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Summary 17 

From a genetic point of view the selection of breeds and animals within breeds for 18 

conservation in a national genepool can be based on a maximum diversity strategy. This 19 

implies that priority is given to conservation of breeds and animals that diverge most and 20 

overlap of conserved diversity is minimised. This study investigated the genetic diversity in 21 

the Dutch Red and White Friesian (DFR) cattle breed and its contribution to the total genetic 22 

diversity in the pool of the Dutch dairy breeds. All Dutch cattle breeds are clearly distinct, 23 

except for Dutch Friesian breed (DF) and DFR, and have their own specific genetic identity. 24 

DFR has a small but unique contribution to the total genetic diversity of Dutch cattle breeds 25 

and is closely related to the Dutch Friesian breed. Seven different lines are distinguished 26 

within the DFR breed and all contribute to the diversity of the DFR breed. Two lines show the 27 

largest contributions to the genetic diversity in DFR. One of these lines comprises unique 28 

diversity both within the breed and across all cattle breeds. The other line comprises unique 29 

diversity for the DFR but overlaps with the Holstein Friesian breed. There seems to be no 30 

necessity to conserve the other 5 lines separately, because their level of differentiation is very 31 

low.   32 

This study illustrates that, when taking conservation decisions for a breed, it is worthwhile to 33 

take into account  the population structure of the breed itself and the relationships with other 34 

breeds.  35 

 36 

Keywords: conservation, genetic diversity, population structure, relationships with other 37 

breeds 38 

 39 
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Introduction 42 

Farm animal breeds are recognized for different values, with economic, social, historic and 43 

cultural aspects (Gandini and Oldenbroek 2007). Genetic diversity is the basis for the 44 

development and survival of animal breeds. However, many traditional, local, farm animal 45 

breeds have small (effective) population sizes, leading to a loss of their genetic diversity. It is, 46 

therefore, especially important to maintain genetic diversity in these small populations of 47 

farm animals (Fernandez, Meuwissen et al. 2011). Small populations of local breeds often 48 

comprise genetic variation with cultural, historical, sociological and environmental values 49 

(Hiemstra, De Haas et al. 2010) generally not present in the global highly productive breeds 50 

that dominate modern intensive livestock production systems. Genetic management of local 51 

breeds, is crucial for their own survival, and for maintaining diversity in the entire species, 52 

because the genetic diversity between breeds is a substantial part of the genetic diversity 53 

within the species (Wooliams and Toro 2007).  54 

Maintaining high levels of within breed genetic diversity is the second important aim in 55 

conservation genetic diversity within the species. Traditionally, animal breeders quantify genetic 56 

diversity by analysing pedigrees, and estimating average kinships and inbreeding levels 57 

(Gutiérrez, Altarriba et al. 2003; Wooliams and Toro 2007). Pedigree analysis may not be 58 

adequate, since pedigrees are often not available in depth, so that a reliable quantification of 59 

within breed variation may not be possible. Moreover, pedigrees are generally only known since 60 

breed formation making analysis of between breed diversity by pedigree analysis impossible. 61 

Methods based on pedigree analysis can now be complemented with molecular genetic 62 

information facilitating analysis of diversity both within and across breeds (Boettcher, Tixier-63 

Boichard et al. 2010).  64 

Besides small effective population size, local breeds may be threatened by indiscriminate 65 

crossing with other breeds. Crossing may lead to increased genetic diversity in a population, 66 
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however at the expense of losing part or eventually all of the original genetic diversity in the 67 

population (FAO 2007). Thus both within and across breed variation need to be considered in 68 

order to preserve genetic diversity within species (Bennewitz, Eding et al. 2007; Wooliams 69 

and Toro 2007; Boettcher, Tixier-Boichard et al. 2010; Roberts and Lamberson 2015). 70 

Eding et al (2002) provided a framework to quantify relative amounts of both within- and 71 

across population genetic diversity by using marker estimated kinships. In this method 72 

kinships are estimated with the help of markers and the genetic diversity within a breed is 73 

estimated as one minus the average kinship in that breed. The average kinship is also 74 

estimated across breeds, so that the genetic diversity of a set of breeds can be determined. 75 

Moreover, for each breed its contribution to the diversity of the total set can be quantified, 76 

thereby quantifying both its unique diversity and the overlap with other breeds.  77 

After the study of Eding et al. (2002) progress in genotyping techniques has increased the 78 

number of available markers. The availability of dense molecular marker maps can provide a 79 

more precise picture of the genetic background of  breeds (e.g. distances, uniqueness), which 80 

increase the capabilities for making decisions aimed at maintaining genetic diversity. 81 

In this study the maximum diversity strategy was used to quantify the genetic diversity 82 

(Bennewitz, Eding et al. 2007). This strategy selects breeds that contribute in a significant 83 

way to the overall genetic diversity considering both within and across breeds diversity. 84 

For local breeds, next to setting conservation priorities at breed level, a more detailed division 85 

into lines can be helpful to determine conservation priorities within the breed. 86 

The objective of this study was to quantify the genetic diversity in a numerically small breed 87 

and its contribution to the total genetic diversity in other breeds of the same species in the 88 

same country. For these objectives, we used the Dutch Red and White Friesian cattle (DFR) 89 

and quantified the relationship with other Dutch dairy breeds. We assessed:   90 
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(a) The relationship of DFR with other Dutch dairy breeds and the contribution of the DFR to 91 

the total genetic diversity in Dutch dairy cattle breeds.  92 

(b) The genetic differences between lines within the DFR  93 

(c) The contribution of the within line genetic diversity to the total genetic diversity in the 94 

DFR, and to the gene pool of  the Dutch dairy cattle breeds. 95 

 96 

Materials and methods 97 

Animals and Genotypes 98 

A total of 68 Dutch Red and White Friesian cattle (DFR) animals (26 bulls and 42 cows) were 99 

sampled. The DFR is a local breed in the North of the Netherlands. Anecdotally and 100 

according to herdbook information it is closely related to the Dutch Friesian (DF) breed which 101 

is one of the founding breeds of the Holstein Friesian which is now the dominant dairy cattle 102 

breed in the world (Felius, Koolmees et al. 2011). Of the 68 sampled DFR animals, 48 103 

animals were assigned to different lines, based on their ancestry from (founding) sires, within 104 

the breed by the Dutch herdbook “Stichting Roodbont Fries Vee”  (Table 1). Two  other 105 

groups  consist of animals not (yet) registered in the herd book: one group from two farms 106 

with some Holstein Friesian (HF) blood  and another group of isolated animals originating 107 

from the Dutch island Terschelling , from here on referred to as line 6 and 7 respectively.   108 

 109 

Table 1. Number of samples per line of Dutch Red and White Friesian animals 110 
Line Name #Bulls #Cows  total 

1 Jet   5 4 9 
2 Marco-Kei   3 5 8 
3 Koos   5 5 10 
4 Reitsma   4 7 11 
5 DF-line   8 2 10 
6 Elsinga line  11 11 
7 Terschelling 1 8 9 

total  26 42 68 
 111 
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To obtain DNA we collected hair samples from the cows. From the bulls semen straws were 112 

provided by the Centre for Genetic Resources, the Netherlands (CGN). Samples were chosen, 113 

based on pedigree information of the herd book,  so that they represent a wide variation in 114 

origin within a line. Samples were genotyped using the BovineSNP50 BeadChip (Illumina 115 

Inc., San Diego, CA, USA). All samples had a genotype call rate > 85%. During the quality 116 

check SNPs with a GenCall score ≤.0.20 and call rate ≤ 85% were deleted from the analyses 117 

(n=2,635). Missing genotypes were imputed using Beagle with 20 iterations (Browning and 118 

Browning 2009). The imputation was carried out for each chromosome independently. The 119 

mean r2 value for the accuracy of imputation provided by Beagle was 0.98. After these editing 120 

steps 51,974 of the initial 54,609 SNPs remained. 121 

Data from the DFR cattle were supplemented with data originating from studies with four 122 

other Dutch breeds (Maurice-van Eijndhoven 2014; Pryce, Johnston et al. 2014; Maurice-Van 123 

Eijndhoven, Bovenhuis et al. 2015). These data included 1,287 purebred cows; 989 were 124 

Holstein Friesian (HF), 97 Groningen White headed (GWH), 137 Meuse-Rhine-Yssel 125 

(MRY), and 64 Dutch Friesian (DF). Previously performed editing steps to remove 126 

uninformative SNP are described by Hulsegge et al. (2013). In short, Holstein Friesian 127 

animals were genotyped with a BovineSNP50 BeadChip and imputed to the BovineHD 128 

BeadChip using Beagle (Browning and Browning 2009). The mean Beagle r2 was 0.96 across 129 

the imputed loci. Animals from the three other breeds (GWH, MRY and DF) were genotyped 130 

with the BovineHD BeadChip. The editing steps comprised deleting SNP with call rate < 131 

95%, GenCall score ≤ 0.20 and GenTrain score ≤ 0.55. No MAF (minor allele frequency) 132 

thresholds were applied in the editing procedure. To investigate whether differences in results 133 

could arise with edits based on MAF, as is commonly done in other studies or applications, 134 

the impact of MAF threshold 0.02 was evaluated. The preliminary analyses indicated that our 135 

results and conclusions were hardly affected when not applying such editing step (results not 136 
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shown). After the editing steps 750,457 of the 777,962 SNP remained. These 750,457 SNP 137 

contained 36,625 SNP that were also included in the DFR data after editing. For all animals, 138 

genotypes on those 36,625 SNP were used in further analyses. 139 

 140 

Breed identity of DFR 141 

To investigate whether DFR is a breed with its own genetic identity, and to visualize the 142 

relationship between DFR and the four other Dutch cattle breeds, principal component 143 

analysis (PCA) was performed on the SNP genotypes (Price, Patterson et al. 2006) (Patterson, 144 

Price et al. 2006) using the R-package Hierfstat (Goudet 2005). Genetic divergence between 145 

each breed pair was quantified by calculating pairwise FST (Weir and Cockerham 1984) using 146 

the R-package Hierfstat (Goudet 2005). 147 

 148 

Contribution of DFR to total genetic diversity in Dutch dairy cattle.  149 

To quantify the importance of DFR relative to the other breeds the marker estimated kinships 150 

and the core set method of Eding et al. (2002) were used. In this method kinships are 151 

estimated with the help of markers and the genetic diversity within a breed is estimated as one 152 

minus the average kinship in that breed. The average kinship is also estimated across breeds, 153 

so that the genetic diversity of the whole set can be determined. The total genetic diversity of 154 

a set depends on the contribution of each breed to the total set. If all breeds contribute equally, 155 

the total genetic diversity is equal to one minus the average within and across breed kinships. 156 

Otherwise breed kinships have to be weighted by their contribution e.g.  157 

gdiv = 1 – c’Mc, 158 

with c being the vector with n (number of breeds) contributions of each breed (summing up to 159 

1) and M being the n x n matrix with within and across breed kinships. So, if a relatively 160 
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uniform breed contributes more to the total set the genetic diversity of the total set will be 161 

lower compared to when a relatively diverse breed contributes more.  162 

In the core set method of Eding et al. (2002) the contribution of each of the breeds that 163 

maximise the genetic diversity is estimated as  164 

𝐜𝐜𝐦𝐦𝐦𝐦𝐦𝐦 =  
𝐌𝐌−𝟏𝟏𝟏𝟏𝒏𝒏

𝟏𝟏𝒏𝒏′𝐌𝐌−𝟏𝟏𝟏𝟏𝒏𝒏
 165 

Where cmax is a vector with the contributions that maximises the diversity in the total set, and 166 

1n is a vector of n ones. The total diversity in the set is then estimated by:  167 

𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠 = 1 − 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚′𝑀𝑀𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 =
1

1𝑛𝑛′𝑀𝑀−11𝑛𝑛
 168 

The contribution of each breed to this core set thus depends both on the between- and within-169 

breed components of genetic diversity. However, not only the contribution determines the 170 

relative importance of a breed for the total genetic diversity. A breed may contribute a small 171 

amount to the core set (e.g. when their within breed kinship is high) but nevertheless increase 172 

the total genetic diversity considerably (e.g. when its across breed kinships are low). 173 

Therefore, the average kinship of the core set when the breed is included is compared to the 174 

average kinship of the core set when the breed is excluded (Eding, Crooijmans et al. 2002). 175 

The required kinships were obtained by first computing a genomic relationship matrix (G) 176 

according to Yang et al (2010) using the software Calc_grm (Calus 2013). Using those 177 

genomic relationships, average within and between breed kinships were computed across all 178 

pairwise relationships within and between breeds, including self-kinships.  179 

 180 

Contribution of lines to genetic diversity within DFR 181 

To visualize the separation  of the different lines based on molecular genetic data, PCA was 182 

used. The core set method was used to determine the relative contribution of each line to the 183 
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total genetic diversity in the DFR. The core set method was also performed with both the 184 

DFR lines and the other breeds simultaneously, to determine the overlap of the contribution of 185 

the individual DFR lines to the total genetic diversity with the contribution of other breeds. 186 

 187 

Results 188 

Relationship of DFR cattle breed with other Dutch dairy breeds 189 

The combination of the first and second principal components  (PC1 and PC2) separated 190 

individual animals according to their breed (Fig. 1). PC1 distinguished the four local breeds 191 

from the commercial breed HF. PC2 separated the local breeds MRY on the one hand and 192 

GWH on the other hand from the Friesian breeds (DF, DFR and HF). Based on the first two 193 

principal components overlap existed between the DF and DFR.  194 

 195 

Figure 1 Principal component analysis (PCA) of five Dutch dairy cattle breeds based on 36 196 

625 single-nucleotide polymorphisms (SNP’s) [circle grey = Holstein Friesian (HF); star = 197 

Groningen White headed (GWH); triangle grey = Dutch Friesian (DF); square grey = Meuse-198 

Rhine-Yssel (MRY); triangle black = Dutch Red and White Friesian (DFR)]. 199 

 200 
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Genetic differentiation (pairwise FST) among breeds, confirmed  that DFR is genetically 201 

closest to DF (FST=0.056) (Table 2). Pairwise FST values ranged from 0.056 (between DFR 202 

and DF) to 0.156 (between GWH and DF). The kinship values also indicated that DFR and 203 

DF were more related to each other than to the other breeds. DFR and DF had the highest 204 

average between-breed kinship (0.033) (Table 2). Average between-breed kinship ranged 205 

from -0.078 to 0.033. 206 

 207 

Table 2. Estimated pairwise FST as a measure of genetic differentiation (below diagonal) and 208 

average genomic kinship (above diagonal) between five Dutch dairy cattle breeds. 209 

 GWH DF MRY HF DFR 
G - -0.078 -0.057 -0.053 -0.068 
DF 0.156 - -0.067 -0.056  0.033 
MRY 0.155 0.135 - -0.031 -0.050 
HF 0.132 0.111 0.110 - -0.036 
DFR 0.136 0.056 0.111 0.088 - 

 210 

 211 

DFR showed the lowest average within-breed kinship (0.106) and GWH the highest (0.248) 212 

(Table 3). The total diversity of the Dutch cattle breeds was 0.926. All five breeds contributed 213 

almost equal to the overall genetic diversity (varying from 19.55% to 20.64%). The highest 214 

unique genetic diversity was observed for GWH (0.015) and the lowest for DFR (0.006). 215 

Nevertheless, the DFR contains some unique genetic diversity not present in the other Dutch 216 

breeds, although it is less than the unique diversity of the other breeds (Table 3). 217 

  218 
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Table 3. Average genomic kinship (f) within breeds and contribution of breeds to a core set in 219 

which the diversity is maximised (= average f minimised). Unique diversity is measured as 220 

the increase in f when the core set is formed without a contribution of that breed. 221 

 f contribution Unique diversity 
    
DFR (all lines) 0.106 19.84% 0.006 
GWH 0.248 19.93% 0.015 
DF 0.155 19.55% 0.007 
MRY 0.199 20.04% 0.012 
HF 0.174 20.64% 0.010 
Core set 0.074  - 

 222 

 223 

Genetic differences between DFR lines  224 

PCA distinguished DFR line 7 from the other lines by the first principal component (Fig. 2).  225 

 226 

Figure 2 Principal component analysis (PCA) of seven Dutch Friesian Red cattle lines on 36 227 

625 single-nucleotide polymorphisms (SNPs) [star = DFR line 1; circle white = DFR line 2; 228 

triangle point up black = DFR line 3; circle black = DFR line 4; square grey = DFR line 5; 229 

triangle point down = DFR line 6; asterisk = DFR line 7]. 230 

 231 

There was some differentiation among the other lines along the second principal component, 232 

but with a large overlap between the different lines. Genetic differentiation between the 233 
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different DFR lines was also confirmed by the pairwise FST, which varied between 0.012 and 234 

0.190 (Table 4). Consistent with the PCA results, the FST values indicated that line 7 clearly 235 

diverged from the other lines. Pairwise FST between DFR line 7 and the other six lines ranged 236 

from 0.149 to 0.190, while the maximum pairwise FST between the lines 1 to 6 was 0.078 237 

(between DFR lines 3 and 4). The FST values between DFR lines 1 to 6 were lower than the 238 

FST values between breeds (Table 2), meaning that the DFR lines 1 to 6 were more related to 239 

each other than the breeds were. The FST values between DFR line 7 and the other lines were 240 

somewhat higher than the values found between the breeds as presented in Table 2.   241 

The average kinships between-line and within-line of the DFR breed are presented in Table 4 242 

and 5. Within-line kinship were higher (Table 5; varying between 0.131 and 0.478) compared 243 

with the between-line kinship (Table 4; varying between 0.041 and 0.157). The lines 1 to 5 244 

were more related to each other than to the lines 6 and 7. DFR line 7 showed the highest 245 

within-line kinship (0.478) and the lowest between-lines kinship (ranging from 0.041 to 246 

0.053). DFR line 6 had the lowest level of within-line and the second lowest level of between-247 

line kinship.  248 

 249 

Table 4. Estimated pairwise FST as a measure of genetic differentiation (below diagonal) and 250 
average genomic kinship (above diagonal) between 7 DFR lines. 251 

 DFR line 
1 

DFR line 
2 

DFR line 
3 

DFR line 
4 

DFR line 
5 

DFR line 
6 

DFR line 
7 

DFR line 1 - 0.119 0.123 0.135 0.095 0.078 0.052 
DFR line 2 0.042 - 0.140 0.114 0.091 0.080 0.053 
DFR line 3 0.061 0.058 - 0.112 0.110 0.108 0.045 
DFR line 4 0.036 0.056 0.078 - 0.157 0.069 0.043 
DFR line 5 0.040 0.046 0.059 0.012 - 0.063 0.042 
DFR line 6 0.048 0.049 0.057 0.063 0.046 - 0.041 
DFR line 7  0.158 0.166 0.190 0.171 0.149 0.149 - 

 252 

 253 
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The contribution of each line (in %) to the DFR breed are shown in Table 5. All lines 254 

contributed to the diversity of the DFR breed. The highest contribution to the total diversity of 255 

the DFR breed was observed for line 6 (26.02 %), while line 3 showed the smallest 256 

contribution (6.81%). The total diversity of the DFR was 0.874. The largest part of diversity 257 

of most lines is represented in the other lines as well. The highest impact on the diversity was 258 

observed when line 6 or line 7 was removed, leading to a decrease in overall diversity of the 259 

DFR breed by about 2.3% and 1.6 %, respectively. Removing one of the lines 1 to 5 had only 260 

a small impact on the diversity. Apparently, the diversity contained in these lines is almost 261 

completely present in the other lines as well. 262 

 263 

Table 5. Average genomic kinship (f) within lines and contribution of lines to a core set in 264 

which the diversity is maximised (= average f minimised). Unique diversity is measured as 265 

the increase in f when the core set is formed without a contribution of that breed/ line. 266 

   DFR lines  All breeds/lines 

 f 
 

contribution 
Unique 

diversity 
 

contribution 
Unique 

diversity 
        

DFR line 1 0.176  12.63% 0.005  13.26% 0.0002 
DFR line 2 0.192  11.70% 0.004  11.90% 0.0002 
DFR line 3 0.265  6.81% 0.001  15.37% 0.0003 
DFR line 4 0.205  10.01% 0.002  16.35% 0.0002 
DFR line 5 0.140  19.02% 0.008  14.97% 0.0002 
DFR line 6 0.131  26.02% 0.020  14.82% 0.0002 
DFR line 7 0.478  13.81% 0.014  13.21% 0.0004 
Core set 0.126   -    

 267 

 268 

Contribution of the DFR lines to the total genetic diversity. 269 

The average kinship between DFR lines and the Dutch cattle breeds are presented in Table 6. 270 

This kinship varied from -0.079 to 0.085. The highest values were estimated between DFR 271 
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lines and DF, while the lowest values were observed between DFR lines and GWH. Line 6 272 

was the line most closely related to HF, and line 7 the line least related to DF. 273 

 274 

Table 6. Average genomic kinship between Dutch cattle breeds and DFR lines. 275 

 GWH DF MRY HF 

DFR line 1  -0.065 0.027 -0.046 -0.040 

DFR line 2  -0.065 0.030 -0.048 -0.040 

DFR line 3 -0.073 0.031 -0.054 -0.045 

DFR line 4 -0.074 0.050 -0.058 -0.051 

DFR line 5 -0.079 0.085 -0.065 -0.056 

DFR line 6 -0.058 0.010 -0.046 -0.003 
DFR line 7 -0.060 -0.007 -0.030 -0.017 

 276 

 277 

Results of assessing the impact of removing one line from the DFR breed and calculating the 278 

contribution of each line (in %) to the pool of Dutch dairy cattle breeds with maximal genetic 279 

diversity are shown in Table 5. When considering all Dutch dairy cattle breeds, removing one 280 

of the DFR lines has a small impact on the diversity (loss of 0.0002 to 0.0004; Table 5). 281 

When considering all breeds the contribution of DFR line 6 was considerably smaller 282 

(14.82%) compared to DFR lines analysed in separation (26.02%). This was due to the 283 

inclusion of the HF breed, removing the HF breed increased the contribution of line 6 with 284 

4,7% (results not shown). The contribution of DFR line 5 to the diversity across all breeds is 285 

also smaller (14.97%) compared to DFR lines only (19.02%). For DFR line 3 the contribution 286 

to the diversity across all breeds is larger (15.37%) compared to DFR lines only (6.81%). 287 

Removing DF increased the contribution of DFR, especially by the contribution of line 5. 288 

Thus analysing DFR in isolation of the other breeds suggests for some lines a larger 289 

proportion of unique diversity, while part of this diversity apparently is due to influences of 290 

the other breeds, in particular DF and HF, as revealed by the analysis including other breeds. 291 
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Discussion 292 

Relationship of DFR cattle breed with other Dutch dairy breeds 293 

Genetically, Dutch cattle breeds are clearly distinct from each other as shown by the PCA 294 

results, except for DF and DFR. As expected from breed history, the DFR breed is closely 295 

related to the DF breed (FAO 2007). These breeds were recorded as separate breeds for 296 

slightly more than 100 years. Red offspring of the DF breed, born out of the combination of 297 

two red-factor-carriers, could be incorporated in the DFR-breed. From 1970 DF and DFR 298 

became rare. (Porter 2002). Genetic differentiation between the breeds (pairwise FST) and the 299 

between breed kinship also indicated that DFR and DF were more related to each other than 300 

to the other Dutch breeds. In European cattle breeds, pairwise FST values have been reported 301 

i.e. ranging from 0.035 to 0.132 (Gautier, Faraut et al. 2007) and from 0.059 to 0.142 302 

(Neuditschko 2011). The FST between DFR and DF of 0.056 is at the lower end of these 303 

ranges. DFR showed a reasonable contribution (19.84%) to the total genetic diversity of 304 

Dutch cattle breeds and contains a small amount of genetic diversity not present in the other 305 

Dutch breeds. This contribution is comparable to the contribution of each of the other breeds. 306 

Thus, although DFR and DF are closely related, the results of this study showed that DFR  307 

has its own genetic identity, containing some genetic diversity not present in other breeds.  308 

 309 

Genetic management of lines within breeds 310 

Management of breeds subdivided in lines implies a compromise of different factors: first, the 311 

maintenance of the highest possible levels of genetic diversity for the whole breed; second, 312 

the preservation of the genetic differentiation between lines; and third, the restriction of 313 

within-line diversity to acceptable levels, so inbreeding would not increase beyond these 314 

acceptable levels (Fernández, Toro et al. 2008). The results of our study revealed a high level 315 

of admixture between line 1 to 5. This reflects the similar origin of these lines. Consequently, 316 
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there seems to be no necessity to conserve these 5 lines separately, because their level of 317 

differentiation is very low. The line with the highest overall contribution to diversity in DFR 318 

is line 6. However, part of this diversity is due to some HF blood and therefore of lower 319 

conservation value.  320 

The pairwise FST values indicated that DFR line 7 had a high level of genetic differentiation 321 

from other lines. This line has been bred for a considerable time in isolation from the other 322 

lines, and apparently conserved genetic diversity not present anymore in the rest of the 323 

population. However, this line showed high levels of inbreeding, and a low level of diversity.  324 

 325 

Contribution of lines within breeds to the total genetic diversity across breeds. 326 

A way to measure the influence of one line over the others in the DFR breed is to ascertain its 327 

genetic contribution to diversity by removing this line from the whole DFR breed and 328 

determining the remaining genetic diversity (Caballero and Toro 2002; Eding, Crooijmans et 329 

al. 2002). However, the results are different when relationships of other Dutch cattle breeds 330 

are taken into account. Some DFR lines contains a portion of genetic diversity which is also 331 

represented in the other Dutch cattle breeds. Maximizing genetic diversity within a breed is 332 

therefore not always the best strategy. Thus, our results demonstrate that when establishing 333 

conservation programs, it is necessary to take relationships with other breeds into account as 334 

well. Lenstra (2006) also indicated that for decisions on conservation priorities, the diversity 335 

of all local breeds related to the endangered population should be taken into account in order 336 

to assess their unique contribution to diversity. 337 

 338 

Assessing contributions of lines without pedigree relationship to herdbook animals. 339 

Previously, pedigree information was the most important information used for registration of 340 

animals in a herdbook.. Use of genome-wide SNP information, now provides a way to assess 341 

the relationship of animals without pedigree to animals registered in a herdbook. The Dutch 342 
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DFR herdbook “Stichting Roodbont Fries Vee” had assigned 48 sampled animals in this study 343 

to five different lines. Two additional DFR lines were defined consisting of animals that were 344 

not registered (DFR line 6 and 7). The lines might be considered as sub-populations, but there 345 

are no formal restrictions on pairing animals from different lines with each other, whereas, 346 

crosses between animals of different breeds are considered crossbreds and not registered as 347 

belonging to either breed. Consequently, in the context of diversity relationships between 348 

lines are generally much higher than relationships between breeds. 349 

For the lines without an official pedigree the results of this study showed similarities and 350 

differences to the five lines (DFR line 1 to 5) with an official pedigree. This study indicated 351 

that line 6, a group with some HF blood, indeed represents part of the HF genetic diversity. 352 

Currently there seems to be no necessity to conserve DFR line 6. However, conserving line 6 353 

in situ may be useful in practice for several reasons: first, this line consists of approximately 354 

100 animals, while the total population size of DFR is 500; second, to increase the milk 355 

production of the DFR breed; and third, to increase the genetic diversity of DFR and 356 

consequently to decrease the chance of inbreeding. However, conserving line 6 should not be 357 

at the expense of other lines.    358 

This study distinguished DFR line 7 from the other DFR lines. However, considering all 359 

Dutch cattle breeds line 7 is closely related to DFR and FH. This isolated group of animals 360 

will maximize the level of genetic diversity for the whole DFR breed and will increase 361 

genetic differentiation between lines, despite its high levels of inbreeding. Therefore, line 7 362 

makes a unique contribution to the DFR cattle, and it is worthwhile to include this line 363 

without an official pedigree in the herdbook. The DFR herdbook and breeders are now 364 

considering the  inclusion of line 6 and line 7 in the herdbook. It is often not possible, and 365 

may also not be desirable, to conserve all breeds/lines, mostly due to financial limitations 366 

(Bennewitz, Eding et al. 2007). As shown in this study, taking relationships with other breeds 367 
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into account can change conservation priorities within a breed, and thus may affect 368 

conservation decisions made for this breed. This is not only applicable to the lines within a 369 

breed in this study, but also for breeds within a species or in a gene pool of national breed as 370 

in this study.  371 

Conservation decisions also should take into account the degree of endangerment and costs of 372 

conservations and economic, cultural and historic values of different characteristics of a breed 373 

(Simianer, Marti et al. 2003) (Bennewitz, Eding et al. 2007). Endangerment of most DFR 374 

lines is similar, however line 7 is clearly more endangered, since the owner has stopped active 375 

farming. DFR line 6 had  the highest overall contribution to diversity in DFR, however when 376 

considering HF the contribution of DFR line 6 was considerably smaller, indicating that the 377 

endangerment of line 6 is not really a threat for the DFR breed as a whole. Consequently, 378 

conservation priorities based on genetic diversity coincides with priority based on degree of  379 

endangerment.    380 
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