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« 1. Introduction

The investigation of variates in contingency tables (which need
not be orthogonal) often gives rise to a partition of the experimental
result in ecomponents each illuminating one aspect of the problem in
question. This is here expressed in terms of vectors. Compare Kuiper
[9].

Our presentation is perhaps more transparent than previous papers
dealing with similar subjects: Fisher [3], Fog [4], Irwin [6), Lancaster
[10], [12], [18]. Moreover our method is general: hence it can be applied
also to more intricate cases. Our results can be applied in genetics,
which in fact motivated our research. This is why we give an intro-
ductory section (Sec. 2) on genetics.

2. Genetics

We consider externally perceptible properties of individuals (plants,
animals}, like the colour {green or yellow} of seeds, or of eyes (brown or
blue) of men. Each property to be considered is determined by genes
of only one locus, dominant A and recessive @, such that the only
possible distinetion with respect to that property is dominant (A4 or
Ag) or recessive (aa).

We assume that the choice of a paternal gamete by a zygote is
stochastically independent of the choice of a maternal gamete. More-
over we assume equal viability for every combination of gametes.

Then it follows that erossing individuals da with each other will
produce zygotes having the dominant and the recessive form of the
property with probabilities 2 and $ respectively,

We consider a second property and locus with genes B and b. If
this locus is on a chromosome different from that carrying A and e,
the dominance or recessivity will be independent for the two considered
properties.
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Crossing such individuals Aa/Bb with each other yields zygotes
with probabilities as mentioned in the following table:

—e 0
B —_ =

16 16

3 1
5116 16

where the capitals and lower case denote the dominant and recessive
phenotypes respectively. The column and row totals represent the
chances of the dominant and the recessive forms of the first and the
second property respectively.

If both loci occur on the same chromosome and crossing-over does
not take place, the gametes of an individual Ae/Bb are only AB and
ab with equal probabilities. Crossing such individuals with each other
produces zygotes for which the following table of probabilities appears:

|4 e
Bli 0 2)
510 3

In a similar way crossing individuals Aa/bB with gametes Ab and B
vields:

B I -
B3 % 2
bii O

In both (2) and (2') the column and row totals are the same as in (1)
and they have the same meaning,

If both loci oceur on the same ehromosome and crossing-over takes
place, the gametes of an individual Aa/Bb (in the coupling phase) are
AR, ab, aB and Ab with probabilities, say, 4 — W, 4 — W, AW, W
respectively (with 0 < W < §). Crossing such individuals with each
other yields zygotes to which the following table of probabilities corre-
sponds:

A a
B|iW* —2W + 3} H{—W* 4 2W) @)

bl H=W'+2W) (W' —-2W+ 1

In a similar way individuals Aa/bB {in the repulsion phase) where
crossing-over takes place will have gametes AB, ab, aB, and Ab with
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probabilities 3W, W, 3 — 3W, and {1 — 1W respectively. The follow-
ing table of probabilities for zygotes yielded by such gametes corre-
sponds to this situation:

| A a
B W' +2) 1 -W) 39

biil— WY w?

In both cases (3) and (3’), the column and row totals are the same as
in (1), (2), and (2). If W = 0 (crossing-over does not ocecur), (3)
reduces to (2), and (3'} reduces to (2°}: complete linkage. If W = ¢
both (3) and (3) reduce to (1): the two properties are completely in-
dependent.

Increasing linkage (i.e. decreasing W) appears with respect to
tables like {1) as an increase of the numbers in one diagonal and a
decrease of the numbers in the other diagonal, row and column totals
remaining constant; the contribution from linkage to each cell of the
table has the same absolute value.

3. Definilion of components of a two by two table

We consider a scheme of probabilities like (1), (a scheme with
probabilities p, and ¢, for rows and p, and ¢, for columns and inde-
pendence of these probabilities). This scheme (vector) is represented

by

|:p1p2 p1q2:|’ where p,+¢q =1 (i=1,92
P2 14
and it is called the basis of the one-dimensional space of levels.

It is our purpose to compare a scheme of counts arranged in a two
by two table:

- 4
T x
z = |: ! 2:| where .z, =,

Ty Ty =t

or rather of the relative frequencies z,/n, with such a level. The ex-
perimental result may suggest that the independence is satisfied, that
also the proportion p, : g. is not a bad description, but that the pro-
portion p; : ¢ is wrong.

Then the following scheme may be more likely:

[(Pl +a)p: ;1 + o) Q2i|
(g —ap (@ — )¢
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wherein « is 2 suitably chosen real number. Also in this scheme the
probabilities for the columns are p, and g, respectively and there is
independence between row and column probabilities. The scheme is

equal to
I:plpn plqa] + a[ P 9'2]‘
@ip: Q17 —P2 —4Q
al: 1 92}
=P —1{
[ Ip’ q’]
—Ps —q

the basis of the one-dimensional space of row effects.

Analogously,
@ —q

is called the basis of the one-dimensional space of column effects.

It may also happen that the independence is satisfied, but that
both proportions p, : ¢; and p, : ¢, are wrong, and that at first instance
the following scheme seems to be more plausible:

[(pl +ap+ 8 @+ e - B):I_
(@1 — )P+ B8 (01 — (g — B

The chances for the rows are {; + @) and (¢: — «) respectively,
those for columns {p, + 8) and (g; — 8) respectively, the independence
being maintained. But if, in accordance with the customary practice
in the analysis of variance, we postulate additivity of row and column
effects, the following vector appears: '

I:P:Pz P:9'2:| + al: P Qz:l 4+ ﬁ[Px —pn]
G2 G2 —P: —& G —¢
— liPlpx + ops 4+ o, ?g: + ags — ﬂpx:l
Qs — op: + 8 1@ — ag: — B

We call

a row effect and

4

(5)
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In this scheme row and column totals are as desired, but the vector
{4) is equal to (5) plus

[ off —a,e] - aﬁ[ 1 —1]_
—af} aff -1 1

The remark in Sec. 2—last paragraph—may be expressed as follows:
Table (3) can be written as the sum of (1) and

3—8W —4w'[ 1 -1
16 _ ’

1 1
and Table (3"} as the sum of (1) and

4W’-—-1|: 1 —1]
16 -1 1

So it is plausible to consider a vector

17

as representative of linkage, or of disturbance of independence, oz, in
terms of the analysis of variance, ag interaction. Therefore we eall the

vector
-1 1
the basis of the one-dimensional space of interactions. We remark that
in eontrast with row and column effects, this basis does not depend on
the form of the level.
In (4) and (5) we saw that, if both row and column effects are

present, and moreover additive, a disturbanee of independence with
respect to the scheme (4) considered as level occurs. The disturbance is

aﬁ[ 1 .....]_:|-
-1 1

If @ and @ are small, this ¢nieraction is very small and even absent if
e and/or 3 are zero. Then this inferaction is negligible in comparison
with possible interaction from linkage. '
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With these remarks in mind it will be our problem to determine the
coefficients in the following partition:

[:rl/n x,/n:| =‘u[p1pz ’plq:]_l_a[ P2 Q2:|
Is/ﬂ T/n QP2 142 —P: —

— 1 -1
SR 1 -1 1
where u, @, 8, and v are unknown.

4. The Partition

The conventional solution of u, «, 8, and v is not simple, because
the basis vectors on the righthand side of (6) are in general non-orthog-
onal. Orthogonality, i.e. ordinary inner products being zero, implies
that the components can be obtained from orthogonal projeetions.
Orthogonality can be obtained with a suitable choice of the [ollowing
equivalent partition:

AL gt
" LI FIiA'Plpz BPIQ’z} + a’: Ap, Btb]
0% p& Caps Dgige —Cp, ~Dg,

n n
A -B —
+ .6[ P p‘} +'Y[ 4 B].
C(h —Dg, -C D
The four components are orthogonal, if the 6 inner products, of
which two turn out to be identical, vanish:

A'pp; + B'prgz — C'aipy — D'qugz = 0
A’plp, — Bpiq, + C*¢ip. — D¢l = 0
A’ppy — B'pigs — C°qips + D12 = 0
A'p, — B'gs + Cpy — D¢z = 0
A’p, 3 B, ~ C%q, — D¢, = 0.

The third equation minus p, times the fourth equation, and the third

equation minus p, times the fifth equation, yield C* = (g./p.) D* and

B = (q./p)D° respectively. Substitution in the third equation

yields: A* = (qug/pip) . If we choose D® = 1/q,q, , we obtain :
=2 paLl g =L

" P’ T P’ @ps

(7
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and these values happen to satisfy all equations.
Substituting the values for 4, B, ¢, D in (7} we get:

Ty Ta

RVPP: VDG = ”|: VPP V Pl!ln:l
VP V Qg

Tz Ts

RNV iP: "V Q103
1 1
N \15_1 _ \/i i
o \/;L; ‘J; + B pfi 2 + ¥ P2 plqz
_ \/é _ \/i \/ﬁ _ \/_?_ 1 1
a @ D Qe Vap, Vo

or putting: p.p; = n , ;1@: = 73, GiP> = T, and ¢igs = 7, , We obtain:

4

LU I

T I P

O T vV Vel Y| _Nm

n‘\/; n Ty (8)

s 8 [VA VRl v [ vm -va]
Vil | /5, —Nm VDtiPas | — A/, v

The four new vectors (in brackets) are perpendicular to each other,
indeed {(w,my = mm;). They are moreover unit vectors. The required
coefficients are thus simply the inner products of the vector [on the left
hand side of (8)] to be projected, and the vector on which it is projected.
For example, u is obtained by taking the inner products of both sides of
(8) with the unit vector of which u is the coefficient. In this way we
obtain:

(z, +‘xa + ia + z) =1,

e o]
n ™ Tz Ta Ta

Y A \/}1 _ \/'?Z _ \/IZ]

n [371 \/p—l + =z, Py Xa a0 Ty @

L (@ + 200 — @ + 2pil,
y U

=
]
S

B
=
i

n
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or

o = @t Ee = (ot 2dps
n
In a similar way:

8= (xl + ms)gz - (xz + $4)p2

n

and

_ e — o@Dy = TiPr0e + LD
n

v

Substituting these values in (8), subtracting the first term on the right
from both sides and multiplying both sides by 4/n, we obtain:

T — nxy &y — N
Y = vV nm, V hre

Ty — Wy Ty — 1T,

VvV narg ’\(/T;‘
— [(22 + 2 — (Ts + 2Ip] [ \/'ﬂ'_a \/‘??4]

Vg, Vi —m ©
[(1"31 + xz)Qz - (372 =+ x4)p21 '\/‘-'Tz - '\/771-
+
Vipag, Vo -
(xlfhfh — Zo(iPr — Tsphifs + x4p1p2) '\/‘;T: — V3
+ .
Vnp,gipags Y N
5. Statzstical considerations
2 has a multinomial probability distribution:
n! Ty Tg Te
P(r) = Pl g T T,
where
k &
Z T = 1 and Z Ty =N,
ifmj i=l
Zy, —NTy g —NTg Tk —hT s
(mrl)x? % (mrz)m? SCaen ¢ (mr,,)x?
or Pl = L 22 = (10)
n Iie—ﬂ

In Sec. 4 we had the ease ¥ = 4 and E(x;) = n=; .
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The same probability (10) will be obtained if we formally assert that
the =; have independent Poisson distributions with A; = s, and
probabilities A‘e™'/z,! under the condition that their sum is equal
to 2, ; for.the sum of Poisson distributed variables has also a Poisson
distribution with parameter E)\,. (in this ecase equal to Zmr,- = n),
and its probability occurs in the denominator of P(z), as is proper in
the case of a conditional probability.

The same formal assertion implies that X; = {z; - n%,)/ Vnr;
has mean zero and unit variance. If further n=x; is sufficiently large
(e.g. > 9), the distribution of X, will be approximated by the normal
{0, 1) distribution. i

The vector X that can be represented as a point in a k-dimensional
space K, has thus approximately a probability density

Ce~Tr' /2., %0%2 | — p-X2
however, with the restriction

b x 1] &
Yxi=n, or 2 XVam + Zlmr,-=n, or > X,V =0
fml Twl imi i=1

In other words X is situated in the (¥ —1) dimensional subspace of K,

perpendicular to the vector (V7 , V7, *++ , V1)
Thus we find the (known) result that

2 (e — nw)’
X = iE-; nw;
has approximately a x*-distribution with (¢ —1) dimensions (or degrees
of freedom).

In Sec. 4 we succeeded in splitting up X (situated in a 3-dimensional
space) in three perpendicular components each of which has a special
meaning, From the foregoing it follows that, if E(x,) = nr,, the square
of every component vector—which is equal to the square of the co-
efficient belonging to it in (9)—has approximately a x“distribution
with one dimension.

In the light of our definitions in See. 3, we can even say that the
square of the length of the first component has a one-dimensional
x*-distribution, if only row cffect is absent irrespective of whether
the other effects are present or not. The same is true for the second
component if only column effect is absent, and the same for the third
if there are no interaction and not too large simultaneous main effects.
In other words, each of these components affords us a specific test
criterion for the null hypothesis that there is no row effect, or no column
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effect, or no interaction which can be tested independent of the validity
of the other two hypotheses to a certain extent. The last restriction
concerns the simultaneous occurrence of considerable row and column
effects which influences the component for interaction. The numerical
value of each of these three statistics is thus obtained by splitting up
the known test criterion X* for goodness of fit in three terms, the first
of which is equal to

(@ + z)g: — (25 + zdp]°
oGy

1

the second equal to

[(z, 4 xﬂ)% — (x: + «"J-;)len
nP2qa ’

und the third is the rest:

010 — 22010 — T5p1G: + 3134?’1302]1_
np1 1022

Just as is the case in tests with X*, the critical region in the one-
dimensional x’~distributions will be a one-sided upper eritical region.

Example (Fisher [3]). Counting of seedlings of self-fertilized maize,
which was heterozygous Aa/bB (i.e. in repulsion phase) with respect
to two properties, viz. starchy versus sugary and green versus white,
gave the following results:

starchy  sugary

green 1997 904
white 906 32

If the properties are independent, then the vector level will be equal to

9 3
16 16 .
with p, = ps = 4.
3 1
16 16

The ordinary x’-test criterion for these probabilities will be found to
be equal to 12.21 4 47.13 + 180.19 = 287.69 which is significant,
e.g. at the 19 level.

In order to investigate the origin of this discrepancy from our
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expectation {compare case (3") in Sec. 2), we calculate the squares of
the coefficients in (9): corresponding with row effect

[z + 2) — §(zs + 354)]2 - [#r + 22 — 3y 4~ 374)]2 = 0.65
ni-d an e

with column effect

[z + x5 — 3(z: + xa)P _
3n -

0.78,

with interaction

(2 — 32, — 32s + 92)°
9n

= 286.27,

which are the same as those obtained by Fisher. The sum of these
squares is indeed equal to the value of X°. Turther, we see that the
deviation from our expectation is practically exclusively due to inter-
action or linkage.

In many cases we have no theoretical indications about the chances
for rows and columns. Then (and in the case that row and column
effects appear to be present and a further investigation of dependence
is wished), the unknown chances are estimated according to the maxi-
mum likelihood method assuming independence between row and
column chances. These estimates are proporiional to the marginal
totals and imply that X* has a one-dimensional x*-distribution.

A more elementary way of approaching this problem and its conse-
quence for X* and for the partition of X runs as follows. Consider the
set of all possible values of z/n in a 2 X 2 table with the independent
chances p, and p, unknown and with fixed n. In the subset where the
marginal totals are fixed, the conditional probability distribution of

x/n will be:
ﬂ-! z3 %3 Ta T4
2122 175 12, (plpz’} (Ple) (Q:Pz) {(0:1a9)

n! Eytzy Tataa n! Ty FZy TatTe

@ + 2l + a0 D e ot @

which appears to be independent of the unknown p; . We may there-
fore assume any p; to be true in the multinomial distribution from
which the eonditional distribution in the chosen subset can be obtained.
It is thus permissible to assume that in the original multinomial dis-
tribution the p; are equal to the chosen marginal totals. We saw that
the unconditional distribution of X with the assumed p; as parameters
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could be approximated by the three-dimensional normal distribution.
By imposing the conditions of the considered subset to this X, ie.
that the marginal totals of z/n should be equal to the assumed row
and column probabilities, X will be limited to a one-dimensional space.
In the subset the conditional distribution of such a X* will be that of
a one-dimensional x°. Because thig conditional distribution does not
depend on the marginal totals defining the subset, it is valid in general.
Further, it follows that by assuming the p, equal to the corresponding
observed frequencies, the two components for row and column effects
in the partition (9) of such a X* will vanish, and that by this very
choice the square of the component for interaction has a one-dimensional
x -distribution.

In this particular case the eomponent for interaction can be reduced
by substituting the marginal totals for p, and ¢, to

n(—'f:lﬂ?d — xzxa)z

(x: + 5:)(38 + z )z, 4 ma)(x'.- + z)
OF USING: 2,2 — %% = Ta(ZT, + % + 25 + 2) — (2, + ) (71 + 23) to

[xl _ (o 2 + xa)]’

n
(471 + zz)(zl + xs)(xz -+ -'54)(552 + 34)
n n n n n

which will be useful later on.

Ezample: f we take the same numbers as in the previous example
and we suppose nothing to be known about probabilities, the estimates
of expected numbers are

[2193.69 707.30:|
709.30 228.69

and X* = 17.64 + 54.70 + 54.55 + 169.17 = 296.06, which is much
more than the 0.19; point of the one-dimensional x*distribution
{10.827). So there is interaction or lack of independence. The fact
that the latter X* turns out to be larger than the former should not
surprise us, as maximum likelihood estimators do not in general lead
to a minimal value of x®. Therefore it is possible that in this example
the values p, = p, = ¥ yield a lower value of the goodness of fit criterion
X? than the values of p, and p, , estimated by the maximum likelihood
method, do.
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6. 27 tables

It is not difficult to generalize the treatment of 2 X 2 tables to that
of 2" tables. We indicate the generalization by presenting the case
n = 3. In that case the basis vector for the space of levels is defined
to be a three-way table with given probabilities for the completely
independent rows, columns, and layers (p; + ¢ = 1). The probabilities
for each of the eight cells are then given by Fig. 1. The probability
for row 1 (back face) 18 p, , for row 2 (front face) ¢, , for column 1 (left
side) p, , for column 2 (right side) ¢, , for layer 1 {bottom} p, , and
for layer 2 (upper face) g, .

We call a vector row effect if the sum of this vector and the vector
level looks like Fig. 2. The probability for back space is p1 + o, for
front face (g, — a), for left side p, , for right side ¢, , for bottom ps ,
for upper face g, , all these being independent.

We choose a5 a basis vector for row effecis, column effects, and layer
effects the vectors represented by Figs. 3, 4, and 5 respectively.

We call a vector row X column inderaction, il the sum of this vector
and the vector level looks like Fig. 6. The probabilities in the six faces
are equal to those in the vector level by itself, so that there is no main
effect in this sum. The chances in the vertical edges are:

[Pl?a + 6 pigs — 5j|

Pz — 5 g1ga + 8

50 that independence hetween rows and columns is disturbed. Further,
the probabilities for layers are independent of those for the other
classifications.

We choose as a basis vector for row X column inleraction, row X
layer interaction, and column X layer inferaction the vectors represented
by Figs. 7, 8, and 9 respectively.

Finally, we call a vector second-order {nteraction if the sum of this
vector and the vector level looks like Fig. 10.

The probabilities in the six faces are equal to those in the vector
level by itself, so that main effect is absent in this sum. The probabilities
in the twelve edges are also equal to those in the vector level by itself,
so that there is no first-order interaclion in the sum.

But the disturbance of independence between row and columu
probabilities in the bottom is different from that in the upper face.
Similar remarks can be made about row and layer probabilities and
about column and layer probabilities. In other words, the relation
between any pair of classifications cannot be deseribed without in-
volving the third classification,
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Pdads wfﬁwﬂﬂ Fatis, a4,
[qi‘ P:%: r")qﬁlh ’P:cb § ’11 3
Pdafs R BT
-Pafs -92Py
Fig. 2 Fig. 3
Level Level + row effect Basis for row Basis for
effects column effects
2Pila (ppitdlq,  (pa,-dlqy qs

(qps ‘133 2,908,

93 B ha P
P ' 4a
}
1

. Pla (F.,Pz"SJPs" (b9, 8Py
WPy 4% o R RN
Fig. 5 Fig. 6 Fig. 7 Fig. 8
Basis for layer Level 4 row X Basis for row X Basis for row X
effects column interaction column interaction  layer interaction
Bl Pdadyt fr /SOD
QBT T84 N
PR TR LR ,,f"‘""‘l";ﬂ“
qlP:F:'a"l UaP* 2 et A
Fig. 9 Fig. 10 Fig. 11 Fig. 12
Basis for column X Level 4+ second Basig for second  Example of a 28
layer interaction order interaction order interaction table (Roberis e.a.)

We choose as a basis vector for second-order interaction the vector
represented by Fig. 11.

About the thus defined interactions, remarks similar to that in
Sec. 3 may be made. If main effects and interactions are present, we
have in the place of p,p.ps a chance equal to

(pr + ){p + BYps +v) + 8pa + ) +ep+ B+t + 7
= PP + apps + Bpips + Youpe + (@B + Ops + (@y + Ip,
+ By + Op1 + (e + Be + v3 + afy + %)

From this it will be seen that three main effects together introduce
contributions to all of the four interactions. In that case certain
first-order interactions may nullify the additional contribution to the
second-order interaction. If there are two main effeets only, there
will be a contribution to the first-order intcraction between them. If
in this case one or both of the other first-order interactions are non-
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zero, a contribution to the second-order interaction may take place.
If there is only one main effect and simultaneously an interaction between
the two other classifications, there will be a contribution to the second-
order interaction. If there are no main effects at all, the second-order
interaction obtains no contributions from possible first-order inter-
actions. We may conclude that disturbing contributions to inter-
actions may be caused by main effects, but that they will be negligible
if @, 8, and v are small. The drawback of such contributions is not
great as it ig not our intention to estimate the different effects, but to
investigate the origin of discrepancies between expectation and ex-
perimental result.

It will be our purpose to split up a veector of experimental numbers
T/n@=1,2, ---,8 2z = n) into eight components in the direc-
tions of the defined basis vectors. To facilitate this partition, we again
divide the numbers on similar places by the square root of the probability
of that place in the vector level. Putting those probabilities equal to
®; , we obtain the following formulation of our problem:

R
r v v ¥y g NS N NTT
1 -~ -~ ] '
i 1 H ]
= 1 = ! - ! 0 i +
A R ExH Bml
N w L wm v vag VIF. oy
viig ; i N N v N V75
0 H ! - ~
I e A e o
b : aE : 2 : P S :
VFara f_\';ﬁ* . Wﬁ-iﬁﬁ . ‘f.ﬂ--- _;/WE,‘ L.RT: \,'76' ______ R VP2iRT:Pads "v.ﬁ-;-__ __}_Vﬂ';
S S A g v
Fig. 13
Equation (11): Partition of 23 table
Calculate the coefficients p, o, 8, - -+ » in the equation represented

by Fig. 13 which will be called equation (11). All the ‘““cubes” on the
right-hand side of this equation are orthogonal unit vectors.

a ® T T T T e T
(()bservethat—‘=—§=i=-l and _l=i___J=_2.)
Ty Ty s Tg T3 Te Tr g
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The required coefficients are thus again the inner products of the
vector on the left side to be projected and the vector on which it is
projected:

u=1

a=(ﬂ71+$z+xs+%)ql—($3+x4+$7+$s)]01
7 s

‘B=(351+$3+355+x7)Qz"‘(xz+x4+$e+xs)?92
n ]

,Y=(I1+$2+Ts+x4)JIa”(xs+xs+$7+xs)??a
¥

J

5 = (& + )i — (s -+ Te) afe — (s -+ 3;7)?11_?2 + (z, + -’Es)Plsz
n H

e = @ E g — @+ a)pes — @+ 2)gps + (@ + 2P,
n

]

_ (T + #8)qegs — (o + 334)102@ — (@5 + 2 gep: + (e 4 2:)p:Ds
n

¢

?

= T1G1G20s — TeGiPals — TsPiQals + EuPiDals
n

_ Esq1qePs T TailaPs — TaPaQaPa -+ TsPiPePs
n

Substituting these values in equation (11), Fig. 13, subtracting the firs t
term on the fight from both sides and multiplying on both sides by v/,
we get on the left a vector X consisting of numbers (z; — nr.)/Vnr,
the square of which is again equal to the well-known goodness of fit
criterion. X* has approximately a x’-distribution with 7 degrees of
freedom, if the null hypothesiz that the vector level contains the prob-
abilities for each cell is true. Further, the seven components of X on
the right are perpendicular, and X® is equal to the sum of the seven
squares of these components. Fach of these squares has under the
null hypothesis a x’-distribution with one degree of freedom.

Now again every component can serve as a statistic for testing a
specific hypothesis. With the first three components we test o = 0,
B8 = 0, and ¥ = 0 respectively, with the following three components,
the hypotheses § = 0, e = 0, and { = 0, under the condition that «3,
ay, and By are negligible respectively, and with the last component, the
hypothesis 4 = 0, under the condition that af -}- 8¢ + v6 4 afy is
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negligible. Kach of these hypotheses is tested on the assumption of
independence of the three classifications.

The mentioned restrictions do not trouble us if no theoretical chances
are available. Generalizing the considerations at the end of See. 5,
we take the p; equal to marginal totals with the consequence that
e =B =+ =0. Ifany product o8, ay, or 3y appears to be not negligible
and a further investigation of Interactions is required, it is recommended
to take the relative p, from marginal totals.

A more difficult situation will arise if a first-order interaction appears
to be considerable or if it is expected in advanece that any pair of classi-
fications is not independent. This situation is obviously contrary to
the assumption of independence of the three classifications and will be
considered in Sec. 8.

Ezample: (Roberts, Dawson, and Madden [14].) Crossing mice 4aBbCe

with aabbec gave numbers represented in Tig. 12, (4 in back face,

B in left side, and € in bottom). In the level p, was § (¢ = 1, 2, 3).
The value of x* for row X layer interaction, e.g. is

¢ :(;?Jl+.’132+x7+333_1133_-’54_15_1'6)’
PG Psgs n !
and for second-order interaction is
’72 =($1‘|‘334+-Te+$7_‘$2_353_555_375)2_
nP1§1P29:0393 n
The seven values for x° are: for row effect 1.63
column effect 0.67
layer effect 1.03
row X column interaction 0.13
row X layer interaction 4.25
column X layer interaction 0.13
second-order intersction 2.79
. total 10.63

The one-dimensional x* has at the 5% level of significance the
critical value: 3.84; the 7-dimensional x*: 14.07. The total x° is not
significant. Concluding that the row X layer interaction is significant,
would be rash: the probability that at least one of seven one-dimensional
x" 18 larger than 4.25 is about 0.24. So there is only a slight indication
that linkage between A and € may exist.

It is not always possible to attach a simple meaning to a second-
order interaction, but in cases like this it could be caused by the fact
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that one of the eight gene combinations, as a consequence of diminished
viability, is much less frequent than is expected on account of main
effects and first~order interactions only.

About the calculations we can remark the following: x* for row X
column interaction can be determined as the interaction x* in the two
by two row-column table which ean be formed by adding along the four
vertical edges; the formula for 8 is then the same as that for ¥ in a two
by two table. Thus one can calculate this x* again from the test eriterion
X* for this two by two table and by subtraction of the main effects
for rows and columns. The second-order interaction x* is found as
the difference of the test criterion X* for the 2* table and the sum of
those for main effects and first-order interactions.

If the probabilities p; are not known, we take them such that the
main effects equal zero. In our example we then obtain the value x* for

row X column interaction 0.12
row X layer interaction 434
column X layer interaction 0.14
second-order interaction 2.69

total 7.29

The 4-dimensional x* has at the 59 level of signicance a ecritical
value: 9.49. The total x* is not significant. The probability that at
least one of four one-dimensional x* is larger than 4.34 is about 0.14;
so there is a slight indication that linkage between 4 and ¢ may exist.

An example of the partition of a 2° table in 31 components is given
by Haldane [5].

7. m X n X - tables

In some particular cases a partition of m X n X --- tables {and
even of non-orthogonal tables) may have sense. We indicate the case
of a 2 X 3 table which can be generalized easily. >

An inquiry into the attitude with respect to a political proposal
may be summarized in a table of experimental counts:

for against  no opinion

men I 2] Xy
women ) s Te
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In this case an appropriate definition of a vector level will be:

[plpﬂ’s D1P24s p:Q'a]’ where 2, 4+ ¢ = 1, G=1,223).
QiP:Ps §iP29z 14

The chances for rows (men and women) are p, and g, respectively,
those for columns 1 and 2 together (politically interested), and for
column 3 (politically not interested), p. and g, respectively, and those
of columns 1 and 2, p.p, and p.g. (i.e. p, and g, under the condition of
being in column 1 or 2). Moreover, all these probabilities are in-
dependent. Without further explanation we define as basis vector for

row effect:
[ PP Pats qz}
—PPs —P03 e

Column effecis will have two basis vectors, one corresponding with
modifieations of p, and ¢; , independence being maintained:

[plpﬂ ?:qs _'Px:l (12)
Ps Qs — ¢
and one corresponding with similar modifications of p; and ¢4 :
|:p1p 2 TP 0] or rather [ L Th O:|. (13)
gpP: —qps O @ —a O

Ii two such column effects occur fogether, viz. 8 times {12) and v times
(13) and, if they are additive, we obtain:

2. +8) (Ps'Fg;) “'8—;?—1 Pl(}’z‘i‘ﬁ)(% _;%) + '8—;% (e —B)

0(pat8) (Ps +:72) +ﬁ—;{:~‘ @(p+B) (qa —g—;) —%f—’ 0:(g2—8)

ﬁl[l _pl 0]
Pa @ —¢ 0

less than a level with probabilities p, , p. + B8, pa + v/p2 , ete. With
respect to. this level there is a deficit of By/p. times the column effect
(13). As g will be small in ecomparison with p, , 8y/p. , however, will
be negligible in comparison with v, and even will be zero, if 8 or ¥ is
zero. Similar remarks can be made about simultaneous occurrence of

This is:
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additive row and column effects; there will be disturbances of independ-
ence which will be negligible in comparison with proper interactions.
We choose as basis veciors for inleractions:

]

=0z —s 1

which represents the disturbance of independence between row prob-
abilities, p, and ¢, , and column probabilities, p, and ¢, , and

[ 1 -1 o:l

-1 10

which represents a similar disturbance of independence between row
probabilities and column probabilities, p; and ¢, . It will be our purpose
again to split up a vector of experimental numbersz,/n ( = 1, 2, - - - 6;
>.z; = m) in six components in the directions of the defined basis
vectors. We divide again the numbers on similar places by the square

root of the probability of that place in the vector level. Putting those
probabilities equal to r; , we obtain:

T T Ta
n \/;1- i) Ty T3 = u [ ‘\/71'1 ‘\/1?2; \/ﬂ: }
zs T Ve Vi, Ve

x
n\;'rr_4 Vs nVmy
Vos| Vi —Vm —Vm
V0t | Naame Vand —Vam
+ Y [\/ﬂ; —\/ﬁlpa 0:|
Vepst: | Vg —Vam 0
+__a_[ Vi Voo —\/ap:}
Vrart | - Vogp - Voon  Vom
‘ Vot —Vim 0
\/W[—vp—q‘ Vi o}

(14
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The six new vectors (in brackets) on the right are orthogonal unit
vectors. The coefficients are obtained again by taking inner products:

p =1,

o=l +m b 2dg — Gt o+ 2,

B = % [ + 22 + 20 + 29)¢ — (@& + 2)P.],

Y = % (G + 2)gs — (22 + 2)ps

§ = }b [z + 201 — Zatipz — (24 + TIM@ + TepiPe),
1

€ = ,;’ [Z:1010s — ToqiPs — Tap1Gs T+ ZapuPs].

Substituting these values in equation (i4), subtracting the first term
on the right from both sides and multiplying on both sides by \/1_1,, we
get on the left a vector X consisting of numbers {(&z; — nx)/ V' nr; , the
square of which is again equal to the goodness of fit criterion. Under
the null hypothesis that the vector level is true, the square of each
term on the right has a x*distribution with one degree of freedom.
It will be remarked that the x° for row effect, the first column effect,
and the first interaction can be obtained as the x° for the similar com-
ponents in a 2 X 2 table which is deduced from our table by amal-
gamating the columns 1 and 2. The x* for the second column effect
and the second interaction are equal to

[(2: + 208 — (23 + z )0l and (#1010 — 220:ps — T Qs -+ 5'55?1?3)’
Pals N PrigiPals P2

respectively. They will be obtained as the x* for column effect and
interaction in the 2 X 2 table consisting of the first and second column
[see equation (9)], with the restriction, however, that we do not use the
experimental total, ;- + x, + %, + z;, in the denominator, but the
expected total np; .

If there are no theoretical values p, , then we take them such that
main effects are absent, i.e. from marginal totals (these are also maximum
likelihood estimations). Then the x* for the first interaction will be
found as the ordinary x° test criterion for the 2 X 2 table obtained by
amalgamating the first two columns and the x* for the second inter-
action as the x* for interaction in a 2 X 2 table consisting of the first
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two columns, but with row and eolumn probabilities estimated from
the marginal totals of the whole 2 X 3 table. In this case np; is of
course taken equal to x, + 2. + x4 + 2, .

Ezxzample: The inquiry mentioned in the beginning of this section may
have the following result:

for against no opinion
men 1154 475 243
women 1083 442 362

(These numbers are taken from Inéroduction to the Theory of Statistics
by A. M. Mood, page 273, where they oceur as an example of 2 2 X 3
contingency table.) Theoretical probabilities being absent, we calculate
the two-dimensional x* for the whole table with the aid of expected
values obtained from marginal totals:

1114.04 456.67 301.29
1122.96 460.33 303.71

and we find 26.78. The critical value of & two-dimensional x* is 9.21
at the 1% level. So we conclude that there is association in our numbers.
In order to investigate the origin of this association, we caleulate the
x° for the first interaction, which is found as the ordinary x* from the
amalgamated table:

opinion  no opinion

men 1629 243
women 1525 362

and with expected values also obtained by amalgamation of the calcu-
lated expected values:

1570.71 301.29
1583.29 303.71

and we find 26.77. By subtraction it follows that x* for the second
interaction is equal to 0.01. We conclude therefore that there was a
difference in interest between the sexes, but that no difference in attitude
against the proposal could be detected between men and women.
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In general each one-dimensional x* in a contingency table, where
the probabilities for rows and columns are estimated from the data
and where a similar pariition takes plaee, i connected with one of the
2 X 2 tables which are obtained by successive amalgamations of the
data. Such a x° is calculated as the ordinary x* for ¢nteraction (as
derived in Sec. 5) in this 2 X 2 table of which the table of expected
values is obtained by a similar amalgamation of the complete scheme of
expected values (estimated by the maximum likelthood method). The
last results where theoretical chances are unknown are the same as
those of Lancaster [10] and Kimball {8]. In connection with the fore-
going it may be remarked that the method, suggested by Lancaster
[11] a8 an exact one, for calculating x* in a contingency table where
cells with small expectations are pooled, does not seem to be correct.

When pooling of cells takes place it is not correct to say only that
one or more one-dimensional x reduced to zero. If, e.g. in a 3 X 3 table,
two cells in the same row are pooled, in other words are conceived as
one cell, these cells do not contribute information about the estimation
of the probabilities for the columns to which these cells belonged before
pooling. For the vector level can be described as:

DiPaDs | DiPaPPe | PiPadae

?14:03 | P1920504 | P192G30s

s 0.0

withp, + ¢, =10G =1, 2,3, 4).

The estimation of p, and p, takes place from row totals in the same
way ag in the 3 X 3 table. Similarly, the p, will be estimated from the
totals of the first column and the total of the second and the third
column together. But p, will be estimated from the proportion of the
totals in what has been left of the second and the third column, namely
in the first and the second row. In the expressions for several of the
one-dimensional chi-squares that do not vanish by pooling, the
(estimated) values of p, and ¢, will in general be different from the
values obtained by estimation in the complete 3 X 3 table.

The same conclusion follows from the fact that as a consequence of
such pooling in the complete partition of a 3 X 3 table according to
main effects and interactions, the basis of column effect with respect
to p: will coincide with that for interaction in the 2 X 2 table formed
by the second and third eolumn on the one hand, and by the sum of
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the first and second row and the third row on the other hand. Thus
not only this interaction but also the mentioned main effect should
vanish in the partition after pooling, in order that X°, which measures
the discrepancy with respect fo a level, as represented here, confain
three interaction components only.

8. Further remarks about 2° tables

Several authors (Kendall [7], Simpson [15]) warn against amalgamat-
ing 2° tables to 2 X 2 tables, even when second-order interaction
happens to be absent. They demonstrate the possibility:

(a) that interactions, which in each of the amalgamated classes
separately tend in the same divection, seem to be absent after amalga-
mation, or

(b) that the amalgamated classes separately do not show dependence
between the two other properties, but that they do together. In our
opinion this warning is exaggerated in many cases and danger threatens
from another direction. In our view, as has been shown in Sec. 6,
dependence between two classifications in a 2° table will just be tested
in a2 X 2 table obtained by amalgamation in the 2° table, irrespective
of whether second-order interaction is present or not.

‘While second-order interaction is absent, the case (a) may be con-
structed by adding a level, a row X layer interaction, and a column X
layer interaction. In the bottom of the table this appears as adding
of a level and suitable row and column effects in a 2 X 2 table so that
a small interaction occurs in it (see Sec. 3). In a similar way a small
interaction which will have the same direction appears in the upper
face. However, in the 2 X 2 table obtained by amalgamation of bottom
and upper face, interaction will be absent,

Algo, while second-order interaction is absent, the case (b) may be
constructed in the following way. First we form the sum of a level
with p, = 3}, a row X layer interaction, and a column X layer inter-
action. Because the interactions in the bottom and in the upper face
of this sum are identical, we can add a row X column interaction to it
such that both interactions in the bottom and in the upper face separately
vanish. The 2 X 2 table obtained by amalgamation of bottom and
upper face shows row X column interaction of course. These dis-
turbing interactions, however, will be negligible in comparison with
proper interactions due to dependence.

The danger to which we alluded consists in maintaining the hypo-
thesis of independence in the model of a 2% table and the corresponding
partition, although a first-order interaction appears to be considerable,
or independence between one or more classifications can be expected



PARTITION OF EXPERIMENTAIL VECTORS 475

to be impossible in advance. For the discussed x*-test and the partition
in a 2° table—and with this remark we proceed on what we said in
See. 6—are only justified if the three classifications are independent.

In a case, e.g. like the example given by Simpson [15] where the
result of a treatment against a disease Is investigated by counting
deed and alive in males and females, it is not obvious that the prob-
ability of being treated is the same for males and females.

If one first-order tnteraction must be taken in account, we have to
choose a new model to test other interactions. The new model for
this case is that for a 2 X 4 table. Let the experimental result multiplied
by n = 2.5, % be:

treated not, treated
male female - male female
alive T £ s T
dead Ts T ot s

After the choice of a level similar to that in the foregoing seciion:

|:p1P2P3P4 PiPagsPs P2GaDa 9’1294]
PPsGa DiPeP:Gs Ditads e

the basis vectors for interactions may be:
[1—100} [pg q,—lo]
b ’
—1 1 00 —f: —fa 1 0

I: P:ls Dots g 1]

—PPs P29 — ¢ —1

For convenience we put the p,; as unknown for the rest of this section
go that no main effects are present.

With the mentioned example in mind we prefer to define the vector
level as:

and

|:p1p2p4 D1y PsPs 9193104:,
PaGs 192G @G G1Gada
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which is the same as that for a 2* table if p, = p, . A basis for inter-
acticns may be formed by:

[ P: G —Pa —%] [ 1 —1()0]
) )
P —@ B G -1 100

and (15)

[o 0 1 —1]

0 0 -1 1

The first of these three vectors represents dependence of death rate
from treatment, the second and the third represent interaction of sex
and death rate within the freated and within the not-treated individuals
respectively. If one prefers to consider dependence between sex and
death rate and further dependence of death rate from the treatment
within the sexes separately, one should only transpose the second and
third column in each of the four vectors. We proceed in the former
version.

The last pair of vectors can be replaced in several ways by two other
vectors, the one representing a common interaction between sex and
death rate in both treated and not-treated individuals, the other repre-
senting a difference in dependence of death rate from sex between
{reated and not-treated individuals, and, morecver, such that a par-
titioning of X* in independent components corresponds to this choice.
We prefer:

[ Dhpsfa — D20 OPsds — q:}f‘sqs:l
—D2qa PiPafa — 0iPals NP

[ 1 -1 —1 1}
-1 1 1 -1

The first reason for this preference is that the mentioned difference in
dependence—which may be called second-order interaction—is repre-
sented by the same basis vector as in the 2° table. A second reason will
be given in the treatment of the following case. A third reason will
appear later on. The component of X* corresponding to the first vector
of (15) can be calculated as the test criterion in the 2 X 2 table obtained
by neglecting sex. The computation of the other components will be
treated in the following, ' '

1t is also possible that fwe firsi-order tnteractions must be taken in

and
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account. Let us assume also that an interaction between treatment
and death rate exists in the discussed 2 X 4 table. We take as a new
level:

[:p1p2p4 D QP:Ps %QaPs}
PiP:ds P1@2de QP3G 1305

which is the same as that for a 2 X 4 table if p, = p, and as that for a
2* table if, moreover, p, = p; . This level corresponds to that for two
separate and independent 2 X 2 tables. A basis for interactions may
be formed by the last two vectors of the set given by (15).

This pair ean be replaced again in several ways by another pair of
veetors which express a comnmon interaction between sex and death
rate in both 2 X 2 tables, and a difference between such interactions
respectively, and which admit a partition of X* in independent com-
ponents. We choose:

[: DDsGPels —PiPalePels  UiPsgePols —qlpsqapsqs]
— D130z PiP2G:Pads — Q1P PsTs 1P Q3P0

[ 1 -1 -1 1]
-1 1 1 -1
The difference in interaction is expressed again by the same veetor as

in the previous cases. The component of X* corresponding to the first
vector of this pair is equal to:

and

(9224551 —P2qsle— QP A-Dopaat- Qs 0sTs —Pasts — EaPuits +ﬂapnzs)’ .
n(pnpzqu4q4+ 1P Q:Pss)

According to the end of See. 5, this may be reduced to:

(y — npipaps + 25 — 'nQ'!psps)’.
NP P20:PeG4 + NP0 DsTs

As we know that a quantity like

1 — NPiPaPy

VP §aPu 4

(with r sufficiently large) has a standard normali distribution, we may
consider &, as a normally distributed variable with expectation np,p.p:
and variance NP, P:.q:P:9: . The component is thus the square of a
normally (0, 1) distributed combination of two normally (0, 1) dis-
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tribufed variables of the considered kind and such that the numbers
ap, and ng, have some weight in this combination, indeed, but not
too mueh. This balanced combination of statistics for testing independ-
ence in 2 X 2 tables, which is also recommended by van Eeden [2], is
the second reason for our preference mentioned in the previous ease,
which is obtained by equalizing p; to p, and g5 to ¢, respectively, It
may be remarked that the chosen measure of dependence agrees with
Kendall’s {7] quantities § both in the case of 2 2 X 4 table and in that
of two 2 X 2 fables. The common interaction is thus not obtained by
amalgamating the treated and not-treated classes, but by adding the
two values of this measure of dependence, and this as a consequence of
choosing the appropriate model.

The case where three first-order interaciions must be taken in account
will be considered now. If none of the faces of the original 2* table
plays a gpeecial role in this case, we must have a definition of a level con-
taining three interactions which is independent of the choice of the
properties allotted to rows, columns, or layers respectively. After
Bartlett [1] we choose a vector consisting of o; (# = 1 --- 8) with

8

Z m =1 and wmmreary = mamgmems = 7. (16)

i=1
We remark that this relation was also valid for the levels of the 2°
table, the 2 X 4 table, and the two 2 X 2 tables. Conceiving e.g.
w /M § wa/my = mmwy/memy as 2 measure of interaction in the 2 X 2

table
[ﬂ-l Trg]
Ty Wi

as is recommended for measuring linkage, we see that the relation (16)
involves equality of interactions in every pair of faces of the original
2% table. The difference between the experimental vector and the
maximum likelihood estimate of the level—which eannot be obtained
in that simple way (i.e. from marginal totals) as in the cases discussed
till now—will be called second-order interaction again. The corre-
sponding X* has a one-dimensional x*-distribution because the estimation
of the level implies the estimation of six parameters.

The estimates #, are obtained by determination of the maximum
of the likelihood function:

8
C 4+ > z;logw; underthe conditions (16).

i=1
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Differentiation of the funetion:
i:' z; log m; + Mrmaweme — mamawoms) — #(‘.SZI T — 1)
with respect to r; gives the equations:
=%t _ 0, (=1,4,67

and

p=B=XN 0 (=23,58).

w3

> w.P, yields: p = n. Putting hy = §, we obtain:
Z + & = nfty, Ty — § = nits ,
Ty = 8 = nity , e + & = nRg,
Tz — 8 = niy, z; + 6 = n#;,
Ty + & = nig, Xy — & = Ny .

From this it will be seen that seecond-order interaction is a multiple

of the vector
[ 1 -1 -1 1}
-1 1 1 -1

here again, namely with coefficient §/n. By substitution in (16) the
{ollowing equation for & is obtained:

{x, + 8){zy + 8)(zs + 8z + 8) = (x2 — 8)(zs — )z — 0){zs — &).
Lancaster [12] showed that the test criterion X* = (8°/n) > 5., 1/#,
caleulated after solution of this cubic equation is asymptotically equal to

2
(‘E;_Ea_i”_a_[_ﬂ_ﬂ_l_ﬁ_[_%z_ﬂ)
Y5 T Ta Ta s e e My . (17)

8
Yyt

im1 T

Now the component of X° aimed at testing second-order interaction
in the discussed models with no, one, and two interactions is equal to
the same expression (17) for any n with the restriction only that the
7: may stand for estimates of the true =, occurring in the level of the
relative model which, however, converge to the true =, for large =.
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We see that the test criterion for second-order interaction belonging to
any of the four discussed models—on condition that the underlying
hypothesis expressed by the level is true—is asymptotically the same
as that belonging to the following level if we observe the order of our
treatment. This order implied that every model represented a stronger
assumption about the x, than the following models.

In other words, we may conclude that Bartlett’s test of second-order
interaction (admitting three first-order inferactions) is asymptotically
independent of whether any of these interactions is present or not; that
our test of second-order interaction admitting two first-order inter-
actions is asymptotically independent of whether any of these two
interactions is present or not, but is not valid if three interactions occur
in fact; that our test of second-order interaction admitting one first-
order interaction is asymptotically independent of whether this inter-
action is present or not, but is not valid if one or two of the other true
interactions is not zero; that the test of second-order interaction as-
suming no interactions (i.e. Lancaster’s procedure) is only justified if
no true interaction occurs in fact; that the value of any of the relative
statistics is asymptotically equal to those admitting more interactions
if only the null hypothesis belonging to the first statistic is not too
narrow in the sense that interactions are supposed zero although they
are present. This result, an extension of Lancaster’s [12] remark, was
the third reason for our preference in the choice of specific basis vectors.

Finally, a remark proceeding from a consideration of Bartlett’s [1]
numerical example also discussed by Laneaster [12]. This example
showed a three-way classification of numbers of root-stocks according
to time of planting (af once and in spring), to length of cutting (long
and short), and to success (alive and dead):

at once ' in spring
long short long short
alive 156 107 84 31
dead 84 133 156 209

Partition of the four-dimensional x* corresponding to a 2° table yielded
95.58 for interaction between time of planting and success, 45.40 for
interaction between length of cutting and success, 0.00 for interaction
between length of cutting and time of planting, and 0.07 for second-
order interaction. In connection with these large interactions, Bartlett’s
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and Lancaster’s criteria are not equivalent and they will not be expected
to be equal. If weformally follow the procedure discussed in this section,
a new model, assuming two first-order interactions, would be needed
for a further investigation of second-order interaction. We would
consider these two 2 X 2 tables:

alive dead
long short long short
at once 156 197 84 133
in spring 84 31 156 209

The two-dimensional x*, 7.41 (the sum of 6.50 and 0.91) could be par-
titioned in 5.26 for interaction between time of planting and length of
cutting, and 2.15 for second-order interaction. Bartlett’s criterion was
equal to 2.27, so that the two criteria do not differ much now. The
difference could be ascribed to a {(formal) interaction between time of
planting and length of cutting.

But in our opinion the whole procedure {also Bartlett’s) seems to be
wrong in this special example. For equality or unequality of depend-
ence in the two considered 2 X 2 tables has no practical sense and will
not be an object of investigation in this case. Moreover, the fact that
the number of root-stocks is equal for all treatment combinations—
which led up to an interaction x* exactly equal to zero—suggests that
these numbers were not random but fixed before the execution of the
experiment. An interaction between time of planting and length of
cutting must thus be excluded from the model. For that reason we
have already referred to this intermction with the term formal.

In this and in similar cases we have to consider four independent
binomial distributions defined by four chances =, , in this example,
chances of alive according to:

at once in spring
long short long short
alive w s iy L
dead 1 —m 1 — 7 1—m 1 — me
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Here interactions are to be defined again. In the particular case where
the numbers in ¢very column are equal (as in this example), say n, the
experimental result may be partitioned as follows:

Ll:zl Ty Ta m]zl[ T T E B :|

in Ts Tw Ty Xy 4 l—-7 1l—7 1l—7 1—=
1 1 -1 -1 1 -1 1 -1
-1 -1 1 1 -1 1 -1 1

8 I -1 -1 1
+Z[ :I
-1 1 1 -1

This partition corresponds to a parfition of the three-dimensional
test criterion for independence in a particular 2 X 4 table in three
independent components. The second vector on the right represents
interaction between time of planting and suecess, and the third vector,
interaction between length of cutting and success. The sum of the
first three vectors on the right is proportional to:

[vr+5+'v T+8—~y r—B8+v w7 ]
l—-z~-B—vl—-a7—-8+yvy1l—-r+f—y1—a+8+~n

i.e. a vector where o, — my = my — m, , ¥1 — 7z = 7, — T, and similar
relations between 1 — =, are valid. Such a vector where the (positive
or negative) raising of the chance of alive or of dead by long
cutting is the same for both times of planting, and where this raising
by planting at once is the same for both lengths of cutting, seems o be
a natural definition of the hypothesis no second-order interaction for
this case. The fourth vector will represent second-order interaction,
i.e. inequality of the mentioned raisings. The corresponding partition of
X? is for this example numerically equivalent to that at the beginning
of our remark about it. If the numbers in the columns are not equal,
a first-order interaction, e.g. between time of planting and success,
can be tested in the 2 X 2 table obtained by neglecting the other classi-
fication (length of ecutting).

A test for second-order interaction will imply then (and also when
the partition described shows considerable first-order interactions as
in this example) a maximum likelihood estimation of the x, under the
hypothesis of “no second-order interaction,” ie. my -+ 7y, = 7 + 73 .
To that end we determine the maximum of the likelihood function:

e |2

4 4
C- 2z logm 4 2 (ny ~ ) log (1 — x;) under that condition.
i=1 =i
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Differentiating the function:

E z; logm; + Z (ni — ;) log {1 — ) + May — wg — my b )

iml i=]

with respect to =; yields four quadratic equations in =, , m , my , and
7, respectively. The usable solutions (0 < x; < 1) are:

L _A=n 4+ VO =)' + A

m

25 ’

At~ VOt ) — 4,

2 = 25 d
A+ n; ““"\/O\ + ns}z — 4hx,

s = 2N ’
L _ A=+ VO —n)' 4 Dy
T = 2\ '

Substitution in the relation between the x; yields the following equation
for A:

TV~ N F B 4+ V(s N - 4, .
4
Vi + N — Dy + Vi — N+ Dy = D,

=1

from which a solution different from the trivial solution A = 0 is required,
unless an approximate solution whick may be given by

T T T T
m Mg M Ty

42 zine — @)

3
i=1 n;

and which can be improved by usual methods, is exactly zero. In
that case the solution of X is zero.

In Bartlett’s example this approximate sclution of A was equal to
4.91, This eould be improved to 4.92078. Solving the #, with the help
of this value gave the foilowing table of expected numbers:

[157.11 105.78 82.89 31.56:|
82.80 13422 157.11 208.44

The one-dimensional x° for second-order interaction according to our
definition of no second-order interaction appeared to be equal to 0.082.
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