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Food is one of our primary needs and essential for survival. Hence, evolution programmed us to find 

the act of eating pleasurable. Therefore, it is no surprise that eating plays such a dominant role in our 

lives. Besides our daily meals, we use food to celebrate, relax and to comfort and reward ourselves. 

The taste of food, including all oral sensations, is one of the main drivers of eating because of its 

rewarding properties. Next to taste, food nutrient content might also contribute to the oral experience 

in a more implicit manner. In the brain, sensory signals are integrated with other factors such as 

personality characteristics, cognitions, metabolic state and food preferences. The final consumption 

experience can therefore be considered as an end product of the interplay between mouth and mind. In 

this thesis, we provide more insights into what role several of these factors play in taste-related brain 

activation. 

 

The research presented in this thesis was done in the context of an European Regional Development 

Fund (EFRO) innovation project entitled ‘Food and Cognition Model systems’ (FOCOM). The overall 

aim of the FOCOM project is to gain better understanding of consumers buying and eating behavior 

and to use this information to develop food products that are better equipped to consumers wishes and 

needs. Liking scores are not always a good predictor of product failure or success. Therefore, the 

potential of implicit behavioral and brain measures was investigated. This thesis describes part of the 

functional magnetic resonance imaging studies done within FOCOM. 

 

Food intake 

 

Cephalic and gastric phase 

 

There are two phases in food intake: the cephalic and gastric phase. The cephalic phase lasts from the 

moment that anticipation of ingestion starts until the food is completely swallowed, and can be 

subdivided in a pre-ingestive and an ingestive part 1. The pre-ingestive cephalic phase is initiated by 

exposure to a food cue (i.e. the thought, smell or sight of food) which leads to anticipation of 

ingestion, and ends with meal initiation (the first bite or sip). During this period, food cues activate 

receptors in the head, which in turn, trigger a cascade of hormonal and neural responses including, but 

not limited to, salivation, gastric acid secretion, and insulin release 2, which are referred to as cephalic 

phase responses. These cephalic phase responses prepare the body for food ingestion and absorption.1 

The ingestive cephalic phase and the gastric phase both start with ingestion and end respectively with 

meal termination and full digestion (the moment when no food is left in the stomach). During 

ingestion, oral sensations continue to stimulate cephalic phase responses.1 During the gastric phase, 

stomach distention most likely acts as a direct satiation signal, by communicating to brain feeding 

centers via the vagus nerve 3–8. Satiation can be defined as the feeling that gradually increases during 
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the course of a meal and finally brings it to an end. In contrast, satiety starts after meal termination and 

lasts until the next eating episode.9 Both oral and gastric stimulation are necessary to achieve optimal 

control of appetite 10–14.  

 

Homeostatic eating  

 

During adulthood, body weight of the majority of the population remains within a balanced range 15–17. 

This indicates that body weight is tightly regulated. The traditional view of food intake and body 

weight regulation involves the integration of internal feedback signals by the brainstem and 

hypothalamus, which in turn, trigger regulatory signals 15. Internal feedback signals include circulating 

metabolites from the gut and circulating hormones such as leptin, insulin, cholecystokinin (CCK), 

glucagon-like peptide-1 (GLP-1) and ghrelin 15,18,19. Feedback signals can be categorized as long-

acting adiposity signals and short-acting gastro-intestinal signals 5,20. In addition, besides long and 

short term signals, factors that have both long and short term capacities such as ghrelin and peptide 

YY have also been identified 5,20. Long-acting signals are involved in the regulation of body weight 

and fat storage. Leptin and insulin classify as long term signals and are thought to have an important 

role in communication with the hypothalamus 17,21–23. They circulate in the bloodstream in 

concentrations proportional to body fat content and energy expenditure and act, among others, on 

neurons in the arcuate nucleus of the hypothalamus. Here, high levels of insulin and leptin decrease 

food intake by stimulating the activity of catabolic pathways and by inhibiting the activity of anabolic 

pathways.21 Short-acting signals are hormonal secretions from the gut triggered by the presence of 

food such as CCK and neural signals conveyed via the oral cavity and gastrointestinal tract 20. The 

latter includes oro-sensory signals and mechanical and chemical signals in the stomach and intestine 

that are sent to the nucleus of the solitary tract (located in brainstem) via facial and cranial nerves 24,25. 

These signals also reach the hypothalamus 15. Output from the hypothalamus comprises behavioral 

signals (e.g. locomotor activity and wakefulness are increased during hunger to enhance the likelihood 

of feeding behavior) and autonomic and endocrine signals (e.g. pancreas innervation to regulate 

secretion of insulin and glucagon) 26. The above mentioned mechanisms, with a central role for eating 

when hungry and when it is biologically relevant, are referred to as homeostatic eating. However, if 

this was the whole picture, we would all be in perfect balance and problems like overweight and 

obesity would not exist.  

 

Hedonic eating  

 

Hunger is not the only reason for meal initiation, and fullness not the only reason to stop a meal 27,28. 

Food hedonics are also important in this process, particularly in facilitating a shift towards a higher 
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body weight 29,30. The brain reward system, involved in coding food reward, entails dopaminergic 

projections from the ventral tegmental area and substantia nigra (midbrain) to the nucleus accumbens 

(ventral striatum) and putamen, pallidum and caudate (dorsal striatum). Via the striatum, projections 

reach other parts of the limbic system such as the orbitofrontal cortex, amygdala, anterior cingulate 

cortex and insula 31,32. This system is commonly referred to as the mesolimbic dopamine pathway 32,33. 

Homeostatic and hedonic systems are thought to interact to control eating behavior 22,29,34. This view is 

supported by the finding that food pleasantness can vary as a function of hunger state 35–37, and that 

leptin and insulin (homeostatic hormones) can interact with the hedonic system to decrease food 

reward 30,38. Figure 1.1 shows a simplified overview of the interconnected relationship between the  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Schematic representation of the integration of the homeostatic and hedonic regulation of 

eating behavior and body weight. Internal nutrient availability is sensed by both the hypothalamic nutrient 

sensor (1) and reward processing centres (2), which communicate with each other (3 and 4) to regulate 

eating behavior. This figure is reprinted from Münzberg H, Qualls-Creekmore E, Yu S, Morrison CD and 

Berthoud H-R. Hedonics Act in Unison with the Homeostatic System to Unconsciously Control Body 

Weight. Front Nutr. 3. February. 6. 2016 29. Copyright © 2016 Münzberg, Qualls-Creekmore, Yu, 

Morrison and Berthoud. 

 

homeostatic and hedonic systems. In this integrative model, both the hypothalamus and the brain 

reward system sense internal nutrient availability, and in turn, communicate with each other to 

regulate eating behavior. Factors such as food availability and palatability act on the brain reward 

system.29 Finally, top-down influences such as habits, memory, cognitions and emotions are processed 
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in the corticolimbic system (e.g. prefrontal cortex, amygdala, anterior cingulate cortex and 

hippocampus), which is thought to act on regulatory mechanisms in the hypothalamus and brainstem 

29,39. However, until now, little is known about the neurological pathways involved in the modulating 

effects of top-down factors 39. 

 

Oral processes 

 

Food consumption starts with the first bite followed by mastication. Mastication or chewing serves to 

fragment the food, to enhance the release of flavor and aroma and to lubricate the food with saliva 40,41. 

Saliva contains enzymes that begin with the digestion of starches and lipids 42. Furthermore, 

lubrication with saliva facilitates bolus formation; the lubricated food particles can be pressed together 

by the tongue against the hard palate to form a bolus that can be swallowed 43. When the food particles 

in the bolus are in optimal cohesion, swallowing of the bolus is triggered 43.  

 

Taste  

 

One of the chemical processes that occurs in the mouth is taste transduction. Humans perceive five 

basic tastes namely sweet, salty, sour, bitter and umami. The existence of a sixth primary taste quality, 

namely the taste of fat (free fatty acids), is still under investigation. However, given that the 

concentration of naturally occurring free fatty acids in a human diet is low, it is likely that the presence 

of fat is more dominantly signaled by textural components. 44 From an evolutionary perspective, taste 

serves to stimulate the ingestion of nutritious food, to inform the body about the upcoming nutritious 

load and to warn against potentially harmful substances.45 More specifically, sweet and umami tastes 

signal for the presence of respectively sugars and amino acids, salty taste functions to maintain 

electrolyte balance, and bitterness and sourness notify the body of noxious or poisonous chemicals.45,46 

Gustatory epithelium is present on the tongue, soft palate and the pharynx 47. In this epithelium, taste 

receptor cells are clustered together in taste buds, which in turn are located in folds of the tongue 

(papillae) 47,48. When food is present in the mouth, taste receptors bind to taste molecules and stimulate 

nerve fibers to send signals to the brainstem 48. T2Rs binds to compounds such as quinine and 

saccharin and is responsible for bitter taste transduction. The umami taste receptor is called T1R1 + 

T1R3 and is responsive to glutamate and other amino acids. 45–48 The sodium channel ENaC and the 

acid sensing ion channels ASiCs are possibly involved in respectively salty and sour taste signaling 

47,48. Finally, the sweet taste receptor (T1R2 + T1R3) responds to sugars and artificial sweeteners 45,49. 
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The gustatory pathway 

 

Taste signals travel to the brain via the facial, glosso-pharyngeal and vagus nerve 47. In the brain, 

signals follow the so-called ‘gustatory pathway’, which is reasonably well established in primates. 

Afferent nerves first arrive in the nucleus of the solitary tract (brainstem), then synapse on to the 

thalamus, anterior insula/frontal operculum (primary taste cortex) and the orbitofrontal cortex (OFC, 

secondary taste cortex) 50,51. In monkeys, the OFC projects to many other regions including the 

hypothalamus, striatum, amygdala and anterior cingulate cortex 50,52–54. Furthermore, patterns of 

coactivation were observed in a meta-analysis between the human OFC and the amygdala, striatum 

and thalamus 55. Even though these areas are not part of the gustatory pathway, they are probably 

closely related and often found in taste fMRI studies in humans (see for example: 56–60).  

 

Identifying functional specialization of taste regions in humans is challenging because taste is a multi-

dimensional sensation. The perception of taste comprises 5 dimensions, i.e. intensity, quality, spatial 

localization, hedonics and temporal dynamics, that combined form the final taste sensation 47. For 

quality, intensity and pleasantness representation, accumulating evidence suggests a role for the insula 

61–64. Besides the insula, other regions have also been reported to code food pleasantness such as the 

OFC, anterior cingulate cortex (ACC), striatum and amygdala 56,65–69. Little knowledge exists about the 

representation of the other taste dimensions in the brain.  

 

Flavor 

 

Besides taste, smell, texture and temperature of a food are also detected in the oral cavity. Hence, the 

integration of taste (that is, the chemical stimulation of taste receptors in the mouth) with oro-sensory 

and retronasal olfactory signals in the brain results in the actual consumption experience, which is 

referred to as flavor 50,70,71. The sensory inputs that make up a flavor are thought to be integrated in the 

anterior insula, from where they accordingly travel to connected brain regions such as the brainstem, 

thalamus, amygdala, OFC and ACC. Here, they are combined with additional appetitive signals to 

control eating behavior. 70  

 

Several studies have shown the interdependent relationship between taste and odor 72–76. Stevenson et 

al. (1999) found that an orthonasally administered caramel odor suppressed the sourness of citric acid 

and enhanced the sweetness of sucrose. Moreover, others found that odors were perceived as sweeter 

when they had retronasally been paired with a sucrose compared to a salty solution 73. Furthermore, 

also in real products, adding flavor by the removal of a nose-clip during consumption, modulated taste 

perception 74. Finally, the addition of a sweet odor to a sucrose solution in comparison to a tasteless 

solution increased salivary responses 76. The above studies are illustrative of the strong interaction 
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between taste and odor. The latter study additionally indicates that congruency between odor and taste, 

i.e. when they are commonly combined in food products, could be important for optimal digestion. 

 

Energy sensing 

 

Next to taste, recent findings indicate that energy is also sensed in the oral cavity. Behavioral studies 

show that mouth rinsing with a sweet carbohydrate solution in comparison to a sweet non-caloric 

solution enhanced exercise performance 77,78. Moreover, mouth rinsing with a sweet carbohydrate 

solution in comparison to a sweet non-caloric solution also increased activation in the primary motor 

cortex during physical activity 79. Interestingly, a recent study reported that humans, like rats 80,81, are 

able to taste glucose polymers such as maltodextrin 82. This serves as evidence for the hypothesis that 

there is an unknown oral carbohydrate receptor, that functions independently of the sweet taste 

receptor 77. In addition, fatty acid sensing may also occur on the tongue. Presumably by oral receptors 

such as CD36 and GPR120 44,83–85.  

 

Consumption experience 

 

Consumption experience, as referred to in this thesis, is defined as the combination of explicit and 

implicit oral sensations that are evoked by the presence of food in the oral cavity. Recent studies 

indicate that explicit and implicit processes of food reward are not necessarily in agreement with each 

other within one person 86–88. For instance, explicit attitudes are thought to be more associated with 

controlled/reflective behavior, whereas implicit attitudes may be more involved in 

uncontrolled/impulsive behavior 89,90. However, most likely reflective and impulsive processes interact 

and together determine behavioral output 90. Measurements of the consumption experience in the brain 

– e.g. by fMRI measurements during the period food is in the mouth – are more informative than 

behavioral measurements (e.g. explicit ratings or implicit reaction time tasks) alone 91–93. Behavioral 

measures can be used to separately obtain explicit and implicit attitudes, but are unable to show how 

these processes interact. In contrast, brain responses do reflect this interaction between explicit and 

implicit processes of food reward. In addition, brain in comparison to behavioral measures, serve as 

the most direct way to measure the consumption experience. Therefore, in the experiments described 

in this thesis, the consumption experience is measured in the brain.  

 

The consumption experience is a dynamic process that varies from person-to-person. For example, 

brain responses to the same tastant vary with gender, age and body mass index (BMI) 36,59,94–97. 

Moreover, consumption experiences may also differ within a person, depending on the situation. A 

good example is hunger state; Eating chocolate when hungry compared to satiated elicits different 
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responses in the brain 98. In line with this, many others also found that hunger state modulates brain 

response to food cues 36,59,99,100. An overview of potential internal and external factors that may 

influence the consumption experience is listed in Figure 1.2 (see also 101). The factors addressed in this 

thesis are discussed below.  

 

First, a multitude of cognitive effects such as expectations and selective attention can affect taste and 

flavor perception. Visual and olfactory food cues trigger beliefs about anticipated taste and satiation 

properties 102. Product packages and the information they contain, such as pictures, price, caloric 

content and health claims, are visual cues that create expectations. For few of these factors the effect 

on the consumption experience has been investigated. One study reported that increasing the price of a 

wine resulted in higher liking scores and greater taste activation in the medial OFC 103. Most other 

neuroimaging studies examined packaging effects during food anticipation by means of food images 

rather than by food consumption 97,104–106. Linder et al. (2010), for example, found that food viewing 

activation in the ventral striatum increased when a product was presented as organic compared to 

regular 106.  

 

On a related note, product labels may modulate the consumption experiences via selective attention 

biases. In the supermarket, attention of the consumer is often drawn towards one specific aspect of a 

product such as its health benefits or its palatable taste by means of claims or statements on the 

package. Several neuroimaging studies looked into such attentional effects. They found that neural 

processing of visual and gustatory food stimuli is modulated by preceding verbal descriptions that 

attach a particular value to the stimulus 67,107,108. Verbal descriptors varied from the words “treat” 

versus “healthy” 108 to positive versus negative words 107 and sentences such as “rich and delicious 

flavor” versus “boiled vegetable water” 67. Like verbal descriptors, task instructions such as “try to 

detect a taste” versus passive tasting were also found to influence brain activation evoked by a taste 

stimulus 109,110. Finally, one study showed that focusing on specific product characteristics, i.e. 

pleasantness and intensity, also resulted in different taste-induced brain responses 111.  

 

 A second factor shown to modulate brain responses to food cues comprises a persons’ beliefs, 

attitudes and personality 112–116. Personality traits relevant for eating behavior are for example 

impulsivity and reward sensitivity 101. Kerr et al. (2014) showed that impulsivity is associated with 

increased activation in the ACC and amygdala during anticipation of a rewarding taste 114. In another 

study, trait reward sensitivity was correlated with the neural response to images of palatable relative to 

bland foods in reward areas such as the ventral striatum 113. To date, little research exists with regard 

to personal beliefs or attitudes important for eating behavior, e.g. attitude towards healthy 117,118 or 

environmental friendly foods 119,120, and how these modulate brain responses to food cues.  
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Finally, oral food nutrient content may stimulate brain regions independently of taste. Accumulating 

evidence for this was found in particular for energy content. Several fMRI studies reported that the 

human brain responds differently to sips of similarly tasting sugar sweetened and artificially 

sweetened beverages 121,122. This suggests that energy content per se may alter the consumption 

experience of food. As was indicated in the section “Energy sensing” carbohydrates may be sensed in 

the oral cavity by an until now unidentified carbohydrate receptor. However, whether oral exposure to 

different types of carbohydrates, e.g. glucose and fructose, induces different brain responses has not 

been investigated.   

 

 

Figure 1.2 Schematic representation of food-mouth-brain interactions in relation to eating behavior. This figure is based on 

Smeets PAM, Charbonnier L, van Meer F, van der Laan LN and Spetter MS. Food-induced brain responses and eating 

behaviour. Proc Nutr Soc. 71. 04. 511-520. 2012 101 with permission (Cambridge University Press). 
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Measuring brain activation 

 

The technique used to study taste-related brain responses in this thesis is functional magnetic 

resonance imaging (fMRI). Upon a task-related event, e.g. a taste event, neuronal firing is triggered 

and oxygenated blood rapidly flows to the site of action. Moreover, the concentration of deoxygenated 

hemoglobin rises due to the rapid usage of oxygen. Deoxyhemoglobin has different magnetic 

properties as compared to oxyhemoglobin and the surrounding tissues 123. The changes in blood 

oxygen level can therefore be indirectly measured by means of fMRI.124,125 The signal obtained via 

fMRI is referred to as blood oxygen level dependent (BOLD) signal 124.  

 

Plotted over time, the BOLD signal follows a so-called hemodynamic response. The BOLD signal 

starts approximately 2 seconds after neuronal activity begins, and reaches its peak after 7 to 10 

seconds. The signal remains high until neuronal activity ends. Hereafter, the BOLD signal returns to 

baseline in approximately 8 to 11 seconds.126 Because of the lengthiness of the hemodynamic 

response, fMRI lacks a high temporal resolution. However, fMRI also has many advantages in 

comparison to other neuroimaging techniques such as its high spatial resolution, possibility to image 

deeper brain regions and low invasiveness. 127 Therefore, fMRI qualifies as most suitable for 

measuring taste-related brain responses. 

 

For illustrative purposes the typical study setup used in this thesis is depicted in Figure 1.3. 

Participants were positioned in a 3 Tesla MRI scanner in a supine position. Liquid stimuli were 

administered by means of a gustometer via small tubes that were attached to the mouth. Visual stimuli 

were projected on a screen at the back end of the bore and were visible for the participants via a mirror 

that was positioned on top of the head coil.   

 

Figure 1.3 Typical fMRI study setup as used during this thesis; a participant in the scanner (A) and the 

gustometer (B). Copyrights of picture A belong to Wageningen UR and CAT-AgroFood, reprinted here with 

permission. 
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Aim and thesis outline 

 

The way we experience our food is dynamic and is affected by many internal and external factors. Our 

brain is responsible for weighing and integrating these factors and forms the final consumption 

experience. Mapping the impact of all factors that influence the consumption experience is of 

fundamental importance for understanding why we eat the way we eat. Important drivers for food 

consumption are its rewarding capacity, healthiness and caloric content. In this thesis, we focus on the 

influencing effects of individuals reward sensitivity and health interest, and on the effect of food 

energy content independent of sweet taste. Furthermore, in the current supermarket environment, 

advertisements and food claims are omnipresent. For this reason, we assess the influence of two 

cognitive effects, i.e. labeling/claim effects and selective attention on the consumption experience. The 

overall aim of this thesis was to assess the effect of food content, cognitive effects and character on 

brain activation during tasting.  

 

Specific questions addressed in this thesis are: 

 Are calories sensed in the oral cavity independent of sweet taste? 

 Do reward sensitivity and health interest modulate taste activation induced by beverages 

varying in respectively actual and perceived caloric content? 

 How does selective attention to food properties modulate taste activation?  

 

To begin with, we focus on the relation between food content and taste-related brain patterns 

(Chapter 2 & 3). A study was performed in which brain responses to several simple solutions 

containing carbohydrates, artificial sweeteners or both (glucose, fructose, maltodextrin, sucralose and 

maltodextrin + sucralose) were obtained. With these data, we first explored whether oral exposure to 

caloric and non-caloric stimuli elicits discriminable brain responses (Chapter 2). Moreover, we 

assessed in how far these responses are modulated by hunger state. Secondly, in Chapter 3, we 

compared the glucose and fructose data to examine whether oral exposure of these two sugars evokes 

differential neural responses. Again, also the modulation by hunger state was assessed. In Chapter 4 

and 5, the relations between individual characteristics and taste activation are explored. The data of 

the first study was used to explore whether trait reward sensitivity modulates brain responses to oral 

exposure to calories during hunger and satiety (Chapter 4). In Chapter 5, we describe the results of a 

second study investigating the effect of both an individual characteristic, health interest, and a 

cognition, food claims. Here, the modulating effect of health interest on taste activation was assessed 

with a lemonade that was labeled as either low- or high-caloric. In Chapter 6, we report the results of 

a third study on the effect of selective attention to hedonics, intensity and caloric content on brain 

responses during tasting. Finally, in Chapter 7, the main findings of this thesis are discussed.  
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Abstract 

 

An important function of eating is ingesting energy. Our objectives were to assess whether oral 

exposure to caloric and non-caloric stimuli elicits discriminable responses in the brain and to 

determine in how far these responses are modulated by hunger state and sweetness. Thirty women 

tasted three stimuli in two motivational states (hunger and satiety) while their brain responses were 

measured using functional magnetic resonance imaging in a randomized crossover design. Stimuli 

were solutions of sucralose (sweet, no energy), maltodextrin (non-sweet, energy) and sucralose + 

maltodextrin (sweet, energy). We found no main effect of energy content and no interaction between 

energy content and sweetness. However, there was an interaction between hunger state and energy 

content in the median cingulate (bilaterally), ventrolateral prefrontal cortex, anterior insula and 

thalamus. This indicates that the anterior insula and thalamus, areas in which hunger state and taste of 

a stimulus are integrated, also integrate hunger state with caloric content of a taste stimulus. 

Furthermore, in the median cingulate and ventrolateral prefrontal cortex, tasting energy resulted in 

more activation during satiety compared to hunger. This finding indicates that these areas, which are 

known to be involved in processes that require approach and avoidance, are also involved in guiding 

ingestive behavior. In conclusion, our results suggest that energy sensing is a hunger state dependent 

process, in which the median cingulate, ventrolateral prefrontal cortex, anterior insula and thalamus 

play a central role by integrating hunger state with stimulus relevance. 
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Introduction 

 

An important function of eating is ingesting energy. From an evolutionary perspective, the ability to 

sense energy in the oral cavity therefore seems useful. Possibly, oral energy sensing occurs in two 

ways, namely (1) the sensing of energy due to a conditioned link between sensory properties of a food 

and the post-ingestive consequences (indirect energy sensing) and (2) the direct binding of a caloric 

ligand to a receptor in the oral cavity (direct energy sensing). Nowadays, there are several serious 

candidate receptors (such as CD36 and GPR120), that are proposed to be involved in direct fat 

sensing in the oral cavity 1–4.  

 

On the contrary, although there is some indirect evidence, there is no proposed mechanism for direct 

oral carbohydrate (CHO) sensing. In a traditional human diet, the taste of sweet foods is usually 

produced by the binding of CHOs to the sweet taste receptor (a receptor to which also other 

compounds such as artificial sweeteners bind 5). Therefore, there is a strong learned association 

between sweet taste and energy from CHO. This makes it very difficult to distinguish between direct 

CHO sensing and indirect sensing through sweet taste in the oral cavity. At the same time, our diet 

includes many common starch-rich foods like potatoes and rice, which are high in CHO but do not 

taste sweet. These could be used to investigate the coupling between sweetness and energy. To our 

knowledge, however, no functional magnetic resonance imaging (fMRI) studies on oral CHO sensing 

have used this approach.  

 

In mice, the coupling between sweetness and CHO can be bypassed by knocking out the sweet taste 

receptor 6–8. Damak et al. (2003) 6 and Zhao et al. (2003) 7 showed that knockout mice lose their 

preference for artificial sweeteners, but partly retain their preference for glucose and sucrose. In line 

with this, both studies demonstrated that application of the taste stimuli on the tongue, resulted in near 

zero gustatory nerve responses for artificial sweeteners and diminished or normal responses for the 

CHOs. These findings point to the existence of direct CHO sensing in the absence of sweet taste 

transduction. 

 

Earlier research speculated that rodents have a maltodextrin receptor in the oral cavity, based on their 

avid ingestive response of a maltodextrin solution compared to solutions of different 

mono/disaccharides 9,10. Whereas in rodents, maltodextrin has a salient and pleasant taste, in humans it 

appears to be tasteless 11. However, in humans, behavioral studies also substantiate the existence of an 

unidentified CHO receptor which facilitates direct oral CHO sensing 12,13. Mouth rinsing with a sweet 

CHO solution, but not with a sweet non-caloric solution, improved exercise performance 13,14. For 

example, mouth rinsing with a solution containing sucrose and glucose compared to a placebo 
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solution containing aspartame, resulted in shorter time to complete a standard cycle trial 15. Recently, 

a similar paradigm was tested in a neuroimaging setting and provided additional evidence for this 

phenomenon by showing larger CHO induced changes in the primary sensorimotor cortex compared 

to an equisweet non-caloric placebo when contrasted with a control solution 16. The above results 

suggest that humans have an oral maltodextrin receptor similar to that of rodents.  

 

Neuroimaging research has corroborated this hypothesis by demonstrating differences in taste 

activation between caloric and non-caloric solutions which were matched on sweetness 12,17–19. For 

instance, Frank et al. (2008) 17 showed that primary taste areas (the anterior insula and frontal 

operculum) as well as frontal regions (prefrontal cortex) and regions involved in reward (striatum and 

anterior cingulate cortex (ACC)) responded stronger to tasting a sucrose than to tasting an equisweet 

sucralose solution. Similarly, Chambers et al. (2009) 12 looked at glucose and saccharin (non-caloric) 

and found that oral glucose, but not oral saccharin, activated the striatum and the ACC. In addition, 

others compared caloric and non-caloric soft drinks, sweetened with either sucrose and sucralose or a 

mixture of artificial sweeteners, and reported divergent activation in areas such as the amygdala, 

median cingulate, precentral gyrus, rolandic operculum and thalamus 18,19.  

 

Physiological responses to oral energy, including brain activation, can be modulated by hunger state. 

That is, mouth rinsing with CHO in fed state did not improve exercise performance 
20

. Furthermore, 

Smeets et al. (2011) 18 found striatal activation before, but not after consumption of 450 mL of caloric 

orangeade, during tasting of small sips of this same caloric orangeade. Tasting a non-caloric 

orangeade elicited no activation in this area, neither before nor after consumption of non-caloric 

orangeade. In contrast, in a study of Haase et al. (2009) 21, brain areas in which activation was greater 

during hunger compared to satiety in response to tasting a caloric (sucrose) and non-caloric 

(saccharin) stimulus partly overlapped; activation was significantly greater in the thalamus and 

hippocampus. Additionally, they demonstrated that during hunger, regions involved in salience 

(amygdala), memory (hippocampus) and maintaining energy balance (hypothalamus) were more 

activated than regions involved in tasting (primary and secondary taste regions such as the insula and 

inferior orbitofrontal cortex). During satiety, this was the other way around.  

 

In conclusion, there is a lack of consensus about the existence of direct CHO sensing in the oral cavity 

in humans, the brain areas involved in this process and the modulation of energy sensing by hunger 

and sweetness. In the current study we intend to strengthen the evidence for direct oral CHO sensing 

in humans. Our main objective was to assess whether oral exposure to caloric and non-caloric stimuli 

elicits discriminable responses in the brain. In addition, we aimed to determine in how far these 

responses are modulated by hunger state and sweetness. To be able to distinguish the effect of energy 

from sweetness we included a stimulus containing only sweetness (sucralose solution), a stimulus 
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containing only energy (maltodextrin solution) and a stimulus combining both (sucralose + 

maltodextrin solution). We hypothesize that oral exposure to caloric and non-caloric stimuli elicits 

differential responses in regions involved in salience (amygdala), memory (hippocampus), energy 

balance (hypothalamus), tasting (insula, frontal operculum and inferior orbitofrontal cortex) and 

reward (striatum and ACC). We expect that these differences are more pronounced during hunger 

compared to satiety and when sweetness and energy are combined.  

 

Materials and Methods 

 

Participants 

 

We recruited healthy, normal-weight (BMI between 18.5-25 kg/m2), right handed female participants 

(age between 18-35 y), who consumed artificially sweetened beverages at least two times per month. 

Only women were included because structural 22 and functional 22–24 brain differences exist between 

both sexes. Exclusion criteria were: a restrained eating score higher than 2.80 (Dutch Eating Behavior 

Questionnaire 25), an energy restricted diet during the past two months, change in body weight of 

more than five kg during the past two months, lack of appetite, stomach or bowel diseases, diabetes, 

thyroid disease or any other endocrine disorder, having a history of neurological disorders, use of 

daily medication other than oral contraceptives or paracetamol, having difficulties with swallowing 

and/or eating, having taste or smell disorders, being allergic and/or intolerant for products under 

study, smoking more than one cigarette/cigar a day, having a history of or current alcohol 

consumption of more than 28 units per week, exclusive consumption or avoidance of light versions of 

beverages, being pregnant or lactating or having any contra-indication for MRI scanning. Before 

enrollment, participants were screened on inclusion and exclusion criteria via a questionnaire and 

completed an fMRI training session in which they were familiarized with the fMRI procedure. Of the 

31 enrolled participants, one dropped out during the first scan session (hunger session) because of 

nausea. Thirty female participants with a mean±SD age of 22±3 y and a BMI of 22.6±1.4 kg/m2 

completed the study. Participants were on average at the same point in their menstrual cycle during 

both the hunger (mean±SD = 9±11 days) and satiety session (mean±SD = 10±9 days). This precludes 

biases in brain activation due to menstrual cycle phase, as sometimes seen in literature 26–28. All 

participants gave written informed consent. This study was conducted according to the principles of 

the Declaration of Helsinki, approved by the Medical Ethical Committee of Wageningen University 

and registered in the Dutch Trial Register (NTR 3749). 
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Study design 

 

The study had a randomized crossover design in which participants were scanned on two occasions, 

once during hunger and once during satiety. During the two scan sessions participants tasted fixed 

amounts of a control stimulus (water) and five stimuli that contained either CHOs, artificial 

sweeteners or both (sucralose, maltodextrin, maltodextrin + sucralose, glucose and fructose solutions), 

while their brain responses were measured using functional MRI. Here we analyze the responses to 

three of these stimuli, namely, a non sweet caloric (maltodextrin), a sweet non-caloric (sucralose) and 

a sweet caloric (sucralose + maltodextrin) solution. Subjective scores of hunger, liking, wanting, 

sweetness and viscosity for each stimulus were given during the fMRI training session (viscosity) or 

scan sessions. 

 

Stimuli 

 

Stimuli varied in sweetness and energy content and were a non sweet caloric, a sweet non-caloric and 

a sweet caloric solution; made by dissolving respectively maltodextrin (158.2 g Nutricia Fantomalt 

(90% polysaccharides - DE 19, 6% mono/disacharides) per liter, 2541 kJ / 607 kcal per liter), 

sucralose (Brenntag specialties, 0.254 g SPLENDA® Sucralose per liter, zero kJ / zero kcal per liter) 

and maltodextrin + sucralose (158.2 g Nutricia Fantomalt (90% polysaccharides - DE 19, 6% 

mono/disacharides) + 0.140 g SPLENDA® Sucralose per liter, 2541 kJ / 607 kcal per liter) in 

demineralized water. In addition, demineralized water was used as a control stimulus to be able to 

subtract out all general taste effects, such as the sensation of a fluid in the mouth, and tongue 

movements. Both sweet stimuli were equisweet, with a sweetness intensity comparable to that of a 

10% sucrose solution. Concentrations were established in a pilot study using the method of constant 

stimuli (n=10). Both energy containing stimuli were isocaloric.  

 

Prior to testing, sweetness intensity of the stimuli was scored by a trained sensory panel (n=12, 

Essensor B.V., Ede, The Netherlands) (Supplementary Figure 2.1, Appendix). As judged by this 

panel, sweetness of the sucralose + maltodextrin (mean±SEM = 68.9±4.0 mm) and sucralose 

(mean±SEM = 66.6±4.2 mm) solutions was equal. Sweetness of the non sweet stimulus, maltodextrin 

(mean±SEM = 21.2±1.9 mm), was rated significantly lower than sweetness of the sweet stimuli 

(P<0.0001). 
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Experimental procedure 

 

Participants arrived between 10:25 h and 14:00 h at the test location (Hospital Gelderse Vallei, Ede) 

after a fast of at least 3 h (no food, only water). Participants were instructed to eat a small self-chosen 

breakfast, prior to the 3 h fast. During the hunger session participants started with tasting 5-10 mL of 

each stimulus and rating it on liking, wanting and sweetness, followed by rating appetite (hunger, 

fullness, desire to eat and prospective consumption) and thirst (Figure 2.1). Rating was done on a 9-

point scale. Hereafter participants were placed in the MRI scanner and scanned while tasting the 

stimuli several times. After scanning, participants again rated their appetite and thirst and tasted and 

rated the stimuli on liking, wanting and sweetness. During the satiety session participants started with 

subjective appetite ratings and an ad libitum lunch consisting of bread rolls (1063 kJ / 254 kcal per 

100 g), full fat cheese (1570 kJ / 375 kcal per 100 g), boiled eggs (645 kJ / 154 kcal per 100 g), butter 

(1549 / 370 kcal per 100 g), sandwichspread (984 kJ / 235 kcal per 100 g), cucumber, tomato, orange 

juice (167 kJ / 40 kcal per 100 g) and skimmed milk (197 kJ / 47 kcal per 100 g). Participants were 

instructed to eat until comfortably full. After lunch, the same order of events was followed as during 

the hunger session (Figure 2.1).  

 

Figure 2.1 Schematic overview of the satiety and hunger session. 

 

Scanning procedure 

 

A scan session consisted of 3 functional runs during which 300 functional volumes were acquired 

using a T2*-weighted gradient echoplanar imaging sequence (TR=2140 ms, TE=25 ms, 90° flip angle, 

FOV=192x192 mm, 43 axial slices, descending order, voxel size 3×3×3 mm) on a 3-Tesla Siemens 

Magnetom Verio (Siemens, Erlangen, Germany). The stack was tilted at an oblique angle of 30° to the 

anterior-posterior commissure line to reduce signal dropout in orbitofrontal cortex and ventral 

temporal lobe 29. Additionally, a high-resolution T1-weighted anatomical scan was acquired 

(MPRAGE, TR=2300 ms, TE=2.98 ms, 9° flip angle, FOV=256×256 mm, 192 sagittal slices, voxel 

size=1×1×1 mm).  
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In Figure 2.2, a schematic overview of the trial structures in a functional run can be found. During 

each functional run every stimulus was tasted 4 times, resulting in a total of 12 taste trials per stimulus 

per scan session. Stimuli were offered as 2 mL sips in a semi-random order. Each taste event (11 s) 

was followed by a 3-s swallow, a 4-s rinse with water, a 3-s swallow and a 3 to 5-s rest (one trial). 

During each functional run, participants rated liking once for every stimulus on a 9-point scale. Liking 

ratings were given directly after swallowing the taste stimuli. Instructions to either taste, swallow, 

rate, rinse, or rest were given to participants via visual cues on a screen placed in the bore at the back 

end of the scanner. Stimuli were administered with the use of programmable syringe pumps (New Era 

Pump Systems Inc,Wantagh, NY) at 50 mL/min. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Schematic overview of trial structures in a functional run. 

 

Analysis 

 

fMRI data were preprocessed and analyzed with the SPM8 software package (Wellcome Department 

of Imaging Neuroscience, London, UK) in conjunction with the MarsBar toolbox 

(http://marsbar.sourceforge.net/) run with MATLAB 7.12 (The Mathworks Inc, Natick, MA). 

 

The functional volumes of every participant were slice time corrected, realigned to the first volume of 

the first run, coregistered to the anatomical image, globally normalized to the Montreal Neurological 

Institute space (MNI space), and spatially smoothed with a Gaussian kernel of 6 mm full-width at 

half-maximum. A statistical parametric map was generated for every participant by fitting a boxcar 

function to each time series, convolved with the canonical hemodynamic response function. Data 

were high-pass filtered with a cutoff of 128 s. Nine conditions were modeled: delivery of sucralose, 

http://marsbar.sourceforge.net/
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maltodextrin, maltodextrin + sucralose, glucose, fructose and water, swallowing, rinsing and stimulus 

rating. Responses to swallowing, rinsing and rating were not included in further analyses and 

responses to glucose and fructose are not under study in the current analyses. To account for motion-

related variance, realignment parameters were added to the model as regressors. For every participant, 

parameters were estimated for every tastant minus control (water) administration using a T-test for 

both the hunger and the satiety session. 

 

 For the group analyses we used a functional region of interest (fROI) approach in which a priori 

anatomical regions of interest are combined with clusters of activation resulting from an F-test testing 

for any effect of oral exposure to the stimuli, to form fROIs. This approach avoids problems of 

circularity and has the advantage of allowing more complex analyses than is possible with voxelwise 

analysis of variance as implemented in fMRI analyses packages, see e.g. 19,30–32. A priori anatomical 

regions of interest were selected from literature and included regions involved in reward, salience, 

memory, energy balance and tasting or that were found to be modulated by hunger state: Striatum 

(caudate nucleus, putamen and pallidum), amygdala, orbitofrontal cortex, frontal gyri, opercula, 

insula, cingulate gyri, ventral tegmental area, hypothalamus, thalamus, parahippocampal gyri, 

hippocampus, fusiform gyri, pre and postcentral gyri, temporal gyri and parietal gyri. Individual 

masks of these a priori anatomical regions of interest were dilated with one voxel to accommodate 

between subject variability and used to create a bundled anatomical mask with the use of the WFU 

Pickatlas 33. A whole brain statistical F-map was created by performing an ANOVA with stimuli 

(maltodextrin, sucralose and maltodextrin + sucralose) and hunger state (hunger and satiety) as 

independent variables. This F-map was masked with the bundled anatomical mask and thresholded at 

a significance level of P<0.001 (uncorrected for multiple comparisons) and a cluster size of k>8 

contiguous voxels.  

 

FROIs were formed by multiplying the clusters in the F-map with the individual anatomical masks. 

The average beta values of all voxels within each identified fROIs were extracted and analyzed in two 

separate MANOVAs (GLM) in SAS 9.3: one with the independent variables hunger state and energy 

content and the other with independent variables hunger state and stimulus. This allowed us to look at 

the effect of energy content and to the effect of adding sweetness to energy (by looking at the separate 

stimuli) during hunger and satiety. Liking (obtained during scanning),viscosity and sweetness ratings 

were added as covariates to the models.  
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fROI 

Peak voxel 

coordinate of 

fROI 

Main 

effect 

energy
a
 

Energy  

x  

hunger
a
 

Main 

effect 

stimulus
b 

x y z p-value p-value p-value 

 Frontal cortex             

L superior frontal gyrus, medial -9 56 4 0.13 0.40 0.03 

R superior frontal gyrus, medial 15 68 13 0.06 0.71 0.07 

L superior frontal gyrus, dorsolateral -15 -1 70 0.81 0.03 0.38 

L inferior frontal gyrus (triangular part) -39 11 25 0.83 <0.01 0.09 

R inferior frontal gyrus (triangular part)  36 29 28 0.35 <0.05 0.21 

R inferior frontal gyrus (opercular part) 42 14 28 0.55 0.07 0.04 

L middle frontal gyrus  -33 29 31 0.71 0.08 0.65 

R middle frontal gyrus  36 5 55 0.32 0.03 0.25 

 Orbitofrontal cortex          

L medial frontal gyrus, orbital part  -15 65 -2 0.17 0.62 0.04 

L inferior frontal gyrus, orbital part  -42 44 -2 0.33 0.08 0.20 

R inferior frontal gyrus, orbital part c  48 20 -5 0.62 0.04 0.67 

R inferior frontal gyrus, orbital partc 51 44 -11 0.96 0.13 0.67 

R middle frontal gyrus, orbital part  39 53 -8 0.71 0.21 0.91 

 Thalamus          

L thalamus  -15 -22 7 0.30 0.07 0.82 

R thalamus  15 -25 7 0.52 <0.05 0.83 

 Cingulate gyrus          

L anterior cingulate  -3 35 7 1.00 0.10 0.49 

L median cingulate  -9 -37 55 0.93 0.02 0.65 

R median cingulate  6 -13 46 0.65 0.02 0.68 

 Insula           

R insulac  39 23 -2 0.22 0.04 0.42 

R insulac  42 5 -11 0.80 0.79 0.71 

 Pre and postcentral gyrus          

L postcentral gyrusc  -33 -34 61 0.20 0.04 0.14 

L  postcentral gyrusc  -63 -7 25 0.67 0.48 0.83 

R postcentral gyrus  42 -25 52 0.86 <0.01 0.39 

L precentral gyrusc 
 -33 -1 64 0.99 <0.01 0.10 

L precentral gyrusc -21 -25 61 0.53 0.02 0.09 

 Fusiform gyrus          

L fusiform gyrus  -48 -58 -17 0.95 <0.01 0.99 

R fusiform  gyrus  36 -76 -17 0.91 <0.01 0.92 

 Parietal gyrus          

L inferior parietal gyrus  -30 -55 46 0.44 0.03 0.03 

R inferior parietal gyrus  36 -49 49 0.24 0.07 0.08 

L superior parietal gyrus  -24 -40 64 0.37 0.06 0.12 

 Temporal gyrus          

L inferior temporal gyrus -54 -52 -8 0.82 0.02 0.77 

Table 2.1 Identified fROIs and results of MANOVA with liking, viscosity (and sweetness) as covariates of mean parameter 

estimates in each fROI for tasting caloric and non-caloric stimuli during hunger and satiety. 
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a
Results from MANOVA with liking, viscosity and sweetness as covariates. 

b
Results from MANOVA with liking and viscosity as covariates. 

c
Two identified fROIs in one anatomical ROI. 

 

Results 

 

Identified functional regions of interest 

 

All identified fROIs can be found in Table 2.1. Some of the hypothesized regions, such as the 

amygdala and caudate nucleus, were not identified as fROIs. This means that in these areas none of 

the stimuli differed from the control condition (water).  

 

Energy sensing 

There was no main effect of energy content in any of the fROIs (Table 2.1). For illustrative purposes, 

taste activation for caloric and non-caloric stimuli in an fROI in the right insula is shown (Figure 2.3).  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 Mean ± SEM parameter estimates (arbitrary units) in comparison to the control 

condition after tasting caloric and non-caloric stimuli in the right insula (MNI: 39, 23, -2). 

 

Effect of sweetness 

 

To determine the effects of energy content, sweetness and their combination, we compared taste 

activation induced by maltodextrin, sucralose and maltodextrin + sucralose (when liking and viscosity 

ratings were added to the model). We found a main effect of stimulus type in the left inferior parietal 

L superior temporal gyrus  -57 -1 -2 0.28 <0.01 0.60 

R middle temporal gyrus c  57 -46 13 0.99 <0.01 0.46 

R middle temporal gyrus c  60 -43 -2 0.69 0.10 0.45 
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gyrus, the left superior frontal gyrus (medial part), the left medial frontal gyrus (orbital part) and the 

right inferior frontal gyrus (opercular part) (P<0.05) (Table 2.1 and Figure 2.4). In all these areas, 

tasting maltodextrin resulted in significantly different activation than tasting maltodextrin + sucralose 

(P<0.05). Taste activation did not interact with hunger state in the above mentioned areas. Sucralose 

and maltodextrin + sucralose activation did not differ significantly in any fROI. In addition, when 

sweetness was added to the model as extra an covariate, the main effect of stimulus type in the above 

mentioned areas disappeared (Supplementary Table 2.1, Appendix). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 Mean ± SEM parameter estimates (arbitrary units) in comparison to the control condition after tasting 

maltodextrin, sucralose and maltodextrin + sucralose solutions in fROIs that showed a main effect of stimulus (P<0.05): the 

left inferior parietal gyrus (A), left superior frontal gyrus (medial part) (B), left medial frontal gyrus (orbital part) (C) and the 

right inferior frontal gyrus (opercular part) (D). 

 

Interaction between energy content and hunger state 

 

As previously mentioned, there was no main effect of energy content. However, there was an 

interaction between hunger state and energy content in the median cingulate (bilaterally), fusiform 

gyrus (bilaterally), pre and postcentral gyrus, right thalamus, right insula, and parts of the 

(orbito)frontal, parietal and temporal gyrus (P<0.05) (Table 2.1 and Supplementary Table 2.2 

(Appendix)). The main effect of hunger can be found in Supplementary Table 2.3 (Appendix). 
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Figure 2.5 Mean ± SEM parameter estimates (arbitrary units) in comparison to the control condition after tasting caloric and 

non-caloric stimuli during hunger (☐) and satiety (), in the left (blue) and right (red) median cingulate. 

 

In both the left and right median cingulate, tasting energy during satiety was associated with greater 

activation than tasting energy during hunger. This interaction was significant in the left median 

cingulate (P<0.01) (Figure 2.5). For the non-caloric stimulus there were no significant differences 

between hunger and satiety in both the left and right median cingulate. In addition, in the right median 

cingulate, the difference in activation between hunger and satiety was significantly greater when 

tasting calories compared to no calories. In both the left and right inferior frontal gyrus (triangular 

part), tasting calories during satiety resulted in more activation than tasting calories during hunger. 

For the non-caloric condition, however, this was the other way around (Figure 2.6). In the right insula, 

tasting the non-caloric stimulus induced more activation during hunger than during satiety (Figure 

2.7). Taste activation by calories was not significantly different between hunger and satiety in the 

right insula. Finally, taste activation in the right thalamus showed a different pattern. Here, tasting 

calories resulted in more activation during satiety compared to hunger (Figure 2.8). For the non-

caloric condition there was no difference between hunger and satiety.    
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Figure 2.6 Mean ± SEM parameter estimates (arbitrary units) in comparison to the control condition after tasting caloric and 

non-caloric solutions during hunger (☐) and satiety (), in the left and right inferior frontal gyrus (triangular part). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7 Mean ± SEM parameter estimates (arbitrary units) in comparison to the control 

condition after tasting caloric and non-caloric solutions during hunger (☐) and satiety () 

in the right insula.  

 

Stimulus characteristics 

 

The ratings for sweetness, wanting, liking and viscosity measured inside (during scanning) and 

outside the scanner can be found in Table 2.2. In line with the sensory panel ratings (see section 

‘Stimuli’), sweetness ratings were lowest for water, followed by maltodextrin and finally by sucralose 
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and maltodextrin + sucralose. The latter two did not differ significantly in sweetness. Liking ratings, 

measured outside the scanner, were not significantly different for maltodextrin, sucralose and 

maltodextrin + sucralose. During scanning, maltodextrin was liked significantly more in comparison 

to the other stimuli (except for water). Finally, viscosity of the maltodextrin, sucralose and 

maltodextrin + sucralose solutions did not differ significantly. Water was rated significantly thinner 

than maltodextrin + sucralose. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8 Mean ± SEM parameter estimates (arbitrary units) in comparison to the control condition 

after tasting caloric and non-caloric solutions during hunger (☐) and satiety () in the right thalamus.  

 

Food intake and hunger 

 

During the ad libitum lunch, participants ate on average mean±SD 585.0±160.5 kcal. The average 

appetite ratings for the hunger and satiety session can be found in Table 2.3. Average hunger ratings 

before the hunger scan were significantly greater than those before the satiety scan (P<0.001). This 

demonstrates that the hunger-satiety manipulation worked.    
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Table 2.2 Mean (SEM) sweetness, wanting, liking and viscosity ratings of water, maltodextrin, sucralose and 

maltodextrin + sucralose, obtained outside and inside (liking only) the scanner. 

 
Water Maltodextrin Sucralose Malt + Suc 

Sweetness
 1.5 (0.1) 

(a)
 3.2 (0.3) 

(b)
 6.8 (0.3) 

(c)
 6.5 (0.3) 

(c)
 

Wanting 5.4 (0.4) (a) 3.3 (0.4) (b) 3.0 (0.3) (b) 2.7 (0.3) (b) 

Liking 6.1 (0.4) (a) 3.6 (0.4) (b) 3.4 (0.4) (b) 2.9 (0.3) (b) 

Liking during scan 5.8 (0.3) (a) 5.7 (0.3) (a) 4.1 (0.3) (b) 4.3 (0.3) (b) 

Viscosity 1.7 (0.2) (a) 1.9 (0.2) (a b) 2.5 (0.3) (a b) 2.7 (0.3) (b) 
Entries within a row with different superscript letters differ significantly from each other (one-way-anova, Tukey’s HSD test, P<0.05). 

Discussion 

 

We investigated whether oral exposure to caloric and non-caloric stimuli elicits discriminable 

responses in the brain, and in how far these responses are modulated by hunger state and sweetness.  

 

In general (averaged over hunger and satiety), taste activation did not differ between caloric and non-

caloric stimuli. Furthermore, in several areas like the left inferior parietal gyrus, left superior frontal 

gyrus (medial part), left medial frontal gyrus (orbital part) and right inferior frontal gyrus (opercular 

part) maltodextrin induced significantly different taste activation than sucralose + maltodextrin did. 

Furthermore, taste activation by the sucralose solution (sweetness, no energy), did not differ from that 

by the maltodextrin + sucralose solution in which energy and sweetness were combined. Thus, there 

was no interaction between energy content and sweetness. However, we did observe an interaction 

between hunger and energy content, in which tasting energy during satiety resulted in more activation 

than tasting energy during hunger in, among other regions, the median cingulate, inferior frontal gyrus 

(triangular part), anterior insula and thalamus.  

 

Energy sensing and the effect of sweetness 

 

Overall (averaged over hunger and satiety), we found no difference in activation between tasting 

caloric and non-caloric stimuli in any of the fROIs. In hypothesized brain regions associated with 

reward and salience, such as the striatum and amygdala, tasting of caloric and non-caloric stimuli 

elicited similar responses as the control condition (water). A possible explanation for the lack of 

difference in activation in these regions could be that the stimuli were not reinforcing enough due to 

their relatively low pleasantness. Nevertheless, in only a few areas activation by tasting sucralose + 

maltodextrin was significantly different from that by maltodextrin. This difference was no longer 

significant when sweetness was added as a covariate, indicating that the difference between these two 

stimuli is due to their dissimilar sweetness. 
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 The above results are in contrast with other studies, which did find differences in taste activation 

between caloric and non-caloric stimuli 12,17–19. These findings, however, are heterogeneous with 

regard to the identified brain regions responding differently to caloric and non-caloric tastants. Our 

study used a block-design, which has high statistical power and large BOLD signal change relative to 

baseline 34, with more participants than other above mentioned studies, and, in most cases, a 

comparable number of repetitions per stimulus. Inconsistencies among studies could be caused by the 

low reproducibility of fMRI research. Between-study variations such as the use of different (artificial) 

sweeteners, differences in study design and participant instructions, imaging data processing and 

analysis, and personality traits of participants can cause discrepancies between results 35–37. Our 

results suggest that generally speaking, energy sensing does not take place in the oral cavity. 

However, more research is needed to substantiate this finding.  

 

Table 2.3 Mean (SEM) appetite and thirst ratings obtained before and after the scan 

during the hunger and satiety session. 

Measure Hunger session Satiety session 

Before the scan     

Hunger 6.6 (0.2)a 1.3 (0.1)b 

Fullness 2.5 (0.2)a 7.3 (0.2)b 

Prospective consumption 6.8 (0.2)a 2.3 (0.2)b 

Desire to eat 7.1 (0.2)a 1.8 (0.1)b 

Thirst 4.1 (0.4)a 2.1 (0.3)b 

      

After the scan     

Hunger 5.6 (0.3)a 1.4 (0.1)b 

Fullness 4.5 (0.4)a 7.5 (0.3)b 

Prospective consumption 6.1 (0.3)a 2.0 (0.2)b 

Desire to eat 6.2 (0.4)a 1.8 (0.2)b 

Thirst 2.9 (0.4)a 2.1 (0.3)b 
Entries within a row with different superscript letters differ significantly from each other (paired 

T-test, P<0.05). 

 

Interaction between energy content and hunger state 

 

In the median cingulate, we found differential taste activation by energy content during hunger 

compared to satiety. This area has previously been associated with processing of pain 38,39 but more 

recently also with energy sensing 
19

. In addition, Small et al. (2001) 
40

 found greater taste activation in 

the median cingulate (MNI: 8, -33, 47) when participants rated chocolate as highly pleasant or 

unpleasant compared to neutral. Therefore, the median cingulate is also thought to be involved in the 

processing of emotionally salient stimuli, regardless of their valence 40,41. Thus, the median cingulate 
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seems to be involved in processing of pain and emotion, which, like ingestive behavior, require 

approach or avoidance behaviors, to ensure survival 39,40. In the current study, the median cingulate 

responded more strongly to energy during satiety compared to during hunger. During satiety, energy 

is not needed and should be avoided, whereas during hunger, energy is necessary, and needs to be 

approached. Additionally, we found that taste activation in the median cingulate did not differ 

between hunger and satiety for the non-caloric stimulus, suggesting that in this case there is no 

inclination to either approach or avoid. Above findings indicate that the median cingulate is involved 

in energy sensing, and regulating approach and avoidance behaviors appropriate for hunger state.  

 

Furthermore, we found a similar hunger effect (taste activation by calories is greater during satiety 

compared to hunger) in the inferior frontal gyrus (triangular part). In previous research, this areas was 

already found to be associated with energy sensing 17,18. Furthermore, increasing satiety has been 

found to increase blood flow in the inferior frontal gyri 40. Interestingly, the triangular part of the 

inferior frontal gyrus (BA 45, part of the ventrolateral prefrontal cortex 42), is also thought to be 

involved in inhibition of no longer required or inappropriate responses 43–47. Consequently, a possible 

explanation of our results could be that inferior frontal gyrus (triangular part) is activated more during 

satiety than during hunger in response to tasting energy, because the consumption of calories (the 

approach towards calorie rich products) is inhibited.  

 

In addition, in the right anterior insula and right thalamus, which are important areas in the gustatory 

network 48, taste activation was also modulated by hunger state. Previous research already showed that 

hunger state modulates taste activation in the insula and thalamus 21,49. Furthermore, both these areas 

have been implicated in energy sensing 17–19. Here we show that both hunger state and caloric content 

are integrated in these areas.  

 

In summary, it appears that energy content can be sensed in the oral cavity, but that this effect can 

only be measured when hunger state is taken into account, by comparing taste activation during 

hunger to taste activation during satiety. 

 

 Stimulus characteristics 

 

A strength of this study was that sweetness was matched well for the sweet stimuli, as reflected in the 

sweetness ratings from both the sensory panel and the participants. Furthermore, participants liked 

and wanted the stimuli equally, as measured outside the scanner. On the other hand, liking for the 

stimuli was not equal during scanning (maltodextrin was liked more than the others). This could have 

influenced the differences in activation between stimuli. However, to prevent this, liking was added as 

a covariate to the analyses.  
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Next to this, we observed deactivation rather than activation relative to the control condition (water). 

This might be due to the fact that water was liked more than the other stimuli in this study. 

Furthermore, tasting water has also been found to activate portions of the insula and operculum 50,51. 

Nevertheless, in the current study, using water as a control was still the best alternative (in 

comparison to, for example, artificial saliva), because it was also the vehicle substance for the other 

stimuli. In addition, our main interest was in the relative differences between the stimuli, which were 

independent of (de) activation.  

 

Conclusion 

 

To summarize, tasting caloric and non-caloric stimuli did not elicit discriminable responses in the 

brain, as averaged over hunger and satiety. Furthermore, tasting sweetness without energy resulted in 

similar responses compared to tasting sweetness with energy in all fROIs, which indicates that there is 

no interaction between energy content and sweetness. 

 

At the same time, we found that tasting an energy containing liquid differentially affects brain 

activation during hunger and satiety in the median cingulate, ventrolateral prefrontal cortex (inferior 

frontal gyrus), anterior insula and thalamus. Thus, in principle, energy can be detected in the oral 

cavity, but we were only sensitive enough to detect this when hunger state was taken into account.  

 

Our results show that the anterior insula and thalamus, areas in which hunger state and taste of a 

stimulus are integrated, also integrate hunger state with caloric content of a taste stimulus. 

Furthermore, our results suggest that the median cingulate and ventrolateral prefrontal cortex, areas 

involved in processes that require approach and avoidance such as emotion, pain and inhibition of 

inappropriate responses, are involved in guiding ingestive behavior by determining when to approach 

and avoid energy containing foods. In conclusion, energy sensing is a hunger state dependent process, 

in which the median cingulate, ventrolateral prefrontal cortex, anterior insula and thalamus play a 

central role by integrating hunger state with stimulus relevance.  
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Appendix 

 

Supplementary Figure 2.1 Mean ± SEM sweetness of the stimuli, rated by a trained sensory panel on a 100 

mm VAS scale. 
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fROI 

Peak voxel coordinate 

of fROI 

Main effect 

stimulus
 

x y z p-value 

 Frontal cortex         

L superior frontal gyrus, medial  -9 56 4 0.14 

R superior frontal gyrus, medial  15 68 13 0.12 

L superior frontal gyrus, dorsolateral  -15 -1 70 0.31 

L inferior frontal gyrus (triangular part) -39 11 25 0.97 

R inferior frontal gyrus (triangular part) 36 29 28 0.64 

R inferior frontal gyrus (opercular part) 42 14 28 0.80 

L middle frontal gyrus -33 29 31 0.92 

R middle frontal gyrus 36 5 55 0.61 

 Orbitofrontal cortex        

L medial frontal gyrus, orbital part -15 65 -2 0.09 

L inferior frontal gyrus, orbital part -42 44 -2 0.55 

R inferior frontal gyrus, orbital part a 48 20 -5 0.74 

R inferior frontal gyrus, orbital parta 51 44 -11 0.84 

R middle frontal gyrus, orbital part 39 53 -8 0.88 

 Thalamus        

L thalamus -15 -22 7 0.38 

R thalamus 15 -25 7 0.79 

 Cingulate gyrus        

L anterior cingulate -3 35 7 0.40 

L median cingulate -9 -37 55 0.89 

R median cingulate 6 -13 46 0.73 

 Insula         

R insulaa 39 23 -2 0.22 

R insulaa 42 5 -11 0.59 

 Pre and postcentral gyrus
 

       

L postcentral gyrusa -33 -34 61 0.33 

L  postcentral gyrusa -63 -7 25 0.84 

R postcentral gyrus 42 -25 52 0.56 

L precentral gyrusa -33 -1 64 0.23 

L precentral gyrusa -21 -25 61 0.40 

 Fusiform gyrus
 

       

L fusiform gyrus -48 -58 -17 0.99 

R fusiform  gyrus 36 -76 -17 0.62 

 Parietal gyrus        

L inferior parietal gyrus -30 -55 46 0.72 

R inferior parietal gyrus 36 -49 49 0.36 

L superior parietal gyrus -24 -40 64 0.64 

 Temporal gyrus        

L inferior temporal gyrus -54 -52 -8 0.45 

L superior temporal gyrus -57 -1 -2 0.53 

R middle temporal gyrus a 57 -46 13 0.38 

R middle temporal gyrus a 60 -43 -2 0.93 

Supplementary Table 2.1 Identified fROIs and results of MANOVA with liking, sweetness and viscosity 

as covariates of mean parameter estimates in each fROI for tasting caloric and non-caloric stimuli during 

hunger and satiety. 

a
Two identified fROIs in one anatomical ROI. 
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a
MNI coordinates -33, -1, 64. 

b
MNI coordinates -21, -25, 61. 

 

 

 

 

  

 
Caloric Non-caloric 

fROI Hunger Satiety Hunger Satiety 

L fusiform gyrus -0.34 (0.08) 0.03 (0.08) -0.14 (0.06) -0.10 (0.07) 

R fusiform gyrus -0.40 (0.13) 0.14 (0.17) -0.08 (0.15) -0.11 (0.16) 

R postcentral gyrus -0.25 (0.08) 0.10 (0.08) -0.07 (0.09) -0.12 (0.09) 

L postcentral gyrus -0.23 (0.08) 0.18 (0.08) -0.07 (0.08) 0.09 (0.10) 

L precentral gyrusa -0.33 (0.12) 0.18 (0.11) -0.13 (0.11) -0.16 (0.16) 

L precentral gyrusb -0.29 (0.09) 0.15 (0.08) -0.15 (0.08) 0.00 (0.10) 

L superior frontal gyrus, dorsolateral -0.45 (0.17) 0.14 (0.13) -0.19 (0.14) -0.16 (0.17) 

L inferior frontal gyrus (triangular part) -0.32 (0.10) -0.08 (0.13) -0.24 (0.11) -0.43 (0.15) 

R inferior frontal gyrus (triangular part) -0.37 (0.14) -0.22 (0.16) -0.26 (0.14) -0.47 (0.15) 

R middle frontal gyrus -0.35 (0.12) -0.11 (0.15) -0.18 (0.16) -0.37 (0.14) 

R inferior frontal gyrus (orbital part) -0.28 (0.19) -0.28 (0.18) -0.05 (0.21) -0.65 (0.22) 

R thalamus -0.17 (0.05) -0.02 (0.06) -0.06 (0.06) -0.08 (0.06) 

R insula -0.13 (0.12) -0.26 (0.13) 0.02 (0.15) -0.45 (0.14) 

R median cingulate -0.21 (0.09) -0.01 (0.10) -0.02 (0.08) -0.17 (0.11) 

L median cingulate -0.25 (0.10) 0.11 (0.11) -0.10 (0.09) -0.09 (0.12) 

L inferior parietal gyrus -0.22 (0.08) 0.01 (0.10) -0.19 (0.08) -0.21 (0.11) 

L inferior temporal gyrus -0.27 (0.07) -0.02 (0.08) -0.19 (0.06) -0.17 (0.07) 

L superior temporal gyrus -0.21 (0.11) -0.11 (0.12) 0.16 (0.11) -0.27 (0.17) 

R middle temporal gyrus -0.21 (0.11) -0.08 (0.13) -0.09 (0.08) -0.33 (0.15) 

Supplementary Table 2.2 Mean (SEM) parameter estimates in comparison to the control condition after tasting caloric and 

non-caloric stimuli during hunger and satiety in fROIs that showed an interaction between hunger state and energy content 

(P<0.05). 
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a
Results from MANOVA with energy and hunger state as independent variables, and liking, viscosity and sweetness as covariates. 

b
Results from MANOVA with stimulus and hunger state as independent variables, and liking and viscosity as covariates. 

c
Two identified fROIs in one anatomical ROI.

fROI 

Peak voxel coordinate 

of fROI 

Main effect 

hunger
a
  

Main effect 

hunger
b 

x y z p-value p-value 

 Frontal cortex           

L superior frontal gyrus, medial -9 56 4 0.90 0.55 

R superior frontal gyrus, medial 15 68 13 0.20 0.11 

L superior frontal gyrus, dorsolateral -15 -1 70 0.01 <0.001 

L inferior frontal gyrus (triangular part) -39 11 25 0.77 0.27 

R inferior frontal gyrus (triangular part)  36 29 28 0.80 0.78 

R inferior frontal gyrus (opercular part) 42 14 28 0.89 0.78 

L middle frontal gyrus  -33 29 31 0.19 0.06 

R middle frontal gyrus  36 5 55 0.74 0.33 

 Orbitofrontal cortex         

L medial frontal gyrus, orbital part  -15 65 -2 0.91 0.65 

L inferior frontal gyrus, orbital part  -42 44 -2 0.10 0.02 

R inferior frontal gyrus, orbital partc  48 20 -5 0.06 0.18 

R inferior frontal gyrus, orbital partc  51 44 -11 <0.01 <0.01 

R middle frontal gyrus, orbital part  39 53 -8 0.01 <0.01 

 Thalamus         

L thalamus  -15 -22 7 0.08 0.02 

R thalamus  15 -25 7 0.19 0.04 

 Cingulate gyrus         

L anterior cingulate  -3 35 7 0.15 0.38 

L median cingulate  -9 -37 55 0.04 <0.01 

R median cingulate  6 -13 46 0.76 0.27 

 Insula          

R insulac  39 23 -2 <0.01 0.01 

R insulac 42 5 -11 0.28 0.31 

 Pre and postcentral gyrus         

L postcentral gyrusc  -33 -34 61 <0.001 <0.001 

L  postcentral gyrusc  -63 -7 25 0.32 0.20 

R postcentral gyrus  42 -25 52 0.01 <0.001 

L precentral gyrusc 
 -33 -1 64 0.01 <0.001 

L precentral gyrusc  -21 -25 61 <0.001 <0.001 

 Fusiform gyrus         

L fusiform gyrus  -48 -58 -17 <0.01 <0.001 

R fusiform  gyrus  36 -76 -17 <0.05 <0.01 

 Parietal gyrus         

L inferior parietal gyrus  -30 -55 46 0.09 0.02 

R inferior parietal gyrus  36 -49 49 0.15 <0.05 

L superior parietal gyrus  -24 -40 64 0.04 <0.01 

 Temporal gyrus         

L inferior temporal gyrus -54 -52 -8 0.02 <0.01 

L superior temporal gyrus  -57 -1 -2 0.07 0.37 

R middle temporal gyrusc  57 -46 13 0.42 0.99 

R middle temporal gyrusc  60 -43 -2 0.44 0.20 

Supplementary Table 2.3 Results of MANOVA with liking, viscosity (and sweetness) as covariates of mean parameter 

estimates in each fROI for tasting caloric and non-caloric stimuli during hunger and satiety. 
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Abstract 

 

Caloric sweeteners that contain fructose are frequently used in processed food products. This may 

have unfavorable consequences as the ingestion of fructose relative to glucose is associated with 

potentially appetite enhancing effects, including decreased secretion of appetite suppressing hormones 

and increased brain reward responses to food cues. In contrast to these post-ingestive responses, it is 

unknown how brain responses differ upon direct oral exposure to these two sugars. Moreover, such 

taste response may be highly dependent on hunger state, which is known to modulate food induced 

brain response. Therefore, we aimed to investigate the differences in brain activation by oral exposure 

to fructose and glucose during hunger and satiety. In a randomized crossover design, brain responses 

of thirty female participants were measured using functional magnetic resonance imaging while they 

tasted a glucose and a fructose solution on two days, once during hunger and once during satiety. Oral 

glucose relative to fructose evoked greater activation in a food reward region (right anterior cingulate 

cortex) during hunger and in a region associated with food motivation (left precentral gyrus) during 

hunger and satiety. On the contrary, tasting fructose versus glucose resulted in increased responses 

only during satiety in the left superior frontal gyrus, an area involved in inhibitory control. In 

conclusion, these findings suggest that oral glucose is more rewarding than oral fructose and may elicit 

a stronger approach tendency during both hunger and satiety, possibly driven by its biological 

relevance. Furthermore, our findings suggest that the appetite enhancing properties of fructose 

compared with glucose ingestion are not apparent during oral exposure. 
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Introduction 

 

The amount of fructose in our diet has increased extensively over the past decades due to the frequent 

use of caloric sweeteners such as sucrose (a disaccharide made up of glucose and fructose) and high 

fructose corn syrup 1. Recently, the usage of fructose has become debated because of its potentially 

appetite enhancing and adverse properties relative to glucose (for a detailed overview see Page & 

Melrose (2016) 2). First, glucose and fructose ingestion trigger different secretion patterns of satiety 

hormones. For example, consumption of fructose relative to glucose leads to less secretion of insulin 

and other appetite suppressing hormones such as GLP-1 and leptin 3–6. Second, the majority of 

fructose is extracted by the liver where it stimulates lipogenesis to a greater extent than glucose and 

possibly contributes to an increase in circulating lipid levels in the bloodstream 4,6,7. Finally, cerebral 

blood flow in regions important for energy homeostasis (hypothalamus) and reward (striatum) differs 

following ingestion of fructose compared to glucose 8,9. For example, consumption of glucose, but not 

fructose, reduced cerebral blood flow in the hypothalamus and striatum 9. Differences in circulating 

levels of insulin following fructose compared to glucose consumption may account for this by acting 

on neurons in the hypothalamus 8–10. Moreover, after consumption of fructose compared to glucose, 

brain responses induced by food viewing were greater in, among other regions, the orbitofrontal 

cortex, which is known to be involved in coding food pleasantness 11,12.  

 

Oro-sensory as well as gastric and intestinal signals are needed to achieve optimal appetite control 

13,14. While there is an abundance of literature on differential metabolic and neural effects related to the 

ingestion of glucose and fructose, physiological and neural responses to direct oral exposure to these 

two sugars have not been investigated. This latter is of particular interest because recent literature 

suggests that carbohydrates might be sensed in the oral cavity independent of sweet taste 15–20. In the 

current study, we aimed to investigate the differences in brain activation by oral exposure to fructose 

compared to glucose. Furthermore, previous research indicated that food induced brain responses to 

taste can vary as a function of hunger state 21,22. Therefore, we compare brain responses to oral 

fructose and glucose during hunger and satiety.  

 

Materials and Methods 

 

Data discussed in this paper were selected from a larger data-set. Full experimental details regarding 

the collecting of these data are described in van Rijn et al. (2015) 23. Relevant details are outlined 

below. 
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Study design 

 

In a randomized crossover design, brain responses of thirty young, healthy, normal-weight female 

participants with a mean ± SD age of 22 ± 3 y and a BMI of 22.6 ± 1.4 kg/m
2 

were measured using
 

functional magnetic resonance imaging while they tasted 2 mL sips of six solutions (water, sucralose, 

maltodextrin, maltodextrin + sucralose, glucose and fructose) on two days, once during hunger and 

once during satiety. Here, we focus on the responses to fructose and glucose. Prior to the hunger 

session, participants had fasted for at least 3 hours (no food, only water) after consumption of a small 

self-chosen breakfast. Prior the satiety session, participants were offered an ad libitum lunch. During a 

scan session, every solution was tasted 12 times. Furthermore, liking ratings for every solution were 

given 3 times per scan session on a 9-point scale. Sweetness ratings were given before and after the 

scan.  

 

Stimuli 

 

Stimuli were an isocaloric fructose and glucose solution made by dissolving respectively fructose 

(152.3 g Natufood fructose - Natudis B.V., Harderwijk, The Netherlands - per liter, 608 kcal per liter) 

and glucose (153.8 g Dextrose anhydrous - AVEBE FOOD, Veendam, The Netherlands - per liter, 608 

kcal per liter) in demineralized water. Because the solutions were matched on caloric content, they 

were not equisweet. At the same concentration, fructose is sweeter than glucose 24.   

 

Analysis 

 

In the subject level analyses, nine conditions were modeled: delivery of sucralose, maltodextrin, 

maltodextrin + sucralose, glucose, fructose and water, swallowing, rinsing and stimulus rating. Only 

responses to glucose and fructose are under study and included in the current analyses. Contrast 

images were calculated for every participant by subtracting activation by glucose from activation by 

fructose for both the hunger and satiety condition. On the group level, these contrast images were 

entered into one sample and paired sample t-tests with the difference in liking and sweetness between 

fructose and glucose added as covariates, to allow a clean comparison between the stimuli. Resulting 

T-maps were thresholded at P<0.001 (uncorrected for multiple comparisons) and a cluster size of k>5.  
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Results 

 

Liking and sweetness 

 

Mean liking and sweetness ratings for glucose and fructose can be found in Figure 3.1 and 3.2. During 

both hunger and satiety, liking for glucose was higher than for fructose (significant during hunger). 

Furthermore, both glucose and fructose were liked significantly more during hunger compared to 

satiety. As expected, sweetness for fructose was significantly higher compared to glucose during both 

conditions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Taste activation 

 

Differences in taste activation between glucose and fructose during hunger and during satiety can be 

found in Table 3.1. During hunger, tasting glucose compared to fructose evoked more activation in the 

left precentral gyrus and right anterior cingulate cortex (ACC) (Figure 3.3). During satiety, taste 

activation differences in the left precentral gyrus remained, but those in the ACC disappeared (Figure 

3.4). Tasting fructose resulted in greater activation than glucose during satiety only in the left superior 

temporal pole and left superior frontal gyrus (Figure 3.4).  

 

  

Figure 3.2 Mean (SD) sweetness scores for the glucose 

and fructose solution during hunger and satiety 

(averaged over before and after the scan). Bars having a 

different letter differ significantly (paired sample t-tests, 

P<0.05). 

 

Figure 3.1 Mean (SD) liking scores for the glucose and 

fructose solution during hunger and satiety, obtained 

during scanning. Bars having a different letter differ 

significantly (paired sample t-tests, P<0.05). 
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Table 3.1 Differences in taste activation for tasting a fructose and glucose solution during hunger and satiety. 

Contrast Brain region Cluster size Z-score 
Peak coordinate 

x y z 

Hunger       

Fruc > Gluc -      

       

Gluc > Fruc L precentral gyrus 23 3.9 -60 5 22 

 R ant cingulate cortex 7 3.5 9 47 28 

       

Satiety       

Fruc > Gluc L sup temporal pole 9 3.8 -48 14 -11 

 L sup frontal gyrus 14 3.7 -27 65 7 

 R cerebellum 10 3.6 15 -49 -17 

 Vermis 8 3.4 3 -37 -8 

 R cerebellum  3.3 12 -37 -11 

       

Gluc > Fruc L precentral gyrus 8 3.5 -54 2 43 
Activations were thresholded at p<0.001 and a cluster extent threshold of k>5 contiguous voxels. Ant = anterior, sup = superior, L 

= left and R = right. 

 

The comparison of taste activation for [fructose – glucose] during hunger to [fructose – glucose] 

during satiety can be found in Supplementary Table 3.1 (Appendix).Taste activation for [fructose – 

glucose] was greater during satiety than during hunger in among others, the left superior frontal gyrus, 

left middle frontal gyrus and left caudate. In the left caudate and left superior frontal gyrus, brain 

activation evoked by oral glucose was greater than that evoked by oral fructose during hunger. 

However, during satiety, this was the other way around (Supplementary Figure 3.1, Appendix). 

 

Discussion  

We investigated the difference in brain activation by oral exposure to fructose compared to glucose 

during both hunger and satiety. We found that oral glucose relative to fructose evoked greater 

activation in the right ACC during hunger and the left precentral gyrus during hunger and satiety. 

Moreover, tasting fructose resulted in greater left superior temporal pole and left superior frontal gyrus 

activation than tasting glucose only during satiety. 

 

Glucose versus fructose taste activation 

 

As mentioned above, tasting glucose induced greater taste activation in the left precentral gyrus during 

both hunger and satiety than tasting fructose. The precentral gyrus is part of the primary motor cortex 

25,26 and its activation is associated with preparation and readiness for voluntary movement 27. 

Previously, precentral gyrus activation was found to be greater in responses to food images in obese 

relative to normal-weight individuals and successful weight-loss maintainers 28. Moreover, the degree 
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of acute caloric deprivation (hours since last ate) correlated positively with precentral gyrus activation 

to palatable food images 29. Thus, the precentral gyrus seems to be involved in coding approach 

tendencies (motivation) regarding food. Therefore, in the current study, the motivation to consume 

glucose relative to fructose may have been higher.  

 

Figure 3.3 Significant brain activation during hunger for the subtraction [glucose – fructose] in the 

right anterior cingulate cortex (ACC, MNI (9, 47, 28)) and left precentral gyrus (PG, MNI (-60, 5, 22)). 

 

In addition, tasting glucose relative to fructose evoked greater right ACC activation during hunger but 

not satiety. Previous research associated ACC activation with reward responses related to food tasting 

30 and the presence of calories in the mouth 19. In the current study, however, ACC activation does not 

represent pleasantness or calorie differences between glucose and fructose, since the two sugars were 

isocaloric and liking differences were covaried out. Instead, activation in this reward-related area may 

results from the fact that oral glucose is more biologically relevant than fructose. The increased 

approach tendency to glucose versus fructose, as suggested by the increased precentral gyrus 

activation, is in line with this hypothesis.  
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Figure 3.4 Significant brain activation during satiety for the subtraction 

[fructose – glucose] in the left superior temporal pole (TP, MNI (-48, 14, -11)) 

and left superior frontal gyrus (FG, MNI (-27, 65, 7)) and for the subtraction 

[glucose – fructose] in the left precentral gyrus (PG, MNI (-54, 2, 43)). 

 

Taste activation for fructose versus glucose 

 

During satiety, oral exposure to fructose compared to glucose induced more activation in the left 

superior temporal pole. The temporal pole is commonly known for its function in mapping meaning to 

sound 31 and its responsiveness to complex visual stimuli 32. In contrast, little is known about the 



Chapter 3: Glucose versus fructose 

58 
 

involvement of the temporal pole in taste processing. In the macaque monkey, the temporal pole and 

the orbitofrontal cortex (OFC), which contains the putative secondary taste cortex, are connected 33. 

Neuronal firing in the OFC in response to food cues reflects pleasantness and is modulated by hunger 

state 34–36. Whether the temporal pole activation in this study is related to its connection with the OFC 

and what the exact meaning is of this activation needs to be established in future research.  

 

Additionally, we observed greater left superior frontal gyrus (prefrontal cortex, Brodmann area (BA) 

10) activation during satiety in response to tasting fructose compared to glucose. In previous research, 

the superior frontal gyrus (BA 10) was found to be more responsive to oral sucrose compared to 

sucralose 19. This indicates the capability of the superior frontal gyrus to respond differently to 

different oral sweeteners. In other studies, satiation was associated with increased 37 as well as 

decreased 38 prefrontal cortex activation (respectively middle and superior frontal gyrus, BA 8), 

indicating its responsiveness to internal hunger state. Furthermore, greater superior frontal gyrus 

activation is associated with greater dietary inhibition 39–41. For example, when trying to inhibit 

responses to appetizing foods in a go/no-go task, BMI correlated inversely with brain activation in the 

superior frontal gyrus (BA 8) 39. Furthermore, in individuals who underwent gastric bypass surgery, a 

postoperative reduction in desire to eat for high- versus low-calorie food cues was associated with a 

postoperative reduction in neural responsivity to high- versus low-calorie food cues in the superior 

frontal gyrus (BA 8) 40. Finally, successful dieters compared to non-dieters showed greater activation 

in the superior frontal gyrus (BA 10) in response to consumption of a satiating liquid meal relative to 

mere oral exposure 41. This superior frontal gyrus activation was also found to correlate positively with 

participants dietary restraint score. Thus, in the current study, greater superior frontal gyrus activation 

during satiety may reflect a greater inhibitory control response to oral fructose compared to glucose. 

Possibly, this activation arises from the integration of internal hunger and oro-sensory signals such as 

sugar type.  

 

Stimuli 

 

Both a strength and a limitation of the current study are the stimuli used, i.e. simple sugar solutions. 

To our knowledge, we are the first to investigate the differences in taste activation between glucose 

and fructose in humans. Simple sugar solutions thus lend themselves well to provide a proof of 

principle. Furthermore, many other studies that compared the metabolic effects of fructose to glucose 

after ingestion, also used simple solutions (e.g. Kong et al. (1999) 3 and Page et al. (2013) 9). The 

usage of similar stimuli, therefore, added the most scientific value, since all these studies together 

contribute to a more complete picture regarding the effect of fructose versus glucose on the human 

body. Nevertheless, a limitation of our stimulus choice is the lack of extrapolation to more complex 
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products or meals. Whether the results found in the current study also hold true for more complex 

products containing fructose and glucose needs to be addresses in follow-up research. 

 

Conclusion 

 

Oral glucose versus fructose induced greater brain responses in regions associated with food reward 

(right ACC) during hunger and motivation (left precentral gyrus) during both hunger and satiety. Oral 

fructose versus glucose responses were greater only during satiety in, among other regions, the left 

superior frontal gyrus, a region associated with inhibitory control. In conclusion, these findings 

suggest that oral glucose is more rewarding than oral fructose and may elicit a stronger approach 

tendency during both hunger and satiety, possibly driven by its biological relevance. Furthermore, our 

findings suggest that the appetite enhancing properties of fructose compared with glucose ingestion are 

not apparent during oral exposure. 
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Appendix 

 

Supplementary Table 3.1 Differences in taste activation for the delta between fructose and glucose during 

hunger and satiety. 

 

Contrast Brain region Cluster size Z-score 

Peak 

coordinate 

x y z 

(Hunger: Fruc > Gluc) - 

(Satiety: Fruc > Gluc) 

-      

       

(Satiety: Fruc > Gluc) - 

(Hunger: Fruc > Gluc)  

White matter 17 3.9 18 17 28 

 L caudate 11 3.7 -15 14 10 

 R cerebellum 8 3.6 12 -37 -11 

 White matter 30 3.6 -21 35 19 

 L mid frontal gyrus  3.1 -30 41 22 

 R lingual gyrus 7 3.5 12 -73 -11 

 L sup frontal gyrus 7 3.5 -24 65 10 

 L cerebellum 7 3.4 -15 -40 -14 
Activations were thresholded at p<0.001 and a cluster extent threshold of k>5 contiguous voxels. Sup = superior, mid = 

middle, L = left and R = right.  
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Supplementary Figure 3.1 Significant brain activation for the subtraction [fructose – 

glucose] during hunger versus satiety in the left caudate (C, MNI (-15, 14, 10)) and left 

superior frontal gyrus (FG, MNI (-24, 65, 10)). 
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Abstract 

 

A food’s reward value is dependent on its caloric content. Furthermore, a food’s acute reward value 

also depends on hunger state. The drive to obtain rewards (reward sensitivity), however, differs 

between individuals. Here, we assessed the association between brain responses to calories in the 

mouth and trait reward sensitivity in different hunger states. Firstly, we assessed this in data from a 

functional neuroimaging study 1, in which participants (n=30) tasted simple solutions of a non-caloric 

sweetener with or without a non-sweet carbohydrate (maltodextrin) during hunger and satiety. 

Secondly, we expanded these analyses to regular drinks by assessing the same relationship in data 

from a study in which soft drinks sweetened with either sucrose or a non-caloric sweetener were 

administered during hunger (n=18) 2. First, taste activation by the non-caloric solution/soft drink was 

subtracted from that by the caloric solution/soft drink to eliminate sweetness effects and retain 

activation induced by calories. Subsequently, this difference in taste activation was correlated with 

reward sensitivity as measured with the BAS drive subscale of the Behavioral Activation System 

(BAS) questionnaire. When participants were hungry and tasted calories from the simple solution, 

brain activation in the right ventral striatum (caudate), right amygdala and anterior cingulate cortex 

(bilaterally) correlated negatively with BAS drive scores. In contrast, when participants were satiated, 

taste responses correlated positively with BAS drive scores in the left caudate. These results were not 

replicated for soft drinks. Thus, neural responses to oral calories from maltodextrin were modulated by 

reward sensitivity in reward-related brain areas. This was not the case for sucrose. This may be due to 

the direct detection of maltodextrin, but not sucrose in the oral cavity. Also, in a familiar beverage, 

detection of calories per se may be overruled by a conditioned response to its flavor. In conclusion, the 

brain reward response to calories from a long chain starch sugar (maltodextrin) varies with trait reward 

sensitivity. The absence of this effect in a familiar beverage warrants further research into its relevance 

for real life ingestive behavior. 
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Introduction 

 

In our Western society, there is an abundance of food cues and an enormous supply of different kinds 

of appetizing and calorie-rich foods. Therefore, many of us easily engage in overeating. Consequently, 

it is no surprise that obesity rates are high and still increasing 3. However, it is still unclear why some 

of us are more inclined to engage in overeating than others. 

 

The answer may lie in how sensitive we are to the food rewards surrounding us. Reward sensitivity is 

a personality trait that can be described as “the ability to derive pleasure or reward from natural 

reinforcers like food, and from pharmacological rewards like addictive drugs” 4. Reward sensitivity 

can be measured with the Behavioral Inhibition System and Behavioral Activation System (BIS/BAS) 

questionnaire 5. This questionnaire is based on the theory of Gray 5–7, which describes two 

neurobiological systems that both respond to environmental cues: the Behavioral Inhibition System 

(BIS) and the Behavioral Approach System (BAS). The BIS is sensitive to signals of punishment, and 

activation of this system inhibits behavior and induces negative feelings. The BAS is sensitive to 

signals of reward and activation of this system promotes behavior and positive feelings. Food reward 

is reflected by the BAS 5. More specifically, the BAS is activated by cues that indicate the possibility 

of attaining food rewards rather than by food consumption 8. Sensory signals like taste and sight of 

food can be seen as such cues, because they signal the presence of nutrients. 

 

High reward sensitivity has been associated with food cravings, overeating, overweight, obesity and 

eating disorders 4,9–13. Beaver et al. (2006) 14 showed that trait reward sensitivity as measured with the 

BAS scale, is associated with differential processing of food cues in the brain. In their study, reward 

sensitivity scores of healthy participants correlated strongly with brain activation by pictures of 

appetizing foods in reward areas such as the ventral striatum, amygdala, midbrain and orbitofrontal 

cortex. 

 

Foods are not only rewarding because of their palatability, but also because of their caloric value. 

Several recent studies found that oral exposure to calories, independent of sweet taste, induced 

responses in classical reward areas such as the striatum, anterior cingulate cortex (ACC) and amygdala 

15–17. The presence of calories in the oral cavity may directly signal the imminent arrival of a 

rewarding (caloric) food. Therefore, it is plausible that neural processing of oral calories may be 

modulated by reward sensitivity in a similar way as was found for food pictures by Beaver et al. 

(2006) 14. In addition, several studies found that hunger state interacts with brain activation in response 

to oral calories 1,15. Currently, though, it is still unknown in how far reward sensitivity differentially 

affects brain responses to calories during hunger and satiety.  
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Based on the above, we hypothesized that 1) brain activation in reward areas in response to oral 

calories depends on trait reward sensitivity, in particular in the striatum, amygdala and ACC, and 2) 

that this association will be most prominent during hunger. Thus, we aimed to assess the correlation 

between reward sensitivity and the brain responses to calories in the mouth in different hunger states. 

Firstly, we assessed this in data from a functional neuroimaging study 1, in which simple solutions of a 

non-caloric sweetener with or without a non-sweet carbohydrate (maltodextrin) were administered 

during hunger and satiety. Secondly, we sought to extrapolate these findings to regular drinks by 

assessing the same relationship in data from a study in which soft drinks sweetened with either sucrose 

or a non-caloric sweetener were administered during hunger 2. BAS drive and BAS reward, two 

subscales of the BIS/BAS questionnaire that respectively reflect the tendency to take action in 

response to a food reward and the amount of positive feelings experienced in response to this reward 

5,18, were used as measures of reward sensitivity. 

 

Materials and Methods  

 

Data from two separate studies were used. Relevant details are described below. For full experimental 

details see van Rijn et al. (2015) and Griffioen-Roose et al. (2013) 1,2. 

 

Participants  

 

For both studies we recruited healthy, normal-weight (BMI between 18.5-25 kg/m2) participants (age 

between 18-35 y). Exclusion criteria were among others: a restrained eating score higher than 2.80 

(women) or 2.25 (men) (Dutch Eating Behavior Questionnaire 19, an energy restricted diet during the 

past two months, change in body weight of more than five kg during the past two months, lack of 

appetite, stomach or bowel diseases, diabetes, thyroid disease or any other endocrine disorder, use of 

daily medication other than oral contraceptives, having difficulties with swallowing and/or eating, 

having taste or smell disorders, being allergic and/or intolerant for products under study, smoking 

more than one cigarette/cigar a day, exclusive consumption or avoidance of light versions of 

beverages, being pregnant or lactating or having any contra-indication for MRI scanning. Thirty 

female participants completed Study 1 and eighteen participants completed the fMRI part of Study 2 

(15 men, three women, see Table 4.1). Before enrollment, participants were screened on inclusion and 

exclusion criteria via a questionnaire including a medical history questionnaire and completed an 

fMRI training session in which they were familiarized with the fMRI procedure. All participants gave 

written informed consent. Both studies were conducted according to the principles of the Declaration 

of Helsinki, approved by the Medical Ethical Committee of Wageningen University and registered in 

the Dutch Trial Register (Study 1: NTR 3749, Study 2: NTR: 3289). 
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Table 4.1 Participant characteristics. 

Characteristics Study 1 Study 2 

N 30 18 

Gender Female Male (15) and Female (3) 

BMI (kg/m
2
)

1
 22.6 ± 1.4 22.1 ± 1.6 

Age (y)
1
 22 ± 3 22 ± 2 

BAS drive score
1
 11 ± 2 12 ± 2 

BAS drive range 8-16 9-15 

BAS reward score
1
 17 ± 1 18 ± 1 

BAS reward range 15-20 15-20 
                                             1

Mean±SD. 

 

Study design 

 

Study 1 had a randomized crossover design in which participants were scanned on two occasions, once 

during hunger and once during satiety. During the two scan sessions participants tasted fixed amounts 

of a control stimulus (water) and five stimuli containing carbohydrates, artificial sweeteners or both 

(sucralose, maltodextrin, maltodextrin + sucralose, glucose and fructose solutions), while their brain 

responses were measured using functional MRI. Here, we focus on the responses to two of these 

stimuli, the sweet caloric (maltodextrin + sucralose) and the sweet non-caloric (sucralose) solution. 

 

Study 2 had a randomized crossover design consisting of two periods, which consisted of three parts: a 

pre-measurement, a conditioning period, and a post-measurement. In the conditioning period, subjects 

were offered a non-caloric sweetened and sugar sweetened version of a soft drink or a yoghurt drink 

for breakfast (10 times per drink). During scan sessions in the pre-measurement and post-measurement 

periods, participants tasted fixed amounts of the non-caloric sweetened and sugar sweetened drinks 

and a control stimulus (water) while their brain responses were measured using functional MRI. Here, 

we further analyze the brain responses to tasting the non-caloric sweetened and sugar sweetened soft 

drinks in the pre-measurement period. 

 

Stimuli 

 

The sweet non-caloric solution and the sweet caloric solution, used in Study 1, were made by 

dissolving, sucralose (Brenntag specialties, 0.254 g SPLENDA® Sucralose per liter, 0 kJ / 0 kcal per 

liter) and maltodextrin + sucralose (158.2 g Nutricia Fantomalt (90% polysaccharides - DE 19, 6% 

mono/disaccharides) + 0.140 g SPLENDA® Sucralose per liter, 2541 kJ / 607 kcal per liter) in 

demineralized water. The solutions were equisweet. Sweetness was matched in a pilot study using the 
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method of constant stimuli (n = 10). Furthermore, prior to the study, stimuli were rated on sweetness 

by a trained sensory panel and during the study by the participants. In both cases, no significant 

differences in sweetness were found between the two solutions (for more details see: van Rijn et al. 

(2015) 1). 

 

The non-caloric sweetened and sugar sweetened soft drinks used in Study 2 were developed and 

prepared by Royal FrieslandCampina (Amersfoort, The Netherlands) and contained 0 kJ / 0 kcal per 

liter (0.11 g sucralose per liter) and 1673 kJ / 400 kcal per liter (68.6 g sucrose per liter).The soft 

drinks were grape/lemon flavored and matched on sensory characteristics, including sweetness. 

 

BAS scores 

 

Reward sensitivity was measured with the Dutch version of the BIS/BAS questionnaire developed by 

Carver & White (1994) 5 . The Dutch BIS/BAS questionnaire was validated by Franken et al. (2005) 

20, and is considered a reliable and valid measure. The BAS scale consist of three subscales: BAS 

drive, BAS reward and BAS fun. BAS drive and BAS reward are most relevant for appetitive 

motivation and discussed in this paper. “BAS fun reflects the tendency to seek out and impulsively 

engage in potentially rewarding activities” (Gomez et al., 2005) 18. This scale is not discussed because 

the food-context of this paper concerns primary reward rather than ‘activities’. Moreover, we 

investigate a classic well-known reward (food/calories) rather than a potential reward. In addition, BIS 

scores are also outside the scope of this paper. 

 

 The BIS/BAS questionnaire consists of 20 questions. The BAS drive scale is comprised of four of 

those questions (min-max score: 4-16) and the BAS reward scale of five (min-max score: 5-20). BAS 

scores for Study 1 were acquired during the fMRI training session and BAS scores for Study 2 were 

acquired on the last scan day (after scanning). Scores and ranges of BAS drive and BAS reward for 

Study 1 and Study 2 can be found in Table 4.1. 

 

Experimental procedures 

 

 Study 1 

 

Participants arrived between 10:25 h and 14:00 h at the test location (Hospital Gelderse Vallei, Ede, 

The Netherlands) after a fast of at least 3 h (no food, only water). Participants were instructed to eat a 

small self-chosen breakfast, prior to the 3 h fast. Hereafter participants were placed in the MRI scanner 

and scanned while tasting the solutions several times. During the satiety session participants started 

with an ad libitum lunch consisting of bread rolls (1063 kJ / 254 kcal per 100 g), full fat cheese (1570 
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kJ / 375 kcal per 100 g), boiled eggs (645 kJ / 154 kcal per 100 g), butter (1549 / 370 kcal per 100 g), 

sandwichspread (984 kJ / 235 kcal per 100 g), cucumber, tomato, orange juice (167 kJ / 40 kcal per 

100 g) and skimmed milk (197 kJ / 47 kcal per 100 g). Participants were instructed to eat until 

comfortably full. After lunch, the same procedures were followed as during the hunger session.  

 

Study 2 

 

Participants arrived between 7.00 h and 11.00 h at the study location (Hospital Gelderse Vallei, Ede, 

The Netherlands) after a fast of at least 3 h (no food, only water) and were scanned while tasting the 

soft drinks several times. Note that in this study there was no satiety session. 

 

Scanning procedure 

 

In study 1, a scan session consisted of a high-resolution T1-weighted anatomical scan and 3 functional 

runs during which 300 functional volumes were acquired using a T2*-weighted gradient echoplanar 

imaging sequence on a 3-T Siemens Magnetom Verio (Siemens, Erlangen, Germany). During each 

functional run all solutions were tasted 4 times, resulting in a total of 12 taste trials per solution per 

scan session. Solutions were offered in 2 mL sips in a semi-random order. Each taste event (11 s) was 

followed by a 3-s swallow, a 4-s rinse with water, a 3-s swallow and a 3 to 5-s rest.  

 

In study 2, a scan session consisted of a high-resolution T1-weighted anatomical scan and 3 functional 

runs during which 262 functional volumes were acquired using a T2*-weighted gradient echo imaging 

sequence on a 3-Tesla Siemens Magnetom Verio (Siemens, Erlangen, Germany). Each functional run 

consisted of 5 taste trials for every drink, leading to a total of 15 taste trials per drink. Drinks were 

offered in 2 mL sips in a semi-random order. Participants tasted every drink for 11 s while a picture of 

the drink was shown, followed by a 3-s swallow, a 4-s rinse with water, a 3-s swallow and a 3 to 5-s 

rest.  

 

For both Study 1 and 2, participants rated liking once for every stimulus on a 9-point scale during each 

functional run. Instructions to either taste, swallow, rate, rinse, or rest were given to participants via 

visual cues on a screen placed in the bore at the back end of the scanner. Stimuli were administered 

with the use of programmable syringe pumps (New Era Pump Systems Inc,Wantagh, NY) at 50 

mL/min. 
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Analysis 

 

In both Study 1 and 2, functional volumes of every participant were preprocessed and analyzed with 

the SPM8 software package (Wellcome Department of Imaging Neuroscience, London, UK) in 

conjunction with the MarsBar toolbox (http://marsbar.sourceforge.net/) run with MATLAB 7.12 (The 

Mathworks Inc, Natick, MA). Details about the preprocessing steps can be found in van Rijn et al. 

(2015) and Griffioen-Roose et al. (2013) 1,2.  

 

In the subject level analyses of Study 1, nine conditions were modeled: delivery of sucralose, 

maltodextrin, maltodextrin + sucralose, glucose, fructose and water, and swallowing, rinsing and 

stimulus rating. In the subject level analyses of Study 2, seven conditions were modeled: delivery of 

the non-caloric sweetened soft drink, sugar sweetened soft drink, tomato juice and water, and 

swallowing, rinsing and stimulus rating. Responses to swallowing, rinsing, stimulus rating, 

maltodextrin, glucose, fructose, tomato juice and water are not of interest for answering our current 

research question and are therefore disregarded. After modelling of the conditions, a so-called contrast 

image was calculated for every participant by subtracting activation by sucralose from activation by 

maltodextrin + sucralose (Study 1) or activation by the non-caloric sweetened soft drink from that by 

the sugar sweetened soft drink (Study 2). For Study 1, this was done for both the hunger and satiety 

condition. Subsequently, these contrast images were entered into separate one-sample t-tests with 

liking, BAS reward and BAS drive as covariates (for Study 1 this was done separate for the hunger 

and satiety condition). Liking was added as a covariate of no interest to regress out possible effects of 

differences in liking between the stimuli. Using the other two covariates we tested for correlations 

between BAS drive/BAS reward scores and taste activation across the whole brain. The resulting 

correlation T-maps were thresholded at P<0.001 (uncorrected for multiple comparisons) and a cluster 

size of k>9 contiguous voxels. A priori regions of interest (ROIs) were the amygdala, striatum and 

ACC. A mask of these regions was created with the WFU Pickatlas tool 21 and was used to do a ROI-

analysis in with small volume correction over the mask volume. Whole brain results are reported in 

Supplementary Table 4.1, 4.2 and 4.3 (Appendix). 

 

Results 

 

Main effects 

 

Main effects for study 1 have been reported in van Rijn et al. (2015) 1. There were no differences in 

taste activation between the maltodextrin + sucrose and sucralose solution. Main effects for study 2 

have been reported in Griffioen-Roose et al. (2013) 2. More activation was found for the sugar 

http://marsbar.sourceforge.net/
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sweetened soft drink than for the non-caloric sweetened soft drink in the middle cingulum, precentral 

gyrus and rolandic operculum. 

 

Correlations between covariates 

 

Pearson correlation coefficients for correlations between the covariates used in the analyses (liking, 

BAS drive and BAS reward) for Study 1 and 2 can be found in Table 4.2. BAS drive and BAS reward 

scores obtained during Study 1 correlated significantly (r = 0.38, P<0.05). 

 

Table 4.2 Pearson correlation coefficients (r) for the correlations between the difference 

in liking between the caloric and non-caloric stimulus, BAS drive and BAS reward scores.  

Study 

Liking  

and  

BAS drive 

Liking  

and  

BAS reward 

BAS drive  

and  

BAS reward 

1 
H: 0.28 

S: -0.08 

H: 0.05 

S: -0.13 
0.38* 

2 -0.03 -0.04 0.28 

         * = Significant at the 0.05 level, H = hunger, S = satiety. 

 

Study 1: Sugar solution and reward sensitivity 

 

The ROIs in which correlations between BAS drive scores and brain activation in response to calories 

(maltodextrin and sucralose minus sucralose) during hunger and satiety were found, are shown in 

Table 4.3. BAS drive scores correlated with taste activation in the amygdala, ACC and striatum. BAS 

reward scores did not correlate with taste activation in any of the ROIs. 

 

Taste activation in the right caudate (ventral striatum) correlated negatively with BAS drive scores 

during hunger (r = -0.62) (Figure 4.1). During satiety, however, BAS drive scores were positively 

correlated with activation in the left caudate (r = 0.60) (Figure 4.2). Taste activation in the ACC 

(bilaterally) and the right amygdala correlated negatively with BAS drive scores during hunger (left 

ACC: r = -0.63, right ACC: r= -0.59, right amygdala: r=-0.48), but not during satiety (Figure 4.3 and 

Figure 4.4).  

 

Study 2: Soft drink and reward sensitivity 

 

Brain activation during tasting of soft drinks with versus without calories did not correlate with BAS 

drive and BAS reward scores in any of the ROIs.  
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Table 4.3 ROIs in which brain activation by oral calories (maltodextrin and sucralose minus sucralose) correlated 

significantly with reward sensitivity (BAS drive score) during hunger and satiety.  

Contrast Brain region Cluster size Z-score 
Peak coordinate 

x y z 

Hunger             

Positive correlation No regions were found           

Negative correlation R caudate 54 4.15 12 17 -8 

      R putamen   4.09 21 17 -8 

      R amygdala   3.44 18 11 -14 

  R amygdala 21 3.85 18 -1 -17 

  R anterior cingulate  74 3.72 3 32 16 

      L anterior cingulate   3.33 0 23 22 

              

Satiety             

Positive correlation L caudate 15 3.76 -12 26 4 

Negative correlation No regions were found           

 

 

 

Figure 4.1 Scatterplot of brain activation in response to oral calories (maltodextrin and sucralose minus sucralose) 

and reward sensitivity (BAS drive score) during hunger (significant) and satiety (not significant) in the right ventral 

striatum (caudate). 
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Discussion 

 

We assessed the correlation between reward sensitivity and brain responses to calories in the mouth in 

different hunger states. Firstly, we assessed this in data from a functional neuroimaging study, in 

which simple solutions of a non-caloric sweetener with or without maltodextrin were administered 

during hunger and satiety 1. We found that when participants were hungry and tasted calories, brain 

activation in the right ventral striatum (caudate), amygdala and ACC (bilaterally) correlated negatively 

with BAS drive scores. In contrast, when participants were satiated, brain responses correlated 

positively with BAS drive scores in the left caudate. BAS reward scores did not correlated with taste 

activation in reward related areas. 

 

 

Figure 4.2 Scatterplot of brain activation in response to oral calories (maltodextrin and sucralose minus sucralose) 

and reward sensitivity (BAS drive score) during hunger (not significant) and satiety (significant) in the left caudate. 

 

Secondly, we sought to extrapolate these findings to regular drinks by assessing the relationship 

between brain responses to calories in the mouth and reward sensitivity in data from a study in which 

soft drinks sweetened with either sucrose or a non-caloric sweetener were administered during hunger 

2. Here, we found no correlations between reward sensitivity and brain responses to calories in any 

reward related area. 
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For simple solutions, correlations with taste activation were found for BAS drive but not for BAS 

reward. The lack of findings for BAS reward may be explained by the valence of the solutions. BAS 

reward is related to the degree of positive feelings people experience in response to a reward. 

Solutions were, on average, disliked by the participants (mean liking scores on 9-point scale: 2.9 

(maltodextrin + sucralose), 3.4 (sucralose), see van Rijn et al. (2015) 1) and probably did not elicit 

positive feelings. BAS drive scores, which are related to the tendency to take action in response to a 

food reward, did correlate with the response to calories in the brain reward system. Thus, the response 

to oral calories is associated with BAS drive, independent of stimulus valence. 

 

 

Figure 4.3 Scatterplot of brain activation in response to oral calories (maltodextrin and sucralose minus sucralose) 

and reward sensitivity (BAS drive score) during hunger (significant) and satiety (not significant) in the left and right 

ACC. 
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Brain responses during food-viewing have been found to correlate with reward sensitivity in the 

caudate, amygdala and ACC 14,22. We focused on brain responses during exposure to another food-cue: 

the presence of calories in the oral cavity. In line with the food-viewing studies, we found that taste 

activation in the striatum, amygdala and ACC is correlated with reward sensitivity. Both the striatum 

and ACC are important in encoding food reward. They were found to be consistently activated in a 

meta-analysis of 28 studies in response to a pleasant tastant 23. The amygdala has also been implicated 

in food reward 24–26. In addition, several other studies found that the striatum, ACC and amygdala are 

also involved in the neural encoding of oral calories 2,15,17. Our results extend this by showing that 

activation in response to oral calories in the ACC, caudate and amygdala varies with the degree to 

which individuals are sensitive to reward. 

 

We found an inverse relationship between reward sensitivity and the brain response to oral calories in 

the amygdala, ACC and caudate. The amygdala plays a central role in the emotional processing of 

sensory stimuli 27–29. Aversive stimuli have been found to activate the amygdala 30,31. However, 

positive stimuli may also deactivate it 27. This might explain our inverse relationship in the amygdala, 

because calories can been seen as positive stimuli. In line with this, previous research also showed that 

tasting a caloric soft drink deactivates the amygdala 15. 

 

Concerning the caudate, Smeets et al. (2011) 15 showed an opposite effect, namely that tasting a 

caloric soft drink resulted in more activation than tasting a non-caloric one. Few studies with a fMRI-

taste paradigm have reported deactivation in the striatum. At this moment, it is known that omission of 

an expected reward can produce deactivations in the ventral striatum 32,33. However, in the current 

study there was no negative prediction error, thus this cannot explain the negative correlation in the 

striatum. We speculate that an alternative explanation for caudate deactivation might be the firing of 

GABA-neurons. The basal ganglia exert inhibitory control over several motor areas via GABAergic 

output 34. The presence of calories in the mouth compared to a non-caloric liquid, might induce such 

firing to inhibit motor movements such as searching for other foods. GABA-neurons of individuals 

with a higher reward-sensitivity level might respond stronger to calories. 

 

Another explanation for the deactivation in the striatum, ACC and amygdala might be that the 

response to calories in individuals with lower sensitivity to reward is more adapted to internal hunger. 

If so, they may experience calories as more rewarding during hunger, when calories are necessary for 

survival, and as less rewarding during satiety, when calories are not necessary. In line with this 

explanation, we found a positive correlation between reward sensitivity and caudate activation in 

response to oral calories during satiety. 
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For soft drinks, we found no correlations with reward sensitivity in any reward related area during 

hunger. The discrepancy between this finding and the associations found for simple solutions can be 

explained in a number of ways. Firstly, the source of calories was different: maltodextrin versus 

sucrose. Sucrose activates the sweet taste receptor, i.e. calories from sucrose are signaled by 

sweetness. On the contrary, maltodextrin, a tasteless substance for humans 35, is most likely directly 

detected by an oral maltodextrin receptor, independent of sweet taste 36. In line with this, brain 

activation is different for a simple sugar compared to maltodextrin 16. Thus, the different calorie 

sources may trigger different signaling mechanisms, which could have led to different results. In 

addition, it must be noted that we did not explicitly test for and excluded maltodextrin-tasters in the 

study with simple solutions. Previous research showed that a small percentage of the population can 

taste maltodextrin 37. This could have amplified the results. Secondly, one study used unfamiliar 

solutions whereas the other study used familiar products (soft drinks that were very similar to 

commercially available variants). In both studies, we only included participants that consumed more 

sugar sweetened than artificially sweetened beverages in daily life. Therefore, we assume that 

participants were conditioned to link the flavor of the soft drinks to calories 38–40. This conditioning  

 

 

Figure 4.4 Scatterplot of brain activation in response to oral calories (maltodextrin and sucralose minus sucralose) and 

reward sensitivity (BAS drive score) during hunger (significant) and satiety (not significant) in the right amygdala. 

 

might have overruled the effect of actual caloric content. Thirdly, the studies used participants of 

different genders. This may have led to dissimilar results because male and female brain responses to 
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food can differ 26,41–44. In particular, women may respond stronger to external food-related stimuli than 

men 41,44, which could explain why we find effects for women, but not men. Finally, the study with 

mainly men included fewer participants (n=18). Many fMRI papers with a tasting-paradigm have used 

a comparable sample size and have shown significant results, for example: Bender et al. (2009) 

(n=19), Frank et al. (2008) (n=12), Haase et al. (2009) (n=18), O’Doherty et al. (2001) (n=7) and 

Spetter et al. (2010) (n=15) 17,30,45–47. Nevertheless, it is possible that the relatively low sample size has 

prevented detection of small effects. 

 

Conclusion 

 

We found that neural responses to oral calories from a maltodextrin solution are modulated by reward 

sensitivity in reward-related areas such as the caudate, amygdala and ACC. This was not the case for a 

sucrose sweetened soft drink. This discrepancy may be due to the direct detection of maltodextrin, but 

not sucrose in the oral cavity. Also, in a familiar drink (soft drink), detection of calories per se may be 

overruled by a conditioned response to the familiar flavor. In conclusion, the brain reward response to 

calories from a long chain starch sugar (maltodextrin) varies with reward sensitivity. The absence of 

this effect in a familiar soft drink warrants further research into its relevance for real life ingestive 

behavior. 
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Appendix 

 

Supplementary Table 4.1 Brain regions in which brain activation by oral calories (maltodextrin and sucralose minus 

sucralose) correlated significantly with reward sensitivity (BAS drive score) during hunger and satiety. 

Contrast Brain region 
Cluster  

size 
Z-score 

Peak coordinate 

x y z 

Hunger             

Positive correlation  No regions were found           

Negative correlation R median cingulate 66 4.79 3 -10 31 

        R posterior cingulate   3.46 6 -40 22 

  L cerebellum 409 4.51 -33 -58 -26 

        L calcarine sulcus   3.92 -3 -85 -11 

        Vermis   3.83 3 -67 -35 

        L fusiform gyrus   3.64 -27 -82 -17 

        R cerebellum   3.24 6 -70 -29 

  R cerebellum 102 4.42 24 -67 -26 

  L superior frontal gyrus 169 4.39 -18 47 -2 

        L middle frontal gyrus   3.76 -36 53 10 

  

      L superior medial  

           frontal gyrus   
3.37 -15 65 4 

  L thalamus 27 4.35 -12 -4 -2 

  L calcarine sulcus 13 4.29 3 -94 1 

  R caudate 55 4.15 12 17 -8 

        R putamen   4.09 21 17 -8 

        R rectus   3.80 12 23 -11 

        R amygdala   3.44 18 11 -14 

  R middle frontal gyrus 37 3.91 24 41 4 

        R superior frontal gyrus   3.22 15 56 4 

  R amygdala 21 3.85 18 -1 -17 

  R inferior temporal gyrus 34 3.83 48 -52 -11 

  R anterior cingulate 80 3.72 3 32 16 

        R medial frontal gyrus (orb)   3.36 9 41 -5 

        L anterior cingulate   3.33 0 23 22 

  L precuneus 14 3.44 -9 -70 37 

        L superior parietal gyrus   3.14 -12 -73 43 

  R hippocampus 14 3.35 42 -10 -17 

        R insula   3.27 42 -1 -11 

  R middle frontal gyrus (orb) 13 3.21 39 50 -2 

        R middle frontal gyrus   3.20 39 53 7 

              

Satiety             

Positive correlation  L caudate 20 3.76 -12 26 4 

Negative correlation R cerebellum 15 3.81 27 -82 -38 

  L mid temporal gyrus 10 3.62 -51 -34 10 
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Supplementary Table 4.2 Brain regions in which brain activation by oral calories (maltodextrin and sucralose minus 

sucralose) correlated significantly with reward sensitivity (BAS reward score) during hunger and satiety. 

 

Contrast 

 

 

Brain region 

 

 

Cluster size 

 

 

Z-score 

 

Peak coordinate 

x 

 

y 

 

z 

 

Hunger             

Positive correlation  R cerebellum 21 3.93 9 -73 -29 

Negative correlation L lingual gyrus 25 3.61 -27 -61 -2 

              

Satiety             

Positive correlation  No regions were found           

Negative correlation  R inferior frontal gyrus (tri) 22 4.08 45 35 1 

  R insula 19 3.86 39 5 1 
 

 

Supplementary Table 4.3 Brain regions in which brain activation by oral calories (sugar sweetened soft drink 

minus non-caloric sweetened soft drink) correlated significantly with reward sensitivity (BAS reward score) 

during hunger. 

 

Contrast 

 

 

Brain region 

 

 

Cluster size 

 

 

Z-score 

 

Peak coordinate 

x y z 

Hunger             

Negative correlation  L Precentral gyrus 20 3.87 -42 2 58 
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Abstract 

 

Health labels are omnipresent in the supermarket. Such labels give rise to expectations about the 

product experience and may change flavor perception and perceived reward value. Consumers vary in 

their degree of health interest and may be differentially affected by such labels. However, how health 

interest influences neural reward responses to anticipation and receipt of heath-labeled foods is not 

known. This study assessed to what extent brain responses induced by anticipation and receipt of a 

beverage with different levels of perceived caloric content are associated with health interest. Twenty-

five females completed an fMRI motivational taste-task in which they were presented with a low-

caloric cue or a high-caloric cue and subsequently worked for sips of lemonade by moving a joystick. 

If they responded correctly and in time, they received the lemonade as a reward. Because of the two 

cue types, participants believed they were receiving two different lemonades, a high-caloric (HC-

receipt) and a low-caloric (LC-receipt) one. Health interest was assessed with the General health 

interest subscale of the Health and Taste Attitude Scales. Health interest scores correlated significantly 

(r = 0.65) with LC- versus HC-receipt activation in the dorsal striatum (putamen), a region involved in 

encoding food reward. These findings suggest that the reward value of a healthy product compared to 

its unhealthy counterpart increases with health interest. This provides more insight into the working 

mechanism of government campaigns that focus on increasing health interest to encourage the 

formation of healthy eating habits. 
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Introduction 

 

Food intake comprises an anticipatory phase, in which the food is smelled or seen, and a 

consummatory phase, in which the food is tasted and ingested. Both these phases can entail feelings of 

reward or pleasure 1,2. Reward associated with consumption helps us ingest biologically relevant 

(nutritious) foods, because pleasant tastes signal for the presence of nutrients. After we have learned 

the reward value of a food during consumption, reward related to anticipation helps us to approach 

these foods (faster) the next time. Furthermore, anticipation also prepares the body for consumption by 

inducing cephalic phase responses 3. Thus, reward related to anticipation and reward related to receipt 

have separate functions.  

 

Accordingly, there may be different reward-related patterns in the brain for reward anticipation and 

receipt. Several neuroimaging studies are in line with this hypothesis 4,5. For instance, one study 

compared the two reward phases using visual cues as reward anticipation and a sweet taste as reward 

receipt 4. Expectation of the pleasant taste produced activation in the dopaminergic midbrain, 

amygdala, striatum and orbitofrontal cortex. Apart from the orbitofrontal cortex, these areas did not 

activate during reward receipt.  

 

Expectations are provoked by product labels such as ‘healthy choice’, ‘diet’ or ‘light’, which are 

ubiquitous in the supermarket these days 6–8. By means of such labels, foods are categorized in 

‘healthy’ and ‘less healthy’ options. Consumers’ health interest is an important factor in the choice 

between healthy and unhealthy foods 9,10. For example, individuals scoring high on the HTAS-General 

health interest scale more often choose healthy snacks or report higher consumption of healthy snacks 

compared to individuals with a lower score 9,10. Previous research has shown that expectations created 

by a product label can change flavor pleasantness and intensity and attitude towards a product 11–14. 

Furthermore, several neuroimaging studies demonstrate that brain responses can be modulated by 

product labels 14–20. For example, labels that promote the tastiness of foods increase the neural 

encoding of taste pleasantness in the amygdala 19 and labels that promote the healthiness increase the 

neural encoding of reward in the ventral striatum 20.  

 

In daily life, consumers vary in their degree of health interest and may thus be differentially affected 

by health-related product labels. Often, government campaigns try to increase health interest by means 

of education regarding a healthy eating pattern to induce the formation of healthy eating habits. 

Unravelling the association between increasing health interest and neural reward responses related to 

anticipation and receipt of health-labeled foods may give more insight into how these campaigns 

work. The current study aimed to assess to what extent brain responses induced by anticipation and 
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receipt of a beverage with different levels of perceived (but not actual) caloric content are associated 

with health interest. It was hypothesized that health interest affects brain activation in areas that have 

been implicated in food reward such as the basal ganglia, orbitofrontal cortex (OFC), anterior 

cingulate cortex (ACC) and amygdala 21–25.  

 

Materials and Methods 

 

Participants 

 

Twenty-five young (mean ±SD age of 21±2 y), healthy, right handed, female participants with a 

normal weight (mean±SD BMI of 22.1±2 kg/m2) completed the study. Participants were included if 

they consumed artificially sweetened beverages at least two times per month. Restrained eaters (score 

greater than 2.80 on the Dutch Eating Behavior Questionnaire 26 were excluded, since they are known 

to respond differently to food cues 27,28 and have a different brain anatomy 29. Additional exclusion 

criteria were: an energy restricted diet during the past two months, change in body weight of more 

than five kg during the past two months, lack of appetite, stomach or bowel diseases, diabetes, thyroid- 

or kidney disease or any other endocrine disorder, having a history of neurological disorders, having a 

mental illness, use of daily medication other than oral contraceptives or paracetamol, having 

difficulties with swallowing and/or eating, having taste or smell disorders, being allergic and/or 

intolerant for products under study, smoking more than one cigarette/cigar a day, having a history of 

or current alcohol consumption of more than 28 units per week, exclusive consumption or avoidance 

of light versions of beverages, being pregnant or lactating, having any contra-indication for MRI 

scanning or disliking the product under study (liking < 40mm on a 100mm VAS-scale). Before 

enrollment, participants were screened on inclusion and exclusion criteria via a questionnaire and a 

taste test. After screening, included participants completed an functional magnetic resonance imaging 

(fMRI) practice session, which took place on a day prior to the study day. During this session they 

practiced with tasting in a dummy fMRI scanner. In total 106 participants were screened, of which 34 

participants were included in the study. Nine participants dropped out because of various reasons, 

among other things technical issues regarding the setup of the study and feelings of discomfort in the 

scanner. All participants gave written informed consent. This study was conducted in accordance with 

the Declaration of Helsinki, approved by the Medical Ethical Committee of Wageningen University 

and registered in the Dutch Trial Register (NTR4249). 
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Study design 

 

The study had a within-subjects design during which participants were scanned on one occasion by 

means of fMRI. During this scan session participants completed an fMRI motivational taste-task in 

which they were first exposed to a low-caloric cue (LC-cue) or a high caloric cue (HC-cue) and 

subsequently tasted a sweet beverage. Not disclosed to the participants was that this sweet beverage 

was always the same. Participants therefore believed that they were tasting a low-caloric beverage 

(LC-receipt) and a high-caloric beverage (HC-receipt).  

 

The task was designed in such a way that participants did not receive the beverage passively, but had 

to work for it by means of joystick approach and avoidance movements. This paradigm was used in 

order to be optimally sensitive to brain responses during the anticipation and reward outcome phases. 

By having participants work for the beverages we achieved two goals. First, by having to work to 

obtain rewards participants had to remain highly motivated throughout the task. As a result, 

participants were put in a more ecologically valid mind-set when it comes to obtaining food; in daily 

life, acquiring food also requires effort and motivation. Secondly, using an approach-avoidance 

measure allowed us to investigate implicit approach biases towards the ‘low’- and ‘high’-caloric 

beverage. Such an approach-avoidance measure has been used successfully before for measuring 

approach tendencies to food cues 30–34. Reaction times for the approach and avoidance movements 

were obtained and discussed in the paper as secondary measures.  

 

Health and Taste Attitude Scales 

 

The Dutch version of the Health and Taste Attitude Scales (HTAS) was filled in by participants during 

the fMRI practice session. The HTAS is a validated questionnaire which consists of 44 items ranging 

from ‘strongly disagree’ to ‘strongly’ agree (7-point scale) 10. The HTAS can be divided into 7 

subscales: General health interest, Light product interest, Natural product interest, Craving for sweet 

foods, Using food as a reward, Feeling guilty (Dutch HTAS only) and Pleasure. In the current study, 

scores from the General health interest subscale were used as measure for health interest. Light 

product interest and Natural product interest subscales were also included because of their relatedness 

to health interest. Reliabilities (Cronbach’s α) of these subscales vary between 0.76 to 0.89 9,10,35. The 

General health interest subscale consists of 8 items and the maximum score is 7; the Light product 

interest and Natural product interest subscales consist of 6 items and the maximum score is 7. 
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Experimental procedures 

 

On the study day participants arrived at the test location after a 3 h fast. The session started with a 

training in the scanner (~10 min), followed by an fMRI motivational taste-task (~1 h). After this, 

participants were presented with a real-life choice between two 250-mL bottles of the beverage, one 

labeled ‘low-caloric’ and the other ‘high-caloric’. The bottle of choice was taken home.   

 

Training 

 

Participants first read a manual that explained the fMRI motivational taste-task. They were informed 

that they could earn sips of a low-caloric, high-caloric and neutral beverage by means of joystick 

movements. After this, they were placed in the scanner. There, they were familiarized with the 

different cue-beverage combinations by repeatedly showing a cue and directly afterwards 

administering the corresponding beverage. Hereafter, participants practiced the task for a short period 

of time.  

 

fMRI motivational taste-task 

 

During the fMRI motivational taste-task participants were presented with either a LC-cue or HC-cue 

and subsequently worked for a sip of beverage. Depending on the cue, the beverage was either 

perceived as low-caloric or high-caloric. In addition there was a neutral control condition, in which 

participants were presented with a neutral cue (N-cue) and worked for a sip of tap water (N-receipt).  

 

Figure 5.1 shows a schematic overview of the trial structure of the task. The cue was depicted on the 

screen for 850 ms. After a jittered interval (2-6 s), participants were shown a symbol to which they had 

to response as fast as possible by moving a joystick in the right direction; when a diamond or a square 

was shown participants had to pull the joystick towards them, and when a triangle or circle was shown 

they had to push the joystick away. After another jittered interval (2-6 s), feedback (correct, incorrect 

or too late) was shown. In case of an incorrect or too slow response, the feedback event took 1.2 s, and 

participants received no liquid. In case of a correct response, 1 mL of beverage was administered 

during the feedback. A receipt event was jittered and lasted between 3.2 - 6.2 s after which a 2 s 

swallow took place. The swallow was either the last event of the trial or was followed by a liking 

VAS. When a liking VAS appeared, participants had to answer the following question on a 100-unit 

VAS anchored with ‘not at all’ to ‘extremely’: “How pleasant do you find the taste of this beverage?” 

Liking VASs for tasting the ‘low-caloric’ beverage, ‘high-caloric’ beverage and water occurred once 

per block from the 8th trial onwards, in a correct trial. A trial ended with a jittered interval (2-6 s) that 

occurred after the swallow or liking VAS in a correct trial, and after the feedback in an incorrect trial. 
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Wanting VASs occurred halfway the first, fourth, and last block of the task. The wanting question 

was: “How much do you want to consume this beverage right now?” In total, the task consisted of 7 

blocks, and each block consisted of 24 trials (8 trials per cue type).  

 

 

Figure 5.1 Schematic overview of the trial structure of the fMRI motivational taste-task. 

 

Stimuli 

 

Visual cues were the words ‘neutral’, ‘low-caloric’ and ‘high-caloric’, which were presented on a 

screen placed in the bore at the back end of the scanner (font: Tahoma, font size: 28, text color: white, 

background color: gray). Beverages were tap water and Grenadine lemonade (380 kcal/L, 1600 kJ/L). 

Grenadine lemonade was made by mixing 120 gram grenadine syrup (Karvan Cevitam) with 700 gram 

tap water. Beverages were administered in sips of 1 mL with the use of programmable syringe pumps 

(New Era Pump Systems Inc,Wantagh, NY) at 50 mL/min.  

 

Scan settings 

 

A scan session consisted of a functional run during which functional volumes were acquired using a 

multi-echo echo-planar imaging (EPI) sequence 36 (TR = 2080 ms, TE = 9.00 ms, 19.25 ms, 29.50 ms 

and 39.75 ms, 90◦ flip angle, FOV = 192 mm × 192 mm, 34 axial slices, ascending order, voxel size 

3.5 mm × 3.5 mm × 3.5 mm) on a 3-T Siemens Magnetom Verio (Siemens, Erlangen, Germany). 

Additionally, a high-resolution T1- weighted anatomical scan was acquired (MPRAGE, TR = 1900 

ms, TE = 2.26 ms, 9◦ flip angle, FOV = 256 mm × 256 mm, 192 sagittal slices, voxel size = 1 mm × 1 

mm × 1 mm).  

 

Analysis 

 

fMRI data 

 

fMRI data were preprocessed and analysed with the SPM8 software package (Wellcome Department 

of Imaging Neuro- science, London, UK) in conjunction with the MarsBar toolbox 

(http://marsbar.sourceforge.net/) run with MATLAB 7.12 (The Mathworks Inc., Natick, MA). The 
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volumes for each echo time were realigned to correct for motion artifacts (estimation of the 

realignment parameters is done for the first echo and then copied to the other echoes). The 4 echo 

images were combined into a single MR volume based on 60 volumes acquired before the actual 

experiment started using an optimised echo weighting method 36. Combined functional images were 

slice time corrected, coregistered to the anatomical image, globally normalized to the Montreal 

Neurological Institute space (MNI space), and spatially smoothed with a Gaussian kernel of 7 mm 

full-width at half-maximum. A statistical parametric map was generated for every participant by fitting 

a delta function to each time series, convolved with the canonical hemodynamic response function. 

Data were high-pass filtered with a cut-off of 128 s. 

 

The following conditions were modelled: viewing of the N-cue, LC-cue, HC-cue and response picture, 

joystick movement, feedback, delivery of the N-receipt, LC-receipt and HC-receipt, swallowing and 

stimulus and appetite rating. Responses to swallowing and rating were not included in further analyses 

and responses to the response picture, joystick movement and feedback are not under study in the 

current analyses. To account for motion-related variance, 6 realignment parameters were added to the 

model as regressors of no interest. For every participant, parameters were estimated for the contrasts 

[LC-cue – N-cue], [HC-cue – N-cue], [LC-receipt – N-receipt], [HC-receipt – N-receipt], [HC-cue – 

LC-cue] and [LC-receipt – HC-receipt] by means of t-tests.  

 

For the group level analysis, the contrast images [LC-cue – N-cue] , [HC-cue – N-cue], [LC-receipt - 

N-receipt], [HC-receipt – N-receipt], [HC-cue – LC-cue] and [LC-receipt – HC-receipt] were entered 

into separate one-sample t-tests, with General health interest scores, Light product interest scores and 

Natural product interest scores as covariate. There was tested for correlations between the subscale 

scores and brain activation with a multiple regression model. In addition, differences in activation 

between the HC- and LC-cue and the HC- and LC-receipt were assessed by means of one-sample t-

tests. All resulting T-maps were thresholded at P<0.001 (uncorrected for multiple comparisons) and a 

cluster size of k>5 contiguous voxels. A priori regions of interest were the OFC, ACC, amygdala, 

caudate, putamen, pallidum and substantia nigra. A mask of these regions was created with the WFU 

Pickatlas tool 37 and was used in a ROI-analysis with a small volume correction over the mask volume. 

 

Reaction times 

 

Reaction times consisted of the difference between the moment the response picture was visible on the 

screen and the moment the movement was initiated. Only reaction times of trials in which participants 

had been correct were analysed. Furthermore, reaction time scores lower than 150 ms were not 

included in the analyses. Mean reaction times were calculated for the approach and avoid movements 

during the low, high and neutral trials. Differences in reaction times were assessed by means of paired 
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samples t-tests. One participant had no correct responses during all the low-caloric avoidance trials. 

Therefore, comparisons involving this condition were performed without this participant.   

 

Results 

 

Behavioral data 

 

HTAS subscale scores 

 

The mean±SD scores for the General health interest, Light product interest and Natural product 

interest scales were respectively 4.6±0.6, 3.2±0.9 and 3.6±1.2 and the ranges 3.1-5.6, 1.5-4.8 and 1.3-

5.5. General health interest scores correlated positively with Light product interest scores (r = 0.46, 

P<0.05). Natural product interest scores did not correlate with General health interest and Light 

product interest scores. 

 

Subjective ratings and choice 

 

Liking and wanting scores did not differ significantly between the N-, LC- and HC-receipt (Table 5.1). 

When presented with a choice between the low or high-caloric version of the beverage, 64% of the 

participants chose the low-caloric version. 

 

Table 5.1 Mean (SD) liking and wanting ratings (cm) during the 

scan on a 100mm VAS-scale. 

 

 

 

  

Liking and wanting scores did not differ significantly between the 

beverages (repeated measures ANOVA, P>0.05). 

 

Correct responses 

 

A correct joystick response was given and, in turn, beverage was administered in mean±SD 67±17 % 

of the low-caloric trials, 67±17 % of the high-caloric trials and 68±16 % of the neutral trials. 

 

  

Beverage Liking Wanting 

N-receipt 5.5 (2.1) 5.3 (2.6) 

LC-receipt 6.1 (2.1) 5.0 (2.3) 

HC-receipt 6.1 (2.4) 4.6 (2.9) 
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Reaction times 

 

Mean±SD reaction times for the approach movement in the neutral, low-caloric and high-caloric 

condition were respectively 608.6±85.1, 604.0±83.1 and 608.2±74.6, and for the avoid movement 

615.1±70.1, 607.4±74.1 and 588.2±127.6. Reaction times did not differ significantly between the 

approach and avoid joystick movements in any of the conditions (paired samples t-tests, P>0.05). 

Furthermore, comparison of reaction times for the avoid and approach movements over beverage type 

also yielded no significant differences (paired samples t-tests, P>0.05). 

 

fMRI data 

 

The effect of perceived caloric content on reward activation associated with cue and receipt 

 

During the ROI-analysis no differences were found between the HC-cue and LC-cue. However, more 

activation was observed for LC-receipt compared to HC-receipt in the left putamen (cluster size: 9, Z-

score: 3.4, MNI peak coordinates: -29, 7, -8) (Figure 5.2). For HC-receipt minus LC-receipt no 

differences were found. In addition, (low minus high-caloric) liking ratings did not correlate with (low 

minus high-caloric) neural cue or receipt activation in any of the ROIs. 

 

 

 

 

 

 

 

Figure 5.2 Taste activation for [LC-receipt – HC-

receipt] in the left putamen, MNI (-29, 7, -8). 

 

Correlation between reward activation associated with cue and receipt and HTAS subscales scores 

 

The scores of General health interest, Light product interest and Natural product interest subscales did 

not correlate with brain activation in the ROIs for these contrasts: [LC-cue – N-cue], [HC-cue – N-

cue], [LC-receipt – N-receipt], [HC-receipt – N-receipt] and [HC-cue – LC-cue]. However, General 

health interest score did correlate positively with brain activation during LC- compared to N-receipt in 

the right putamen (cluster size: 19, Z-score: 3.6, MNI peak coordinates: 27, 7, 6). Furthermore, a 

positive correlation was found for General health interest score and LC- compared to HC-receipt in the 

right putamen (cluster size: 11, Z-score: 3.6, MNI peak coordinates: 31, 7, 6) (Figure 5.3).  
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Figure 5.3 Scatterplot showing the correlation between brain activation during [LC-receipt – HC-receipt] and General health 

interest score in the right putamen, MNI (31, 7, 6). 

 

Discussion 

 

In this study, LC- compared to HC-receipt was associated with greater activation in the left ventral 

putamen. The putamen is part of the (dorsal) striatum, a region known for integrating affective, motor 

and cognitive information and for influencing goal-directed behavior by generating feelings of 

pleasure 1,38. The ventral putamen in particular is involved in reward 39. The greater putamen activation 

in the current study therefore suggests that LC-receipt was experienced as more rewarding than HC-

receipt. This may be attributable to a cognitively driven preference for the low-caloric over the high-

caloric beverage. The behavioral choice data reflect this as well since 64% of the participants chose 

the low-caloric beverage. However, motivation to obtain the low-caloric or high-caloric beverage as 

measured with approach and avoidance reaction times did not differ. Possibly, this measure was not 

sensitive enough. 

 

In addition, for the cues, no differences in activation were observed in the putamen. The ventral 

putamen may therefore be more involved in reward associated with receipt than with anticipation. This 

has also been observed in a study that measured brain activation in drug-addicts in response to cocaine 

injections 38,40. In these subjects, drug rush ratings, i.e. drug receipt, correlated stronger with activation 

in the dorsal striatum than drug craving ratings, i.e. drug anticipation. Additionally, Delgado et al 

(2007) 38 hypothesized, after comparison of several experiments, that the dorsal striatum is involved in 

learning and updating actions that lead to reward, rather that representing and identifying rewards. 

Therefore the lack of difference in activation between the LC- and HC-cue in this area may be 

plausible.  
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One can speculate that the greater putamen activation for LC-receipt compared to HC-receipt in the 

current study is population-specific. The population consisted of highly educated women 

(predominantly college students). Literature shows that this group has a more positive attitude towards 

healthy eating compared to men and individuals with a lower education level 41–46. The attitude 

towards a product can be reflected in brain activation and may even alter flavor experience. This was 

for instance shown in the famous Coca-Cola versus Pepsi experiment 47. When the two cokes were 

delivered without a brand, participants showed no behavioral preference for either Pepsi or Coca-Cola 

and taste activation was not different between the two, other than in the ventromedial prefrontal cortex 

where activation correlated with subjects’ behavioral preference. In contrast, when the brand was 

revealed, participants showed a behavioral preference for Coca-Cola, but not for Pepsi, over an 

unlabeled coke. Taste activation corresponded with the behavioral findings and was greater for 

branded over unbranded Coca-Cola, but not Pepsi, in regions involved in emotion and affect, the 

dorsolateral prefrontal cortex, hippocampus and midbrain. In line, another study showed that both 

liking ratings and brain reward activation increased when a wine was presented as more expensive 14. 

Many other behavioral and neuroimaging studies have reported this assimilation effect, where flavor 

experience is modified towards the expectation 13,15,48–51. In the current study, personal preferences of 

the sample may explain why LC-receipt elicits more reward-related brain activation than HC-receipt. 

Highly educated women may have a better understanding of what a balanced food pattern should and 

shouldn’t contain compared to the average population 
52

. For this subgroup ‘health labeling’ might be 

a good strategy to improve healthy choices. Nevertheless, more research is needed to establish in how 

far these findings generalize to other groups. 

 

Another finding was the positive correlation between LC- compared to HC-receipt activation and 

health interest scores in the dorsal striatum, namely in the dorsal putamen. Interestingly, dorsal 

putamen activation was found to be modulated by willingness to pay in a functional connectivity 

analysis during passive viewing of food images 53. This indicates that cognitive factors can affect 

dorsal putamen activation. Futhermore, this region of the putamen is known to be involved in food 

reward 54. This suggest that in the current population the reward value of receipt of the low-caloric 

relative to the high-caloric beverage increased with health interest. Several other studies have shown 

differences in brain responses when focusing attention on foods’ healthiness instead of pleasantness 17, 

taste 19 or regular foods 20. In general, promoting healthiness decreases the reward value of a product 

17,19,55. However, in line with results of the current study, Linder et al. (2010) 20 found that the reward 

value of food products increased when individuals were more health-minded, i.e. when they bought 

organic foods more often. Thus, health labels may appeal to the health-minded consumer but may 

deter consumers that highly value pleasantness 55.  
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In the present study, a positive correlation was found between LC-receipt activation and General 

health interest, but not Natural and Light product interest scores. Products with a label emphasizing 

their low caloric content therefore seem to categorize as healthy, rather than as natural or light 

products. Health interest (as measured with the General health interest subscale) is a good predictor of 

healthy food choices 9,10,56. Therefore, increasing health interest through government campaigns might 

be a fruitful way to promote healthier food choices.  

 

To summarize, receipt of a beverage perceived as low- compared to high-caloric induced more 

activation in the dorsal striatum during a fMRI motivational taste-task. Furthermore, health interest 

scores correlated positively with dorsal striatal activation during the receipt of a perceived low- 

compared to high-caloric beverage.  

 

In conclusion, above findings suggest that emphasizing a product’s health benefits compared to its 

health risks makes a product more rewarding for young, highly educated females. Furthermore, these 

results indicate that the reward value of a healthy product increases with health interest. Government 

campaigns that focus on increasing health interest may therefore be successful in inducing the 

formation of healthy eating habits. 
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Abstract 

 

Statements regarding pleasantness, taste intensity or caloric content on a food label may influence the 

attention consumers pay to such characteristics during consumption. There is little research on the 

effects of such statements on taste perception and associated brain activation. The aim of this study 

was to investigate the effect of selective attention to hedonics, intensity and caloric content on brain 

responses during tasting. Using functional MRI brain responses of 27 women were measured while 

they payed attention to the intensity, pleasantness or caloric content of fruit juice, tomato juice and 

water. Taste activation for the three selective attention conditions largely overlapped and was found in 

the rolandic operculum, insula and overlying frontal operculum, striatum, amygdala, thalamus, 

anterior cingulate cortex and middle orbitofrontal cortex (OFC). Taste activation was higher during 

selective attention to intensity compared to calories in the right middle OFC and during selective 

attention to pleasantness compared to intensity in the right putamen, right ACC and bilateral middle 

insula. Intensity ratings correlated with taste activation during selective attention to intensity in the 

anterior insula and lateral OFC. Our data suggests that not only the anterior insula but also the middle 

and lateral OFC are involved in evaluating taste intensity. Furthermore, selective attention to 

pleasantness engages regions associated with food reward. Overall, our results indicate that statements 

regarding food properties can alter the consumption experience through attention-driven effects on the 

activation of gustatory and reward regions.  
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Introduction 

 

Selective attention to one specific food property over another may alter the taste perception of a food 

1,2. In daily life, attention of consumers is often directed towards a specific property by product labels 

that emphasize either the hedonics, sensory characteristics or caloric content 3. Such product labels 

may, in turn, influence consumers’ buying and eating behaviour 4–6. Better understanding of the 

association between selective attention and brain responses during consumption may give us more 

insight into how product labels can affect the consumption experience.  

 

 

Previously, selective attention on brain activation induced by food viewing and tasting has been 

studied via complex cognitive manipulations such as words, symbols or labels emphasising either the 

taste, caloric value or health aspects of a food cue 7–11. These manipulations were shown to modulate 

brain activation in reward-related regions such as the OFC, ACC, amygdala and ventral striatum. 

These cognitive manipulations all represent specific aspects of taste such as intensity, affect or 

health/caloric value. Nevertheless, only one study explicitly investigated and compared the effect of 

selective attention on two of these dimensions, namely intensity and pleasantness 12. They found that 

when participants focussed their attention on intensity, taste activation was greater in the insular 

cortex, but when they focussed on pleasantness, the medial orbitofrontal cortex (OFC) and anterior 

cingulate cortex (ACC) were more responsive during tasting a monosodium glutamate solution. In line 

with this, the anterior insula and overlying operculum, but not the OFC, show greater activation when 

participants are instructed to detect a taste in a tasteless solution, in comparison to passive tasting 13. 

These studies show that taste activation in the insular cortex, OFC and ACC can be altered by 

selective attention. However, more research is needed to further elucidate how selective attention to 

specific taste aspects influences the consumption experience of real foods rather than simple solutions. 

 

Neural processing of taste intensity and valence have been linked to specific brain regions. The insula 

and overlying frontal operculum (which contain the primary taste cortex 14), are believed to represent 

taste intensity 15–18. Beside intensity, the primary taste cortex also represents taste quality and valence 

15,16. Food valence is believed to be represented in the OFC, an area that receives neural signals 

directly from the primary taste cortex and has been designated as secondary taste cortex 14,18–21. The 

OFC projects to the striatum and ACC 14, which are involved in processing affective value and taste 

intensity 17,18,21–23. In addition, the primary taste cortex and OFC project to the amygdala, a region 

possibly involved in integrating affect and intensity 
17,18,24–26

. Recently, the presence of calories in the 

mouth has also been associated with activation in several brain regions including the amygdala, 

striatum, ACC and insula and overlying frontal operculum 27–32. Selective attention to intensity, 

valence and caloric content may affect taste activation in the above listed regions that had earlier been 



Chapter 6: Taste activation and selective attention 

107 
 

associated with these properties. The aim of the current study was to investigate the effect of selective 

attention to hedonics, intensity and caloric content on brain responses during tasting. Secondary, we 

assessed the association between taste activation during selective attention and subjective 

pleasantness, intensity and caloric content ratings. 

 

Materials and methods 

 

Participants 

 

Thirty young, healthy, right-handed females with a normal weight were included in the study. One 

participant dropped out because of feelings of discomfort in the scanner. Furthermore, due to technical 

issues with the gustometer, data was not reliable for two of the subjects. Therefore, twenty-seven 

participants with a mean (± SD) age of 22 (± 3) y and a mean (± SD) BMI of 21.5 (± 1.7) kg/m2 were 

included in the analyses. Exclusion criteria were: a restrained eating score higher than 3.40 (Dutch 

Eating Behavior Questionnaire 33), an energy restricted diet during the past two months, change in 

body weight of more than five kg during the past two months, lack of appetite, stomach of bowel 

diseases, chronic diseases such as diabetes, thyroid- or kidney disease, having a history of neurological 

disorders, having a mental illness, use of daily medication other than oral contraceptives or 

paracetamol, having difficulties with swallowing and/or eating, having taste or smell disorders, being 

allergic and/or intolerant for products under study, smoking more than one cigarette/cigar a day, 

having a history of or current alcohol consumption of more than 21 units per week, being pregnant or 

lactating, having any contra-indication for MRI scanning or disliking the product under study (liking < 

5 on a 9-point scale). Before enrollment, participants were screened on inclusion and exclusion criteria 

via a questionnaire and a taste test. After screening, included participants completed a training session 

in which they practiced the fMRI procedure. All participants gave written informed consent. This 

study was conducted in accordance with the Declaration of Helsinki (amendment of Fortaleza, 2013), 

approved by the Medical Ethical Committee of Wageningen University and registered in the Dutch 

Trial Register (NTR5253). 

 

Stimuli 

 

Stimuli consisted of a commercially available fruit juice (Dubbel Drank orange and peach, 

Appelsientje, 48 kcal/100 mL, Royal FrieslandCampina, Amersfoort, The Netherlands) and tomato 

juice (Zontomaat, Appelsientje, 18 kcal/100 mL, Royal FrieslandCampina, Amersfoort, The 

Netherlands) and tap water.  
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Experimental procedure 

 

Participants arrived between 08:00 and 10:00 h at the test location (Hospital Gelderse Vallei, Ede, The 

Netherlands) after a fast of at least 3h (no food, only water) and were placed into the MRI scanner to 

engage in an fMRI taste-task. During this task, participants tasted small sips (2 mL) of the fruit juice, 

tomato juice and water while they had been instructed to pay attention to either the pleasantness, taste 

intensity or amount of calories of the stimulus. Participants were led to believe that they were tasting 

two types of fruit juice and two types of tomato juice. They were told that the two fruit juices and the 

two tomato juices were very similar tasting, but that there were slight differences in ingredients. The 

task consisted of three runs and one run consisted of three blocks: a pleasantness block, an intensity 

block and a calorie block. Figure 6.1 shows a schematic overview of the trial structures during a block. 

At the beginning of each block, a screen was show that indicated to which characteristic participants 

had to pay attention. This was indicated in words (pay attention to the pleasantness, calories or taste 

intensity), as well as with the color of a square that was depicted on the top of the screen. This colored 

square was present during the whole task and changed color at the start of a new block. Moreover, 

beforehand, participants also had been asked to memorize the three color-instruction combinations. 

The order of the blocks varied during the runs and the order of the runs varied between participants. 

During each block, every stimulus was tasted 4 times. This resulted in 12 trials per characteristic per 

stimulus in total. A trial consisted of a 11-s taste-event, followed by a 3-s swallow, a 4-s rinse with 

water, a 3-s swallow and a 3-5-s rest. During each block, participants rated either the pleasantness, 

taste intensity or amount of calories one time for each stimulus on a 5-point scale, anchored with ‘not 

at all’ till ‘very’, or for calories, ‘none’ till ‘very much’. Ratings were given directly after swallowing 

the taste stimulus. Instructions to either taste, swallow, rate, rinse or rest were given to participants via 

visual cues on a screen placed in the bore at the back end of the scanner. Stimuli were administered 

with the use of programmable syringe pumps (New Era Pump Systems Inc,Wantagh, NY) at 50 

mL/min. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 Schematic overview of trial structures during a block of the taste-task. 
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MRI data acquisition 

 

A scan session consisted of 3 functional runs during which 460 functional volumes were acquired 

using a T2
*-weighted gradient echoplanar imaging sequence (TR = 2140 ms, TE = 25 ms, 90◦ flip 

angle, FOV = 192 × 192 mm, 43 axial slices, descending order, voxel size 3 × 3 × 3 mm) on a 3T 

Siemens Magnetom Verio (Siemens, Erlangen, Germany). The stack was tilted at an angle of 30◦ to 

the anterior-posterior commissure line to reduce signal dropout in orbitofrontal cortex and ventral 

temporal lobe 34. Additionally, a high-resolution T1-weighted anatomical scan was acquired 

(MPRAGE, TR = 2300 ms, TE = 2.98 ms, 9◦ flip angle, FOV = 256 × 256 mm, 192 sagittal slices, 

voxel size = 1 × 1 × 1 mm).  

 

Data Analysis 

 

fMRI data were preprocessed and analyzed with the SPM8 software package (Wellcome Department 

of Imaging Neuro-science, London, UK) in conjunction with the MarsBar toolbox 

(http://marsbar.sourceforge.net/) run with MATLAB 7.12 (The Mathworks Inc., Natick, MA).The 

functional volumes of every participant were slice time corrected, realigned to the first volume of the 

first run, coregistered to the anatomical image, globally normalized to the Montreal Neurological 

Institute space (MNI space), and spatially smoothed with a Gaussian kernel of 6 mm full-width at half-

maximum. A statistical parametric map was generated for every participant by fitting a boxcar 

function to each time series, convolved with the canonical hemodynamic response function. Data were 

high-pass filtered with a cutoff of 128 s. For each taste stimulus, 3 conditions of interest were 

modelled: paying attention to intensity, caloric content and pleasantness. Furthermore, 4 conditions of 

no interest were modelled: rinsing, swallowing, task instructions and rating. To account for motion-

related variance, realignment parameters were added to the model as regressors of no interest. For 

every participant, parameters were estimated for the intensity, calorie and pleasantness conditions by 

averaging over fruit juice, tomato juice and water (versus baseline) in a T-contrast. Brain responses 

were averaged over the stimuli to increase power and to be able to generalize over taste quality and 

pleasantness level (see e.g. 35). Furthermore, selective attention conditions were also contrasted against 

each other using T-contrasts.  

 

On the group level, region of interest (ROI) analyses were performed. A priori ROIs were areas 

associated with taste processing: OFC, insula, frontal and rolandic operculum, ACC, amygdala, 

caudate, putamen, pallidum and thalamus 14,22,26,36. A combined mask of these regions was created with 

the WFU Pickatlas tool 37 and used in ROI analyses with small volume correction over the mask 

volume.  
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First, common activation for the selective attention conditions in the ROIs was examined by means of 

a conjunction analysis. An one-way within-subject ANOVA was performed using the subject-level 

contrasts for each selective attention condition versus baseline to create a model with the three 

selective attention conditions as levels. Hereafter, separate T-maps were created for the selective 

attention conditions and these were combined into a conjunction T-map (conjunction null). The 

resulting conjunction T-map was thresholded at T=8 (uncorrected for multiple comparisons) and a 

cluster size of k>4 contiguous voxels. 

 

Second, differences in activation within the ROIs were examined with multiple one-sample t-tests in 

which the subject-level contrast images were entered. In addition, we tested for correlations between 

taste activation during selective attention (versus baseline) and subjective ratings within the ROI mask 

by means of multiple regression. Resulting T-maps were thresholded at P<0.001 (uncorrected for 

multiple comparisons) and a cluster size of k>4 contiguous voxels. This threshold is based on 

Lieberman and Cunningham (2009) 38, who argue for less conservative thresholding and even advise a 

less stringent threshold of P<0.005 with a 10 voxel cluster extent. Too conservative thresholding in an 

attempt to decrease false positive effect (type I errors), may increase the possibility for missing true 

effects (Type II errors), and may introduce biases toward studying large rather than small effects and 

observing sensory and motor processes rather than complex cognitive and affective processes 38. For 

visualization of the correlations average parameter estimates for each cluster were extracted with the 

use of the MarsBar toolbox. 

 

Results 

 

Subjective ratings 

 

Subjective ratings for intensity, caloric content and pleasantness of the fruit juice, tomato juice and 

water, obtained during scanning can be found in Figure 6.2. Water was significantly less intense than 

the juices. Furthermore, fruit juice was perceived as most calorie dense, followed by tomato juice and 

water. Finally, fruit juice was perceived as most pleasant. 

 

Common taste activation 

 

Figure 6.3 shows the brain responses during tasting when participants payed attention to the intensity, 

caloric content or pleasantness and the conjunction for these selective attention conditions (also see 

Supplementary Table 6.1, 6.2, 6.3 and 6.4, Appendix). Common taste activation was observed in the 
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rolandic operculum, insula and overlying frontal operculum, striatum, amygdala, thalamus, anterior 

cingulate cortex and middle OFC.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2 Subjective ratings (mean + SD) on a 5-point scale for intensity during 

selective attention to intensity, caloric content during selective attention to caloric 

content and pleasantness during selective attention to pleasantness of a fruit juice 

(F), tomato juice (T) and water (W), obtained during scanning. Repeated measures 

ANOVA, post-hoc t-tests, P<0.05, LSD-corrected for multiple comparisons. Bars 

within each condition that have a different letter differ significantly. 

 

Attention-driven differences in taste activation 

 

Table 6.1 shows the differences in taste activation between the three selective attention conditions 

(also see Figure 6.4). Attentional focus on intensity resulted in more taste activation in the right middle 

OFC compared to when attention was directed to caloric content. Paying attention to the pleasantness 

compared with intensity, induced more activation in the right and left middle insula, the left frontal 

operculum, right ACC and right putamen. 
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Figure 6.3 Taste activation during selective attention to intensity, caloric content and pleasantness 

(MNI z-coordinates: -1, 4, 9 and 14). 
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Table 6.1 Brain activation during tasting while paying attention to intensity, calories or pleasantness.  

Comparison Brain region 
Cluster  

size 
Z-score 

Peak coordinate 

x y z 

Intensity - Calories 
R sup frontal gyrus (mid 

OFC) 
7 3.4 15 62 -5 

Calories - Intensity No regions           

              

Intensity - Pleasantness No regions           

Pleasantness - Intensity R putamen 5 3.5 30 -4 -2 

  R ant cingulate cortex 5 3.4 15 44 19 

  R mid insula 5 3.2 45 2 -2 

      3.2 42 -1 -5 

  

L inf frontal gyrus (frontal 

operculum)/extending into  

L mid insula 

8 3.2 -45 11 4 

              

Calories - Pleasantness No regions           

Pleasantness - Calories No regions           
Activations were thresholded at p<0.001, with small volume correction over the ROI volume and a cluster extent threshold of k>4 contiguous 

voxels. Ant = anterior, sup = superior, inf = inferior, mid = middle, L = left and R = right. 

 

Relationship between taste activation during attentional focus on intensity, calories or 

pleasantness and subjective ratings  

 

Table 6.2 shows brain regions in which an association was found between subjective ratings and taste 

activation in the three selective attention conditions. There was a positive correlation between intensity 

ratings and taste activation during attentional focus on intensity in the right anterior insula and right 

lateral OFC (Figure 6.5). No correlations were found between calorie and pleasantness ratings and 

taste activation during attentional focus on respectively calories and pleasantness. 

 

Discussion 

 

We investigated the effect of selective attention to hedonics, intensity and caloric content on brain 

responses during tasting. Taste activation for these selective attention conditions largely overlapped; 

common activation was found in regions associated with taste processing and food reward such as the 

rolandic operculum, insula and overlying frontal operculum, striatum, amygdala, thalamus, ACC and 

middle OFC. Taste activation during selective attention to intensity compared to calories was higher in 

the right middle OFC. Furthermore, taste activation during selective attention to pleasantness 

compared to intensity was greater in the right putamen, right ACC and bilateral middle insula, areas 

associated with food reward. In addition, there was a positive association between taste activation 
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during selective attention to intensity and intensity ratings in the right anterior insula and right lateral 

OFC.  

 

 

 

Figure 6.4 Differences in taste activation during selective attention to intensity (intens), caloric content (cal) and pleasantness 

(pleas) in the (A) left inferior frontal gyrus (frontal operculum)/left middle insula (peak at MNI: -45, 11, 4), (B) right mid 

insula (peak at MNI: 45, 2, -2), (C) right anterior cingulate cortex (peak at MNI: 15, 44, 19), (D) right putamen (peak at MNI: 

30, -4, -2), and (E) right superior frontal gyrus (mid OFC) (peak at MNI: 15, 62, -5). Bars having a different letter differ 

significantly. Ant = anterior, sup = superior, inf = inferior, mid = middle, L = left and R = right. 

 

Common taste activation 

 

There was overlap in taste activation during selective attention to intensity, caloric value and 

pleasantness in regions involved in the neural processing of food stimuli. This may be expected 

because ‘bottom-up’ effects are equal for all selective attention conditions. This is in line with a study 

with a similar paradigm, in which taste activation overlapped greatly in the anterior insula and 

overlying frontal operculum irrespective of whether participants had to indicate the quality, the 

presence or the pleasantness of a taste, or just tasted passively 35. Cognitive effects, such as selective 

attention, are often more difficult to detect with neuroimaging than motor or sensory effects due to 
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greater trial-to-trial and person-to-person variation 38,39. This could be the reason why we found 

relatively few effects of selective attention. 

 

Table 6.2 Brain regions in which there was a significant positive correlation between subjective ratings and taste activation in 

the three selective attention conditions. 

Correlation Brain region 
Cluster  

size 
Z-score 

Peak coordinate 

x y z 

Intensity ratings (in intensity 

condition) 
R ant insula 18 3.5 33 17 -14 

  
R inf frontal gyrus  

(lat OFC) 
  3.4 33 29 -14 

              

Calorie ratings (in calorie 

condition) 
No regions           

              

Pleasantness ratings (in 

pleasantness condition)  
No regions           

Activations were thresholded at p<0.001, with small volume correction over the ROI volume and a cluster extent threshold of k>4 contiguous 

voxels. Ant = anterior, inf = inferior, lat = lateral and R = right. 

 

Attention-driven differences in taste activation 

 

Insula  

 

Selective attention to pleasantness versus intensity but not caloric content, induced more activation in 

the bilateral middle insula and left overlying frontal operculum. The middle insula has been implicated 

in the detection of actual intensity differences 17,18. However, recently Dalenberg et al. (2015) 16 

examined the functional specialization of the insula regarding taste processing in more detail and 

found that activation in the middle insula is related to the presence of a taste and it’s corresponding 

pleasantness. Several other studies are consistent with a role for the middle insula in pleasantness 

coding 35,40,41. For example, Bender et al. (2009) 35 reported that attending to the pleasantness of a taste 

produced large responses in the middle insula. De Araujo et al. (2003) 40 found that water in the mouth 

activated the middle insula, but only when participants were thirsty, and thus perceived the water as 

more pleasant. Finally, Pelchat et al. (2004) 41 found that imagining to eat a pleasant food in 

comparison to a bland food resulted in increased middle insula activation for participants who had 

been consuming a monotonous diet for 1.5 days. This latter study agrees with ours that an attentional 

focus on pleasantness increases middle insula activation. Furthermore, we found that intensity ratings 

correlated with taste activation during selective attention to intensity in the right anterior insula. This is 

in concurrence with Dalenberg and colleagues’ 16 finding that right anterior insula activation is 

associated with concentration rather than pleasantness. Overall, our results strengthen the idea that the 

middle insula is involved in pleasantness coding and the anterior insula in intensity coding.  
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Figure 6.5 Scatterplot of taste activation during selective attention to intensity and subjective intensity 

ratings in the right anterior insula extending into the right inferior frontal gyrus (lateral OFC) (peaks at MNI: 

33 17 -14 and 33 29 -14). Ant = anterior, inf = inferior, lat = lateral and R = right. 

 

OFC 

 

Compared to caloric content, both focussing on intensity and pleasantness during tasting activated the 

middle OFC more (statistically significant for intensity, trend for pleasantness). Tang et al. (2014) 42 

showed that humans are poor in estimating the caloric content of food on pictures. Estimating caloric 

content may be a largely unconscious process and thus less accessible to conscious evaluations. For 

example, actual, rather than estimated caloric density of food pictures, predicts the willingness to pay 

for a food item 42. Furthermore, estimated expected satiety of food images is not in line with their 

actual energy content 43. Evaluating calories based on oral sensations rather than on food pictures, as 

was done in the current study, may even be more difficult. It is likely that our participants were 

focussing on sensory cues associated with caloric content such as sweetness, viscosity and creaminess 

to try and detect caloric content. This may have introduced more variability in taste activation than in 

other attention conditions. Consequently, this could explain why consciously focussing on calories did 

not elicit greater activation compared to focussing on the other product properties in any of the ROIs. 

 

No differences between attentional focus to intensity versus pleasantness were found in the middle 

OFC. The medial parts of the OFC are involved in decoding and monitoring reward, whereas the 

lateral parts are involved in evaluating punishment 44,45. Therefore, evaluating the pleasantness of a 

stimulus was expected to result in the most prominent activation in this area. However, taste intensity 

and pleasantness are not independent: in general their relationship can be captured in an inverted U-

shaped curve 46. For salty and sour stimuli, intensity and pleasantness are positively correlated up to 

the peak, whereupon pleasantness declines. Sweetness is almost increasingly pleasant with increasing 
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intensity 47. It is therefore difficult to disentangle brain regions involved in encoding pleasantness and 

intensity 16,17. Thus, food induced activation in the middle OFC may not only dependent on 

pleasantness, but also on intensity. Based on our results, this also holds true for the lateral OFC. In this 

area, we observed a positive association between taste activation when focussing on intensity and 

intensity ratings.  

 

 Putamen 

 

Attentional focus to pleasantness compared to intensity resulted in more taste activation in the 

putamen, a part of the dorsal striatum 23. Taste activation in the putamen was found to be modulated by 

sweetness, saltiness and bitterness irrespective of valence, 17,18, implying its involvement in intensity 

processing. However, others found that the dorsal striatum is involved in coding food reward 41,48–50. 

Especially reward receipt, rather that reward anticipation, is processed by the dorsal striatum 26. Our 

findings are consistent with a role for the dorsal striatum in reward receipt, and additionally suggest 

that selective attention to hedonics enhances taste activation in this region.  

 

ACC 

 

The ACC is implicated in reward receipt 26. We found that selective attention to taste pleasantness in 

comparison to intensity was associated with increased ACC activation. In agreement with this, 

Grabenhorst and Rolls (2008) 12 also observed increased responses in the ACC for paying attention to 

pleasantness compared to intensity of a monosodium glutamate (umami) solution. We show that this 

generalizes over taste qualities (sweet, savory and neutral liquids). The exact location of our finding is 

in the dorsal (also referred to as posterior) part of the ACC (Brodmann area 32). This specific part has 

been labeled as the ‘cognitive division’ and is activated by cognitive rather than by emotionally 

demanding tasks 51. According to one of the response selection theories, the dorsal ACC controls 

several motor control systems and decides upon their activation via input received from the 

dopaminergic midbrain about reward prediction errors 52,53. Valence, rather than intensity, of a taste 

may serve as a reward predictor as it signals the value of a reward or punishment, i.e. the degree of 

nutritiousness or poisonousness of a food. Interestingly, ACC activation evoked by tasting correlated 

with subsequent ad libitum intake of both a fruit and tomato juice 54. It must, however, be noted that 

this location was slightly more anterior than ours. Overall, our results indicate that attentional focus on 

valence may influence eating behavior by affecting activation in the posterior ACC.  
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Selective attention in functional neuroimaging taste paradigms 

 

Across functional neuroimaging studies, differences in selective attention are introduced by the 

different participant instructions used during the delivery of taste stimuli, such as the words: ‘taste’, 

‘test’ or ‘hold the solution in your mouth’, a colored field or just a crosshair on the screen 17,55–60. As a 

result, participant attention is directed in many different ways, which could lead to variability in taste 

activation within and between studies. Accordingly, we observed that selective attention to different 

food properties can indeed result in differences in taste activation. During neuroimaging taste research, 

selective attention may therefore act as a confounding factor. Reproducibility of (food-related) 

neuroimaging findings is often difficult 61–63. Our results indicate that selective attention biases, 

introduced by a variety of participant instructions, may play a part in the rather low concurrence of 

neuroimaging findings. 

 

Conclusion 

 

Paying attention to the hedonics, caloric content or taste intensity of a liquid predominantly resulted in 

common brain activation in regions involved in the neural processing of food stimuli. This likely 

resulted from ‘bottom-up’ sensory effects, which are more prominent than ‘top-down’ attentional 

effects. Nevertheless, differences were observed between selective attention to intensity versus 

calories in the right middle OFC, and between selective attention to pleasantness versus intensity in 

the right putamen, right ACC and bilateral middle insula. Furthermore, intensity ratings correlated 

with taste activation during selective attention to intensity in the anterior insula and lateral OFC. 

 

Our data suggest a role for the middle and lateral OFC and anterior insula in evaluating intensity of a 

stimulus rather than caloric content or pleasantness. Moreover, selective attention to pleasantness 

enhances activation in regions associated with food reward, such as the putamen, ACC and middle 

insula. Attentional focus on caloric content did not increase taste activation in any region. This implies 

that explicitly evaluating caloric content is difficult for humans and that this is probably done in a 

more implicit manner.   

 

In conclusion, statements regarding pleasantness, taste intensity or caloric content can alter the 

consumption experience through attention-driven effects on the activation of gustatory and reward 

regions. 
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Appendix 

 
Supplementary Table 6.1 Overlapping brain activation during tasting while paying attention to the intensity, calories or 

pleasantness. 

Conjunction Brain region 
Cluster 

size 
Z-score 

Peak coordinate 

x y z 

Intensity, calories  R rolandic operculum 1072 Infinity 60 -4 16 

and pleasantness     Infinity 54 -7 19 

      Infinity 60 2 16 
      Infinity 57 -16 16 
      Infinity 39 -31 16 
      Infinity 54 11 -2 
  R caudate   Infinity 21 5 22 
      Infinity 21 17 16 
      Infinity 15 26 -5 
      Infinity 21 26 10 
  R insula   Infinity 33 -10 16 
      Infinity 42 8 7 
  R putamen   Infinity 30 -10 -2 
      Infinity 30 -7 -8 
      Infinity 27 -1 -8 
  R amygdala   Infinity 24 2 -14 
  L inf frontal gyrus (frontal operculum) 807 Infinity -60 5 16 
      Infinity -60 11 22 
  L rolandic operculum   Infinity -60 -4 10 
      Infinity -48 -13 22 
      Infinity -51 -10 13 
      Infinity -51 2 4 
      Infinity -45 -28 13 
      Infinity -51 -22 13 
  L caudate   Infinity -21 2 22 
      Infinity -18 -10 19 
  L thalamus   Infinity -12 -19 7 
      Infinity -15 -13 16 
      Infinity -3 -10 10 
  L putamen   Infinity -24 5 7 
      Infinity -24 -4 13 
  L insula   Infinity -36 -10 16 
  L ant cingulate cortex 76 Infinity -9 14 28 
      Infinity -6 5 28 
      Infinity 0 2 28 
  R ant cingulate cortex   Infinity 9 17 28 
  L sup frontal gyrus (mid OFC) 87 Infinity -21 62 -5 
      7.8 -21 47 -11 
      7.6 -18 44 -14 
  L mid frontal gyrus (mid OFC) 7.4 -30 47 -2 
      7.4 -21 38 -14 
  R mid frontal gyrus (mid OFC) 36 Infinity 33 59 -8 
  R sup frontal gyrus (mid OFC) Infinity 30 62 -5 
  R med frontal gyrus (mid OFC) 7.5 12 68 -2 
  R thalamus 9 Infinity 15 -31 1 
      7.3 18 -31 7 
  L caudate 8 7.7 -12 23 -5 
      7.7 -15 26 -2 
      7.2 -6 20 -2 
  R sup frontal gyrus (mid OFC) 5 7.3 24 41 -14 
  L inf frontal gyrus (frontal operculum) 9 6.6 -45 20 34 
Activations were thresholded at t = 8, with small volume correction over the ROI volume and a cluster extent threshold of k>4 contiguous 

voxels. Ant = anterior, sup = superior, inf = inferior, mid = middle, med = median, L = left and R = right. 

 



Chapter 6: Taste activation and selective attention 

125 
 

Supplementary Table 6.2 Average brain activation during tasting compared to rest, while paying attention to the intensity. 

Activations were thresholded at p<0.001, with small volume correction over the ROI volume and a cluster extent threshold of k>4 

contiguous voxels. Ant = anterior, sup = superior, inf = inferior, mid = middle, lat = lateral, L = left and R = right. 

 

Contrast Brain region Cluster size Z-score 
Peak coordinate 

x y z 

Intensity R rolandic operculum 913 6.1 60 2 13 

  R rolandic operculum   5.7 54 -10 19 
  R insula   5.6 33 -4 16 
  R rolandic operculum   5.4 39 -34 22 
  R pallidum   4.9 27 -7 -5 
  R pallidum   4.8 27 -13 -2 
  R caudate   4.6 21 2 22 
  R putamen   4.5 21 17 13 
  R inf frontal gyrus (frontal operculum)   4.5 42 11 10 
  R insula   4.5 36 8 10 
  R thalamus   4.5 12 -19 7 
  R amygdala   4.4 27 2 -11 
  R amygdala   4.3 33 -1 -23 
  R pallidum   4.3 24 -4 4 
  R insula   4.3 36 -22 10 
  R putamen   4.2 27 8 13 
  L rolandic operculum 596 5.6 -48 -13 22 
  L rolandic operculum   5.3 -57 2 13 
  L insula   5.2 -33 -7 16 
  L insula   5.0 -36 11 16 
  L rolandic operculum   4.9 -51 -1 16 
  L rolandic operculum   4.7 -51 -7 13 
  L rolandic operculum   4.7 -57 -4 10 
  L caudate   4.6 -21 -1 19 
  L putamen   4.6 -27 -10 13 
  L thalamus   4.5 -15 -10 13 
  L thalamus   4.4 -15 -19 10 
  L pallidum   4.4 -15 -1 4 
  L caudate   4.3 -18 17 16 
  L rolandic operculum   4.2 -48 2 7 
  L caudate   4.2 -18 8 19 
  L putamen   4.2 -30 -13 -2 
  L inf frontal gyrus (lat OFC) 20 5.5 -39 44 -14 
  L inf frontal gyrus (lat OFC)   4.1 -30 38 -17 
  R mid frontal gyrus (mid OFC) 85 4.8 30 59 -8 
  R sup frontal gyrus (mid OFC)   4.1 21 47 -14 
  R mid frontal gyrus (mid OFC)   3.8 36 53 -11 
  R sup frontal gyrus (mid OFC)   3.7 24 65 -5 
  R sup frontal gyrus (mid OFC)   3.3 15 59 -14 
  L sup frontal gyrus (mid OFC) 79 4.7 -18 65 -5 
  L sup frontal gyrus (mid OFC)   4.3 -18 56 -11 
  L mid frontal gyrus (mid OFC)   3.6 -33 50 -8 
  L insula 13 4.5 -27 23 13 
  R sup frontal gyrus (mid OFC) 5 4.2 15 23 -17 
  R inf frontal gyrus (lat OFC) 5 4.1 30 29 -20 
  R mid cingulate cortex 16 4.0 12 17 28 
  R mid frontal gyrus (mid OFC) 5 4.0 33 41 -14 
  R mid frontal gyrus (mid OFC)   3.7 39 44 -14 
  R mid frontal gyrus (mid OFC)   3.4 45 47 -14 
  L ant cingulate cortex 8 3.8 -9 14 28 
  L insula 5 3.2 -36 5 -8 
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Supplementary Table 6.3 Average brain activation during tasting compared to rest, while paying attention to the calories. 
 

 

Activations were thresholded at p<0.001, with small volume correction over the ROI volume and a cluster extent threshold of k>4 

contiguous voxels. Ant = anterior, sup = superior, inf = inferior, mid = middle, med = median, L = left and R = right. 

 

Contrast Brain region Cluster size Z-score 
Peak coordinate 

x y z 

Calories R rolandic operculum 1062 6.0 54 -7 16 

  R rolandic operculum   5.8 60 2 13 
  R insula   5.7 33 -4 16 
  R caudate   5.1 21 26 7 
  R pallidum   5.1 27 -7 -5 
  R insula   5.0 42 8 7 
  R pallidum   4.9 27 -13 -2 
  R insula   4.9 36 -31 19 
  R caudate   4.8 21 8 19 
  R putamen   4.8 27 -1 -8 
  R caudate   4.5 18 -7 22 
  R thalamus   4.4 18 -13 16 
  R caudate   4.3 15 26 -5 
  R insula   4.3 33 -22 10 
  R putamen   4.2 33 -1 4 
  R thalamus   4.1 18 -31 4 
  L rolandic operculum 747 5.6 -48 -10 19 
  L rolandic operculum   5.2 -51 -7 13 
  L insula   4.8 -27 23 13 
  L rolandic operculum   4.7 -57 2 13 
  L insula   4.7 -45 5 7 
  L insula   4.7 -36 -10 16 
  L rolandic operculum   4.6 -60 5 16 
  L putamen   4.5 -30 -13 -2 
  L putamen   4.5 -21 14 7 
  L inf frontal gyrus (frontal operculum)   4.5 -36 5 22 
  L thalamus   4.4 -21 -31 4 
  L caudate   4.4 -21 -1 22 
  L thalamus   4.4 -12 -19 7 
  L putamen   4.3 -33 -19 -5 
  L insula   4.2 -33 11 16 
  L caudate   4.1 -18 11 19 
  R ant cingulate cortex 25 4.6 12 17 28 
  R ant cingulate cortex   3.5 15 29 25 
  L ant cingulate cortex 21 4.4 -9 14 25 
  L ant cingulate cortex   3.5 -6 5 28 
  R mid frontal gyrus (mid OFC) 52 4.3 33 59 -8 
  R sup frontal gyrus (mid OFC)   3.6 15 68 -2 
  R mid frontal gyrus (mid OFC)   3.3 45 53 -11 
  L inf frontal gyrus (lat OFC) 7 4.1 -42 47 -14 
  L med frontal gyrus (mid OFC) 54 4.1 -15 68 -2 
  L sup frontal gyrus (mid OFC)   4.0 -18 65 -5 
  L sup frontal gyrus (mid OFC)   3.9 -24 65 -2 
  L mid frontal gyrus (mid OFC)   3.6 -33 44 -5 
  L mid frontal gyrus (mid OFC)   3.5 -30 47 -2 
  L mid frontal gyrus (mid OFC)   3.4 -36 53 -5 
  L caudate 6 4.0 -15 26 -2 
  L caudate   3.7 -12 23 -5 
  L rolandic operculum 6 3.7 -39 -31 22 
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Supplementary Table 6.4 Average brain activation during tasting compared to rest, while paying attention to the 

pleasantness.  

Contrast Brain region Cluster size Z-score 
Peak coordinate 

x y z 

Pleasantness R rolandic operculum 1294 6.5 57 2 13 

  R rolandic operculum   6.3 54 -7 16 
  R rolandic operculum   5.8 39 -34 22 
  R pallidum   5.7 27 -7 -5 
  R pallidum   5.4 27 -13 -2 
  R caudate   5.4 21 8 16 
  R putamen   5.3 33 -7 13 
  R caudate   5.3 21 17 10 
  R caudate   5.2 21 26 10 
  R insula   5.0 45 8 7 
  R rolandic operculum   4.9 45 2 22 
  R insula   4.9 39 5 -11 
  R putamen   4.9 30 -19 1 
  R insula   4.8 33 -22 10 
  R thalamus   4.8 12 -19 7 
  R caudate   4.8 21 26 1 
  L rolandic operculum 1008 5.7 -57 2 13 
  L rolandic operculum   5.7 -48 -10 19 
  L insula   5.5 -45 8 7 
  L rolandic operculum   5.5 -51 -7 13 
  L insula   5.2 -27 26 13 
  L putamen   5.1 -30 -13 -2 
  L thalamus   5.0 -12 -19 7 
  L insula   5.0 -33 -10 16 
  L putamen   4.9 -18 14 4 
  L putamen   4.9 -18 14 16 
  L insula   4.9 -27 32 4 
  L insula   4.8 -30 14 16 
  L putamen   4.8 -21 8 10 
  L putamen   4.8 -21 14 10 
  L thalamus   4.7 -15 -10 13 
  L thalamus   4.6 -18 -28 1 
  L ant cingulate cortex 7 5.0 -15 44 13 
  L med frontal gyrus (mid OFC) 89 4.8 -15 68 -2 
  L sup frontal gyrus (mid OFC)   4.6 -18 65 -5 
  L mid frontal gyrus (mid OFC)   3.8 -39 56 -2 
  L sup frontal gyrus (mid OFC)   3.5 -12 59 -14 
  L mid frontal gyrus (mid OFC)   3.2 -33 44 -5 
  R mid frontal gyrus (mid OFC) 62 4.6 33 59 -8 
  R sup frontal gyrus (mid OFC)   3.8 15 65 -5 
  R mid frontal gyrus (mid OFC) 3.5 45 47 -14 
  R inf frontal gyrus (lat OFC)   3.4 54 44 -11 
  R mid frontal gyrus (mid OFC) 3.4 45 53 -11 
  R inf frontal gyrus (lat OFC)   3.3 51 50 -5 
  R ant cingulate cortex 71 4.6 15 44 19 
  R ant cingulate cortex   4.5 12 17 28 
  R ant cingulate cortex   4.3 18 44 7 
  R ant cingulate cortex   4.3 18 44 13 
  R ant cingulate cortex   4.3 15 50 13 
  R ant cingulate cortex   4.1 15 29 25 
  R ant cingulate cortex   3.9 12 47 22 
  R ant cingulate cortex   3.8 15 38 10 
  R ant cingulate cortex   3.7 12 29 16 



Chapter 6: Taste activation and selective attention 

128 
 

  R ant cingulate cortex   3.6 6 5 28 
  L inf frontal gyrus (lat OFC) 9 4.5 -45 47 -14 
  L ant cingulate cortex 13 4.1 -9 14 28 
  L caudate 10 3.9 -6 20 -2 
  L caudate   3.9 -12 23 -5 
  L caudate   3.8 -15 26 -2 
  L sup frontal gyrus (mid OFC) 8 3.8 -18 41 -14 
  R sup frontal gyrus (mid OFC) 9 3.7 15 23 -17 
  R sup frontal gyrus (mid OFC)   3.6 15 32 -17 
  R sup frontal gyrus (mid OFC) 8 3.5 21 44 -14 

Activations were thresholded at p<0.001, with small volume correction over the ROI volume and a cluster extent threshold of k>4 

contiguous voxels. Ant = anterior, sup = superior, inf = inferior, mid = middle, lat = lateral, med = median, L = left and R = right. 
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Table 7.1 Overview of the main findings. 

Study design Main findings 

 

Randomized crossover study in 

which brain responses evoked 

by oral exposure to glucose, 

fructose, maltodextrin, sucralose 

and maltodextrin + sucralose 

were obtained on two occasions, 

once during hunger and once 

during satiety.  

 

 Content 
Chapter 2 

 Stimulus energy content interacted with hunger state in among 

others the anterior insula, thalamus and middle cingulate cortex. 

Chapter 3 

 Brain responses to oral glucose versus fructose were greater in 

the ACC during hunger and the precentral gyrus during hunger 

and satiety. 

 Brain responses to oral fructose versus glucose were greater only 

during satiety in, among other regions, the superior frontal gyrus. 

Character 

Chapter 4 

 During hunger, negative correlations were found between brain 

activation induced by oral exposure to calories from a simple 

maltodextrin solution and trait reward sensitivity in the caudate, 

amygdala and ACC. In contrast, during satiety, taste responses 

correlated positively with trait reward sensitivity in the caudate. 

 These results were not replicated when using a sucrose 

sweetened soft drink. 

 

 
 Character/Cognitive effects 

Within-subject study in which 

brain responses evoked by a 

low- and high-caloric lemonade 

cue and oral exposure to a 

perceived low- and high-caloric 

lemonade receipt were obtained. 

Chapter 5 

 No differences in brain activation were found for visual exposure 

to a low-caloric versus high-caloric anticipatory cue.  

 However, tasting a lemonade that was perceived as low-caloric 

compared to high-caloric did result in more brain activation in 

the putamen.  

 Taste activation for the perceived low-caloric compared to high-

caloric lemonade correlated positively with general health 

interest in the putamen. 

 

 
 Cognitive effects 

Within-subject study in which 

brain responses evoked by oral 

exposure to a tomato juice, fruit 

juice and water were obtained 

while paying attention to the 

taste intensity, pleasantness or 

caloric content.  

Chapter 6 

 In general, taste-related responses greatly overlapped during 

selective attention to calories, intensity and pleasantness. 

  

    Relatively small differences were found:  

 Paying attention to pleasantness compared to intensity induced 

greater taste activation in the putamen, ACC and middle insula. 

 Paying attention to intensity compared to calories induced greater 

taste activation in the middle OFC. 

 Paying attention to calories compared to intensity or pleasantness 

yielded no significant differences in taste activation. 
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In this thesis we sought to gain more insight into how the experience of food consumption varies from 

person-to-person and situation-to-situation. The overall aim was to assess the effect of food nutrient 

content, cognitive effects and character on brain activation during tasting. This final chapter starts with 

an overview of the main findings, followed by a discussion and interpretation of the results. 

Additionally, we address methodological considerations, implications and suggestions for future 

research. 

 

Main findings 

 

An overview of the main findings of this thesis can be found in Table 7.1. Brain responses related to 

the consumption experience were modulated by content related factors, i.e. stimulus energy content 

and sugar type, character related factors, i.e. reward sensitivity and health interest and cognitive 

effects, i.e. food labels and selective attention.  

 

Caloric content 

 

In the first study described in this thesis, a comparison was made between taste activation evoked by 

caloric (maltodextrin and maltodextrin + sucralose) and non-caloric (sucralose) stimuli. In addition, 

there was examined in how far these taste responses were modulated by hunger state. No main effect 

of energy content was found. However, energy content and hunger state interacted in among other 

regions the bilateral middle cingulate cortex (also referred to as median cingulate cortex in this thesis), 

bilateral ventrolateral prefrontal cortex, right anterior insula and right thalamus (Chapter 2).  

 

Sugar type: glucose versus fructose  

 

Data from the first study was also used to investigate differences in taste activation between oral 

exposure to glucose and fructose during hunger and satiety. Tasting glucose compared to fructose 

induced greater brain responses in the right ACC during hunger and left precentral gyrus during 

hunger and satiety. Oral exposure to fructose relative to glucose elicited greater responses only during 

satiety in among others the left superior temporal pole and the left superior frontal gyrus (Chapter 3). 

 

Reward sensitivity  

 

Finally, a third research question was examined by studying data obtained during the first study. We 

assessed the associated between brain responses to oral calories (maltodextrin + sucralose minus 

sucralose) and trait reward sensitivity in different hunger states. Neural responses to oral calories from 

a simple maltodextrin solution correlated negatively with trait reward sensitivity in the right ventral 
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striatum (caudate), right amygdala and bilateral ACC during hunger. During satiety, there was a 

positive correlation between brain activation evoked by tasting calories and reward sensitivity in the 

left caudate. In addition, we examined the above association in data from another, previously 

executed, study. In this study, taste activation was obtained for two more complex products, a sucrose 

and non-caloric sweetened soft drink. Using this dataset, however, the results were not replicated 

Chapter 4).  

 

Food labels and health interest 

 

In the second study outlined in this thesis, we assessed to what extent brain responses induced by 

anticipation and receipt of a lemonade with different levels of perceived caloric content are influences 

by health interest. No differences were found for brain activation evoked by visual exposure to a low-

caloric and high-caloric anticipatory cue. Tasting a perceived low- compared to high-caloric lemonade 

induced greater activation in the left putamen. Furthermore, health interest scores correlated 

significantly with taste activation induced by a perceived low- versus high-caloric lemonade in the 

right dorsal striatum (putamen). Additionally, explicit liking and wanting scores (explicit ratings) and 

implicit wanting scores (motivational reaction time task) that were obtained during the study were not 

significantly different between the lemonades (Chapter 5). 

 

Selective attention  

 

In the last study, we investigated the effect of selective attention to hedonics, intensity and caloric 

content on brain responses during tasting (fruit juice, tomato juice and water). Paying attention to 

either the taste intensity, pleasantness or caloric content of a beverage during consumption 

predominantly yielded similar brain responses. However, small differences were observed in the right 

putamen, right ACC and bilateral middle insula for paying attention to pleasantness relative to 

intensity. Moreover, paying attention to intensity compared to calories resulted in greater taste 

activation in the right middle OFC. Finally, paying attention to calories compared to intensity or 

pleasantness yielded no significant differences in taste activation. In addition, we assessed the 

relationship between taste activation during attentional focus on intensity, calories or pleasantness and 

subjective ratings. Intensity ratings correlated with taste activation during selective attention to 

intensity in the anterior insula and lateral OFC (Chapter 6). No correlations were found for the other 

selective attention conditions. 
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Discussion and interpretation of the results 

 

Findings from this thesis combined with previous research (e.g. 1–3) suggest that energy may be sensed 

in the oral cavity (Chapter 2). This puts the usage of non-nutritive sweeteners such as saccharin, 

aspartame and sucralose 4 as replacement of regular nutritive sweeteners such as sucrose in a new 

perspective. The usage of non-nutritive sweeteners was already under debate since the discovery that 

they likely disrupt the conditioned association between sweetness and energy content and thereby may 

increase food intake and body weight in rats 5. However, to date, there is no consensus regarding the 

effect of non-nutritive sweeteners on weight gain. For instance, several short-term intervention studies 

found that the intake of non-nutritive sweeteners may help with weight reduction 6–9. In line, a recent 

systematic review of evidence from human intervention studies also concluded that the usage of non-

nutritive sweeteners in place of sugar, leads to reduced energy intake and body weight 10. 

Nevertheless, others have pooled data of many animal and observational studies and reported that 

consumption of non-nutritive sweeteners over a period of many years was associated with increased 

risk of being overweight and obese 11. Interestingly, several neuroimaging studies showed that the 

brains of frequent diet soda consumers tended to respond differently to sucrose 12, saccharin and sweet 

taste in general 13 compared to less frequent or non-diet soda consumers. For example, during oral 

exposure to saccharin, brain activation in the caudate, a brain reward area, correlated negatively with 

weekly diet soda consumption 13. In sum, accumulating evidence suggests that non-nutritive 

sweeteners are unable to mislead our brain 14. In particular because of the incapability of sweet taste 

without calories to elicit similar brain responses compared to sweet taste with calories. This possibly 

translates to a dissimilar consumption experience. There is however no consensus about how this 

affects eating behavior. 

 

Besides caloric content, there are other factors, like personal characteristics, that may influence the 

consumption experience. In the obesogenic environment we currently live in, food cues are 

omnipresent and unescapable. Especially reward sensitive individuals may be affected by this 

environment and engage in overeating. To illustrate, reward sensitivity was found to correlate with 

BMI in normal-weight individuals 15 and has been associated with overweight and mild, but not 

morbid, obesity 16. Indeed, individual differences in reward sensitivity tend to predict the brain 

response to palatable food images 17. In this thesis, we additionally provide a proof of principle that 

brain reward activation induced by consumption of calories is also modulated by trait reward 

sensitivity (Chapter 4). To our knowledge, we were the first to examine the effect of reward 

sensitivity on brain responses evoked by food tasting. This finding serves as another step towards 

creating a more complete overview of factors that may influence the consumption experience. With 

regard to personality, this overview so far includes, but is not limited to the following traits: dietary 

restraint, impulsivity, external eating, diet importance and food addiction (for an overview see 18). It 
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must however be noted that the number of studies on these topics is limited and findings are not very 

consistent 18.  

 

Of major importance in the current obesogenic environment is to direct people towards making 

healthier choices. For one, this is done by nutrition-related claims (e.g. “calcium builds strong bones”, 

“free from sugar”, “light” and “organic”), information regarding ingredients and energy content and 

food logos (e.g. the Choices logo which is used in The Netherlands) on food labels in the supermarket 

19–21. In addition, taste-related claims (e.g. “now even tastier”) are used by the food industry to market 

their products, irrespective of healthiness. Food claims and favorable information on food packages 

were found to improve consumer attitudes towards the product and their purchase intentions 22. 

Information conveyed on food labels tends to be used the most by women, older consumers, more 

educated consumers, consumers in the higher social strata and consumers interested in health 23,24. 

Information most read was on fat content and calories 24. Second, educational campaigns regarding a 

healthy diet- and life-style are used to increase consumer health interest 25. Previous research indicates 

that health interest is associated with healthier food choices 26–28. In line with this, results presented in 

Chapter 5 show that a greater brain reward response to the taste of a product that is perceived as 

healthy (low-caloric) compared to unhealthy (high-caloric) correlates positively with health interest. 

Moreover, since the perception of this product was manipulated by simple food claims (the word 

“low-caloric” versus “high-caloric”), it was additionally shown that such claims can be powerful tools 

to influence product attitudes.  

 

In addition, the importance of attentional effects during food consumption has been addressed in this 

thesis. Limited attention to our food during eaten, e.g. due to watching television, listening to the 

radio, or eating in the company of others, can lead to a higher energy intake 29–33. In accordance with 

this, brain responses to food viewing were absent or altered when participants were distracted in many 

brain regions involved in encoding taste intensity and pleasantness 34. Rather than total distraction, 

food labels facilitate selective attention to one aspect (e.g. pleasantness, taste intensity or health) over 

others. Findings described in Chapter 6 indicate that such attentional biases may alter taste-related 

brain activation to some extent and consequently may alter the consumption experience.  

 

Methodological considerations 

 

Experimental setup 

 

 In this thesis we sought to gain more insight into internal and external factors that influence the 

consumption experience. It must, however, be noted that the test setup used (see Figure 1.3) during 

taste-relate fMRI research is not similar to a real-life setting. For example, ordinarily foods are not 
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consumed when lying down, swallowing is voluntarily instead of cue-triggered, and the surroundings 

are not as noisy as in a MRI-scanner. Therefore, data gathered by means of an fMRI taste paradigm 

may not be completely representative for what happens in real life. However, effects of body position 

(seated versus supine) on flavor perception were found to be mild 35. Moreover, several studies have 

shown that brain responses to food cues are linked to eating behavior outside the scanner and weight 

gain 36–40. For example, Mehta et al. (2012) 36 showed that in normal-weight individuals, fullness 

ratings after a breakfast were correlated with activation in the dorsal striatum and that greater 

activation in the OFC, amygdala, insula and nucleus accumbens for fattening food cues correlated with 

greater consumption of calories from fat at an ad libitum buffet. Furthermore, Murdaugh et al. (2012) 

37 found that in obese participants, brain responses to high-calorie food versus control images in 

regions involved in food motivation and attention before a weight-loss program predicted the success 

of the program and weight control over a follow-up period of 9 months. In addition, also Lawrence et 

al. (2012) 38 found an association between brain responses and eating behavior. Here, greater 

activation in the nucleus accumbence for food versus non-food images was associated with increased 

subsequent snack consumption. Finally, activation evoked by actual consumption in the scanner was 

also found to be associated with subsequent ad libitum intake and weight gain 39,40. For instance, in a 

study of Spetter et al. (2012) 39 ACC activation induced by sips of tomato and fruit juice predicted 

subsequent ad libitum consumption of these beverages. Also Stice et al. (2010) 40 observed that 

individuals who gained weight over a period of 6 months showed a decrease in striatal activation 

compared to baseline for the receipt of a milkshake versus a tasteless solution, whereas in weight-

stable individuals no such reduction was present. Thus, even though food-related fMRI paradigms are 

not similar to a real-life situation, they still provide valuable information about the functioning of the 

brain with regard to eating behavior and weight gain. New developments, like the development of an 

open upright MRI scanner that can be used for fMRI during the upright position 41 , may even increase 

the potential of food-related fMRI.  

 

Test stimuli  

 

The test stimuli used in the experiments described in the first part of this thesis are simple sugar 

solutions (Chapter 2, 3 and 4). In this part of the thesis we focussed on the effect of energy and sugar 

content on the consumption experience. As these topics have not been broadly investigated before, we 

chose to use simple solutions to acquire a proof of principle with very controlled stimuli. A strength is 

the thorough matching of the stimuli on sweetness (when applicable), which made it possible to take 

into account any sweetness effects. It speaks for itself that follow-up research is needed to investigate 

whether the findings translate to real drinks and other food products. In the second part of this thesis 

(Chapter 4-6), the practical implications for the topics (personality and cognitions) addressed became 

more relevant. Therefore, we intended to achieve more generalizability to a real life situation and used 
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beverages that were commercially available or similar to commercially available variants, i.e. 

lemonades (Chapter 4 and 5) and fruit and tomato juice (Chapter 6). A strength of several 

experimental setups used in this thesis was that the stimulus was kept constant over cognitive 

manipulations, thus eliminating any sensory differences. For example, one lemonade was presented as 

low- and as high-caloric. Whether the findings can be generalized to (semi) solids and real meals 

warrants further investigation.  

 

Study population  

 

In all studies of this thesis we studied young, normal-weight, right-handed, healthy females as 

participants. Only participants who met with these criteria were selected to create a homogeneous 

group that could be used to establish proof of principles in the relatively new field that we operate in. 

For fMRI a homogeneous group is necessary to minimize unwanted variation of the BOLD signal in 

the regions of interest. Participants were additionally screened and excluded on the basis of several 

more characteristics. These characteristics varied along with the relevance for the study and included 

restrained eating tendency, non-nutritive sweetener use and disliking of the products under study, but 

also, diseases, medicine use, smoking and alcohol consumption. This was done to take into account 

factors of no-interest that may influence taste responses (e.g. dietary restrained 42,43 and product liking 

44). In this thesis, we tried to map several more factors that may influence the consumption experience, 

so that in future taste-related neuroimaging research these can also be taken into account during the 

selection of the study population or can be used as covariates of (no-)interest during analyses. This 

may facilitate easier detection of proof of principles and/or help with the explanation of the found 

results. However, as a consequence of the homogeneous group used in this thesis, generalizability of 

the results to other groups must be done with caution since many individual factors such as gender 

45,46, handedness 47,48, age 49,50 and BMI 51–53 have been shown to interact with taste-related brain 

responses. Nevertheless, this drawback is not specific for fMRI research but is common for a large 

part of research in the food domain.  

 

Implications 

 

In this thesis we show that the consumption experience varies with food content, personality traits, 

attitudes and cognitive effects. On the one hand, this provides valuable implications for the food 

industry. These new insights can be taken into account during the development of personalized 

nutrition, i.e. nutrition that is tuned to the needs of specific consumer groups. For example, we 

discovered that reward sensitive and health interested individuals respond differently to respectively 

actual and perceived oral calories. Food companies can use this information to their advantage and 

develop personalized products and product packages for these groups. The most evident would be to 
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make healthy products more appealing, thus to nudge these groups into making healthier choices. To 

date, an extensive debate is going on about the ethics regarding nudging 54–56. In our opinion, nudging 

strategies that promote healthier food choices are a good development, provided that they preserve the 

freedom of choice 54. We figure it is a win-win situation, where consumers make healthier food 

choices and food companies maintain sales. Finally, for our findings that selective attention to food 

characteristics, as well as caloric and sugar content of a product independent of sweet taste, may alter 

the consumption experience, implications may be related to the development of respectively food 

packages/advertisements and product recipes. However, it might be a little too soon to point to 

concrete implications in this area. Nevertheless, at the very least our findings provide a fundamental 

basis for more applied research in this field. 

 

On the other hand, our results have implications for the data collection and processing in the food-

related neuroimaging field. Firstly, the above mentioned factors, especially trait and attitude factors, 

can be taken into account during data analyses to explain variation and thereby to reduce noise. 

Secondly, the awareness that oral calories and sugars can pose an effect on their own, independent of 

sweet taste, may allow for better standardization of gustatory stimuli. Finally, our findings regarding 

selective attention emphasize the need for standardization of participant instructions during fMRI tasks 

across the field. 

 

Suggestions for future research 

 

First, it would be interesting to examine the generalizability of our results to other population groups 

and products. For example, we wonder if tasting a low- versus high-caloric lemonade also induces 

more brain activation in reward related areas in men. This might be very typical for women. Or, 

another example, do health-interested individuals also respond stronger to the healthy variant of more 

complex products, such as chocolate milk or ice-cream? These topics could be part of follow-up 

research. In addition, it goes without saying that reproducibility of our results needs to be established 

with the help of additional studies.  

 

It must also be noted that, although we addressed some important factors for explaining variation in 

taste-related brain responses in this thesis, several other important factors still need to be examined 

further. So far, evidence for effects of hunger state, gender, age and BMI on food-related brain 

responses is mounting 57. In contrast, factors related to personality traits have received little attention. 

Especially those that are important for eating behavior, such as impulsivity, external eating and dietary 

restraint are likely candidates for further research. How these traits and attitudes interact with 

cognitive factors such as food-claims and logo’s, product packages, advertisements, food content 
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information, shelve-position, store build-up, and government campaigns regarding food-education is 

also material worth studying. This because these factors can relatively easy be used to nudge 

consumers into making healthier choices. Hence, tailored supermarket-cognitions to the wants and 

needs of specific consumers may be the future. 

 

Finally, a remark about fMRI research in general. During the past decades fMRI became a popular 

technique for investigating brain responses 58. However, a problem of fMRI research that uses more 

complex fMRI-paradigms, is its low reproducibility 59–62. Single study findings, especially in a young 

field such as food-related neuroimaging, are informative, but do not always show the complete picture. 

Therefore, meta-analyses that combine single study results could provide valuable information in the 

search for the truth 63. Standardization of single study-setups, not only with respect to the above 

mentioned participant instructions, but also regarding task settings, food stimulus usage, participant 

characteristics, analysis procedures and data reporting may help to increase reproducibility and 

facilitates the execution of meta-analyses 57. In addition, it is essential to go beyond univariate analysis 

and explore the communication between brain regions by means of relatively novel techniques such as 

functional connectivity and multivariate pattern analysis 64.  

 

Main conclusions 

 

In this thesis, we showed that food energy content, sugar type, trait reward sensitivity, health interest, 

food labels and selective attention all modulate taste-related brain activation. More specifically, we 

found that energy and sugar sensing in the oral cavity are hunger state dependent processes, in which 

food motivational, gustatory and reward regions play a central role. Secondly, brain reward activation 

in response to oral calories was modulated by reward sensitivity. Thirdly, we found that emphasizing a 

product’s health benefits compared to its health risks by means of simple calorie labels, increased its 

reward value. Moreover, health-interest correlated positively with such taste-related reward responses. 

Finally, selective attention to pleasantness relative to intensity of a beverage affected taste activation in 

reward and gustatory regions.  

 

In conclusion, these findings indicate that the formation of the final consumption experience is a very 

multifaceted process that dependents on numerous factors integrated by the brain, of which we are just 

beginning to grasp its complexity. Ongoing mapping of the impact of these factors is of fundamental 

importance for understanding why we eat the way we eat. Via the research in this thesis we hope to 

have provided just another piece to this complex puzzle. 
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Food does not always ‘taste’ the same. During hunger, for example, food may be tastier compared to 

during satiety. Many other internal and external factors affect the way we experience our food and 

make it a dynamic process. Our brain is responsible for weighing and integrating these factors and 

forms the final consumption experience. Mapping the impact of all factors that influence the 

consumption experience is of fundamental importance for understanding why we eat the way we eat. 

Important drivers for food consumption are its rewarding capacity, healthiness and caloric content. 

Furthermore, in the current supermarket environment, advertisements and food claims are 

omnipresent, and may exert influence on our consumption experience by triggering all kinds of 

cognitive processes. Therefore, in this thesis we aimed to assess the effect of food content (caloric 

content and sugar type), character (personality trait reward sensitivity and attitude health-interest) and 

cognitive effects (labeling/claim effects and selective attention to food properties) on brain activation 

during tasting. Such taste-related brain responses were obtained with the use of functional Magnetic 

Resonance Imaging while administering small sips of liquid to young, normal weight female 

participants in a MRI scanner. 

 

To begin with, we focussed on the effect of caloric content on taste responses (Chapter 2). An 

important function of eating is ingesting energy, and the ability to sense energy in the oral cavity 

would therefore be biologically relevant. However, in this thesis we showed that oral exposure to 

caloric (maltodextrin and maltodextrin + sucralose) and non-caloric (sucralose) stimuli does not elicit 

discriminable responses in the brain when averaged over hunger and satiety. Nevertheless, energy 

content did interact with hunger state in several brain regions involved in inhibition (approach-

avoidance behaviors) and gustation: the middle cingulate cortex, ventrolateral prefrontal cortex, 

anterior insula and thalamus. Thus, brain activation in response to oral calories, irrespective of 

sweetness, seems to be dependent on hunger state.  

 

In addition to the detection of oral calories in general, we examined whether different sugar types, 

glucose and fructose, can be sensed in the oral cavity (Chapter 3). Tasting glucose compared to 

fructose evoked greater food reward (anterior cingulate cortex, ACC) activation during hunger and 

greater food motivation (precentral gyrus) activation during hunger and satiety. Responses to oral 

fructose relative to glucose were greater only during satiety in an area associated with inhibitory 

control (superior frontal gyrus). It appears that oral glucose and fructose evoke differential brain 

responses, independent of sweetness. 

 

Secondly, we investigated in how far reward sensitivity, a personality trait, affected brain responses to 

calories in the oral cavity (Chapter 4). This because a food’s reward value is highly dependent on its 

caloric content. Sensitivity to rewards was measured with the Behavioral Activation System Drive 

scale and was correlated with oral calorie activation from a simple maltodextrin solution and a sucrose 
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sweetened soft drink. Oral calorie activation was obtained by subtracting activation by a non-caloric 

solution (sucralose solution/non-caloric soft drink) from that by a caloric solution (maltodextrin + 

sucralose/sucrose sweetened soft drink). We found that neural responses to oral calories from a 

maltodextrin solution are modulated by reward sensitivity in reward-related areas such as the caudate, 

amygdala, and ACC. For soft drinks, we found no correlations with reward sensitivity in any reward 

related area. This discrepancy may be due to the direct detection of maltodextrin, but not sucrose in the 

oral cavity. However, the absence of this effect in a familiar soft drink warrants further research into 

its relevance for real life ingestive behavior. 

 

In the last part of this thesis we explored how cognitions modulate the consumption experience. 

Perceived, rather than actual caloric content, inflicted by calorie food labels, induces cognitive 

processes that may influence the consumption experience on their own. We tested this in an 

experiment and found that receipt of a beverage perceived as low- compared to high-caloric induced 

more activation in the dorsal striatum, a region involved in coding food reward (Chapter 5). As low-

calorie labels may appeal especially to the health-minded consumers, we correlated brain responses to 

the receipt of a beverage perceived as low- compared to high-caloric with health interest (measured 

with the General health interest subscale of the Health and Taste Attitude Scales). Indeed, health 

interest scores correlated positively with activation in the dorsal striatum. 

 

Rather than focussing participants’ attention on differences within one food aspect, in Chapter 6 we 

focussed on selective attention to different food aspects, i.e. pleasantness versus taste intensity versus 

calories. In the supermarket, food labels and claims often do the same. In the first place, paying 

attention to hedonics, caloric content or taste intensity predominantly resulted in common brain 

activation in regions involved in the neural processing of food stimuli, e.g. the insula and thalamus. 

This likely resulted from ‘bottom-up’ sensory effects, which are more prominent than ‘top-down’ 

attentional effects. However, small differences were also observed; taste activation was higher during 

selective attention to intensity compared to calories in the right middle orbitofrontal cortex and during 

selective attention to pleasantness compared to intensity in the right putamen, right ACC and bilateral 

middle insula. Overall, these results indicate that statements regarding food properties can alter the 

consumption experience through attention-driven effects on the activation of gustatory and reward 

regions. 

 

Finally, the general discussion (Chapter 7) describes main finding and conclusions of this thesis. In 

sum, we showed that food energy content, sugar type, trait reward sensitivity, health interest, food 

labels and selective attention all modulate taste-related brain activation. In conclusion, these findings 

indicate that the formation of the final consumption experience is a very multifaceted process that 
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dependents on numerous factors integrated by the brain, of which we are just beginning to grasp its 

complexity. 
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Neuroimaging, 2015, Nijmegen, The Netherlands 

 37th Annual Meeting of the Association for Chemoreception Sciences , 2015, Bonita Springs, 

United States of America 

 39th Annual Meeting of the British Feeding & Drinking Group, 2015, Wageningen, The 

Netherlands 

 Course ‘Data Analysis in MATLAB’, AMC Graduate School, 2014, Amsterdam, The 

Netherlands 

 Annual Meeting of the Organization for Human Brain Mapping, 2014, Hamburg, Germany 

 38th Annual Meeting of the British Feeding & Drinking Group, 2014, Portsmouth, United 

Kingdom 

 Course ‘Linear Models’, Graduate School PE&RC, 2013, Wageningen, The Netherlands 

 Course ‘Regulation of energy intake: the role of product properties’, Graduate School VLAG, 

2012, Wageningen, The Netherlands 



About the author 

156 

 

 Course ‘SPM course’, Wellcome Trust Centre for Neuroimaging, University College London, 

2012, London, United Kingdom 

 MR-userday, Hospital Gelderse Vallei, 2014, Wageningen, The Netherlands 

 10th Dutch Endo-Neuro-Psycho Meeting, 2012, Lunteren, The Netherlands 

 11th International Conference on the Application of Magnetic Resonance in Food Science, 

2012, Wageningen, The Netherlands 

 

General courses 

 

 Course ‘Good Clinical Practice’, Hospital Gelderse Vallei, 2015, Ede, The Netherlands 

 Course ‘Career orientation’, WGS (Wageningen Graduate School), 2015, Wageningen, The 

Netherlands 

 Workshop ‘Indesign’, Gildeprint, 2015, Wageningen, The Netherlands 

 Course ‘Scientific writing’, WGS, 2014, Wageningen, The Netherlands 

 Course ‘Effective behavior in your professional surroundings’, WGS, 2014, Wageningen, The 

Netherlands 

 Course ‘Teaching and supervising thesis students’, Educational Staff Development 

Wageningen University, 2013, Wageningen, The Netherlands 

 Course ‘How to give and receive feedback’, Wageningen University, 2012, Wageningen, The 

Netherlands 

 PhD introduction week, Graduate School VLAG, 2012, Wageningen, The Netherlands 

 Course ‘Scientific publishing’, WGS, 2012, Wageningen, The Netherlands 

 

Optional courses and activities 

 

 Staff seminars and research presentations, Division of Human Nutrition, 2012-2016,  

Wageningen, The Netherlands 

 FOCOM meetings, 2012-2015 

 PhD tour, 2013, Melbourne and Sydney, Australia 

 Preparing PhD research proposal, 2012 
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