25 years of collaboration HH – KK on phenology modelling

What did we learn?

29 June 2016, Joensuu, Koen Kramer

Boreal and Temperate Trees in a Changing Environment – Modelling the ecophysiology of seasonality. 28-29 June 2016, Joensuu, Finland.

ACTA FORESTALIA FENNICA 213

HEIKKI HÄNNINEN

MODELLING BUD DORMANCY RELEASE IN TREES FROM COOL AND TEMPERATE REGIONS

VIILEÄN JA LAUHKEAN VYÖHYKKEEN PUIDEN SILMUDORMANSSIN PURKAUTUMISEN MALLITTAMINEN

> THE SOCIETY OF FORESTRY IN FINLAND THE FINNISH FOREST RESEARCH INSTITUTE

Hänninen, 1990

Observations on dormancy

State of bud, name of period	Definition	Process	End of period
Dormancy, bud dormancy	No visible growth	Dormancy release	Bud burst
Rest	No visible growth, and	Rest break	Rest completion
	1) no or reduced growth competence, or	(Ontogenetic development)	(Bud burst)
	2) no growth competence at low forcing temperatures and full growth competence at high forcing temperatures		
Quiescence	No visible growth, and	Ontogenetic development	Bud burst
	full growth competence at all forcing temperatures		1×

Table 1. Terminology of bud dormancy in trees used in the study.

Hänninen, 1990

Progress in science – Hänninen, 1990

$$M_{chl}(t) = \begin{array}{l} 0 \text{ CU day } ^{-1}, \\ 0.159 \text{ CU day } ^{-1} \circ \text{C}^{-1} \cdot \text{T}(t) + 0.506 \text{ CU day } ^{-1}, \\ -0.159 \text{ CU day } ^{-1} \circ \text{C}^{-1} \cdot \text{T}(t) + 1.621 \text{ CU day } ^{-1}, \\ 0 \text{ CU day } ^{-1}, \end{array}$$

 $T(t) \le -3.4 \text{ °C} \\ -3.4 \text{ °C} < T(t) \le 3.5 \text{ °C} \\ 3.5 \text{ °C} < T(t) \le 10.4 \text{ °C} \\ T(t) > 10.4 \text{ °C} \end{cases}$

$$0 \text{ FU day}^{-1}, \qquad \qquad T(t) \le 0 \text{ °C}$$

$$m_{\rm frc}(t) = \frac{28.361 \, \rm FU \, day \, -1}{1 + e - 0.185 \, {}^{\circ}\rm C^{-1} \cdot (T(t) - 18.431 \, {}^{\circ}\rm C)} \,, \quad T(t) > 0 \, {}^{\circ}\rm C$$

 $M_{frc}(t) = C(t) \cdot m_{frc}(t)$

$$\begin{split} S_{chl}(t) &= \begin{cases} t \\ 0 \end{cases} M_{chl}(\tau) d\tau & S_{chl}(t) \ge CU_{crit} \\ S_{frc}(t) &= \begin{cases} t \\ 0 \end{cases} M_{frc}(\tau) d\tau & S_{frc}(t) \ge FU_{crit} \end{cases} \end{split}$$

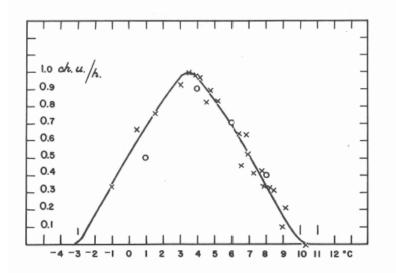
VAGENINGEN UR

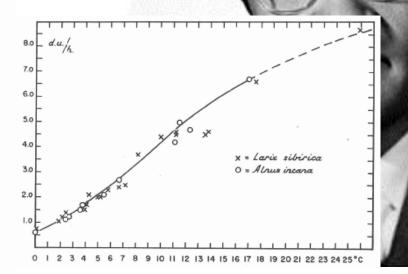
For quality of life

Hänninen, 1990

INVESTIGATIONS ON THE ANNUAL CYCLE OF DEVELOPMENT OF FOREST TREES

II


Autumn dormancy and winter dormancy


RISTO SARVAS

† 8. IV. 1974

TUTKIMUKSIA METSÄPUIDEN KEHITYKSEN VUOTUISESTA SYKLISTÄ Syys- ja talvihorros

TIIVISTELMÄ

- State rate approach: Sarvas (1972)
- Competence function: Pelkonen, Hari (1972, 1980, ...)

Progress in science - Hänninen & Kramer, 2007

$$S(t) = \int_{t_0}^t R(t)dt$$

R(t) = f(E(t))

 $S(t) = S_i(t), i = 1, 2, 3...$

 $R_i(t) = f_i(E(t), S_i(t))$

 $R_i(t) = f_i(E(t), S_j(t))$

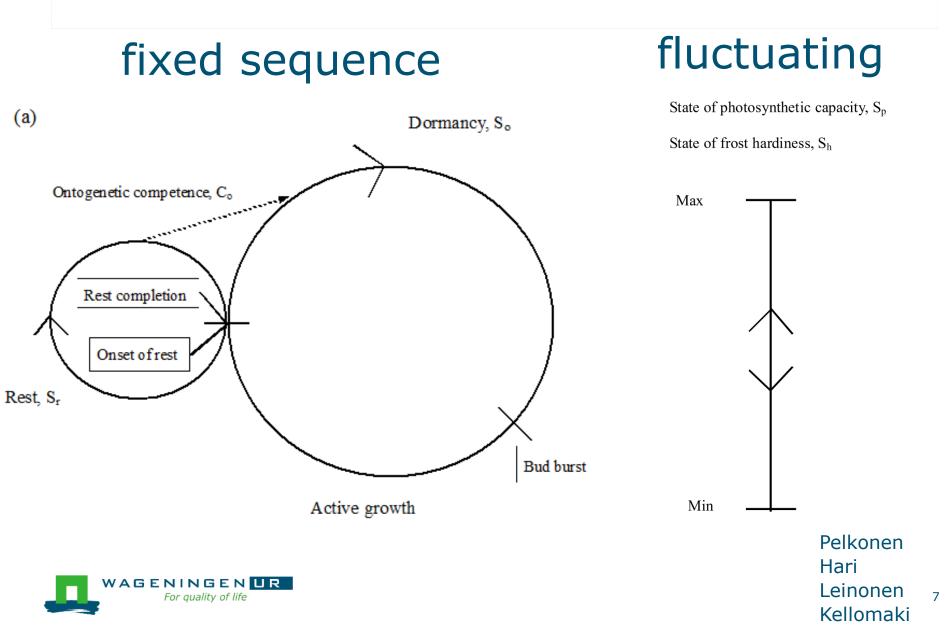
 $R_o(t) = C_o(t) \cdot R_{o,\text{pot}}(t)$

 $R_o(t) = C_o(S_r(t)) \cdot R_{o,\text{pot}}(T(t))$

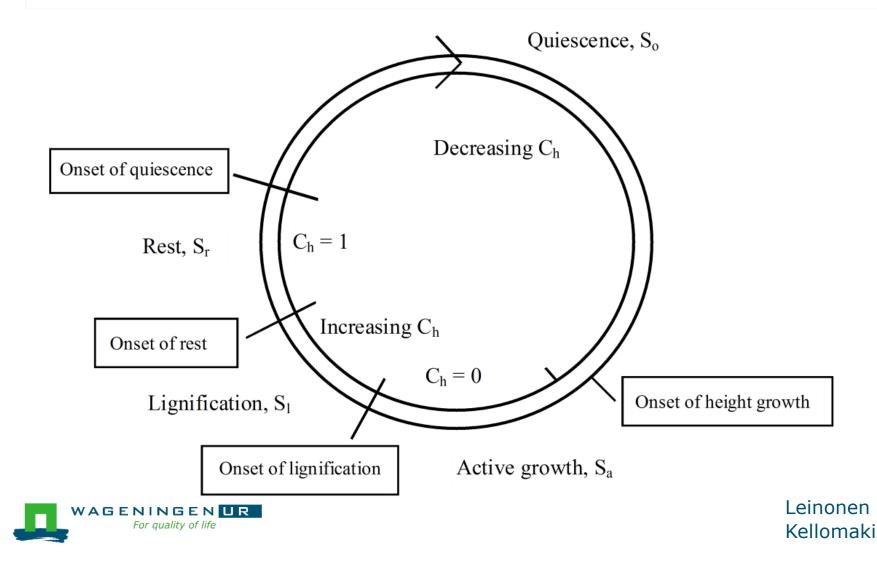
Silva Fennica

Silva Fennica 41(1) review articles

www.metlo fi/silvalennica: ISSN 0037-5330 The Finnish Society of Forest Science - The Finnish Forest Research Institute


A Framework for Modelling the Annual Cycle of Trees in Boreal and Temperate Regions

Heikki Hänninen and Koen Kramer


- E-models
- ES-models

- S state
- R rate
- *C competence*
- E environment
- pot = potential

Models of ontogenetic development

coupled fixed-sequence – fluctuating development model

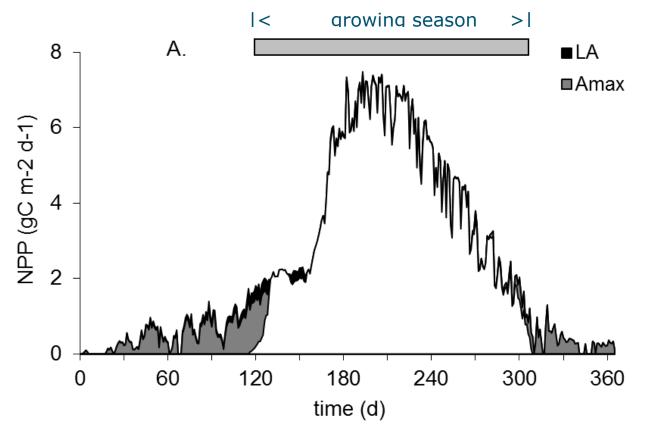
8

Characteristics fixed sequence- vs fluctuating development

	Fixed- Sequence	Fluctuating
Driving force	environment	fluctuations in environment
Genetics	rate of ontogenetic development, thresholds	stationary states, time constants
Development	irreversible	Reversible

The Annual Cycle of Development of Trees and Process-Based Modelling of Growth to Scale Up From the Tree To the Stand

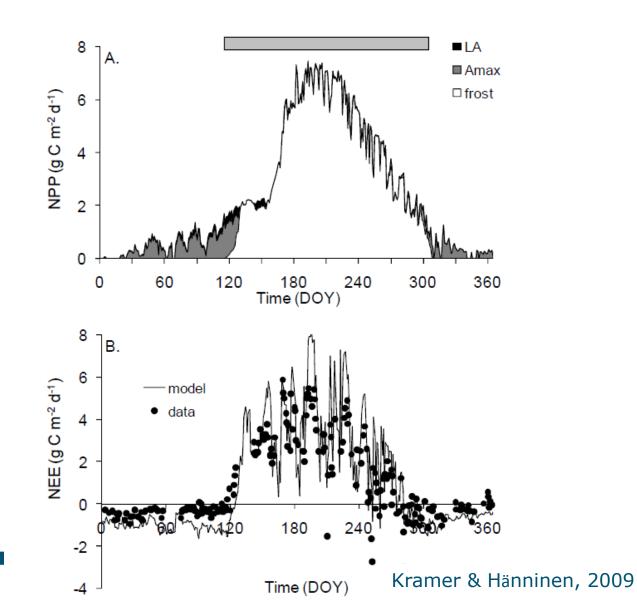
Koen Kramer¹ and Heikki Hänninen²


A. Noormets, *Phenology of Ecosystem Processes*, DOI 10.1007/978-1-4419-0026-5_9, © Springer Science+Business Media, LLC 2009

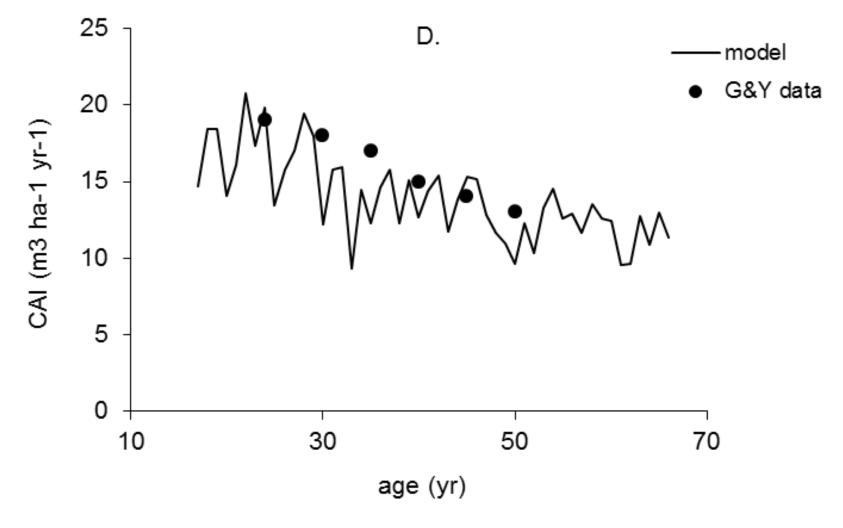
Modelling annual cycle of development to assess:

- timing of bud burst (fixed-sequence)
- timing growth cessation (fixed-sequence)
- seasonality frost hardiness (fluctuating)
- seasonality of photosynthetic capacity (fluctuating)

assess importance of frost hardiness


LA – effect of frost damage on leaf area

Amax – effect of frost hardiness on photosynthetic capacity


Kramer & Hänninen, 2009

Implications for gas exchange

Long-term implications on growth & yield

Kramer & Hänninen, 2009

Chapter 15 Plant Development Models

Isabelle Chuine, Iñaki Garcia de Cortazar-Atauri, Koen Kramer, and Heikki Hänninen

M.D. Schwartz (ed.), *Phenology: An Integrative Environmental Science*, DOI 10.1007/978-94-007-6925-0_15, © Springer Science+Business Media B.V. 2013

25 years of collaboration HH – KK on phenology modelling – what did we learn?

- there is still a lot to be learned considering the ontogenetic development of plants, and trees in particular
- we have developed a nice conceptual framework, yet our models are still a strong simplification of reality

