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1. The demand for novel food proteins and processing technologies  

A growing world population and urbanisation have resulted in the need for sustainable 

alternatives for protein production to ensure world food security. Therefore, efforts are 

required to develop safe protein foods with high quality. In the framework of a research 

programme initiated by Wageningen University and Research Centre, the 

IPOP/Customised Nutrition programme, such efforts were made for human and animal 

nutrition. As part of this programme, this thesis focussed on protein foods, and their 

processing, for human nutrition.  

 

Alternative protein sources are being explored for their potential as more sustainable and 

healthy alternatives compared to traditional protein sources. This process has been 

termed as the protein transition [1]. Novel proteins can be sourced from plants, fungi, 

algae, microorganisms or more sustainable animals (e.g. insect) [2]. Before a novel protein 

from a more sustainable source can be used in production of foods, the main questions 

that need to be answered are: what are the properties that the alternative protein sources 

provide and can those help in the development of high-quality protein foods?  

 

For protein foods, a high quality refers to a high nutritional value, but it also includes 

aspects such as being appealing, tasty and safe to consume. Food quality is an important 

factor that is influenced by processing. Novel processing technologies have been 

investigated to improve food quality compared to traditional thermal techniques [3]. 

Examples are high pressure processing, pulsed electric fields, radiofrequency and cold 

plasma. Before a novel processing technology can be applied in food production, the main 

question that needs to be answered is: can the novel processing technologies improve the 

quality of protein food?  

 

The general aim of this thesis was to explore the properties of a novel food protein and 

the potential of a novel processing technology for the development of high-quality protein 

foods. For this, quinoa was chosen as an alternative protein source and HPHT processing 

was chosen as a novel processing technology.  
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2. Quinoa protein 

Quinoa (Chenopodium quinoa Willd.) is a grain native to the Andean highlands in South 

America and has recently gained global popularity due to its high nutritional value [4]. In 

this respect, quinoa has been claimed to be able to contribute to world food security by 

the FAO, which named 2013 the “International Year of Quinoa” [5]. Quinoa protein is 

often described as being high in quantity and quality compared to other protein sources. 

Several studies have emphasised the high protein content of quinoa, typically around 15 

w/dw%, compared to common cereals, like rice, maize, barley, rye and sorghum [6-9]. 

However, the protein content of quinoa is lower or comparable to several other plant-

based protein sources such as soybean, pea, lupine and algae [1]. Quinoa protein is high in 

lysine, a limiting amino acid in cereal grains, as well as in methionine and cysteine, two 

limiting amino acids in legumes [6-9]. Therefore, quinoa has been considered a complete 

protein source, having a similar essential amino acid composition and protein efficiency 

ratio to casein.  

 

The protein in quinoa seed is mainly found in the embryo (57% of total protein) and 

endosperm (Figure 1), where it is stored in the form of protein bodies [8]. The structure, 

exact location or association of quinoa protein bodies with other seed components is not 

known. Quinoa protein consists of two major protein fractions (44-77% of total protein): 

the salt-soluble 11S globulin (about 37% of total protein), called chenopodin, and the 

water-soluble 2S albumin (about 35% of total protein). Chenonpodin is similar in structure 

to glycinin, the 11S globulin of soy. As a hexamer, it consists of six pairs of acid and basic 

polypeptides, which have molecular weights of 20-25 kDa and 30-40 kDa, respectively. The 

polypeptides are linked to each other by disulphide bonds. The 2S albumin fraction is 

composed of polypeptides with molecular weight of 8-9 kDa. Minor protein fractions have 

been reported to be glutelins (13-29% of total protein) and prolamins (0.5-7% of total 

protein) [10]. Due to the low prolamin content, quinoa is recognised as being gluten-free 

and, therefore, non-allergenic [10-12]. 

The physicochemical and functional properties of quinoa protein had been studied to a 

limited extent when this thesis started in 2012 [8] (Figure 2). The properties were protein 
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purity, protein yield, amino acid composition, thermal properties, solubility, water holding 

capacity, and foaming and emulsifying properties. These will be described in the following. 

All studies used solvent-based extraction (conventional wet fractionation) to isolate 

quinoa protein from the seed and examine it.  

 

 
Figure 1. Chenopodium quinoa: median longitudinal section of the grain. Pericarp (PE) covers the 
seed. The embryo consists of a hypocotylradicle axis (H) and two cotyledons (C). Endosperm (EN) is 
present in the micropylar region. F, Funicle; P, perisperm; PE, pericarp; R, radicle ; SA, shoot apex. 

[13]  
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Figure 2. Overview of aspects described in literature on quinoa protein and HPHT processing of 
protein systems up to 2012.  
 

Protein purities (protein content on a dry matter basis) from 46 to 89 w/dw% in quinoa 

protein isolates (QPI) were obtained by conventional extraction [14-16]. Protein purities in 

the same order of magnitude have been reported for the extraction of pea and lupine 

protein [17,18]. Protein yields (% protein obtained from seed) for QPIs varied from 24 to 

56%. These protein yields are overall higher than for pea protein isolates (28%) [19]. For 

QPI, it was shown that protein purity and yield increased with extraction pH [16,20], 

similar to lupine protein extraction [18].  

QPIs obtained at extraction pH 9 and 11 contained essential amino acid levels that were 

sufficient, according to FAO and WHO, when consuming the recommended amount of 

protein for adults and children of 10 to 12 years [8]. When comparing the essential amino 

acid compositions of the two QPIs to the quinoa seed, the compositions were found to be 

similar [20,9]. This means that the extraction process does not significantly affect essential 

amino acid content. An extraction pH of 11 resulted in similar contents of essential amino 

acids as found in soy protein isolate and similar or higher contents of histidine, 

methionine, cysteine and tryptophan than in casein. At extraction pH 9, QPI has a more 
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balanced composition in essential amino acids than commercially available pea protein 

isolate [21] and a slightly more balanced composition than QPI obtained at pH 11. 

When analysing the thermal properties of quinoa protein by DSC, QPI obtained at pH 9 

showed an endotherm between 85.6 and 103.1°C, whereas QPI obtained at pH 11 showed 

no endotherm. The endotherm was attributed to chenopodin, as it was found to have a 

denaturation temperature of 98.1 ± 1°C and a denaturation enthalpy of 12.4 ± 1.6 J/g [20]. 

This means that the thermal stability of quinoa protein is higher compared to whey 

protein (76.4°C for  whey proteins overall) and in the range of other globulins of vegetable 

origin, such as those in soy (92°C), sunflower (95°C) and broadbean (94°C) [22,23]. The fact 

that QPI obtained at pH 11 showed no endotherm peak with DSC indicates complete 

denaturation compared to extraction pH 9. A positive correlation between extraction pH 

and protein denaturation has also been shown by Martinez & Anon (1996) for protein 

isolates from amaranth, a grain from the same family as quinoa. An explanation for this 

might be that at higher pH, more negative charges on the protein repulse each other, thus 

the protein structure unfolds.  

Solubility profiles of QPI in a pH range between 3 and 12 mostly showed an inversed bell 

shape curve with the highest solubility at pH 7-12 [24,25,16]. However, Abugoch et al. 

(2008) reported that solubility continuously increased from pH 3 to 11. The solubility of 

QPIs at pH 7 varied considerably from 20 to 95%, depending on the presence of saponins, 

the extraction technique and the quinoa variety. The solubility of QPI is comparable to the 

solubility of soy protein isolate (80%) and of commercially available pea protein isolate 

(60% at pH 7) [21,26].  

The water holding capacity of QPIs obtained at extraction pH 9 and 11 was similar (3-4 ml 

water/g protein) in a pH range between 3 and 9, and comparable to that of soy protein 

isolates [20]. The water imbibing capacity was higher for protein extracted pH 11 (1.7 ml 

of water/g of isolate) compared to protein extracted at pH 9 (2.6 ml of water/g of isolate) 

[20]. The values were in the range reported for soy protein isolates. 

Foaming capacity (defined as the percentage of initial solution volume) of QPI obtained at 

extraction pH 9 was found to be 204-246%, which is higher than the foaming capacity of 

egg white (92%) under similar conditions [15]. Foam stability (defined as percentage of 

initial foam volume after 30 min standing at room temperature) was shown to be 35%, 
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which is higher compared to foam stability of soy protein (28%) and lower than that of egg 

white protein (60%) under similar conditions. Another study reported much lower values 

of foaming capacity (25%) and foam stability (35%) for QPI’s obtained at presumably 

higher extraction pH [25].  In the study in question, NaOH was used for protein extraction 

yielding an estimated extraction pH of around 12. However, the buffering effect of 

proteins will probably lower the pH but it is not certain to which extent. 

Emulsifying properties of QPI obtained at extraction pH 9 varied among QPIs with and 

without saponins and were higher or lower compared to the emulsifying properties of soy 

and egg white protein [15].  

 

As a result, QPI has been claimed to be a promising functional ingredient to be used in 

several foods and beverage products, depending on extraction conditions [20,15,14]. 

However, to this date, to the best of our knowledge, quinoa protein in a concentrated 

form does not yet exist on the market [27]. On the other hand, the studies mentioned 

above focussed only on some physicochemical and functional properties of QPIs and 

under a limited set of conditions. Functional properties of food proteins, which are in turn 

determined by their physicochemical properties, can also be influenced by processing 

conditions post-extraction, as during the processing of final products. Therefore, it is 

important to further study the impact of extraction as well as processing conditions on a 

variety of physicochemical and functional properties. The effect of several extraction pH 

values and heat treatment on protein properties has not yet been investigated. Therefore, 

in this thesis the effects of extraction pH and heat treatment on several of 

physicochemical and functional properties were studied to validate previously studied 

protein properties (protein purity, protein yield, solubility and thermal properties) and to 

explore new functional protein properties (digestibility, protein aggregation and gelation 

behaviour) of QPIs.  

 

The conventional wet fractionation method to obtain quinoa protein might not be the 

best for applications at large scale because the use of organic chemicals, such as hexane, 

NaOH and HCl, often denatures the protein, possibly leading to a lower protein 

digestibility. Also, the use of organic chemicals is not in line with consumer demand for 
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“clean-label” and “natural” food, which have become top trends since 2009, according to 

trend reports from Innova Market Insights [27]. The use of organic chemicals, which are 

used in the extraction process of ingredients and are subsequently removed from the end 

product, does not need to be declared on the label. Nevertheless, the increasing demand 

for transparency might not work in favour of using such chemicals. Furthermore, the 

conventional wet fractionation method uses high amounts of energy and water, which is 

costly and not environmental-friendly [28]. A milder and more resource-efficient method 

might be a hybrid dry and aqueous fractionation method, which was shown to be effective 

for obtaining protein-rich fractions from pea [19]. This thesis investigated whether the 

hybrid dry and aqueous fractionation method can be used to obtain protein-rich fractions 

from quinoa.  

 

3. High pressure – high temperature processing of protein systems 

Mild processing of foods and beverages to better preserve food quality has been 

successfully achieved with various non-thermal techniques. However, high pressure 

processing has been reported to be the most developed emerging technology [29]. It has 

been implemented in industry to process food and beverage products, which in number 

have been growing since 2002 (Figure 3). A total of 645 products supposedly treated with 

HPP are nowadays on the market. The top five market categories in which the products 

are segmented are soft drinks (61.6%), followed by meat, fish and eggs (9.5%), dairy 

(4.0%), sauce and seasonings (3.6%), and hot drinks (3.3%) [27]. To the best of our 

knowledge, there are no commercial products available that have been treated with HPP 

at high temperatures (>100°C) for sterilisation purposes. Yet, the use of high temperature 

– high pressure (HPHT) has been found to be promising for milder processing of a variety 

of foods compared to traditional thermal techniques, as it is claimed to lead to improved 

nutritional and sensorial food properties [30-32].  

 

Due to the increasing demand for protein foods, it is worth exploring the potential of 

HPHT processing to improve their quality compared to traditional thermal techniques. In 

protein foods containing also reducing sugars, major quality aspects, such as flavour, 
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appearance, nutritional value and toxicity, are associated with Maillard reactions (MR) 

[33]. In sterilized foods, e.g. in dairy-based beverages, high-protein beverages, puddings, 

creams etc. MR are usually undesired due to browning. In this thesis it was hypothesized 

that HPHT processing is able to reduce browning in protein-containing model foods 

compared to traditional retorting. Literature on the effect of high pressure on MR is 

limited [34]. Generally, it was found that the rates of some MR pathways can be increased 

or decreased by high pressures depending on the predominant mechanism and specific 

processing conditions. Some studies showed that pressure accelerated the condensation 

reaction between amino groups and reducing sugars leading to the formation of Amadori 

products (the first important intermediates in MR), while other studies found that 

pressure decelerated amino acid-sugar conjugation, the Amadori rearrangement and the 

degradation of Amadori rearrangement products. Regarding the formation of advanced 

MR products (i.e., beyond Amadori products) and browning, it was reported that pressure 

retards or promotes these processes, depending on the pH.  

However, experimental conditions chosen in all these studies were far away from the 

conditions occurring in industrial applications. By studying for example solutions of single 

amino acids and sugars, the influence of structure and conformation of proteins on MR is 

not taken into account. Furthermore, in these studies processing times ranged from 0 to 

24 h. For industrial applications, processing times of 3-5 min have been shown to be 

sufficient [35]. Therefore, this thesis investigated the effects of pressure on MR and 

physicochemical properties of protein-sugar solutions under conditions closer to industrial 

applications (i.e. processing time of 3-15 min).   

To the best of our knowledge, only one study investigated the influence of pressure on MR 

in solutions of proteins and sugars. Buckow et al. (2011) found that protein (BSA) – sugar 

(glucose) conjugation decreased with increasing pressure during HPHT treatments (0.1-

600 MPa, 110°C, 0-50 min, pH 9). They also studied protein unfolding and aggregation. 

However, they did not really link their findings to the chemical properties of the protein. 

Pressures of 600 MPa for up to 45 min at temperatures higher than 70°C accelerated 

protein unfolding, possibly exposing more lysine groups, and an increase in high molecular 

weight compounds were found after HPHT treatment compared to heat treatment. This 
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seems contradicting, as a decreased protein – sugar conjugation shown for HPHT 

treatment would actually suggest less exposed amino groups and less protein crosslinking.  

Proteins had already been found to denature and aggregate by a different mechanism 

under high pressure treatment compared to heat treatment. It would thus be interesting 

to investigate more on the relationship between physical protein properties and MR 

under HPHT. Furthermore, physical protein properties can also determine rheological 

properties of protein-containing foods. Rheological properties are related to food texture 

and mouthfeel, which are other major food quality aspects.  

 

In conclusion, literature on HPHT processing of protein systems has up to now almost 

exclusively focussed on the effect of pressure on MR under conditions far from processing 

conditions typical of industrial applications (Figure 2). To further explore HPHT processing 

as an alternative technology to traditional thermal techniques, it was deemed necessary 

to investigate the impact of HPHT processing on protein properties under more realistic 

processing and product conditions.  
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Figure 3. Product launches containing the word “HPP” and synonyms according to the Innova 
Database on 21 June 2016 [27]. Free text search was used with the formulation: HPP OR "high 
pressure" OR "high pressure treated" OR "cold pressurised" OR "cold pressurized" OR "fresher under 
pressure" OR "high pressure pasteurized" OR pascalisation OR pascalization OR “high-pressure”. The 
option “Find exact words” was checked and the market category “Supplements” was unchecked.  
 

4. Aims and outline of this thesis  

As mentioned above, the overall aim of this thesis was to explore the properties of a novel 

food protein and the potential of a novel processing technology for the development of 

high-quality protein foods. The following specific aims of the thesis were formulated: 

1) To study the effect of extraction pH of conventional solvent extraction on 

physicochemical (protein purity, protein yield, solubility and thermal properties) 

and functional (digestibility, protein aggregation and gelation behaviour) 

properties of QPI and to explore a hybrid dry and aqueous fractionation method 

for obtaining protein-rich fractions from quinoa 
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2) To examine the effect of pressure during HPHT processing on Maillard reactions, 

browning and physical protein properties under processing conditions close to 

industrial applications  

This leads to the following outline of this thesis. 

 

In Chapter 2 the effect of extraction pH on protein purity, protein yield, solubility, thermal 

properties of untreated QPIs, and on aggregation, gelation and microstructure of heat-

treated QPI suspensions is described.  

 

In Chapter 3 the in vitro gastric protein digestibility, thermal properties and protein 

aggregation of untreated and heat-treated suspensions of QPIs obtained at various 

extraction pH is assessed. The protein purity and yield of the untreated QPIs were 

determined. The in vitro gastric protein digestibility of wholemeal quinoa flour was 

assessed and compared to that of the quinoa protein isolates. 

 

In Chapter 4 a hybrid dry and aqueous fractionation method for obtaining protein-rich 

fractions from quinoa is examined. Protein purity and yield were evaluated at each step of 

the process. The hybrid dry and aqueous fractionation method is compared to the 

conventional wet fractionation method for protein purity, protein yield and water use.  

 

In Chapter 5 the effect of pressure during HPHT processing on browning, Maillard reaction 

products, pH, viscosity and aggregation in whey protein isolate – glucose/trehalose 

solutions was analysed. To elucidate the impact of pressure, HPHT treatments were 

compared to HT treatments.  

 

In Chapter 6 the main findings of this thesis are summarised, which are then used to 

discuss the findings within a wider context. The discussion covers the optimisation of 

protein yield and purity of QPIs, the potential to replace current food proteins with QPIs, 

the market potential of QPIs and the potential of HPP to design protein foods. The chapter 

is closed with opportunities and challenges for the future.  
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Chapter 2 
Effect of extraction pH on heat-induced 

aggregation, gelation and 
microstructure of protein isolate from 

quinoa 

 
 
 
  

This chapter has been published as: Avila Ruiz G, Xiao W, van Boekel M, Minor M, Stieger 
M (2016) Effect of extraction pH on heat-induced aggregation, gelation and microstructure 
of protein from sweet quinoa (Chenopodium quinoa Willd) Food Chemistry 209:2013-10. 
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1. Abstract  

The aim of this study was to determine the influence of extraction pH on heat-induced 

aggregation, gelation and microstructure of suspensions of protein isolates extracted from 

quinoa (Chenopodium quinoa Willd). Quinoa seed protein was extracted by alkaline 

treatment at various pH values (pH 8 (E8), 9 (E9), 10 (E10) and 11 (E11)), followed by acid 

precipitation. The obtained protein isolates were freeze dried. The protein isolates E8 and 

E9 resulted in a lower protein yield as well as less protein denaturation. These isolates also 

had a higher protein purity, more protein bands at higher molecular weights, and a higher 

protein solubility in the pH range of 3 to 4.5, compared to the isolates E10 and E11. 

Heating the 10% w/w protein isolate suspensions E8 and E9 led to increased aggregation, 

and semi-solid gels with a dense microstructure were formed. The isolate suspensions E10 

and E11, on the other hand, aggregated less, did not form self-supporting gels and had 

loose particle arrangements. We conclude that extraction pH plays an important role in 

determining the functionality of quinoa protein isolates.  

 

2. Introduction  

Quinoa is an Andean grain that has recently been gaining in popularity around the world. 

Quinoa is considered to have a high nutritional value, mainly because of the large amount 

of good quality proteins [1].  The total protein content of quinoa (12-23%) is, on average, 

higher than that of rice, corn and barley. The amino acid profile of quinoa has been 

reported to be better than most cereal and leguminous protein sources. Moreover, quinoa 

is gluten-free. Therefore, proteins isolated from quinoa have the potential to be used to 

enrich foods and beverages with protein, improving their nutritional value.  

Quinoa protein isolates (QPI) consist mainly of 11S globulins (37% of total protein) and 2S 

albumins (35% of total protein) [2,3]. Quinoa’s 11S globulin, also referred to as 

chenopodin, has a similar structure to glycinin, the 11S globulin of soy. It is a hexamer 

consisting of six pairs of acid and basic polypeptides. The acid and basic polypeptides have 

molecular weights of 20 to 25 kDa and 30 to 40 kDa, respectively, and are linked to each 

other by disulphide bonds. Quinoa’s 2S albumin fraction consists of a heterogeneous 

population of polypeptides with molecular weights of 8 to 9 kDa [1].  
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QPIs are obtained from quinoa grains by extraction under alkaline conditions, 

concentration by acid precipitation and subsequent drying. The potential applications of 

QPIs in foods and beverages depend on the functional properties of the QPIs, which are in 

turn affected by the protein’s physical, chemical and structural properties [4,5]. These 

properties are influenced by the extraction conditions, such as the pH of the aqueous 

extraction liquid [6,4,5,7]. Obtaining QPIs at an extraction pH of 11 leads to protein 

denaturation, a higher protein content, a lower solubility of the QPIs (in a pH range of 4 to 

11), and a higher water imbibing capacity, compared to QPIs extracted at a pH of 9 [4]. 

Valenzuela et al. (2013) also found extensive protein denaturation but, in addition to this, 

they observed changes in aggregation, dissociation and structure of quinoa protein 

extracted at a pH higher than 10. Aora and Alvarado (2009) observed an increasing protein 

yield as they increased the extraction pH from 7.5 to 10.5.  For amaranth protein isolates, 

an increase in the extraction pH resulted in a decreased thermal stability for pH values of 8 

and higher, and a decreased enthalpy of denaturation at pH 11. Furthermore,  extraction 

at pH 8 resulted in albumin-1 and part of the globulins, whereas at a pH higher than 8, 

albumin-2, glutelin and the remaining globulins were obtained [6]. 

To the best of our knowledge, the heat-induced aggregation, gelation and microstructure 

of QPIs have not yet been investigated. Only the cold-induced aggregation and gelation 

properties (at pH 8.5 and 10.5) have been described [8]. For potential commercial 

applications of QPIs in foods and beverages, it is important to explore the functional 

properties of QPIs that have not been further processed, both during and after thermal 

treatment, as this simulates the processing that food products containing QPIs would 

undergo.  

These studies of functional properties were all carried out on bitter quinoa varieties. 

Sweet quinoa varieties are saponin-free (<0.11%), and thus need to be processed less 

after harvesting, which facilitates large-scale production [9,10]. Wageningen University 

and Research Centre in the Netherlands has been developing sweet quinoa varieties 

suitable to be grown on a commercial scale in northwest Europe [11,12]. The functional 

properties of sweet quinoa varieties have not yet been studied. The post-harvest removal 

of saponins from traditional bitter quinoa varieties has been demonstrated to increase the 

protein efficiency ratio, but to decrease the nitrogen solubility, emulsifying and foaming 
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properties [13-15]. Therefore, it is important to verify the influence of the inherent 

absence of saponins on the functional properties, as well as on the underlying physico-

chemical properties and protein content, of protein isolates from sweet quinoa.  

The aim of this study was to determine the effect of extraction pH on both the previously 

studied QPI properties (protein purity, protein yield, molecular weight distribution, 

thermal properties, solubility) and on the not-yet-studied heat-induced properties 

(aggregation, gelation, microstructure) of suspensions of QPIs obtained from sweet 

quinoa. We used the sweet quinoa variety Atlas, which is based on breeding lines 

designed and tested by Mastebroek et al. (2002), and which shows a good agronomic 

performance.  

 

3. Material and methods 

3.1. Materials  

Quinoa seeds (Chenopodium quinoa Willd) of the sweet variety Atlas were supplied by the 

Agricultural Research Institute (INIA) in Santiago, Chile. Petroleum ether (boiling range 40-

60°C) was used (Sigma-Aldrich Chemie GmbH, Schnelldorf, Germany).  

 

3.2. Preparation of quinoa protein isolates  

Quinoa protein isolates were prepared using a modified method previously described [4]. 

Quinoa seeds were ground with a Fritsch Mill Pulverisette 14 (Idar-Oberstein, Germany) 

using a speed of 7000 rpm, and sieved through a 200 μm sieve, to produce flour. The flour 

was defatted in a soxhlet extractor for 24 hours, using petroleum ether and 17% w/w flour 

[16]. After defatting, the petroleum ether was removed by evaporation. The defatted flour 

was suspended in deionized water (10% w/w), and the pH adjusted to 8, 9, 10 and 11 by 

the addition of 2 N NaOH. These suspensions were stirred for 4 hours at room 

temperature and stored at 4°C for 16 hours to maximize protein solubilization. Then the 

suspensions were centrifuged at 10°C for 30 min at 6000g. The pH of the supernatants was 

adjusted to pH 4.5 using 2N HCl, and the supernatants were centrifuged for 30 min at 

13000g and 10°C. The precipitated pellets were re-suspended in deionized water (5% 
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w/w). To rinse remaining salts the suspensions were centrifuged for 30 min at 13000g and 

10°C, re-suspended in deionized water (5% w/w) and neutralized by the addition of 2 N 

NaOH. The suspensions were frozen by dipping them into liquid nitrogen, and were 

subsequently freeze-dried for 72 h (Chris Epsilon 2-6D Freeze Dryer, Osterode am Harz, 

Germany). Finally, the dried protein isolates were ground with a kitchen blender for 1 min 

to turn them into powder. 

 

3.3. Determination of protein yield and purity  

Amounts of 8 to 15 mg QPI were weighed in tin cups and dried overnight at 60°C. The 

nitrogen content was determined using the Dumas methodology by sample combustion in 

a Dumas Flash EA 1112, Series NC analyzer (Wigan, UK), and converted to a crude protein 

percentage using a protein factor of 5.85 [17,18,4]. Measurements were performed in 

duplicate for isolates obtained in duplicate from two separate extractions. The protein 

yield was calculated as follows: 

Protein yield (%) =    (%) ×   ( )   (%) ×   ( ) × 100 

Protein purity (%) =    (%) ×   ( )  ( ) × 100 

The protein loss was calculated as follows: 

Protein loss (%) =        ( )       ( )   (%) ×   ( ) × 100  

 

3.4. Determination of molecular weight distribution 

Sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS–PAGE) was used to 

determine the molecular weight distribution of the quinoa protein isolate fractions, using 

a method previously described [19]. Polyacrylamide gel electrophoresis (PAGE) was 

performed using a NuPAGE Electrophoresis System (Invitrogen Corp., Carlsbad, CA). First, 

the protein suspensions (1% w/w) were prepared in deionized water (pH 6.5±0.1) and 

centrifuged for 1 min at 13000g. Then the supernatants were diluted with 1 x NuPAGE® 

LDS Sample Buffer and deionized water, before applying the samples to the gel. NuPAGE® 

Novex® Bis-Tris Gels (1–200 kDa), containing 12% acrylamide (4% acrylamide stacking gel), 

were used. The molecular weight markers were from NuPAGE® Novex® (Mark 12™ 
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Unstained Standard, 2.5–200 kDa). The protein bands produced by the electrophoresis 

were stained with Simply Blue™ SafeStain.  

 

3.5. Solubility measurements 

The solubility of the QPIs was determined using a modified method previously described 

[4]. The QPIs were suspended in deionized water (1% w/w) and stirred for 1 h at room 

temperature (pH 6.5±0.1). The suspensions were mixed with an Ultra Turrax for 3 min at 

4000 rpm, and homogenized (Labho Scope Homogenizer, Delta Instruments, Drachten, 

Netherlands) at 150 bar for 10 runs. The homogenized suspensions were adjusted to a pH 

range from 3 to 9, and centrifuged for 30 min at 8500g and 10°C. The protein purity of the 

Measurements were performed in duplicate for isolates obtained in duplicate. The 

solubility at each pH was calculated as follows: 

Solubility (%) =    (%) ×   ( )   (%) ×   ( ) × 100 

We define solubility as the percentage protein remaining in solution (protein solubility) 

after centrifuging the protein suspension for 30 min at 8500g and 10°C, using a Centrifuge 

5430 R (Eppendorf AG, Hamburg, Germany), assuming that not all protein is molecularly 

dissolved but in suspension. To obtain the mass of the supernatant, the supernatant was 

weighed.  

  

3.6. Particle size determination 

The protein suspensions (1% w/w) were prepared in the same way as for the solubility 

analysis, for a pH range of 3 to 9. Instead of centrifuging, the suspensions were filtered 

with a 0.45 μm diameter filter. The particle size of the filtrates was quantified with a 

Malvern Zetasizer Nano (Malvern Instruments, Worcestershire, UK), using a modified 

method previously published [20]. The z-averaged hydrodynamic diameter (z-average) in 

nm was recorded. Data were collected at 20°C using a material refractive index of 1.45, a 

dispersant refractive index of 1.330 and a measurement angle of 173° (backscatter). For 

each sample, three measurements were performed. Measurements were performed in 

duplicate for isolates obtained in duplicate. 
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3.7. Determination of thermal properties 

The thermal properties of the QPIs were assessed by Differential Scanning Calorimetry 

(DSC), using a modified method previously described [4]. Hermetically sealed aluminum 

pans were filled with 25-50 mg of 20% w/w suspensions of isolates, dispersed in deionized 

water. The DSC samples were heated from 20 to 140°C at a rate of 10°C/min, using a 

PerkinElmer Diamond series differential scanning calorimeter, equipped with an 

intracooler 2P. A double, empty pan was used as reference. The denaturation parameters 

were calculated using Pyris Software (Version 11, PerkinElmer), with the denaturation 

temperature (Td) value corresponding to the maximum transition peak, and the transition 

performed in duplicate for isolates obtained in duplicate. 

 

3.8. Effect of heating on particle size and gelation properties 

For the particle size measurements, 1% w/w suspensions were prepared as described in 

Section 2.6. The suspensions were filtered through a 0.2 μm-diameter filter. The 

measurements were made at temperatures from 20 to 90°C, at intervals of 10°C, with an 

equilibration time of 5 min after each heating step.  To avoid evaporation, the samples 

were covered with a thin layer of paraffin oil and sealed with a plastic stopper.  

For the gelation measurements, a modified previously described method was used [19]. 

The protein suspensions (10% w/w) were prepared in deionized water and stirred for 1 h 

at room temperature (pH 6.5±0.1). Oscillatory strain tests were performed using a stress-

controlled rheometer (Physica MCR 300, Anton Paar, Graz, Austria) equipped with 

stainless steel and titanium concentric cylinder geometry (CC-10, diameter inner cylinder: 

10.00 mm; diameter cup: 10.845 mm). To prevent evaporation, samples were covered 

with a thin layer of paraffin oil. The samples were heated from 20 to 90°C at a heating rate 

of 1°C/min, kept at 90°C for 5 min, and cooled to 20°C at a rate of 3°C/min. During the 

temperature ramp, the storage modulus G’ and loss modulus G’’ were determined, by 

applying a strain amplitude of 1% at a frequency of 0.1 Hz. The temperature at which G’ 

started to increase considerably and became greater than the background noise was 
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designated as the gelation temperature [21]. Measurements were performed in duplicate 

for isolates obtained in duplicate. 

 

3.9. Determination of microstructure of heat treated quinoa protein isolates 

The microstructure of the heat-treated QPIs was analyzed using a modified method 

previously described [22]. Suspensions of the isolates were prepared in the same way as 

for the gelation measurements, except that rhodamine B was added to the suspensions 

before heat treatment. After performing the oscillatory strain tests, the micrographs of 

the heat-treated suspensions E8, E9, E10 and E11 were obtained using a Confocal 

Scanning Light Microscope (Zeiss LSM510, Jena, Germany), with an excitation wavelength 

 (red), emission channel 3 of 545-635 nm 

(green) and an emission channel 2 of 505-545 nm (cyan). The resolution of the obtained 

 

 

3.10. Statistical data analysis 

Statistical data analysis was performed using SPSS (V19, SPSS Inc., Chicago, IL, USA). One-

way ANOVA followed by least-squares difference posthoc testing (LSD) were performed to 

identify significant differences between mean values.  A significance level of p < 0.05 was 

chosen.  

 

4. Results and discussion 

4.1. Protein yield and purity 

The protein yield significantly increased as the extraction pH increased (F(3,4)=205.5; p < 

0.001), from 36.3 % (g protein/100 g flour) for E8, to 52.0 % for E11 (Figure 1.). This 

suggests that the solubility of the proteins increased in more extreme alkaline conditions 

[23,7]. At a more alkaline pH, proteins are increasingly negatively charged due to 

ionization of the carboxyl groups and deprotonation of the amine groups. As a result, 

electrostatic repulsion between the negatively charged proteins is enhanced. This 

increases protein-water interactions and thereby protein solubility.  
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The protein yield range is in agreement with a previous study on bitter quinoa 

(Chenopodium quinoa Willd) from which a protein yield of 47 % at extraction pH 8 and 0.5 

N NaCl was estimated [2]. The protein yields of the present study are slightly lower than 

the ones calculated based on the data of Aora & Alvarado (2009). A very recent study 

reported a maximum protein yield of 76.3% at extraction pH 11 and 0.1 N NaCl [24]. This is 

a very similar maximum yield to that obtained in the present study (at pH 11 yield is 

74.3%). For other protein sources, such as paprika and soybean, Guerreo-Ochoa et al. 

(2015) reported maximum protein yields of 12.2% and 33.0% for extraction pH 9. The 

protein yield of QPI E9 calculated in the same way was 63.1%. An increase in protein yield 

with increasing extraction pH was also found by Aora and Alvarado (2009) for quinoa 

protein, and by Martínez and Añón (1996) for amaranth protein. 

The vast majority of protein was lost during the alkalinization and precipitation steps 

(Figure 1.). In the alkalinization step, the protein loss decreased with increasing extraction 

pH. The protein yield increased with extraction pH by about the same ratio as the protein 

loss in the alkalinization step decreased. This indicates that more protein was solubilized 

from the grain matrix and ended up in the final protein concentrate.  
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Figure 1. (A) Protein yield and protein purity on dry matter basis of the quinoa protein isolates E8, 
E9, E10 and E11. (B) Protein loss expressed as amount of protein lost relative to total protein in flour 
determined as protein content in the pellet of the alkaline suspension (alkalinization), in the 
supernatant of the precipitated protein (precipitation) and in the supernatant of the rinsed protein 
(rinsing) of the QPIs E8, E9, E10 and E11. Error bars represent the standard deviation.  
 

Protein purity of the QPIs significantly decreased with increasing extraction pH (F(3,4)=9.9; 

p < 0.05) from 88% for E8, to 82% for E11. The decrease in purity may be caused by an 

increase in the amount of non-protein components co-precipitating with the protein 

isolates at pH values higher than 9, as theorized by Lestari et al. (2010).  

The purity of the saponin-free QPIs obtained in our study was higher than the values 

previously reported in literature (52 to 85%), even with some studies that used protein 

factor of 6.25, as compared to the protein factor of 5.85 used in the present study 

[13,25,15,4,5]. The higher protein purity in the present study might be due to a longer 
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alkalinization time (16 h) than in most other studies (8-120 min), which allowed more 

protein to be solubilized from the grain. 

The protein purity decreased slightly with increasing extraction pH, in contrast to results 

shown in the literature [6,4,5].  

 

4.2. Molecular weight distribution 

The SDS-PAGE analysis (Figure 2) showed numerous bands of varying intensity in the 

protein isolates E8, E9, E10 and E11. There are bands at 6kDa, 33kDa, 38 kDa, and 50kDa. 

For E8, E9 and E10, the most intense bands were found at 50 kDa. These bands could 

correspond to 11S globulin [2,1]. The bands for E11 were more diffuse and, at lower 

molecular weights, were more pronounced than the bands of the protein extracts 

obtained at lower pH. For E8, the high molecular weight fractions dominated the 6kDa 

fractions. As the extraction pH increased, the protein fractions of lower molecular weight 

became more prominent, and for E11 they dominated the 50kDa fractions. The SDS 

profiles indicated that globulin and other high molecular weight protein fractions could be 

obtained at extraction pH values ranging from 8 to 10. At extraction pH 11 these fractions 

might have been hydrolyzed into fractions with lower molecular weights, as well as 

associated through increased hydrophobic interactions and intermolecular disulfide bonds 

into insoluble aggregates that were removed by centrifugation before performing the 

electrophoresis [26,23,7]. This would explain the fainter bands at high and intermediate 

molecular weights for a higher extraction pH. At higher pH values, proteins of lower 

molecular weight might be more successfully extracted, similar to albumin-2 [6].  
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Figure 2. SDS-PAGE profile of the QPIs E8, E9, E10, E11 and defatted quinoa flour. Lane M: molecular 
weight marker; lane FL: defatted quinoa flour. 
 

For all SDS gels, a considerable amount of protein remained at the top of all lanes that did 

not penetrate the gel. As 1-200kDa gel was used, this means that a considerable amount 

of proteins with molecular weights higher than 200 kDa was present in the isolates and in 

the defatted flour. The SDS profiles of the QPIs were similar to profiles published by 

Abugoch et al. (2008) and Valenzuela et al. (2013).  

The profile of the defatted flour showed even more bands than the protein isolates, 

however, their intensities were more evenly distributed, probably as a result of the much 

lower protein concentration. Some of the flour’s protein fractions (66-116 kDa, 26-30kDa) 

were not visible (or were hardly visible) in the isolates, while other fractions (50 kDa, 38 

kDa and 33 kDa) were much more prominent in the isolates (E8, E9 and E10) than in the 

flour. The comparison of the isolates with the defatted flour shows that the alkaline 

extraction generated a different protein composition to the one originally present in the 

quinoa grain.   
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4.3. Thermal properties of quinoa protein isolates 

A single endotherm peak at around 97°C (denaturation temperature Td) was observed for 

E8, E9 and E10, but not for E11 (Figure 3). This is in agreement with Abugoch et al. (2008), 

who reported a single endotherm at 98°C for extraction pH 9, and no endotherm at 

extraction pH 11 for QPIs. Another study, analyzing protein isolates from amaranth, also 

observed endotherms from 94 to 100°C for extraction pH 9 to 11 [6]. A single peak 

generally suggests that the protein isolates consisted either of one protein species, or of 

several species with similar thermostability. The SDS-PAGE results showed that globulin 

appeared to be the most prominent protein species in isolates E8, E9 and E10. 

Furthermore, isolated globulin from amaranth has been found to have a major endotherm 

at 97°C [6]. Globulins from other plant sources have also been shown to have a Td in this 

temperature range (soybean Td = 92°C, broadbean Td = 94°C, sunflower Td = 95°C) [27]. 

Therefore, it is very likely that the endotherm peak from the present QPIs can be 

attributed to globulin. The high Td of quinoa globulin shows that the protein is stable up to 

97°C.  This is the result of numerous remaining hydrophobic interactions and disulfide 

bonds that connect globulin’s acidic and basic subunits to each other. [28,6,4]. 

There is no obvious relationship between the denaturation temperature and the 

extraction pH of the QPIs (Figure 3). For amaranth protein, Martínez & Añón (1996) 

observed only a slight overall decrease of Td (by 2-3°C) from extraction pH 8 to 11. Other 

studies, of suspensions from amaranth and sunflower protein, reported a much sharper 

decrease in Td (by 10-20°C) from pH 8 to 11 [18,29]. It seems that the extraction pH has 

much less effect on Td than the pH of the protein suspension.  
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Figure 3. (A) DSC thermograms of QPIs E8, E9, E10 and E11. (B) Enthalpy 
temperature (Td) of the QPIs. Error bars represent standard deviation. 
 

Figure 

3). For E9 the denaturation enthalpy was 7.2 J/g, which is lower than the value that 

Abugoch et al. (2008) reported for extraction pH 9 (12.4 J/g). For extraction pH 11, no 

endotherm could be observed in the present study, which is in agreement with Abugoch 

et al. (2008). The lower denaturation enthalpies compared to the literature might be due 

to the longer alkalinization step used in our study (16 h in the present study compared to 

30 min in the study of Abugoch et al. (2008), which led to more protein denaturation. The 

denaturation enthalpy is known to be correlated with the content of ordered secondary 
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structure of a protein [30]. Alkaline treatment with subsequent acid treatment decreases 

the extent of ordered secondary structure of proteins through disruption of hydrogen 

bonds and hydrophobic interactions, to the point of irreversible changes in conformation, 

leading to a more denatured state of the proteins [6].  

The denaturation enthalpy significantly decreased with increasing extraction pH 

(F(3,4)=47.8; p < 0.001). A higher extraction pH leads to more protein denaturation, which 

reduces the amount of heat necessary to denature the remaining native protein structure. 

The thermogram of E11 indicates that the proteins were already denatured, as no 

endotherm could be detected. The decrease in denaturation enthalpy with an increase in 

extraction pH is in agreement with studies on quinoa, amaranth and sunflower protein 

[6,18,29,4].  

 

4.4. Solubility and particle size of QPIs  

The solubility curves of the protein isolates E8, E9, E10 and E11 in aqueous solution, over a 

pH range of 3 to 9, have an inverse bell shape (Figure). The solubility values for all isolates 

ranged from 20 to 60% at pH 3, and from 35 to 73% at pH 7 to 9. The lowest protein 

solubility, of around 5%, was observed at pH 4 to 6. The low solubility plateau can be 

attributed to globulins, as they have been found to have the lowest solubility at pH 4 to 6 

[2,6,31,32]. Isolate E8 had the highest solubility at pH 3 and 4, while E9 had the highest 

solubility at pH 7 and 8 compared to the other isolates (F(2,3)=27.0; p < 0.05) with the 

exception of E10. The low solubility plateau was at a higher pH value for E8 than for the 

other isolates. From soybean it is known that the association of the basic subunit with the 

acidic subunit of the 11S soy protein tends to increase solubility of the basic subunit [28]. 

SDS-PAGE showed the highest amount of protein fractions corresponding to intact 11S 

globulin for E8 and E9, which might explain the higher solubility of E8 and E9 at many pH 

values, compared with E10 and E11. It is known that solubility decreases with molecular 

weight and increases with surface polarity [28]. Therefore, the lower solubility of E10 and 

E11 may have resulted from their low molecular weight protein fractions, and the greater 

degree of denaturation of proteins in general, leading to the exposure of hydrophobic 

groups and thus decreased surface polarity. The consequence would be increased protein 
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aggregation, via hydrophobic interactions, to big, insoluble particles, which is in line with 

the fainter bands of E10 and E11 for higher molecular weights on the SDS-PAGE gel. 

The solubility profiles are consistent with those of QPIs reported previously by Chauhan et 

al. (1999a), Aluko & Monu (2003), Mäkinen et al. (2015), Aora & Alvarado (2009), and in 

contrast to the solubility profiles reported by Abugoch et al. (2008), where solubility 

increased with pH continuously from pH 3 to 11. The trend of a higher solubility at lower 

extraction pH is in agreement with Abugoch et al. (2008), who observed a significantly 

higher solubility for extraction pH 9 than for pH 11.  

 

Figure 4. Solubility (A) and z-averaged particle size (B) of the QPIs E8, E9, E10 and E11 in suspension 
at pH values ranging from 3 to 9. 
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The z-averaged particle size for the QPIs varied from 50 to 3761 nm over a pH range of 3 

to 9 (Figure). The z-averaged particle sizes above 450 nm in the pH range from 4.5 to 6 

may be explained by the occasional passage of particles larger than 450 nm through the 

filter (pore size 450 nm), due to slightly more pressure applied to the syringe to filter the 

protein suspensions, as a result of a higher resistance. This particularly occurred at pH 

values where solubility was the lowest, and thus more big particles were present in the 

protein suspensions. This hypothesis about the correlation of the high z-averaged particle 

sizes with the low solubility plateau in the pH range of 4.5 to 6 is further confirmed by the 

observation that the largest particle size of E8 shifted to a higher pH in the same way as its 

corresponding low solubility plateau.   

 

4.5. Effect of heating on particle size and gelation behavior of quinoa protein 

isolates 

The z-averaged particle size of the QPI suspensions at pH 6 remained constant up to 50°C ( 
Figure 5). From 60°C onwards, the z-averaged particle size was significantly higher for E8, 

and especially E9, compared with E10 and E11 (F(3,8)=919.0; p < 0.001).  

This suggests that heating induced protein aggregation at temperatures of 50°C and 

higher, for particles (smaller than 450 nm) extracted at a low pH, while it induced less or 

no aggregation for QPI particles extracted at a higher pH.  It seems that the more 

denatured proteins resulting from extraction at a higher pH (E10 and E11) could not 

undergo further association and aggregation at higher temperatures, while the less 

denatured proteins resulting from extraction at a lower pH (E8 and E9) still had the 

functional capacity to do so. The aggregation of E8 and E9 may be the consequence of 

increased disulfide bond formation. In line with this, Mäkinen et al. (2015) reported 

significant reductions of the free and total SH group content of QPI suspensions that had 

undergone heat-treatment at pH 8.5. We could also infer that an extraction pH of 9 

caused the highest degree of aggregation from 70°C upwards. 
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Figure 5. (A) Z-averaged particle size of the QPIs E8, E9, E10 and E11 in suspension at pH 6 as a 
function of temperature. (B) Storage modulus G’ of the QPIs E8, E9, E10 and E11 in suspension (10% 
w/w) at pH 6.5 as a function of time. Heating and cooling temperature is plotted as a secondary axis. 
 

The G’ moduli of the isolate suspensions during heating and subsequent cooling are 
shown in  
Figure 5. The G’ values increased considerably for E8 and E9 at around 70°C, while for E10 

and E11 the G’ value increased only during the cooling phase. The gelation temperature of 

E8 and E9 (around 70°C) is similar to that of amaranth and pea protein isolates [33,34].  

The G’ values at the end of the cooling phase for E8 (5000 Pa) and E9 (3300 Pa) were 

similar to, or higher than, those for amaranth protein (up to 3800 Pa, 10% protein 

suspension, extraction pH 9), pea protein (2000 Pa, 7.5 and 9.9% protein suspension, 

extraction pH 8) and sunflower protein (500 Pa, 10% protein suspension, extraction pH 9) 

reported previously for similar heating profiles [33,31,34]. This suggests that stronger gels 
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can be formed from quinoa protein than from other plant proteins at comparable protein 

concentrations. 

The G’ values of E10 and E11 showed that quinoa protein extracted under strongly alkaline 

conditions did not gel during heating, and only formed a soft gel during cooling. A reason 

for this seems to be the higher extent of protein denaturation, which may have led to 

flocculation and sedimentation of larger particles, and to reduced aggregation of smaller 

particles, resulting in a weaker tendency to form a network. The higher G’ values of E8 and 

E9 compared to E10 and E11 seemed to result from higher initial solubility and particle 

sizes, favoring the interaction and aggregation of proteins during heating. When 

comparing these results to the DSC results, we observed a difference between gelation 

temperature (around 70°C) and denaturation temperature (around 97°C) for E8 and E9. 

This difference may be explained by an initial hydration and swelling of the proteins from 

60°C to 70°C (as indicated by an increasing particle size), leading to more protein-protein 

interactions.  At about 75°C, DSC thermograms showed the beginning of a heat flow 

decline with isolates E8 and E9, indicating the start of a phase transition (protein 

unfolding). The sequence and overlap of the two events could be responsible for an 

exponential rise of the degree of network formation.   

 

4.6. Microstructure  

The microstructure of the heat-treated QPIs differed considerably for E8 and E9, 

compared with E10 and E11 (Figure 6). The heat treated suspensions of isolates E8 and E9 

revealed irregular particles of 15-

pores deprived in protein. By contrast, the suspensions of isolate E10 and E11 revealed 

many particles of a smaller size (5- rounder shape, which seemed more loosely 

arranged in a matrix, with a few small pores deprived in protein. 
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Figure 6. 
green the protein phase is shown. 
 

This suggests that the QPIs obtained at low extraction pH (E8 and E9) formed denser 

quinoa protein networks during the heat treatment, via particle association, yielding an 

agglomerated network structure. This structure seems to be responsible for the high G’ 

values. At a high extraction pH, small particles do not seem to interact with each other, 

while big particles may have flocculated into the background plane, giving the whole a 

more continuous structure. As a result, this loose and inhomogeneous mass may explain 

the low G’ final values.   

Mäkinen et al. (2015) observed a more irregular, aggregated gel structure, with larger 

pores, for cold-induced QPI gels previously heat-treated at pH 8.5 compared to pH 10.5. 

This morphology is similar to what CSLM pictures show in the present study at similar pH 

values, but then of protein extraction instead of heat treatment post-extraction. The heat-

treated QPI suspensions from both studies differ, however, in their gelation behaviour, 
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which reveals the impact of varying the pH at different steps of QPI production and 

processing on a functional level.  

 

5. Conclusion 

We conclude that the extraction pH affected the previously studied properties of QPIs 

(purity, yield, molecular weight distribution, denaturation and solubility) in a similar way 

to literature findings. The variation of heat-induced properties (aggregation, gelation and 

microstructure) with extraction pH, which had not previously been studied, revealed new 

insights into these properties. QPIs obtained from extraction at pH values below 9 could 

be used to prepare semi-solid gelled foods. QPIs obtained from extraction at pH values 

higher than 10 lost the capacity to form a strong gelled network upon heating. These QPIs 

could be used for beverages or other liquid food applications. Future research could focus 

on finding such applications for QPIs, but also on maximizing protein yield and purity, 

while minimizing protein loss.      
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1. Abstract 

The aim of this study was to determine the influence of heat processing on denaturation 

and digestibility properties of protein isolates obtained from sweet quinoa (Chenopodium 

quinoa Willd) at various extraction pH values (8, 9, 10 and 11). Pretreatment of 

suspensions of protein isolates at 60, 90 and 120°C for 30 min led to protein denaturation 

and aggregation, which was enhanced at higher treatment temperatures. The in vitro 

gastric digestibility measured during 6 hours was lower for protein extracts pre-treated at 

90 and 120°C compared to 60°C. The digestibility decreased with increasing extraction pH, 

which could be ascribed to protein aggregation. Protein digestibility of the quinoa protein 

isolates was higher compared to wholemeal quinoa flour. We conclude that an interactive 

effect of processing temperature and extraction pH on in vitro gastric digestibility of 

quinoa protein isolates obtained at various extraction pH is observed. This gives a first 

indication of how the nutritional value of quinoa protein could be influenced by heat 

processing, protein extraction conditions and other grain components.  

 

2. Introduction  

Quinoa has a balanced amino acid profile with high amounts of lysine and methionine. 

Sweet varieties of quinoa are more promising to provide high-quality protein in a more 

economic and sustainable way than the bitter quinoa varieties. More economic because 

saponins do not have to be removed, which saves in post-harvest processing. More 

sustainable because sweet varieties have been successfully adapted to North West 

European climates and soils, and could also be adapted to other regions in the world, 

making local quinoa production possible [1,2]. 

Protein functionality is an important aspect to evaluate the potential of a new protein and 

give guidance for usage in applications. To avoid influences from other grain components 

in assessing the protein potential as a food ingredient, the protein can best be isolated 

from the grain for subsequent analysis. Conventionally, solvent extraction is used to 

isolate protein from plant material. During this process, protein properties and thus 

functionality can be affected [3]. Only a few studies have examined the impact of 

extraction conditions on functional properties of quinoa protein so far, and only our 
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previous study has investigated properties of quinoa protein from sweet quinoa (saponin-

free) [4-6]. The absence of saponins has been found to influence protein efficiency ratio, 

nitrogen solubility, emulsifying and foaming properties [3]. Next to extraction conditions, 

post-extraction processing can also influence protein properties. A few recent studies 

have investigated the effects of post-extraction heating on some properties of Quinoa 

Protein Isolates (QPI). We previously found that QPI suspensions started to gel at about 

70°C when extracted at pH 8 and 9 but no gelation was observed when extracted at pH 10 

or 11. Maekinen et al. (2015) reported that cold-set QPI gels were finer, more regularly 

structured and had a higher storage modulus when QPI suspensions were heat-treated 

(100°C, 15 min) at pH 10.5 than when heat-treated at pH 8.5 [7]. Silva et al. (2015) found 

that heat treatments (100°C, 30 min) of quinoa protein fractions containing anti-

nutritional factors increased in vitro protein digestibility. To the best of our knowledge, no 

studies have investigated the effect of varying heat processing parameters on protein 

denaturation and digestibility of QPIs. Protein denaturation and digestibility are main 

determinants of protein quality and would be important for application of quinoa 

(protein) in food products [8]. Gastric protein digestibility is a first indicator of overall 

protein digestibility and nutritional value of the protein [9,10] [11-13]. Therefore, in the 

present study, we examined how heat processing at different temperatures influenced 

denaturation properties and in vitro gastric digestibility of sweet quinoa protein isolated 

at various extraction pH values. Based on literature, we hypothesize that heat processing 

in the temperature range of 60 to 120°C increases in vitro gastric digestibility of the 

quinoa protein at mildly alkaline extraction pH and decreases the digestibility at strongly 

alkaline extraction pH.  

 

3. Material and methods 

3.1. Materials  

Quinoa seeds (Chenopodium quinoa Willd) of the sweet variety Atlas were supplied by the 

Agricultural Research Institute (INIA) in Santiago, Chile. Petroleum ether (boiling range 40-

60°C) was used (Sigma-Aldrich Chemie GmbH, Schnelldorf, Germany). Chemicals for 

preparation of the simulated gastric juice were purchased from Sigma-Aldrich, Inc. (St. 
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Louis, MO, U.S.A.). 

 

3.2. Preparation of quinoa protein isolates  

Quinoa seeds were ground with a Fritsch Mill Pulverisette 14 (Idar-Oberstein, Germany) 

using a speed of 7000 rpm and sieved through a 200 μm sieve. The flour was defatted in a 

Soxhlet using petroleum ether with a sample-to-solvent mass ratio of 1:5 for 24 h [14]. 

The petroleum ether was removed by evaporation. The defatted flour was suspended in 

deionized water (10% w/w) and the pH was adjusted to 8, 9, 10 and 11 by addition of 1 N 

NaOH. The suspensions were stirred for 1 h at room temperature and centrifuged for 20 

min at 6000 g and 10°C. The obtained supernatants were acidified to pH 5.5 by addition of 

1 N HCl. The suspensions were centrifuged for 30 min at 13000 g and 10°C. The 

precipitated pellets were re-suspended in deionized water (5% w/w). To rinse remaining 

salts the suspensions were centrifuged for 20 min at 11000 g and 10°C, re-suspended in 

deionized water (5% w/w) and neutralized by addition of 1 N NaOH. The suspensions were 

frozen by dipping into liquid nitrogen and subsequently freeze-dried for 72 h (Chris Epsilon 

2-6D Freeze Dryer, Osterode am Harz, Germany). The dried protein isolates were ground 

with a spoon for about 30 s to obtain powders. Isolates were obtained in duplicate from 

two separate extractions.     

 

3.3. Determination of protein yield and purity  

8 to 15 mg QPI was weighed in tin cups and dried overnight at 60°C. The nitrogen content 

was determined by sample combustion in a Dumas Flash EA 1112, Series NC analyzer 

(Wigan, UK) and converted to crude percentage of protein using a protein factor of 5.85 

[4,15,16]. Measurements were performed in duplicate. Protein yield and protein purity 

were calculated as follows: 

Protein yield (%) =    (%)  ×    ( )   (%) ×  ( ) × 100 

Protein purity (%) =    (%)  ×   ( )   ( ) × 100 
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3.4. Heat processing of quinoa protein isolates 

Suspensions of the QPIs obtained at the different extraction pH values were prepared at 

protein concentrations 1, 5 and 20% w/w in deionized water and stirred for 1 h at room 

temperature. For the heat processed samples, the suspensions were heat-treated in an 

Eppendorf thermomixer (Eppendorf AG, Hamburg, Germany) for 30 min at 60, 90 and 

120°C and then cooled down to room temperature. The temperatures were selected 

based on temperatures used in applications and to test within a wide range of 

temperatures. A temperature of 90°C represents pasteurization conditions, while a 

temperature of 120°C is representative for sterilization conditions. Treatment at 60°C was 

chosen as mild heating temperature without causing denaturation of the quinoa protein. 

The terms “processing temperature of 20°C” and “unprocessed” refer to the incubation of 

QPI suspensions at 20°C without further treatment. 

 

3.5. Determination of molecular weight distribution 

Sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS–PAGE) was used to 

determine the molecular weight distribution of the quinoa protein isolate fractions. Heat-

processed and unprocessed suspensions of 1% w/w protein concentration were prepared. 

The suspensions were then re-suspended in deionized water (pH 6.5±0.1) and centrifuged 

for 1 min at 13000 g to obtain the solubilized protein. The supernatants were diluted with 

1 x NuPAGE® LDS Sample Buffer and deionized water before applying the samples to the 

gel. NuPAGE® Novex® Bis-Tris Gels (1–200 kDa) containing 12 % acrylamide (4% 

acrylamide stacking gel) were used. The molecular weight markers were from NuPAGE® 

Novex® (Mark 12™ Unstained Standard, 2.5–200 kDa). Protein bands were stained with 

Simply Blue™ SafeStain.  

 

3.6. Determination of thermal properties 

The thermal properties of the QPIs were assessed by Differential Scanning Calorimetry 

(DSC). Heat-processed and unprocessed suspensions of 20% w/w protein concentration 

were prepared. Hermetically sealed aluminum pans were filled with 25-50 mg of heat-

processed or unprocessed QPI suspensions. DSC samples were heated at a rate of 
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10°C/min from 20 to 140°C using a PerkinElmer Diamond series differential scanning 

calorimeter equipped with an intracooler 2P. A double, empty pan was used as reference. 

The denaturation parameters were calculated using Pyris Software (Version 11, 

PerkinElmer) with the denaturation temperature (Td) value corresponding to the 

calculated from the area below the transition peaks. Measurements were performed in 

duplicate for isolates obtained in duplicate. 

 

3.7. Determination of in vitro gastric protein digestibility  

Simulated gastric juice was prepared according to [17,18]. Pepsin (1 g L-1), mucin (1.5 g L-

1), and NaCl (8.775 g L-1) were dissolved in Milli-Q water and the pH was adjusted to 2.0 

with 2 M HCl. Heat-processed and unprocessed QPI suspensions, as well as suspensions of 

whole meal quinoa flour (5% w/w protein, 2 mL), were prepared and added to 50 mL of 

simulated gastric juice in a jacketed glass vessel connected to a water bath at 37°C (Julabo 

GmbH, Seelbach, Germany). The vessel was sealed with Parafilm (Pechiney Plastic 

Packaging, Inc., IL, U.S.A.) to avoid evaporation and the gastric juice solutions were stirred 

at 100 rpm. Samples of 1 mL were taken after 0, 5, 10, 15, 20, 30, 45, 60, 90, 120, 150, 

180, 240 and 360 min and heated under stirring in a pre-heated Eppendorf thermomixer 

(Eppendorf AG, Hamburg, Germany) at 90 °C and 1400 rpm for 5 min to inactivate pepsin 

[19].  All measurements were performed in triplicate. 

 

3.8. Determination of concentration of free amino groups 

To compare the relative digestibility of different quinoa protein samples treated at 

different temperatures with each other, the concentration of free amino groups was 

determined using the OPA method as described by Luo et al. (2015). The OPA reagent was 

prepared and stored in a bottle covered with aluminum foil to protect the reagent from 

light. A spectrophotometer DU 720 (Beckman Coulter Inc. Pasadena, CA, U.S.A) was set at 

340 nm with 1.5 mL OPA reagent + 0.2 mL Milli-Q water. Serine standard solutions of 200 

μL of 50 mg/L, 100 mg/L, 150 mg/L and 200 mg/L were added to 1.5 mL OPA reagent and 

mixed. The solutions were measured with the spectrophotometer after standing for 3 min. 
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The samples were pipetted into the Amicon Ultra-0.5 10K Centrifugal Filter Units 

(Millipore, USA) and centrifuged for 20 min at 14000 g. A filtration step was used to avoid 

interference from mucin, as has been was observed by Luo et al. (2015) in unpublished 

-amino groups by subtracting the OPA 

response of a sample at digestion time zero (blank). All measurements were performed in 

triplicate.  

To compare the digestibility of quinoa protein with other proteins, the “apparent degree 

of hydrolysis (DH)”  was estimated. We use an apparent DH as aggregates larger than 10 

kDa might have been removed by the filtration step and thus might not have been 

detected in the OPA analysis. The “apparent DH” is defined as the percentage of cleaved 

peptide bonds over the total number of peptide bonds (htot). The latter was calculated as 

follows: 

htot (eqv/kg protein) =          ( )  
The average molecular weight of an amino acid in quinoa protein was calculated using the 

sum of products of molecular weight and proportion of the amino acids in quinoa protein 

(Lindeboom, 2005). The molecular weight of water was subtracted from the average 

molecular weight of amino acids to obtain the average molecular weight of anhydro 

amino acids. The htot of quinoa protein was found to be 8.6 eqv/kg protein.  

 

3.9. Size exclusion chromatography (SEC) 

The peptide profile after digestion was analyzed using SEC Ultimate 3000 UHPLC system 

(Thermo Scientific, MA, U.S.A.) equipped with a TSKgel G2000SWxl column (Tosoh 

Bioscience LLC, PA, U.S.A.). 0.1 mL sample was used for analysis. The running buffer 

consisted of acetonitrile and 70% Milli-Q water with 0.1% Trifluoro Acetic Acid (TFA). The 

flow rate of the running buffer was 1 mL/min and the UV detector was set at 214 nm. In 

order to standardize the molecular weight range of the chromatographic separation, the 

following purified proteins and amino acids were used for calibration: carbonic anhydrase 

-lactalbumin (14.1 kDa), aprotinin (6.51 kDa), insulin (5.7 kDa), bacitracin (1.42 

kDa) and phenylalanine (165 Da) (Sigma-Aldrich, Inc., St. Louis, MO, U.S.A.). The area 

under the curves was determined and the relative area for each segment calculated. All 
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measurements were done in triplicate. 

 

4. Results and discussion 

4.1. Protein yield and purity 

When extracting quinoa protein in a pH range of 8-11, a protein purity of 90-93% was 

obtained (Figure 1). These values are the highest reported in literature so far [20,4,6,21-

23]. In our previous study, we used a similar extraction protocol, only the alkalinization 

time was longer and the precipitation pH lower, resulting in a lower protein purity (82-

88%) [20]. Protein yield increased from 24-37% when increasing the extraction pH from 8 

to 11. These values are lower than in our previous study (35-50% going from extraction pH 

8 to 11) but they also increased with extraction pH. For industrial production of quinoa 

protein isolates, this means that the extraction pH would need to be controlled carefully.  

 

 
Figure 1. Protein yield and protein purity on dry matter basis of the quinoa protein isolates E8, E9, 
E10 and E11. Error bars represent the standard deviation based on duplicate extraction experiments 
 

4.2. Thermal properties 

Unprocessed and processed 20% QPI suspensions showed an endotherm from 96-102°C 

(denaturation temperature range) (Figure 8-12), which is in line with denaturation 

temperatures (Td) previously found for quinoa, amaranth and sunflower protein. These 

denaturation temperatures have been attributed to 11S globulin [20,4,24,16,25]. 

Therefore, we assume that the endotherm found in our study also mainly corresponds to 
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11S globulin. There was no significant change in Td with processing temperature, but Td 

decreased with increasing extraction pH. This decrease was also observed by Martínez & 

Añón (1996) for amaranth protein and indicates that protein is less heat-stable when 

extracted at higher pH [24].  

 

 
Figure 2. (A) Denaturation temperature (Td) and (B) denaturation enth
suspensions of QPI E8, E9, E10 and E11 after processing at different temperatures. Data were 
obtained from DSC measurements   
 

The denaturation enthalpy of the unprocessed QPI suspensions decreased considerably 

from 13.5 to 3.8 J/g protein with increasing extraction pH (Figure ). This trend has also 

been observed in several other studies on quinoa, amaranth and sunflower protein, 

showing that the protein is more denatured at higher extraction pH [20,4,24,16,25]. When 

QPI suspensions were processed at 90 and 120°C, the denaturation enthalpy was reduced 

to 0-3.4 J/g protein. However, the enthalpy was significantly higher after processing at 

60°C than at 20°C for E9, E10 and E11.  

Martínez & Añón (1996) have summarized the notion of denaturation enthalpy to be the 
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result of endothermal processes, e.g. disruption of hydrogen bonds, and exothermal 

processes, e.g. protein aggregation and disruption of hydrophobic interactions. The higher 

denaturation enthalpy (or transition enthalpy) of E9, E10 and E11 at 60°C might thus 

indicate a conformation of the protein that was stabilized by a greater extent of 

hydrophobic interactions and/or hydrogen bonds and that cost more transition energy 

than at 20, 90 or 120°C. The exception was E8, which showed a continuous decrease in 

enthalpy from 20 to 120°C. Based on the notion of denaturation enthalpy of Martínez & 

Añón (1996) it might be that at an extraction pH of 8 the protein initially contained a 

higher degree of hydrophobic interactions and/or hydrogen bonds as compared to the 

protein obtained at other extraction pH values. These molecular interactions might have 

decreased in number from a processing temperature of 20 to 60°C in contrast to the other 

extraction pH values, where the protein initially had undergone more extensive 

conformational changes due stronger alkaline extraction conditions, resulting in a 

different degree of molecular interactions after processing at 60°C. In summary, the effect 

of processing temperature on the thermal properties of QPIs seemed to depend on the 

protein properties predetermined by the extraction pH. 

 

4.3. Protein fractions 

SDS profiles showed major bands at 50 kDa for all QPIs and at 37 kDa for E8, E9 and E10 

(Figure 3). The bands of E8 were the most intense and decreased in intensity with 

increasing extraction pH. The SDS profiles were similar to the ones of previous quinoa 

protein studies, suggesting a correspondence of the bands at 50 kDa to 11S globulin 

[20,4,26]. Furthermore, bands at 37 kDa might correspond to the acidic subunit and bands 

at 23 kDa might be attributed to the basic subunit of 11S globulin. Alkali is known to cause 

disulfide bond cleavage, resulting in the dissociation of 11S globulin into acidic and basic 

subunits of 32-39 kDa and 22-23 kDa, respectively [27].  
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Figure 3. SDS-PAGE profile of the unprocessed QPIs E8, E9, E10 and E11. Lane M: molecular weight 
marker 
 

After heat processing, the SDS profiles showed less bands with less intensity for all QPIs 

(Figure 4). In some lanes specific bands were even not visible anymore. The disappearance 

of bands with increasing processing temperature indicates enhanced protein aggregation 

to protein particles larger than 200 kDa or to insoluble protein particles that remained in 

the pellet after centrifuging the heat-processed protein suspensions. Protein aggregation 

might have resulted from increased protein dissociation and subunit interactions and re-

association to larger (insoluble) aggregates as reported for heat-processed soy protein (0-

30 minutes at 80 and 100°C) [28,29]. DSC results showed higher denaturation enthalpies 

of the unprocessed and 60°C-processed QPI suspensions compared to the suspensions 

processed at 90 and 120°C. As described before, the higher enthalpies might result from 

more hydrophobic interactions, hydrogen bonds but also from increased protein 

aggregation, according to Martínez & Añón (1996). Based on the results of SDS and DSC, it 

seems likely that protein aggregation leads to insoluble particles remaining in the pellet, 

especially at 120°C (less protein on the SDS gels), while the aggregates seem to be less 

capable to undergo a heat-induced phase transition up to a temperature of 140°C 

(maximum temperature reached during DSC measurements) compared to protein treated 

at 60°C. 
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Figure 4. SDS-PAGE profile of the QPIs E8, E9, E10 and E11 heat-treated for 30 min at 60, 90 and 
120°C. Lane M: molecular weight marker. The gel of E10 seems to be overloaded at the bottom. E10 
was run on a different gel and is shown in Figure 13. 
 

4.4. In vitro gastric protein digestibility of quinoa protein isolates  

The focus of the present study was not to quantify the true degree of hydrolysis but to 

compare the relative digestibility of different quinoa protein samples (treated at different 

temperatures). Therefore, gastric digestibility of the QPIs in vitro simulating physiological 

conditions was indicated as concentration of free amino groups which was determined 

using the OPA method. However, to compare the digestibility of quinoa protein to other 

proteins such as whey and eg-white protein, “apparent DH” values were estimated. Only 

DH values were available for whey and egg-white proteins. The presence of protein 

aggregates larger than 10 kDa in the quinoa samples might influence the true DH values 

for quinoa protein, consequently only apparent DH is reported. The concentration of free 

amino groups of unprocessed and processed 5% QPI suspensions sharply increased within 

the first 20 min and further increased at a slower rate in the following hours (Figure 5).  

HPLC chromatograms showed that when digesting unprocessed and processed QPI 

suspensions for 5-360 min higher amounts of peptides ranging from 0.5 to 5 kDa were 

obtained (Figure 6, 14-16). The peaks in the molecular size range of 0.5-5 kDa became 
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larger and moved to a smaller size range with increasing in vitro digestion time. As 

digestion progressed, pepsin cleaved increasingly more peptide bonds, resulting in smaller 

molecules. When comparing processing temperatures, the chromatograms did not 

significantly change from 20 to 60°C. However, at 90 and 120°C, the response areas were 

significantly smaller compared to 20 and 60°C. This is most clearly visible after 5 and 20 

minutes of digestion. This finding could be confirmed by measurements of free amino 

group concentration (Figure 5): the concentration of free amino groups was reduced 

overall at 90 and 120°C compared to 20 and 60°C. Similar observations were made for 

lupine protein [30]. A heat treatment at 60°C for 30 min did not change the digestibility of 

lupine protein compared to the untreated sample, while a heat treatment at 90°C for 30 

min did reduce the digestibility. The reduction in the concentration of free amino groups 

at higher processing temperature was enhanced at higher extraction pH.  

 

 
Figure 5. Concentration of free amino groups of 5% w/w suspensions of QPI E8, E9, E10 and E11 
processed at different temperatures and subsequently digested for different time periods 
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Figure 6. HPLC chromatograms of 5% w/w suspensions of QPI E9 processed at different 
temperatures and subsequently digested for different time periods. Size exclusion chromatography 
is used for separation. This means that larger peptides have a low elution time. See Figure 14-16 for 
the HPLC chromatograms of E8, E10 and E11.  
 

These results suggest that pepsin was less effective after heat-treatment of the QPI 

suspensions. This might be explained by the heat-induced change in protein conformation, 

molecular interactions and protein aggregation as indicated by DSC and SDS results. 

Increased protein aggregation after the heat treatments might have reduced the 

accessibility of pepsin. Impairment of protein digestibility for pepsin has already been 

previously correlated with stronger protein crosslinking when cooking sorghum [31]. The 

in vitro digestibility of sorghum protein using pepsin has therefore been validated as an 

indicator for the degree of protein crosslinking. This relation might also be valid for quinoa 

protein. 

If this is the case, the fact that the reduction in the concentration of free amino groups  at 

higher processing temperature was enhanced at higher extraction pH can be explained 

with increased protein crosslinking. This might also be deduced from SDS results: with an 

increasing extraction pH and processing temperature, the degree of protein aggregation, 

possibly as a result of protein crosslinking, seemed to be higher. However, DSC results 

implied that the protein suspensions from a high extraction pH (10 and 11) and processing 

temperature (90 and 120°C) were only slightly capable or not capable at all to undergo a 
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heat-induced phase transition. Therefore, not a greater extent of protein aggregation or 

crosslinking seemed to be impairing enzyme action more under these harsher conditions, 

but a more heat-resistant type of protein aggregation or crosslinking.  

The extraction pH had almost no influence on the concentration of free amino groups 

when comparing pH values of the unprocessed suspensions and of the processed 

suspensions at 60 and 90°C (Figure 5). This means that the effects of extraction pH 

observed on the physical properties of unprocessed QPIs and processed QPIs at 60 and 

90°C were not clearly transferred to in vitro gastric digestibility. At 120°C, the rate of free 

amino group concentration  was only slightly reduced at extraction pH 11 compared to the 

other extraction pH values. These results show a bigger impact of processing temperature 

on the concentration of free amino groups  of quinoa protein compared to extraction pH.  

We conclude that heat treatment for 30 min at 90 and 120°C impairs in vitro gastric 

digestibility of protein in QPIs. The hydrolysis profiles of quinoa protein compare to those 

of whey and egg white protein obtained by Luo et al. (2015) at the same protein 

concentration, and under the same digestion and measurement conditions. When 

interpolating the “apparent DH” values of the QPI suspensions treated at 90°C to a 

digestion time of 3 h, the values for quinoa protein (11.8 – 14.1%) were in the range 

between DH values of egg white protein (11%) and whey protein (15%), both pre-treated 

for 30 min at 90°C and digested for 3 h.  

 

4.5. Gastric in vitro protein digestibility of whole quinoa flour  

To examine how protein digestibility in QPIs compares to that in whole quinoa flour, we 

performed the digestibility study with wholemeal quinoa flour at the same protein 

concentration. The concentration of free amino groups also increased in time and looked 

similar to that of the QPIs. However, the concentration of free amino groups was overall 

lower, especially at 120°C (Figure 7). This reduction in free amino groups concentration 

might be due to the other components present (in higher amounts) in the quinoa flour 

(mainly starch, fiber and fat). The mere presence of much higher amounts of starch and 

fiber in the quinoa flour compared to the QPIs might be the responsible factor, but also 

the behavior of these components at the different processing temperatures might have 
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had an impact on digestibility [32]. The gelatinization of quinoa starch starts from 45-54°C, 

peaks from 51-62°C and concludes from 64-71°C [33]. At processing temperatures of 60 

and 90°C, there was no large difference in the concentration of free amino groups 

compared to the protein isolates, indicating that gelatinization did not affect protein 

digestibility significantly. There was a larger drop in amount of free amino groups  from 90 

to 120°C for the quinoa flour compared to the protein isolates. As starch gelatinization did 

not seem to have an impact on digestibility at lower temperatures, it is possible that at 

higher temperatures the gelatinized starch interacted with denatured protein (Td=96-

102°C), thereby hindering enzyme action. Another explanation might be that in contrast to 

the protein in the flour, the protein in the protein isolates underwent conformational 

changes during the extraction, which limited the effect of processing temperature on 

protein digestibility.   

 

 
Figure 7. Concentration of free amino groups of wholemeal quinoa flour (5% w/w protein) 
processed at different temperatures and subsequently digested for different time periods. 
 

5. Conclusions 

Using the extraction protocol from the present study, we could achieve a very high protein 

purity, but at the expense of a low protein yield. The degree of denaturation and 

molecular weight profiles of the QPIs were strongly affected by processing temperature 

and extraction pH, individually and combined. For QPI’s, extraction pH and processing 

temperature showed an interactive effect on in vitro gastric digestibility of the protein. 
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Extracting protein from quinoa flour results in a higher protein digestibility when 

compared to keeping the protein in the flour. For applications, the present findings mean 

that extraction and processing conditions need to be controlled to optimize protein 

digestibility. Future research could investigate other functional properties of quinoa 

protein but also examine ileal and in vivo protein digestibility under various conditions to 

verify the present findings in more real-life digestion conditions.  
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7. Appendix 

 
Figure 8. DSC thermograms of untreated 20% w/w suspensions of QPI E8, E9, E10 and E11. 
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Figure 9. DSC thermograms of 20% w/w suspensions of QPI E8 after processing at different 
temperatures. 
 
 

 
Figure 10. DSC thermograms of 20% w/w suspensions of QPI E9 after processing at different 
temperatures. 
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Figure 11. DSC thermograms of 20% w/w suspensions of QPI E10 after processing at different 
temperatures. 
 

 
Figure 12. DSC thermograms of 20% w/w suspensions of QPI E11 after processing at different 
temperatures 
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F 
Figure 13. SDS-PAGE profile of the QPIs E10 heat-treated for 30 min at 60, 90 and 120°C. Lane M: 
molecular weight marker 
 

 
Figure 14. HPLC chromatograms of 5% w/w suspensions of QPI E8 processed at different 
temperatures and subsequently digested for different time periods. Size exclusion chromatography 
is used for separation. This means that larger peptides have a low elution time 
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Figure 15. HPLC chromatograms of 5% w/w suspensions of QPI E10 processed at different 
temperatures and subsequently digested for different time periods. Size exclusion chromatography 
is used for separation. This means that larger peptides have a low elution time 
 

 
Figure 16. HPLC chromatograms of 5% w/w suspensions of QPI E11 processed at different 
temperatures and subsequently digested for different time periods. Size exclusion chromatography 
is used for separation. This means that larger peptides have a low elution time 
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1. Abstract  

Combination of dry and aqueous fractionation is investigated to obtain protein-rich 

fractions from quinoa in a milder and more sustainable way compared to conventional 

wet fractionation. Dry fractionation of quinoa involved milling and subsequent air 

classification, generating a protein-enriched embryo fraction. Subsequently, this fraction 

was milled, suspended and further fractionated by aqueous phase separation. The 

efficiency of aqueous phase separation could be improved by addition of NaCl (0.5 M). 

Finally, the top aqueous phase was decanted and ultrafiltered, resulting in a protein purity 

of 59.4 w/dw% for the 0.5 M NaCl-protein solution and a protein yield (g protein 

obtained/g protein in seed) of 62.0%. Having used 98% less water compared to 

conventional wet extraction, the hybrid dry and aqueous fractionation is a promising 

method for industry to create value from quinoa in a more economic and sustainable 

friendly way while minimising the impact on quinoa’s native protein functionality.     

 

2. Introduction  

The nutritional properties of quinoa are unique since it contains all essential amino acids, 

trace elements and vitamins (B6, folate, riboflavin and niacin) [1]. As a result its popularity 

and cultivation area are expanding rapidly. A promising quinoa variety to use on a large 

scale is sweet quinoa (virtually saponin-free). This variety could be a more sustainable and 

economic raw material to use in industry due to savings in post-harvest processing (not 

necessary to remove saponins), in seed transport and availability (it can be cultivated in 

different regions and also in temperate climates) [2].  

To stimulate more extensive use and create added value of (sweet) quinoa in the 

production of foods, ingredients derived from quinoa by fractionation have been explored 

by several studies, in particular, the production of protein isolates [3-11,2,12]. In all these 

studies the conventional wet fractionation method was applied. It involves the use of a 

solvent for fat removal (hexane, petroleum ether, etc.), an alkali to solubilise the protein 

from the defatted flour (mostly NaOH) and an acid to purify the protein via precipitation 

(mostly HCl). However, this method consumes large amounts of water and energy and 

moreover often leads to denaturation of the protein [13].  
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Dry fractionation is milder and more sustainable for production of protein concentrates 

from cereals (wheat, barley etc.) and legumes (pea, lupine, chickpea etc.), although 

generally the purities obtained are less high [14-16]. A major advantage of this technique 

is that native functional properties of the proteins are retained [17]. Dry fractionation 

involves fine milling of the seeds to disclose protein-rich particles and subsequent dry 

separation of the flour in fractions of different particle size using air classification. The 

dissociation of seed components is critical to enable separation and is dependent on seed 

structure and the milling conditions.  

For pea seeds (23.7 w/dw% protein), dissociation of protein bodies from starch granules 

can be achieved by very fine impact milling, which is followed by air classification, 

generating a protein-rich fine fraction (55.6 w/dw% protein) with smaller particle size and 

a starch-rich course fraction with a larger particle size [18]. For quinoa seeds (~15 w/dw% 

protein) it is extremely difficult to separate protein bodies from starch granules as these 

are similar in size [19]. However, quinoa protein bodies are concentrated in the embryo of 

the seed (~23.5 w/dw% protein), while starch granules are concentrated in the perisperm 

[20]. Therefore, we propose rotor milling followed by sieving or air classification to 

dissociate and separate the embryo from the perisperm. Using rotor milling we aim at 

clear dissociation of embryo and perisperm and in this way can produce protein-enriched 

fractions with either sieving or air classification.  

Attempts to further dry fractionate the embryo fraction into higher protein enriched-

fractions were hitherto unsuccessful, because protein bodies and starch granules in the 

quinoa seed are similar in size [7]. To achieve higher protein purities, wet fractionation 

may be applied. However, instead a hybrid method of dry fractionation and aqueous 

phase separation followed by ultrafiltration is investigated here. This approach is inspired 

by successful aqueous phase separation of dry-enriched pea fractions and is reported 

milder and more sustainable [17,21]. The dissolution and subsequent centrifugation of the 

pea fine fraction obtained by air classification provided a phase separated system with 

four layers, where the protein was concentrated in the top two layers. Via this method 

pea protein purity could be increased from 49.7 w/dw% in the fine fraction to 68.6 w/dw% 

in the combined two top layers. After ultrafiltration a final protein purity of 77.4 w/dw% 

could be achieved.  
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The aim of this study was thus to develop a hybrid separation process for quinoa to obtain 

high protein-rich fractions. The novelty of this method consists especially of the 

combination of dry fractionation and aqueous fractionation for obtaining protein–rich 

quinoa fractions, which to the best of our knowledge has not been done before. Purity 

and yield were evaluated at every step of the new proposed hybrid separation process. 

Finally, the hybrid fractionation route is compared to conventional wet fractionation of 

quinoa for its efficiency.  

 

3. Material and methods 

3.1. Materials  

Quinoa seeds (Chenopodium quinoa Willd) of the sweet variety Atlas were supplied by the 

Agricultural Research Institute (INIA), Santiago, Chile. Sodium chloride was obtained from 

Sigma Aldrich Chemie GmbH, Schnelldorf, Germany. De-ionised water was used 

throughout the fractionation process. 

 

3.2. Milling of quinoa seeds and air classification of quinoa flour 

Quinoa seeds were milled using a 100UPZ Rotor Mill (Hosokawa-Alpine, Augsburg, 

Germany) with an air flow of 40 m³/h and a built-in sieve with a screen aperture of 2.0 

mm. These optimal settings were derived from previous unpublished work. The obtained 

flour was air-classified using an ATP50 Classifier (Hosokawa-Alpine, Augsburg, Germany) 

with a classifier wheel speed of 1000 rpm and an air flow of 80 m³/h. The fine fraction 

from this air classification step is in this study referred to as the non-milled fraction. This 

because the majority of the generated embryo-rich fine fraction from the air classification 

step was further milled using a ZPS50 Impact Mill (Hosokawa-Alpine, Augsburg, Germany) 

with an air flow of 52 m³/h and a classifier wheel speed of 2500 rpm to facilitate 

dissolution of the protein. The extra impact milling was applied to facilitate disclosure of 

the protein-rich components from the surrounding matrix and thus subsequent 

dissolution during suspension.  
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3.3. Aqueous phase separation of the fine and coarse quinoa fractions 

Milled and non-milled fine fractions obtained by air classification were further 

fractionated by aqueous phase separation. Suspensions of fine fractions (20 w/w%) were 

prepared in de-ionised water with and without the addition of NaCl (0.15, 0.35 and 0.5 M). 

They were stirred for 3 h at room temperature and subsequently centrifuged for 30 min at 

4500 rpm [17].  

 

3.4. Ultrafiltration of the liquid layer of the phase-separated fractions 

The liquid layers of the phase-separated impact-milled fine fractions with 0, 0.15 and 0.5 

M NaCl were carefully decanted and utrafiltered at room temperature using an Amicon 

Ultrafiltration Cell with a regenerated cellulose membrane (PLBC, Ultracel PL Membrane, 

NMWL Cutoff of 3 kDa) (Millipore Corporation, Billerica, MA, USA). A pressure of 350 kPa 

was applied for approximately 165 minutes. This ultrafiltration time was slightly varied to 

obtain enough permeate volume. The average permeability during the experiments was 

0.11 L.m-2.h-1.bar-1, which is not very high due to the continuous increasing component 

concentrations in the batch process. 

 

3.5. Determination of the particle size distribution  

To determine the particle size distributions of the milled and non-milled quinoa seeds, a 

Mastersizer 2000 equipped with a Scirocco 2000 dry dispersion unit (Malvern Instruments, 

Worcestershire, UK) was used. All measurements were performed in duplicate.  

 

3.6. Image analysis  

Scanning electron micrographs (SEM) were obtained using a Phenom Pure G2 desktop 

Scanning Electron Microscope (Eindhoven, The Netherlands).  

 

3.7.  Determination of protein purity and protein yield 

Protein purity was defined as mass protein / mass dry matter (w/dw%) and corresponds to 

the term “protein content” used in the literature mentioned in the present study. To 
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determine the protein content (mass protein) of a sample, the Dumas method was used. 

Nitrogen content was measured using a Nitrogen Analyser (FlashEA 1112 series, Thermo 

Scientific, Interscience, Breda, The Netherlands). The conversion factor used to convert 

nitrogen to protein was 5.7 [22]. All measurements were performed in duplicate. 

The protein yield after each step in the fractionation process was calculated as follows: 

Protein yield (%) = %     ×  %      ×   × 100%  

(Equation 1)  

 

3.8. Determination of starch purity  

Starch purity was defined as the ratio of mass starch and mass dry matter (w/dw%) and 

determined using a Total StarchAssay Kit (Megazyme International Ireland Ltd, Bray, 

Ireland). All measurements were performed in duplicate.  

 

3.9. Statistical analysis 

Error bars for all data points were calculated by taking the standard deviation of the 

average value of duplicates. If the error bars of two data points did not overlap, we 

concluded they were significantly different. 

 

4. Results and discussion 

4.1. Milling and air classification  

Quinoa seeds were milled using a rotor mill with an air flow of 40 m³/h and a sieve screen 

aperture of 2.0 mm. The objective of the milling was to separate the protein-rich embryo 

from the protein-poor perisperm. SEM was performed to assess the efficiency of the 

milling. In the SEM pictures it can be observed that the rotor milling has the potential to 

achieve neat dissociation of the embryo from the perisperm (Figure 1). Particle size 

analysis showed a decrease in 

increase in the volume fraction of particles of 100- Figure 2a). This change in 

particle size distribution also reflects the dissociation of quinoa seed into smaller 

perisperm and embryo particles. However, the broadening of the particle size distribution 
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after milling indicated that dissociation of the embryo from the perisperm was not 

complete. Instead of rotor milling, also roller milling might be applied. In a previous 

unpublished study in our laboratory this was investigated and it was concluded that rotor 

milling of quinoa seeds provides better results in terms of complete disclosure than roller 

milling. It is assumed that predominant shear and low compression forces applied by the 

rotor mill dissociates the embryo while most of the perisperm remains intact. In 

comparison, the roller milling applies high compression forces, which provide also 

dissociation of the embryo but at the same time lead to more breakage of the perisperm 

particles.   

 
Figure 1. After impact milling of the quinoa seeds: (A) Perisperm hull (magnification: 180x) and (B) 
Embryo particle (magnification: 160x) 
 

 
Figure 2. Particle size distribution (A) before and after impact milling of quinoa seeds and (B) of the 
quinoa coarse and fine fractions obtained after air classification  
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Air classification of the milled quinoa flour produced a coarse perisperm-rich fraction and 

a fine embryo-rich fraction (Table 1 and Figure 2b). As the protein content of the quinoa 

embryo (23.5 w/dw%) is higher than that of the perisperm (7.2 w/dw%), the fractionation 

resulted in almost a doubling of the protein purity in the fine fraction, with a factor five 

times higher protein yield than in the coarse fraction. The cut size characterizes the air 

classification process by defining the size where particles have equal chance of ending up 

in either the coarse or fine fraction. Because the yield of both fractions is equal, the cut 

size is comparable to the mass median diameter of the quinoa seed after milling (704.5 

μm). 

 
Table 1. Experimental characterisation of the whole quinoa flour, the fine fraction and the coarse 
fraction after air classification, with ± is equal to the standard deviation. 

 
 

4.2. Aqueous phase separation 

As observed for pea fractionation, it was hypothesized that aqueous suspension of quinoa 

flour would lead to phase separation of protein, starch and fibre into soluble and insoluble 

fractions. This phase separation can be explained by differences in density between non-

dissolved particles and possible enthalpic and entropic effects between different dissolved 

biopolymers [17]. However, for quinoa it was found that an additional fine milling step 

was critical to facilitate protein dissolution and would thus increase enrichment of 

dissolved protein by subsequent aqueous phase separation. In this fine milling step the 

 

When suspending the non-milled and milled fine fractions, phase separation into three 

distinct layers, a liquid layer (layer 1), a white solid layer (layer 2), and a beige solid layer 

(layer 3), was observed for both fractions (Figure 3). Layer 1 had the highest protein purity 

in both fractions, showing protein enrichment in the top layer at either particle size 

(Figure 4). However, protein purity and protein yield were higher in layer 1 of the finely 

milled fine fraction (41.2 w/dw% and 40.3%, respectively) compared to the non-milled 
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fraction, indicating enhanced protein dissolution. This can be explained by the disruption 

of cells upon milling and thus the easier dissociation of starch granules and protein bodies 

during suspension.  

Quinoa protein consists of 35% water-soluble albumins and 37% globulins soluble in salt 

solutions [1], while from the experiments it appeared that the dissolved (only water) 

protein in the top layer presents 40.3% of all proteins (Figure 4). This might at least be 

partially explained by the quinoa variety being higher in water-soluble protein.   

 

 
Figure 3. Aqueous phase separation of the suspended fine fractions with and without milling before 
suspension. Left: non-milled fine fraction (D0.5 0.5
Numbers indicate the layers formed 
 



Chapter 4 – Quinoa protein: hybrid fractionation 

80

 
Figure 4. Protein yield (%), protein purity (w/dw%) and starch purity (w/dw%) of the non-milled and 
milled fine fractions 
 

Previous research on quinoa protein showed that protein solubility could be increased by 

the addition of salt [3]. It was observed that when adding up to 0.5 M NaCl to quinoa flour 

suspensions, protein yield increased steadily. Higher NaCl concentrations did not increase 

the yield significantly. Therefore, we added NaCl to suspensions of the milled fine fraction 

to reach different concentrations in the range 0-0.5 M. Similar as observed for the 

suspensions without salt addition, the suspensions phase-separated into three layers; 

however the dry matter content of the top layer increased with increasing salt 

concentration (Figure 5). Protein purity and protein yield of the layers were calculated by 

correcting for the added salt. For layer 1, protein yield increased considerably from 40.3 to 
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80.3% going from 0 to 0.5 M NaCl, respectively (Figure 6). Protein purity in the same layer 

did not increase as strongly with increased salt content but it was higher for 0.35 and 0.5 

M NaCl than for 0 and 0.15 M NaCl. These results indicate higher protein solubility at 

higher salt concentrations and are line with the findings from literature. The increased 

protein solubility can be explained by the salting in-effect [23-25]. The added salt ions 

interact with the charged groups of the protein molecule, leading to less interactions of 

the protein molecule with the surrounding water molecule, which results in an increased 

solubility of the protein.  

As 37% of quinoa protein is salt-soluble, the addition of salt facilitates the solubilisation of 

globulins, which can be added to the amount of solubilised albumins, as albumin 

dissolution behavior was found not to be affected by the salt content [3]. The smaller 

increase in protein purity compared to protein yield might be due to the additional 

solubilisation of non-protein components. Starch purity did not clearly increase with 

higher salt concentrations (Figure 6), which suggests that possibly the dissolution of 

soluble fibres might have been influenced by the NaCl concentration.         

 

 
Figure 5. Aqueous phase separation of the suspended milled fine fraction with varying 

NaCl concentrations. Left to right: 0M, 0.15 M, 0.35 M and 0.5 M NaCl. Numbers indicate 

the layers formed 
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Figure 6. Protein yield, protein purity (w/dw%) and starch purity (w/dw%) of the 

suspended milled fine fraction with varying NaCl concentrations 

 

4.3. Ultrafiltration 

To further increase protein purity, the liquid top layer of the phase-separated suspensions 

with and without added salt were carefully decanted and subjected to ultrafiltration. The 

idea behind this step was that small solutes would be removed and proteins would be 

retained by the membrane, thereby increasing the protein concentration in the retentate. 

The ultrafiltration was carried out in a batch system for approximately 165 minutes after 

which a retentate volume of 55% compared to the initial feed volume was obtained. 

Because the filtration time was not always exactly 165 min for each sample small 

corrections were made to obtain protein purity and protein yield values for an exact final 
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retentate volume of 55%. On the basis of 55% retentate yield, the protein concentration in 

the retentate could be increased from 41 to 46 w/dw% without addition of salt, and from 

35 to 59 w/dw% for 0.5 M NaCl (Figure 7). It should be emphasized that the latter values 

are the protein contents without correction for the presence of NaCl.  

It can be concluded that the protein purity after ultrafiltration increases significantly, 

which is caused obviously by the loss of salt via the permeate flow. However, in addition 

also the total protein yield increased, which may be explained by the different size of the 

globulins and albumins. Globulins range from 8-100 kDa in size, while albumins are 8-9 

kDa in size [3]. The cut-off of the ultrafiltration membrane was 3 kDa, so some smaller 

albumins were probably lost during the ultrafiltration. Because at high salt concentrations 

there are relative more globulins compared to albumins, the relative loss of protein will 

substantially decrease at higher salt concentrations. Concluding, the use of salt during 

aqueous phase separation and subsequent ultrafiltration is considered very promising as it 

provides higher protein purity and yield.  

 

 
Figure 7. Protein yield and protein purity (w/dw%) of layer 1 of the phase-separated suspensions 
containing different salt concentrations  
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4.4. Process review  

A mass flow analysis was carried out and visualized in a Sankey diagram to review the 

entire hybrid dry and aqueous fractionation process of quinoa. This was specifically done 

for the aqueous phase separation with 0.5 M NaCl for extracting protein from the milled 

fine fraction (Figure 8). The protein yield and protein purity starting from the seed to the 

final ultrafiltration are shown in Figure 9. It can be observed that a large amount of 

material (48.1%) was lost during impact milling of the fine fraction (Figure 8). This material 

loss can be explained by the relatively small particle size of the fraction, which increases 

the attractive van der Waals forces between particles and particles and wall of the mill 

interior, thus resulting in fouling [26]. However, when feeding larger amounts of material 

(compared to the 287 g that was fed during our experiment) the loss due to fouling is 

expected to be much less. This can be explained by the development of a steady state 

situation during which no further accumulation of material will occur. If we exclude losses 

during impact milling, then, 24.4% protein from the total quinoa protein could be 

recovered without salt use in the process and 62.0% with use of 0.5 M NaCl during 

aqueous phase separation (Figure 9).  

 

 
Figure 8. Sankey diagram of the hybrid dry and aqueous fractionation process for the production of 
protein-rich fractions of quinoa. The arrow thickness corresponds to the mass of the flow. Red: 
protein, dark blue: starch, light blue: rest 
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Figure 9. Protein purity (w/dw%) and protein yield (g protein obtained / g protein in the seed) after 
each step of the hybrid dry and aqueous fractionation process, assuming that fouling at higher 
throughputs is negligible  
 

The proposed hybrid fractionation is a milder and more sustainable way compared to wet 

fractionation, although the protein purity obtained is still lower compared to conventional 

wet fractionation. Further process optimization can be carried out to increase the protein 

purity even more. Optimizations might be performed from the very beginning, before 

even milling the seed. A recent study applied a moist conditioning treatment to  quinoa 

before milling [11]. By raising the moisture content from 12.3 to 15 w/w% the protein 

purity of the bran fraction obtained after milling increased from 24 to 28 w/dw%. The 

higher moisture content was related to increased elasticity of the outer cell tissues, 

providing better dissociation of the embryo from the perisperm during milling. In another 

study on pea the moisture content prior to milling was increased to shift the protein to the 

rubbery state. This treatment facilitated disentanglement from the glassy starch granules 

during milling, providing higher separation efficiency [27]. 

Another step, where the protein purity may be further increased, is during ultrafiltration. 

One may increase the concentration factor or apply diafiltration to completely wash out 

the salt. Increasing the concentration factor leads to a smaller retentate volume. For 

example for a final retentate volume of 20% (in combination with 0.5 M NaCl) protein 

purity may further increase from 59.4 to 78.2 w/dw%. The drawback of an increased 

concentration factor is that the permeate flux will decline severely due to the 

accumulating solute concentration [28].  For 55% retentate volume, diafiltration and 
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thereby removal of all salt would increase protein purity from 59.4 to 65.5 w/dw% in 

combination with 0.5 M NaCl aqueous phase separation. However, removal of the salt will 

lead to precipitation of the salt-soluble globulins, which may not always be desirable. Still, 

the calculations show there is room for further optimization of the process towards 

protein purities that are approaching protein concentrations from conventional wet 

fractionation. 

 

4.5. Comparison to conventional wet fractionation 

To compare the efficiency of the proposed hybrid dry and aqueous fractionation method 

to conventional fully wet fractionation for protein isolation, protein yield, protein purity 

and water consumption were compared with literature data (Table 2). Recent studies have 

analysed protein yield and protein purity from quinoa during wet fractionation with 

varying conditions [11,9,2]. With wet fractionation very high protein purities (68-93 

w/dw%) can be achieved, but at the expense of a lower protein yield (g protein obtained / 

g protein in the seed) (24-61%). Furthermore, during wet fractionation 9-9.5 ml of water 

was used per gram of quinoa flour (depending on the fat content of the quinoa seeds 

used) to achieve a protein yield of 61%. The hybrid fractionation process proposed in this 

study resulted in a lower protein purity compared to literature values for wet 

fractionation but similar or higher protein yield compared to wet fractionation. But 

important to note is that only 0.2 ml of water per gram of quinoa flour was used to 

achieve the protein yield of 62%, which means 97.8% savings in water compared to wet 

fractionation. Even if using double the amount of water for ultrafiltration to remove salts 

remaining in the final quinoa fraction, savings of over 88.9% in water are possible. This 

reduction in water consumption is connected to an enormous potential reduction in 

energy consumption, as less water needs to be removed for drying the final protein 

ingredient suspension.  
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Table 2. Summary of the different methods for isolation of quinoa protein. Protein yields were 
recalculated according to equation 1 and using a nitrogen-to-protein conversion factor of 5.7 for fair 
comparison. Water use was recalculated to ml water per g non-defatted quinoa flour, assuming an 
average fat content of 5-7.2% in the quinoa seed used [29] 

 
 

Another main difference between our process and the conventional extraction is that mild 

conditions are used in contrast to wet fractionation (avoiding addition of chemicals for fat 

extraction and to induce pH shifts). This not only is more cost effective for the producer 

but also in line with clean-label and sustainability trends among consumers. Moreover, by 

avoiding harsh conditions also native properties of the quinoa protein are retained as 

much as possible. Finally, we recommend exploring the application of the side-streams of 

our hybrid fractionation process to maximise sustainability. Such side-streams are for 

example the perisperm starch-rich fraction obtained after air classification and the 

aqueous phases that are enriched in starch. 

 

5. Conclusions 

We succeeded in developing a hybrid separation process for quinoa to obtain high 

protein-rich fractions. The method proposed in the present study can provide a protein 

concentrate with a purity of 59 w/dw% and a protein yield of 61%. This yield is similar or 

higher compared to conventional wet fractionation. Although the purity is lower 

compared to conventional extraction with further process optimisation, the product 

obtained is still relevant for the food industry. This is because higher protein purities will 

not always be required or even desired, as food producers may also wish to keep some of 

the quinoa fibre, starch, oil and micronutrients in the protein concentrate for functional or 
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nutritional benefits depending on the application. In this case, the advantages of mild 

fractionation are obvious in providing reduction in water, energy and chemicals 

consumption and retention of native functional properties. Finally, we estimated that the 

protein purity may be further increased up to 78 w/dw% by process optimization. 
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1. Abstract  

The aim of the study was to determine the influence of pressure in high pressure-high 

temperature (HPHT) processing on Maillard reactions and protein aggregation of whey 

protein-sugar solutions. Solutions of whey protein isolate containing either glucose or 

trehalose at pH 6, 7 and 9 were treated by HPHT processing or conventional high 

temperature (HT) treatments. Browning was reduced, and early and advanced Maillard 

reactions were retarded under HPHT processing at all pH values compared to HT 

treatment. HPHT induced a larger pH drop than HT treatments, especially at pH 9, which 

was not associated with Maillard reactions. After HPHT processing at pH 7, protein 

aggregation and viscosity of whey protein isolate-glucose/trehalose solutions remained 

unchanged. It was concluded that HPHT processing can potentially improve the quality of 

protein-sugar containing foods, for which browning and high viscosities are undesired, 

such as high-protein beverages.  

 

2. Introduction  

The use of high pressure-high temperature (HPHT) processing to sterilize foods is a 

promising alternative to conventional retort heating [1]. HPHT processing combines high 

temperatures (90-121°C) with pressures  600 MPa to inactivate pathogens and spores. 

Compression heating allows reducing heating-up times leading to shorter processing times 

and lower heat loads compared to conventional retort sterilization. It was reported that 

lower heat loads are the main advantage of HPHT processing [2], which can consequently 

improve sensorial and nutritional food properties [3,1,2]. However, it remains unclear 

whether pressure itself or the lower heat load contributes to the improved sensory and 

nutritional properties of HPHT processed foods.  

Maillard reactions (MR) are an important factor contributing to sensory quality of foods 

and beverages [4]. In sterilized foods MR are usually undesired, e.g. in dairy-based 

beverages, high-protein beverages, puddings, creams etc. Studies on the effect of high 

pressure on MR are not extensive and were reviewed recently [5]. The rates of some MR 

pathways can be increased or decreased by high pressures depending on the predominant 

mechanism and specific processing conditions. Some studies showed that pressure 
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accelerated the condensation reaction and the formation of Amadori products, while 

other studies found that pressure decelerated amino acid-sugar conjugation, the Amadori 

rearrangement and the degradation of Amadori rearrangement products [6-10]. Several 

studies reported that for amino acid-sugar solutions, pressure retards or promotes the 

formation of advanced MR products and browning, depending on the pH [11-14]. To the 

best of our knowledge, the influence of pressure on MR products in protein-sugar 

solutions has been investigated only by two studies, whereas several studies have 

examined MR products in amino acid-sugar solutions. Proteins were found to denature 

and aggregate by a different mechanism under high pressure treatment compared to heat 

treatment [15]. Changes in protein structure can be associated with the extent of MR 

under HPHT [9,10].  The focus of these studies was on the chemical properties of protein-

sugar solutions and the Maillard reaction kinetics. Buckow et al. (2011) also studied 

physical properties of the solutions using SDS-PAGE. An increase in high molecular weight 

compounds after HPHT treatment (30 min, 200 and 600 MPa at 110°C) of BSA-glucose 

solutions compared to heat treatment (10 and 30 min, 0.1 MPa at 110°C) was found.  

Aggregation, and a potential change in rheological properties, in sterilized food might be 

desirable or not, depending on the type of food. For liquid, sterilized foods containing 

protein, usually, viscosity increases are only desired to a certain extent, e.g. in high-

protein beverages.  

 

The aim of the study was to determine the influence of pressure in HPHT processing on 

Maillard reactions and protein aggregation of whey protein-sugar solutions. Browning, pH, 

-(Carboxymethyl)- - -

(Carboxyethyl)- -lysine (CEL)), viscosity and particle size of whey protein isolate solutions 

containing glucose (reducing sugar) or trehalose (non-reducing sugar) were quantified. 

Different HPHT treatment conditions (700 MPa, 0-15 min, 123°C) were compared with 

different high temperature (HT) treatments (0-15 min, 123°C). Processing times similar to 

those used in industry (3-5 min) were chosen [14]. 
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3. Materials and methods 

3.1. Materials 

Whey protein isolate (WPI) (BiPRO) was purchased from Davisco, Foods International, Inc. 

(Minnesota, USA). Glucose and trehalose were purchased from Sigma-Aldrich Chemie 

GmbH (Schnelldorf, Germany). MilliQ water was used. 

 

3.2. Preparation of WPI-glucose/trehalose solutions 

Aqueous solutions of 6% (w/w) WPI and 5% (w/w) glucose or 5% (w/w) trehalose were 

adjusted to pH 6, 7 and 9 by addition of 1 N HCl or 0.1 N NaOH, respectively, and stirred 

for 3 h. WPI – glucose (WPI/G) and WPI – trehalose (WPI/T) solutions were stored 

overnight at 4°C before processing to ensure dissolution of WPI.  

 

3.3. HPHT treatment of WPI/G and WPI/T solutions 

WPI/G and WPI/T solutions (10 ml) were sealed in small polyethylene bags after removal 

of air. Solutions were HPHT-treated using a Resato high-pressure apparatus (Resato FPU-

100-50, Resato International B.V., Roden, The Netherlands). Pressure build-up rate was 

4.5 MPa/s. Water was used as pressure medium. Solutions were first preheated at 90°C 

for 3 min in a water bath and subsequently high-pressure treated at 700 MPa for 0, 1.5, 3, 

9 and 15 min. The time point at which the solutions reached 123°C was taken as 

processing time zero.   

It was not possible to measure the temperature or pH of the solution during the HPHT 

treatment experimentally. To estimate temperature-time profiles for all processing times, 

two assumptions were made: 1) the adiabatic heat increase was uniformly transmitted to 

the solution without time delay; 2) the heat-transmitting properties of the WPI/G and 

WPI/T solutions were similar to those of water. To estimate the maximum temperature 

reached in the HPHT treatment, the temperature of the pressure medium during 

pressurization was measured using a lab-scale high-pressure unit (volume 180 ml, 

maximum pressure 1000 MPa, Resato International B.V., Roden, The Netherlands) (Figure 

S1). In previous studies the temperature of water after applying different pressures at 
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various initial temperatures was measured [16,17]. When extrapolating the data of 

Esthiagi et al. (2001), a maximum temperature of 122.5°C during HPHT treatment at 700 

MPa was obtained. The maximum temperature measured by Knoerzer et al. (2010) at 700 

MPa was 125.0°C. Through combination of our experimental data and the data from 

literature, the maximum temperature in our study was estimated to be 123°C ± 2°C.  

The temperature loss was determined by measuring the temperature of the pressure 

medium before pressure-build up and after pressure release. The difference in 

temperature was assumed to be equal to the temperature loss experienced during the 

processing times. The calculated temperature difference was linearly correlated to the 

initial temperature (Figure S2). 

 

3.4. HT treatment of WPI/G and WPI/T solutions 

WPI/G and WPI/T solutions were heated in a heating block (Liebisch Labortechnik, type: 

53186301, Germany) to 123°C. Solutions were treated for 0, 1.5, 3, 9 and 15 min. To mimic 

the temperature-time profile of the HPHT treatment during the processing times, the 

heating block was set to lower temperatures during these times. Subsequently, solutions 

were cooled down to room temperature using a water bath at 15°C. The temperature of 

the solutions was monitored during the entire treatment. Temperature measurements 

were performed in triplicate. 

 

3.5. Determination of browning 

Browning intensity of HPHT and HT treated WPI/G and WPI/T solutions was determined by 

quantifying the absorbance at 420 nm with a spectrophotometer (Pharmacia Biotech, 

Uppsala, Sweden) [18]. To compare browning rates between the treatments, linear 

regression of absorbance as a function of processing time was performed. 

 

3.6. Determination of Maillard reaction products 

-(Carboxymethyl)- - -(Carboxyethyl)- -lysine (CEL) were 

quantified using a previously described method with small modifications [19]. 
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3.6.1. Sample preparation 

septa. The mixture was saturated with nitrogen (15 min at 2 bar) and hydrolyzed in a 

heating block (Liebisch Labortechnik, type: 53186301, Germany) for 20 h at 110°C. The 

mixture was centrifuged for 10 min at 4000 rpm at 4°C and the supernatant was 

subsequently 

 

a mixed internal standard (d4-lys, d2-CML, d2-CEL and d2-furosine) was added. The 

sample was loaded onto equilibrated Oasis HLB 1 cc cartridges (Waters, Wexford, Ireland) 

and eluted according to the method previously described in detail [19]. Eluted solutions 

– 

wat -MS/MS system. 

 

3.6.2. Liquid chromatography tandem mass spectrometry (LC–MS/MS) 

Separation of furosine, CML, CEL, lysine and their respective internal standards was 

achieved on a Hydrophilic Interaction Liquid Chromatography column using the following 

mobile phases: A) 0.1 % acetic acid in water, B) 50 mM ammonium acetate in water, and 

C) 0.1% acetic acid in acetonitrile.   

The compounds were eluted and the chromatographic profile was recorded according to 

the method of Troise et al. (2015).  

 

3.6.3. Analytical performances 

CML, CEL and furosine were quantified using a linear calibration curve obtained with 

solutions of purified CML, CEL and furosine at different concentrations. The limit of 

detection (LOD) and the limit of quantitation (LOQ) were monitored according to Troise et 

al. (2015).  

 

3.7. Determination of pH  

pH of WPI/G and WPI/T solutions was determined at 20°C using a pH meter (Conductivity 



Chapter 5 – HPHT processing: influence of pressure 

97 
 

Proline Plus, QiS, The Netherlands). Measurements were performed in duplicate.  

 

3.8. Determination of viscosity 

Viscosity of the solutions was determined using an Ubbelohde viscometer (SI Analytics 

GmbH, Germany) at 25°C. The constant of the viscometer capillary was 0.004639 mm2s-2. 

Measurements were performed in triplicate. Viscosity was calculated using the following 

formula: 

kin (m2s-1) = t (s) × capillary constant (mm2s-2) ×10-6   [1] 

where kin is the kinematic viscosity and t is the flow-through time, 

kin (m2s-1 -3)      [2] 

 

Density was determined using a density meter (DMA 5000, AntonPaar, Graz, Austria) at 

25°C. When setting equation 1 equal to equation 2, the viscosity was obtained and 

converted to mPa.s.  

 

3.9. Determination of particle size 

WPI/G and WPI/T solutions were diluted to a protein concentration of 0.5% (w/w) with 

solutions was determined by High Pressure – Size Exclusion Chromatography (HP-SEC) 

fitted with an Ultimate 3000 pump and a UV detector (Thermo Scientific, USA). The HP-

x 7.8 mm) were equilibrated with 30% acetonitrile in MilliQ water and 0.1% trifluoroacetic 

acid as eluents. Samples were loaded and eluted at 1.5 ml/min at 30°C, and the eluates 

were monitored at 214 nm.  

 

4. Results and discussion 

4.1. Determination of processing conditions 

The temperature-time profiles of HT treatments were experimentally determined, while 

those of HPHT treatments were estimated (Figure 1). The main difference between the 
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temperature-time profiles of HT and HPHT treatments was in the heating-up phase. The 

HT treatment took about 6 min to reach the target temperature (123°C), and it took about 

3 min for the temperature to increase from 90 to 123°C. In contrast, the HPHT treatment 

took about 3 min to reach the target temperature (123°C), and it took only about 30 s for 

the temperature to increase from 90 to 123°C. This fast temperature rise in the HPHT 

treatments is due to adiabatic heating accompanied by pressure build-up [16,17]. The 

temperature decrease during the pressure-holding time was successfully matched in the 

HT treatments. During the cooling phase the temperature decreased from about 120 to 

90°C faster for HPHT treatments compared to HT treatments. 

Due to the differences in the heating-up phase between the two treatment techniques, 

the time point at which the solutions reached 123°C (t = 6 min) was taken to compare HT 

and HPHT treatments in terms of heat load. The matching of the temperature-time 

profiles of the HT-treated solutions in the pressure-holding phase time also ensured a fair 

comparison between HT and HPHT treatments. 
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Figure 1. Temperature-time profiles of (a) HPHT treatments estimated using experimental and 
literature data, and (b) HT treatments experimentally determined. Profiles of HPHT treatments start 
at 3 min to show the starting point for processing when 123°C is reached.  
 

4.2. Browning 

The absorbance of WPI/G solutions treated with HT was higher compared to that of 

WPI/G solutions treated with HPHT for all processing times at pH 7 and 9 (Figure 2). At pH 

7 and 9, the browning rates were 15 times and 3.5 times higher for HT than for HPHT 

treatment, respectively. The difference in browning rate was also evident by eye (Figure 

S3). The absorbance of the WPI/G solutions at pH 6 could not be measured due to 

turbidity of the solutions. However, a reduced browning rate was observed by eye for the 

HPHT treatment compared to the HT solutions (Figure S3).  

The browning kinetics of the WPI/G solutions treated with HT were comparable to those 

of casein (3% w/w) – glucose (150 mM) solutions (pH 6.8) heated to 120°C for up to 40 

min [18]. It is noteworthy that in our study the heating-up time was excluded from the 

reported processing times. The higher absorbance of HT solutions compared to HPHT 

solutions shows that pressure at high temperature had a retarding effect on browning. 

The higher browning rates of HPHT solutions indicate that the retarding effect of pressure 

was stronger than the promoting effect of heat on browning, especially at pH 7.  
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Figure 2. Absorbance of WPI/G solutions at (a) pH 7 and (b) pH 9 as a function of processing time 
after HT and HPHT treatments. Means of two measurements are shown with standard deviations. 
 

4.3. Maillard reaction products 

Concentrations of furosine, CML and CEL were higher in WPI/G solutions treated with HT 

than in solutions treated with HPHT at pH 6, 7 and 9, paralleling the browning 

development (Figure 3). The concentrations of furosine, CML and CEL increased about 

linearly with processing time for HPHT treatment, whereas for HT treatment, they first 

increased steeply and then approached a plateau value. At pH 9, the concentrations of MR 

products in HT solutions dropped at 15 min processing.  
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Figure 3. Concentrations of furosine, CML and CEL as a function of processing time in WPI/G 
solutions prepared at pH 6, 7 and 9 and treated with either HT (
measurements are shown with standard deviations. a = single measurements. 
 

Furosine, CML and CEL concentrations were comparable to those measured in UHT milk 

[19]. Furosine concentrations were in the same order of magnitude compared to 

concentrations measured by Brands and van Boekel (2001) in casein (3%) – glucose (150 

mM) solutions (pH 6.8) heated for 0-40 min at 120°C. CML and CEL concentrations were 

also comparable to results obtained in a previous study with heated casein (3%) – glucose 
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(2.7%) solutions (pH 6.8) for 0-30 min at 120°C [20]. The plateau observed for HT 

treatment can be explained with the rate of MR product formation being equal to the rate 

of degradation, after which the rate of degradation becomes dominant. Such a behavior 

has been previously reported for the Amadori products [21].   

 

The lower concentrations of MR products for HPHT treatment show that pressure had a 

retarding effect on the generation of furosine, CEL and CML. The difference in 

concentration profiles between the two treatment techniques was similar to that for 

furosine in heat-treated milk at different temperatures. At 130°C, furosine concentration 

increased linearly from 0 to 18 min processing, whereas at 140°C, the concentration 

increased sharply from 0 to 8 min, after which it reached a plateau [22]. Compared to 

previous studies, which investigated HPHT treatment using amino acids or purified 

proteins and long treatment times (0-24 h), in our study a retarding effect of HPHT 

treatment for a mixture of proteins was observed using treatment times closer to 

industrial applications. Previous studies ascribed this effect to pressure favoring the side 

of the reactants in Maillard reactions due to the smaller volume occupied compared to the 

volume occupied by the products (positive activation volume) [5]. In our systems, the 

volume of native and denatured proteins might also play a role. It has been reported that 

pressure has a synergistic effect with heat on whey protein denaturation and unfolding 

[23,24,9]. Buckow et al. (2011) reported that pressures of 600 MPa for up to 45 min at 

70°C did not lead to significant unfolding of BSA. However, at higher temperatures, 

protein unfolding was accelerated, possibly exposing more lysine groups. In the same 

study, it was found that protein-sugar conjugation was decelerated under HPHT treatment 

compared to HT treatment. This could mean that although more reactive groups become 

available under high pressure at high temperature, they will not all react with the sugars, 

as a larger resulting volume is not favorable.  

The differences in the concentration profiles between the HPHT and HT treatments, 

especially for furosine and CEL at pH 6 and 7, were in agreement with the observed 

differences in browning rates and indicate that pressure at high temperature had a 

stronger retarding effect on overall MR compared to the promoting effect of heat. 
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4.4. pH change after HT and HPHT treatment 

The pH of WPI/G and WPI/T solutions decreased after HT and HPHT treatments (Figure 4). 

The pH decrease was larger at pH 9 compared to pH 7. For WPI/G solutions, the pH 

decrease was larger after HT treatment than after HPHT treatment, while the opposite 

was found for WPI/T solutions.  

 

 
Figure 4. pH difference as a function of processing time for WPI/G and WPI/T solutions treated with 
either HT or HPHT prepared at (a) pH 7 and (b) pH 9 . As the standard deviations were smaller than 
the data point markers, they are not shown. 

 

A pH decrease after HT and HPHT treatment has been associated with enhanced MR at 

longer processing times and increasing temperatures, resulting in a higher production of 

organic acids [14]. For WPI/T solutions, the larger pH drop after treatment compared to 

HT treatment can be directly ascribed to the effect of pressure on pH rather than to the 
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effect of MR. This pressure-induced pH drop might be due to pressure promoting the 

dissociation of ionizable compounds such as salts, acids, bases and polyelectrolytes [5]. 

According to a previous study, pressure shifts the dissociation equilibrium to the 

dissociated species, resulting in a pH decrease. However, Hill et al. (1996) and Moreno et 

anism. At 

higher pH values, pressure was found to accelerate MR. In later studies, the mechanism of 

pressure influencing particularly acid-base reactions, leading to changes in pH and protein 

reactions, has repeatedly been supported [25,26]. However, the pH drop may also be due 

to a change in ionic strength, which would have an effect on ion activities.   

Another mechanism associated with the pressure-induced pH drop might be irreversible 

changes in the protein structure caused by pressure. Pressures beyond 150 MPa, 400 MPa 

- -LA and BSA, 

respectively [27]. Such irreversible changes in protein structure and conformation might 

affect ion charges and ion-solvent interactions leading to permanent pH changes [25,26].  

 

4.5. Protein aggregation 

WPI/G solutions at pH 7 treated with HT contained larger particles and displayed higher 

viscosities compared to WPI/G solutions treated with HPHT (Figure 5 and 6). At pH 9, 

particle size and viscosity of samples treated with HT and HPHT did not differ considerably. 

With respect to particle size and viscosity, WPI/T solutions displayed similar behavior as 

WPI/G solutions (data not shown). The viscosity at pH 6 could not be measured due to the 

presence of large, coagulated particles. 
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Figure 5. Viscosity as a function of processing time for WPI/G and WPI/T solutions treated with HT or 
HPHT prepared at (a) pH 7 and (b) pH . As the standard deviations were smaller than the data point 
markers, they are not shown. 
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Figure 6. Size-exclusion chromatograms of (a) WPI/G solutions and (b) WPI/T solutions prepared at 
pH 7 treated for various times by HT and HPHT. 
 

At pH 9, pressure did not have an effect on particle size and viscosity of WPI/G and WPI/T 

solutions. At pH 7, the smaller particle size and lower viscosity of WPI/T and WPI/G 

solutions treated with HPHT compared to WPI/T and WPI/G solutions treated with HT 

show that pressure at high temperature inhibited protein aggregation, hence viscosity 

development. A linear dependence of viscosity on particle size has been described 

previously for protein-enriched liquids [28]. The inhibitory effect of HPHT could have been, 

at first glance, associated with the retardation of MR. Reduced crosslinking of proteins and 

sugars might have been responsible for less aggregate formation. However, the similar 

trends of WPI/G and WPI/T solutions with regards to the effect of processing time on 

particle size and viscosity suggest that MR did not play a major role in aggregate formation 

and viscosity development. However, a positive correlation between protein glycation and 
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aggregate formation was found by Buckow et al. (2011) at pH 9. HT and HPHT treatments 

resulted in increased protein-sugar conjugation and formation of high molecular weight 

compounds in BSA-glucose solutions. In contrast to our results at pH 9, increased protein 

aggregation was reported after HPHT treatment (30 min, 200 and 600 MPa, 110°C) 

compared to HT treatment (10 and 30 min, 0.1 MPa, 110°C). The increased protein 

aggregation was associated with changes in the protein conformation under HPHT. 

Another study showing a positive correlation between protein-sugar conjugation and 

molecular weight stands in contrast to our results at pH 7 [29]. While Hofmann (1998) 

found higher molecular weights in casein-glucose solutions after HT treatment (4 h, 95°C), 

no differences in particle size were found in the WPI/G solutions treated with HT of our 

study. This difference can be due both to the different type of treatment and to the 

different proteins. Casein cannot denature and unfold in contrast to whey protein. 

The larger particle size of WPI/T and WPI/G solutions treated with HT at pH 7 compared to 

pH 9 is in line with the finding from a previous study [30] -LG solutions at 

pH 6.5, high molecular weight aggregates were formed compared to pH 7.5. This seemed 

to be associated with different degrees of hydrophobic interactions and disulfide bond 

formation. The smaller particle size and lower viscosity of the solutions treated with HPHT 

might be thus associated with a reduced degree of such phenomena. As mentioned in 

section 3.3, pressure has been found to act synergistically with heat on whey protein 

denaturation and unfolding. To the best of our knowledge, no study has investigated 

protein aggregation during HPHT treatment at and above 100°C and whether the 

synergistic effect of pressure and heat on protein denaturation and unfolding also leads to 

protein aggregation. However, it can be anticipated that the particle size and viscosity of 

solutions treated with HPHT and HT are associated with pH-dependent differences in 

protein conformation, protein-protein interactions as well as with differences in the 

pressure and heat sensitivity of whey proteins [15,31]. Data showed that protein-sugar 

conjugation played a minor role in this respect.  
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5. Conclusion 

To summarize, the influence of pressure at high temperature on Maillard reaction 

products, browning and physicochemical properties of whey protein isolate 

glucose/trehalose solutions was evaluated comparing HPHT and HT treatments. A 

pressure of 700 MPa at about 123°C had a significant influence on browning, MR, pH, 

particle size and viscosity by acting on its own or in combination with heat. The novelty 

with regards to previous studies is that pressure at high temperature retarded browning 

and MR under conditions closer to application, namely the use of a protein-sugar mixtures 

and shorter processing times. The retarding effect of pressure on MR development was 

stronger than the promoting effect of heat. Interestingly, pressure initially induced a pH 

decrease in WPI/G solutions via a mechanism not related to MR. Pressure at high 

temperature inhibited protein aggregation and, thereby, viscosity development. These 

findings suggest that HPHT treatment can improve food quality when browning and high 

viscosities are undesired. We showed that the uniqueness and added value of HPHT 

treatment lies in the impact of pressure on the MR itself rather than the smaller heat load 

resulting from the mere presence of pressure. HPHT processing of liquid products 

containing protein and sugar, where browning and viscosity increases are undesired, could 

be introduced in the future. 
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7. Appendix 

 
Figure S1. Temperature of pressure medium at 700 MPa for different initial temperatures. 
 
 

 
Figure S2. Temperature difference before pressure build-up and after pressure release for different 
processing times using a pre-treatment at 90°C. 
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Figure S3. WPI/G solutions prepared at different pH values and treated for various times using HT 
and HPHT treatment.  
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1. State-of-the-art after PhD project 

The general aim of this thesis was to explore the properties of a novel protein and the 

potential of a novel processing technology for the development of high-quality protein 

foods. Knowledge on physicochemical and functional properties of quinoa protein and 

HPHT processing has been expanded by this thesis (Figure 1). With regards to quinoa 

protein, new functional properties, processing methods and fractionation techniques were 

studied. With regards to HPHT processing, the behaviour of a new protein-sugar system 

under processing conditions closer to industrial applications was determined.  

 

 
Figure 1. Overview of aspects described in literature on quinoa protein and HPHT processing of 
protein systems up to 2012 with knowledge added through this thesis (in green).  
 

The aims of this thesis were: 

1) To study the effect of extraction pH of conventional solvent extraction on 

physicochemical (protein purity, protein yield, solubility and thermal properties) 
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and functional (digestibility, protein aggregation and gelation behaviour) 

properties of QPI and to explore a hybrid dry and aqueous fractionation method 

for obtaining protein-rich fractions from quinoa 

2) To examine the effect of pressure during HPHT processing on Maillard reactions, 

browning and physical protein properties under processing conditions close to 

industrial applications  

 

The following main findings were obtained addressing the specific aims: 

1) As extraction pH increased, quinoa protein yield increased, protein purity decreased 

or did not change and protein denaturation increased. Solubility was the highest at 

pH 7 for QPI extracted at pH 9. However, the optimal extraction pH depends on the 

application for which the QPI is used. When heating suspensions of QPI that were 

extracted at pH 8 and 9, increased protein aggregation was observed and heat-

induced, semi-solid gels with a dense microstructure were obtained. When heating 

suspensions of QPI extracted at pH 10 and 11, limited aggregation was observed and 

the obtained gels were not self-supporting gels and had loose particle arrangements. 

After heat treatments denaturation and aggregation of quinoa protein was increased 

and in vitro gastric protein digestibility was decreased. It was concluded that 

extraction and processing conditions need to be controlled to optimise protein 

digestibility.  

Hybrid dry and aqueous fractionation of quinoa allowed to obtain protein-rich 

fractions with a protein purity lower and a protein yield similar or higher compared 

to conventional wet fractionation. Large water savings were made. Therefore, hybrid 

dry and aqueous fractionation is more resource-efficient, but the functionality of the 

obtained fractions might be different compared to QPIs obtained using conventional 

fractionation. 

2) Pressure retarded early and advanced Maillard reactions and browning at pH 6, 7 

and 9 in whey-protein-sucrose solutions, while it inhibited protein aggregation and, 

thereby, viscosity development at pH 7. It was concluded that HPHT processing 

under conditions close to industrial applications can potentially improve the quality 
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of protein-sugar containing foods, for which browning and high viscosities are 

undesired, such as high-protein beverages.  

The mechanisms behind these findings will be discussed in the following. 

 

1.1. Quinoa protein  

To extract a protein concentrate from plant material, there are several methods available. 

Extraction methods can mainly be categorised in wet and dry fractionation methods [1]. 

For wet fractionation, solvents are used to dissociate the protein from the plant matrix 

and to purify the isolated protein. This process is based on properties of the protein, such 

as charge and protein conformation. These properties can be modified by factors, such as 

pH, type of solvent, solvent concentration and temperature, to increase protein solubility 

and thus protein recovery. Alkaline extraction followed by acid precipitation (conventional 

wet fractionation) has been commonly used to solubilise the protein from the plant 

material and subsequently purify it [2]. For alkaline extraction, often NaOH is used to 

increase the pH above 7. Proteins become negatively charged due to ionisation of the 

carboxyl groups of the amino acids leading to electrostatic repulsion between negatively 

charged groups, which increases protein-water interactions and thereby protein solubility 

[3] [4]. Therefore, as extraction pH increases, protein solubility also increases, as observed 

in Chapter 2 for quinoa protein. For subsequent acid precipitation, often HCl is used to 

decrease the pH to below 7. Proteins are then at or close to their isoelectric point, 

resulting in a net zero charge and thus leading to protein aggregation. In this way, proteins 

can be separated from non-protein components and purified. However, this process can 

also lead to increased protein denaturation due to conformational changes in the protein 

structure, so the precipitation pH might be chosen to be further away from the isoelectric 

point. This procedure was followed in Chapter 3 to reduce protein denaturation compared 

to the fractionation procedure followed in Chapter 2. Protein denaturation was indeed 

reduced when changing the precipitation pH from 4.5 to 5.5, as shown by a higher 

denaturation enthalpy of the extract (Chapter 2, Figure 2b). In addition, the shorter 

alkalinisation time (1 h instead of 16 h) might have also contributed to the reduction of 

protein denaturation. 
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An alternative method to wet protein fractionation is a dry fractionation method. 

According to this method, the protein is separated from the other plant components by air 

classification of the milled plant material [1]. The separation process is based on particle 

size. For pea, dry fractionation has been shown to be effective in obtaining protein-rich 

fractions (55.6 w/dw% protein), as the protein bodies and starch granules differ in size [5]. 

For quinoa, however, the protein bodies and starch granules are similar in size and thus 

more difficult to separate (Chapter 4). However, most of the protein is contained in the 

embryo and it was shown that the embryo can be neatly disentangled from the perisperm. 

Therefore, dry fractionation can be used to pre-concentrate quinoa protein. However, by 

using for quinoa this technique alone, protein contents as high as for pea might not be 

achievable due to the limited capacity to separate protein and starch based on size. 

Therefore, to optimise the separation process for quinoa it is necessary to add wet 

fractionation steps to further concentrate the protein. In the aqueous phase separation 

step using salt, advantage of quinoa’s water- and salt-soluble proteins was taken to 

maximise protein yield and purity. In the ultrafiltration step, the size of quinoa proteins 

compared to remaining soluble compounds (e.g. soluble fibres, sugars and micronutrients) 

proved beneficial to further concentrate the protein. 

 

 

1.2. HPHT processing 

In HPHT processing, there are two characteristic processing parameters involved: pressure 

and heat. Separately, they are known to have a similar effect on whey proteins: they 

denature and unfold whey proteins, leading to protein aggregation [6]. Together, pressure 

and heat were shown to increase, reduce or not affect protein aggregation compared to 

heat alone, as reported by Buckow et al. (2011) and in Chapter 5. Similarly, the 

combination of heat and pressure affected MR differently in several studies. This implies 

that pressure and heat interact in different ways depending on the food system and the 

processing conditions. The processing conditions may influence protein structure as well 

as protein interactions with the solvent, sugar and/or other proteins in such a way that it 
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affects pressure- and heat-related physical phenomena, such as entropy and activation 

volume. The net sum of these events might determine the extent of chemical and physical 

interactions, such as MR, browning and protein aggregation. 

 

In the next sections of this Chapter it is discussed how these findings can be used for the 

development of high-quality protein foods. With regards to quinoa protein, the mapping 

of more protein properties at more extraction pH and processing conditions provides 

further information for application possibilities. Therefore, in the following, it is examined 

which functional properties of the obtained QPIs can be useful for the design of high-

quality protein foods and which current protein isolates they can replace. As for quinoa 

protein-rich fractions (QPFs) obtained using the hybrid fractionation method, protein yield 

and purity are relevant for the industrial applications. Furthermore, as protein yield of 

QPIs might not be optimal for large-scale production, it is examined how it can be 

optimised. Finally, a different, non-technical aspect of quinoa protein as a food ingredient 

is discussed: the market perspective. 

With regards to HPHT processing, the effect of pressure on protein properties is evaluated 

in a broader context for the development of high-quality protein foods. 

 

2. Comparison of quinoa protein properties to other food protein 

properties 

In Chapter 2 and 3, it was shown that the properties of QPIs can vary according to their 

extraction and processing conditions and that these conditions can determine the 

application. Therefore, it is necessary to first define which properties would be desired for 

a certain application and at which level. Then, the properties of the QPIs can be compared 

to the properties of other food protein isolates to determine the potential of quinoa 

proteins to replace other proteins while maintaining functional properties.  

 

Nutritional value of protein foods depends on many protein properties, such as 

composition, digestibility, bioavailability and utilisation. Generally, a high nutritional value 

is desired for protein foods. Protein foods should not only be nutritious but also taste 
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good. This usually includes flavour, appearance, texture and other sensorial properties. 

These can be related to physicochemical and functional properties of the proteins the 

food contains, such as aroma composition, gelation behaviour, emulsifying and foaming 

properties. Different food proteins can display different degrees and nuances of these 

protein properties. The degrees and nuances desired depend on the application the 

protein is used for. In the following the focus is on protein solubility, gelation behaviour, 

protein composition and digestibility. 

 

It was chosen to mainly compare quinoa protein to a current standard plant protein (soy) 

and a more novel, but already commercialised plant protein (pea). The reason was that as 

these proteins have been successful on the market, comparing quinoa protein with them 

can better indicate the potential of quinoa protein. When the properties of QPI are similar 

to those of soy or pea protein isolates, the reason for replacement with quinoa would lay 

in the following. As mentioned in Chapter 1, QPI has a more balanced essential amino acid 

profile compared to pea protein isolate, which makes QPI potentially more nutritious. 

Regarding soy protein isolate, the main disadvantage compared to QPI is considered to be 

the allergenicity. Soy may cause allergic reactions and has been associated with positive as 

well as negative health effects [7]. Quinoa, in contrast, is free of all the major allergens in 

plants (gluten, soy and nut) and has, to the best of our knowledge, only positive health 

effects if the grain has been washed to remove the saponins.   

 

2.1. Quinoa protein isolates 

When for an application of a protein isolate in foods a high solubility and gel-formation 

ability is desired at neutral pH, QPI obtained at extraction pH 9 (E9) might be suitable to 

use as it has the highest solubility and gel-formation ability when dispersed at pH 7 

compared to the other extraction pH (Chapter 2). The storage and elastic moduli of QPI 

gels at similar protein concentrations are comparable to those of soy and pea protein 

isolate gels [8,9]. This means that QPI E9 has the potential to replace soy and pea protein 

isolates while maintaining or exceeding gelation properties.  
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The in vitro gastric protein digestibility of untreated and heat-treated QPI obtained at any 

extraction pH seemed to be similar or higher compared to untreated soy and pea protein 

isolates after the same digestion time, even after severe heat treatment (30 min at 120°C) 

(Chapter 3) [10]. However, the gastric conditions applied by He et al. (2013) were not the 

same as those chosen for the study describe din in Chapter 3, so it is not possible to draw 

a definite conclusion. Even if the in vitro conditions between the different studies were 

the same, it should be noted that overall digestibility, including other phases of the 

gastrointestinal tract, were not studied. He et al. (2013) also measured the digestibility of 

soy and pea protein isolate under simulated duodenal conditions, subsequently to the 

simulated gastric conditions. While soy protein had a higher digestibility than pea in the 

gastric phase, it was lower in the duodenal phase. This means that the digestion kinetics of 

each protein can vary from one digestion phase to the other. Therefore, it is difficult to 

conclude from the present results on overall digestibility.  

However, the results obtained in Chapter 3 indicate an initial high digestibility and thus 

nutritional value of QPI compared to pea and soy protein. Furthermore, heat treatment of 

QPI does not reduce digestibility to a large extent compared to the digestibility of 

untreated pea and soy protein under the in vitro gastric conditions. This means that even 

after harsh heat treatment, the digestibility of quinoa protein may be higher than that of 

pea and soy protein that has not been treated at all. However, the digestion kinetics of 

QPI should be studied in combination with other phases of the GI tract, too. Also, 

movements in the gut might influence digestion kinetics in vivo and could also be 

simulated in in vitro models. This would provide a more complete picture of quinoa 

protein digestibility.  

Another aspect to pay attention to is the influence of Maillard reactions on digestibility. 

Heat treatment of whey protein – sugar solutions has been often found to lead to 

decreased protein digestibility [11,12]. One study reported increased digestibility as a 

result of Maillard reactions in the initial stages. As it is expected that the QPIs contain 

reducing sugars and quinoa protein digestibility was shown to be reduced by heat 

treatment, it might also apply here that Maillard reactions decrease protein digestibility. 

The extent of the impact of MR on digestibility might depend on the protein type, so this 
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aspect is difficult to compare between quinoa protein and other proteins at this stage but 

should be taken up in further research. 

 

Regarding foaming properties, according to Lindeboom (2005), foaming capacity of quinoa 

protein is lower than that of soy protein, while foam stability of quinoa protein is higher 

than that of soy protein (Chapter 1). Regarding emulsifying properties, QPIs without 

saponins (corresponding to our QPIs) had a similar specific surface area (m2/ml) but a 

lower emulsion stability (defined as percentage of initial specific surface area after 30 min 

standing at room temperature) of initial specific surface area after 30 min standing) 

compared to soy protein. This means that when a high foam stability is desired for a 

product, like whipped cream, QPI might be more suitable to use than soy protein. 

However, when a high emulsion stability is desired, like for mayonnaise, QPI might not be 

less suitable. 

 

In conclusion, QPI obtained at extraction pH 9 can be an allergen-free or more nutritious 

option compared to pea or soy protein isolate, respectively, for applications requiring a 

high solubility and gel-formation ability in water. It may be a better option than soy 

protein if a high protein digestibility and a high foam stability is desired. However, as very 

little literature is available on these aspects, as well as on sensory properties of QPIs, 

these should be investigated further before replacement can really put be put into 

practice.  

 

2.2. Quinoa protein – rich fractions obtained by the hybrid fractionation process 

After having obtained a protein-rich fraction from quinoa using the hybrid fractionation 

method, the physicochemical and functional properties of this fraction were studied. 

Based on Chapter 2-4, unpublished work and previous literature, it is possible to speculate 

on some of the potential physicochemical and functional properties of the quinoa protein 

– rich fractions (QPF). 
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In Chapter 4, it is expected that by using the hybrid fractionation method the native 

protein functionality would be better retained compared to the conventional wet fraction 

method due to the absence of organic solvents. However, the question is if using 0.5 M 

NaCl might not affect protein properties. Salt is known to influence proteins via the 

salting-in and salting-out effect [13]. At high salt concentrations, proteins may precipitate 

(salting-out). In Chapter 4, we made use of the salting-in effect to increase protein 

solubility and no precipitation was observed at 0.5 M NaCl. Therefore, it is assumed that 

this salt concentration did not significantly affect protein structure, thus functionality. Also 

not when removing the salt through rinsing, which would be a necessary additional step 

before the QPF can be used as an ingredient. Protein structure and functionality was 

furthermore expected to be little affected when using a mild drying technique, such as 

hot-air drying. The protein would be denatured to smaller extent compared to less mild 

drying techniques such as spray-drying.  

 

The QPF obtained in Chapter 4 had a protein purity of 59.4 w/dw% and starch content of 

9.5% w/dw% (unpublished data). This means that the composition of QPF will probably lay 

between that of quinoa flour and that of QPI obtained at extraction pH 8 (E8). pH 8 is 

closest to the pH of water, which was used for hybrid fractionation. Therefore, the values 

for the properties of QPF will probably also lay between those of QPI E8 and quinoa flour. 

For example, the middle value for solubility of QPF and QPI E8 at pH 7 is calculated to be 

30%, as quinoa flour has been found to have a protein solubility of 18% at pH 7 while QPI 

E8 showed a solubility of 35% [14] (Chapter 2). This means that QPF will have a very low 

protein solubility in water compared to QPI E9, soy and pea protein isolates. However, 

protein contents in soy and pea protein isolates similar to QPF might also have a lower 

protein solubility, so QPF should be rather compared to protein concentrates, which can 

have protein purities of 60 w/dw%. Using the same calculation for the middle value, QPF is 

estimated to have a degree of hydrolysis of 16% (360 min digestion) when untreated, and 

of around 15% when heat-treated for 30 min at 120°C. This means that protein 

digestibility of QPF will not be much different from QPI E9 before and after severe heat 

treatment. This indicates that initial protein digestibility will still be higher than that of 

untreated soy and pea protein isolates, while having a lower protein purity than them.  
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QPF probably has a higher starch content than QPIs. What is remarkable about quinoa 

starch is its high freeze-thaw and retrogradation stability [15]. This means that quinoa 

starch can be useful in frozen food products, sauces, cream soups, pie fillings and in 

emulsion-type food products (e.g. salad dressings). Also, quinoa starch has been found to 

exhibit a higher viscosity than wheat starch at the same starch concentration and at 

similar temperatures [15]. Therefore, QPF might be a better option than QPI for protein-

enriching the mentioned food products and better than using wheat starch if high 

viscosities are desired. 

 

Furthermore, QPF might contain more health-promoting compounds, such as fibres and 

micronutrients, as protein concentrates have been associated with health benefits 

compared to further refined ingredients [15,16]. Also, the oil was not extracted for QPF, in 

contrast to QPI. Quinoa oil has been claimed to be of high quality due to high contents in 

polyunsaturated fatty acids (similar composition to maize and soy oil) [15].  

 

In conclusion, QPF might have to some extent different functional properties to QPI but be 

comparable to soy and pea protein concentrates. For certain applications, it may be better 

to use QPF than QPI, if a very high protein purity is not necessary, due to a potentially 

higher technical and nutritional functionality but this, as well as a comparison to other 

protein concentrates should be investigated further.   

 

3. Optimisation of quinoa protein yield 

As QPI E9 and QPF obtained in Chapter 2 and 3, respectively, show promise to be used in 

foods replacing other plant protein concentrates (section 2), the effectiveness and 

efficiency of the fractionation processes needs to be examined. Effectiveness and 

efficiency are important factors for economic and environmental reasons and can be a 

large barrier for the upscaling of any production process. 
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QPI E9 (Chapter 2) and QPF (Chapter 4) have a protein purity of 85% and 60%, 

respectively, which is less than soy (90%) but similar to pea (80-85%) [2,5]. The protein 

yield of QPI and QPF is 39% and 62%, respectively, which is less than soy (71-85%) but 

similar to pea (55-65%). This shows that although QPF has a lower protein purity than pea 

protein isolate, it compares to pea protein isolate in terms of protein yield. To increase 

protein purity and yield and thus make the hybrid fractionation process more effective 

and efficient, recommendations were made in Chapter 4.  

QPI E9 (Chapter 2) has a similar protein purity compared to soy and pea protein isolates, 

however, the protein yield might be too low for large-scale production. This would result 

in the waste of a lot of protein. Therefore, it is advisable to increase protein yield of QPI. 

This, however, might decrease protein purity, as shown in Chapter 2 and in previous 

literature for lupine [17]. On the other hand, a negative correlation between protein yield 

and protein purity was not found in Chapter 3, 4 and also not in several previous studies 

on quinoa and amaranth (from the same family as quinoa) [18-20]. Some of those studies 

reported only a positive correlation of protein yield with extraction pH or even also with 

protein purity. It might be that the correlations depend on the individual 

extraction/fractionation conditions and plant material. However, more research should be 

performed on this for quinoa. For now, it is assumed that protein purity will not decrease 

significantly with increasing protein yield and the options for raising the protein yield will 

be analysed in the following.  

 

During protein extraction from plant material, protein yield can be influenced by factors 

such as type of solvent, pH, time, temperature and biomass/solvent ratio [2]. For quinoa, 

the influencing factors in order of importance were found to be: solvent/meal ratio > pH > 

NaCl concentration > temperature > extraction time [21]. Because NaCl concentration and 

temperature showed a negative correlation with protein yield, these factors were 

discarded for determining the optimal extraction conditions. Optimal conditions for a 

maximum protein yield were: solvent/meal ratio of 19.6/1 (v/w), pH 11 and 149.1 min of 

extraction time. These yielded 76.9% of quinoa protein. As mentioned in Chapter 2, this 

protein yield is very similar to our obtained value (74.3%) at pH 11 in the alkalinisation 

stage. However, in our study the solvent/meal ratio (10/1 (v/w)) and the extraction time 
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(960 min) were lower compared to the optimal extraction conditions found by Guerreo-

Ochoa et al. (2015). This suggests that there are other factors positively affecting protein 

yield than those reported significant or positively correlated to protein yield by Guerreo-

Ochoa et al. (2015).  All factors will be discussed in the following. 

 

The temperature for optimal protein extraction determined by Guerreo-Ochoa et al. 

(2015) was 36.2°C. We extracted at ambient temperature (about 20°C). An increase in 

temperature from 20 to 25°C was shown to increase quinoa protein solubility at the 

alkalinisation stage by 6% [22]. Further temperature increase did not significantly raise 

solubility any further. This means that the protein yield as reported in Chapter 2 could be 

increased by 6% when the temperature was raised by 5°C. Also, a temperature raise from 

20 to 25°C is unlikely to denature the protein and thus lead to functionality loss and it 

might not be that costly to realise in large-scale production. 

 

One factor suggested by Guerreo-Ochoa et al. (2015) to be insignificant for protein yield 

but which might actually be significant is particle size of the meal. Guerreo-Ochoa et al. 

(2015) chose a particle size of 500 m. Föste et al. (2015) found an increase in solubility 

that approximately 2/3 of the particles had a smaller size than 100 μm. If it was assumed 

to Föste et al. (2015). This might be considered a small increase in protein yield, however, 

in industry this might be considered a large difference in profit. As the granule size of 

quinoa starch is about 1- [15]., the starch granules would not be affected and 

possible interactions with protein extractability or purity would be unlikely. 

 

Solvent/meal ratio and extraction time were factors found to affect protein yield by 

Guerreo-Ochoa et al. (2015) and can thus also be adjusted to increase protein yield in 

Chapter 2 and 3. To know how they should be adjusted, the response surface plots of 

Guerreo-Ochoa et al. (2015) for the correlations between solvent/meal ratio and protein 
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yield, as well as for extraction time and protein yield were studied. Protein yield as a 

function of solvent/meal ratio was reported to have an optimum at about 20/1 (v/w) for 

pH 6.5-11.5, which suggests that increasing the solvent/meal ratio from 10/1 to 20/1 in 

Chapter 2 and 3 would increase protein yield at any of the extraction pH used. If the 

response surface plots applied to the conditions in Chapter 2, an increase in solvent/meal 

ratio from 10/1 to 20/1 would result in a protein yield increase by an average of 10% for 

extraction pH 8-11, which is a large gain. However, higher volumes of solvents (NaOH and 

HCl) are unlikely to be adopted by industry, even if they can be reused, because of the 

higher costs for chemicals, equipment, and energy [2]. Besides, overall costs will also 

increase due to an increase in costs for downstream processing for protein recovery. 

 

With regards to extraction time, Guerreo-Ochoa et al. (2015) reported that protein yield 

increased continuously from 20-160 min for pH 8-11.5. It is not known what protein yields 

would be obtained after extracting for longer than 160 min. In contrast to Guerreo-Ochoa 

et al. (2015), Föste et al. (2015) found that protein solubility increased over the first hour 

but did not significantly increase further over the next three hours. This means that 

extending the extraction times used in Chapter 2 and 3, might not necessarily lead to 

higher protein yields. Besides, long extraction times might denature the protein more and 

increase costs in industrial production. 

 

In Chapter 4 it was shown that when increasing NaCl concentration from 0 to 0.5 M, the 

yield of quinoa protein increased from 40.3 to 80.3%. In contrast, Guerreo-Ochoa et al. 

(2015) found a negative correlation between NaCl concentration and quinoa protein yield 

in the concentration range 0-2 M. It is not clear whether NaOH (2 M) or Tris-HCl buffer 

(0.2 M) was present in the study of Guerreo-Ochoa et al. (2015). The presence of any of 

these two solvents might have an influence on the effect of NaCl on protein yield. 

Therefore, the interactive effect between several solvents, such as NaCl, NaOH and Tris-

HCl, on protein yield should be studied further. In case the combination of NaCl and NaOH 

does not influence protein yield negatively, an increase in protein yield by 30% might be 

achieved in Chapter 2 when using 0.5 M NaCl. As explained in section 2.2, it is assumed 
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that such NaCl concentrations do not affect protein structure and that they are reversible 

once the salt is washed out. However, this should be investigated.  

 

In conclusion, to increase protein yield from quinoa using conventional wet fractionation, 

taking into account the feasibility in industry, it is recommended to test systematically the 

effect of temperature, particle size and NaCl concentration on protein yield. If the effect of 

these factors on yield can be confirmed in the magnitudes reported, protein yield of QPI 

E9 (Chapter 2) could be doubled from 39.4 to 81.1%, assuming there are no interactive 

effects between the factors. Interactive effects seem to be mostly positive, according to 

Guerreo-Ochoa et al. (2015). Therefore, even higher protein yields might be achievable. 

However, the protein quality should be checked again and extra costs for increase in 

temperature and NaCl concentration (and water for washing out NaCl) should be weighed 

against the gain. Also, it is not certain that the protein purity stays the same, protein 

purity should also be taken into account when optimising protein yield. It is, furthermore, 

not certain that the gain in protein yield at the alkalinisation stage will translate 1:1 to the 

final product. 

  

4. Market perspective of quinoa protein isolates and fractions 

Once all the technical aspects of quinoa protein as an alternative food protein have been 

dealt with, another aspect to take into account for industrial production is the market. 

There needs to be a market for quinoa protein and satisfying the market should be 

profitable. Therefore, to test the market, a quick analysis of the popularity of quinoa as a 

seed was performed. From this, the possible competitive advantage of quinoa protein was 

deduced. To compare the profitability between conventional and hybrid fractionation, the 

processing costs for the production of QPI and QPF were calculated. 

 

A total of 8120 launches of products containing the word “quinoa” were found worldwide 

on 21 June 2016 [23]. The number of product launches grew exponentially from 2002 to 

2015 (Figure 2). This growth might be explained by quinoa tapping into several of the 10 

top trends in food that have emerged in the past 10 years, according to trend reports from 
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Innova Market Insights [23]. As a result of the marketing of quinoa’s properties, quinoa 

has been in line with the top trends reported in whole grain, superfoods, high protein, 

“free-from”, natural/organic and ancient/authentic/traditional foods. This is also reflected 

in the positioning of the current products labelled with quinoa (Figure 2). 

It might be assumed that when concentrating the protein of quinoa, the reputation of the 

seed will be preserved for the protein product. A protein concentrate from quinoa then 

needs to compete with protein concentrates from other sources. The same inherent 

properties of quinoa might distinguish quinoa protein from other proteins: balanced in 

essential amino acids, hypoallergenic and originating from an “ancient grain”.  Although 

basically any grain can be called “ancient grain” as it started being consumed in ancient 

times, quinoa was until recently being consumed by a small amount of people (relative to 

the world population), who are still living according to indigenous (Incan) traditions. This 

stands in contrast to grains like wheat, maize or soy, which are not (only) being consumed 

by indigenous people anymore. So quinoa has still an advance in being exotic and 

authentic. It might thus be better to call quinoa an “indigenous grain”, for the moment, 

and then it is justified and even advised to create a halo around quinoa with all the Incan 

history and tradition for marketing purposes. In this way people can learn where it comes 

from and what the Incan culture is like. 

As a result, to the best of our knowledge, none of the current (novel) proteins has the 

combination of features mentioned above. Therefore, a quinoa protein concentrate would 

have a clear competitive edge over other current (novel) protein concentrates. 

 

The costs for the production of QPI E9 and QPF on an industrial scale were calculated and 

compared (Table 1). Despite the different properties of the two products, it is useful to 

compare their costs, as those can then be weighed against the benefits and limitations of 

the two products. To compare the costs of the two production processes, only the 

processing costs (energy, water and chemicals) were taken into account. Capital 

(equipment) and labour costs were not taken into account here, as these were assumed to 

be similar for the two processing techniques. The defatting step in the conventional 

method was also not taken into account, as the cost would be high (USD 264/tonne 

quinoa) compared to the other processing costs [24]. It would not be fair to compare to 
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the hybrid method where defatting is not included.  

The calculation results show that the hybrid fractionation method produces a product that 

is less than half the price of that of the wet method. This large cost difference is especially 

due to the drying cost (drying requires a lot of energy), and to the low protein yield for the 

wet method. Therefore, even if the hybrid fractionation method produces low protein 

purities, the gain in energy savings and reduced protein loss during processing makes the 

hybrid method more attractive for large-scale production. 

 

However, this cost analysis does not take into account agronomic factors, which might 

play an important role. One is the protein yield per hectare (crop yield per hectare x crop’s 

protein content). For quinoa grown in the Netherlands, it was calculated to be 0.6 t/ha, 

assuming a crop yield of 4 t/ha and a protein content of 15 w/dw% [25](Chapter 1). This 

protein yield of quinoa is higher than that of pea (0.4 t/ha), chickpea (0.2 t/ha) and 

rapeseed (0.4 t/ha), and equal to that of maize [26]. However, it is lower compared to soy 

(0.9 t/ha), lupin (1 t/ha), wheat (1.1 t/ha) and potato (1.2 t/ha). This means that the 

quinoa protein yield per hectare can compete with several novel plant proteins, while it is 

at this moment outperformed by mainstream or other novel plant proteins. However, if 

the protein yield per hectare is linked to the fractionation process of the crop, the actual 

protein yield per hectare, taking into account the protein loss during fractionation, might 

be different among protein sources. Also, other agronomic factors may vary, such as the 

use of water, fertilisers, pesticides etc., influencing the final cost of the protein product.  

 

In conclusion, it is likely that quinoa protein can not only benefit from the promising 

protein functionality and technical scalability (section 2 and 3), but also from the current 

popularity of quinoa seed and therewith profile itself against other food proteins. In terms 

of financial scalability, it can be more advantageous to produce a quinoa protein product 

using the hybrid dry and aqueous fractionation method compared to the conventional 

method. The result would be higher profits. Even when considering the protein yield per 

hectare, quinoa protein performs better than pea but worse than soy. However, other 

agronomic factors should be taken into account for a better comparison to other proteins. 

Also, it is not certain if significant profits from quinoa protein production using any 
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fractionation method can be made at this moment. The price for quinoa seed is still very 

high (on average USD 3000/tonne) [27], which might now be the biggest barrier for 

industrial production of quinoa protein.  
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Figure 2. Product launches containing the word “quinoa” (free text search using the term “quinoa”) 
according to the Innova Database on 21 June 2016. Above: number of product launches by year. 
Below: percentage of product launches (from a total of 8120) by the top 10 positioning sub-
categories. 
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Table 1. Cost calculations for concentrated quinoa protein produced (in tonne = t) using the 
conventional wet or hybrid fractionation method (Chapter 2 and 4).  
 

  kg/t quinoa seed Cost/t quinoa seed (USD) 

Processing step or material 
MJ/t 

quinoa 
seed 

Price 
(USD/t) 

Conventional 
fractionation 

Hybrid 
fractionation 

Conventional 
fractionation 

Hybrid 
fractionation 

Millinga 100.00       2.97 10.35 

Centrifugationa 15.00       0.45 0.22 

Ultrafiltrationa 14.00       0.00 0.21 

Spray-dryinga 4800.00       141.30 70.82 

Waterb   0.95 10000.00 5012.00 9.50 4.76 

NaOHb   453.00 6.40   2.90 0.00 

HClb   85.00 33.20   2.82 0.00 

NaClb   150.00   146.35 0.00 21.95 

Total cost/t quinoa seed         159.93 108.32 

Total cost/t product         405.92 180.53 
a Energy requirement based on Schutyser et al. (2015) and electricity price (USD 0.106 per kWh) 
based on Ulrich and Vasudevan (2006) [28,29]. 
b Price based on ICIS [30] 
 

5. Potential of high pressure processing of proteins for the development 

of protein foods 

When developing high-quality protein foods, attention should be also paid to the 

processing of the final product. In Chapter 5, pressure was shown to have a unique and 

direct effect on WPI – sugar solutions during HPHT processing, which can be used to 

improve protein food quality compared to traditional processing. The question arises to 

what extent the findings observed for WPI-sugar solutions can be extrapolated to quinoa 

protein. Due to time constraints, it was not possible to test experimentally the effect of 

HPHT treatment on MR and protein aggregation in quinoa-sugar solutions anymore. 

Therefore, a prediction of this effect for quinoa protein was made based on preliminary 

results obtained in this thesis. This provides insights about the influence of protein type on 

the effect of pressure at high temperature on MR and protein aggregation.  
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In unpublished work we showed that when treating quinoa protein isolates for 3 min at 

various pressures, denaturation enthalpy rapidly decreased with increasing pressure 

(Figure 3). SDS-PAGE gels showed a disappearance of bands at intermediate molecular 

weight, while more intense bands appeared at low molecular weight at 700 MPa 

compared to the other pressures. This suggests that quinoa protein is susceptible to 

pressure-induced denaturation and protein structure changes, especially at high 

pressures. This behaviour is similar to that of whey proteins under high pressure [6], and 

may be attributed to the fact that whey and quinoa proteins have globular structures. 

Therefore, it can be expected that in quinoa protein – sugar solutions, HPHT induces 

similar changes in protein structure and possibly ion activities as in whey protein – sugar 

solutions, leading to a pH decrease and thus reduced MR, as well as to reduced protein 

aggregation. The extent in the pH decrease and protein aggregation may be different 

compared to whey protein but the overall effect of HPHT on MR and viscosity is expected 

to be similar. Therefore, among globular proteins the protein type is speculated to not 

influence the qualitative effect of pressure at high temperature on MR and protein 

aggregation.  

 

Based on this assumption, on the findings from Chapter 3 and on the relationship between 

MR and protein digestibility mentioned in section 3.1, the effect of pressure can be 

extrapolated to a protein property that was not studied: digestibility. In QPI suspensions 

(5% w/w) at neutral pH, protein aggregation was found to increase, while protein 

digestibility was reduced after heat treatments, especially at 120°C (Chapter 3).  At the 

same temperature and pH, and at a similar protein concentration (6% w/w), in WPI – 

sugar solutions, protein aggregation was also shown to increase after heat treatment and 

compared to HPHT processing. Conversely, protein aggregation was reduced by pressure, 

which might lead to an increased protein digestibility compared to heat treatment. The 

lower digestibility of heat-treated QPIs (Chapter 3) supports previous findings of a lower 

digestibility with increased MR (section 3.1). Thus, it is speculated that the reduced MR 

found for HPHT-treated WPI – sugar solutions were also responsible for an increased 

protein digestibility. This hypothesis should be tested in future research. If it is confirmed, 
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HPHT processing might be better to use than autoclaving to sterilise protein foods for 

which a high protein digestibility is desired, e.g. in medical, infant or sports nutrition.  

 

Other protein properties that were found to be affected differently by pressure compared 

to heat are thermal properties and protein fractions of QPI suspensions, as well as texture 

properties of QPI gels. Figure 3 from this Chapter and Figure 2 and 4 from Chapter 3 were 

obtained using the same protein concentration (20% w/w), thus they can be compared to 

each other. It can be noted that the enthalpy decreased more rapidly with increasing 

pressure (0.1-700 MPa) (this Chapter, Figure 3) than with increasing temperature (20-

120°C) (Chapter 3, Figure 2). SDS gels of pressure- and heat-treated QPIs overall showed 

that the bands became fainter with increasing temperature and pressure. However, for 

pressure-treated QPIs, the bands at low molecular weight were most intense at 700 MPa. 

Also, protein material that did not enter the gel, as well as smears at high molecular 

weight, were visible for pressure-treated QPIs. In contrast, almost no bands were visible 

for heat-treated QPIs at 120°C. This suggests that in the pressure and temperature range 

studied, pressure denatured and associated, as well as dissociated, soluble quinoa protein 

to a higher degree than heat. This finding is in agreement with a study that reported 

higher denaturation enthalpies and more soluble aggregates at high and low molecular 

weight for pressure-treated rapeseed protein isolate compared to heat-treated isolate 

[31]. 

 

In a preliminary study, using the same protein concentration and pH as above, pressure-

treated suspensions of QPI E9 (Chapter 3) produced self-supporting semi-solid gels at pH 7 

and 9 at 3 min processing. Contrary, heat-treated QPI suspensions resulted in weak, soft 

self-supporting gels but none of them were suitable for texture analysis. At 10 and 15 min 

processing, the pressure-induced gels were generally harder than the heat-induced gels. 

The higher gelation ability and gel hardness obtained with pressure may be due to the 

higher denaturation and protein aggregation mentioned above. The dissociated protein 

might have been incorporated into the network. For pressure-induced gels from rapeseed 

protein isolate, a higher gel hardness, springiness and cohesiveness were also associated 

with an increased formation of high molecular weight proteins and coupled with a higher 
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degree of hydrophobic interactions found [31]. Our preliminary study thus shows that 

pressure has a different effect on gel formation from quinoa protein compared to heat. 

The higher ability of pressure to form quinoa protein gels could be used to design plant-

based (semi-)solid dairy products. Treating milk protein solutions using high pressure 

processing (HPP) has been reported to replace the rennet function to make cheese, to 

create yoghurt texture with less syneresis and to develop ice-cream texture with less fat 

or emulsifiers/stabilisers but with improved sensory properties [6].    

 

To conclude, clear differences were found between the effects of pressure and heat on 

physical-chemical and functional properties of quinoa protein. Pressure at ambient or high 

temperature can thus have an added value for the possible applications mentioned 

compared to heat. To better understand the underlying mechanisms and design protein 

foods with new or improved properties in a more targeted way, the effect of pressure and 

heat on more protein properties and under conditions closer to application should be 

studied.  
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Figure 3. Denaturation enthalpy (above) and SDS-PAGE profile (below) of the QPIs E8, E9, E10 and 
E11 (Chapter 3) at various pressure levels. Lane M: molecular weight marker. 
 

6. Opportunities and challenges for the future  

New insights in the exploration of quinoa protein as a novel food protein and of HPP as a 

novel food processing technology were added by this thesis. Quinoa protein obtained 

using the conventional method seems promising to replace current major plant proteins. 

However, more research should be performed to confirm this, as well as on sensory 

properties. In this case, quinoa protein should be viewed as one alternative for other plant 
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proteins in specific food applications, and not as a general replacer. Furthermore, world 

trends in sustainable industrial production and in “natural” food are stimulating the 

exchange of highly purified proteins with less purified, more environmental-friendly, 

minimally processed and more wholesome proteins (containing more fibre, oil and 

micronutrients). If this also comes with a financial gain (lower processing costs), more 

research should definitely be performed on quinoa protein-rich fractions obtained with 

the alternative method. To provide quinoa seed as raw material for an eventual large-

scale production of quinoa protein, financial, as well as legal, ethical, environmental, 

political issues need to be solved. For example, land degradation, socioeconomic disrupts 

and biodiversity loss in traditional quinoa-producing countries has been associated with 

the global quinoa expansion [32]. But even if such issues can be solved, quinoa will have to 

compete for scarce farmland globally, which raises the question as to what extent quinoa 

can serve as sustainable protein source.  

 

HPP at high or ambient temperature is technically also promising for the development of 

high-quality protein foods. Vis-a-vis the trends mentioned above, for HPP at ambient 

temperature a profitable balance seems to have been found, as it has successfully been 

commercialised. However, for HPP at high temperature, high energy consumption and 

equipment issues are still to be dealt with. On the other side, due the commercial success 

of HPP at ambient temperature, legal and ethical issues will be less of a concern for HPP at 

high temperature. An example of an ethical issue is the labelling of HPP-treated products 

with the treatment technique. Consumers might feel distrust if HPP-treated products are 

not labelled or not labelled in a satisfying way, depending on their culture.  
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Summary 

Foods rich in protein are nowadays high in demand worldwide. To ensure a sustainable 

supply and a high quality of protein foods, novel food proteins and processing 

technologies need to be explored to understand whether they can be used for the 

development of high-quality protein foods. Therefore, the aim of this thesis was to 

explore the properties of a novel food protein and a novel processing technology for the 

development of high-quality protein foods. For this, quinoa was chosen as an alternative 

protein source and high pressure – high temperature (HPHT) processing was chosen as a 

novel processing technology. 

 

Quinoa protein has been found to have a balanced amino acid profile and to be allergen-

free. As this combination is not common among plant proteins, it is worth studying 

physicochemical and functional protein properties of quinoa further (Chapter 1). 

Extraction and processing conditions can influence protein properties and thus 

functionality. Therefore, quinoa protein properties were examined at different extraction 

and processing conditions (Chapter 2 and 3). For this, the protein was isolated from the 

seed using alkaline extraction and subsequent acid precipitation. The quinoa protein 

isolates (QPIs) obtained were examined in terms of protein purity, yield, solubility, 

denaturation, aggregation and gelation behaviour, and digestibility.  

 

It was found that when extraction pH increased, protein yield and denaturation increased, 

which was explained by a higher protein charge, leading to increased unfolding and 

solubilisation (Chapter 2). Protein purity decreased with increasing extraction pH, which 

was associated with a possible co-extraction of other seed components. QPIs obtained at 

extraction pH 8 (E8) and 9 (E9) had a higher solubility in the pH range of 3-4.5 (E9 solubility 

was highest at pH 7) compared to the isolates obtained at extraction pH 10 (E10) and 11 

(E11). It was hypothesised that at a higher extraction pH, the larger extent of protein 

denaturation led to the exposure of hydrophobic groups, thus decreasing surface polarity 

and solubility. When suspensions of E8 and E9 were heated, protein aggregation increased 

and semi-solid gels with a dense microstructure were formed. In contrast, suspensions of 
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E10 and E11 aggregated to a lower degree and did not form self-supporting gels upon 

heating. The gels obtained with E10 and E11 had furthermore a microstructure showing 

loose particles. Increased protein aggregation and improved gel formation at lower 

extraction pH were hypothesised to be due to a higher degree of hydration and swelling of 

protein particles during heating, leading to increased protein-protein interactions. These 

findings show that QPI obtained at an extraction pH below 9 might be used to prepare 

semi-solid gelled foods, while QPI obtained at pH values higher than 10 might be more 

suitable to be applied in liquid foods.  

 

Heat treatments of QPI suspensions lead to an increased protein denaturation and 

aggregation but to a decreased in vitro gastric protein digestibility, especially at a high 

temperature (120°C) and extraction pH (11) (Chapter 3). It was hypothesised that QPIs 

obtained at a higher extraction pH and treated at higher temperature were denatured to a 

greater extent and contained stronger protein crosslinks. Therefore, enzyme action was 

impaired to a higher degree compared to lower temperatures and extraction pH values. 

This means that by controlling extraction pH and treatment temperature the digestibility 

of quinoa protein can be optimised.  

 

The disadvantage of the conventional fractionation method used in Chapter 2 and 3 is that 

it requires high amounts of energy and water and the solvents used can denature the 

protein, possibly leading to a loss in functionality. Therefore, recently, a new method has 

been developed, hybrid dry and aqueous fractionation, which uses less energy and water 

and has proved successful for obtaining protein-rich fractions from pea. It was not known 

whether hybrid dry and aqueous fractionation can be used to obtain protein-rich fractions 

of quinoa (Chapter 4). Quinoa seeds were carefully milled to disentangle the protein-rich 

embryo from the starch-rich perisperm. Using subsequent air-classification, the embryo 

and perisperm were separated based on size into a protein-rich fraction and a starch-rich 

fraction, respectively (dry fractionation). The protein-rich fraction was further milled to a 

smaller particle size and suspended in water. This step was to solubilise the protein 

(aqueous fractionation), whereby a smaller particle size and adding NaCl optimised the 

solubilisation efficiency. The addition of salt helped to extract more salt-soluble proteins 
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from quinoa, next to the water-soluble proteins. After centrifugation, the protein-enriched 

top aqueous phase was decanted and ultrafiltered for further protein concentration. The 

process generated a quinoa protein-rich fraction with a protein purity of 59.4 w/dw% and 

a protein yield of 62.0%. Having used 98% less water compared to conventional protein 

extraction, this new method is promising for industry to obtain quinoa protein 

concentrates in a more economic, sustainable and milder way.      

 

Next to exploring novel food proteins for the development of high-quality protein foods, 

novel processing technologies are also important to study. This is because traditional 

thermal processing can deteriorate the quality of protein-rich foods and beverages by 

causing undesired browning or too high viscosities. Therefore, for sterilisation purposes, 

HPHT processing was investigated for the treatment of protein foods (Chapter 5). Model 

systems, whey protein isolate – sugar solutions, were used to study the effect of pressure 

at high temperature on Maillard reactions, browning, pH, protein aggregation and 

viscosity at different pH.  It was found that pressure retarded early and advanced Maillard 

reactions and browning at pH 6, 7 and 9, while it inhibited protein aggregation and, 

thereby, a high viscosity at pH 7. The mechanism behind this might be that pressure 

induces a pH drop, possibly via dissociation of ionisable compounds, and thus slows down 

Maillard reactions. Differences in protein conformation, protein-protein interactions and 

sensitivity of whey proteins, depending on pH, pressure and heat, might be at the base of 

the reduced protein aggregation and viscosity observed at pH 7. The results show that 

HPHT processing can potentially improve the quality of protein-sugar containing foods, for 

which browning and high viscosities are undesired, such as high-protein beverages. 

 

Finally, the properties of quinoa protein and HPHT processing were discussed in a broader 

context (Chapter 6). It was concluded that QPI obtained at pH 9 is a promising alternative 

to pea and soy protein isolate from a technical perspective and that QPI protein yields can 

be optimised. Also, quinoa protein-rich fractions obtained with the hybrid dry and 

aqueous fractionation method were predicted to have comparable properties to QPI, soy 

and pea protein isolates. However, from a marketing perspective, the protein-rich fraction 

was considered more advantageous to be up-scaled compared to QPI. High pressure at 
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ambient or high temperature was found to have an added value compared to heat, which 

can be used for the development of high-quality protein food. Lastly, quinoa protein and 

HPHT processing might become more attractive for industry in the light of current trends, 

if present predictions can be confirmed and remaining issues can be resolved.  
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