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Abstract

There is a growing interest in the use of particles as stabilizers for foams and
emulsions. Applying hard particles for stabilization of fluid interface is referred to as
Pickering stabilization. By using hard particles instead of surfactants and polymers,
fluid interfaces can be effectively stabilized against Ostwald ripening and
coalescence. A drawback of the use of hard particles as interfacial stabilizers is that
they often experience a pronounced energy barrier for interfacial adsorption and that
hard particles are very specific with regard to the type of fluid interface they can
adsorb to. Soft particles, on the other hand, are known as good stabilizers against
coalescence and they spontaneously adsorb to a variety of different fluid interfaces.
The aim of this thesis was to investigate core-shell particles comprising a hard core
and soft shell with regard to their interfacial behaviour and their ability to act as sole
stabilizers for foams and emulsions. We hypothesised that the presence of the soft
shell allows for easier interfacial adsorption of core-shell particles compared to the
hard core particles only. To test this hypothesis, we prepared core-shell particles
comprising a solid polystyrene (PS) core and a soft poly-N-isopropylacrylamide
(PNIPAM) shell. To ascertain the effect of shell thickness, we prepared a range of
core-shell particles with different shell thicknesses, containing identical core patrticles.
We found that core-shell particles are intrinsically surface active and can generate
high surface pressures at the air-water interface and oil-water interfaces, whereas
core particles seemed to experience a large energy barrier for interfacial adsorption
and did not lower the surface tension. We also confirmed by microscopy that core-
shell particles are actually adsorbing to the fluid interface and form densely packed
interfacial layers. Further, we found that a certain critical thickness of the soft shell is
necessary in order to ensure facile interfacial adsorption. If the PNIPAM shell on top
of the core particles is well above 100nm thick, particle adsorption at the air-water
interface was found to be diffusion limited.

By gentle hand-shaking we were able to produce dispersion of air bubbles and
emulsion droplets solely stabilized by core-shell particles. The resulting bubbles still
underwent Ostwald ripening, albeit slowly. For oil-in-water emulsions of hexane and
toluene, both of which have a relatively high solubility in the continuous phase, we
found that core-shell particles can stop Ostwald ripening. The resulting emulsion
droplets adopted pronounced non-spherical shapes, indicating a high elasticity of the
interface. The high stability and the remarkable non-spherical shape of the emulsion
droplets stabilized by core-shell particles were features we also observed for fluid
dispersion stabilized by hard particles. This shows that in terms of emulsion stability
core-shell particles behave similar to hard particles as interfacial stabilizer.



As to why the differences between the stability of bubble and oil dispersions arise
could not be finally answered. Yet, microscopic analysis of the interfacial
configuration of core-shell particles at the air-water interface reveals some peculiar
insights which may suggest that core-shell particles adsorb in a polymer-like fashion
with the soft PNIPAM shells adsorbing to the air-water interface only, while the hard
PS cores reside in the continuous phase.

In summary, we showed that core-shell particles with a hard core and a soft shell can
indeed combine the advantageous properties of hard and soft particles. The soft shell
enables spontaneous adsorption to a variety of fluid interfaces. Despite their
spontaneous adsorption, core-shell particles strongly anchor and do not
spontaneously desorb from the fluid interface again. Further, the hard core provides
enough rigidity to the core-shell particles to allow the establishment of a stress
bearing interfacial particle network. This network eventually stops Ostwald ripening in
oil-in-water emulsions. Our results therefore show that in the case of oil-water
interfaces, core-shell particles can perform better than solely hard particles as
interfacial stabilizers.
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Chapterl
Introduction



1.1. Instabilities in foams and emulsions

Fluid interfaces are the boundaries between two different fluid phases. Examples are
the boundary between a liquid and a gas, or between two immiscible liquids. The
formation of such interfaces costs energy because intermolecular forces in each of
the respective materials must be overcome in order to bring bulk molecules to the
interface. The work which needs to be expended in order to create additional
interfacial area is the surface tension (dimension of force per unit length, mN m™) or
interfacial free energy (mJ m™).

The most prominent examples of systems of which the behaviour is seriously
affected by the existence of an fluid interface are foams and emulsions. These are
disperse systems in which the disperse phase consists of bubbles or droplets. These
bubbles and droplets may be of micron-sized dimension in which case the surface-to-
volume ratio of the disperse phase is very high and the resulting interfacial free
energy becomes significant with respect to the internal energy of the system. One
consequence is that bubbles and drops tend to be spherical, as this shape has the
lowest surface area for a given volume. Further thermodynamically driven
minimization of the free energy associated with the existence of the fluid interface
occurs via the processes of coalescence and Ostwald ripening, both of which can
ultimately lead to a complete phase separation of the different phases in contact with
each other.

Ostwald ripening is the pressure-driven exchange of material between small and
large bubbles or droplets of a dispersion. The process is driven by the difference in
Laplace pressure P, (the pressure difference between in- and outside of the
bubble/droplet) between differently sized bubbles/droplets of the dispersed phase.
The Laplace pressure is given as:

20 (1)

where o is the interfacial tension and R is the radius of the bubble/droplet. Equation 1
implies that the pressure inside small drops (bubbles) is higher than inside big drops
(bubbles). Thus, a transport of material from small to large bubbles or droplets takes
place. The average size of the dispersed phase increases. The rate of mass
transport and hence the rate of Ostwald ripening depends on several factors; a very
important one is the solubility of the disperse material in the continuous phase.
Higher solubility increases the rate of mass transport and accelerates Ostwald
ripening.



The term coalescence refers to the merger of bubbles or droplets. Coalescence is
typically preceded by gravity-induced creaming or sedimentation of the disperse
phase. As a result, dispersed bubbles and droplets approach each other and a thin
liquid film forms between them. Gravity-induced film drainage proceeds up to a
critical film thickness, at which the thin liquid film spontaneously breaks and
bubbles/droplets merge. Spontaneous rupture of the thin film is driven by attractive
van der Waals forces. The exact value of the critical film thickness where rupture
occurs depends on the range and magnitude of the intermolecular and surface forces
involved. For a bare air-water interface at neutral pH and without added electrolyte,
the critical film thickness is around 50 nm [1].

Eventually, the combined action of coalescence and Ostwald ripening leads to a
minimization of the total surface area of the system, which becomes
thermodynamically more stable, but comes along with foam and emulsion instability.
For stabilization of foams and emulsions, additives which change the
physicochemical properties of the systems must be added. The action of such
additives is explained in the following section.

1.2. Mechanisms and actions of common interfacial
stabilizers

The large interfacial free energy associated with the existence of an interface can be
reduced by the addition of surface active additives. These are molecules or
macromolecules which lower the interfacial tension upon adsorption to the fluid
interface, thereby reducing the thermodynamic driving force for phase separation via
Ostwald ripening and coalescence. Surfactants and polymers are among the most
prominent examples for such surface actives molecules. Surfactants are amphiphilic
molecules, bearing polar and apolar groups, and are intrinsically surface active. The
surface activity of polymers is determined by the chemical composition of the polymer
subunits, but in general most polymers show a certain level of surface activity.
Surface active materials lower the interfacial tension and, as a consequence, may
also impart a certain elasticity to the interface. Interfaces are said to be elastic, when
the surface active material does not desorb (adsorb) from (on) the interface upon
decrease (increase) of the interfacial area A so that the interfacial tension changes. A
measure for the elasticity of an interfface is the interfacial dilational
elasticity modulus E:

do do

E=daA~dna




with A being the interfacial area and dA being the area change. While surfactant
covered interfaces are usually not very elastic, polymers which adsorb in a train-loop
configuration or which are loosely cross-linked by intermolecular covalent bonds can
form elastic interfacial layers. The value of the interfacial elasticity E must depend on
the timescale because (partial) desorption or adsorption lead to stress-relaxation
processes in the interfacial layer. For the bespoken polymers such relaxation
processes are characteristic. This means that polymer covered interfaces behave
viscoelastic, the exact values of the loss and storage modulus measured are strongly
frequency dependent.

Numerical calculations show that an elastic interface can substantially reduce the
rate of Ostwald ripening, even though, long-term interfacial relaxation processes may
continue [2, 3]. This is also confirmed by experiment where low-frequency elastic
moduli could be well correlated to emulsion stability [4]. Elastic interface are also
though to prevent rupture of the thin films separating individual bubbles and droplets
in close contact with each other. This effect arise because surface tension gradients
arising upon local stretching of the thin films are counterbalanced by transport of
surface active material and simultaneous liquid flow to the thinned region. This
mechanism prevents further thinning, stabilizes liquid films and is frequently denoted
as Marangoni effect [5].

Next to their ability to lower the surface tension and impart elasticity to an interface,
the existence of surfactants and polymers at the interface leads to the appearance of
a disjoining pressure when the interfaces of two droplets or bubbles come into
proximity. The disjoining pressure is a result of steric and/or electrostatic interaction
between molecules adsorbed at the interface. The pressure can also be viewed as
an excess osmotic pressure which arises when two interfaces which are covered by
surface active material approach each other. The resistance of droplets against
coalescence can be correlated to the magnitude of this disjoining pressure, given that
systems of equal size are considered. Coverage of the fluid interface by molecules
which can created a substantial disjoining pressure will thus lead to a good stability of
the constituting dispersion against coalescence [6].



1.3. Particles as interfacial stabilizers

1.3.1. Advantages of particles over other interfacial stabilizers

Particles are a prominent alternative to surfactants or polymers for the stabilization of
fluid interfaces. One usually speaks of colloidal particles when the dimension of the
colloidal entity is in the size range from several tens of nm up to a few micrometres.
The larger size compared to surfactants and polymers goes along with a higher
adsorption energy at the fluid interface. Particles larger than about 10 nm typically
possess such a large adsorption energy relative to the thermal energy kgT that they
adsorb irreversibly. Adsorption of particles can therefore lead to the formation of
highly elastic interfacial layers. This results in highly stable bubbles and droplets; the
surface tension may become so low that deviations from spherical shape are
possible, and Ostwald ripening nearly vanishes. Remarkably, even bubbles and
droplets with a high solubility of the disperse material in the continuous phase are
observed to be stable for months or longer.

Not least because of their excellent stability, a growing interest in particle stabilized
interfaces can be observed as rated by the soaring number of scientific publication on
this topic starting from the beginning of the 21st century onwards. It is not a new
topic, however; the outstanding stability of particle stabilized emulsions was already
noted by Ramsden and Pickering in the beginning of the 20th century [7]. Thus, it
took one century for research efforts to becomes focussed on this topic. Nowadays
the term “Pickering emulsion” is commonly adopted if one refers to a particle
stabilized emulsion. The term is infrequently used to refer to particle stabilized foams
though.

While the early research activities of Pickering were mainly focused on the use of
inorganic particles for dispersion stabilization, nowadays, the focus is on the design
of biodegradable and/or food-grade particles for Pickering stabilization which still
appears to be a big challenge [8, 9]. An economic and robust method for design of
food-grade microparticles with high interfacial activity would certainly find its
application in modern food processing for the design of foams and emulsions with
long shelf-life [9].

Other “modern” research activities concerned with particles at interfaces focus on
particles that can respond to certain environmental stimuli, so that foam or emulsion
stability can be manipulated, e.g. Pickering emulsion for controlled release [10]. One
more prominent research direction is the application of non-spherical particles for
Pickering stabilization. Non-spherical particles are interesting candidates for the
controlled assembly of particles at interfaces via capillary interaction. Precise control
over the interfacial location of colloidal particles technique may help in bottom-up



fabrication of new microstructured materials [11]. Overall it appears that for particles
as interfacial stabilizers a variety of new potential application can be foreseen [10].

1.3.2. Hard particles as interfacial stabilizers
1.3.2.1.  Characteristics of hard particles at fluid interface

Traditionally most of the work on particles as interfacial stabilizers was concerned
with the use of hard particles which have elastic moduli in the GPa range and, thus,
do not easily deform by interfacial forces [12]. Examples are colloidal silica or PS
particles. Silica particles should be hydrophobized in order to make them surface
active. This is because in order for the particles to have a certain affinity for the fluid
interface, they should be wetted by both of the two coexisting fluid phases. The
particle wettability is usually quantified in terms of the three-phase contact angle 6
between the solid and the fluid interface. For air-water or oil-water interfaces a
contact angle of 8 = 0° corresponds to particles being completely immersed in the
aqueous phase, 8 = 180° corresponds to particles completely immersed in the non-
polar medium, and 6 = 90° corresponds to particles which are equally wetter by each
of the two continuous phases adjacent to the interface [13]. The energy of adsorption
AE of hard particles at the fluid interface depends on the particle wettability as well as
particle size and surface tension of the bare interface. For particles of radius r, with a
contact angle 6, at a fluid interface with surface tension o, AE is given by the
following equation 3.

AE = r?o(1 + cos 0)? (3)

For a particle of radius 10® m at an air-water interface with surface tension 0.072 N
m™ and a contact angle 6 of 60° (characteristic for polystyrene particles), the energy
for removal from the fluid interface is of the order of 10” kgT. This extremely large
energy barrier in relation to the thermal energy ksT explains why particle adsorption
is irreversible and particles can form highly elastic interfacial layers. We note in
passing that the adsorption energy given in equation 3 is valid assuming that (1) the
particle contact line is completely flat and (2) possible effects of line tension can be
ignored, both of which factors may actually have strong influence on the particle
adsorption strength.



1.3.2.2.  Structure of bubbles and emulsion droplets stabilized by hard
particles

Through microscopic investigation, a lot of knowledge has been gained on the
structure of bubbles and droplets stabilized by hard particles. Some authors report
that no full coverage of the fluid interface with particles was necessary to obtain a
stable emulsion. For oil-in-water emulsions, surface coverages in the range of 10 —
30 percent are reported to yield stable emulsion [14-16]. Another study which probed
the coalescence stability of two particle covered droplets by forcing them into contact
with a micromanipulation technique, also concluded that no close-packing is
necessary in order to prevent coalescence [17]. Note that these studies prepared oil-
in-water emulsions of long-chain hydrocarbons with low solubility in the continuous
phase. The main mechanism leading to phase separation in this type of dispersion is
coalescence [18].

In contrast to the results above, toluene-in-water and octanol-in-water emulsions
were found to have a closed-packed interfacial layer of particles [19, 20]. Equally
stable ionic liquid-in-water emulsions were also bearing a closed packed interfacial
layer of particles [21]. For stabilization of aqueous dispersions of gas filled bubbles,
full coverage of the fluid interface with particles was necessary to obtain a stable
dispersion, in fact phase separation only stopped once a closed-packed interfacial
particle layer was formed [22-25]. What all these studies had in common is the good
solubility of the disperse material in water. From these studies it appears that for
stabilization of disperse systems with a good solubility of the dispersed material in the
continuous phase, and which are thus prone to Ostwald ripening as well as
coalescence, a closed-packed interfacial layer of particles is necessary.

The discussion on the experimentally determined structure of hard particle stabilized
dispersion shall be continued by a description of phenomenological models
explaining their extraordinary stability.

1.3.2.3. Formation of a colloidal amour prevents Ostwald ripening

The high resistance of particle stabilized dispersions against Ostwald ripening - in
comparison with molecular stabilizers - can be attributed to the strong anchoring of
particles at the fluid interface and the high interfacial elasticity. Even upon strong
lateral compression of the interface, particles with sufficiently high adsorption energy
may not desorb. A partially covered bubble/droplet will thus undergo Ostwald ripening
and shrink, consequently the surface coverage will increase up to the point where
particles experience strong enough mutual repulsion and shrinking stops. At this
moment, a so called “colloidal amour”, a closed packed interfacial layer of particle is
formed (see Fig). It is thought that due to strong lateral repulsion between interfacial

7



particles, the surface tension vanishes completely. As a result the shrinking due to
pressure-driven mass transport of the dispersed material stops.

Fig. 1: Sketch of a “colloidal amour” on the bubble/droplet interface (courtesy of Dr. Ran Ni, Nanyang
Technological University, Singapore)

In the previous paragraph we described how individual particle stabilized
bubbles/droplets increase their surface coverage and become stable through
shrinking. Ostwald ripening, however, is accompanied by mass transport from small
to large bubbles/droplets of lower Laplace pressure, which hence increase in size.
The surface coverage of these larger entities will decrease through Ostwald ripening
and, at a certain point, make them also prone to coalescence. The merger of two
partially covered bubbles/droplets will result in a higher surface coverage of the newly
formed bubble/droplet and may even give them a non-spherical shape. Non-spherical
bubbles and droplets are frequently observed in particle stabilized dispersions. The
fact that bubbles/droplets adopt a non-spherical shape is interpreted as a sign of
vanishing surface tension.

It should become clear that the strong anchoring of particles at the fluid interface
leads to a very different outcome of the phase separation processes in particle
stabilized dispersions: While the combined action of coalescence and Ostwald
ripening normally paves the way for complete phase separation of the system, with
particles at interfaces these processes may precede the formation of a stable
dispersion. The process by which partially covered emulsion droplets acquire a fully
covered interface through multiple events of coalescence is frequently denoted as
“limited coalescence”. The same process also happens with particle stabilized
bubbles, but here also Ostwald ripening can play a role in the formation of the fully
covered interface.

In our discussion, we first dealt with Ostwald ripening and then with coalescence.
This order is not meant to indicate that the two processes follow each other, they
rather proceed simultaneously. Which process prevails depends on the
physicochemical properties of the fluid dispersion. Parameters such as solubility of



the dispersed material in the continuous phase, surface tension and particle surface
coverage determine the respective rates of coalescence and Ostwald ripening.

1.3.2.4.  Capillary mechanism for thin film and coalescence stability

Another factor which presumably contributes to the good stability of dispersions
stabilized by hard particles is their resistance against rupture of the thin liquid films
which are separating individual bubbles/droplets. All theoretical approaches to
quantify the stability of thin films stabilized by solid particles are based on capillarity
[26, 27]. These concepts can be laid out in the following way:

For rupture of the thin liquid film to occur, the two opposite interfaces must approach
each other to the critical film thickness h. at which point attractive van der Waals
interaction causes spontaneous film rupture [28]. For the particle covered interfaces
to approach each other, the fluid must be squeezed out from the thin film in between
the bubbles/droplets. In foams and emulsion this process is driven by gravity and by
pressure differences between thin films and Plateau borders, so called “Plateau
border suction” [29]. Upon sufficient thinning of the films, the fluid interface around
individual particles must deform in order to allow further liquid drainage. As a result of
this unfavourable interfacial deformation, a disjoining pressure is emerging which
counteracts further thinning of the thin liquid films. In order to calculate the magnitude
of the disjoining pressure in particle stabilized dispersions, several assumptions must
be made. Particles are assumed to homogeneously distribute over the entire
interface. Particles also straddle the fluid interface and adopt a certain equilibrium
position with respect to the fluid interface. Further, the liquid meniscus around
individual particles is assumed to be axisymmetric and the thin film is stabilized by a
bilayer of particles, meaning both interfaces adjacent to the thin film are covered with
particles. These assumptions lead to the following theoretical expression for the
maximum capillary pressure P¢ at which rupture of the thin film is occurring [27].

o cosB (4)

P.=bh -
where o is the interfacial tension, 6 is the contact angle between fluid interface and
particle measured in the internal liquid of the film, r is the particle radius and b is the
constant which depends from the surface coverage and the interfacial organization of
particles. The constant b could be on the order of one for a closed-packed particle
layer [27], but also higher values up to 10 are suggested in literature. According to
equation 4, the disjoining pressure in particle stabilized dispersion can be in the
range of 10kPa up to a few hundreds of kPa [6]. Also slightly different variations of



equation 4 are suggested in literature for different interfacial configurations of
particles, but these still yield surface pressures on the same order of magnitude as
equation 4 [26]. The applicability of equation 4 could be verified by few experiments
[30, 31]. Tcholakova et al. conclude that the theoretically estimated high values for
the disjoining pressure of particle stabilized thin films lack sufficient confirmation by
experiments [6].

We would like to emphasize that the concept of thin film stability presented here is
only valid for interfaces stabilized by hard particles. The calculation of disjoining
pressure according to equation 4 is based on the possible shape of the liquid menisci
in between the particles upon substantial thinning of the liquid films. The theoretical
model is only applicable to interfacial particles that do not deform due to surface
forces and that have a well-defined contact angle which results in an equilibrium
shape of the interface between the particles [27].

1.3.3. Soft particles as interfacial stabilizers
1.3.3.1.  Characteristics of soft particles at fluid interfaces

“Soft” particles are a relatively new class of materials for the stabilization of fluid
interfaces. These particles are characterized by a low elastic modulus in the kPa
range [32]. Examples of soft particles are cross-linked polymer particles, also
denoted as microgels. A very prominent example for aqueous microgels are cross-
linked polymer particles based on Poly(N-isopropylacrylamide) (PNIPAM). PNIPAM
undergoes a structural transition from coil-to-globule upon increasing the temperature
above the lower critical solution temperature (LCST) which leads to a volume
reduction of the microgel particles. Through chemical modification of the polymer,
PNIPAM particles can also be made responsive to pH and electrolyte concentration.
It has been shown that microgel particle-stabilized emulsions can be broken on-
command, by heating and/or pH adjustment; their content can be released and the
microgels can be recycled by subsequent cooling. This stimuli-responsiveness of
PNIPAM particles makes them interesting candidates for the production of controlled
release systems based on particle stabilized emulsion droplets. [21, 33].

A feature which soft particles share with their hard counterparts is the strong
anchoring onto fluid interfaces. The particle adsorption energy AE is given by:

AE = niréo (5)

where r is particle radius and o is the surface tension of the bare fluid interface. For
micron-sized particles at common fluid interfaces, the adsorption energy is very high
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in comparison with the thermal energy kgT, which is why particles adsorb irreversibly
to the fluid interface.

Due to their soft nature, microgels can be substantially deformed by interfacial forces
[34, 35]. For perfectly soft particles with uniform elastic modulus of the whole particle,
Deshmukh et al. use the ansatz

Ebulk

to estimate a typical length scale of deformation due to surface forces [36]. Here Aris
the magnitude of radial stretching, o is the surface tension and E, i is the elasticity of
the particle. For a system with o of 70 mN m™ and ¢ around 50 - 100 kPa, as found
for typical poly-NIPAM microgels, one obtains Ar on the order of one micrometer.
This shows that soft particles deform substantially under the influence of surface
forces. The deformation of soft particles at a fluid interface can markedly increase
their adsorption energy. The radius r in equation 5 is in fact the radius of the particle
at the fluid interface. Particles with low elastic moduli attached to a fluid interface with
high surface tension will undergo pronounced radial stretching, bulk and interfacial
radius will differ accordingly, and the particle adsorption energy increases strongly
[34].

1.3.3.2.  Structure of emulsion droplets stabilized by soft particles

The majority of work on soft particles at interfaces focuses on the stabilization of
emulsion droplets, here in particular on droplets stabilized by PNIPAM microgel
particles. These soft particles are found to be excellent stabilizer for various types of
oil-in-water emulsion [37]. There are some literature reports on water-in-oil emulsions
stabilized by microgels, however, the microgels were found to be swollen by the oil
phase [38, 39]. It was concluded that alteration of the interfacial properties of the
microgels by solvent uptake was responsible for the microgels ability to stabilize
water-in-oil emulsions [37, 38].

Emulsion droplets stabilized by microgels can be characterized by a densely packed
particle monolayer at the oil-water interface [37, 38]. PNIPAM microgels, only swollen
by water, are found to residue predominantly in the water phase rather than the oil
phase, which seems plausible as PNIPAM below the LCST is well soluble in water.
Particles at the oil-water interface are strongly flattened when observed through the
non-polar phase. Furthermore, they adopt a core-corona morphology, with a core
which protrudes more in the non-polar phase than the apparently softer, strongly
flattened shell [40]. The appearance of this core-corona structure is associated to a
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higher density of cross-links in the particle interior relative to the particles outer shell,
which is explained by a faster polymerization rate of cross-linker in comparison with
the NIPAM monomer [41].

Not only is there a difference between core and corona, also the periphery of the
PNIPAM microgel particles is decorated with dangling chains, polymers which are
only loosely cross-linked and barely connected to the rest of the polymer network.
These dangling chains result in a fuzzy density profile of the microgels’ periphery as
measured by neutron scattering experiments in aqueous bulk solution [41]. Once the
microgel is adsorbed to the fluid interface, the dangling chains are adsorbing too.
Dangling chains from different microgel particles are strongly entangled and form an
interconnected polymer network on the interface of emulsion droplets [37, 42, 43].

1.3.3.3.  Viscoelastic properties of interfaces stabilized by soft particles

The formation of a network of intertwined microgel particles seems to be a
prerequisite for the stabilization of emulsion droplets. Brugger et al. could show that
charged microgels can form an entangled network at the oil-water interface which
yields a viscoelastic interfacial layer. Upon pH induced protonation of charged groups
inside the microgels, particles became more dense as well as less connected, their
performance as interfacial stabilizer deteriorated [37, 44, 45]. Upon protonation of
charged groups, also the elastic response of the interface as probed by dilational
rheology decreased [39]. In accordance with the latter observations, Destribats et al.
have shown that by lowering the cross-linking density, one can increase the
interfacial deformation and the overlap between the peripheral parts of the particles,
which results in a better performance as emulsion stabilizers [43].

From these results it can be concluded that the viscoelastic response of microgel
covered interfaces results from the formation of a 2D interfacial layer of microgels
having their peripheral parts connected to a certain extend [37, 43, 46]. The
viscoelastic properties of the microgel-covered interface seems to be a crucial factor
that determines emulsion stability. This results agree with the general notion that a
high value of the low-frequency elastic modulus results in a reduced rate of Ostwald
ripening and better dispersion stability [2-4].

1.3.3.4. Coalescence and thin film stability of dispersions stabilized by soft
particles

The ability of microgels to stabilize thin liquid films against coalescence is also of
importance to ensure good dispersion stability. The extraordinary stability of microgel
stabilized emulsions has been demonstrated by microfluidic experiments in which
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emulsion droplets of opposite charge were forced into contact, but did not coalesce.
However, by protonation of either the cationic or anionic microgel-covered emulsion
droplets, the droplets coalesced under the same experimental conditions [47]. This
confirms that for the stabilizing properties of microgels the particle charge plays an
indirect role via its influence on the extend of swelling and, hence, on the particle
morphology.

The stability of microgel stabilized free standing thin films in air seems inferior to the
high stability of thin films between emulsion droplets. Monteux et al. studied microgel
stabilized thin films in air with a Sheludko cell and found relative fast drainage and
film rupture. However, microgels were observed to aggregate at the air-water
interface, resulting in regions deprived of microgels. The authors concluded that the
particle-depleted regions of the film are the weak spots causing film rupture. Control
over particle aggregation and formation of a homogenously covered film of soft
particles was suggested to markedly improve thin film stability [48].

The above results highlight the peculiar properties of microgels as interfacial
stabilizers. It becomes clear that soft particles behave distinctly differently from hard
particles and that their exact morphology plays an important role with respect to their
ability to stabilize fluid interfaces [37].

1.3.4. Kinetics of particle adsorption to the fluid interface

A property which qualitatively distinguishes hard particles from soft particles is their
adsorption behaviour onto fluid interfaces. Hard particles, in particular when
negatively charged, do not adsorb easily at the fluid interface. This is often attributed
to repulsive interaction between the particles and the fluid interface [6]. Air-water and
oil-water interfaces adopt a negative charge due to spontaneous adsorption of
hydroxyl-ions, which in turn repels anionic particles [49-51]. Repulsive interaction
between particle and interface can also arise for cationic particles, due to image
charge effects [52]. To enable its adsorption onto fluid interfaces, a hard particle must
be endowed with sufficient kinetic energy to overcome possible energy barriers. A
suitable way to do this is high-shear mixing.

For soft particles such as PNIPAm based microgels, interfacial adsorption occurs
spontaneously [53]. Deshmukh et al. could show that microgel adsorption to the air-
water interface is diffusion limited [36]. Another study concluded that adsorption to
the oil-water interface is diffusion limited as well [54]. The absence of considerable
energy barriers for interfacial adsorption at fluid interfaces seems a generic property
of soft particles [55].
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1.3.5. Differences between hard and soft particles as interfacial stabilizer

In the previous two sections we highlighted the ability of soft particles to act as
dispersion stabilizers. In terms of coalescence stability hard and soft particles seem
to perform equally well. The next question which arises concerns the ability of soft
particles to stop Ostwald ripening. The question can be rephrased into how adsorbed
microgels react to bubble/droplet shrinkage. As soft particles of micron-sized
dimension are thought to irreversibly adsorb to the fluid interface, reduction of the
interfacial area will lead to a transition from a fluid-like interfacial layer to a solid-like
layer which shows a certain elastic response [37]. In this limit dangling chains on the
particles periphery may perhaps share excluded volume, but they are not really
compressed yet [48]. Further reduction of the interfacial area though, will lead to
pronounced lateral compression of the soft particles attached to the fluid interface.
The compressive strain response to this stress is largely dependent on the elastic
modulus of the particles. For an estimation one can assume the following:

According to Roark, the lateral stress s in the shell with thickness d of a hollow
sphere with radius R under pressure P equals [56]:

_ PR (7)
5= 24

The pressure acting on the shell of a bubble/droplet is the Laplace pressure given as

20 (8)

Then it follows that the lateral stress s in the particle covered bubble/droplet shell is

5= g (9)
T d
The strain response ¢ of the shell is given as

N (10)

£ =
Ebulk

If one assumes a shell thickness on the order of d=10® m and surface tension
0=70mN m™, equation 9 yields a lateral stress of 7E+04 N m™. With a bulk modulus
for PNIPAM based soft particles of E=10E+03 N m¥ this gives according to
equation 10 a strain e>>1. Hence, one would expect that the soft particles/microgels
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adsorbed to the fluid interface undergo strong lateral compression during the course
of Ostwald ripening, the particle covered bubbles/droplets would shrink accordingly.
Shrinking of the bubble/droplet and compression of the soft particles could stop only,
if a high surface pressure develops during interfacial compression and the high
Laplace pressure vanishes. This, however, supposes that the soft particles do not
desorb from the fluid interface before the high surface pressure can develop.
Otherwise bubble/droplet shrinkage continues, accompanied by particle desorption
from the interface.

The exact response of a particle laden interface to compression depends on the
physicochemical parameters of the systems. For PNIPAM microgels at the air-water
interface Cohin et al. found that the interfacial dilational elasticity modulus E (for a
definition see equation 2) adopts very small values, on the order of several mN m
[48]. From the data of Deshmukh et al. we estimate that E could be on the order
several tens of mN m™, but E declines already when the surface tension o is still
relative high [36]. Similar behaviour was observed for PNIPAM particles at the oil-
water interface [57]. The latter results seem to indicate that PNIPAM-based microgels
desorb from the fluid interface at a finite surface tension rather than developing high
surface pressures; however, the authors of the mentioned studies did not elaborate
on that.

From this argumentation it appears that the PNIPAM microgel systems studied so far
cannot completely stop Ostwald ripening. PNIPAM microgels can only impart certain
viscoelastic properties to the interface which retards Ostwald ripening and provides
kinetic stability to microgel stabilized emulsions. In fact, there are no literature
references on the stabilization of gas bubbles by PNIPAM microgels, and only a few
reports on the stability of emulsions prepared with polar oils which, however, lack
data on the long-term stability. We want to stress that the behaviour described here is
not generic for all soft particles, but system-specific. Other soft particle types, with
higher adsorption strength to the respective fluid interface, may be able to stop
Ostwald ripening.
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1.4. Aim and outline of the thesis

The aim of this work was to gain an insight into how efficient adsorption of colloidal
particles onto fluid interfaces could be achieved in order to obtain aqueous gas or oil
dispersions solely stabilized by the particles. In the first instance we wanted to
identify suitable processes which yield particle stabilized dispersion. Furthermore, we
wanted to compare different types of colloidal particles, from simple to more complex
ones, and to assess their ability to adsorb onto fluid interfaces and to stabilize fluid or
liquid dispersions against phase separation. This work is structured as follows:

Chapter 2 describes the application of ultrasound as a technique for the production
of particle-stabilized air bubbles. We prepare bubble dispersions (foams) solely
stabilized by solid polystyrene particles of different charge and different surface
functional groups. We also examine the interfacial structure of the particles on the
surface of these bubbles by microscopy. Finally, we show that surfactant addition can
lead to dissolution of otherwise very stable particle stabilized bubbles. This is
explained by the influence of surfactants on the capillary interaction (contact angle)
by which the particles are bound to the fluid interface.

The rest of the thesis concerns the application of core-shell particles for stabilization
of fluid interfaces in bubble dispersions and emulsions. These core-shell particles
consist of a hard, polystyrene core and a soft poly-NIPAM based shell, and were
designed with the aim to combine the advantageous properties of hard and soft
particle for stabilization of fluid interfaces. We presumed that the soft, polymeric
nature of the particle periphery would impart the ability to spontaneously adsorb to
fluid interfaces, in the same way as pure soft particles do. The solid PS core, on the
other hand, should possess a high enough elastic modulus not to be substantially
deformed under the influence of compressive stresses arising from Ostwald ripening.
In this way, the rigid cores should be able to establish a stress-bearing network that
can stop Ostwald ripening. At the same time, the core-shell particles were designed
to be rather large. Due to their micron-sized dimensions, particles are expected to
possess a high adsorption energy, which should prevent particle desorption even at
high surface pressures.

In summary the respective core-shell particles shall combine the following properties:
1) Ability to spontaneously adsorb to fluid interfaces
2) Ability to develop high surface pressures without desorbing from the fluid
interface
3) Particles shall be able to effectively stop Ostwald ripening
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In Chapter 3 we report on the preparation of core-shell particles with varying
thickness of the soft shell. We characterize these core-shell particles with respect to
their responsiveness to temperature, pH and electrolyte concentration.

In Chapter 4 we first compare core-shell particles with different thickness of the soft
shell as to their ability to adsorb on the air-water interface. We do this by evaluating
the surface pressure development over time, by tensiometry. From this we establish
a critical thickness for the soft shell below which particles seem to experience a
certain energy barrier for interfacial adsorption, but above which particles easily enter
the air-water interface. As tensiometry is an indirect method to ascertain particle
adsorption, we also use light microscopy to confirm that the core-shell particles are
readily populating different kinds of fluid interfaces.

Finally, we prepare air bubbles and different kinds of emulsions stabilized by core-
shell particles and evaluate the stability of the respective fluid and liquid dispersions.

In Chapter 5 we describe the experimentally determined 2D equation of state for
various core-shell particles adsorbed at the air-water interface. Core-shell particles
with different thickness of the soft shell, as well as the actual core particles are
compared with each other. With the help of optical microscopy we also assess the
interfacial structure adopted by the various particle types on a flat air-water interface.

In Chapter 6 we quantify the adsorption rate of core-shell particles onto the air-water
interface. By tensiometry we first measure the surface pressure development of core-
shell particles with a large shell and with the help of the 2D equation of state
established in chapter 3, we are able to convert these data into particle adsorption
rates. We describe the adsorption of core-shell particles onto the air-water interface
by an appropriate model. After this we investigate by drop shape analysis
tensiometry, using a special droplet liquid exchange set-up, whether the adsorption
of core-shell particles onto the air-water interface is a reversible or an irreversible
process.

In order to answer the question how core-shell particles adsorb onto the air-water
interface, as to their ability to breach the air-water interface, we perform cryo-
scanning electron microscopy and light microscopy. We explain the observations on
the structure of core-shell particles at the fluid interface by the elasto-capillary
deformation of the particle’s soft shell.

In Chapter 7 we conclude this thesis by a general discussion, and give a summary.

17



References

1. Lech, F.J., et al., Stability Properties of Surfactant-Free Thin Films at Different
lonic Strengths: Measurements and Modeling. Langmuir, 2015. 31(9): p. 2777-2782.
2. Kloek, W., T. van Vliet, and M. Meinders, Effect of Bulk and Interfacial
Rheological Properties on Bubble Dissolution. J Colloid Interface Sci, 2001. 237(2):
p. 158-166.

3. Meinders, M.B.J. and T. van Vliet, The role of interfacial rheological properties
on Ostwald ripening in emulsions. Advances in Colloid and Interface Science, 2004.
108-109(0): p. 119-126.

4. Georgieva, D., et al., On the Possible Role of Surface Elasticity in Emulsion
Stability. Langmuir, 2009. 25(10): p. 5565-5573.

5. Rosen, M.J. and J.T. Kunjappu, Foaming and Antifoaming by Aqueous
Solutions of Surfactants, in Surfactants and Interfacial Phenomena. 2012, John Wiley
& Sons, Inc. p. 308-335.

6. Tcholakova, S., N.D. Denkov, and A. Lips, Comparison of solid particles,
globular proteins and surfactants as emulsifiers. Physical Chemistry Chemical
Physics, 2008. 10(12): p. 1608-1627.

7. Pickering, S.U., CXCVI.-Emulsions. Journal of the Chemical Society,
Transactions, 1907. 91(0): p. 2001-2021.

8. Lam, S., K.P. Velikov, and O.D. Velev, Pickering stabilization of foams and
emulsions with particles of biological origin. Current Opinion in Colloid & Interface
Science, 2014. 19(5): p. 490-500.

9. Berton-Carabin, C.C. and K. Schroen, Pickering Emulsions for Food
Applications: Background, Trends, and Challenges, in Annual Review of Food
Science and Technology, Vol 6, M.P. Doyle and T.R. Klaenhammer, Editors. 2015,
Annual Reviews: Palo Alto. p. 263-297.

10. Tang, J., P.J. Quinlan, and K.C. Tam, Stimuli-responsive Pickering emulsions:
recent advances and potential applications. Soft Matter, 2015. 11(18): p. 3512-3529.
11.  Cavallaro, M., et al., Curvature-driven capillary migration and assembly of rod-
like particles. Proceedings of the National Academy of Sciences of the United States
of America, 2011. 108(52): p. 20923-20928.

12. Tan, S., R.L. Sherman, and W.T. Ford, Nanoscale Compression of Polymer
Microspheres by Atomic Force Microscopy. Langmuir, 2004. 20(17): p. 7015-7020.
13. Binks, B.P., Particles as surfactants - similarities and differences. Current
Opinion in Colloid & Interface Science, 2002. 7(1-2): p. 21-41.

14.  Midmore, B.R., Preparation of a novel silica-stabilized oil/water emulsion.
Colloids and Surfaces a-Physicochemical and Engineering Aspects, 1998. 132(2-3):
p. 257-265.

18



15.  Vignati, E., R. Piazza, and T.P. Lockhart, Pickering Emulsions: Interfacial
Tension, Colloidal Layer Morphology, and Trapped-Particle Motion. Langmuir, 2003.
19: p. 6650.

16. Tarimala, S. and L.L. Dai, Structure of Microparticles in Solid-Stabilized
Emulsions. Langmuir, 2003. 20(9): p. 3492-3494.

17.  Pawar, A.B., et al., Arrested coalescence in Pickering emulsions. Soft Matter,
2011.7(17): p. 7710-7716.

18.  Walstra, P., Physical chemistry of foods. Food science and technology : 121.
2003, New York [etc.]: Marcel Dekker.

19. Dinsmore, A.D., et al.,, Colloidosomes: Selectively permeable capsules
composed of colloidal particles. Science, 2002. 298(5595): p. 1006-1009.

20. Velev, O.D., K. Furusawa, and K. Nagayama, Assembly of Latex Particles by
Using Emulsion Droplets as Templates. 1. Microstructured Hollow Spheres.
Langmuir, 1996. 12(10): p. 2374-2384.

21.  Monteillet, H., et al., Multi-responsive ionic liquid emulsions stabilized by
microgels. Chemical Communications, 2014. 50(81): p. 12197-12200.

22.  Subramaniam, A.B., M. Abkarian, and H.A. Stone, Controlled assembly of
Jjammed colloidal shells on fluid droplets. Nat Mater, 2005. 4(7): p. 553-556.

23. Buchcic, C., et al., Assembly of jammed colloidal shells onto micron-sized
bubbles by ultrasound. Soft Matter, 2015. 11(7): p. 1326-34.

24.  Abkarian, M., et al., Dissolution arrest and stability of particle-covered bubbles.
Phys Rev Lett, 2007. 99(18): p. 188301.

25. Park, J.l., et al., Titelbild: A Microfluidic Approach to Chemically Driven
Assembly of Colloidal Particles at Gas—Liquid Interfaces (Angew. Chem. 29/2009).
Angewandte Chemie, 2009. 121(29): p. 5321-5321.

26. Denkov, N.D., et al., A Possible Mechanism of Stabilization of Emulsions by
Solid Particles. Journal of Colloid and Interface Science, 1992. 150(2): p. 589-593.
27.  Kruglyakov, P.M., A.\V. Nushtayeva, and N.G. Vilkova, Experimental
investigation of capillary pressure influence on breaking of emulsions stabilized by
solid particles. Journal of Colloid and Interface Science, 2004. 276(2): p. 465-474.

28.  Vrij, A. and J.T.G. Overbeek, Rupture of thin liquid films due to spontaneous
fluctuations in thickness. Journal of the American Chemical Society, 1968. 90(12): p.
3074-3078.

29. Prudhomme, R.K. and S.A. Khan, Foams : theory, measurements, and
applications. Surfactant science series;vol. 57. 1996, New York [etc.]: Dekker.

30. Nushtayeva, A.V. and P.M. Kruglyakov, Capillary pressure in a thinning
emulsion film stabilised by spherical solid particles. Mendeleev Communications,
2001. 11(6): p. 235-236.

19



31.  Binks, B.P. and S.O. Lumsdon, Influence of particle wettability on the type and
stability of surfactant-free emulsions. Langmuir, 2000. 16(23): p. 8622-8631.

32. Abate, A.R., et al., Measuring the elastic modulus of microgels using
microdrops. Soft Matter, 2012. 8(39): p. 10032-10035.

33. Ngai, T., S.H. Behrens, and H. Auweter, Novel emulsions stabilized by pH and
temperature sensitive microgels. Chemical Communications, 2005(3): p. 331-333.
34. Style, RW,, L. Isa, and E.R. Dufresne, Adsorption of soft particles at fluid
interfaces. Soft Matter, 2015. 11(37): p. 7412-7419.

35.  Mehrabian, H., J. Harting, and J.H. Snoeijer, Soft particles at a fluid interface.
Soft Matter, 2016. 12(4): p. 1062-1073.

36. Deshmukh, O.S., et al., Equation of state and adsorption dynamics of soft
microgel particles at an air-water interface. Soft Matter, 2014. 10(36): p. 7045-7050.
37. Richtering, W., Responsive Emulsions Stabilized by Stimuli-Sensitive
Microgels: Emulsions with Special Non-Pickering Properties. Langmuir, 2012. 28(50):
p. 17218-17229.

38. Destribats, M., et al., Water-in-Oil Emulsions Stabilized by Water-Dispersible
Poly(N-isopropylacrylamide)  Microgels: Understanding Anti-Finkle Behavior.
Langmuir, 2011. 27(23): p. 14096-14107.

39. Brugger, B., B.A. Rosen, and W. Richtering, Microgels as stimuli-responsive
stabilizers for emulsions. Langmuir, 2008. 24(21): p. 12202-8.

40. Geisel, K., L. Isa, and W. Richtering, Unraveling the 3D Localization and
Deformation of Responsive Microgels at Oil/Water Interfaces: A Step Forward in
Understanding Soft Emulsion Stabilizers. Langmuir, 2012. 28(45): p. 15770-15776.
41.  Stieger, M., et al., Small-angle neutron scattering study of structural changes
in temperature sensitive microgel colloids. The Journal of Chemical Physics, 2004.
120(13): p. 6197-6206.

42.  Brugger, B., et al., The Colloidal Suprastructure of Smart Microgels at Oil-
Water Interfaces. Angewandte Chemie-International Edition, 2009. 48(22): p. 3978-
3981.

43. Destribats, M., et al., Soft microgels as Pickering emulsion stabilisers: role of
particle deformability. Soft Matter, 2011. 7(17): p. 7689-7698.

44.  Brugger, B., J. Vermant, and W. Richtering, Interfacial layers of stimuli-
responsive  poly-(N-isopropylacrylamide-co-methacrylicacid)  (PNIPAM-co-MAA)
microgels characterized by interfacial rheology and compression isotherms. Phys
Chem Chem Phys, 2010. 12(43): p. 14573-8.

45. Massé, P, et al., Impact of Electrostatics on the Adsorption of Microgels at the
Interface of Pickering Emulsions. Langmuir, 2014. 30(49): p. 14745-14756.

46. Schmidt, S., et al., Influence of Microgel Architecture and Oil Polarity on
Stabilization ~ of  Emulsions by  Stimuli-Sensitive ~ Core—Shell ~ Poly(N-

20



isopropylacrylamide-co-methacrylic acid) Microgels: Mickering versus Pickering
Behavior? Langmuir, 2011. 27(16): p. 9801-9806.

47.  Liu, T., et al., Non-coalescence of oppositely charged droplets in pH-sensitive
emulsions. Proceedings of the National Academy of Sciences, 2012. 109(2): p. 384-
389.

48. Cohin, Y., et al., Tracking the interfacial dynamics of PNiPAM soft microgels
particles adsorbed at the air-water interface and in thin liquid films. Rheologica Acta,
2013. 52(5): p. 445-454.

49. Graciaa, A., et al., The {-Potential of Gas Bubbles. Journal of Colloid and
Interface Science, 1995. 172(1): p. 131-136.

50. Nguyen, A.V., P. George, and G.J. Jameson, Demonstration of a minimum in
the recovery of nanoparticles by flotation: Theory and experiment. Chemical
Engineering Science, 2006. 61(8): p. 2494-2509.

51. Marinova, K.G., et al., Charging of Oil-Water Interfaces Due to Spontaneous
Adsorption of Hydroxyl lons. Langmuir, 1996. 12(8): p. 2045-2051.

52.  Wang, H., V. Singh, and S.H. Behrens, Image Charge Effects on the
Formation of Pickering Emulsions. The Journal of Physical Chemistry Letters, 2012.
3(20): p. 2986-2990.

53. Zhang, J. and R. Pelton, Poly(N-isopropylacrylamide) Microgels at the
Air-Water Interface. Langmuir, 1999. 15(23): p. 8032-8036.

54. Li, Z., et al., Poly(N-isopropylacrylamide) microgels at the oil-water interface:
adsorption kinetics. Soft Matter, 2013. 9(41): p. 9939-9946.

55. Deshmukh, O.S., et al., Hard and soft colloids at fluid interfaces: Adsorption,
interactions, assembly &amp; rheology. Advances in Colloid and Interface Science,
2015. 222: p. 215-227.

56. Roark, R.J. and W.C. Young, Formulas for stress and strain. 1975, Tokyo:
McGraw-Hill.

57. Geisel, K., et al., Hollow and Core—Shell Microgels at Oil-Water Interfaces:
Spreading of Soft Particles Reduces the Compressibility of the Monolayer. Langmuir,
2015. 31(48): p. 13145-13154.

21



22



Chapter 2
Assembly of jammed colloidal shells

onto micron-sized bubbles by
ultrasound

Stabilization of gas bubbles in water by applying solid particles is a promising
technique to ensure long-term stability of the dispersion against coarsening.
However, the production of large quantities of particle stabilized bubbles is
challenging. The delivery of particles to the interface must occur fast compared to the
typical time scale of coarsening during production. Furthermore, the production route
must be able to overcome the energy barriers for interfacial adsorption of particles.
Here we demonstrate that ultrasound can be applied to agitate a colloidal dispersion
and supply sufficient energy to ensure particle adsorption onto the air-water interface.
With this technique we are able to produce micron-sized bubbles, solely stabilized by
particles. The interface of these bubbles is characterized by a colloidal shell, a
monolayer of particles which adopt a hexagonal packing. The particles are anchored
to the interface owing to partial wetting and experience lateral compression due to
bubble shrinkage. The combination of both effects stops coarsening once the
interface is jammed with particles. As a result, stable bubbles are formed. Individual
particles can desorb from the interface upon surfactant addition, though. The latter
fact confirms that the particle shell is not covalently linked due to thermal sintering,
but is solely held together by capillary interaction. In summary, we show that our
ultrasound approach allows for the straightforward creation of micron-sized particle
stabilized bubbles with high stability towards coarsening.

This Chapter is based on: C Buchcic, RH Tromp, MBJ Meinders and MA Cohen
Stuart, Assembly of jammed colloidal shells onto micron-sized bubbles by ultrasound,
Soft Matter, 2015
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2.1. Introduction

Bubbles are gas filled entities which can be dispersed in a aqueous medium.
Because of their high internal pressure, they are intrinsically unstable. The Laplace
pressure P, the excess pressure inside such a gas bubble, is given by the Young-
Laplace-equation

20 (1)

where o is the liquid/gas interfacial tension and R is the radius of the bubble. For a
micron-sized bubble bounded by a pristine air-water interface, the excess pressure is
about one and a half fold the standard atmospheric pressure. Owing to the high
pressure difference between the in- and outside of the bubble, the contained gas
readily dissolves in the surrounding liquid phase. Due to the dependence of Laplace
pressure on bubble size, a concentrated system of polydisperse bubbles will undergo
mass transport from small to large bubbles. This process, known as
disproportionation or Ostwald ripening, together with the coalescence of individual
gas bubbles eventually leads to a complete phase separation into liquid and gas
phase [1].

An elastic shell around the bubbles can slow down these processes and impart
kinetic stability. Lipids, proteins, surfactants or mixtures thereof are commonly used
shell materials for bubble stabilization. The longevity of such bubbles depends on the
rheological properties of the interface, but usually does not exceed several hours [2,
3]. An alternative to the application of these molecular stabilizers is the use of
colloidal particles that are able to adsorb at the bubble surface. The stabilization of
disperse systems via accumulation of particles at the phase boundary is commonly
referred to as Pickering stabilization. The prevention of coalescence and
disproportionation is thought to be due to a combination of electrostatic and steric
effects: once a sufficient number of particles is adsorbed at the air-water interface,
the shrinking of bubbles due to capillary pressure differences is arrested as soon as
the particles at the interface repel each other sufficiently strongly. Further shrinking is
energetically unfavourable because particles would have to leave the interface for
that to occur. This will not take place owing to the large adsorption energy, which is
typically orders of magnitude larger than kgT. At the same time, coalescence is
impeded as the liquid film in between two adjacent bubbles cannot rupture because
of steric hindrance. The result is a stable suspension of bubbles, which is
homogenous under gravity when the bubbles are smaller than typically 1 ym.
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A prerequisite for colloidal particles residing in the bulk to adsorb at an interface is
that they are partially wetted by both coexisting fluid phases. The particle wettability
is usually quantified in terms of the three-phase contact angle 6 between the solid
and the fluid interface. For air-water interfaces contact angle values above 90°
indicate that the particle is being preferentially wetted by air, whereas values below
90° indicate preferential wetting by water. The energy of adsorption AE depends on
the particle wettability as well as particle size and surface tension of the bare air-
water interface. For particles of radius r, with a contact angle 6, at an air-water
interface with surface tension o, AE is given by equation 2.

AE = nr?o(1 + cos 6)? (2)

For a particle of radius 10° m at an air-water interface with surface tension
0.072 Nm™ and a contact angle 6 of 60° (characteristic for polystyrene particles), the
energy for removal from the air-water interface is of the order of 10" kgT. This
extremely large energy barrier relative to the thermal energy explains why such
particles are practically irreversibly attached to the interface and remain stuck there
although bubble shrinkage would be a driving force for them to leave the interface [4].
Due to the high energy barrier for desorption of particles from the interface, one
would expect a long term stability of particle covered bubbles. Experiments confirm
this and it has been shown that particle decorated interfaces can stop
disproportionation and coalescence on very long time scales, up to several months
[5, 6]. We note in passing that the contact line on the particle surface may not reach
an instant equilibrium position [7]. The fact that particles are not at their equilibrium
position may affect the exact value of the adsorption energy, but does not invalidate
the argument that micron-sized particles are irreversibly attached to the fluid interface
due to partial wetting. Furthermore, the contact line may be pinned due to surface
roughness. This in turn may have repercussion for the effective adsorption energy
and the effective particle-particle interaction [8].

The longevity of particle stabilized systems have sparked the idea to exploit Pickering
stabilization of bubbles for a range of applications. Controlled assembly of such
bubbles into three dimensional scaffolds may be of use in material science for the
design of ultra-light weight materials or acoustic insulators [9]. Another possible area
of use, on the border between material science and biomedicine, is the application of
particle stabilized micron-sized bubbles as contrast agent in ultrasound based
medical imaging. It was shown that bubbles having surfaces covered with
nanoparticles showed pronounced non-linear behaviour under ultrasound, a property
which is a prerequisite for the use of these entities in biomedical imaging [10]. Apart
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from these applications one might also envision the use of particle stabilized bubbles
as functional ingredient in consumer goods. Certain food products for instance owe
their desired textural perception to the presence of disperse gas bubbles [11].
Incorporation of particle stabilized gas bubbles into food products might therefore
enable to control the rheological properties of bubble containing products. Another
interesting idea is the inclusion of micron-sized bubbles in packaging materials and
coatings, in order to impart certain permeability properties to the material.

Each of the applications mentioned above may require a different level of
polydispersity in the bubble size distribution. An equally important parameter for the
industrial scale application of particle stabilized bubbles is the yield of the production
method. Polydispersity and yield are therefore the criteria which need to be taken into
account when choosing a bubble production method. Moreover, it has been
recognized that for solid particles mere diffusion is not an efficient mechanism for
bringing particles into the air-water interface. For production of significant quantities
of particle-decorated bubbles the particles must be deliberately delivered to the
interface. This requires shear forces or other forms of active transport to the interface
present in the production process. The necessity for an input of energy to assemble
particles at the interface can be explained by electrostatic effects between particle
and interface. In addition the penetration of particles into the interface involves
draining and breaking of the liquid film between particle and interface. As a result it is
a difficult target to ensure fast particle absorption to the air-water interface [12].

In the scientific literature merely a few attempts to produce micron sized bubbles
stabilized with colloidal particles have been reported. Manual shaking, intuitively an
easy method to create bubbles, results in macroscopic, millimetre sized bubbles of
high polydispersity [13-15]. As an alternative, a few authors report on the successful
use of microfluidic methods for assembly of particle covered, micron-sized bubbles.
The resulting bubbles show low levels of polydispersity and high stability towards
coarsening. A drawback of the microfluidic methods is their low yields [9, 16].

In this work we studied the use of ultrasound for creation of particle stabilized,
micron-sized bubbles. Our interest in the ultrasound technique was motivated by its
possible implementation in an industrial-scale, continuous flow-through production
process. The model particles of our choice were polystyrene particles with sizes of
around one micrometre in diameter. We chose this size in order to allow for
microscopic observation of individual particles on the bubble surface. The material
polystyrene was chosen as it is partially wetted by water and air, a prerequisite to
assemble particles made up of this material at the interface [17]. We investigated the
efficiency of ultrasound to assemble micron-sized colloidal particles onto air-water
interfaces. In addition, we studied properties of the bubbles obtained with this
technique. Furthermore, we checked if the interfacial particles can be displaced from
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the interface by surfactant addition. In this way we tested particle assembly onto the
bubble interface is reversible.

2.2. Experimental details

2.2.1. Materials

Hydrochloric acid, sodium hydroxide, styrene, methanol, the initiators 2,2'-
Azobis(isobutyramidine) dihydrochloride (AIBA) and Azo-bis-(isobutyronitril) (AIBN)
as well as the co-monomer Sodium p-styrenesulfonate (NaSS) were purchased from
Sigma-Aldrich (Germany). Carboxyl charge-stabilized polystyrene microspheres
(Molecular Probes Inc.) with the catalogue number C37274 were purchased from
Fisher Scientific, The Netherlands. The particle surfaces are claimed to be
hydrophobic. The water used during this study was purified with a Milli-Q water
purification system (Thermo Scientific) after passing an ion-exchanger. The obtained
water had a typical resistivity of 18.2 MQ.

2.2.2. Synthesis of colloidal particles

Polystyrene (PS) particles stabilized by the charged co-monomer p-styrenesulfonate
(NaSS) and further on denoted as NaSS-PS particles have been synthesized by
dispersion polymerization in methanol according to a procedure of Zhang et al. [18].
A round-bottomed flask was filled with 75 ml methanol, 20 ml water, 10 ml styrene,
and 0.023 g of the anionic co-monomer p-styrene sulfonate (NaSS). The reaction
mixture was purged with nitrogen and heated to 70°C. An amount of 0.195g AIBN
was dissolved in 5 ml methanol and injected into the flask to start the reaction.
Polymerization continued for 24 hours. Particles were purified by repeated
centrifugation-redispersion cycles in water and subsequent dialysis against water.

PS particles stabilized by the charge which stems from the initiator 2,2'-
Azobis(isobutyramidine) dihydrochloride (AIBA) and further on denoted as AIBA-PS
particles have been synthesized by dispersion polymerization in methanol. A round-
bottomed flask was filled with 170 ml methanol and 20 ml styrene. The reaction
mixture was purged for 30 min with nitrogen and subsequently heated to 70°C where
after 0.2 g of the initiator AIBA (dissolved in 20 ml Methanol) was injected.
Polymerization continued for 24 hours. Particles were purified by repeated
centrifugation-redispersion cycles in water and subsequent dialysis against water.

2.2.3. Characterization of colloids by light scattering

Particle size and polydispersity were analysed by light scattering. Measurements
were performed on a ALV apparatus with a DPSS laser (Cobolt Samba 300 mW at
532 nm), ALV 50/100/200/400/600 um Pinhole system, a Thorn RFIB263KF Photo
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Multiplier Detector, ALV7002 external correlator and a ALV-SP/86 Goniometer. The
scattering intensity of the particle dispersion was measured at scattering angles
between 40° < a < 130° at 1° intervals. The resulting scattering curves were fitted to a
theoretical form factor for polydisperse hard spheres from which we obtained
information about particle size and polydispersity. For multimodal particle dispersions
a first order autocorrelation function was generated and data were analysed by the
CONTIN algorithm.

2.2.4, Electrokinetic charge of the colloidal particles

The electrokinetic charge of the synthesized particles was analysed with a Malvern
Nanosizer S apparatus. Prior to analysis the particle dispersion was diluted with
water. Adjustment of the pH was done through dropwise addition of 0.1 M
hydrochloric acid respectively 0.1 M sodium hydroxide with an autotitration unit under
exclusion of air. About 750 pl of particle dispersion was filled into a disposable folded
capillary cell. The applied electrical current was automatically regulated by the in-built
software algorithm.

2.2.5. Ultrasonic treatment

Ultrasonic treatment was performed with a Bandelin Sonoplus ultrasonic
homogenizer operating at 20 kHz, equipped with a MS 73 ultrasound needle. A
cylindrical glass vessel (2.8-cm inner diameter) with a total volume of 20 mL was
used for ultrasonic irradiation. Prior to ultrasound treatment the particle stock
dispersion was diluted with water to the desired concentration and about 2ml of the
dispersion were transferred into the glass vessel. The ultrasound needle was placed
just below the upper surface of the particle dispersion. The vessel was closed and
the sample was sonicated for 15 seconds.

2.2.6. Bubble size characterization

A small amount of bubble suspension was diluted with water in a volume ratio 1:20.
The size of the bubbles was assessed by observing the diluted samples on an
upright Olympus BX 50 light microscope, equipped with long working distance
objectives and operated in transmission mode. For low magnification imaging we
avoided the use of a cover slide in order not to cause confinement and bubble
deformation. The resulting pictures were recorded on a digital high resolution
microscope camera of type Olympus DP70.

Additionally, a concentrated bubble dispersion was imaged using X-Ray Tomography
on a Phoenix v[tomelx m equipped with a 180kV/15 W nanofocus X-ray tube
(General Electric, US). The sample was placed in a small plastic tube for imaging.
The reconstruction of the 3D structure was performed using the built-in Phoenix

28



software. Image analysis was done with custom-written routines using Avizo (VSG)
and Matlab (Mathworks).

2.2.7. Exposure of bubbles to surfactants

A diluted dispersion of bubbles were introduced into a home-made glass capillary cell
with a height of 100 micrometre, after which the non-ionic surfactant Triton X-100
was added in order to yield a surfactant concentration of TmM in the bulk aqueous
phase. The structure of the bubbles after surfactant exposure was observed via
microscopy on an upright Olympus BX 50 light microscope.

2.2.8. Contact angle measurements

To determine the effect of surfactant addition on the wettability of the colloidal
particles, contact angle measurement in the sessile drop conformation were
performed. For this purpose colloidal particles were oven dried and dissolved in
chloroform to yield a concentration around 1 % w/v. The resulting solution was spin
cast at 1500 rpm on a plasma cleaned silicon wafer. Aliquots of polystyrene solution
were deposited in order to yield a polymer layer of approximately 200nm thickness.
Contact angle measurements were performed on these polystyrene surfaces.
Contact angles on the polystyrene surfaces were determined for a sessile drop of
pure water and for Triton X-100 surfactant solution of 1 mM concentration.

2.2.9. Tensiometry

In order to investigated if small-molecular-weight, surface-active species are present
in the particle dispersions, equilibrium surface tension of the supernatant after
centrifugation of the particle dispersion was measured on a Drop Tensiometer PAT-1
(Sinterface, Germany).

2.3. Results and Discussion

2.3.1. Colloidal Particle Synthesis & Characterization

For the colloid synthesis we opted for a dispersion polymerization of styrene in
alcoholic solvent. This polymerization method was chosen as it allows for obtaining
micron-sized particles, in a one-shot synthesis without the addition of surfactant, like
in emulsion polymerization [19]. We wanted to avoid surface active additives because
surfactants that are present in the polymerization process might physically adsorb to
the particle surface and alter their wettability [4]. Despite the absence of surfactant
present in the polymerization process, there might be surface active species in the
form of oligomers formed as a by-product of the polymerization reaction [20]. The
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chosen cleaning procedure with repeated centrifugation- redispersion cycles turned
out to be sufficient to remove potentially present low molecular weight surface active
entities. This was concluded from capillary pressure tensiometry of the supernatant
after centrifugation for which a surface tension of 72 mN m™, equal to a pure air-
water interface, was measured.

Our polymerization scheme resulted in particles with a diameter of around 1
micrometre (s. Tab. 1). The size of these particles makes them well suited for
observation via standard light microscopy techniques. The cationic particles used in
this study showed a bimodal size distribution which probably is due to some kind of
secondary nucleation process [21].

Tab. 1: Size and polydispersity of the colloidal particles used during this study

Particle type, electric | Diameter / Polydispersity
charge index

NaSS-PS, 0.25%(w/w) | 946 nm / PDI 1.01

NaSS, anionic
COOH-PS, anionic 1080 nm / PDI 1.02
AIBA-PS, cationic 1280 nm, 244 nm (bimodal)

In Tab. 1 also the charge the particles carry is specified. For COOH-PS particles and
NaSS-PS particles a negative electrokinetic charge over the whole pH range could
be ascertained. Concerning the charge of the AIBA-PS particle we observed that the
zeta potential reversed from positive to negative upon increasing pH. This charge
reversal may be attributed to the hydrolysis of surface amidine groups into negatively
charged carboxyl groups [22]. In all our experiment AIBA-PS particles were set to a
pH value around 3. At this pH AIBA-PS particles showed a positive electrokinetic
charge during electrophoresis. Hence, these particles are assumed to be cationic.

2.3.2. Bubble size

Microscopic analysis of the particle dispersion after sonication revealed the formation
of micron-sized bubbles with a typical size around 10-100 pm. Fig. 1 shows a
population of bubbles stabilized by the cationic polystyrene particles. A lognormal
distribution was fitted to the resulting size distribution; a log mean diameter of 25 pm
was found (Fig. 1).
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Fig. 1: (a) Population of bubbles stabilized by cationic polystyrene Latex (b) Size distribution of the
bubbles with a lognormal distribution fitted to it

In order to confirm the results of the microscopic analysis, a concentrated particle
dispersion containing bubbles was imaged by X-Ray tomography directly after
ultrasound treatment. As seen in Fig. 2 the strong contrast between air and water
allows to observe individual bubbles with a typical size of a few micrometre or larger,
while sub-micron-sized PS particles are too small to be resolved at the used
experimental resolution. Image analysis yielded a mean bubble volume of 10° mm?,
which corresponds to a diameter of around 27 pm and is consistent with our results
from microscopic analysis. This bubble size distribution did not change during a
prolonged storage period up to three months, which illustrates the excellent stability
of the particle stabilized bubble dispersion.

Fig. 2: Polydisperse sample of particle stabilized bubbles imaged by XRT
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2.3.3. Influence of process parameters on bubble yield

One parameter which strongly influenced the yield of the production method was the
particle concentration. We started to test for bubble formation with diluted samples of
1% w/w particles. At these concentrations only a few particle stabilized bubbles could
be made. Increasing the particle concentration clearly yielded higher numbers of
particle stabilized bubbles. A particle concentration around 5% w/w ensured a good
yield. The necessity for high particle concentration indicates a low efficiency of
particle adsorption to the air-water interface. In other words, there is a low probability
for particles to adsorb at the interface. This is most probably caused by an energy
barrier to be overcome by particles entering the interface [12]. Air-water interfaces
are reported to possess a negative surface potential. This negative surface potential
poses an energy barrier for anionic particles to reach the interface [23-26]. Besides,
other effects, such as image charge effects may cause a barrier for interfacial
adsorption. This may be the case, e.g., for cationic particles dispersed in the polar
phase adjacent to the interface [27]. Energy barriers may be lowered by screening of
the particle surface charge [26]. In principle, this can be achieved by adjustment of
the pH as well as via salt addition. As some colloids, like particles charge-stabilized
with styrenesulfonate groups, have a very low pKa [28], salt addition constitutes a
more generic way of charge screening. By addition of 0.1M monovalent salt charges
can be efficiently screened, which postulates itself by a qualitative observed better
particle adsorption to the interface; meaning more bubbles are formed.

To test the influence of ultrasound parameters, we varied ultrasound power and duty
cycle. The power input was varied continuously between 10 — 100 % of the maximum
capacity. In all cases we observed the formation of particle stabilized bubbles. The
energy input during sonication appeared not to be a limiting factor and strong enough
to overcome barriers for interfacial adsorption of particles. Ultrasound treatment may
be considered as a turbulent mixing process, in which hydrodynamic forces pushing
the particles towards the interface compete with repulsive forces counteracting
particle adsorption to the interface. The hydrodynamic force F occurring during
ultrasound treatment may be estimated as [12]:

2 2 3
F~1r%pw3R3 (3)

where r is the particle radius, p the dispersion density, € the energy dissipation rate
during ultrasound treatment and R the droplet radius. With a particle radius r=5*10"
m, a typical bubble radius of R=1.25*10" m, a typical density p= 1000 kg m™ and an
energy dissipation rate w~10°J kg s™ we estimate the hydrodynamic forces F to be
around 0.5 nN. The typical range of repulsive forces measured by Atomic Force
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Microscopy for interaction of spherical particles with bare air-water interfaces are
around a few hundred to a few thousand pN, depending on particle size and
wettability [29]. The repulsive forces present in the systems investigated in this study
are probably lower than the hydrodynamic force of 0.5 nN so that particles are able to
adsorb at the air-water interface during ultrasound treatment.

2.3.4. Interfacial structure of the bubbles

A feature of all of the bubbles produced in the context of this work is a densely
packed layer of colloidal particles on the surface (Fig. 3). Particles at the interface are
jammed. Thus, it is concluded that only a densely packed particle layer at the
interface is able to stop coarsening of the bubbles. Similar jammed structures have
been reported for particle stabilized bubbles produced by microfluidics [9, 16].

Fig. 3: Microscopic picture of bubbles stabilized by cationic Latex particles

The fully particle covered surfaces that we observe are in contrast with some reports
on the interfacial structure in particle stabilized emulsions, where long term
(meta)stable interfaces decorated with patches of particles separated by particle free
domains were observed [30-32]. We attribute this fundamental difference to the
different solubility of the dispersed materials in the aqueous phase and to a
difference in the interfacial tension. Pickering emulsions containing highly apolar oils
mainly phase separate via coalescence of individual oil droplets within the time scale
of the experiments. Bubbles, however, contain air or other well water-soluble gases
that phase separate both via Ostwald ripening and coalescence. One might argue
that in the former case an incomplete surface coverage is sufficient to inhibit contact
of individual oil droplets by steric interaction and therewith impart kinetic stability
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against coalescence. In the case of particle stabilized bubbles on the other hand, the
dispersed gas can diffuse through the aqueous phase, from small bubbles to large
bubbles, and give rise to phase separation via Ostwald ripening. In order to stop
coarsening, the high Laplace pressure which is the driving force for Ostwald ripening
must be suppressed. As pointed out by Kam and Rossen this can be achieved via a
jammed interfacial layer of colloidal particles which are interacting via capillary
interaction [33]. With such a closed packed interfacial layer of particles in place,
further bubble shrinkage causes the air-water interface in between the particle to
change its curvature. According to their model, the air-water interface in between the
particles can flatten which implies zero Laplace pressure. Further bubble shrinkage
may even result in a concave interface and a net inward force which can drive the
particles into hard sphere contact and could perhaps lead to sintering of the particles
at the interface [33]. Although the curvature of the interface between particles
residing on the interface of a bubble is difficult to assess experimentally, the
proposed model can explain our experimental observation of closed packed particle
monolayers on the surface of stable bubbles.

.ﬁ’h- & :@20° 2

Fig. 4: Microscopic picture of bubbles stabilized by Latex particles. Pronounced non-spherical shapes
can be observed.

Another feature of the bubbles prepared during this work is their non-spherical shape
(see Fig. 4). This implies that particle stabilized interfaces can support non-isotropic
stresses. An anisotropic shape confirms that the interfacial properties of the bubbles
are no longer determined by the surface tension of the air-water boundary, because
a non-zero interfacial tension would not permit any non-minimal, i.e. non-spherical
shapes. Non-spherical bubbles can only exist if particles on the interface are
jammed. A solid-like response to non-isotropic stresses has been identified as a
generic property of jammed interfaces and was used to create non-spherical bubbles
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similar to the ones we observe [34]. Non-spherical bubbles, although much larger
than the ones prepared during this work, are also encountered after manual shaking
a particle dispersion, and can also be attributed to crowding of particles at the
interface [5, 35].

We would like to stress that for the formation of a rigid colloidal shell which is able to
support non-isotropic stresses, the particles must be strongly bound to the interface.
Such a strong attraction to the interface can arise if particles are partially wetted by
both phases adjacent to the interface. In this case their adsorption energy is high
enough to prevent desorption from the interface when interfacial particles start to
interact due to bubble shrinkage. This allows for the establishment of a tight particle
network which can bear non-isotropic stresses and therewith acts like a solid-like
material [33]. This situation is fundamentally different from the system described by
Irvine et al. [36]. These authors also observe a crystalline layer of particles at the
interface of an emulsion droplet. However, these particles are attracted to the
interface solely by image charge effects. Particles attracted to the interface solely by
image charge effects may also be able to form a stress bearing network. Theoretical
calculation predict adsorption energies up to 10° kgT for particles attracted to the
interface by image charge effects [37]. However, image charge effects can only be
harnessed for Pickering emulsions, in cases were the particle can be dispersed in the
non-polar phase.

In the case of particle stabilized bubbles produced in this work, the colloidal particles
are made up of polystyrene, a material which shows partial wettability by water as
well as air. These particles are expected to be strongly bound to the air-water
interface and fulfil the characteristics of a Pickering stabilized system [38]. It is also
interesting to note that particles do not have to be equally wetted by both phases to
allow the establishment of a stress bearing network. Partial wettability is sufficient to
allow the formation of a dense particle layer, providing stability against coarsening of
the bubbles. From equation 2 it should become clear that for micron-sized, non-
interacting particles, even a contact angle in the range of 5°-10° should be sufficient
for the particles to be irreversibly adsorbed to the interface.

In order to elucidate the interfacial structure in more detail, we observed bubbles at
high magnification by oil immersion microscopy. From Fig. 5 it is evident that
structural order over distances larger than a few particle diameter exists. The pair
correlation function indicates that a two dimensional quasi crystalline network on the
bubble interface is created. Distinct peaks around 1, V3, 2, /8 and 3 times the
nearest neighbour distance show that a 2D hexagonal structure is present. This is in
accordance with earlier observations of such structures on the interface of micron-
sized bubbles [16]. Microscopic observation of the bubble interface furthermore
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revealed that thermal motion of the particles as observed in the bulk water phase is
arrested.

Fig. 5: Microscopic structure of the interface of a particle stabilized bubble and the resulting pair
correlation function g(r).

In contrast to the particle monolayer observed in Fig. 5, salt addition to the aqueous
phase for screening of surface charges can alter the interfacial structure. A side
effect of salt addition is aggregation of particles at the interface. As a result a
multilayer structure, shown in Fig. 6, is obtained.

Fig. 6: Bubbles stabilized by anionic particles whose charges are screened by addition of 0.1M sodium
chloride
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2.3.5. Effect of surfactant exposure on the bubble stability

The surfactant Triton X-100 was used to investigate the interaction between particles
residing on the bubble surface and surfactants added to the bulk aqueous phase. A
non-ionic surfactant was chosen in order to avoid electrostatic interaction between
surfactant and colloidal particles. The surfactant concentration was chosen so as to
be above the critical micelle concentration of 0.22 to 0.24 mM given by the supplier
[39]. In this concentration regime, the air-water interface as well as the polystyrene-
water interface are expected to be completely covered with surfactant.

After the bubbles have been brought into contact with surfactant solution, it can be
observed that particles are desorbing from the bubble interface (Fig. 7), the
remaining particles are no longer jammed and bubbles shrink over time. This has
been earlier reported in literature, and was attributed to a change in particle
wettability. It was assumed there that surfactant molecules adsorb onto the particle
surface with the hydrophobic tail towards and the hydrophilic head away from the
particle surface, thereby causing the particles to be become more hydrophilic and
consequently desorb from the air-water interface [39]. Indeed, it is well known that
Triton X-100 adsorbs readily onto PS particles [40].

L

&

Fig. 7: Particle stabilized bubbles exposed to Triton X100, particles are expelled from the interface
after surfactant addition

In order to quantify the change of particle wettability due to addition of surfactant, we
measured the contact angles of a sessile drop of pure water, and surfactant solution
respectively, on a flat polystyrene interface. The polystyrene surface was prepared by
spin-coating and consisted of the same material the colloidal particles are made up
of. Although this method does not determine the wettability of a colloidal particle
itself, the method should give an estimate of the particle contact angle with the air-
water interface. The method is easy to implement and is thus frequently used in
practice [41]. For pure water on polystyrene, a contact angle of 87° was determined.
This contact angle value indicates that polystyrene is partially wetted by water and
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air, the particles made of this material should therefore strongly anchor to the bare
air-water interface [42]. Contact angle measurements with a surfactant solution
containing Triton X-100 in a concentration of 1mM were performed on the same
polystyrene surface. For the drop of surfactant solution on the flat polystyrene
surface we measured a contact angle of 12°. This strong decrease in contact angle in
comparison with pure water can be attributed to the adsorption of surfactant on air-
water as well as the polystyrene-water interface.

We did not measure contact angles of zero. However, we presume that the prepared
polystyrene surfaces could be somehow more hydrophobic than the actual colloidal
polystyrene particle. This can be because during spin-coating of polystyrene,
hydrophilic groups may be buried inside the coated layer. On the colloidal particle,
these hydrophilic groups are expected to be predominantly on the particle surface,
making the particle more hydrophilic than a pure polystyrene layer. Thus, we assume
that in the here tested surfactant concentration regime the actual colloidal particles
might be completely wetted by the aqueous surfactant solution. For the behaviour of
particles adsorbed to the air-water interface this means that surfactant addition
causes the particles to desorb from the interface. As a result the colloidal armour
loses its integrity, and the bubble is no longer protected against shrinkage due to
dissolution of enclosed air. We therefore conclude, that the observed destabilization
of particle stabilized air-bubbles can be explained solely by detergency. The
dissolution of particles in this way also shows that no sintering takes place between
the particles. Sintering of particles at the interface might have been considered as a
possible mechanism for the appearance of stable bubble. This is because during
ultrasound treatment the temperature can be locally very high, which might have
caused the glassy polystyrene particles to sinter with each other.

2.4. Conclusion

We have shown that colloidal particles can be assembled at the air-water interface by
means of ultrasonic treatment. With this method we were able to produce diluted
bubble dispersions. We observe that the interface of stable air bubbles is covered
with a jammed layer of colloidal particles. This closed packed shell emerges during
shrinking of bubbles with initially partial particle coverage. Movement of particles at
the interface is largely arrested, which makes the whole structure appear like a solid
shell that protects the gas bubbles against dissolution. The stability of the shell can
be attributed to the high desorption energy of the polystyrene polymer particles.
These possess partial wettability for water and are thus practically irreversibly
attached to the interface. The assembly of colloidal particles at the bubble interface
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acts as a stress bearing network that inhibits the tendency of bubbles to shrink
further.

The stability of the resulting structures is remarkable; particle stabilized bubbles are
stable up to several weeks of storage. However, bubble stability is affected by the
addition of surface active substances. Upon addition of surfactant, particles are
ejected from the air-water interface. We explain that by a change in particle
wettability owing to the adsorption of amphiphilic surfactant molecules on the
hydrophobic polystyrene particle surface. As a result, the particle contact angle
changes. This seems to favour the formation of a surfactant stabilized bubble which
readily dissolves owing to the high Laplace pressure associated with their micron-
sized dimension. The fact that particles can desorb as individual entities from the
interface confirms that the particles do not sinter at the interface. Even though there
might have been local heating during ultrasonic treatment, the particle shell seems to
be solely hold together by capillary interaction.

In this study we only used a batch process to assemble particle stabilized bubbles.
The implementation of a continuous ultrasound process can be easily envisaged.
Altogether, ultrasound treatment seems to be a valuable method for straightforward
creation of particle stabilized bubbles with the inherent exceptional stability.
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Chapter 3
Synthesis and stimuli-responsive

properties of core-shell particles

We here report on the preparation of micron-sized core-shell particles comprising a
solid polystyrene (PS) core and a soft poly-N-isopropylacrylamide (PNIPAM) shell
functionalized with methacrylic-acid. By varying the number of seed particles during
the precipitation polymerization of NIPAM, we could obtain core-shell particles with
varying core/shell size ratios (radius core/radius shell) in the range of 0.04 up to 1.33.
The resulting core-shell particles are monodisperse and remain colloidal stable even
at a very high electrolyte concentration of 300 mM NaCl, while the polystyrene core
particles tend to aggregate at such a high electrolyte concentration. This
demonstrates that the soft shell provides a steric barrier against aggregation. The
synthesized core-shell particles exhibit responsiveness to temperature, pH and
electrolyte concentration. The lower critical solution temperature (LCST) of the core-
shell particles is markedly increased in comparisons with pure PNIPAM-polymers and
was found to be around 45 °C - 50 °C. Increasing the temperature up to 60 °C leads
to a pronounced collapse of the soft shell, core-shell particles attain a size which is
only slightly larger than the core particles.

This Chapter is based on: C Buchcic, RH Tromp, MBJ Meinders and MA Cohen
Stuart, Characterization of the multi-stimuli-responsive properties of polystyrene-
poly(N-isopropylacrylamide) core-shell particles, Manuscript in preparation
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3.1. Introduction

As the name indicates, core-shell particles are a class of particles comprising a core
and a shell. Core and shell can consist of different materials, often referred to as
composite particles, or of the same material with a different kind of structure
differentiating both parts. Synthesis of core-shell particles is often done to combine
different material properties into the same entity in order to obtain new functional
properties [1]. The choices regarding core and shell material are numerous. A
prominent choice is to coat a polymer particle with a silica shell. The silica shell can
serve for further chemical modification via the rich silane chemistry [2]. Another
prominent example are core-shell particles with a polystyrene (PS) core and a poly-
N-isopropylacrylamide (PNIPAM) shell [3]. PNIPAM has a lower critical solution
temperature (LCST) around 32°C, below this temperature the polymer exists in a
well-hydrated state and above this temperature most water is released and the
polymer chain collapses. PNIPAM containing core-shell particles have gained great
interest for controlled release of biomolecules [4], because of the stimuli-responsive
rheological properties of the respective particle dispersions [5], and due to their
tunable optical properties [6].

Polymeric core-shell structures can be created in a one-step procedure by using
monomers with different polymerization rates [7]. The synthesis of core-shell particles
is, however, often done via a two-step or multi-step procedure [6]. PS-PNIPAM core-
shell particles can be made by synthesis of PS core particles and subsequent
precipitation polymerization of PNIPAM. The polymerization reaction starts with a
dilute solution of NIPAM-monomer and initiator at a temperature well above the lower
critical solution temperature (LCST) of PNIPAM. The resulting polymers are insoluble
and thus precipitate on top of the PS cores. Further growth of the PNIPAM shell
proceeds by capture of monomers, oligomers and initiator from solution [8]. The size
of the resulting shell can be controlled by the amount of seed particles present during
precipitation polymerization [6]. While most reports on core-shell particles focus on
core-shell particles with either a very thin shell relative to the core or vice versa, we
here report on the preparation of core-shell particles which are multi-responsive and
where the size ratio core/shell can be easily varied over a relative large range of
values.

3.2. Material & Methods

3.2.1. Materials

Styrene, itaconic acid (lA), initiator 4,4'-azobis(4-cyanovaleric acid) (ACVA), N-
isopropylacrylamide (NIPAM), N,N'-methylbisacrylamide (BIS), methacrylic acid
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(MA), potassium peroxodisulfate (KPS) and sodium chloride (NaCl) are purchased
from Sigma-Aldrich. Ready-to-use dialysis device Float-A-Lyzer G2 with molecular
weight cut-off (MWCO) of 1000 KDa (Spectrum, US). Deionized (DI) water with a
resistance of 18.2 MQ.cm is used for all measurements.

3.2.2. Synthesis Core particles

Polystyrene particles are prepared by surfactant free emulsion polymerization. 20 g
Styrene, 0.5 g itaconic acid and 180 g DI water are charged to a round-bottom flask
sealed by a rubber septum. The flask is placed in an oil bath and heated to 80°C
under sparging with nitrogen gas for the duration of 20 minutes. 220 mg of the
initiator 4,4'-azobis(4-cyanovaleric acid) dissolved in 5 ml of 0.2 M sodium hydroxide
solution is added to the reaction mixture. The reaction proceeds for the duration of 18
hours at 80°C under stirring at 200rpm. After filtering through glass wool, the
resulting particle dispersion is centrifuged at 2500g for 3h. The supernatant is
removed and the precipitate is re-dispersed in DI water. This centrifugation-
redispersion cycle is repeated until the surface tension of the supernatant measured
by tensiometry is 72 mN m™. The solid content of the final core particle dispersion
was adjusted to 125 g L.

3.2.3. Synthesis core-shell particles

Core-shell particles are prepared by precipitation polymerization. 90 g DI water, 0.5 g
NIPAM, 20 mg BIS, 50 pyl MA and varying amounts of core particle dispersion with a
solid content of 125 g L' (for CS15: 12.5g, CS167: 10g, CS230: 5g, CS530: 2.5g, for
sample code see Tab. 1) are charged to a round-bottom flask sealed by a rubber
septum. The flask is placed in an oil bath and heated to 80°C under sparging with
nitrogen gas for the duration of 20 minutes. 50 mg of the initiator potassium
persulfate dissolved in 5 ml of DI water is added to the reaction mixture. The reaction
proceeds for the duration of 2 hours at 80°C under stirring at 200rpm. At the end of
the reaction the resulting product is filtered through glass wool and the resulting
particle dispersion is centrifuged at 2500g and a temperature of 20°C for 2h. The
supernatant is removed and the precipitate is re-dispersed in DI water. Subsequent
centrifugations steps are carried out at 5°C, 25009 for 24 hours. The centrifugation-
redispersion cycles are typically repeated six times until the surface tension of the
supernatant measured by tensiometry is 72 mN m™.
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3.2.4. Electrolyte titration

Measurements are performed on a ALV apparatus with a DPSS laser (Cobolt Samba
300 mW at 532 nm), ALV 50/100/200/400/600 pm Pinhole system, a Thorn
RFIB263KF Photo Multiplier Detector, ALV7002 external correlator and a ALV-SP/86
Goniometer. 3 ml of diluted particle dispersion is filled in a titration vessel. At discrete
time intervals 400 mM sodium chloride solution is added under stirring. The
measuring time until a sodium chloride concentration of 300 mM is reached usually
amounts to a period of 24 hours.

3.2.5. Dynamic Light Scattering (DLS)/ Micro-electrophoresis

Size and electrokinetic charge of the colloidal particles are determined by performing
dynamic light scattering and micro-electrophoresis on a Malvern Nanosizer S
apparatus. Prior to analysis the particle dispersion is diluted. Were necessary,
adjustment of the pH is done by dropwise addition of 0.1 M hydrochloric acid or 0.1 M
sodium hydroxide. Temperature sweeps are performed in a quartz cuvette. Micro-
electrophoresis is performed in a disposable folded capillary cell.

3.3. Results & Discussion

An overview of the synthesised core-shell particles together with their dimension is
given in Tab. 1. Size determination was done by DLS. Note, that the particle size of
the core-shell particles is a function of temperature T, salt concentration ¢s and pH.
Particle sizes given are measured at 20 °C, pH 6 and in the presence of 20 mM NaCl
as background electrolyte; the number contained in the sample code refers to the
thickness of the soft shell under these condition. The radius of the polystyrene (PS)
core particles is for all particles between 360 and 400 nm. The main source of
variation in particle size is the variation in shell thickness.

Tab. 1 Overview core-shell particles dimension as measured by DLS at 20 °C, pH 6 and in the
presence of 20 mM NaCl as background electrolyte

Sample code | Particle radius [nm]/ PDI [-] | Shell thickness [nm]
(number indicates
shell thickness in nm)

core 368/0.08 0
CS15 383/0.07 15
CSs167 567 /0.07 167
CS230 630/ 0.07 230
CS530 930/0.09 530
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3.3.1. Influence of temperature on colloidal stability and size of core-shell
particles

The temperature response of the synthesized core-shell particles is assessed using
DLS. With this technique the hydrodynamic diameter of the particles is obtained.
Note that the particle dimension as apparent from Fig. 1 are measured for core-shell
particles dispersed in DI water. The particle sizes are accordingly larger than the
dimension given in Tab. 1 which are valid at 20 °C, pH 6 and in presence of 20 mM
NaCl. If we dispersed the particles in 20 mM NaCl instead of DI water, the core-shell
particles showed a tendency for aggregation upon increasing the temperature, as
indicated by a soaring polydispersity index. The differences in phase behaviour below
and above the particles LCST can be explained in the following way: below the
LCST, when the patrticle shell is highly swollen, van der Waals attraction between the
PNIPAM based particle shell are considered to be negligible. At temperatures well
above the LCST, water is expelled and van der Waals attraction becomes important
[6]. Furthermore, dangling PNIPAM chains which are present on the particle surface
and give rise to steric stabilization, collapse at elevated temperatures. This leads to a
vanishing steric stabilization, so that the core-shell particles are left with ionizable
groups that can impart electrostatic stabilization. Some ionizable groups may be
buried under the collapsed shell which may than prevent them from dissociating.
Altogether, attractive van der Waals interaction, vanishing steric stabilization and
decreasing electrostatic interaction seem to give rise to an attractive interaction
potential at elevated temperatures. This manifests itself by the core-shell particle’s
tendency to aggregate upon heating to 60 °C when 20 mM NaCl as background
electrolyte is present.

As core-shell particles dispersed in DI water did not show any signs of aggregation
upon heating, we infer that a highly swollen PNIPAM shell can grant good colloidal
stability to the core-shell particles even at elevated temperatures. The plot of the
temperature dependent particle diameter reveals the distinct temperature response of
the synthesized core-shell particles, while the size of the core particles is not affected
by temperature (see Fig. 1). The largest particles CS530 can reduce their radius to
about 65 percent of their initial size upon heating. Core-shell particles CS167 still
reduce their radius to about 25 percent of their initial size. By comparing particles
sizes at 60°C and 20°C, a very small but significant size reduction can be
ascertained for the smallest core-shell particles CS15. The most salient feature of
these data are that at temperatures of 60 °C the radius of the core-shell particles is
only slightly larger than the radius of the core particles. This highlights that at
temperature below the LCST the shell is highly swollen with water, as cold water is a
good solvent for PNIPAM. However, by heating the core-shell particle dispersion well
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above their LCST temperature, all water seem to be expelled from the PNIPAM shell.
Our results are in accordance with reports in literature whereupon PNIPAM microgels
contain 97 percent water by weight [9]. The expulsion of most water from the particle
shell seem therefore be a plausible cause for the strong particle size reduction
observed upon heating.

Noteworthy in Fig. 1 is the broad range of temperatures over which deswelling of the
particle shell takes place. While pure PNIPAM polymers show a sudden volume
collapse when heated above their LCST of 32 °C, the deswelling of our PNIPAM-co-
MA based particle shell seem to occur gradually over a range of temperatures. Taken
the steepest slope in the size-temperature curve depicted in Fig. 1 as a measure for
the typical volume phase transition temperature, the core-shell particles synthesized
in this study show a volume-phase transition temperature between 45°C and 50°C.
The distinct increase in the particles LCST compared to pure PNIPAM polymers can
be attributed to strong electrostatic interaction between ionised groups in the particle
shell. Their mutual repulsion impedes conformational changes of the polymer chain
upon increasing the temperature. As the result, the LCST of the copolymer-based
particle shell is shifting towards higher temperatures compared to pure PNIPAM.
Similar observation on the effect of charges on the LCST are made by other authors
[9, 10].
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3.3.2. Influence of electrolyte concentration on size and colloidal stability
of core-shell particles

Next to their temperature response, the here synthesised core-shell particles change
their size as a function of electrolyte concentration (see Fig.2). Addition of electrolyte
leads to a pronounced particle size reduction. The large core-shell particles CS 530
reduce their radius from 1284 nm in DI water to 929 nm in the presence of 20 mM
NaCl. The influence of electrolyte concentration on the particles size can be
attributed to strong charge interaction between ionic co-monomers contained in the
particle shell, these interaction are screened by the added electrolyte. As electrolyte
is added, the range of electrostatic interaction is reduced, individual segments of the
PNIPAM shell can come into closer contact, effectively the particle shell shrinks.

For most of the work done in the context of this thesis, we use 20 mM NaCl as
background electrolyte. This background electrolyte concentration seems appropriate
since the core-shell particles change their size substantially up to 20mM NaCl. Above
this electrolyte concentration, size changes are less pronounced. Thus, changing the
electrolyte concentration, e.g. through pH adjustment, will have no pronounced effect
on the particle size.

Note that even at high electrolyte concentrations of 300 mM NaCl the measured
hydrodynamic diameter of the core-shell particles CS 530 remains constant. The
scattering intensity showed a linear decrease as function of electrolyte concentration.
From this observation we conclude that core-shell particles do not undergo
aggregation, they remain colloidal stable. This stability towards added electrolyte
arises due to the fluffy PNIPAM shell with dangling chains on the particle surface. As
PNIPAM is well water soluble, interpenetrating chains repel each other when
particles are brought into contact. These repulsive forces provide good stability
against aggregation of the core-shell particles.

The stability of the core-shell colloids towards electrolyte can be put into contrast to
the marginal colloidal stability of the core particle dispersion in the presence of high
electrolyte concentrations. Core particles are stabilized by electrostatic interaction
only. For the core particles a radius of 400 nm is measured up to 75 mM NacCl (see
Fig. 2). Above this concentration threshold the hydrodynamic radius of the core PS
particles, as measured by DLS, is increasing. At an electrolyte concentration of
75 mM NaCl charge interaction seem to be screened to such an extent that solely
electrostatic stabilization is insufficient to provide colloidal stability. Thus, particles
tend to aggregate and the apparent particle radius as measured by DLS is
increasing.
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concentration (other parameters: pH 6 and 20°C)

3.3.3. Influence of pH on core-shell particles

The ionic co-monomer contained in the particle shell makes the core-shell colloids
synthesised here also responsive to changes of pH. The degree of swelling of the
particle shell is a result of the equilibrium between the internal osmotic pressure
within the shell and the entropic cost of stretching individual polymer chains. As a
result, core-shell particles de-swell upon lowering the pH when the acrylic acid
comonomer is protonated. Acrylic acid has a pKa of 4.25. This is also reflected in Fig.
3 which shows a strong decline in the hydrodynamic diameter of core-shell particles
CS530 around pH 4. For PS core particles, a slight increase of the measured
hydrodynamic diameter at low pH values can be ascertained. This is most likely the
result of minor particle aggregation, owing to vanishing electrostatic stabilization at
low pH.

A look at the particles electrophoretic motilities under electrophoresis allows to draw
further conclusion on the bulk interparticle interaction as a function of pH: the
measured electrophoretic mobility’s are decreasing with decreasing pH. The low
electrophoretic mobility at low pH let us conclude that the electrostatic contribution to
the colloidal stability becomes vanishingly small. For core particles this causes the
slight tendency to aggregate at low pH, whereas core-shell particles remain colloidal
stable. Noticeable is also the different magnitude of electrophoretic motilities between
core particles and core-shell particles. This may indicate that the PNIPAM layer
inhibits the charging of surface functional groups on the PS core particle.
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3.4. Conclusion

In the present work we prepared micron-sized core-shell particles consisting of a
hard polystyrene (PS) core and a soft, poly-N-isopropylacrylamide (PNIPAM) shell
functionalized with methacrylic-acid (MA). By varying the number of PS seed
particles during the precipitation polymerization, the dimension of the PNIPAM shell
could be varied from 15 nm up to 530 nm (at 20 °C, pH 6 and 20 mM NacCl present
in the bulk phase). Despite the presence of the hard core, the core-shell particles
exhibit responsiveness to external stimuli, such as temperature, pH and electrolyte
concentration. This also verifies the successful assembly of the PNIPAM shell on top
of the polystyrene core particles. The soft shell is highly swollen with water, as
evident by the pronounced collapse of the shell upon increasing the temperature to
60°C.
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Chapter 4
Harnessing the advantages of hard and

soft colloids by use of core-shell
particles as interfacial stabilizers

The ability of colloidal particles to be inserted into fluid interfaces is a crucial factor in
the preparation of particle stabilized disperse systems such as foams and emulsion.
For hard micron-sized particles the insertion into fluid interfaces requires substantial
energy input, but soft particles are known to adsorb spontaneously. Particle
hardness, however, may also affect foam and emulsion stability. The high
compliance of soft particles can compromise the ability to withstand lateral
compression of the particle covered interface during disproportionation. Hence,
particles which can spontaneously adsorb onto fluid interfaces, and yet depict low
compliance may be ideal as interfacial stabilizers. In the present work, we prepared
core-shell particles comprising a hard, polystyrene core and a soft
poly(N-isopropylacrylamide) based shell. We found that such core-shell particles can
spontaneously adsorb onto various fluid interfaces. The absence of a pronounced
energy barrier for interfacial adsorption allowed for facile preparation of core-shell
particle stabilized bubbles and emulsion droplets. The stability of the resulting
bubbles was better than that of bubbles stabilized by entirely soft particles, but
disproportionation was not stopped completely. This is in contrast to the emulsion
droplets that showed excellent stability against coalescence and disproportionation.
Lateral compression of core-shell particle due to disproportionation was clearly
limited by the presence of the polystyrene core, and allowed for long-lasting emulsion
stabilization and led to the occurrence of non-spherical emulsion droplets. Our results
indicate that core-shell particles comprising a hard core and soft shell can combine
the advantageous properties of hard and soft particles, namely spontaneous
adsorption and limited compliance, and can therefore be superior materials for the
preparation of particle-stabilized interfaces.

This Chapter is based on: C Buchcic, RH Tromp, MBJ Meinders and MA Cohen
Stuart, Harnessing the advantages of hard and soft colloids by use of core-shell
particles as interfacial stabilizers, Manuscript in preparation
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4.1. Introduction

Colloidal particles are a prominent alternative to the application of small molecular
weight surfactants (SMWS) and proteins for the stabilization of disperse systems
such as foams and emulsions. As these particles are typically much larger than
SMWS and proteins, they strongly anchor to the fluid interface and can impart greater
stability compared to other interfacial stabilizers. Their superior stabilizing properties
and the ability to respond to external stimuli lead to a recent surge of research carried
out in the area of particle stabilized interfaces [1-9]. Particles which are used to
stabilize dispersions can be differentiated into two classes by their softness and
deformability: ‘soft’ particles have elastic moduli in the kPa range and can be
substantially deformed by interfacial forces [9, 10], while ‘hard’ particles have high
elastic moduli in the GPa range and, thus, do not easily deform by interfacial forces
[11].

Since the early work of Ramsden and Pickering, hard particles, e.g. colloidal
hydrophobized silica, are known as effective stabilizers of emulsions [12].
Accordingly, the term Pickering emulsion or Pickering stabilization is nowadays
commonly adopted if one refers to a dispersion stabilized by solid particles. The
particle’s adsorption strength to fluid interfaces is largely determined by the ability of
both fluids to wet the particle surface. The degree of wetting is characterized by the
particle contact angle 6, with 6 close to 0 degrees for hydrophilic, 6 close to 180
degrees for hydrophobic and 6 close to 90 degrees for particles which are equally
wetted by both phases (intermediate wetting). Once patrticles larger than about a few
nanometres and with a contact angle close to 90° are residing in the interfaces, they
are practically irreversibly attached. This is because the energy of desorption for
removing one particle from the interface into one of the two continuous phases is
orders of magnitude larger than the thermal energy kgT [2].

The stability of a dispersion stabilized by hard particles arises due to a steric
mechanism. Once the interface of a dispersion is covered by a sufficient amount of
hard particles, coalescence of individual droplets or bubbles stops. Also, Ostwald
ripening, the pressure-driven exchange of material between differently sized domains
of the dispersed phase may initially proceed but will eventually stop once interfacial
particles start to experience sufficiently large lateral repulsion due to increased
surface coverage. At this point a so called ‘colloidal armour’ is formed. Ostwald
ripening is arrested because the relative high elastic modulus of hard particles
inhibits their deformation and particles of appropriate wettability possess a very high
adsorption energy and, thus, are unlikely to desorb from the interface due to lateral
repulsion [13].
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An important property which qualitatively distinguishes hard particles from soft
particles is their adsorption behaviour onto liquid interfaces. Hard particles, in
particular when negatively charged, do not adsorb without mechanical energy input.
The reasons for the difficulty to adsorb are not always clear, but generally
electrostatic effects between particle and interface are held responsible [1]. The
electrostatic repulsion between negatively charged hard particles and a negatively
charged fluid interface causes an energy barrier for particle adsorption onto the
interface. [14]. Promoting particle adsorption thus requires high energy input
processing methods such as turbulent mixing or sonication [15]. In the context of
applications, it is not always possible to modify the sign of the particle charge or use
high energy processing methods. Therefore, an alternative should be welcome.

In contrast to the use of hard particles, the interest in soft particles (also known as
microgel particles) as dispersion stabilizers arose more recently. Microgels are
colloidal particles consisting of a cross-linked polymer network which is highly
swollen by a good solvent. Such particles can be routinely made by the same
methods as used for the preparation of hard particles, using cross-linker and
polymers that are insoluble due to the increased temperature during the
polymerization reaction, but dissolve on subsequent cooling. Poly(N-
isopropylacrylamide) (PNIPAM) is a well-known material for soft, aqueous microgels.
The polymer undergoes a structural transition from coil-to-globule upon increasing
the temperature above the lower critical solution temperature (LCST) which leads to
a volume reduction of the microgel particles. Incorporation of ionic co-monomers into
the microgels can also impart responsiveness to ionic strength and pH. These
structural changes in response to external stimuli make microgels very interesting
materials for the particle stabilization of fluid interfaces, as the stability of the particles
comprising dispersion can be altered by changing physico-chemical factors of the
bulk solution [16].

Soft particles such as PNIPAM-based microgels are compliant and can be
considerably deformed by capillary forces. Soft particles typically spread out radially
at the interface. This spreading stops once the energy gain from covering the
interface with polymer is balanced by the energy required for elastic deformation of
the cross-linked polymer particles. Aside the particle deformation due to interfacial
spreading, aqueous microgels are usually weakly hydrated in the non-polar phase
which causes the particles to be substantially flattened at the non-polar side of the
interface [17].

Soft particles are considered as good interfacial stabilizers for emulsion droplets [17,
18]. Due to their large size they irreversibly adsorb to liquid interfaces and provide a
steric hindrance to coalescence [19]. In addition to the steric effect, the spreading of
microgels onto a liquid interface can lead to the formation of a viscoelastic interfacial
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layer which can provide certain kinetic stability against Ostwald ripening [20]. Very
soft microgels which are highly swollen are most susceptible to form entangled
contact zones leading to such a viscoelastic interface [21]. On the other hand the
high compliance of microgels can also be a disadvantage for their ability to provide
long-term stability against Ostwald ripening. Due to their high compliance, interfacial
microgels may undergo radial compression and substantially deform during Oswald
ripening. This viscous deformation might impair their ability to completely stop
Ostwald ripening in the same way as hard particles do.

For soft particles interfacial adsorption occurs spontaneously and is, at least at low
surface coverage, mainly governed by particle diffusion to the fluid-fluid interface [22,
23]. The absence of considerable energy barriers against interfacial adsorption of soft
particles is desirable for preparation of a particle stabilized dispersion, as the energy
input for processing is lower and the rate of particle adsorption can be simply
controlled by the process parameter concentration.

From this introduction it should become clear that both kinds of particles markedly
differ in their functional properties with regard to dispersion stabilization.
Spontaneous adsorption as observed for soft particles is desirable, yet, the particles
high compliance might impair the ability to establish a stress bearing network and
stop Ostwald ripening. Hard particles in contrast, can be barely deformed and can
effectively stop Oswald ripening, but are difficult to bring to the interface. We want to
investigate, if core-shell particles, comprising a soft shell on top of a hard core may
have characteristics of both particle types. The soft shell may enable spontaneous
adsorption onto fluid interfaces, and the hard core may provide a well-defined end-
point to the lateral compression of the particle-covered interface during
disproportionation.

In order to test this hypothesis, we designed core-shell particles with a solid core and
a soft shell. We investigated how particles with different shell dimension are taken up
at liquid-gas and liquid-liquid interfaces, and what surface pressures they generate.
We also studied the structure of particle covered interfaces, and the stability of
bubbles and emulsion droplets stabilized by core-shell particles.

4.2. Material & Methods

4.2.1. Materials

Styrene, itaconic acid (lA), initiator 4,4'-azobis(4-cyanovaleric acid) (ACVA), N-
isopropylacrylamide (NIPAM), N,N'-methylbisacrylamide (BIS), methacrylic acid
(MA), potassium peroxodisulfate (KPS), Divinylbenzene (DVB) and sodium chloride
(NaCl) were purchased from Sigma-Aldrich. Deionized (DI) water with a resistance of
18.2 MQ.cm was used for all measurements.
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4.2.2. Synthesis core particles

Polystyrene core particles were prepared by surfactant free emulsion polymerization.
20 g Styrene, 0.5 g itaconic acid and 180 g DI water were charged to a round-bottom
flask sealed by a rubber septum. For cross-linked particles also 0.39 g DVB was
added. The flask was placed in an oil bath and heated to 80°C under sparging with
nitrogen gas for the duration of 20 minutes. 220 mg of the initiator 4,4-azobis(4-
cyanovaleric acid) dissolved in 5 ml of 0.2 M sodium hydroxide solution was added to
the reaction mixture. The reaction proceeded for the duration of 18 hours at 80°C
under stirring at 200rpm. After filtering through glass wool, the resulting particle
dispersion was centrifuged at 25009 for 3h. The supernatant was removed and the
precipitate was re-dispersed in DI water. The supernatant was removed and the
precipitate was re-dispersed in DI water. This centrifugation-redispersion cycle was
repeated until the surface tension of the supernatant measured by tensiometry was
72mNm™.

4.2.3. Synthesis core-shell particles

Core-shell particles were prepared by precipitation polymerization. 90 g DI water,
0.5 g NIPAM, 20 mg BIS, 50 pyl MA and varying amounts of core particle dispersion
were charged to a round-bottom flask sealed by a rubber septum. The flask was
placed in an oil bath and heated to 80°C under sparging with nitrogen gas for the
duration of 20 minutes. 50 mg of the initiator potassium persulfate dissolved in 5 ml of
DI water was added to the reaction mixture. The reaction proceeded for the duration
of 2 hours at 80°C under stirring at 200rpm. At the end of the reaction the resulting
product was filtered through glass wool and the resulting particle dispersion was
centrifuged at 2500g and a temperature of 20°C for 2h. The supernatant was
removed and the precipitate re-dispersed in DI water. Subsequent centrifugations
steps were carried out at 5°C, 25009 for 16 hours. These centrifugation-redispersion
cycles were typically repeated three times until the surface tension of the supernatant
measured by tensiometry was 72 mN m™.

4.2.4. Dynamic Light Scattering

Dynamic light scattering (DLS) was performed on an instrument from ALV (Langen,
Germany) equipped with a diode-pumped solid-state laser (Cobolt Samba 300 mW at
532 nm), ALV 50/100/200/400/600 um pinhole system, a Thorn RFIB263KF photo
multiplier detector, ALV7002 external correlator and a ALV-SP/86 goniometer. The
scattering intensity of a diluted particle dispersion was measured at a scattering
angle of 90°. Temperature was kept constant at 20 °C. Hydrodynamic diameter and
polydispersity index (PDI) were obtained from a cumulant analysis. PDI is the square
of standard deviation ¢ divided by the mean diameter d:
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4.2.5. Tensiometry

The surface tension of the particle dispersion was determined on a Drop
Tensiometer, model TRACKER (Teclis, France). All measurements were performed
in the pendant drop configuration. Prior to the measurement, the dispersion was
diluted to the desired particle concentration and adjusted to pH 6.

4.2.6. Light microscopy

Light Microscopy was done on an upright Olympus BX 50 light microscope equipped
with several long working distance objectives and a reflected light, vertical illuminator.
For visualization of bulk aqueous dispersions, samples were filled into a home-made
glass capillary of approximately 100 pm height. For visualisation of specimens
located at a fluid interface, particle dispersion and the corresponding fluids were filled
in a shallow quartz cuvette (3 cm x 2 cm x 0.5 cm).

4.2.7. Cryo-scanning electron microscopy

A stock of concentrated particle dispersion was diluted, yielding a volume number
density c. (number of particles in a certain volume) of 9.25x107'° m™® with
20 mM NaCl as background electrolyte. 40 pl of this particle dispersion was
transferred to a circular copper sample holder with 5 mm inner diameter and 1mm
deep cavity. The particle dispersion was left to equilibrate for 20 minutes to enable
particles to adsorb to the fluid interface. Freezing of the samples was done by
plunging them in liquid nitrogene for two minutes. Subsequently, the specimens were
partially freeze-dried at -93°C for 1 min to remove ice crystals, followed by tungsten
coating up to 10 nm on a high vacuum coating system Leica EM MED 020. Sample
transfer was done with a Leica EM VCT 100 vacuum cryo transfer system. Cryo-SEM
imaging was performed on a ultra-high resolution field emission scanning electron
microscope FEI Magellan 400. To ensure that only the top surface of the sample, on
the order of nanometres, is imaged, we opted for a low accelerating voltage of the
electron beam (2 kV). The low accelerating voltage also avoids charging of the
samples and detection of secondary electrons; altogether it ensures a good image
quality.
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4.3. Results & Discussion

An overview of the synthesised particles together with their sizes is given in Tab. 1.
Please note, that the particle size is a function of temperature T, salt concentration cs
and pH. Particle sizes given in Tab. 1 are measured at 20 °C, pH 6 and in the
presence of 20 mM NaCl as background electrolyte. The core sizes are all between
350 and 400 nm. The main source of variation in particle size is the variation in shell
thickness.

Tab. 1 Overview of the synthesised particles and their sizes as measured by DLS at 20 °C, pH 6 and
in the presence of 20 mM NaCl as background electrolyte, PDI= (¢/d)® (see equation 1)

Sample code Particle radius [nm]/ PDI [-] | Shell thickness [nm]
core 368/0.08 0

CS15 383/0.07 15

CS106 474 /0.05 106

CS140 508 /0.05 140

CS167 567 /0.07 167

CS186* 549/0.03 186

CS230 630/0.07 230

CS300 668/0.15 300

CS530 930/0.09 530

*This particle type comprises cross-linked PS core particles

4.3.1. Interfacial tensiometry

The adsorption of particles to the air-water and oil-water interface was followed by
pendant drop tensiometry. Clearly, all core-shell colloids, except the ones with the
smallest shell dimension (CS15), readily develop considerable surface pressures
while for the core particle dispersion the surface tension remained the same as for a
clean interface (see Fig. 1). The same qualitative observation was made for decane-
water (see Fig. 2), hexane-water and dodecane-water interfaces. We found that also
hard polystyrene particles with cationic surface charge hardly adsorbed onto fluid
interfaces, but could be made to adsorb at fluid interfaces by growth of a soft shell
around them (data not shown). These observations highlight the generality of the
method to promote interfacial adsorption of particles by means of a soft shell.
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Fig. 1 Surface pressure development of core-shell vs core particle dispersion at the air-water interface,
experimental condition: volume number density c.. = 9.25x10™"° m™, pH 6, 20 mM NaCl as background
electrolyte
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Fig. 2 Surface pressure development of core-shell vs core particle dis1persion at the hexane-water
interface, experimental condition: volume number density c. = 9.25x10~ 5 m'a, pH 6, 20 mM NaCl as
background electrolyte

For quantitative interpretation of this data, one has to be aware that the equation of
state for core-shell colloids is for the most part non-linear in the density, meaning that
one cannot easily relate surface pressure to surface coverage [23].
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For molecular species at low surface coverage, when molecules do not interact with
each other, the surface pressure development is described by the ideal gas law:

- n (2)
[1=RT-—
A

where [T is the surface pressure, A is the area, n is the number of particles in moles,
R is the ideal gas constant and T is the temperature of the system. Assuming full
coverage of the interface by particles with a diameter of one micrometre, one arrives
at a surface pressure on the order 10° mN m™ for a fully covered interface. The
detection limit of the drop Tensiometer is on the order of 10* mN m™. Hence, the
surface pressure we measure for micron-sized particles cannot be an ‘ideal gas’
pressure, rather, it must stem from the interaction between individual particles. One
can safely say that any finite surface pressure measured must correspond to a
situation where the surface coverage is significant and particles interact with each
other via steric or electrostatic interaction.

To estimate a minimum timescale for a particle population to reach a certain surface
coverage, the formula of Ward and Tordai can be used [24]. The formula is valid if
there is no adsorption barrier and colloidal particles are irreversibly adsorbed to the

interface.
3
Dt (3)
I'(t) = 2¢ce |—
m

Where I is the area number density (number of particles in a unit area), c. is the
volume number density (number of particles in a unit volume), t is time and D is the
particle diffusion coefficient.

For a rigorous determination of the timescale for development of a finite surface
pressure according to equation 3, the equation of state would be necessary. For an
order of magnitude estimate we can assume that core-shell particles start to interact
once the interface reaches a certain ™ which we choose for each different particle
type in such a way to result in a surface coverage [/ max = 0.05. This value for the
surface coverage we choose to yield a good fitting of our experimental data to the
adsorption model. In Chapter 5 we confirm that core-shell particles can indeed yield a
finite surface pressure at such a surface coverage. For the diffusion constant D we
use the values obtained by DLS. The volume number density c.. was 9.25x10™"°> m™
for each particle type. According to equation 3 we calculate the corresponding time
scales t* (the time it takes to reach I/l ;,,x=0.05) and compare these to the measured
t*from Fig. 1. The results are given in Tab. 2.
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Tab. 2 Time for onset of finite surface pressure of 1 mN m’ t*measured @S Obtained from Fig. 1 versus
tineoretical Calculated according to formula (3), also displayed are ' and D used to calculate t*ieoretical

Particle ™ [m3] D[m?s™]
type t* measured [s] | t* theoretical [s]
CS 530 1.84E+10 2.20E-13 16 14
CS 230 4.01E+10 3.42E-13 27 43
CsS 167 4.95E+10 3.79E-13 95 59
CS 106 7.08E+10 3.79E-13 1900 122
CS 15 1.09E+11 5.77E-13 >10000 187
core 1.18E+11 5.96E-13 - 213

Clearly, for the core-shell particles with a thick shell, theoretical and measured time
scales are on the same order of magnitude. For the core-shell particles CS106 and
CS15 with a thin shell and for the core particles, however, t*measured >> t*theoretical- This
picture is consistent with an energy barrier for interfacial adsorption. Such an energy
barrier reduces the probability for particle attachment to the interface, thereby
increasing the timescale for development of a certain surface pressure [1].

Our results suggest that the adsorption barrier, as existing for hard particles, seems
to be substantially lowered, if not even absent, for the core-shell particles with a shell
thickness above a given value. This value is larger than 100 nm. In contrast to hard
particles, the core-shell particles seem to adsorb easily to the fluid interface once
they reach the subsurface region.

4.3.2. Microscopic analysis of core-shell particles at the fluid interface

As the core-shell particles have a solid core with an index of refraction which differs
markedly from the surrounding medium, they are well visible via light microscopy, in
spite of their small size. This allowed us to conduct microscopic analysis to get an
impression of the structure of particle layer on the fluid interface. For the core
particles without soft shell, we could not detect any particles attaching to the fluid
interface over a period of one day. In fact, we observed that particles are depleted
from the subsurface region due to sedimentation. For all the core-shell samples,
however, we found that particles can adsorb to the air-water (see Fig. 3) and oil-
water interface (see Fig. 4). As we observed the samples under quiescent condition,
this adsorption process seems to occur without energy input, solely by diffusion.
These observations are in agreement with the results we obtained from tensiometry.
Note that core-shell particles CS15 did not show any surface pressure development
over the time-scale depicted in Fig. 1, but microscopy revealed a densely covered
interface after an waiting time of one day.
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Fig. 3 Microscopic picture of an air-water interface onto which core-shell particles CS530 are
adsorbed, Inset show the calculated particle pair-correlation function G(r) normalized by the particle
diameter

Fig. 4 Microscopic picture of a decane-water interface onto which core-shell particles CS530 are
adsorbed, Inset show the calculated particle pair-correlation function G(r) normalized by the particle
diameter
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To obtain more detailed information about the morphology of core-shell particles
adsorbed to the air-water interface we used cryo-SEM. The cryofixation procedure
allows the samples to be frozen instantly, so that the structure of interfacially located
core-shell particles can be studied in the hydrated state. Also with light microscopy
only the core of the core-shell particles is visible, while with cryo-SEM also the
structure of the soft shell can be ascertained.

From the SEM pictures it becomes evident that core-shell particles adopt a fried-egg
like structure at the interface (see Fig. 5, Fig. 6). Due to the higher electron density of
the core compared to the shell, both parts of the core-shell particle can be
distinguished. The core seems to have a rough surface, while the outer shell is more
smooth. The dimension of the inner part with the rough surface equals the measured
hydrodynamic diameter of the core particles, which gives further support that this part
is the actual core particle. The fact that the core is visible in the SEM picture implies
that the core of the core-shell particles protrudes into the air. This is a striking feature,
as the bare core particles without shell can not breach the interface.

Measurement of the overall particle dimensions in the SEM pictures reveals that the
diameter of the core-shell particles at the interface is roughly equal to their
hydrodynamic diameter as measured by DLS in the bulk. For the particles depicted in
Fig. 5 we find a diameter of ~ 1.3 ym at the interface, and a hydrodynamic diameter
of 1.3 um. For another set of particles (see Fig. 6) we obtain ~ 1.9 ym particle cross-
sectional diameter at the interface, and a hydrodynamic diameter of 1.9 ym by DLS
in the bulk. This means that our core-shell particles do not undergo significant radial
stretching at the interface, in contrast to what is frequently reported for microgels [17,
23]. Radial stretching of the soft shell seems to be suppressed by the solid core.
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Fig. 6 Cryo-SEM picture from core-shell particle CS530 adsorbed onto an air-water interface
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4.3.3. Stabilization of bubbles and emulsion droplets by core-shell
particles

The facile adsorption of core-shell particles to fluid interfaces allowed for preparation
of emulsions and air bubbles by low energy input methods, such as gentle hand-
shaking. The typical size of bubbles and droplets obtained is 20 - 200 pm in
diameter. Microscopic investigation reveals that the produced bubbles and droplets
are stabilized by a monolayer of core-shell particles (see Fig. 7).

Fig. 7 Microscopic pictures showing the interfacial structure of air bubbles (a) and decane-in-water
droplets (b) stabilized by core-shell particles CS 530

Apart from their facile adsorption to fluid interfaces, it is important for application
purposes to check whether core-shell particles can effectively stabilize fluid interfaces
against disproportionation and coalescence, and compare this with hard particles.
For bubbles stabilized by core-shell particles we could still observe slow coarsening
by disproportionation. The bubbles that we initially produced completely disappeared
over a time frame of 2-3 days.

Oil-in-water emulsions of hexane, decane and toluene, showed much higher stability
against coalescence and disproportionation. Decane-water emulsion did not show
any signs of coarsening. Hexane and toluene emulsion droplets, comprising oils with
rather high solubility in the aqueous phase, undergo an initial phase of coarsening,
thereafter they are completely stable. This final stable state may be reached via the
following sequence of events. Shrinking of small droplets leads to lateral
compression of core-shell particles at the interface. The shrinkage of small droplets
may stop when flat facets develop or when crumpling of the droplet interface leads to
the occurrence of areas with convex and concave curvature, thus zero mean
curvature, on the same droplet. The latter situation can arise after jamming and
further lateral compression of the interfacial particles [25]. On the contrary, larger
droplets grow in size. During the course of droplet growth, the particle surface
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coverage is decreasing. Insufficient coverage with particles will promote coalescence
of the larger droplets, thereby effectively decreasing the interfacial area [26, 27]. After
a coalescence event, the effective surface coverage of the newly created droplet may
exceed 100% which then leads to the adoption of non-spherical droplet shapes,
crumpling of the droplet interface, occurrence of flat facets; similar to the situation
described for shrinking droplets. The net result of these processes is that the surface
coverage of the emulsion droplets is increasing and droplets stop coarsening [28-30].
Following the scenario described above, emulsion droplets may initially coarsen but
then attain an interfacial monolayer of core-shell particles in which the soft shell is
locally highly compressed, thereby enabling the establishment of a stress-bearing
network at the interface which provides excellent stability against coarsening. This is
indeed what we observe with hexane and toluene emulsion droplets covered by core-
shell particles. As can be seen in Fig. 8, the structure of the core-shell particles at the
liquid interfaces progresses from an uncompressed state (Fig. 8a) to strong lateral
compression of the soft shell after 10 days of storage (see Fig. 8b). We also
observed that initially spherical emulsion droplets attain pronounced non-spherical
shapes (Fig. 9b), a property which is known for bubbles [15] and emulsion droplets
[31] stabilized by hard particles. Thus, core-shell particles at the oil-water interface
seem to combine two properties: the ability to spontaneously adsorb and the strong
anchoring to the fluid interface. The question why core-shell particles can strongly
anchor at the oil-water interface, but less so at the air-water interface cannot be
answered yet.

Fig. 8 Microscopic picture showing the interfacial structure of hexane-in-water emulsion droplets
stabilized by core-shell particles CS230. Picture taken directly after emulsion preparation (a) and after
10 days of storage(b)
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Fig. 9 Microscopic picture of hexane-in-water emulsion stabilized by poly-NIPAM microgels without PS
core (radius 792 nm) (a) and core-shell particles CS140 (b)

Finally, we compare core-shell particles with conventional microgels without hard
core. With them we were able to stabilize bubbles and emulsion droplets as reported
elsewhere [21, 26, 32]. However, we find that microgel-covered air bubbles and
hexane-in-water emulsion still undergo slow but continuous coarsening; during
coarsening, bubbles and droplets remain spherical (see Fig. 9a), signalling a finite
Laplace pressure. Hence, core-less soft particles are performing less well as
stabilizers than core-shell particles. These observations seem to corroborate once
more the conclusion that in order to stop coarsening and support non-spherical
droplets, a colloidal amour of particles with low compliance is essential. Core-shell
particles synthesized in this study seem to fulfil this requirement. Upon sufficient
compression of their soft shell, they provide the necessary low compliance in order to
allow the establishment of a solid-like interface which provides superior stability
against Ostwald ripening of emulsion droplets.

4.4. Conclusion

In the present work we prepared micron-sized core-shell particles consisting of a
hard polystyrene core plus a soft, poly-NIPAM based shell. By varying the number of
seed particles during precipitation polymerization, the dimension of the NIPAM shell
could be varied from 15 nm up to 530 nm. Interfacial adsorption of these core-shell
particles was investigated by microscopy and tensiometry and provided evidence that
the larger core-shell particles easily adsorb onto the air-water interface. For core-
shell particles with shell dimension smaller than 100nm the adsorption rates where
somehow reduced, which suggest that core-shell particles with a thin shell still
possess a finite barrier for interfacial adsorption, nevertheless they could adsorb to
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the air-water interface. Hard polystyrene core particles, in contrast, seem to
experience such a pronounced energy barrier for interfacial adsorption that they did
not adsorb at all.

The absence of a pronounced energy barrier for interfacial adsorption of core-shell
particles allowed for facile, low energy-input production of bubbles and emulsion
droplets stabilized by particles. Emulsions stabilized by core-shell particles showed
good stability against coalescence and disproportionation. Bubbles stabilized by
core-shell particles still underwent coarsening albeit slowly.

Remarkably, emulsion droplets stabilized by core-shell particles can adopt
pronounced non-spherical shapes. This shows that core-shell particles strongly
anchor to the fluid interface and that the hard core provides enough rigidity to the
core-shell particles in order to allow the establishment of a stress bearing network
which can sustain non-isotropic stresses present on non-spherical emulsion droplets.
Consequently core-shell particles combine the advantageous properties of soft and
hard particles: they can adsorb spontaneously to fluid interfaces, yet, anchor strongly
at the interface and provide enough resistance against lateral compression due to
disproportionation. Altogether our results show great promise for the application of
core-shell particles to stabilize fluid interfaces as present in foams and emulsions.
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Chapter 5
Equation of state of core-shell particles

adsorbed at the air-water interface

Core-shell particle comprising a hard core and a soft, deformable shell can be an
interesting alternative to rigid particles for the stabilization of foams and emulsions.
We experimentally determined the 2D equation of state for various core-shell
particles adsorbed at the air-water interface. The different particles investigated in
this study vary in the particle shell thickness and thereby the particle size. The largest
core-shell particles can develop a finite surface pressure at a surface coverage as
low as 0.05, far from the close-packing limit. From this we infer that interaction
among these particles is long-ranged. After on-set of a finite pressure, the surface
pressure diverges and then levels-off, indicating relaxation of the system. The
collapse pressure of the interfacial layer was found to be a function of the particle’s
shell thickness. Particles with a thin shell could withstand larger surface pressures
than particle with a thick shell. We propose that these differences arise due to
variations in the lateral interaction potential between the different particle types. This
study gives a first insight into the structure and interaction of core-shell particles at a
fluid interface upon compression.

This Chapter is based on: C Buchcic, RH Tromp, MBJ Meinders and MA Cohen
Stuart, Equation of state of core-shell particles adsorbed at the air-water interface ,
Manuscript in preparation
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5.1. Introduction

Since the discovery that colloidal particles adsorbed at the fluid interface can impart
long-term stability to emulsion droplets, numerous studies have harnessed particles
for the preparation of foams and emulsions [1-5]. As a general conclusion of these
studies one can assert that colloidal particles can effectively stop coarsening of
emulsion droplets and bubbles. Hard particles, such as silica or polystyrene particles,
but also soft, cross-linked polymeric particles have been successfully used as
stabilizers for fluid-fluid dispersions [2, 6]. Recently, also another interesting particle
variety, namely core-shell particles, comprising a solid polystyrene (PS) core and a
soft poly-N-isopropylacrylamide (PNIPAM) shell were used for the stabilization of
emulsion droplets and bubbles. Particles seemed to adsorb stronger at the oil-water
interface, were they could stop coarsening, compared to the air-water interface were
they slowed down coarsening but could not stop the process. It was also found that
core-shell particles undergo substantial radial compression at the oil-water interface
before coarsening stops (Chapter 4).

The behaviour of colloidal particles situated at an fluid interface upon compression
can be studied in a Langmuir-trough. Particles are first spread onto a flat fluid-fluid
interface which is confined by mobile teflon barriers. Thereafter the interfacial area
available for the particles is reduced by movement of the mobile barriers. The surface
pressure is monitored simultaneously. The interfacial area available for the particles
is a function of the initial amount of particles and the compression ratio. If the amount
of particles which is spread at the interface is known and particles do not desorb
during compression, the compression isotherm can thus be recorded. Compression
of the interface leads to a smaller interparticle distance which typically causes
enhanced lateral interaction between interfacial particles and a rise of the surface
pressure. The surface pressure detected in such an experiment can be ascribed to
electrostatic or steric interaction between particles situated at the fluid-fluid
interfaces. The compression of interfacial particles in a Langmuir-trough can thus
emulate the behaviour of particles at the interface of a shrinking bubble or droplet
and yield quantitative information on the interaction strength between particles as a
function of the interparticle distance.

For hard particles interparticle-interaction typically arises due to electrostatic
interaction. These electrostatic interaction can be long-ranged and induce particle
repulsion over distances as large as several particle diameters [7-10]. A strongly
soaring surface pressure can be detected once interfacial particles are sufficiently
close to each other. If the affinity of these hard particles for the fluid interface is
strong enough, particles can remain attached to the interfaces up to the point where
the start to touch each other (steric interaction). At this point further compression can
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lead to a buckling instability, a corrugation of the particle stabilized interfacial layer
can be observed when the net-area available for each particle is smaller than the
particles cross-sectional area [11, 12].

Soft particles, such as polymeric microgels which are highly swollen in a good solvent
have different properties. Microgels are thought to interact mainly via steric
interaction [13]. Once the interfacial coverage of microgels is sufficiently high and
excluded volume effects come into play, a rise in surface pressure can be observed.
The surface pressure typically rises slowly, the compression isotherm is much more
shallow than for particles interacting via electrostatic interaction [14]. A further
characteristic of soft particle is that they can strongly deform upon adsorption to the
interface [15]. Surface tension can cause particles to adopt a stretched configuration.
This fact was also used to explain why soft, polymeric microgels developed a
significant surface pressure at relatively low surface coverage where it was not
expected that particles experience steric interaction. It has been postulated that
because of the particles stretched configuration at the interface, the actual surface
coverage is higher than the coverage calculated based on the particles hydrodynamic
diameter in the bulk aqueous phase [16].

The shape of the compression isotherm (point of onset pressure, slope, maximum
surface pressure) for colloidal particles adsorbed at a fluid interface is determined by
several factors. For hard particles interacting via electrostatic interaction, the
minimum interparticle distance prior to the onset of a finite surface pressure is
determined by the particles penetration depth into the non-polar phase and the total
particles surface charge [7]. For soft particles interacting via steric interaction, the
extend of stretching may determine when patrticles yield a finite surface pressure [17].
As already mentioned, the slope of the compression isotherm is dictated by the type
of interparticle interaction. Hard particles interacting by electrostatic interaction
typically yield a strong slope, while soft particles typically give rise to a more gradual
surface pressure development [13]. Dilational surface elasticities for hard particles
can be on the order of several hundred mN m™* [18, 19]. In contrast, dilational surface
elasticities for fluid interfaces covered by soft particles are reported to be a few
mN m™ only [14, 20]. The maximum surface pressure before the compression
isotherm levels off is another important quantity. It is a measure for the mechanical
stability of the interfacial layer. This value can also serve as a measure for the
particles adsorption strength to the fluid interface. This argument has been used to
estimate the adsorption energy for soft particles at an oil-water interface [21]. Similar
arguments also lead to an set of equation which can be used to estimate adsorption
energy and particle contact angle of solid particles at a fluid interface [22].

The purpose of the current work was to characterize the behaviour of micron-sized
core-shell particles adsorbed onto the air-water interface upon compression of the
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interfacial layer. The core-shell particles comprise a hard PS core and a soft PNIPAM
shell. Interparticle interaction of such core-shell particles particle may arise due to a
combination of steric and electrostatic interaction. Which type of interaction prevails
may depend from the length scale of electrostatic interaction as well as the
dimension of the particles soft shell. In order to compare different core-shell particles
in which either the one or the other kind of interaction prevails, we synthesized core-
shell particles with the same PS core but different PNIPAM shell dimension. We
recorded the compression isotherm of the respective core-shell particles upon
spreading a known amount of particle dispersion onto the air-water interface. The
structure of the particle laden interface upon spreading and compression was
monitored via optical microscopy throughout the whole compression cycle.

5.2. Material & Methods

5.2.1. Materials

Styrene, itaconic acid (lA), initiator 4,4'-azobis(4-cyanovaleric acid) (ACVA), N-
isopropylacrylamide (NIPAM), N,N'-methylbisacrylamide (BIS), methacrylic acid
(MA), potassium peroxodisulfate (KPS) sodium chloride (NaCl), acetone and Iso-
propanol (IPA) were purchased from Sigma-Aldrich. Deionized (DI) water with a
resistance of 18.2 MQ.cm was supplied by a MilliQ water purification system.

5.2.2. Synthesis core-shell particles

Core particles of polystyrene were prepared by surfactant free emulsion
polymerization. 20 g Styrene, 0.5 g itaconic acid and 180 g DI water were loaded to
a round-bottom flask sealed by a rubber septum. The flask was placed in an oil bath
and heated to 80°C while flushing with nitrogen gas for the duration of 20 minutes to
remove dissolved oxygen. 220 mg of the initiator 4,4'-azobis(4-cyanovaleric acid)
dissolved in 5 ml of 0.2 M sodium hydroxide solution was added to initiate the
polymerization reaction. Polymerization proceeded for the duration of 18 hours at
80°C under stirring at 200rpm and was stopped by admission of ambient air to the
round-bottom flask. The resulting particle dispersion was filtered through glass wool
and centrifuged at 25009 for 3h. The supernatant was discarded by decanting and
the remaining precipitate was re-dispersed in DI water under stirring. This
centrifugation-redispersion cycle was repeated three times until the surface tension of
the supernatant measured by tensiometry was 72 mN m™.

Preparation of core-shell particles was done by precipitation polymerization with the
core particles prepared beforehand. 90 g DI water, 0.5 g NIPAM, 20 mg BIS, 50 pl
MA and varying amounts of core particle dispersion were loaded to a round-bottom
flask sealed by a rubber septum. The flask was placed in an oil bath and heated to
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80°C under sparging with nitrogen gas. 50 mg of the initiator potassium persulfate
dissolved in 5 ml of DI water was added to start the polymerization. The reaction
proceeded for the duration of 2 hours at 80°C under stirring at 200rpm. The product
of the polymerization reaction was filtered through glass wool and centrifuged at
25009, at a temperature of 20°C for 2h. The supernatant was removed and the
precipitate re-dispersed in DI water. Subsequent centrifugation steps were carried out
at 5°C, 25009 for 16 hours. Three centrifugation-redispersion cycles were carried out.
The resulting particle dispersion was further purified by dialysis against DI water in a
ready-to-use dialysis device with a molecular weight cut-off of 1000 kD
(Spectrumlabs, USA). The surface tension of the aqueous dialysate solution as
measured by tensiometry was 72 mN m™, verifying the absences of small molecular
weight surface-active contaminants.

5.2.3. Size determination by dynamic light scattering

Dynamic light scattering (DLS) was carried-out on an instrument from ALV (Langen,
Germany) equipped with a diode-pumped solid-state laser (Cobolt Samba 300 mW at
532 nm), ALV 50/100/200/400/600 pm Pinhole system, a Thorn RFIB263KF Photo
Multiplier Detector, ALV7002 external correlator and a ALV-SP/86 goniometer. The
scattering intensity of a diluted particle dispersion was measured at a scattering
angle of 90°. The particle dispersion was allowed to equilibrate for 30 minutes after
adjustment of the NaCl concentration to 20 mM, while the temperature was kept
constant at 20 °C. Hydrodynamic diameter and polydispersity index (PDI) of core-
shell particles were obtained from a cumulant analysis.

5.2.4. Langmuir trough measurement of compression isotherm

The pressure-area isotherm for core-shell particles at an air-water interface was
measured on a Microtrough-X (Kibron Inc.,Finland) with inner dimension of 59 x 393
mm and equipped with a wire probe for surface pressure measurement. The base
plate contains a glass window which allows for observation of the interface via
microscopy. For observation of the interfacial structure the Langmuir trough was
placed on an upright Olympus BX 50 light microscope equipped with several long
working distance objectives.

Prior to the measurement the trough was carefully cleaned with large amounts of DI
water and acetone. The subphase consisted of 70 ml DI water containing 20 mM
NaCl and was pipetted onto the trough. IPA was added to the particle dispersion to
facilitate spreading of the particles at the interface. The IPA containing particle
dispersion (25 vol. % IPA) was transferred onto the interface with a microsyringe. The
system was left to equilibrate for a duration of 30 min prior to the start of
compression. Compression of the interfacial layer was conducted at a speed of 10
mm min™'. Three subsequent compression cycles were carried out; in between each
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compression cycle the interface was expanded at a speed of 30 mm min™". For each
particle type at least two different experiments with a new subphase and newly
spread particles were performed. The compression isotherms displayed are the
average of these experiments, each experiment comprising three subsequent
compression cycles.

5.3. Results and Discussion

An overview of the core-shell particles investigated in this study together with their
sizes is given in Tab. 1. We first synthesized polystyrene particles, demarked as core
particles in Tab. 1, and used these as seed particles for the synthesis of the core-
shell particles. By varying the amount of seed particles present during the
precipitation polymerization of NIPAM, we were able to vary the amount of PNIPAM
deposited on the PS cores and thereby modify the dimension of the soft shell from
167 nm up to 530 nm. Particle sizes given in Tab. 1 are measured at 20 °C, pH 6 and
in the presence of 20 mM NaCl as background electrolyte. These are the same
experimental condition applied during subsequent determination of the pressure-area
isotherm. The electrolyte concentration was chosen by purpose, because at
20 mM NacCl, small changes in electrolyte concentration did have only minor effect on
the particle size.

Tab. 1 Overview of particles investigated in this study, size measured by DLS at 20 °C, pH 6 and in
the presence of 20 mM NaCl as background electrolyte

Sample code Particle radius [nm] / PDI [-] | Shell thickness [nm]
core 368/0.08 0
CS167 567 /0.07 167
CS230 630/ 0.07 230
CS530 930/0.09 530
5.3.1. Surface pressure-area isotherms

We started by recording surface pressure - area isotherms for the PS core patrticles.
The isotherm depicted starts off with a finite surface pressure of around 5 mN m™. By
reducing the amount of particles spread onto the air-water interface by 90 %, this
surface pressure at time t, could be decreased to zero. Under this condition,
however, the surface pressure only slightly increased even after full compression of
the interfacial layer down to 12 % of the initial available interfacial area. We can thus
conclude that the initial part of the pressure-area isotherm proceeds markedly
shallow.
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The isotherm for core particles depicted in Fig. 1 shows a strongly soaring surface
pressure starting from an area per particle of 1E-12 m?. This value corresponds to a
circular area with a radius of 564 nm available for each individual particle, whereas
the hydrodynamic radius of the particles is only 368 nm. This suggests that the PS
particles at the air-water interface start to interact with each other when the surfaces
of the PS particles are on average a few hundred nm apart from each other. For hard
particles dispersed in aqueous solution such values would be nonsensical, whereas
for particles protruding a fluid interface into the low dielectric constant medium, long
ranged repulsive interaction was indeed observed [10, 23, 24].

Starting from an area per particle of 1E-12 m?, compression of the interfacial particle
layer down to 40 % of the initially available area causes the surface pressure to
diverge up to ~ 53 mN m™. The dashed line in Fig. 1 demarks the point where PS
particles are assuming a closed-packed configuration at the interface. Maximum
pressure development nearly coincides with this close-packed limit. Beyond this point
the surface pressure levels off. This indicates that the increasing stress present in the
interfacial layer is mediated by buckling of the particle layer or expulsion of particles
from the air-water interface [25]. Overall the pressure-area isotherm recorded by us
seem to be well in agreement with the pressure isotherm as reported by other
authors. Also Aveyard et al. and Lenis et al. reported that PS patrticles at the oil-water
and air-water interface yield maximal pressure development and a subsequent
plateau of the isotherm after compression to 50 % of the initially available interfacial
area (starting from the point where the surface pressure starts to kick-off) [9, 26].
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Fig. 1 Pressure-area isotherm for PS particles ‘core’ with radius of 368 nm, error bars correspond to
one standard deviation, depicted values are the average of two experiments with three subsequent
compression cycles (see materials & methods section)
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Fig. 2 Surface pressure — area isotherm for core particles ‘core’ vs. core-shell particles ‘CS’ (with the
number indicating the shell thickness)

The surface pressure—area isotherms for the various core-shell particles synthesized
in this study are shown in Fig. 2. The largest core-shell particles CS530 show a steep
increase in surface pressure from an area per particle of ~ 4E-11 m?. This value
corresponds to a circular area with a radius of 3.57 ym available for each individual
particle, meaning CS530 particles start to interact at a centre-to-centre distance of
roughly two particle diameters. Such long-ranged interaction are not uncommon.
They are usually attributed to electrostatic or dipolar repulsion between interfacial
particles [10]. Alvarez et al. found significant surface pressure development after
adsorption of polymer-grafted nanoparticles to the air-water interface at area fractions
as low as 0.02 and linked it to long-range electrostatic interaction [27]. At this point
we cannot proof the presence of electrostatic interaction, but such interaction forces
between charge bearing core-shell colloids seem plausible. Alternatively, the long-
range interaction may also arise due to overlap of loosely cross-linked PNIPAM
chains which spread out radially at the interface.

In Fig. 2 also the closed-packed limit for the core-shell particles CS530 is indicated
as blue dashed line. Maximum pressure development seems to occur before a
closed-packed configuration is reached. The interval from the point where the surface
pressure kick’s-off to the point of maximum pressure development equals one order
of magnitude. The isotherm of CS530 particles is thus slightly more shallow than the
one recorded for the bare PS particles. Another very important difference between
PS particles and CS530 particles is the maximal pressure reached: while PS particles
can withstand pressures as high as 53 mN m™, the isotherm CS 530 levels of around
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29 mN m™. This value is comparable to the maximum pressure pure PNIPAM
particles and PNIPAM homopolymers develop after sufficient compression at the air-
water interface [16]. With respect to the maximum surface pressure, the large CS530
particles thus behave similar to the constituting polymer of the soft shell.

The smaller core-shell particles CS230 and CS167 both start to develop a significant
surface pressure at an area per particle of 4E-12 m?, a value which is one order of
magnitude smaller than the one reported for CS530 particles. This value corresponds
to a circular area with radius 1.13 pm available for each particle and an average
center-to-center distance roughly twice the particle size. Although these values are
definitely smaller than the one’s for CS530 particles, it still highlights that surface
pressure development starts at a surface coverage which is far from the close-
packing limit.

Besides their comparable origin, the isotherms for CS230 and CS167 particles are
dissimilar. CS230 particles develop their maximal surface pressure after roughly
80 % area reduction (starting from the point where the surface pressure starts to kick-
off) and develop a pressure of 28 mN m™, again a value which compares to the
pressure reached for PNIPAM particles and PNIPAM polymers at the air-water
interface [16, 28].

While the pressure for CS230 particles levels-off at an area per particle of 1E-12 m?,
the surface pressure-area isotherm for CS 167 particles, keeps ascending upon
further compression. The surface pressure increases up to 53 mN m™ upon
compression to an effective area per particle of 4E-13 m?. After compression to such
a small area fraction, the soft shell of the CS167 particles shall be actually completely
compressed as the theoretical value for hexagonal close-packing of the core particles
is reached. At his point we also observe that the surface pressure-area isotherms for
core PS particles and core-shell particles CS167 nearly coincide. From these results
it appears that the smallest core-shell particles CS167 are stronger adsorbed to the
air-water interface than the larger core-shell particles CS230 and CS530. This is
counterintuitive as particle adsorption energy should scale with the square of the
particle radius, thus, yielding stronger adsorption for the larger particles. Yet, the
smallest core-shell particles are the only one’s which can sustain equally high
pressures as the core particles. Finally we want to stress that we observed a similar
dependence of collapse pressure on shell dimension for other core-shell particles
with different surface functionalities. The above described behaviour seems generic
for core-shell colloids.

Eventually it is also interesting to point out what the above results mean for particle
laden air-water interfaces covered by particles. The purpose of using particles for
stabilization of fluid interfaces is to attain a long-term stability with regard to Ostwald-
ripening. Herefore, particles must strongly anchor to the fluid interface and be able to
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sustain surface pressures comparably high as the surface tension of the bare fluid
interface. In this way particle stabilized dispersion can attain near-zero Laplace
pressures, the driving force for Ostwald ripening can vanish [29]. None of the above
described particles can withstand pressures as high as 72 mN m™, the surface
tension of a clean air-water interface. It is therefore to be expected that none of the
particles used in this study can completely stop Ostwald ripening. Nevertheless, the
adsorption of core-shell particles at the interface will lead to the formation of a thick
particle layer which may slow-down mass transport across the interface and may also
yield a certain surface elasticity. Both phenomena are expected to slow down
Ostwald ripening [29].

For core-shell particles CS 167 we here found that they can develop equally high
surface pressures as the PS core particles, but spontaneously adsorb to the air-water
interface (see Chapter 4). This confirms that is possible to design core-shell particles
which can sustain very high surface pressures, yet, being able to spontaneously
adsorb to the fluid interface. A different core particle with a small dimension of the
soft shell, comparable to the thickness of CS 167 particles investigated here, may
yield core-shell particles which can develop surface pressures of 72 mN m” and be
able to stop Ostwald ripening.

5.3.2. Microscopic analysis of interfacial structure

To get a qualitative impression of the structure PS particles are assuming at the air-
water interface, we monitored the particle layer throughout the whole compression
cycle by light microscopy. The images displayed in Fig. 3 reveal that PS ‘core’
particles are aggregating and form clusters at the interface. This is in contrast to the
phase behaviour in the bulk aqueous phase were a low polydispersity index over
prolonged periods of time indicated a good colloidal stability and no aggregation of
the particles. Differences in colloidal stability between bulk and interface and
aggregation of colloidal particles at fluid interfaces is a common observation reported
in literature. Particles aggregation at the fluid interface is frequently attributed to
capillary interaction between individual particles [30-32]. Capillary interactions at fluid
interfaces are thought to arise due to particle surface roughness. This can lead to
undulation of the contact line around individual particles, which in turn promotes
particle aggregation as overlapping menisci lower the total interfacial energy.

From Fig. 3 one can deduct that increasing surface coverage with particles leads to
higher surface pressures. At a surface pressure of 1 mN m™ the surface coverage is
rather low, whereas a nearly fully packed interface correspond to a pressure ~53
mN m™ (see Fig. 3 a - d). An interesting observation can be made in Fig. 3b, where
circular particle clusters are visible. Circular aggregates may in principle arise due to
multipole interaction, that means undulation of the interface around a particle with
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hexagonal or higher symmetry. A more simple explanation may be the formation of
such circular particle clusters due to rapid evaporation of the spreading solvent that
was used to deposit particles at the interface.

Fig. 3 Microscopic picture of air-water interface onto which PS particles ‘core’ are adsorbed

(magnification 50x, scale bars = 20um). Different pictures represent interfacial structure at different
surface pressures (a) TmNm™ (b) 5mNm™ (c) 35 mNm™ (d) 53mN m”

Further we observed the structures core-shell particles are forming at the interface.
The micrographs displayed in Fig. 4 show the structure adopted by core-shell colloids
‘CS167’ at the air-water interface. Also here one can ascertain particle aggregation.
PS ‘core’ particles and the smaller core-shell particles ‘CS167’ seem to display
similar phase behaviour at the interface. The clusters formed by CS167 particles
seem to be a bit larger and more dense than the clusters formed by PS ‘core’
particles. Further, one can observe that higher surface coverage correspond to
higher surface pressures. At a pressure of 52 mN m™ the interface is nearly covered
with a dense layer of particles. In Fig. 4d one can observe a small gap in the densely
packed particle layer. From this gap particles appear to be desorbed into the bulk
aqueous phase. This indicates that particles start to desorb at this point. This would
fit to the corresponding surface pressure- area isotherm. According to the isotherm
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‘CS167’ depicted in Fig. 2, the soft particle shell should be completely compressed at
a surface pressure ~ 52 mN m™'. Further compression must inevitably lead to
relaxation of the particle layer. A movie taken at the corresponding surface pressure
indicated that relaxation occurs through desorption of particles into the bulk phase.
This was evident since particle attain a higher diffusivity and disappear from the focal
place.

Fig. 4 Microscopic picture of air-water interface onto which core-shell particles ‘CS167’ are adsorbed
(magnification 50x, scale bars = 20um). Different pictures represent interfacial structure at different
surface pressures (a8) 7mNm™ (b) 25 mN'm™ (c) 30 mN m™ (d) 52 mN m™

Next we observe the structures formed by ‘CS230’ core-shell particles at the air-
water interface (see Fig. 5). Also this type of core-shell particle mostly forms
aggregates at the fluid interface, a few individual particles are visible only. The
aggregates observed display a different structure from the one’s discussed before:
the cores of the core-shell particles, the part of the core-shell particle which we can
actually observe by light microscopy, appear to be well separated from each other.
Further, also here higher surface coverage corresponds to a higher surface pressure.
At a surface pressure of 28 mN m™, which is also the maximum surface pressure for
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this particle type (see Fig. 2), the air-water interface is covered with a densely packed
particle layer with a few voids (see Fig. 5d).

Fig. 5 Microscopic picture of air-water interface onto which core-shell particles ‘CS230’ are adsorbed
(magnification 50x, scale bars = 20um). Different pictures represent interfacial structure at different
surface pressures (a) 2mN m™ (b)) 6 mN m™ (c) 21 mN m™ (d) 28 mN m™

Ultimately, we look at the structured formed by the largest core-shell colloids CS530
at the air-water interface. Concerning the interfacial structure one can ascertain that
at least at higher surface pressures, particles are equally distributed over the whole
fluid interface. Further, at a surface coverage as low as 0.05, a surface pressure of
1mN m™ develops already (see Fig. 6a). A finite surface pressure at such low
surface coverage indicates that particles interact with each other through long-range
interaction. Long-range interaction were also found by Alvarez et al. for polymer-
grafted nanoparticles at the air-water interface [27]. Increasing the surface coverage
to 0.1 gives a surface pressure of 11 mN m™ (see Fig. 6b), an even higher coverage
of 0.22 yields a surface pressure of 25 mN m™. Further compression yields a close-
packed interfacial layer of particles which is characterized by 2D crystalline
arrangement of particles. The formation of a 2D crystal indicates that particles repel
each other strongly at such short distances.
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Fig. 6 Microscopic picture of air-water interface onto which core-shell particles ‘CS530’ are adsorbed

(magnification 50x, scale bars = 20um). Different pictures represent interfacial structure at different
surface pressures (a) TmN'm™ (b) 11T mNm™ (c) 25 mNm™ (d) 29 mN m™

Through visual inspection of Fig. 3 - Fig. 6 we found that the interfacial structures
formed by the different particle types varies greatly. In order to quantify the interfacial
structure of the different particle types, we used digital image processing and
determined the separation distance between the particles and calculated the
respective pair correlation functions (see Fig. 7). The pair correlation function
measures the probability of finding a particle at a distance r from any other particles
at the interface. A peak in the pair correlation function indicates the preferred centre-
to-centre distance between particles, a measure which we use as the main
parameter for further comparison. For all particle types, calculation of the pair
correlation function was performed for microscopic pictures which corresponded to a
surface pressure of a few mN m™.

As visible by the first peak in Fig. 7 a & b, PS ‘core’ particles and the smallest core-
shell particles ‘CS167’ adopt a separation distance which equals one particle
diameter. From this result together with the microscopic observations from Fig. 3 &
Fig. 4, one can deduct that these particles are attractive and form aggregates in
which particles are in direct contact with each other. In contrast, the first peak visible
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in Fig. 7c is situated at a distance around 1.2 — 1.3 particle diameters. This means
that core-shell particles ‘CS230’ adopt a centre-to-centre interparticle distance which
is larger than the actual particle diameter. Analysis of the interfacial structure of
‘CS530’ particles reveal that the largest core-shell particles even adopt a larger
interparticle distance than ‘CS230’ core-shell particles. The first peak in the pair
correlation function appears at a distance of two particle diameters. This means that
the mean particle centre-to-centre distance is two particle diameters.

We propose that the measured interfacial particle distance is an equilibrium distance
which results from an interplay between repulsive and attraction interaction.
Repulsive interaction may arise due to electrostatic interaction between particles.
Attractive interaction can arise due to undulation of the particle contact line which
induces capillary interaction between particles. The presence of long-range attractive
capillary interaction in interplay with a repulsive interaction can yield an interaction
potential that gives rise to particle aggregates with a measurable equilibrium distance
between individual particles. In this case capillary forces favour the aggregate
formation while the equilibrium interparticles distance is a result of strong electrostatic
interaction at shorter distances.

This leaves us with the question why core-shell particles ‘CS230" adopt a smaller
interparticle distance than core-shell particles ‘CS530°. This question can also be
explained by the interplay between attractive and repulsive interaction. We suggest
that a larger particle shell will alter the menisci profile around individual particle,
thereby modifying the attractive capillary interaction among individual particles. A
larger shell may reduce the magnitude of attractive capillary forces, thus, the
electrostatic interaction becomes more dominant, as a consequence of which
particles adopt a larger equilibrium distance. This argumentation would also hold for
explanation of the phase behaviour of PS particles and ‘CS167’ core-shell particles.
Although we do not deliver experimental proof of the here sketched interaction
potential, the two mentioned interaction forces are known to play a vital role in the
lateral interaction profile of colloidal particles at liquid interface. Further, the
aggregates observed for PS ‘core’ particle and the smaller core-shell particle types
‘CS167’ and ‘CS230’ give a hint that attractive interaction forces play a dominant role
in their lateral interaction at the air-water interface. Note, that also the interfacial
structure of ‘CS530’ core-shell particles displayed in Fig. 6 a may be interpreted as
aggregates with a large interparticle distance. After further compression to smaller
interparticle distances only the repulsive interaction become apparent (see Fig. 6 b &
6 c).

The observed differences between the interaction of core-shell particles with different
shell dimension may also give a hint how to alter capillary interaction among non-
spherical particles at liquid interfaces. Grafting of a soft polymer shell may be a
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suitable way to tailor capillary interaction and effectively engineer the desired particle
interaction profile. In combination with a thermo- or pH-responsive polymer, one
might even be able to alter capillary interaction in response to environmental
condition. This could lead to the design of truly novel, advanced interfacial materials.
It is also worth mentioning that the here reported particle aggregation as well as the
finite interparticle distance between individual particles has also been observed for
microgel covered fluid interfaces. Cohin et al. found that microgels aggregate at the
air-water interface [20]. A recent article by Huang et al. which addresses the
interfacial structure of microgel covered interfaces finds that microgels form clusters
at the fluid interface, but adopt a measureable distance between particle pairs [34].
This shows that our findings are not specific for the core-shell particles investigated in
this study, but are equally applicable to a wider-range of soft particles systems at fluid
interfaces.

Eventually it is interesting to link the results we obtained from the interfacial structure
characterization to the differences in the surface pressure — area isotherms of the
different particle types. The PS ‘core’ particles as well as the smaller core-shell
particles ‘CS167’ both develop an equally high surface pressure of 53 mN m™ after
compression. Both particle types are also observed to form dense aggregates in
which individual particles are in close contact to each other. This points to a strong
attractive interaction force among individual particles. In contrast, the larger core-
shell particles ‘CS230’ and ‘CS530’ both yield a maximal surface pressure of 28 — 29
mN m™ after sufficient compression. We assume that for these particle types a
repulsive forces dominates a short particle distances. From these results it appears
that the smaller particles can withstand higher surface pressures than the larger
particles. Based on the particle adsorption energies which should scale with the
square of the particle size, we would have expected the opposite behaviour. Taking
into account the observations onto the interfacial structure, we hypothesise that a
pronounced attractive interaction force among particles impedes particle expulsion
from the interface. The effective particle adsorption energy may be higher because of
the cohesive interaction between interfacial particles. Similar conclusion can be
drawn from the results of Poulichet and Garbin. They found that ultrasound can
facilitate particle desorption from bubble interfaces by breakup of particle aggregates
at the interface [35]. Similarly, Razavi et al. found that attractive interparticle
interaction can prevent particle desorption from the fluid interface into the bulk phase.
They also found that for certain particle types with pronounced attractive interaction,
the collapse of the particle monolayer upon compression in a Langmuir trough takes
place at higher surface pressures [25]. The mentioned literature references thereby
corroborate the findings of the current study.
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Fig. 7 Pair correlation function G(r) characterizing the monolayer-structure adopted by different particle
types at the air-water interface. (a) ‘core’ particles and (b) CS167 (c) CS230 (d) CS530 core-shell
particles

5.4. Conclusion

We experimentally determined the surface pressure — area isotherms for monolayers
of differently sized core-shell particles adsorbed at the air-water interface. We find
that the onset of surface pressure development occurs far from the close-packing
limit, which suggests that the interaction between interfacial core-shell particles is
long-ranged. The measured surface pressure must arise from lateral interparticle
interaction, as the ideal gas law would not yield a measurable surface pressure for
micron-sized particles.

After the onset of a finite pressure, the surface pressure —area isotherm diverges and
levels-off upon compression to a certain surface pressure. PS spheres, which
constitute the core of all the core-shell particles, as well as the smallest core-shell
particles can endure the same high surface pressure of 53 mN m™. For larger core-
shell particles with thick shell, the maximum surface pressure does not exceed
29 mN m™. We link the capability to attain higher surface pressure to different lateral
interaction forces among interfacial particles. PS spheres and the smallest core-shell
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particles are characterized by a pronounced attractive interaction. The resulting
cohesive particle monolayer is able to stand a higher surface pressure than an
individual particle. In contrast, for the larger core-shell particles repulsive forces are
more pronounced, the interface is more fluid like and hence only endures lower
surface pressures of 29 mN m™'. The measured collapse pressure of 29 mN m™ is
equal to the collapse pressure of an interface covered with PNIPAM homopolymer. It
appears that the polymeric shell determines the maximum surface pressure of the
particles and the maximum surface pressure is not linked to the particle size. This
suggests that the larger core-shell particles may not desorb as a whole entity, but
rather in a polymer like fashion through sequential desorption of polymer segments.
None of the particles studied is observed to leave the interface before surface
pressures of 25 mN m™ are reached. The part of the surface pressure-area isotherm
up to 25 mN m™ may thus be interpreted as a 2D equation of state.
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Chapter 6
Adsorption behaviour of core-shell

particles at the air-water interface

We analysed the adsorption behaviour of micron-sized core-shell particles consisting
of a solid polystyrene (PS) core and soft Poly(N-isopropylacrylamide)-based shell.
For short and long timescales we observed different adsorption dynamics. At short
timescales adsorption data could be well described by the Ward and Tordai model,
signifying that particle adsorption to the air-water interface is diffusion limited. At long
timescales adsorption to the air-water interface becomes hindered by an energy
barrier due to crowding of particles at the interface. These results prove that the
presence of a soft, polymeric shell can completely alter the particle adsorption
dynamics, from a kinetically controlled process for solid PS core particles, to a
diffusion limited process for core-shell particles with a soft shell. Despite the
spontaneous adsorption to the air-water interface, particle adsorption was found to be
irreversible; no dynamic equilibrium between interfacial and bulk particles exists.
Further, we found by microscopic analysis that core-shell particles with a thick shell
can adsorb in two different states at the fluid interface. We speculate that this is an
elastocapillary phenomenon: there may be two equally favourable states that
maximize the spreading of the soft shell at the fluid interface while minimizing the
elastic energy required for particle deformation. Our results show that markedly
different interfacial behaviour may arise due to the presence of a soft shell around a
solid core particle.

This Chapter is based on: C Buchcic, RH Tromp, MBJ Meinders and MA Cohen
Stuart, Adsorption dynamics and interfacial structure of core-shell particles at the air-
water interface, Manuscript in preparation
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6.1. Introduction

Colloidal particles are becoming an prominent alternative for the stabilization of fluid
interfaces in foams and emulsions. This is because they typically adsorb strongly to
the interface and can form highly elastic interfacial layers which are able to
completely arrest the processes of coalescence and Ostwald ripening [1]. However,
due to their size, adsorption of particles to fluid interfaces is slow. In addition,
adsorption to the interface is often hindered by an energy barrier which manifests
itself by a low probability for particles to stick to the interface [2]. A solution for the
latter problem could be the application of core-shell particles with a solid core and a
soft, polymeric shell. Such particles were shown to easily assemble onto fluid
interfaces without being repelled by a pronounced energy barrier. We previously
came to the preliminary conclusion that adsorption of such particles to the air-water
interface is most likely limited by diffusional transport from the bulk phase to the
subsurface region (Chapter 4). However, the 2D equation of state must be known in
order to derive adsorption rates from tensiometric measurements and fit an
adsorption model. This has not been done up to now.

Colloidal particles, especially soft ones, show some peculiar properties at fluid
interfaces. Experiment and simulation showed that colloidal particles at liquid
interffaces undergo a variety of time dependent relaxation processes. Upon
adsorption to the liquid interface, particles have been found to slowly change their
height with respect to the interface before they reach an equilibrium position [3].
Additionally, surface tension may deform soft colloids and induce spreading of
particles at the fluid interface [4]. The extend of spreading is governed by the
interplay between particle elasticity and surface tension [5]. Due to the relaxation
processes mentioned, the evolution of surface pressure development may not only
be related to the surface coverage, but also to the interfacial configuration of particles
may play a role [6]. This makes it interesting to study interfacial configurations in the
context of particle adsorption dynamics.

The purpose of the current paper is to investigate the behavior of core-shell particles
with an overall radius of 930 nm, consisting of a solid polystyrene (PS) core and a
soft Poly(N-isopropylacrylamide) (PNIPAM) shell, with respect to their adsorption
dynamics at the air-water interface. We measure the evolution of surface pressure as
core-shell particles of varying number concentrations adsorb from the aqueous bulk
to the interface of a newly created droplet. With the help of a previously established
surface pressure — area relationship (Chapter 5) we obtain adsorption rates from the
tensiometric data and fit an appropriate adsorption model. Further, we also apply
various microscopic analysis techniques in order to obtain information about the
position of the particles with respect to the fluid interface.
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6.2. Materials & Methods

6.2.1. Materials

Styrene, itaconic acid (lA), initiator 4,4'-azobis(4-cyanovaleric acid) (ACVA), N-
isopropylacrylamide (NIPAM), N,N'-methylbisacrylamide (BIS), methacrylic acid
(MA), potassium peroxodisulfate (KPS) sodium chloride (NaCl), acetone and Iso-
propanol (IPA) were purchased from Sigma-Aldrich. Deionized (DI) water with a
resistance of 18.2 MQ.cm was supplied by a MilliQ water purification system.

6.2.2. Synthesis core-shell particles

Core-shell particles were prepared via a two-step procedure. Charge-stabilized PS
particles were synthesized by surfactant free emulsion polymerization. PS particles
were used as seed particles for the subsequent precipitation polymerization of
NIPAM with MA co-monomer. Details on the preparation procedure can be found in
Chapter 3 and Chapter 4 of this thesis.

In this chapter only kind of core-shell particle with a radius of 930nm, comprising a
shell with a thickness of 530 nm and a PS core with a radius of 400nm was used (as
measured by dynamic light scattering at 20°C, pH6 and with 20 mM NaCl present in
the bulk). As in other parts of this thesis we use the sample code CS530 for this
particle type.

6.2.3. Measurement of surface tension

A dilution series was made to obtain particle dispersions of appropriate
concentration. The dynamic surface tension of the particle dispersions was measured
on a Drop Tensiometer, model TRACKER (Teclis, France). All measurements were
performed in the pendant drop configuration at 20°C.

6.2.4. Drop-exchange experiment

We used a PAT-1 drop shape tensiometer (Sinterface, Germany) equipped with a
coaxial double capillary for droplet exchange experiments. The surface tension of a
core-shell particle dispersion with a particle volume number density of 9.25x107'°> m™
and 20 mM NaCl as background electrolyte was measured by analysis of the shape
of a liquid drop. After the surface tension was constant (+ 0.2 mN m™), we started to
exchange the liquid inside the droplet with 20 mM NaCl solution. Liquid exchange
was done at a rate of 0.07 mm?® s™'. The total amount of exchanged liquid amounts to
the tenfold droplet volume. The surface tension was measured at all times and
monitored up to 10 hours after the liquid exchange was completed.
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6.2.5. Cryo-scanning electron microscopy

A stock of concentrated particle dispersion was diluted with NaCl solution, yielding a
particle volume number density of 9.25x107'®* m™ with 20 mM NaCl as background
electrolyte. 40 pl of this particle dispersion was transferred to a circular copper
sample holder with 5 mm inner diameter and 1mm deep cavity. The particle
dispersion was left to equilibrate for 20 minutes inside a glass petri dish filled with a
shallow water layer at the bottom, to ensure a water saturated atmosphere and avoid
sample evaporation. Freezing of the sample was done by plunging it in liquid
nitrogene for two minutes. Subsequently, the specimen was partially freeze-dried at -
93°C for 1 min to remove ice crystals, followed by tungsten coating up to 10 nm on a
high vacuum coating system Leica EM MED 020. A first tungsten layer of 5nm was
applied by tilting the sample homogenously at all angles between 0° and 180 °. A
second tungsten layer up to 5 nm was applied by sputtering under an angle of 45°.
Sample transfer was done with a Leica EM VCT 100 vacuum cryo transfer system.
Cryo-SEM imaging was performed on a ultra-high resolution field emission scanning
electron microscope FEI Magellan 400. Imaging was done at an accelerating voltage
of 2 kV.

6.2.6. Dark field light microscopy

Dark field light microscopy was performed on an upright Olympus BX 50 light
microscope equipped with several long working distance objectives, a vertical
illuminator and a dark field mirror block. The particle dispersion was filled in a shallow
quartz cuvette (3 cm x 2 cm x 0.5 cm). The air-water interface was observed in
reflected light mode to focus on the interface. After focusing, the dark field mirror
block was placed into the light path and micrographs were taken with a digital camera
(Olympus DP 70).

6.3. Results & Discussion

6.3.1. Assessment of particle adsorption dynamics by tensiometry

As found earlier, the polymeric nature of the soft shell eliminates any pronounced
adsorption barrier as usually exists between hard particles and a fluid interface
(Chapter 4). Therefore, the rate of core-shell particle adsorption to the interface may
be governed by particle diffusion in the bulk. Due to the micron-sized diameter of our
particles we can also expect that they do not desorb from the interface spontaneously
[1]. Irreversible anchoring and diffusion limited transport to the interface are also the
assumptions of the Ward and Tordai equation [7]:
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where I is the area number density (number of particles in a unit area), c. is the
volume number density (number of particles in a unit volume), D is the particle
diffusion coefficient in the bulk and t is the time. In what follows we want to
investigate to what extend this model can describe the adsorption behavior of our
core-shell particles.

We first measured, for a range of particle concentrations, the surface pressure
development due to adsorption of core-shell particles to the air-water interface of a
newly created droplet. As can be seen in Fig. 1 the change in particle bulk
concentration c. leads to pronounced differences in the evolution of surface pressure.
The curves differ with respect to the lag time t* where a finite pressure can first be
measured, as well as with respect to the rate of surface pressure development and
the maximum pressure reached after a time period of 10* seconds. In all cases, one
observes that the surface pressure development first occurs rather fast and then
slows down at higher surface pressures around 20 mN m™.

30
* 9.25E+15

-E 25 = 4.63E+15
> s 2.31E+15
£E 20 - * 1.16E+15
e < 5.78E+14
2 15 ¢ 2.89E+14
2
=%
3 10 -
£
a 5

0 EEPTL W T ¢ 4 S

1 10 100 1000 10000

time [s]

Fig. 1: Evolution of surface pressure vs time for core-shell particles CS530, the inset indicates the
volume number density c., of the respective curve

The most straightforward measure for differentiation of the different curves in Fig. 1
appears the lag time ¢ were a finite surface pressure can be observed. According the
Ward and Tordai equation [7], this time point ¢ of each curve must correspond to a
certain interfacial particle concentration I~ with:
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Fig. 2 log-log plot displaying lag time log t' vs. number of particle in bulk log c..

We plotted log t vs. log c. and found that the curve fits a straight line with a slope
of -2. This means the relation between t and c. can be best described by a power
law dependence of the following form:

Lo 1 (3)
R

This is in line with diffusion controlled adsorption.

To get a more detailed picture, we must determine the area number density I as a
function of time t. For that we need to convert surface pressure vs time curves into
area number density " vs time curves. For this conversion, we must obtain a 2D
equation of state which expresses the surface pressure as a function of the number
of adsorbed particles at the interface. We determined such a 2D equation of state
previously (Chapter 5); using these data, we plot the number of adsorbed particles vs
surface pressure in Fig. 3. As we discussed the results previously, we only want to
draw attention to the most important results in the context of this study. It becomes
clear from Fig. 3 that for an area number density I” between 2.5"° and 5'° particles
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per m?, the equation of state is linear, whereas for higher area number densities I
and a surface pressure higher than 23 mN m™ the slope of the curves changes.
Further compression of the interfacial layer to even higher surface coverage leads
only to marginal increases of the surface pressure. The maximum surface pressure
reached by lateral compression is around 28.5 mN m™. Interestingly, this surface
pressure is only 1 — 2 mN m™ higher than the maximum pressure measured after
spontaneous adsorption of core-shell particles onto the air-water interface (see Fig.
1). Note that all surface pressure curves displayed in Fig. 1 still exhibit a positive
slope at 10* seconds, meaning that surface coverage and surface pressure may
increase further due to adsorption and interfacial re-organization of particles.
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Fig. 3: Amount of adsorbed core-shell particles CS530 vs. surface pressure on an air-water interface,
data are obtained by first spreading particles onto an air-water interface and subsequent measurement
of the surface pressure upon compression of the interfacial area, data shown are the average of three
experiments with a newly prepared patrticle layer - each consisting of three compression cycles

Knowledge of the 2D equation of state (see Fig. 3) provides us with the means to
convert the surface pressure curves obtained by tensiometry into area number
density I” vs time. The minimum surface pressure in Fig. 3 is around 2 mN m™". At this
onset pressure there are already many particles at the interface. Only increasing the
area number density I above 2.5'° particles per m? results in a measurable surface
pressure above the onset pressure. Thus, the curves displayed in Fig. 4, which give
area number density /" as a function of {*°, start at an ordinate intercept of 2.5
particles per m?.
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Fig. 4 area number density I vs. square root of time *° for varying bulk concentration of core-shell
particles CS530, the inset indicates the volume number density c. of the respective curve

As can be seen in Fig. 4, the first part of the curves in the range from 2.5'° to 4'°
particles per m? can be fitted by a straight line. From this we can conclude that the
initial increase in surface coverage is proportional to t2, which is again in agreement
with the Ward and Tordai model [7]. The slope of the fitted line corresponds to a rate
constant which measures how fast particles at the respective bulk concentration c..
adsorb at the air-water interface. The slopes of the lines fitted to the curves in Fig. 4
can be found in Tab. 1.

Tab. 1 volume number density c.. vs. rate constants determined by fitting a linear equation to the
curves in Fig. 4

volume number density c.. [ 1/m®] | rate constant ks[ 1/(m?s*®) ]
9.25E+15 5.40E+09
4.63E+15 2.70E+09
2.31E+15 1.93E+09
1.16E+15 9.50E+08
5.78E+14 8.66E+08
2.89E+14 9.62E+08

100



rate constant k; [1/(m2°%)]
8
3

0.00E+00 5.00E+15 1.00E+16

volume number density c.. [1/m3]

Fig. 5 Rate constant k; vs. volume number density c., data are taken from Tab.1 and plotted here for
visualization and determination of a proportionality constant m

We also plot rate constants from Tab.1 as a function of c.. and fit a linear curve (see
Fig. 5). Although the fit is not very good, one may still assume a linear
interdependence and fit a straight line with originates at the cross-over of abscissa
and ordinate. From the slope m of this straight line the diffusion constant D which
goes into equation 1 can be calculated. According to Ward and Tordai [7] the
diffusion constant D is obtained as:

D=(E)2T[ (4)

With a slope m = 5.7E-07 um/s'? one obtains a diffusion coefficient D= 2.5E-13
pum?s. This is in line with the diffusion coefficient we obtained by dynamic light
scattering Dp.s= 2.3E-13 pm?/s. The above results suggest that the first stages of
particle adsorption to the interface can be well described by the Ward and Tordai
model.

In contrast, starting from I = 4" particles per m?, equivalent to a surface coverage of
12 percent, particle adsorption to the air-water interface slows down markedly. The
slowdown of the adsorption dynamics is probably attributed to the crowding of
particles at the interface [9]. Insertion of new particles into the interface requires
diffusion and interfacial reorganization of already adsorbed particles. In this stage
insertion of new particles into the interface becomes hindered by an adsorption
barrier [10, 11]. Under this condition particle adsorption to the already populated
interface may be best described by first order kinetics, leading to equation 5:
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I'= L, (1—e7Fkb) (5)

Where 0« corresponds to a fully covered interface and k; is a rate constant which
characterizes the slow-down in the adsorption dynamics upon increasing the surface
coverage. The inverse 1/k; is the relaxation time of the system. 1/k» can be thought
of as the time it takes for reorganization of the particle covered interface before new
particle from the bulk phase can be inserted.
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Fig. 6 Plot of In(1 — I'/I.y) vs. t for varying bulk concentration of core-shell particles CS530, the inset
indicates the volume number density c.. of the respective curve, the solid straight line is the best linear
fit at long adsorption times

Tab. 2 volume number density c. vs. rate constants k, determined by fitting linear equation to the
curves in Fig. 6

volusme number density C. [ rate constant ke [1/5]
1/m?]

9.25E+15 2.00E-05

4.63E+15 4.00E-06

2.31E+15 2.00E-06

1.16E+15 2.00E-06

5.78E+14 4.00E-06

2.89E+14 3.00E-06
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Plotting the adsorption data as In(1 — '/l nax) VS. t results into the curves displayed in
Fig. 6. Long adsorption times can be fitted well to a straight line. We can conclude
that at long adsorption times equation 5 can describe the experimental data very well.
The slopes of the curves in Fig. 6 were determined and are given in Tab. 2 as rate
constant k.. For the highest bulk concentration k. is around one order of magnitude
higher than for the other curves. The reason why this is so, is not clear. The k; values
of the remaining curves in Fig. 6 differ only marginally. This behaviour was expected
since k, depends on how fast the relaxation of the particle covered interface occurs.
The speed of this relaxation process may be driven by the 2D interfacial diffusion as
a main determinant, resulting in similar timescales for relaxation of the system,
regardless of the bulk concentration c... This statement is valid only, if the surface
coverages of the various systems are comparable. If not, the slope k; may decrease
with increasing surface coverage due to crowding of particles which hinders self-
diffusion [12]. For all the data in Fig. 6, except for the highest bulk concentration c.,,
the surface pressure and surface coverage, at the point where a slowdown of the
adsorption process is observed, are similar.

6.3.2. Assessment of particle desorption by droplet profile analysis
tensiometry
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Fig. 7 Plot shows the evolution of surface tension o vs. time t; in the timeframe indicated by the grey
box exchange of the bulk phase against salt solution takes place, insets show the appearance of the
aqueous droplet before and after exchange of the bulk phase: before strong scattering can be
observed while after the droplet appears transparent
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In addition to determining particle adsorption rates, one may also investigate if
particles desorb from the interface, and if so, at which rates they leave the interface.
Particles are often supposed not to leave the interface spontaneously, but only
experimental assessment can validate this assumption. In Fig. 7 we plot the evolution
of surface tension o as measured by profile analysis tensiometry on a droplet
containing core-shell particles. The surface tension o first decreases and then
remains largely unchanged. At this point we exchange the bulk phase of the droplet
by particle-free electrolyte solution, while following the surface tension o. We observe
that surface tension o remains unchanged. Hence, there is no sign of a dynamic
equilibrium between particles in bulk solution and at the interface. Once adsorbed to
the interface, particles remain there even if the bulk phase is depleted of particles.
This is because due to their size, the particles possess a very high adsorption energy
so that thermal energy cannot induce desorption from the interface [1]. Irreversible
adsorption was also one of the requirements for application of the Ward and Tordai
model [7]. We thus corroborate that the model is rightfully applied in the analysis of
particle adsorption onto the air-water interface.

6.3.3. Determination of the interfacial structure of core-shell particles by
scanning electron microscopy (SEM) and epi-illumination dark field
microscopy

In the context of investigating the adsorption dynamics of core-shell particles onto the
air-water interface one might wonder in which state core-shell particles adsorb to the
air-water interface. Particles might adsorb in a polymeric fashion with polymer
segments of the particle’s shell attached to the fluid interface only. Alternatively, the
whole core-shell particle may breach the interface leading to a state where a
significant protrusion of the solid core into the non-polar phase can be ascertained.
Alternative scenarios are possible too.

Given that the maximum surface pressure developed by the core-shell particles is 28
- 29 mN m” (see Fig. 1) and this surface pressure is similar to the pressure
developed by populations of PNIPAM based polymers [13] and PNIPAM based
microgels at the air-water interface [14, 15], one might speculate that the interfacial
behavior is dominated by the crosslinked PNIPAM shell and that core-shell particles
adsorb in a polymer-like fashion at the air-water interface. However, we recently
found by cryo-SEM shadow casting that core-shell particles are able to straddle the
air-water interface and adopt a ‘fried egg’ like structure (Chapter 4). In order to
confirm earlier results, we performed more cryo-SEM measurements. During these
measurements we repeatedly find pictures like displayed in Fig. 8 where parts of the
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interface are populated with core-shell particles breaching the interface, but the rest
of the interface is covered with structures resembling polymer strands.

Fig. 8 SEM micrograph of core-shell particle at the air-water interface as obtained by cryo-SEM
shadow casting technique, a sputter coating was applied under an angle of 45°, a visible shadow in
the particles vicinity reveals that the particles protrude the air-water interface

In order to shed light on this issue we performed epi-illumination dark field
microscopy. With this technique the signal produced is due to surface scattering of
light rays which reach the interface under an oblique angle [16]. In Fig. 9 we can
indeed observe two populations of signals, one of higher intensity and one of low
intensity. The difference in intensity must mean that the two populations scatter
different amounts of light. As the amount of scattered light is proportional to the
specific scattering coefficient of the particles and the concentration of particles just at
or above the interface, we reason that the two populations of different intensity
correspond to two populations of particles with different interfacial configuration.
Interestingly, also the g(r) of the populations differs from each other, with the bright,
high intensity signals typically at larger distances from each other than the dark, low
intensity signals (see Fig. 10). One might speculate that the high intensity signals
correspond to core-shell particles where the solid core predominantly resides in the
non-polar phase and which therefore experience a long-ranged electrostatic
repulsion through the non-polar phase leading to larger interparticle distances. The
other population, visible as low intensity signals in Fig. 9, may correspond to core-
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shell particles where only parts of the particles PNIPAM shell are adsorbed to the air-
water interface and the solid core predominantly resides in the aqueous phase.

Fig. 9 Micrograph of core-shell particles at the air-water interface as obtained by epi-illumination dark
field microscopy at different times (a) after 600s and (b) after 3600s
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Fig. 10 Pair correlation function g(r) of the core-shell particles displayed in micrograph Fig. 9 (b), the
g(r) of the two different populations of signals visible in Fig. 9 (b) is calculated separately and denoted
as g(r) bright particles and g(r) dark particles

The question which arises is why two such populations of particles would exist, while
for solid particles a rather well-defined contact angle and similar interfacial
configuration of all particles is found [17, 18]. The reason might be the soft nature of
the particle’s shell. Capillary forces tend to deform the soft particles in order to
maximize interfacial coverage. This spreading process stops once the energy gain
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from covering additional interfacial area is counterbalanced by the energy needed for
elastic deformation of the particle. As a net-result of these processes the interfacial
free energy is lowered [5, 19].

As mentioned before, different interfacial configuration of core-shell particles can be
envisioned. In the most favorable situation maximization of particle deformation must
go along with minimization of the energy needed for elastic deformation of the
material. Modelling of these processes is not straightforward, but one might envision
that it is most favourable if the solid core resides mostly in either of the two phases
adjacent to the interface and the soft polymeric shell occupies most of the air-water
interface (see Fig. 11). Both situations may be equally favourable in terms of
elastocapillary forces and can explain our experimental findings on the interfacial
configuration of the core-shell particles.

[l hard core Air
O soft shell

Fig. 11 Sketch showing two possible interfacial configurations of core-shell particles at the air-water
interface

6.4. Conclusion

We analysed the adsorption dynamics of core-shell particles consisting of a solid
polystyrene core and a soft PNIPAM shell. Previously we found that solely the PS
core with a radius of 400 nm does not adsorb to the air-water interface. In this study
we found that covering the PS core with a soft shell resulted in core-shell particles
with an overall radius of 930nm and which are adsorbing much more readily at the
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air-water interface. For short and long timescales we observed different behaviour. At
short timescales we found that I is proportional to t”2 and the rate of particle
adsorption onto the interface is proportional to the particle bulk concentration c.. Our
experimental data were best described by the Ward and Tordai model. These results
suggests that the first stages of particle adsorption to the air-water interface are
indeed diffusion limited. At longer timescales the rate of interfacial adsorption slows
down because part of the interface is already covered with particles which hinders
insertion of new particles into the interface. The adsorption dynamics at long time
scales are best described by an exponential decrease of the particle adsorption rates
as the surface coverages increases.

Complete removal of all particles from the bulk phase does not cause desorption of
particles from the interface, signifying that there is no dynamic equilibrium between
particles in the bulk and particles adsorbed at the interface. This means that despite
the spontaneous, barrier free adsorption of core-shell particles at the air-water
interface, core-shell particle are irreversibly adsorbed there. Irreversible adsorption of
particles is also one of the assumptions underlying the Ward and Tordai model,
giving extra credibility to the application of this model for description of the particle
adsorption dynamics at the air-water interface.

Microscopic analysis of the interfacial configuration of core-shell particles at the air-
water interface reveals some peculiar insights. Two different populations of core-shell
particles which apparently adopt different positions with respect to the air-water
interface can be identified. We propose that the solid core can either residue below or
above the interface, while the soft PNIPAM shell covers most of the air-water
interface. Both situations may be equally favourable in terms of the elastocapillary
forces involved, while minimizing the interfacial free energy.
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Chapter 7
General Discussion
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7.1. Performance of hard particles as interfacial stabilizers

Here we first discuss the results we obtained on hard particles as sole stabilizers for
fluid interfaces. This part focusses on the application of hard particles for the
stabilization of air bubbles. Yet, in some parts of this text we also refer to emulsion
droplets, especially when the underlying concepts by which particles are stabilizing
fluid interfaces are discussed.

7.1.1. Sonication for assembly of particle stabilized bubbles

The work described in this thesis started off with the primary aim to evaluate
techniques for the production of particle-stabilized air bubbles. From there we had
several options regarding the type of colloidal particle to be used and the technique
applied for bubble creation. In an initial attempt to produce particle-stabilized
dispersion, we decided to test an existing ultrasound set-up for the creation of
particle-stabilized air bubbles (Chapter 2). Ultrasound offers the advantage that very
small, submicron gas nuclei can be created through cavitation [1]. These submicron
bubbles are expected to grow until enough surface active particles are adsorbed at
the interface in order to grant stability against coalescence and Ostwald ripening. The
typical size of the bubble dispersions produced in this way is expected to be much
smaller than dispersions produced by conventional methods based on entrainment of
air (via shaking or turbulent mixing) [2].

By applying ultrasound via a needle probe to a dispersion of micron-sized PS
particles, we were indeed able to produce an appreciable amount of bubbles. The
typical size of these bubbles was in the range of 10 — 100 pym (Chapter 2). In
contrast, the same sonication set-up did yield protein-stabilized microbubbles below 1
pm in diameter [3]. Also, reference [2] reports on particle-stabilized bubbles < 10 pm
in diameter produced by a cavitation-based-method. The typical bubble size we
obtained, thus, appears rather large.

In order to rationalize this result, one might ask if there is a minimum ratio between
the radius of the disperse phase R and the particle radius r, and indeed there is. For
bubbles, as well as droplets, stabilized by particles we can expect that the ratio
between the radius of the dispersed phase R and the particle radius ris:

R (1)
T

In other words, the size of the particles must be significantly smaller than the size of
the bubbles/droplets. This is because in the limit where the size of the disperse
phase is close to the particle size, the particle adsorption energy declines strongly.
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To illustrate why this is so, imagine a solid particle with a well-defined contact angle
at an initially flat interface. Progressively increasing the radius of curvature of the
interface around the particles will increase the interfacial area, the energy penalty to
be paid for that reduces the particle adsorption energy [4, 5]. Given the fact that the
minimum bubble size we obtained by our sonication approach is just one order of
magnitude larger than the size of the colloidal particles we use for stabilization, we
can conclude that with regards to the minimum bubble size the process parameters
are not the limiting factor. It appears that the particle size limits the stabilization of
even smaller bubbles. Future research shall aim to use smaller particles, perhaps
nanoparticles, which may then enable the production of true microbubbles (< 1 ym)
via the needle probe sonication set-up we used.

The application of ultrasound to a particle dispersion can also lead to desorption of
particles from a fluid interface, as recently shown by Poulichet et al. [6]. However,
that happens only under a specific set of conditions; the effect is particularly
pronounced when the bubbles are spatially confined and experience regular pressure
variation. To a certain extent particle desorption from the interface might also occur
with our experimental set-up. However, the fact that we are able to produce an
appreciable amount of bubbles, means that interfacial assembly of particles prevails
over particle desorption.

A seemingly more important factor which came into our attention was the efficiency of
particle adsorption onto the fluid interface. We used particle dispersions with a dry
matter content around 5 % w/w to produce bubbles by sonication. However, we noted
that with our sonication approach the majority of PS particles remained in the bulk
phase instead of adsorbing onto the fluid interface. From literature it is known that
relatively high concentrations of particles are necessary to produce a particle-
stabilized dispersion. This observation is often attributed to an energy barrier for
interfacial adsorption of particles which manifests itself by a low probability for
particles to stick to the fluid interface, so that a high concentration of particles is
needed to successfully stabilize bubbles and droplets [7-9]. An alternative reason for
the low adsorption probability to the air-water interface might be the transient contact
between particle and fluid interface. Drainage of the liquid film between particle and
interface might take more time (in comparison with the particles residence time near
the interface) than available for forming a three phase contact line. The improved
ability of higher concentrated particle dispersions (5% w/w) to stabilize fluid interfaces
may be related to the increased viscosity of the liquid phase which leads to a longer
contact time between particle and interface. Modification of bulk viscosity by addition
on non-adsorbing polymers to the particle dispersion may therefore improve the
efficiency of particle adsorption onto the air-water interface. Unfortunately, the effect
of bulk phase viscosity on the amount of bubbles which can be created under an
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otherwise specified set of condition has not been investigated here, but might be
worth looking at.

7.1.2. Effect of electrolyte on the ability of hard particles to adsorb onto
the fluid interface

Qualitatively we observed that electrolyte addition to the particle dispersion has a
pronounced effect on the probability for particles to stick to the air-water interface. By
sonication of a particle dispersion with added electrolyte in the bulk phase, a higher
overrun, that is the percentage of incorporated air with respect to the liquid volume,
was obtained than without electrolyte present. A similar trend was also observed if
bubble creation was done via vigorous hand-shaking. We took this result as a
confirmation that added electrolyte and/or also pH induced protonation of charged
groups can promote particle attachment by screening repulsive electrostatic
interaction between particle and interface [6, 7, 10].

Negative side effects of the increased electrolyte concentration are that it also
impairs the colloidal stability of particles in the bulk phase, and that it weakens the
electrostatic repulsion between individual particle-stabilized bubbles/droplets. In a
situation where the aggregation stability of the particle stabilized bubbles/droplets is
of interest, measures must be taken in order to grant stability despite the lack of
electrostatic repulsion. Salari et al. found that addition of block-co-polymers which
bind to the outer surface of particle stabilized emulsion droplets can prevent their
aggregation [11]. It would be interesting, to investigate the effect of adsorbed polymer
on the stability of particle stabilized dispersion against Ostwald ripening. While
polymer addition can inhibit aggregation of the dispersed bubbles/droplets, it will
certainly also alter the capillary interaction by which particles are held at the fluid
interface. This in turn may alter their stability against phase separation.

Another unexpected observation we made is on the amount of electrolyte which is
necessary to promote particle adsorption onto the fluid interface. The electrolyte
concentration ¢ necessary to promote interfacial adsorption differed from particle
type to particle type. More interestingly, in many case we found that c¢; should be well
above 100mM NaCl. In some cases we found improved particle adsorption by
increasing the electrolyte concentration to values above 400 to 500 mM NaCl. This
discovery surprised us, because already at 100 mM NaCl a rather short electrostatic
interaction range was expected. The typical length scale for electrostatic effects in
electrolyte solution is given by the Debye length k™.

_ &&kgT (2)
© 2Nge?l

K—l
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where [ is the ionic strength of the electrolyte in mol m™®, g is the dielectric permittivity
of free space, ¢, is the relative dielectric constant, kg is the Boltzmann constant, T is
the temperature, N, is the Avogadro number and e is the elementary charge.

Based on equation 2 one obtains, for an electrolyte concentration ¢ of 0.1 mol I
and a monovalent salt, a screening length around 1nm. Any electrostatic effects
should be confined to this small length scale. In contrast, some of the interaction
between an air-bubble and a colloidal particle are attractive, stemming from van der
Waals forces or hydrophobic forces [12-14], and can be long-ranged [14]. We thus
expected that the through addition of 0.1 mol I' NaCl the electrostatic effects
diminish and any remaining energy barrier in the particle-bubble interaction potential
is sufficiently small to be easily overcome by the hydrodynamic forces occurring
during bubble preparation. This hypothesis was proven to be wrong, since we often
frequently found that electrolyte concentration well above 100 mM NaCl are
necessary to facilitate particle adsorption onto the fluid interface. Similar observations
were also made by other authors who found that up to 500 mM NaCl are necessary
to promote particle assembly at the oil-water interface and prepare stable emulsion
[6, 11, 15, 16]. The reason why these high concentration of electrolyte are necessary
to promote particle adsorption to the fluid interface is unknown.

At this point it seems interesting to mention that also the 2D phase behaviour of
interfacial particles can be altered by addition of electrolyte. In Fig. 1 one can observe
that the 2D structure adopted by PS particles at the air-water interface gradually
changes by increasing the electrolyte concentration in the subphase. With 1mM NaCl
in the subphase patrticles are repelling each other. With 10 mM NaCl in the subphase
particle interaction seems characterized by a long-range attraction with a short range
repulsive component. At 1 M NaCl particles are completed attractive and clusters are
visible. The important note is that 2D particle-particle interaction are sensitive to the
electrolyte concentration in the bulk. As to why this electrolyte sensitivity arise is not
completely clear either, but a coupling between the charges in the water immersed
part of the particle and the resulting dipol-dipol interaction is likely.
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Fig. 1 Two-dimensional structure adopted by PS-sulfonate particles (4 pm diameter) at the air-water
interface in the presence of varying amounts of electrolyte in the subphase, upper left: 1mM NaCl,

upper right: 10 mM NacCl, lower left: 100mM NacCl, lower right: 1000 mM NaCl, scale bars of all images
correspond to 100um

7.1.3. Influence of particle wettability on the adsorption of hard particles
onto fluid interfaces
Another factor which had a strong effect on the ability to produce particle-stabilized
bubbles, by ultrasound as well as by hand-shaking, was the type of particle. We
tested a variety of colloidal particles, from PS to silica particles, with diameters
ranging from nm to pm. Particles also carried different surface functional groups.
What is intriguing, is that no particle-stabilized bubbles could be produced with silica,
while all the PS particles gave an at least satisfying performance as interfacial
stabilizers for air bubbles. This observation signifies that particle wettability is of
utmost importance for the ability of hard particles to strongly adhere to fluid
interfaces. Only particles with intermediate wettability for both phases adhere strongly
to the interface [8]. Silica particles are hydrophilic and reside mostly in the aqueous
phase [17], while PS particles are more hydrophobic and adopt contact angles
around 90°C at the air-water as well as oil-water interface [18]. Therefore PS particle
are well suited to stabilize foams and emulsions [19-21]. It was also shown that silica
particles can be hydrophobically modified through in-situ surfactant adsorption, as
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well as by chemical modification, to increase their affinity for the fluid interface and to
impart the ability to stabilize foams [22-24]. Surface wettability may not only affect
adsorption energy at the fluid interface, it may even have an impact on the adsorption
behaviour of particles to fluid interfaces, as we will outlay in the next paragraph:

The adsorption energy of particles at the fluid interface is given as:

AE = nr?o(1 + cos 6)? (3)

where n is the number of adsorbed particles on the area A, ois the interfacial tension
of the bare interface, r the particle radius and 6 is the particle contact angle. For
particles with a radius of a few nm, the particle adsorption energy at common fluid
interfaces may be a few kgT only. With such a low adsorption energy, thermal
energy can induce a displacement of the respective particles from the fluid interface.
Presuming that the bulk is filled by two populations of equally-sized nanopatrticles,
interfacial adsorption is diffusion limited and the adsorption energy is in the range of
several kgT, a preferential segregation of the more hydrophobic particles with higher
adsorption energy onto the fluid interface can be expected. This has been also
confirmed by experiments with nanoparticles [25] and is based on altering the
dynamic equilibrium between particle ad- and desorption. For larger, micron-sized
particles such an effect is not expected as particles are assumed to adsorb
irreversibly. Nevertheless, one could imagine that particle wettability can influence
the magnitude and length scale of the hydrophobic or van der Waals interaction
between particles and bubble/droplet. This in turn may impact the energy barrier for
interfacial adsorption of particles and thereby lead to a different probability for certain
particles to adsorb to the fluid interface. Similar discussion on the topic are also found
in literature. Englert et al. showed by a combination of surface force measurements
and theoretical modelling of the measured force curves that surface properties can
modify the length scale of the hydrophobic forces and thereby alter the height of the
energy barrier for interfacial adsorption [26]. HJ Butt measured a repulsive force
between a hydrophilic silica particle and a bubble, whereas attractive forces could be
measured between hydrophobic silica particles and a bubble. In the latter study the
impact of surface modification on the electrostatic interaction is not clear, though [27].
Fielden et al. reported that the interaction between hydrophilic silica and an air
bubble is monotonically repulsive, an attractive component at short distances could
be induced by hydrophobic modification of the particle [28]. Based on the mentioned
AFM measurements it appears that the surface properties of the particle can indeed
impact the particle-bubble interaction potential and thereby influence the ability of a
particle to adsorb to the fluid interface.
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7.1.4. Surface pressure development due to particles adsorption at the
fluid interface

With the aim to establish an elegant technique for testing if particles can
spontaneously adsorb at a certain fluid interface, we decided to use drop shape
tensiometry. The technique determines the surface tension by analysis of the
bubble/droplet shape and is a standard technique to determine the surface activity of
surfactants and polymers. For low molecular weight compounds the magnitude of the
surface pressure initially follows a linear relation with respect to the amount of
adsorbed material per unit area.

- (4)

where 1 is the surface pressure, A is the area, n is the number of particles in moles,
R is the ideal gas constant and T is the temperature of the system. For micron-sized
particles equation 4 would predict surface pressures on the order of 10° mN m™, a
value which is three to four orders magnitude lower than the surface pressures
reported for compressed particle layers at the air-water or oil-water interface [29-33].
Equation 4 thus cannot represent the surface pressure development for micron-sized
colloidal particles at the fluid interface. Aveyard et al. consequentially ascribes the
surface pressure development of colloidal PS particles at the fluid interface to lateral
interaction between adsorbed particles [31].

-
LA

(a) and the same particles dispersed in DI water (b)

An impression over the length scale of these interaction gives Fig. 2, which shows
the structure of a particle monolayer at the air-water interface. The fact that the
particles form a crystalline structure at the air-water interface serves as evidence that
they repel each other strongly. The particles displayed in Fig. 2 experience lateral
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repulsion at interparticle distances as large as five particle diameter. The general
notion is that these pronounced long-ranged interaction arise due to electrostatic and
dipol-dipol interaction [31, 34, 35]. Such a long-range interaction is not possible in
water; even for particles being dispersed in deionized water and bearing high surface
charges, the maximum range of electrostatic interaction is on the order of 100nm.
Given the relatively high surface pressures which can be developed by micron-sized
colloidal assemblies at the fluid interface [29-33], it seemed certainly possible to
detect particle adsorption at the fluid interface through tensiometry. We thus
measured the surface pressure development of a range of different particle
dispersion by drop shape analysis of a water droplet containing dispersed particles.
We tested silica, PS and PMMA particles, all of which had diameters in the range
from 800nm up to a few micrometres. Interestingly, we could not identify any particles
which gave rise to a measureable surface pressure due to spontaneous adsorption at
the air-water interface (see Chapter4 for PS particles). We tested also the influence
of added electrolyte, up to 500 mM NaCl, on the particle’s ability to cause
spontaneous surface pressure development. Finally, we also tested uncharged
particles with regards to spontaneous adsorption at the air-water interface. In none of
the cases we measured a finite surface pressure.

One could now argue that particles were not hydrophobic enough to adsorb to the
fluid interface and vyield a finite pressure. We can give evidence that this is not the
case though. PS particles which fulfil the partial wetting criteria at the air-water
interface, which give a measurable pressure after lateral compression in a Langmuir
through and which can stabilize air bubbles, do not yield a surface pressure when
they are initially dispersed in the aqueous phase (see Fig. 3).

One could further argue that particles maybe adsorb to the fluid interface, but not
yield a finite surface pressure, as this would require a high surface coverage, so that
the particles experience lateral repulsion. Such a state may not be reached by
spontaneous adsorption from the bulk. We also investigated this possibility by
observing the air-water interface above a relatively concentrated particle dispersion,
using reflected-light microscopy. We observed a few individual particles adsorbing to
the air-water interface. However, the majority of diffusion driven particle approaches
to the air-water interface did not led to particle adsorption. This could be concluded
since particles came into focus when they reached the subsurface region, but then
disappeared again. On timescales of 1-2 days we observed depletion of the
subsurface region with particles, due to gravity induced sedimentation, but the
particle surface coverage did not surmount 1%. Based on these results, we ascertain
that hard particles cannot easily adsorb to a fluid interface. Breaching of the fluid
interface seems characterized by a pronounced energy barrier, even for uncharged
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(sterically stabilized) colloidal particles. We conclude that hard particle must be
imparted with sufficient kinetic energy (e.qg. by stirring) to breach the fluid interface.
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Fig. 3 Properties of cationic PS particles with radius of r=508nm at the air-water interface :
immobilization via the gel trapping technique (upper left) provides evidence that particles show partial
wettability for both phases, bubbles stabilized by the same particles (upper right), surface pressure
evolution after spreading and subsequent compression of the particles in a Langmuir trough (lower
left), surface tension of a particle dispersion with a concentration of 2.5 g I measured with drop-shape
tensiometry (lower right)

7.15. Structure of bubbles/droplets stabilized by hard particles

During research for this thesis we exhaustively investigated the structure of particle
stabilized bubbles by microscopy. In all cases we could ascertain that the bubble
interface is covered by a closed-packed interfacial layer of particles, irrespective of
particle size, charge and shape. This is in agreement with an earlier observation on
particle stabilized bubbles prepared by microfluidics [36]. The formation of a colloidal
amour on the bubble interface can thus be seen as a requirement for the efficient
stabilization of gas bubbles against phase separation by Ostwald ripening and
coalescence. In many cases the polydispersity of the particles was very low, as a
result of which crystalline domains on the bubble interface emerged (Chapter 2).
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The colloidal amour formed is thought to be solely held together by capillary
interaction. Once particles are adsorbed at the air-water interface, a three-phase
contact line is formed. Subsequent removal of the particle from the interface is
energetically unfavourable as the interface must be substantially deformed before the
particle can be pulled off. Even pronounced lateral interaction due to surface
compression may not cause desorption of particles if their adsorption energy is very
high [13, 37]. Desorption can be induced by surfactant addition, as the strong
capillary forces are substantially lowered and the stresses on the bubble are relieved
through particle release in the bulk, followed by bubble dissolution (Chapter 2).

As to how the colloidal amour is formed, we observed that during sonication or hand-
shaking a partially covered bubble is formed. In the course of Ostwald-ripening and
due to coalescences, bubbles attain a closed-packed interfacial layer which provides
an excellent stability to air-bubbles and can stabilize them for years (as we observed
with some samples which we kept on the bench for this long).

7.2. Performance of core-shell particles as interfacial
stabilizers

Many of the aspects we discussed above on particle stabilized bubbles equally apply
for disperse systems stabilized by core-shell particles comprising a hard PS core and
a soft PNIPAM shell. We will confine the following discussion to aspects and
properties of core-shell particles which are fundamentally different from the behaviour
of homogenous hard particles. This discussion should lead to an understanding of
the superior performance of this type of particles as interfacial stabilizers.

7.2.1. Adsorption of core-shell particles at fluid interfaces

Comparison of the adsorption behaviour of core-shell particles with PS “core only”
particles, revealed pronounced differences between the two classes. While PS
particles hardly adsorbed to any of the investigated fluid interfaces, the core-shell
particles readily populated the air-water interface as well as the oil-water interface,
regardless whether polar or apolar oils were used (Chapter 4). In this respect core-
shell particles behave identically to pure PNIPAM particles which were also shown to
adsorb at different fluid interfaces [38-40]. Our results show that for hard particles a
pronounced energy barrier for interfacial adsorption exists, which is substantially
lowered by the presence of the soft PNIPAM shell.

By investigating the adsorption kinetics of our core-shell particles in detail, we found
that particle adsorption to the air-water interface is diffusion-limited. The rate
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determining step for particle adsorption to the air-water interface is the diffusive
transport of particles from the bulk to the interface. No barrier for interfacial
adsorption exists, as long as the surface coverage is low. If the surface is already
covered with a high amount of particles, a surface coverage dependent barrier for
interfacial adsorption arises, as the presence of other particles make the insertion of
an additional particle into the interface less likely (Chapter 6).

A question which arose in the context of this research was on the influence of the
size of the PNIPAM shell on the ability of core-shell particles to spontaneously adsorb
onto fluid interfaces. We presumed that there must be a critical shell dimension,
above which particles spontaneously adsorb and below which particles do not adsorb
to the fluid interface. By designing a variety of core-shell particles with shell
dimensions in the range from 15nm to 530 nm, and analysing their adsorption at the
air-water interface, we found a critical shell dimension around 167 nm (Chapter 4). As
to why this critical dimension exists, we can speculate that it has to do with the
softness of the PNIPAM shell. A small shell on top of a hard core might be less
flexible than a large shell. A core-shell particle with small shell may therefore adsorb
less easily to the fluid interface than a particle with large shell. Determination of the
core-shell particles elastic modulus as function of radial distance to the core via AFM
might confirm this hypothesis.

Another interesting, experimental approach might be to systematically alter the
softness of the particle shell, by introducing different amounts of cross-links, while
keeping the shell thickness constant. From such an experiment a critical elastic
modulus of the shell, in other words, a critical softness, may be found which can
ensure facile adsorption of particles onto the fluid interface.

The fact that particles could adsorb at all fluid interfaces, irrespective of the nature of
the oil, appears to be in sharp contrast to the behaviour of hard particles (Chapter 4).
For hard particles the general notion is that the surface properties determine whether
a particle can adsorb at the fluid interface [22]. For the here investigated core-shell
particles, however, the nature of the water-fluid interface does not play a dominant
role for the particle adsorption at the fluid interface; in any case, particles adsorb.

7.2.2. Elastic properties of interfacial layers covered by core-shell
particles

7.2.2.1. Air-water interface

By determination of the maximum surface pressure developed after spontaneous
adsorption of core-shell particles at the air-water interface, we found that all core-
shell particles gave a similar surface pressure around 26 mN m™ (Chapter 4). This
surface pressure is very close to the surface pressure developed by PNIPAM
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polymers at the air-water interface under good solvent condition [41, 42]. This
suggests that the surface pressure arises due to overlap of the peripheral PNIPAM
segments on the core-shell particles. This hypothesis was further supported by cryo-
SEM pictures which showed that at the air-water interface, next to the actual core-
shell particles, a continuous, polymer-like structure is visible (Chapter 6). These
polymer like strands are most likely polymer chains which are emerging from the
surface of individual core-shell particles and form an interface spanning network,
giving rise to a surface pressure. Similar findings on the origin of the surface pressure
development of PNIPAM microgels were reported by Destribats et al. [43]. In
conclusion, it appears that the surface pressure development of microgels and of our
core-shell particles is based on the same physical origin, on the steric interaction
between the particle’s peripheral PNIPAM chains.

Analysing the compression isotherm of the core-shell particles given in Chapter 5
gave further evidence that the behaviour of core-shell particles at the air-water
interface is dominated by the PNIPAM shell. For compressional strains up to 40 %
(starting from the point where the surface pressure diverges), we determined a low-
frequency dilational modulus of at most 27 mN m™ for all core-shell particles. This
value is close to the maximum dilatational elastic modulus we estimated from the
data of Deshmukh et al. for PNIPAM microgels at the air-water interface [38].

The compressional modulus of the interface is presumably linked to the mechanical
properties of the adsorbed material [44]. In the limit of large compressional strains
(>> 40% starting from the point where the surface pressure starts to diverge) we thus
expected the hard core to influence the response of the core-shell particles.
However, we did not find evidence for that. For larger core-shell particles the elastic
modulus declined strongly upon application of large strains, indicating collapse of the
2D particle layer. Core-shell particles with a shell dimension of 167 nm, behaved
somewhat differently. Even by application of large strains, the compressional elastic
modulus remained constantly high until a surface pressure of around 53 mN m™” was
reached. Note, the dilational elastic modulus of the these core-shell particles did not
exceed 27 mN m™', while hard core particles yield values of ~ 100 mN m™ (Chapter
5).

It can be concluded that the core-shell particles with appropriate shell thickness (here
the sample with shell thickness of 167nm) can indeed combine spontaneous
adsorption with the ability to withstand high surface pressures. The compressional
response of core-shell particles seems dominated by the PNIPAM shell, though. We
did not find evidence that the core contributes to the mechanical response to
interfacial compression. The fact that core-shell particles of intermediate size (with a
shell dimension of 167 nm) can built up higher surface pressures than the larger ones
(with a shell dimension of 230 nm and 530nm), may be related to the more cohesive
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structure of the 2D particle layers of medium sized core-shell particles, in comparison
with the open structure adopted by larger core-shell particles (Chapter 5).

7.2.2.2.  Oil-water interface

As we did not have a Langmuir trough available which is suitable for the study of oil-
water interfaces, we attempted to investigated the behaviour of core-shell particles at
the oil-water interface with a tensiometer based on drop shape analysis. By
adsorption of core-shell particles on the interface of a hanging oil-in-water droplet and
subsequent size reduction of the oil droplet by sucking oil out of it, we could observe
that a non-spherical droplet shape arises. Further, we found that upon interfacial
adsorption of core-shell particles and subsequent application of large compressional
strains, the surface tension can become as low as 5 mN m™. For large strains, right
before a non-spherical droplet arises, we estimate a dilational modulus of
100 mN m™" based on the tensiometric data (data not shown). All these observations
show that the dilational response of core-shell particles at the oil-water interface is
similar to the typical interfacial behaviour of hard (polystyrene) particles.

7.2.3. Tuning the dilational response of particle-laden fluid interfaces

The microgels investigated in this study contained functional groups which can be
protonated and deprotonated in response to the pH. By protonating the anionic
functional groups, the PNIPAM shell swells, and vice versa. This shall alter the
softness, i.e. the bulk elastic modulus, of the particles PNIPAM shell. The bulk elastic
modulus of the particles, in turn, is expected to be proportional to the dilational
modulus of fluid interfaces covered by core-shell particles [44].

We found an inverse relation between the dilational response of a particle covered
air-water interface and the pH of the bulk phase. At pH 3 we found a maximum
dilational modulus of 43 mN m™, which decreased to 27 mN m™ at pH 6 and to
18 mN m™ at pH 12 (data not shown). The decreasing dilational modulus indicates a
decreasing bulk elastic modulus of the PNIPAM shell, the particle shell seems to
becomes softer with increasing pH.

These results clearly show that the rheological properties of interfaces covered by
core-shell particles can be tuned. The inverse relation between the dilational modulus
and pH, underlines once more that steric interactions are responsible for the surface
pressure created by our core-shell particles. For electrostatic interaction the opposite
behaviour would have been expected.
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7.2.4. Stability of particle stabilized dispersions

Dispersions of air and various oils in water were prepared with core-shell particles as
sole interfacial stabilizers. Air bubbles could be stabilized by core-shell particles,
while the hard PS particles did not yield any bubbles at all, even when high
concentrations of electrolyte where present in the bulk. Upon storage, the bubble
dispersions underwent phase separation, though, and disappeared in a time frame of
2-3 days. At all times bubbles remained spherical, showing that surface tension
dictated the bubble shape. This observation indicates that stabilization is different
from classical Pickering stabilization: it appears that core-shell particles adsorb at the
bubble interface in a polymer like fashion, with the PNIPAM shell attached to the
interface while the hard core probably predominantly reside in the water or air phase.
This conclusion is further supported by our findings on the dilational response of air-
water interfaces covered by core-shell particles.

For oil-in-water dispersions a remarkably different behaviour was ascertained. Core-
shell particles were able to provide stability against phase separation for a variety of
different oil-in-water emulsions. For polar oils it was found that the droplet surface
undergoes an evolution from an initially partially covered to a close-packed interface.
Once particles are jammed at the interface, phase separation is arrested. Jamming of
the interface is apparent from the often non-spherical emulsion droplets which are
formed by polar oil drops. The non-spherical droplet shapes suggest that the surface
tension vanishes, as supposed to occur for Pickering emulsions stabilized by hard
particles.

7.3. Performance of core-shell particles as interfacial

stabilizers in comparison to hard particles

A remarkable property of the from us synthesized core-shell particles is their ability to
adsorb at a variety of different fluid interfaces. No apparent energy barrier exists for
interfacial adsorption of core-shell particles. This will be an advantage if low energy
input processing methods are to be used for production of fluid dispersions. It also
eliminates the need to add high concentrations of electrolyte to promote interfacial
adsorption, as necessary for hard particles, and thereby ensures that particles in the
bulk maintain colloidal stability (avoid flocculation).

The ability of core-shell particles to stabilized fluid dispersion depends on the type of
fluid interface under consideration. At the air-water interface their behaviour does not
resemble that of hard particles. In terms of dispersion stability and in terms of surface
activity, their properties resemble that of PNIPAM-only microgels. In contrast, at the
oil-water interface particles strongly anchor even at high surface pressures. The high
rigidity of the hard core provides enough resistance to stop Ostwald ripening and
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support non-spherical droplet shapes. The facile preparation and high stability of oil-
in-water emulsions signifies that core-shell particles can combine the advantageous
properties of soft particles, i.e., barrier free adsorption, with the ability of hard
particles to form a colloidal armour around the oil droplet and stop phase separation.
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Many recent studies in interfacial science have investigated the use of hard particles,
such as polystyrene (PS) or silica particles, for stabilization of aqueous foams and
emulsions. Applying hard particles for stabilization of disperse systems is referred to
as Pickering stabilization. Such particle-stabilized dispersion are characterized by an
extraordinary high stability against coalescence and can completely stop Ostwald
ripening. The high stability arises due to the formation of a jammed interfacial layer of
hard particles which shows an elastic response to compression. A difficulty is the
preparation of particle stabilized dispersion, as hard particles often experience a
pronounced energy barrier for interfacial adsorption. Besides, the ability of hard
particles to stabilize fluid dispersion depends on the affinity of the particles for the
fluid interface. Being able to stabilize a certain fluid dispersion requires to find the
right particle type or careful modification of the particles surface chemistry. Addition
of other surface active substances to the fluid dispersion can completely impair
dispersion stability as the particles affinity for the fluid interface might be altered.

Soft particles, such as cross-linked polymeric particles made of poly-N-
isopropylacrylamide (PNIPAM), are also known as good stabilizers for emulsions.
PNIPAM particles are intrinsically surface active, their adsorption onto fluid interfaces
is barrier-free. They form densely covered interfacial layers which provide very good
stability against coalescence and whose viscoelastic properties can slow-down
Ostwald ripening. Soft particles are less specific with regards to the type of fluid
interface they can adsorb to. PNIPAM particles can stabilized a variety of different
emulsion types.

In this PhD thesis we prepared core-shell particles with a PS core and a PNIPAM
shell to obtain particles which can combine the advantageous properties of hard and
soft particles, namely, being intrinsically surface active at a variety of different fluid
interfaces, strongly adsorb to the fluid interface and being able to completely stop
Ostwald ripening. We investigated the interfacial properties of these core-shell
particles with the aim to use them as sole stabilizers for foams and emulsions.

In Chapter 2 we focus on the use of entirely hard PS particles for stabilization of air
bubbles. We show how ultrasound exposure to a dispersion of solid PS particles
leads to the formation of air bubbles which are stabilized by a jammed interfacial
layer of particles. The resulting particle-stabilized bubbles do not show any signs of
coarsening over several weeks. We further show that particles are held at the fluid
interface by capillary interaction which can be weakened by surfactant addition and
lead to rapid bubble dissolution. The information over the structure and properties of
bubbles stabilized by hard particles serve as comparison for fluid dispersion
stabilized by core-shell particles as investigated in the other chapters of this thesis.

In Chapter 3 we describe the two-step synthesis of core-shell particles with a hard PS
core and a soft PNIPAM shell functionalized with methacrylic-acid (MA). We obtain
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core-shell particles with varying core/shell size ratios (radius core/radius shell) in the
range of 0.04 up to 1.33 and of low polydispersity. We find that the soft PNIPAM shell
provides steric barrier against particle aggregation and can ensure colloidal stability
even at a very high electrolyte concentration of 300 mM NacCl, while charge-stabilized
PS core particles aggregate at such high electrolyte concentrations. Despite the
presence of the hard core, the core-shell particles show responsiveness to
temperature, pH and electrolyte concentration. Especially pronounced is the effect of
temperature. At temperatures of 60 °C the measured hydrodynamic radius of the
core-shell particles is only slightly larger than the radius of the core particles,
suggesting that upon heating most of the water is expelled from the PNIPAM shell.
Addition of electrolyte in the range of 1 — 20 mM NaCl leads to a reduction of the
particle radius, higher electrolyte concentration only result in a negligible size
reduction. Lowering the pH up to pH 3 also leads to a particle size reduction.

In Chapter 4 we show that the prepared core-shell particles can adsorb at a variety of
different fluid interfaces such as the air-water and decane-water interface, while the
PS core particles do not adsorb under the same experimental condition. We find that
core-shell particles are able to develop a high surface pressure of 26 — 27 mN m™
after adsorption from the bulk to the air-water interface. Further, we investigated the
influence of the thickness of the soft PNIPAM shell on the ability of core-shell
particles to adsorb to the air-water interface. We found that a shell thickness well
above 100 nm ensures facile interfacial adsorption, while core-shell particles with
smaller shell appear to experience a certain energy barrier for interfacial adsorption.
The absence of a pronounced energy barrier for interfacial adsorption of core-shell
particles with a thick shell also allowed it to easily produce bubbles and emulsion
droplets stabilized by core-shell particles. The resulting bubbles still underwent
Ostwald ripening. For oil-in-water emulsions of hexane and toluene, both of which
have a relatively high solubility in the continuous phase, we find that core-shell
particles can stop Ostwald ripening. The observation of very stable, non-spherical
emulsion droplets suggest that next to their facile adsorption to the fluid interface,
core-shell particles can perform in a similar way as entirely hard particles as
interfacial stabilizers for emulsion droplets.

In Chapter 5 we spread a known amount of core-shell particles at the air-water
interface and measure the surface pressure arising due to the presence of core-shell
particles upon compression in a Langmuir trough. We obtain a pressure-area
isotherm which can be interpreted as an equation of state. We find that core-shell
particles can develop a finite surface pressure at a surface coverage as low as 0.05.
The low-frequency dilational elastic moduli as inferred from the compression isotherm
are comparable to the values as reported for entirely soft, PNIPAM particles without a
solid core. The maximum surface pressure developed by core-shell particles upon

131



lateral compression is a function of the shell thickness. For core-shell particles with a
large shell (with a shell dimension of 230 nm and 530nm) the maximum surface
pressure upon compression in the Langmuir trough amounts to 29 mN m™ which is
close to the surface pressure measured after spontaneous adsorption from the bulk
onto the air-water interface. Core-shell particles with a smaller shell dimension of
167 nm yield a maximum surface pressure of 53 mN m™ upon compression, which is
much higher than the value of 29 mN m™ measured after spontaneous adsorption to
the air-water interface, but equal to the maximum surface pressure measured for the
hard PS core particles upon compression in the Langmuir trough. The differences
found for core-shell particles with thin and thick PNIPAM shells may be attributed to
the different interfacial structures. Core-shell particles with a shell dimension of
167 nm as well as core particles are strongly aggregated at the air-water interface.
We suppose that this aggregation gives rises to a more cohesive particle layer with a
higher mechanical stability which can accordingly resist a higher surface pressure.

In Chapter 6 concerns the detailed investigation of the adsorption dynamics of core-
shell particles at the air-water interface. Tensiometry is used to measure the dynamic
surface tension of core-shell particle dispersions. The obtained data are converted
into adsorption rates with the pressure-area relationship established in Chapter 5. We
find that at short timescales I is proportional to t”? and the rate of particle adsorption
onto the interface is proportional to the particle bulk concentration c.. Our
experimental data can be best described by the Ward and Tordai model. This
confirms that at short timescale were the surface coverage is low, the adsorption of
core-shell to the air-water interface is diffusion limited. At long timescales, the
increased surface coverage prevents the insertion of new particles into the interface,
particle adsorption rates are reduced. We also proof that despite their spontaneous
adsorption to the air-water interface, core-shell particles do not spontaneously desorb
again. Finally we show that the spontaneous adsorption of core-shell particles results
in two populations of core-shell particles with different interfacial configuration. We
presume that this dual interfacial structure is an elastocapillary phenomenon.

In Chapter 7 we summarize the most important findings of this thesis. We discuss the
properties and performance of hard particles as stabilizers for the bubble dispersions
we prepared by sonication. Thereafter, we discuss the properties of core-shell
particles as interfacial stabilizers for bubbles and emulsion droplets. We especially
focus on the differences between hard particles and core-shell particles with respect
to interfacial adsorption, lateral interaction between particles at the interface and the
ability to stop Ostwald ripening.
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