door 

conceptuele modellen. In deze studie zijn zulke conceptuele (semi-empirische) benaderingen toegepast, 

omdat ze een goede tussenweg vormen om zowel met de dominante fysische processen als ook met de 

beperkte beschikbaarheid van ruimtelijke en temporele gegevens rekening te kunnen houden. De 

algemene doelstelling van deze studie was om, voor omstandigheden met beperkt beschikbare 

gegevens, de kwaliteit van ruimtelijke voorspellingen van erosiete verbeteren. 

Het veldwerk vond voornamelijk plaats in het Kwalei stroomgebied, gelegen in de westelijke 

Usambara bergen van Tanzania, op een hoogte van 1500 meter boven zeeniveau. Het stroomgebied 

omvat ongeveer 2 km
2
, en vormt ruwweg een driehoek. Het terrein is bergachtig, met de helft van de 

hellingen steiler dan 20%. De drainage van het stroomgebied wordt bepaald door vier permanente 

beken, die van noordwest naar zuidoost lopen. Jaarlijkse neerslag is ongeveer 1000 mm, waarvan de 

helft gedurende het lange regenseizoen (eind februari tot eind mei) valt. Een korter en moeilijk 

voorspelbaar regenseizoen vindt plaats van oktober tot januari. De gemiddelde dagtemperatuur is 18 

°C; de temperatuurfluctuaties gedurende een etmaal zijn groter dan die gedurende het jaar. De bodems 

op de hellingen zijn goed gedraineerd, en bestaan uit een poreuze en zandige bovenlaag en een kleiïge 

onderlaag. De bodems in de vallei zijn kleiïg, en kunnen verzadigd raken. Het hoogst gelegen deel van 

het stroomgebied is bedekt met bos, en in de lagere delen vindt landbouw plaats. Het stroomgebied is 

dicht bevolkt, en 90% van de inwoners is afhankelijk van de landbouw. Gemiddeld heeft een 

huishouden 1.2 tot 1.6 ha land tot zijn beschikking. Voedselgewassen, voornamelijk maïs 

gecombineerd met banaan en bonen, worden op het hoger gelegen deel van de hellingen verbouwd. De 

combinatieteelt banaan en koffie is te vinden op de steilere hellingen naast diep ingesneden beken. 

Geïrrigeerde groente is het belangrijkste commerciële gewas en wordt verbouwd in de vallei en op de 

laaggelegen hellingen. Bodemerosie is één van grootste beperkingen van de landbouwproductie in het 

gebied, en gebeurt vooral aan het begin van het regenseizoen wanneer de regenintensiteit hoog is en de 

grondbedekking gering. 
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Het empirische model ontwikkeld door Morgan, Morgan en Finney (MMF) werd als geschikt 

uitgangspunt geselecteerd. De berekeningen in het model voor wat betreft de sedimentatie, veroorzaakt 

door neerslag en afstromend oppervlaktewater, en het sedimenttransportcapaciteit door afstromend 

oppervlaktewater, zijn gebaseerd op fysische formules. Het model heft een eenvoudige structuur en er 

hoeft slechts een beperkte hoeveelheid aan parameters ingevoerd te worden, wat het geschikt maakt 

voor BWC doeleinden. De toepassing van het model op de schaal van een stroomgebied vereist de 

invoering van een mechanisme dat rekening houdt met (binnenkomend) instromend en (uitgaand) 

afstromend oppervlaktewater. Na toetsing met veldobservaties, blijken de ruimtelijke voorspellingen 

van het MMF model matig te zijn voor het Kwalei stroomgebied. Fouten in de modeluitkomsten waren 

voornamelijk te hoog geschatte erosie langs de beken en te laag geschatte erosie op de bergkammen. 

De belangrijkste oorzaak van deze fouten was het gemodelleerde mechanisme van accumulatie van 

afstromend oppervlaktewater wat geen rekening hield met de mogelijkheid dat afstromend 

oppervlaktewater lager op de helling kan infiltreren, een fenomeen wat wel waargenomen werd in het 

veld. 

Om erosie langs de helling te kunnen voorspellen, is correcte modellering van de hydrologie 

essentieel. Hydrologische Respons Eenheden (HRE), gebieden waar hydrologisch gedrag homogeen is 

voor wat betreft de toepassing van het model, moeten bepaald worden om de ruimtelijke spreiding van 

afstromend oppervlaktewater te kunnen modelleren. Infiltratie metingen, gerelateerd met cartografische 

variabelen zoals topografie, bodem en landgebruik, kunnen nuttig zijn om HRE’s te bepalen. Drie 

soorten infiltratiemetingen zijn gebruikt voor het bepalen van de ruimtelijke spreiding van afstromend 

oppervlaktewater: de ‘konstante drukhoogte’ methode, de ‘infiltratie onder zuigspanning’ methode, en 

de ‘mini-regenvalsimulator’ methode. De statistische relaties tussen de metingen en de cartografische 

variabelen (landgebruik, bodem en topografie) resulteerden in drie verschillende HRE scenario’s.  

De feitelijke ruimtelijke spreiding van afstromend oppervlaktewater werd gemeten met 

afstromingsdetectoren, die van boven naar beneden op een helling geplaatst werden. Deze detectoren 

zijn simpele instrumenten waarmee gecontroleerd kan worden of er gedurende een regenbui wel of niet 

afstroming heeft plaatsgevonden op de plek waar de detector is geplaatst. In de periode van maart tot 

mei 2002 zijn 50 detectoren geplaatst in een deelstroomgebied in het noordwesten van het Kwalei 

stroomgebied, en deze werden na elke regenbui gecontroleerd. De frequentie van afstromend 

oppervlaktewater was erg variabel in de ruimte. Het enige ruimtelijke patroon voor afstromend 

oppervlaktewater dat kon worden gerelateerd aan de cartografische variabelen, was de grens tussen het 

hoger gelegen deel van de hellingen met éénjarige gewassen (met een frequentie van afstromend 

oppervlaktewater van 48%), en het lager gelegen deel van de hellingen met de koffie en bananen 

plantages (met een frequentie van afstromend oppervlaktewater van 35%). Geo-statistische analyse gaf 

aan dat er geen ruimtelijke autocorrelatie bestond voor afstanden groter dan 40 meter. Verschillen in 

regenval interceptie, bodemeigenschappen (zoals het dichtslaan of verslempen van de bodem en de 

porositeit), en bodembeheer verklaren de relatieve lagere frequentie van geobserveerde afstromend 

oppervlaktewater onder meerjarige gewassen dan onder éénjarige gewassen. Geen van de, met 

infiltratiemetingen bepaalde, HRE patronen kwam overeen met de observaties. Puntmetingen slagen er 
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niet in om rekening te houden met de macro-porositeit van de bodem, en met hydrologische processen 

anders dan infiltratie, zoals de interceptie van neerslag door het bladerdek. 

In de periode van maart tot mei in 2003 werden de detectoren langs twee transecten in het Kwalei 

stroomgebied geplaatst. De observaties bevestigden grotendeels de resultaten van het voorgaande 

regenseizoen. In het stroomgebied wordt afstroming veroorzaakt door korte en intensieve buien, maar 

afstromend water kan alsnog in lager gelegen gebieden infiltreren. De gemiddelde afstand welke door 

het afstromend oppervlaktewater afgelegd wordt voordat het her-infiltreert, is korter wanneer de 

neerslag (intensiteit, hoeveelheid en duur) lager is, de interceptie door het bladerdek groter, en de 

bodem ruwer, poreuzer en droger is. 

Als gevolg van dit dynamische Hortonisch hydrologisch regiem, her-infiltreert het grootste deel van 

het afstromende oppervlaktewater dat langs de helling wordt gegenereerd. Na infiltratie vindt snelle 

laterale ondergrondse stroming plaats welke uiteindelijk de uitlaat van het stroomgebied bereikt. Het 

afvoerdebiet aan de uitlaat wordt gemodelleerd aan de hand van een  mechanistisch model dat (i) de 

effectieve neerslag definieert, dat is, de hoeveelheid neerslag wat werkelijk afvoer in de uitlaat 

veroorzaakt; en (ii) de afvoer aan de uitlaat onderverdeelt in een langzame afvoer, geïnterpreteerd als 

grondwaterverplaatsing, en een snelle afvoer, geïnterpreteerd als een combinatie van afstromend 

oppervlaktewater en snelle ondergrondse stroming.  

De observaties van regenbuien met afstromend oppervlaktewater, die op de schaal van een helling 

waren gemeten, werden gebruikt voor het afleiden van HRE kansverdelingfuncties van afstromend 

oppervlaktewater in relatie tot de maximale effectieve regenval per uur van een regenbui. Eénjarige 

gewassen dragen meer bij aan de afvoer bij lage effectieve regenval (< 0.15 mm), terwijl bij hogere 

effectieve regenval (>0.15 mm) meerjarige gewassen evenveel bijdroegen als de éénjarige gewassen. 

Deze regel gaf de mogelijkheid om de dikte van de laag van afstromend oppervlaktewater per HRE en 

per mm effectieve neerslag te meten. In de topo-sequentie werd rekening gehouden met her-infiltratie 

door te veronderstellen dat alleen afstromend oppervlaktewater, gegenereerd in het laagste deel van het 

veld, weg kon stromen. De hoeveelheid afstromend water van een veld was afhankelijk van 

neerslagkarakteristieken (effectieve neerslag), landgebruik (HRE), veld topologie (binnenstromend 

regenwater), veldgeometrie (locatievan de laagst gelegen grens van het veld in relatie tot de 

oppervlakte van het veld) en de infiltratielengte, dat is, de gemiddelde ‘reisafstand’ van afstromend 

oppervlaktewater. De infiltratielengte werd bepaald aan de hand van observaties met Gerlach 

opvangbakken, die aangaven dat de lengte ongeveer 4 meter is. Maar ook de reisafstand van 

afstromend oppervlaktewater is afhankelijk van regenkarakteristieken, HRE, helling en de condities 

van de bovenste bodemlaag. 

Het ontwikkelde hydrologisch model werd gekoppeld aan de erosiecomponent van het MMF model 

om een semi-empirisch model te bouwen voor de spreiding van erosie per regenbui op de schaal van 

een stroomgebied. Afstromend oppervlaktewater is de belangrijkste factor voor sedimenttransport langs 

de helling. Dit is gemodelleerd met een vergelijking voor transportcapaciteit van het sediment, welke 

afhangt van het volume van het afstromende oppervlaktewater en de lokale helling. In de literatuur 

verschillen de parameters voor de vergelijking voor de transportcapaciteit per stroomingstype, per 

bodem, en hangen af van de schaal van observatie. Met andere woorden, de keus van deze parameters 
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is onzeker, maar heeft belangrijke consequenties voor de resultaten wat betreft de ruimtelijke spreiding 

van erosie. Het ontwikkelde semi-empirische model is gebruikt om de onzekerheden in de ruimtelijke 

voorspellingen veroorzaakt door de keuze van de parameters voor de sedimenttransportcapaciteit, met 

behulp van de Generalized Likelihood Uncertainty Estimation (GLUE) methode te bepalen. Aan de 

hand van een uitgebreide kwalitatieve erosiekartering, uitgevoerd tussen december 2002 en mei 2003, 

is het werkelijke erosiepatroon waargenomen, waarmee de modelsimulaties zijn geëvalueerd. Deze 

kartering bestond uit het vaststellen van de erosietoestand, onderverdeeld in vijf kwalitatieve klassen 

variërende van erg licht geërodeerd tot zeer zwaar geërodeerd. Hierbij werd gekeken naar de 

aanwezigheid en intensiteit van erosie kenmerken. Model simulaties presteerden het beste voor een 

korte her-infiltratielengte (<1.5 m) en met de verhouding tussen de macht α voor afstromend 

oppervlaktewater en de macht γ voor de lokale topografie in de buurt van 0.5. Simulaties voorspelden 

ongeveer 75% van de erosie patroon juist. Voor de groentevelden waren de schattingen van erosie door 

het model te hoog, terwijl te lage hoeveelheden geschat werden voor velden met thee, suikerriet en 

gras. De fouten in het model worden veroorzaakt doordat de parameters voor het landgebruik moeilijk 

te bepalen zijn. De onzekerheid van de modeluitkomsten op basis van de sedimenttransportcapaciteit 

was groot: afhankelijk van welke parameters voor transportcapaciteit werden geselecteerd, werden 

ongeveer 10% van de velden toebedeeld aan of de lichte of de zwaar geërodeerde klasse. 

Naast het semi-empirische model, zoals voorgesteld in deze dissertatie, werden verscheidene 

kwantitatieve en kwalitatieve erosiemodellen vergeleken op hun capaciteit om erosie in het Kwalei 

stroomgebied te lokaliseren. Twee kwalitatieve modellen presteerden beter dan de kwantitatieve 

modellen die veel inputgegevens vereisen. Van de spreiding van alle erosie factoren, was het 

geobserveerde patroon van zwaar geërodeerde plekken het sterkst gecorreleerd met velden met een 

korstbedekking hoger dan 60 % (c.c. 0.57), wat weer correleert met de vegetatiebedekking. Een 

simpele regressievergelijking gebaseerd op helling en bodembedekking was goed gecorreleerd (c.c. 

0.44) met het geobserveerde patroon van de zwaar geërodeerde gebieden. 

Ruimtelijke patronen bevatten nuttige geografische informatie over landschapsprocessen. Lacunaire 

analyse (lacunarity analysis) toonde aan dat zwaar geërodeerde gebieden tot eenheden van 40 meter 

bijeengevoegd kunnen worden in het Kwalei stroomgebied. Deze ruimtelijke schaal kwam niet overeen 

met de erosiemodellen die voor dit gebied getest werden. Op één na, resulteerden alle modellen in 

clusters van geërodeerde gebieden die groter waren dan de geobserveerde gebieden. Het ontwikkelde 

semi-empirische model kon bijna alle gebieden lokaliseren, maar faalde in het vaststellen van de 

afmetingen ervan. De ruimtelijke schaal van de zwaar geërodeerde gebieden kwam overeen met het 

door het hydrologische model voorspelde patroon van het afstromende oppervlaktewater voor een her-

infiltratielengte tussen de 0.5 en 5 meter, ondanks dat de twee patronen niet met elkaar overlappen (c.c. 

0.10). Dus, de locatie van zwaar geërodeerde gebieden was sterker gecorreleerd met de korst en 

vegetatiebedekking dan met de helling, maar de ruimtelijke dimensie van erosie was afhankelijk van de 

reisafstand van het afstromend oppervlaktewater. 

Het verzamelen van informatie van de natuurlijke omgeving vraagt veel tijd en geld, welke vaak niet 

beschikbaar zijn. Maar  ruimtelijk relevante informatie, hoewel kwalitatief, kan bij de landgebruikers 

verkregen werden. Gebruik makend van participatieve methodes, werden de boeren in het Kwalei 
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stroomgebied gevraagd om indicatoren te benoemen, die zij gebruiken voor het vaststellen van erosie 

in hun velden. Deze boerenindicatoren voor erosie werden tegelijkertijd met de kwalitatieve 

erosiekartering vastgelegd. Statistische relaties tussen deze indicatoren en de erosieklassen gedefinieerd 

door experts toonden aan dat de boerenindicatoren konden worden opgedeeld in sterke en zwakke 

indicatoren. Sterke indicatoren, welke aan meer dan 70% van de zwaar geërodeerde gebieden werden 

toebedeeld, waren duidelijk geassocieerd met erosie-intensiteit, terwijl de zwakke indicatoren aangaven 

welke gebieden vatbaar waren voor bodemdegradatie of bodemerosie maar waar erosie niet 

noodzakelijk ook daadwerkelijk plaatsvond. Er is een instrument, in de vorm van een classificatie 

boom (Farmers’ Indicators Tree, FIT), voor erosie-evaluatie op veldschaal ontworpen dat gebruik 

maakt van  de aanwezigheid en de hoeveelheid van de sterke indicatoren. Dit instrument isgeijkt met 

gegevens van de helft van de bezochte velden. De validatie van het FIT model gebeurde met gegevens 

van de andere helft van de velden, en gaf een Spearman rho coefficient van 0.81. Het FIT model 

presteerde het beste in de lokalisering van erosie binnen het stroomgebied. Bovendien kwam de schaal 

van de ruimtelijke spreiding van sommige sterke indicatoren redelijk overeen met de schaal van de 

geërodeerde gebieden en van het afstromende oppervlaktewater. Deze resultaten creëren 

mogelijkheden om op effectievere wijze boerenkennis te integreren met ruimtelijke hydrologische en 

erosiemodellen. 
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