

Laboratory tests of Draeger Polytron 8000 with FL- 6813260 sensor for NH3 measurement

R.W. Melse, J.P.M. Ploegaert, N.W.M. Ogink

Laboratory tests of Draeger Polytron 8000 with FL-6813260 sensor for NH3 measurement

Roland W. Melse, Johan P.M. Ploegaert, Nico W. M. Ogink

This research was conducted by Wageningen UR Livestock Research, commissioned and funded by the Ministry of Economic Affairs, within the framework of Policy Support Research theme 'Emission reduction' (project number BO-20-0004-049 /BO-20-004-093)

Wageningen UR Livestock Research Wageningen, August 2016

Livestock Research Report 972

Melse, Roland W.; Johan P.M. Ploegaert; Nico W. M. Ogink, 2016. *Laboratory tests of Draeger Polytron* 8000 with FL-6813260 sensor for NH₃ measurement. Wageningen UR (University & Research centre) Livestock Research, Livestock Research Report 972. <u>http://dx.doi.org/10.18174/388326</u>

Samenvatting NL: Twee Draeger Polytron 8000 instrumenten met een FL-6813260 NH₃ sensor zijn getest in kortdurende laboratoriumexperimenten in het bereik van 0 to 11.0 ppm. De meetonzekerheid bleek lager te zijn dan door de fabrikant werd opgegeven. In het gebied van 1 - 11 ppm is de nauwkeurigheid van de sensor voldoende hoog om deze toe te passen ten behoeve van emissiemonitoring. In het gebied van 0 - 1 ppm is echter een grotere nauwkeurigheid nodig om de sensor te kunnen toepassen in natuurlijk geventileerde melkveestallen. De conclusie is dat de sensor een veelbelovende apparaat is voor ammoniakmetingen in en rond stallen, en geschikt is om nader te evalueren onder praktijkomstandigheden. Om de werking van de sensor en de stabiliteit van de kalibratielijnen vast te stellen op de lange termijn en onder praktijkomstandigheden, wordt aanbevolen om de Draeger sensor in een veldstudie nader te testen.

Summary UK: Two Draeger Polytron 8000 instruments with FL-6813260 sensor for NH_3 measurement were tested in short-term laboratory experiments in the range from 0 to 11.0 ppm. The measurement uncertainty found in the calibration tests was lower than specified by the manufacturer. In the 1-11 ppm range the measurement accuracy is sufficient to meet requirements for emission monitoring. However higher accuracy levels are needed in the 0-1 ppm range to be of interest for application in naturally ventilated cattle barns. It is concluded that the sensor is a promising device for ammonia measurements in and around animal houses, and is suitable for further evaluation under practical conditions. In order to monitor the sensor performance and the stability of calibration lines on long term under barn conditions, it is recommended to test the Draeger sensor in a field study.

© 2016 Wageningen UR Livestock Research, P.O. Box 338, 6700 AH Wageningen, The Netherlands, T +31 (0)317 48 39 53, E info.livestockresearch@wur.nl, www.wageningenUR.nl/en/livestockresearch. Livestock Research is part of Wageningen UR (University & Research centre).

All rights reserved. No part of this publication may be reproduced and/or made public, whether by print, photocopy, microfilm or any other means, without the prior permission of the publisher or author.

The ISO 9001 certification by DNV underscores our quality level. All our research commissions are in line with the Terms and Conditions of the Animal Sciences Group. These are filed with the District Court of Zwolle.

Livestock Research Report 972

Table of contents

1	Intr	oduction	5
2	Mate	erial and Methods	7
	2.1	Sensors and data processing	7
	2.2	Experimental setup	8
	2.3	Experiment 1: Detection limit and accuracy at low concentrations	8
	2.4	Experiment 2: Influence of relative humidity	10
3	Resu	ults and discussion	11
	3.1	Experiment 1: Detection limit and accuracy at low concentrations	11
	3.2	Experiment 2: Influence of relative humidity	16
	3.3	Comparability of sensors	17
4	Cond	clusions and recommendations	19
Append	dix A - Ce	rtificate of 11.0 ppm NH_3 gas cylinder	20
Append	dix B - Ce	rtificate of 101 ppm NH_3 gas cylinder	22
Append	dix C - Ce	rtificates of Signal 821 diluter	24
Append	dix D - Ce	rtificate of EPM 797-430 diluter	28

1 Introduction

In naturally ventilated cattle houses, ammonia (NH₃) concentrations in a range of $0.1 - 3 \text{ ppm}^1$ can be expected under summer conditions and about 1 - 6 ppm under winter conditions. In mechanically ventilated pig houses, concentrations can be tenfold. At many pig houses air scrubbers are installed that reduce the ammonia concentrations in the air down to a range of 0.1 - 3 ppm, which is similar to the concentrations that are found in dairy cattle houses in summer.

In the Netherlands a regulatory system is in place which applies an NH₃ emission factor to each animal house based on prescribed design and management practices. This means that the actual emissions from the farms are not monitored, although a large variation in emission levels may exist between farms. A similar system with design-based emission factors is used for air scrubbers and in addition several secondary parameters are measured (pH and EC of trickling water, electricity use, pressure drop over packing, fresh water use and discharge water amount). These parameters are stored electronically using a so-called obligatory "electronic monitoring system". The values and development of these parameters are used for verifying proper scrubber operation and as a consequence, are used for assessing sufficient ammonia removal performance of the scrubber.

Currently no robust and reliable sensor is available for long-term continuous monitoring of NH_3 concentrations in animal houses or air scrubbers at low costs. Especially low concentrations (< 1 ppm) and high humidity (outlet scrubber air) make it difficult to operate sensors for a long period (sensor deteriorates fast and frequent zero-calibration is necessary).

However, a suitable sensor that could continuously measure NH_3 would enable farmers to real-time monitor the ammonia concentrations in the animal house (e.g. for welfare reasons), the actual emissions from the animal house and the performance of the air scrubber. For monitoring the NH_3 emission from an animal house, the NH_3 concentration measurement could be combined with a CO_2 concentration measurement, the latter enabling an estimation of the air flow rate by means of the CO_2 -balance method. For monitoring the performance of an air scrubber the NH_3 concentration of both inlet and outlet air could be measured.

The German company Draeger has developed a new NH₃ sensor that is suitable for a range of 0.5 - 100 ppm according to the specifications. Draeger states that this sensor is expected to be suitable for long-term use without the need of regular recalibration (low zero-drift) or other maintenance. The aim of this study is to carry out a short-term laboratory test of this sensor in order to find out how this sensors performs with regard to detection limit and measurement accuracy, especially at the lower concentrations (\leq 11 ppm). Also the aim is to test whether or not the measurement is influenced by the relative humidity of the air.

This study was funded by the Dutch Ministry of Economic Affairs. The sensors were provided by Draeger at no cost.

¹ 1 ppm NH₃ = 0.70 mg/m³ at 25°C and 1 atm.

Material and Methods

2.1 Sensors and data processing

In all experiments two NH_3 sensors were used that were connected parallel, generating in duplo measurements.

Sensor name and type: Draeger Polytron 8000 with FL-6813260 sensor for $\rm NH_3$ Main specifications according to manufacturer:

- Working principle: electrochemical diffusion sensor;
- Detection limit: 1 ppm;
- Measurement range limit (max): 100 ppm;
- Calibration: the sensor is factory-calibrated with NH₃ and zero gas (2-point calibration);
- Measurement uncertainty: ≤ ±5% of measured value with a minimum of ≤ ±1.5 ppm (the greater value applies);
- Operation temperature and relative humidity: -40/65°C and 15/95% (although the measurement principle does not require water in the air, Draeger recommends to have an humidity of > 10% when the sensor is purged constantly, i.e. > 5 days);
- Air pressure: ambient (1 bar) ± 1%;
- Cross references: in Table 1 the known cross-references are given as supplied by the manufacturer;
- Output signal: 4...20 mA.

Table 1

2

Known cross-references for Draeger NH₃ sensor FL-6813260.

Test gas	Concentration	NH_3 sensor reading
	(ppm)	(ppm)
СО	100	< 0.5
H ₂ S	20	< 0.8
NO ₂	10	< 0.7
NO	20	< 0.5
CO ₂	16,000	< 0.5
SO ₂	20	-12
H ₂	1,000	< 0.5
Cl ₂	10	-6
C_2H_4	1,000	< 0.5
HCN	50	< 0.5
HCI	5	< 0.5
O ₃	0.5	< 0.5
C₂H₅OH	250	< 0.5
H ₂ O ₂	10	< 0.5
Limonene ^a	saturated	< 0.5
Peracetic acid	saturated	< 0.5
N ₂ O	10,000	< 0.5

^a 1-Methyl-4-(1-methylethenyl)-cyclohexene; ^b CH₃CO₃H.

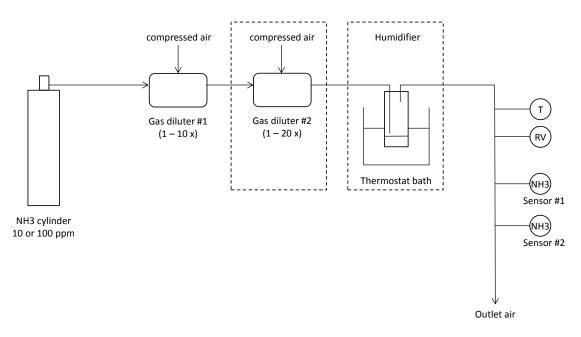
2.2 Experimental setup

Two NH₃ gas cylinders were used, containing 11.0 ppm and 101 ppm in N₂ (Scott Specialty Gases, see certificates in Appendix A and B). The gas from the cylinder was diluted with compressor air using two adjustable gas diluters and led to a measurement chamber were the two NH₃ sensors are placed. In Figure 1 a schematic of the setup is given; in Figure 2 both NH₃ sensors are shown.

Gas diluter #1 is a Signal Model 821 Gas Divider, which has an adjustable dilution ratio up to 1 : 10. The dilution ratio is set with percentages ranging from 10% (i.e. 10% source gas is mixed with 90% of compressed air, so 10 x dilution) to 100% (i.e. 100% source gas without compressed air, no dilution). If necessary, a second gas diluter (#2) was connected in series. Gas diluter #2 is an EPM Diluting Stack Sampler, diluting unit 797-430, adjustable dilution ratio) which was operated at a dilution ratio of 1: 18.65 (at a pressure of 6.0 bar). In Appendix C and D the calibration reports from both gas diluters are given In one experiment a humidifier was connected in order to increase the humidity of the air prior to reaching the NH₃ sensors. The humidifier consisted of a bottle with at the bottom a small amount of water (net air volume of bottle, incl. extra tubing: 380 ml). The bottle is placed in a thermostat bath. Through the lid of the bottle an inlet and outlet tube are inserted; the inlet tube is close to the water level but does not touch it, the outlet tube is close to the top of the bottle. By increasing the temperature of the bath, the humidity of the air increases. Before reaching the sensors, the humidity and temperature of the air are measured (Vaisala, Finland; HMP 110). Then the air reaches a chamber where the NH₃ concentrations are measured with the two Draeger Polytron 8000 FL-6813260 sensors. With a precision resistor of 50 Ω (Neohm UPW-50, ± 0.1%, 3x10-6 Ω /°C) the 4 - 20 mA output signal of the sensors was converted to a 200 - 1000 mV signal that was recorded every 10 seconds with a data logger (Campbell Scientific Inc., Logan UT, USA; type CR1000). The resolution of the data logger is 0.1 mV (i.e. 0.0125 ppm) for values between 200 and 800 mV (i.e. 0 -75 ppm) and 1 mV (i.e. 0.125 ppm) for values above 800 mV (i.e. > 75 ppm). Eventually the measurement by the Draeger sensors are converted to ppm's by assuming 4 mA is equal to 0 ppm and 20 mA is equal to 100 ppm, in accordance with the specifications of the sensor. All tubing was made of FEP in order to prevent absorption of ammonia. The experiments were carried out at room temperature (20-23°C) and at atmospheric pressure (1015-1022 hPa); the gas temperature at the sensors was slightly higher (23-25°C). During the experiments no condensation was observed in the tubing or in the measurement chamber.

Prior to the experiments the used equipment was checked and calibrated:

- the data logger values were checked and calibrated with a calibrated voltmeter (Fluke, type 87III);


- the value of the precision resistors were checked with a calibrated voltmeter (Fluke, type 87III);

- the gas dilution ratio of both gas diluters was based on available certificates and checked using a chemiluminescent NO_x analyser (Monitor Labs / API, model 200 A) and a cylinder of NO gas (Scott Specialty Gases, 40 ppm).


2.3 Experiment 1: Detection limit and accuracy at low concentrations

In this experiment a range of NH_3 concentrations between 0 en 11 ppm was supplied to the NH_3 sensors, using different gas cylinders and diluter settings. The humidification unit was switched off. Table 2 explains how the different NH_3 concentrations were generated. Also a zero ppm NH_3 test was done by supplying pure compressed air to the sensors. Each concentration was supplied for about 15 minutes in which period a stable signal could be established. During these experiments the relative humidity was 3-5% and the temperature 23-25°C.

The concentration level that was supplied at the sensors was calculated based on the gas diluter settings and the source gas concentration.

Figure 1 Schematic of laboratory setup for testing the NH₃ sensors.

Figure 2 Picture of the two NH₃ sensors.

Table 2

Test concentrations of NH_3 - low concentration range (0 - 11 ppm); n.a. = not applicable.

Source NH₃ gas (ppm)	Gas diluter #1 (%) SIGNAL	Gas diluter #1 (times diluted) SIGNAL	Gas diluter #2 (times diluted) EPM 6.0 bar	Supplied NH₃ at sensors (ppm)
0	n.a.	n.a.	n.a.	0
11.0	10	9.95	18.65	0.06
11.0	20	5.02	18.65	0.12
11.0	40	2.52	18.65	0.23
11.0	80	1.25	18.65	0.47
11.0	100	1.00	18.65	0.59
11.0	10	9.95	n.a.	1.11
11.0	20	5.02	n.a.	2.19
11.0	30	3.35	n.a.	3.28
11.0	40	2.52	n.a.	4.37
11.0	50	2.00	n.a.	5.49
11.0	80	1.25	n.a.	8.79
11.0	100	1.00	n.a.	11.0

2.4 Experiment 2: Influence of relative humidity

In this experiment a selection of NH_3 concentrations was fed to the NH_3 sensors, using the humidification unit to establish different humidity levels of the gas. Gas diluter #2 was switched off. In Table 3 the testing conditions are further explained. Also a zero ppm NH_3 test was done by supplying pure compressed air to the sensors. Each concentration was supplied for about 15 minutes in which period a stable signal could be established. During these experiments the temperature was 23-25°C.

Table 3

Test concentrations of NH_3 at low relative humidity (3-5%), medium (40-50%), and high relative humidity (70-80%); n.a. = not applicable.

Source NH₃ gas (ppm)	Gas diluter #1 (%) SIGNAL	Gas diluter #1 (times diluted) SIGNAL	Supplied NH₃ at sensors (ppm)
0	n.a.	n.a.	0
11.0	10	9.95	1.11
11.0	50	2.00	5.49
101	10	9.95	10.2

3 Results and discussion

3.1 Experiment 1: Detection limit and accuracy at low concentrations

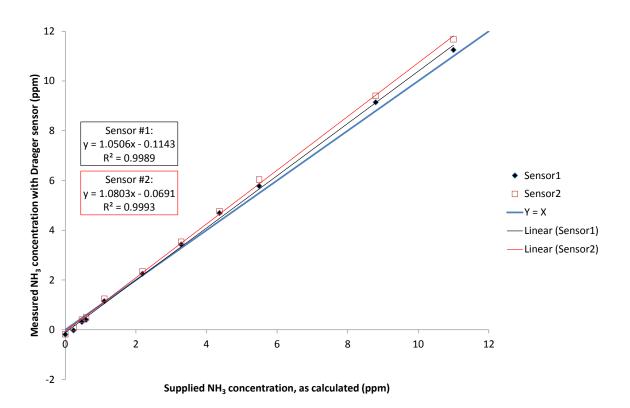
In Table 4 the results of experiment 1 are shown, after stabilization of the output signal of the sensors for at least 5 minutes. The "supplied NH_3 concentration" is the concentration as calculated from the source gas and the dilution equipment settings. After the concentration was increased, after about 3 minutes a stable output signal was achieved. Within the experimental setup that was chosen it is not possible to distinguish between the time that is needed to reach the desired concentration in the air present at the sensors (as it is no perfectly mixed system), or the time that is needed by the sensors to respond to a step increase or decrease of ammonia concentration of the air supplied to the sensor.

Table 4

Results of NH_3 measurements with electrochemical diffusion sensors - low concentration range (temperature: 23-25°C; relative humidity: 3-5%); n.d. = not detected.

Supplied NH ₃ concentration	Measured NH₃ co	ncentration (ppm)
(ppm)	Sensor #1	Sensor #2
0	-0.19	-0.18
0.06	n.d.	n.d.
0.12	n.d.	n.d.
0.23	-0.025	0.068
0.47	0.31	0.41
0.59	0.40	0.49
1.11	1.15	1.24
2.19	2.25	2.35
3.28	3.43	3.53
4.37	4.69	4.76
5.49	5.78	6.04
8.79	9.14	9.40
11.0	11.25	11.68

For the tested concentrations of 0.06 and 0.12 ppm, no increase of the mA output signal of the sensors was detected, therefore these values are reported as "not detected". As can be seen for the 0 ppm value (and for the 0.23 ppm value for sensor #1) slightly negative measured ppm values were found, i.e. the output signal was slightly lower than 4 mA. From Table 4 it follows that both sensors overestimate the supplied NH_3 at values between 1.11 and 11.0 ppm, and underestimate at concentrations of 0.59 ppm and lower.


In Figure 3 the results of Table 4 are plotted, together with a linear regression line for each sensor. This regression line can be considered as the calibration line to be used for each sensor. Furthermore, the line Y = X is shown. The regression lines can be formulated as (R2 = coefficient of determination; RSD = Residual Standard Deviation):

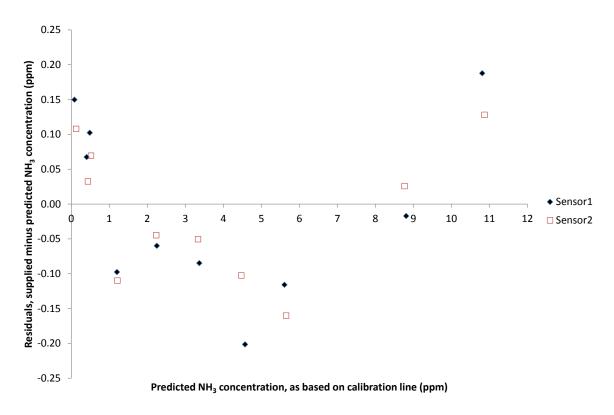
Sensor #1:

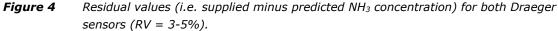
Measured [NH₃] (ppm) = Supplied [NH₃] (ppm) x 1.0506 - 0.1143 [R2 = 0.9989; RSD = 0.137]

<u>Sensor #2:</u> Measured [NH₃] (ppm) = Supplied [NH₃] (ppm) x 1.0803 - 0.0691 [R2 = 0.9993; RSD = 0.113]

The concentration that can be calculated using these calibration lines and the measured values, is called the predicted concentration.

Figure 3 Measured NH_3 concentration versus supplied NH_3 concentration for both Draeger sensors (RV = 3-5%).


When the measurement signal (in mA) is used as input variable and the supplied NH_3 concentration as output, the following equations can be formulated:


Sensor #1:

Supplied [NH₃] (ppm) = Measurement signal (mA) x 5.9425 - 23.658 [R2 = 0.9989; RSD = 0.13]

<u>Sensor #2:</u> Supplied [NH₃] (ppm) = Measurement signal (mA) x 5.7813 - 23.059 [R2 = 0.9991; RSD = 0.10]

In Figure 4 the residuals are shown, i.e. the deviations between supplied and the predicted concentrations. Figure 4 clearly shows that residuals are not evenly distributed over the whole concentration range. In the range < 1 ppm the predicted concentrations are lower than the supplied concentrations (positive residual values) and in the range 1 - 6 ppm the predicted concentrations are higher than the supplied concentrations (negative residual values). The highest measurements then show positive residual values) again. The residuals show that the sensors do no respond rectilinear in the offered concentration range. For this reason the calibration lines and residual values were calculated when the concentration range is split into a 0 - 1 ppm and a 1 - 11 ppm range; this is shown in Figure 5 and 6 for Sensor #1 and #2, respectively.

The regression lines shown in Figure 5a and 6a can be formulated as follows:

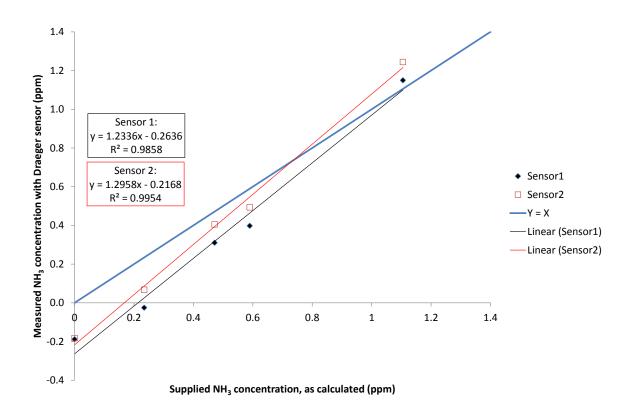
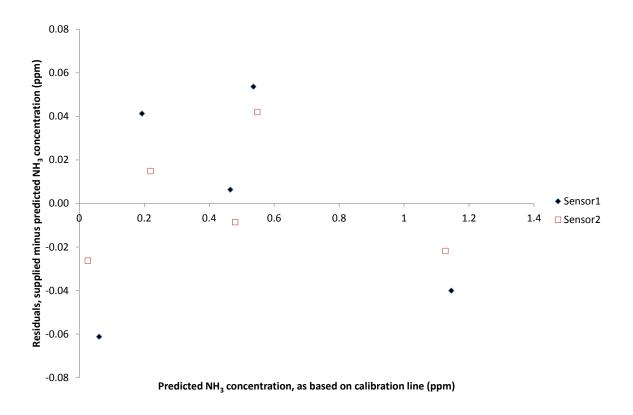
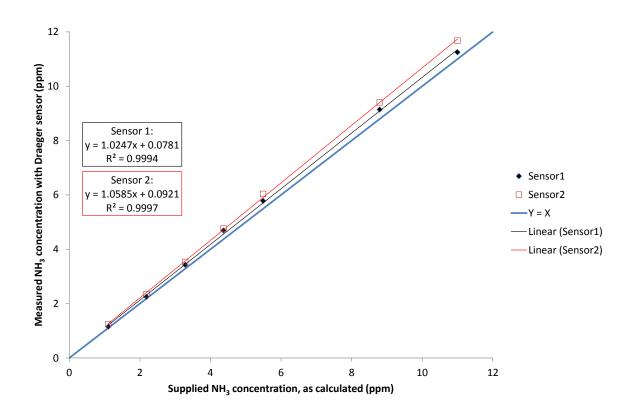
<u>0 - 1 ppm, Sensor #1:</u> Measured [NH₃] (ppm) = Supplied [NH₃] (ppm) x 1.2336 - 0.2636 [R2 = 0.9858; RSD = 0.071]

<u>0 - 1 ppm, Sensor #2:</u> Measured [NH₃] (ppm) = Supplied [NH₃] (ppm) x 1.2958 - 0.2168 [R2 = 0.9954; RSD = 0.042]

<u>1 - 11 ppm, Sensor #1:</u> Measured [NH₃] (ppm) = Supplied [NH₃] (ppm) x 1.0247 + 0.0781 [R2 = 0.9994; RSD = 0.096]

<u>1 - 11 ppm, Sensor #2:</u> Measured [NH₃] (ppm) = Supplied [NH₃] (ppm) x 1.0585 + 0.0921 [R2 = 0.9997; RSD = 0.076]

In this way for measurements in the range of 0 - 1 ppm the first regression line can be used for calibration, while in the range of 1 - 11 ppm the second regression line can be used.

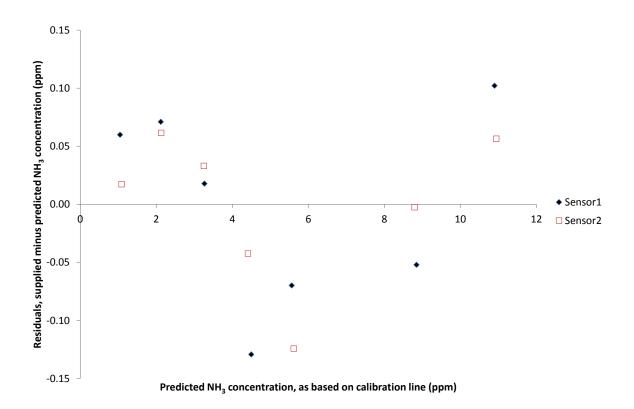

Figure 5aMeasured NH_3 concentration versus supplied NH_3 concentration for both Draeger
sensors, range of 0 - 1 ppm (RV = 3-5%).

Figure 5b Residual values (i.e. supplied minus predicted NH_3 concentration) for both Draeger sensors, range of 0 - 1 ppm (RV = 3-5%).

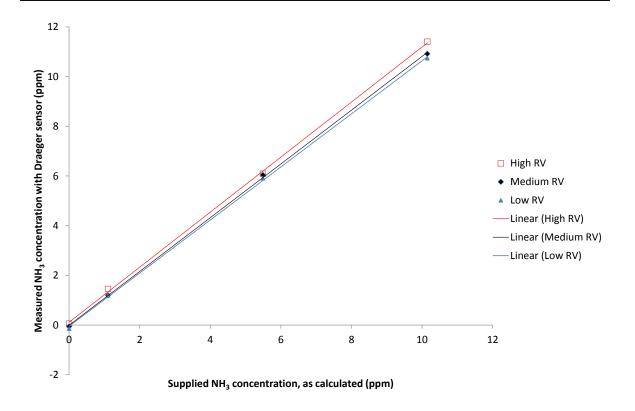
Figure 6a Measured NH_3 concentration versus supplied NH_3 concentration for both Draeger sensors, range of 1 - 11 ppm (RV = 3-5%).

Figure 6b Residual values (i.e. measured NH_3 concentration minus predicted NH_3 concentration) for both Draeger sensors, range of 1 - 11 ppm (RV = 3-5%).

Comparison of the residual values in Figure 4 (whole range) with Figure 5b (0 - 1 ppm) and Figure 6b (1 - 11 ppm) shows that the residual values decrease when a different calibration curve is used for the low and the high range concentrations. This means that more accurate measurements can be done.

3.2 Experiment 2: Influence of relative humidity

In Table 5 the results of experiment 2 are shown, after stabilization of the output signal of the sensors.

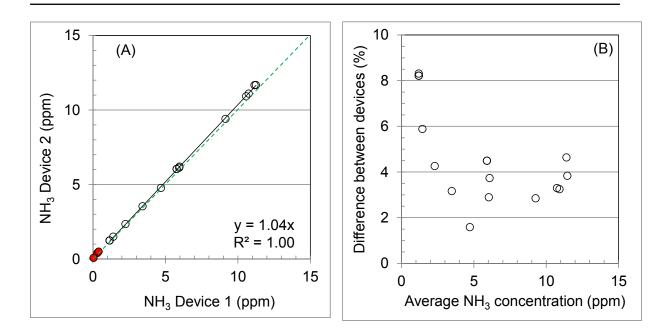

Table 5

Results of NH₃ measurements with electrochemical diffusion sensors at different humidity levels (temperature: 23-25°C); n.a. = not applicable.

Relative humidity	Supplied NH ₃	Measured NH ₃ co	ncentration (ppm)
(%)	concentration (ppm)	Sensor #1	Sensor #2
3-5 (low)	0	-0.10	-0.18
	1.11	1.15	1.24
	5.49	5.78	6.04
	10.2	10.6	10.9
40-50 (medium)	0	-0.103	-0.020
	1.11	1.15	1.24
	5.49	5.95	6.12
	10.2	10.7	11.1
70-80 (high)	0	0.045	0.068
	1.11	1.41	1.49
	5.49	5.98	6.20
	10.2	11.1	11.7

In Figure 7 the average measurement values of the sensors are plotted against the supplied NH_3 concentration for all RV ranges, together with a linear regression line. The regression line for low RV (3-5%) is the calibration line that was presented already in section 3.1. Figure 7 clearly shows that the sensors show higher readings at higher humidity levels, as the lines for medium RV (black) and high RV (red) are above the line for low RV (blue).

Furthermore, in this experiment it took more time for the sensors to stabilize than in Experiment 1, in some cases up to 25 minutes; in Experiment 1 the time needed for stabilization was only about 3 minutes. This delay is caused by the fact that by connecting the bottle for humidification, the gas volume of the measurement system is largely increased. As a result, the time that is needed to reach the desired concentration in the air present at the sensors increases (as it is no perfectly mixed system), thus ending up in a slower responses to concentration changes.


Figure 7 Measured NH₃ concentration versus supplied NH₃ concentration (average of both Draeger sensors) at different humidity levels.

3.3 Comparability of sensors

To test the comparability of the results the two different NH_3 sensors were exposed simultaneously to the same polluted air, and the response of the devices to the provided concentration was registered, as described. This test was repeated at different ammonia concentration levels and different relative humidity levels. Then, the dataset with the paired results from the devices was analysed for outliers by using the box plot method with three times the interquartile range (IQR) as measure for extreme outliers:

IQR = Q3-Q1 Q1: lower (first) quartile (25%) Q2: median (second quartile) Q3: upper (third) quartile (75%) Outlier if: value > Q3+3*IQR OR value < Q1-3*IQR

This test shows that devices are giving not comparable results at the low concentration levels, i.e. measured concentrations ≤ 0.5 ppm (supplied concentration: ≤ 0.59 ppm), as all results in this range were found to be outliers. For measured concentrations at and above 1.2 ppm (supplied concentration ≥ 1.11 ppm), no outliers were found. Figure 8a also shows a (small) systematic difference (4%) between both devices. The observed difference between devices is independent of the provided NH₃ concentration level (Figure 8b).

Figure 8 Comparability of results between devices. (A) Absolute measured values; red dots are the points considered as outliers in the box plot method; (B) Difference between devices vs. average NH₃ concentration.

Conclusions and recommendations

4

Two Draeger Polytron 8000 instruments with FL-6813260 sensor for NH_3 measurement were tested in short-term laboratory experiments in the range from 0 to 11.0 ppm. The results showed that the response of the sensor was not fully rectilinear in this range, and that calibration with a linear model is best applied separately at the 0 – 1 ppm range and the 1-11 ppm range.

The mean residual standard deviation of the 0-1 ppm calibration line amounted 0.056 ppm. Estimating an uncertainty interval, as an approximation, on two times the standard deviation this would result in an uncertainty interval of \pm 0.11 ppm. Expressed as a relative error of the median value of 0.5 ppm in this range, the relative error here would amount 23%. At values in the 1-11 ppm range the residual standard deviation amounted 0.086 ppm, resulting in an uncertainty interval of 0.17 ppm, and a relative error at the median value of 6 ppm of 2.8%. In both intervals we assume that no systematic errors are present because bias is corrected on basis of the regression lines. Our test setup was not suited to evaluate drift from the calibration lines, hence estimated uncertainties represent a best case scenario.

Nevertheless the results give the impression that in the 1-11 ppm range the accuracy is better than expected from the specifications of the manufacturer (Specified measurement uncertainty: $\leq \pm 5\%$ of measured value with a minimum of $\leq \pm 1.5$ ppm, where the greater value applies). In the 0-1 ppm range the measurement uncertainty amounted ± 0.11 ppm, being considerably lower than the specified minimum of $\leq \pm 1.5$ ppm.

Also, the influence of humidity was tested. The measured NH_3 concentration slightly increased at higher humidity levels.

It is concluded from the laboratory test that this Draeger sensor is a promising device for ammonia measurements in and around animal houses, and is suitable for further evaluation under practical conditions. The measurement uncertainty found in the calibration tests was lower than specified by the manufacturer. In the 1-11 ppm range the measurement accuracy is sufficient to meet requirements for emission monitoring. However higher accuracy levels are needed in the 0-1 ppm range, which range is especially of interest in naturally ventilated cattle barns. For application in practice it is important to monitor the sensor performance and the stability of calibration lines on long term under barn conditions and also its performance at higher concentration levels.

Therefore it is recommended to test the Draeger sensor in a field study. A field study could include: - Measurements inside a natural ventilated dairy house, combined with CO₂ measurements for estimation of the ventilation rate;

- Measurements of the ammonia concentration levels inside a pig or poultry house;

- Measurements of the ammonia removal efficiency of a scrubber operated at a pig house.

Appendix A - Certificate of 11.0 ppm NH_3 gas cylinder

States Scott specialty gases		CUSTOM CLASS
Takkebijsters 48 4817 BL, Breda, Th	ne Netherlands Phone: + 3	1(0)76-5711 828 Fax:+31(0)76-5713 267
CERTIFICATE OF ACCURACY:	Custom Class Ca	libration Standard
Product Information Project No.: 20-97567-002 Item No.: 2002000150250L P.O. No.: WUR728325 Cylinder Number: 5902857 Cylinder Size: 50L Certification Date: 05May2014 Expiration Date: 04May2015		Customer WAGENINGEN UR,ANIMAL SCIENCES GROUP T.A.V. JOHAN PLOEGAERT VEEHOUDERIJ BV VIJFDE POLDER 1 6708 WC WAGENINGEN NEDERLAND
CERTIFIED CONCENTRATION	Concentration	Accuracy
Component Name	(Moles)	(+/-%)
AMMONIA NITROGEN	11,0 PPM BALANCE	3
TRACEABILITY		
Description	Traceability Type	Traceable To
APPROVED BY:	:R	DATE: 14-05-2014

SPECIFICATIONS	Requested Concentration (Moles)	Gravimetric Concentration (Moles)	Analyzed Concentration (Moles)		Blend Process Accuracy Result (+/- %)	Analytical Accuracy Result (+/- %)	Interlockin Result (+/-%)
AMMONIA NITROGEN	10, PPM	N/A	11,0 PF	M 10,0	N/A	3,00	N/A
TRACEABILITY Analytical Traceability							
Type/SRM No. SRS TSTD 05May		er Number	Concentration 0,000	Comp	DONENT		
PHYSICAL PROPERT	IES						
Cylinder Size: 50L	Press Expira		BAR ∖ ay2015	alve Conne	ction: DI	N-5	

SPECIAL HANDLING INSTRUCTIONS

Do not use or store cylinder at or below the stated dew point temperature. Possible condensation of heavier components could result. In the event the cylinder has been exposed to temperatures at or below the dew point, place cylinder in heated area for 24 hours and then roll cylinder for 15 minutes to re-mix.

Use of calibration standards at or below dew point temperature may result in calibration error.

Page 2 of 2

Appendix B - Certificate of 101 ppm NH_3 gas cylinder

Scott specialty gases		CUSTOM CLASS
Takkebijsters 48 4817 BL, Breda,	The Netherlands Phone: + 3	1(0)76-5711 828 Fax:+31(0)76-5713 267
CERTIFICATE OF ACCURACY	: Custom Class Ca	libration Standard
Product Information Project No.: 20-01957-002 Item No.: 20020000150250L P.O. No.: WUR837436 Cylinder Number: 5902919 Cylinder Size: 50L Certification Date: 30Apr2015 Expiration Date: 29Apr2018		Customer WAGENINGEN UR,ANIMAL SCIENCES GROUP ATTN: JOHAN PLOEGAERT VEEHOUDERIJ BV, ZODIAC GEBOUW 122, DE ELST 1 6708 WD WAGENINGEN NEDERLAND
CERTIFIED CONCENTRATION	Concentration	Accuracy
Component Name	(Moles)	(+/-%)
AMMONIA NITROGEN	101, PPM BALANCE	1
TRACEABILITY		
Description ANALYTICAL TRACEABILITY	Traceability Type	Traceable To
APPROVED BY: SUPERVISOR: R.J. Mofmeen	Atta	DATE: OL-05-DOLS.

Component Name	Con	equested centration Moles)	Gravim Concent (Mol	tration	Analyz Concentr (Mole	ration	Blend Tolerance Result (+/-%)	Blend Process Accuracy Result (+/-%)	Analytical Accuracy Result (+/- %)	Interlockin Result (+/-%)
AMMONIA NITROGEN	100), PPM	И	I/A	101,	PPM	1,0	N/A	1,00	N/A
	-									
Analytical Traceabi Type/SRM No. SRS TSTD	Expiration Date 30Apr2015	Cylinde	r Number	Conc	entration 0,000		Comp	oonent		
PHYSICAL PRO	OPERTIES									
Cylinder Size: 50	20	Pressu	re:	150 BAR		Val	ve Conne	ction: DI	N 5	

SPECIAL HANDLING INSTRUCTIONS

If a dew point is listed, do not use or store cylinder at or below the stated dew point temperature. Possible condensation of heavier components could result. In the event the cylinder has been exposed to temperatures at or below the dew point, place the cylinder in heated area for 24 hours and then roll cylinder for 15 minutes to remix.

Use of calibration standards at or below the stated dew point temperature may result in calibration error.

Page 2 of 2

Appendix C - Certificates of Signal 821 diluter

<u>2015:</u>

SIG			IGNAL GROUP LIMITED 2 DOMAN ROAD, CAMBERI, URREY, ENGLAND GUIS 31 ELEPHONE: +44 (0)1276 682 AX: +44 (0)1276 693 -MAIL: INSTRUMENTS@SIG ITE: WWW SIGNAL-GROUP)k 841 / 4 (4 LINES) SNAL-GROUP.COM
	CERI	<u>IFICATE (</u>	DF CALIBRATIC	<u>DN</u>
CONSIGNI	CEWa	igeningen		
ORDER NU	JMBER			
W/O NUMI	BER		······································	
DATE OF (CALIBRATION	01/1	2/2015	
DESCRI	PTION OF GOO	DDS SI	ERIAL NO.	REMARKS
82.	18 gas divider		4789	
	******	· · · · · · · · · · · · · · · · · · ·		
		CALIBRATI	ON RESULTS	
	DIVIDER S	ETTING	ACTUAL RESI	JLT
	100.0	~	100.00	1. (7
	90.00		90.00	
	80.00		79,92 69.93	1
	60.00		60,04	·····
	50.00		50.06	
	40.00		<u> </u>	
	20.00		20.08	
	10.00		10.12	
	0.00	%	0,00	
	2	CALIBRATIO	N GAS DETAILS	
	ION GAS TYPE	SUPPLIER	CERTIFICATE N	o. TRACEABLIT
1000pp	m C3H8/air	BOC	1433495	NPL
	NET DECOMPNIE	E MILINGHIGTI		
JIWNAL AU	DIT PROCEDUI	UE INUMBER	<u>TPB00101</u>	
UNCEDTAB	NTY OF MEASU	REMENT	+/- 0.2% F.	<u>S.D.</u>
ONCEACHE		and managers new	t in the calibration of the uni	it detailed above hereon unles:
Signal Group cer	tifies that the materials conform in all respects	to Signal Group Li	d procedures and specificati	ons

<u>2005:</u>

•	CERTIFICATE			INSTR STANI	DARDSHO	BERLEY		
	CONSIGNEE AGrotechno	log y r Fa	oul Ivan	In GUASSURREY,	GU15 3DF, EN	IGLAND.		
	ORDER NUMBER	DRDER NUMBER FACSIMILE: +4 FACSIMILE: +4 FMAIL: instrume						
	W/O NUMBER				ww.signal-gro			
	DATE OF CALIBRATION	14/1	0/05	Everything 	for the Emissions	Engineer		
	DESCRIPTION OF GOO	DS SI	ERIAL No	RE	REMARKS			
	8215 CAS Divide.	4	789					
	CA	LIBRATIO	N RESULTS					
					CTUAL DEGU	TT]		
	DIVIDER SETTING	EXPECT	ED RESULT		CTUAL RESU	L1		
	90.00%	<u> </u>		and the second sec	20 00			
	80.00%	/		and the second se	39.92			
	70.00%			7	9.81			
	60.00%			0	9.85			
	50.00%		50.03					
		40.00%			37.85			
	30.00%							
	20.00%				20.00			
	10.00%				0.07			
	0.00%			1	(1. ()			
		IDDATION	CASDETAI	<u></u>				
	CAL	IBRATION	GAS DETAI	<u>L9</u>				
	CALIBRATION GAS TYPE		the second se	the second s	and the second se	ILITY		
	1000pm Carll Isin	Messe-	HILL	023	NPL			
	SIGNAL AUDIT PROCEDUR	RE NUMBER	TPBOCI	01				
	UNCERTAINTY OF MEASU	REMENT	+1-0.2	10 1.5.0	.0.			
	Signal Group certifies that the unit detailed above hereon unlo Group Ltd procedures and spec SIGNED	materials and ess otherwise	processes us	ed in the calibra	ation of the			
						Certificate Number RA 33690 BS EN ISO Scott: 2000		
BA . (2) . 45			A DIVISION OF S	IGNAL GROUP LTD. F	EGISTERED IN ENGLA	ND NO. 136986		

	-+				Certificaat
NA	Mi Nederla	nds Meetins	tituut	340	
0					Nummer 316430-01 blad 1 van 2
	Aanvrager:	IMAG - DLO Mansholtlaar Wageningen			
	Aangeboden:	Een gas divid fabrikaat type serie numme bereik	: Signal : 821 er : 4789	in stappen van 10	%
	Wijze van onderzoek:	tiemonitor w is hoogzuive mengsel geb Bepaald is ho	velke gekalib re stikstof aa oruikt van (10 et werkeliike	reerd is met prima ingeboden aan de 001 ± 10) · 10 ⁻⁶ mo	ngen zijn onderzocht met een referen- ire standaard gasmengsels. Als nulgas gas divider. Als spangas is een /mol stikstofmonoxide in stikstof. entage. De metingen werden van 21 ± 0,5 ° C.
-	Datum van onderzoek:	6 tot en met	20 septemb	er 1996	
	Resultaat:	De resultate De totale me (2s).	n staan verm eetonzekerh	eld op blad 2 van eid is gebaseerd o	2. o twee maal de standaardafwijking
	Herleidbaar- heid:	De bij de ka standaard g	libratie gebr asmengsels s	uikte gasmengsels tikstofmonoxide i	zijn herleidbaar naar de primaire n stikstof.
	Datum en on- dertekening:	24 septemb NMi Van SA	er 1996 vinden Labor	atorium B.V.	
		R. N. Wesse Afgeling Ch			Sol Steinden Laboraton
		Ne	\$ 10	oo som 110 m th	0-
		×			\$ ⁶
	Nederlands Meeti Postbus 654 2600 AR Delft (NL Schoemakerstnaat 2628 VK Delft Telefoon (015) 269 Telefax (015) 261 29) w 97 N 15 00 N	imer van Koophande erkmaatschappijen: Mi Certin B.V. (KvK n	oratorium B.V. (KvK nr. 28703) K nr. 28700)	Dit certificaat wordt verstrekt onder het voorbehoud dat genetiel aansprakelijkheid wordt aanvaard en dat aanvrager vrijwaring geeft voor eike aansprakelijkheid jegens derden. Reproduktie van het volledige certificaat is toegestaan. Gedeelten van dit certificaat mogen alechts worden gereproduceerd na verkregen schriftelijke toestemming.
Form. 962					

Form. 962

Nederlands Meetinstituut

Nummer 316430-01 blad 2 van 2

Resultaat:

Hieronder wordt het resultaat van de kalibratie weergegeven.

Meetbereik 0-100% in stappen van 10%.

Werkelijk verdunnings- percentage (%)	ingesteld verdunnings- percentage (%)		
10,05 ± 0,10	10		
19,91 ± 0,12	20		
29,86 ± 0,12	30		
39,73 ± 0,18	40		
49,93 ± 0,20	50		
$60,04 \pm 0,25$	60		
69,88 ± 0,25	70		
79,95 ± 0,25	80		
89,99 ± 0,25	90		

5

Appendix D - Certificate of EPM 797-430 diluter

WAGENINGENUR For quality of life ALIRRATII Kalibratie-certificaat CO2009-3 Aanvrager: ASG Veehouderij B.V. Postbus 65 8200 AB Lelystad Aangeboden: Laboratoriumverdunner Fabrikaat EPM 797-430 Туре E 77 Serienummer Het onderzoek werd uitgevoerd met CO als tracergas. De CO-concentraties werden Wijze van onderzoek: gemeten met een gekalibreerde GFC CO-analyser. De verdunningen werden berekend uit de in en uitgaande CO-gasconcentraties van het verdunningstoestel. Het onderzoek is uitgevoerd bij een ruimtetemperatuur van (21 ± 2) °C. Omgevingscondities 17 maart 2009. Datum van onderzoek: De resultaten en meetonzekerheden staan vermeld op blad 2. **Resultaat:** De gerapporteerde onzekerheid is gebaseerd op de standaardonzekerheid vermenigvul-**Onzekerheid:** digd met een dekkingsfactor k = 2, welke overeenkomt met een betrouwbaarheidsinterval van ongeveer 95%. De standaardonzekerheid is bepaald volgens EA-4/02. De metingen zijn uitgevoerd met meetmiddelen waarvan de herleidbaarheid naar (inter)-Herleidbaarheid: nationale standaarden is aangetoond ten overstaan van de Raad voor Accreditatie. Wageningen, 26 maart 2009 Datum en ondertekening: Ing. J.P.M. Ploegaert Coördinator Geurlaboratorium NINGEN : C02009 26-03-2009 ن 25-03-2009 Late of last calibration : 17-03-2009 Date of last calibration : 17-03-2009 Certificate Margues Recalibration berore Versie 01-05-2007 Reproductie van het volledige certificaat is toegestaan. Gedeelten mogen slechts worden gereproduceerd na Wageningen UR ASG Veehouderij B.V. Cluster MHE Wageningen schriftelijke toestemming van ASG Veehouderij. Dit certificaat wordt verstrekt onder de voorwaarde dat ASG Veehouderij generlei aansprakelijkheid aanvaardt. Bornsesteeg 59 6708 PD Wageningen Telefoon +31 (0) 317 487276 Telefax +31 (0) 317 475347 1/2

WAGENINGEN UR For quality of life

Kalibratie-certificaat

Instelling	Verdunning		Onzekerheid (k=2)	Nauwkeurig- heid	Stabiliteit %
	[-]	[-]	[-]	[-]	[-]
2.6	10.0	+/-	0.03	0.008	0.24
3.0	11.0	+/-	0.01	0.008	0.28
4.0	13.5	+/-	0.06	0.005	0.22
5.0	16.0	+/-	0.08	0.004	0.19
6.0	18.7	+/-	0.15	0.003	0.23

Opmerkingen:

Metingen conform NEN-EN 13725:2003. Uitgevoerd door JP. De laboratoriumverdunner werd met de hand bediend.

Wageningen UR ASG Veehouderij B.V. Cluster MHE Wageningen Bornsesteeg 59 6708 PD Wageningen Telefoon +31 (0) 317 487276 Telefax +31 (0) 317 475347

Versie 01-05-2007

schriftelijke toestemming van ASG Veehouderij. Dit certificaat wordt verstrekt onder de voorwaarde dat ASG Veehouderij generlei aansprakelijkheid aanvaardt.

Reproductie van het volledige certificaat is toegestaan. Gedeelten mogen slechts worden gereproduceerd na

2/2

To explore the potential of nature to improve the quality of life

Wageningen UR Livestock Research P.O. Box 338 6700 AH Wageningen The Netherlands T +31 (0)317 48 39 53 E info.livestockresearch@wur.nl www.wageningenUR.nl/livestockresearch Together with our clients, we integrate scientific know-how and practical experience to develop livestock concepts for the 21st century. With our expertise on innovative livestock systems, nutrition, welfare, genetics and environmental impact of livestock farming and our state-of-the art research facilities, such as Dairy Campus and Swine Innovation Centre Sterksel, we support our customers to find solutions for current and future challenges.

The mission of Wageningen UR (University & Research centre) is 'To explore the potential of nature to improve the quality of life'. Within Wageningen UR, nine specialised research institutes of the DLO Foundation have joined forces with Wageningen University to help answer the most important questions in the domain of healthy food and living environment. With approximately 30 locations, 6,000 members of staff and 10,000 students, Wageningen UR is one of the leading organisations in its domain worldwide. The integral approach to problems and the cooperation between the various disciplines are at the heart of the unique Wageningen Approach.

