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Abstract 
 

Land degradation and related processes such as gullying, flooding and sedimentation, are global phenomena. However, the economic 

consequences of these processes are more severe in developing countries, which lack resources for prevention and mitigation. In Ethiopia, 

therefore, gully erosion as a form of land degradation is a prime issue. Over the past decade, gullies have formed in the foothills of the Minizr 

sub-catchment in the highlands of North-Western Ethiopia – a watershed draining into a reservoir constructed in 2011. On hillslopes in the 

catchment, government workers and NGOs have introduced extensive soil and water conservation measures to counter hillslope erosion. 

However, local extension workers have reported increased gully growth rates in the past five years in the downslope foothill areas, whose 

soils consist mainly of vertisols. Knowledge of the gully erosion rates and gully mechanism are lacking. To halt and mitigate gully erosion 

in the foothills, this thesis looked at the gully formation process and the root cause of the reported increased erosion rates to be able to make 

a justified selection of measures for mitigation and rehabilitation of the gullies. Three root causes were hypothesized to have influenced gully 

erosion mechanisms: reservoir construction, land use change and the implementation of soil and water conservation measures in surrounding 

hills from 2010 onwards. 

For the physical field work, three representative gullies were selected for detailed analysis. All gullies were located in gently-sloped areas 

(0-5%). Gully shape and volume were derived using terrestrial photogrammetry in AgiSoft PhotoScan Professional. In addition to using 

photos captured one-by-one, still frames exported from video footage (shot with a stock IPhone 4) were used as input. To study the suspected 

influence of subsurface flow on the formation process, approximately 35 points per gully were sampled weekly for soil moisture content over 

the course of September, November, and December 2014. In addition, the sites were checked for signs of subsurface flow at the end of the 

rainy season and again 3 months into the dry season. Results show that the erosion rate has indeed increased compared to rates from before 

2010, with a 74 tons/ha/year erosion rate over the 2014 rainy season. Extensive signs of subsurface flows are visible in and around all research 

gullies. Data and observations point to the following process: after rains, water infiltrates and flows downhill through a permeable layer 

towards the reservoir. In the foothills of the study area, these flows become perched on a less permeable layer of dense grey clay. This leads 

to positive pore water pressures, which in turn cause dispersion of clay particles. As an end result, soil cohesion is greatly reduced. In these 

conditions, gully formation is easily triggered by overland flow and slumping. Once a gully has been established, expansion is mainly through 

bank collapse: during the wet season as banks are saturated, and in the dry season as extensive cracking appears. 

Three hypothesized root causes have been researched. First, the influence of the Koga Dam since its construction ended in 2011, which might 

have led to rising groundwater levels, which may saturate soils, lowering friction thresholds. However, historical data on ground water levels 

before, during and after construction of the Koga Reservoir were not available. After surveying water wells and interviewing farmers, no 

evidence has been found that the reservoir construction has influenced the hydrology of the study area. The same was true for land use change: 

no change was detected in the gully watershed for the 2010-2014 period, and literature research did not yield any evidence it had changed 

significantly between the 1980s and 2010. The most likely cause of the increased erosion rates lies with the implementation of stone bunds 

and fanja yuu on all fields on every hillslope surrounding the study area. These contour barrier type soil and water conservation measures 

have increased infiltration. Although this has decreased overland runoff on the hillslopes, it has increased ground water flows toward the 

study area and therefore made the area more susceptible to gully expansion through the described process. 

The merit of this study is threefold. First, it shows the applicability of a fast, accessible and accurate way to digitally represent gullies and 

other landscape features through the use of video footage and photogrammetry. Secondly, it lends validation to claims by farmers and 

extension workers that the gully erosion issue has become more urgent since 2010. Finally, it shows the dominant processes in gully formation 

in the area, permitting  future selection of measures to halt further gully growth and rehabilitate existing gullies based on research findings.  

.  

Keywords: Erosion, gully formation, subsurface flow, photogrammetry, piping, seepage, low-land gully, Ethiopia,  
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1. Introduction 

Land degradation and related processes such as gullying, flooding and sedimentation, are global phenomena (Sadeghi et al., 

2008). They have been recognised as a major threat to the global environment: it impacts directly human health and livelihoods 

(Vogt et al., 2011). The ratification of the United Nations Convention to Combat Desertification (UNCCD) by 193 affected 

nations shows its widespread effects (Vogt et al., 2011). Soil erosion is the main form of land degradation: a threat that has 

destroyed nearly one-third of land suitable for agriculture since the 1950s (Pimentel et al., 1995).  Moreover, the economic 

consequences of these processes are more severe in developing countries, which lack resources for prevention and mitigation 

(Tameni and Vlek, 2008). One such developing country is Ethiopia, which the International Monetary Fund has identified as a 

low-income country (IMF, 2011: 81). Here, gully erosion is a prime issue (Mekonnen et al., 2013), rendering an increasingly 

large area unsuitable for grazing and agriculture and leading to reservoir sedimentation (Gebreyohannis, 2009), threatening 

livelihoods. To protect livelihoods, cost-effective measures to prevent and mitigate gully erosion should be put in place. This 

requires both an intimate knowledge of gully erosion processes (Daba et al., 2003 and Poesen, 2011) and gully growth rates 

(Daba et al., 2003).  

Research objectives 

Residents in the study area have complained with extension workers that recent gully formation is taking away grazing land, 

threatening their livelihood (M. Getahun, pers.comm.). Extension workers are willing to halt gully erosion and mitigate its 

effects. To do so, it is important to select effective soil and water conservation (SWC) measures. It is however unclear how the 

mechanics behind low-land gully formation have changed over the past decade to account for the increase in gully formation. 

The construction of the Koga reservoir, changes in land use, and the construction of SWC measures uphill possibly influence 

the mechanism behind the formation of lowland gullies over the past decade in the lowlands of the Minizr sub-catchment. 

Since no research has been carried out on the root cause of the gully formation in this area, nor have the gullies been mapped 

and measured, this research aims to find the extent and root cause of low-land gullies in the Minizr sub-catchment. It will do 

so through literature review and field research. The main research question is as follows: 

 

What is the root cause of gully formation over the last decade in the low-lands of the Minizr sub-catchment? 

 

Working towards answering the main research question, several sub-questions have been established. These have been coupled 

directly to the Methodology section. 

1. How has the erosion rate in the Minizr sub-catchment changed since 2010? 

2. What is the dominant process behind gully formation in the Minizr sub-catchment? 

3. How has the construction of the Koga reservoir influenced the gully formation process? 

4. How has changing land use influenced the gully formation process? 

5. How have SWC measures, implemented uphill, influenced the gully formation process? 
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Background 

As the main source of soil erosion, water erosion can be divided in rill, inter-rill and gully erosion (Poesen et al., 1996). Both 

rill and interrill erosion have been studied extensively and are relatively well understood (Tebubu et al., 2010). However, with 

the increased attention since the 1980s on off-site effects of erosion, the need for a closed sediment budget became clear (Poesen 

et al., 1996). Therefore, gullies and their function as a sediment source and pathway became a more prominent research topic. 

On-site effects of gully erosion are loss of land and decreased water holding capacity of the soil (Tamene and Vlek, 2007). The 

main off-site effect of gully erosion is sedimentation of lakes and reservoirs, hindering their functioning (Tebebu et al., 2010; 

Gebreyohannis, 2009). Grouping these effects, the occurrence of gullies often indicates “an extreme form of land degradation 

warranting special attention” (Daba et al., 2003).  

In general, gullies have been defined as recently developed drainage lines of ephemeral streams with steep banks and a nearly 

vertical gully head (Poesen, 2003). Active gullies are characterised by a retreating head (Daba et al., 2003; Nyssen et al., 2006). 

Several definitions for the initiation point of gullies exist and these can be used to map the start of a gully. Earlier fieldwork 

into gully erosion in Victoria, Australia, showed gully initiation to be a zonal instead of a point process (Rijkee, 2013). It found 

that it is difficult both from aerial footage and in-field observation to determine a single initation point of a gully and that is 

does not represent the flow processes and forces acting on the soil. Instead, these lead to a slope tract or zone upslope of an 

established gully of up to several meters where soil removal is visible but not consistently. Often, short stretches of the original 

soil surface would still be present. Therefore, the study concluded that to acknowledge this reality, the definition of gully 

initiation should be that a certain minimum depth should be reached over a length of at least 5 meter. The 5-meter zone suffices 

to eliminate pools that may precede gullies (Rijkee, 2013). A common minimum depth is the 'ploughing depth' (Poesen, 2003), 

set to 0.3m by the FAO (Geyik, 1986).  

 

Hillslope and lowland gullies form differently (Tebebu, 2010). Historically, gully research has focused on hill slope gullies 

(Tebebu et al., 2010). In these, the main trigger is surface run-off (Ziemer and Albright, 1987), with the erosion potential of a 

slope locality dependent on the contributing area and local slope. Channel initiation occurs when the erosion potential exceeds 

the soil cohesive strength, and the gully head moves uphill through the incisive power of the stream flow concentrated at this 

head (Daba et al., 2003; Nyssen et al., 2006). The Stream Power Index (SPI) expresses the erosion potential (Daba et al., 2003). 

An additional mechanism is at play in lowland gully formation: slopes are gentler, and here subsurface flows directly and 

indirectly influence erosion potential. In their review of the role of subsurface flow in hillslope and stream bank erosion, Fox 

and Wilson (2010) mention the confusing naming of various subsurface flow processes. For the sake of clarity, this thesis will 

use the definitions used in their article. Two distinct subsurface flow processes directly influence erosion: piping and seepage. 

First, this section discusses seepage (non-abrasive flow), followed by piping (abrasive flow), and then relevant mechanisms 

that have a more indirect effect on erosion.  

Seepage is the diffuse subsurface flow of water towards stream channels (Fox et al., 2007). Seepage exists in situations where 

high infiltration leads to perched water tables, either above an impermeable soil layer, or between soil horizons with a different 

hydraulic conductivity. By itself, seepage does not move soil particles through the soil. The effects of seepage on gully erosion 

are retreating of the gully head and gully bank failure caused by undercutting. These effects stem from the same core mechanic: 

the negation of soil shear strength by positive pore pressures (Tebebu et al., 2013; Fox et al., 2007). The positive pore pressures 

lower the stream power necessary to cause gully formation and expansion, compared to soils with low soil moisture content 

(Fox and Wilson, 2010; Tebubu et al., 2013; Daba et al., 2003).  

The term piping describes a subsurface flow that occurs in a local, focused fashion in the form of tubular cavities. Faulkner 

(2006) describes these tubular cavities as mostly parallel to the slope and as of sufficient length, size, and connectivity to 

influence flow at the hillslope scale. Pipes tend to develop in duplex soils, soils with a contrasting texture between soil layers 

(Fox and Wilson, 2010). Piping has been well established as playing a major role in gully initiation (Faulkner, 2006) and 

embankment collapse (Richards and Reddy, 2012).  

Process-wise, it follows seepage as at the critical seepage rate – depending on the soil’s stress state, pore pressure, initial void 

ratio, and seepage direction – finer soil particles start to wash through a soil with a coarser skeleton (Richards and Reddy, 

2012). This is called suffusion and constitutes the first stage of piping. With increasing seepage velocities, the larger particles 

will start to flow, too, and the process has moved to a stage called backward erosion piping (Richards and Reddy, 2012). 

In collapsible soils, erosion initiates when the pipe ceiling collapses, leading to mass movement of soil when runoff concentrates 

at the newly formed depression. Soil losses can be especially high since pipes may be in an advanced state (e.g. below a 

vegetated slope) before the pipe collapses. The rapid flow that can occur through soil pipes is an important cause of debris 
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flows and landslides. When flow exceeds the transport capacity of the pipe or when eroded material blocks the pipe. Both will 

lead to a build-up of pore pressure in the soil pipe. 

In some soils these increased pore pressures are more likely to dislodge and transport soil particles along the flow direction. 

These soils are characterized by a “double layer” or 2:1 clays*, through a process called dispersion. Dispersion is a process that 

occurs when a deflocculant, often a form of sodium (Na), is present in a soil at near-saturation levels of the soil’s monovalent 

exchangeable cations. Consequences relevant for the erosion potential are swelling, and the subsequent reduction in 

permeability; and deflocculation, the loss of soil aggregates (Faulkner, 2006). Soils that are vulnerable to dispersion include 

those with smectite clay minerals, such as Vertisols. Sumner and Naudu (2007) go into depth about the exact conditions for a 

soil to become prone to dispersion, and show that a variety of factors related to the clay-mineralogy and the soil development 

is crucial: soil type per se is not enough to rule out or consider dispersion.  

In their review, Fox and Wilson (2010) and Faulkner (2006) do not discuss the role of macropores, which possibly facilitate 

focused subsurface flow, implying they are not significant at hillslope scales. However, several studies have shown their 

importance in influencing piping and seepage erosion (Nieber et al., 2006); Nieber and Sidle (2010); Tsuboyama et al., 1994), 

especially in situations of soil saturation and even when macropores are not connected and continuous.  

 

 In addition to the direct effects of piping and seepage erosion, subsurface flow can indirectly influence erosion through the 

interaction of soil properties with soil water pressure (Fox and Wilson, 2010). This pressure, when greater than the soil strength, 

lowers the effective weight of a particle. The pore pressure thus decreases drag forces and particles will be more easily detached.  

In existing gullies, slumping at the head and side of the gullies can occur rapidly when eroded material clogs pipes (Fox and 

Wilson, 2010). Several indicators can serve as both direct and indirect evidence for the presence of subsurface flow (Hagerty, 

1990). Direct evidence consists of holes at the exfiltration face. Hagerty (1990) describes primary, secondary and tertiary 

indirect evidence of piping. Tertiary indicators should not be relied on as the sole evidence for subsurface flow, as the indicators 

may be caused by other mechanisms. A description and examples of each have been added to Table 4 in the Appendix.  

Tebebu et al. (2010) present a case where direct and primary indirect evidence of piping have led to   of suitable SWC measures 

in the Debre-Mawi watershed, a catchment South of Lake Tana, Ethiopia. Policy makers implemented these measures after 

research had shown that gully formation in the watershed has been caused by subsurface erosion, driven by high soil pore water 

pressure. Figure 1 provides examples of piping evidence found in the Debre-Mawi watershed that correspond to those in Table 

4. 

 

 
Figure 1: Evidence of piping processes in the Debre-Mawi watershed: pothole and smaller pipe (left) and a concentrated water outflow in a 

rill bank (right). Source: Mengisti, 2011. 

On the interaction between pore pressure and soil properties, Vieira and Fernandes (2004) make note of a Brazilian case study 

where a high pore pressure itself might be sufficient to initiate landslides. They based their conclusion on a difference in 

                                                           
* The names refer to the mineral structure of some clay soils, where an octahedral hydroxide layer or sheet is found between 

two tetrahedral silicate layers. They are contrasted with 1:1 clay minerals, which have one layer of each. Wikipedia provides 

an accessible and referenced further introduction to clay minerals (link). 

https://en.wikipedia.org/wiki/Clay_minerals
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saturated hydraulic conductivity (𝐾) of 10 orders of magnitude between two soil layers. In a 2007 study, Fox et al. argue that 

even small differences in 𝐾 of less than an order of magnitude could lead to pore water pressure high enough to cause lateral 

soil movement.  

It should be mentioned that pore water pressure is temporally and spatially variable: Rinaldi and Casagli (1999) studied the 

influence of the phreatic level on soil stability in stream banks. When most of the bank is above the phreatic level, the shear 

strength of the soil is greatly enhanced by matric suction. However, when during “severe rainfalls and floods” matrix potential 

becomes positive, cohesion can become very low or disappear altogether. Keppeler et al. (1994) suggested factors explaining 

these changes in their study on post-logging responses in pore-pressure along a hill-slope. They measured elevated pore water 

pressures above impermeable layers during rainy periods, particularly at positions low on the hillslope. They hypothesize 

reduced canopy interception and compaction-induced reductions in pore space, or the collapse of soil pipes due to felling as 

causes for increases in soil water pressure. On the same subject, Crosta and di Prisco (1999) warned that the chain of events 

leading up to soil instability is complex and that interacting factors often cannot be separated. However, Fox and Wilson in 

their 2010 review on the role of subsurface flow on hillslope erosion provide more tangible examples of the knowledge gap. 

On hillslope scale, they indicate that it is unclear what the effect is of “[…] vegetation, and soil management and land use” on 

soil instability in lowland gully erosion.  

 

Potential root causes 

Following on this and the conclusions by Keppeler et al. (1994) and Rinaldi and Casagli (1999), possible root causes for 

increased lowland gully erosion through elevated pore water pressure have been listed in Table 1. Each fits with the notion that 

the cause of gully formation lies in a mix of natural and anthropogenic factors (Nyssen et al., 2006; Poesen, 2003). 

 

Table 1: Possible root causes for increases in lowland gully formation, including mechanisms. 

Possible root cause  Mechanism 

Rising phreatic levels  

 

Rising groundwater levels may saturate soils, lowering 

friction thresholds (Salama et al., 1999; Tebebut et 

al.,2013). 

Changing land-use 

 

Land-use change in the study area may increase sediment 

detachment or connectivity (Poesen et al., 2002) or 

increase infiltration (Keppeler et al., 1994) 

Implementation of uphill SWC measures  

 

Soil water conservation structures can increase infiltration 

rates and changing the water table (Nyssen et al., 2007). 
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Study Area 

Research takes place in the Minizr sub-catchment, part of the larger Koga catchment. The Koga catchment is one of the major 

river watersheds of the Lake Tana basin in the Amhara Region of North-Central Ethiopia (Figure 2). Average annual rainfall 

is 1200 mm, with 90% of rainfall occurring during the June-September wet season. Water flows to Lake Tana through the Koga 

River and the Blue Nile. The upstream area is characterized by hilly terrain up to 3,200m AMSL. The field site consists of a 

22 km2 area in the foothills near Meshenti, at approximately 2,100m AMSL. Within the study area, several gullies in the 

foothills form a gully system (Figure 3). Within the study area, three active, representative gullies were selected. The positions 

and course of the selected gullies in the study area have been indicated in Figure 3. The characteristics of these gullies will be 

elaborated upon in the Results chapter. 

 

  

Figure 2: Location of the 

study area in North-

West Ethiopia. Inset: 

detail of regional area, 

gully location (35 km 

South of Bahir Dar) 

marked with circle and 

shown in detail in the 

inset. 

The reservoir can be 

seen to the West of the 

marked gully location in 

the inset. 
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Figure 3: detail of marked area in Figure 2 (inset), location of the selected gullies in the study area. The course of the gullies as of year-

end 2014 has been indicated in orange, on aerial imagery dated 2013. Image source: Google Earth, imagery copyright CNES/ASTRIUM 

2015. 

Koga Reservoir 

The study area is bound downstream by a wetland, draining into the Koga Reservoir, an artificial waterbody containing 

83.1x106 m3 water to feed the Koga Irrigation and Watershed Management Project. The project is part of the 2002–2016 

government plan to develop the irrigation sector to meet the increasing needs and secure food production (Ministry of Water 

Resources, 2008).  

This project provides 7,000ha of arable land with irrigation water. Construction of the dams in the Koga River finished in 2011: 

one main dam (length: 1730m, height: 21m) and a saddle dam (length: 1162m, height: 9m). Inundation turned 1,042 ha of 

woody vegetation and agricultural land into water (Yasheneh, 2013). This will hopefully lead to food self-sufficiency and 

security, foreign exchange earnings and eventually in improvement of farmer’s livelihoods (Ministry of Water Resources, 2006 

in Eriksson, 2012). It is the country’s first large-scale irrigation project and has gained international attention (Marx, 2011). It 

serves as a pilot irrigation project in the Blue Nile. If successful, more irrigation projects will follow as a result of increased 

investments in the country’s agricultural sector (Ministry of Water Resources, 2008). In the lowland leading to the reservoir, 

some 30-50 gullies have been developed in the past decade (M. Getahun, pers. comm.), distributed over 22 km2 and oriented 

from the surrounding hills to the stream channel. Aerial photography (Google Earth Pro, imagery 2/2015) shows the studied 

gullies are all tributaries to one of the main gullies in the reservoir hinterland, and stretch for over 6,600 m on a surface of 5.45 

km2. The depth and width of the major gullies were reported to be up to 20 meters wide and 5 meters deep (M. Getahun, pers. 

comm.). Aerial imagery is available from 2011 onwards, rendering further analysis of the gullies on system scale through this 

data impossible before that date. 

 

Soils 

Black Vertisols (locally referred to as Walka) cover the gentle slopes (0-5%) of the study area (Tebebu et al., 2010; Tilahun, 

2012). These soils form deep, wide cracks during the dry period, while swelling and becoming sticky during the rainy season. 

Infiltration is then between 6 to 36 mm/hour (Tilahun, 2012).  Tilahun (2012) studied a close-by and hydrogeologically similar 

sub-watershed and noted that there the soil is usually saturated during the rainy season and covered with grass, with many 

“large and expanding” gullies with depths of up to 10m and widths of 30m.  
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Land use change  

The advent of agriculture in the Ethiopian Highlands, planting of eucalyptus trees, cultivation of new land and the degradation 

of vegetation cover on steeper slops have all influenced gully erosion (Tebubu et al., 2013). In the larger Koga Catchment, 

woody vegetation decreased from 5,576 ha to 3,012 ha between 1950 and 2010 (Yeshaneh et al., 2013). Deforestation was 

most severe in the 70s and 80s of last century, but since then woody vegetation has been on the rise. Settled land has risen 

drastically, whereas land for agriculture and pasture has not increased since the 1950s. All bare land had been converted to a 

land use by 2010. These land use changes were driven by population pressure and land use policies (Yeshaneh et al., 2013). 

Currently, the main land use is rain-fed smallholder agriculture in a mixed farming system, dotted with indigenous tree species 

(Tebebu et al., 2010). In the study area, the main crop is the food crop teff (Eragrostis tef), a lovegrass species that yields small 

grains (NRC, 1996). Land close to the wetland is used as grazing land. A study by Desta et al. (2000: pp. 58-59) note that the 

area located between the cities of Dejen and Bahir Dar has a high agricultural potential and good market access. 

 

Soil and Water Conservation Measures 

To counter gully erosion, soil and water conservation measures have been implemented uphill in the highlands of the Koga 

watershed (Mengstie, 2009). He refers to the concept of soil and water conservation measures as “any physical measure 

implemented in the study area to conserve soil and water resources”. The same study (pp. 27-34) includes a list of measures in 

the Koga catchment (Table 2), which includes the study area. 

 

Thesis structure 

The thesis will continue with the Methodology. It consists of the information necessary to duplicate the results with a separate 

section for each research question. After, the Results chapter shows the output of the steps in the methodology. The results 

need to be put in perspective with the literature presented in the Introduction. Together with the limitations of the methodology 

and their impact on the validity of the results, this will form the Discussion chapter. The Discussion has been organized to work 

from the modular approach of the results to the broader themes of the  research (sub-)questions and includes the limitations of 

the methodology. 

 Finally, the conclusion provides an answer to each sub question, leading up to main research question. It includes some 

recommendations for future research and approaches to selecting SWC measures. 

 

  

Table 2: Implemented SWC measures in the Koga Watershed, per type and percentage of 

total land. Source: Mengstie (2013: 27) 
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2. Methodology 

This section describes the methodology that has been used to gather data for each sub-question. For each sub-question, several 

objectives need to be met to deliver this data. For ease of reading, these objectives have been added in a table, with their 

respective methods, the required equipment and the output. Further details and justifications on the choices that were part of 

establishing the methodology have been described below these tables. 

How has the erosion rate in the Minizr sub-catchment changed since 2010? 

Objective Method Equipment Output 

Characterize gullies DEM creation / Soil 

analysis / visual 

interpretation of soil 

horizons 

 

Idem as below / soil laboratory  Soil horizons and DSMs for 

each gully 

Determine individual gully 

dimensions for 2010 - 2014 

Terrestrial 

photogrammetry / analysis 

of aerial imagery 

Iphone 4 / measurement tape / 

Agisoft Photoscan Pro / ArcScene / 

Google Earth Pro / Adobe After 

Effects CC2014 

Yearly erosion rates in  

t/ha/year from 2010 – 2014 

 

 

 

Determine historical erosion 

rates 

Literature review Tebebu et al. (2012) Baseline erosion rate in 

t/ha/year before 2010 

 

The gullies in the study area have a clearly defined head, which makes the plough depth (0.3m) indicator suitable to select the 

gully initiation point. Traditional gully surveying entails measuring the areas of several cross sections along a gully to determine 

volume. Depending on the spacing between cross sections, errors in calculated eroded volume can reach 30% (Casali et al., 

2006). There is no bias towards over- or underestimation in this error (Casali et al., 2006), so it cannot be corrected. To limit 

the error margin, many cross sections would need to be taken. Since most field work was done by one or at most two persons, 

this would require many man hours in a rather remote field setting.  

As an alternative, terrestrial photogrammetry potentially limits field time and increases the accuracy.  Here, a consumer-grade 

camera is used to capture erosion features from several angles. This study used a stock Iphone 4. Photogrammetry software 

analyses the photos, recognizes common features in multiple photos and stitches these together to create a 3d-model. The 3d-

mesh will be analysed in ArcScene to determine total volume of a gully. The advantages in surveying speed and accuracy of 

photogrammetry on aerial photography for erosion surveys have been recognized for over a decade (Marzolff and Poesen, 

2009). Recently, several free or affordable software that offers fully-automated photo stitching capability increases the 

accessibility of photogrammetry (Opitz et al., 2012). The most commonly used software packages are Eos Systems' 

PhotoModeler Scanner, AutoDesk's 123D Catch and AgiSoft's PhotoScan. This study has used Agisoft Photoscan, as 123D 

Catch needs a server connection to analyse the photos, which was deemed impractical in Ethiopia; Photomodeler did not have 

an option to directly export a 3d model as a DEM. For each gully, between 70 and 180 photos of a gully have been analysed. 

For both the “School” and “Tentacle” gully, photos were derived from video footage. This was done by exporting a video frame 

as a still image every 1/3 second using Adobe After Effects CC 2014. The length of the gullies drove this choice, as shooting 

video footage makes it easier to ensure no angles are missed. Figure 4 shows the activities done to derive gully volumes. 

 

As for the analysis of historical aerial photography, the date of the imagery varied over the years: to assess the gully length for 

a given year, the first imagery dated after the wet season for that year was used. For 2010, this was April 2011; for 2011, this 

was March 2012; and for 2012, this was October 2012. Google Earth did not have imagery for the 2013 rainy season available. 

The length of the gully after the 2013 rainy season was therefore estimated through field observations, in cooperation with 

farmers, extension workers and a local PhD-student. This was possible because these people remembered the state of the gully 

at the time, and because the vegetation in these sections had developed more than in the 2014-eroded area. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

P
ag

e1
4
 

Horizon 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

What is the dominant process behind gully formation in the Minizr sub-catchment? 

Objective Method Equipment Output 

Determine if piping/sapping 

occurs 

Observations at gully 

banks 

Checklist from Field Data form 

(Hagerty 1991) 

  

Presence of piping/ sapping per gully 

Determine pore water 

pressure in gullies  

Literature study + TDR 

samples + porosity 

samples 

Time-domain Reflectometer 

(TDR) + pF-curve + soil sample 

rings 

 

Pore water pressure distribution in 

gullies 

In case of sapping/piping, 

determine the physical cause  

Bulk density 

measurements through 

soil layers. 

Sample rings, oven, scale Bulk density distribution over soil 

layers for gully heads. 

 

To test if high pore water pressure is indeed leading to gully formation, it will be measured by proxy. Since tensiometers are 

too fragile for prolonged field work, TDR soil moisture values will be compared with the pF-curve for Vertisols to determine 

the pore water pressure. TDR measurement have been taken at the gully head and then in at three cross-sections, increasingly 

further away from the head. Figure 5 shows the general sampling scheme.  

The timing of the measurement depended mainly on practicalities: the availability of transport and a translator limited the 

amount of field days to one or two each week. In addition, a long hiatus in October  

meant there were no measurements during this period. The sampling values were visualized in ArcMAP 10.2.2, according to 

the flowchart in Figure 6 (next page) 

 

 

Field 
activities

•Put clearly visible markers on at least 3 reference points in and around the gully

•Take photos and video covering all angles of the gully

•Measure distances between reference points

Create 3D 
model

•Import and align photos in Photoscan Pro, create mesh and textures

•Calibrate scale between reference points using the field measurements

•Export 3d model to ArcScene as COLLADA file

Calculate 
volume

•Import COLLADA file as multipatch feature

•Convert multipatch to raster

•Create raster at surface level

•Perform cut fill operation on both rasters

•Read volume difference from the output layer statistics
Figure 4: Workflow and activities in calculating gully volumes using terrestrial photogrammetry. 

x 

y 

z 

Figure 5: General sampling scheme for soil moisture measurements with a TDR, as a semi-3d 

visualisation of a gully head. Each circle represents the location in a gully where a TDR reading has been 

taken. Samples across another 2 cross-sections, further down the x-axis, are not displayed. 
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In addition, the gullies and immediate surroundings have been checked for signs of subsurface flow in the forms of piping and 

sapping, according to the checklist in presented in Table 4 (Evidence for piping, in the Appendix). This has been done in 

September and again in December 2014. 

 

 

How has the construction of the Koga reservoir influenced this formation process? 

Objective Method Equipment Output 

Determine water level 

change since Koga Reservoir 

construction  

Measure December 

water level in farmer 

wells + farmer 

interviews 

Measurement tape, GPS, 

weight. 

Relation between distance from gully 

system and highest ground water level 

+ change since 2010 

 

Eriksson (2012) mentions that 8 piezometers have been installed by the Koga Irrigation Project team at the construction of the 

reservoir, to monitor the water level. It is unclear where exactly these piezometers have been installed. Historical data have 

been requested at the project office. However, the piezometers had never been monitored. First thought of as a back-up, 

construction design documents by Mott MacDonald (2004), supposedly available in hardcopy at Merawi Koga Project Office, 

would list the maximum water height in the reservoir, from which water table changes could be estimated. These documents 

were not available. As a last option, December water table levels have been derived from farmer wells at increasing distances 

from the gully system, and farmers were asked on changes in the water level since 2010. The implications of these choices for 

the results will be talked about in the Discussion chapter.  

  

Add SMC 
values

•Create new Feature Class

•Add point features at sampling locations

•Add new fields to the attribute table for the point name and SMC values for 1 sampling 
date

•Add the measured SMC values to each point

Display in 
3d

•Interpolate sampling points (method: spline, spline type: tension, weight: 2).

•Georeference output layer (soil moisture distribution map) with DEM

•Set the output layer base height to derive elevation data from DEM

Repeat

•Copy and paste point feature layer

•Replace SMC values in the attribute table for those of the next sampling date

•Repeat steps each sampling date has its own layer

•Repeat for each gully

Figure 6: Workflow in creating 3d soil moisture distribution maps from SMC samples. 
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How has changing land use influenced the gully formation process? 

 

Historical land use change in the Koga catchment have been derived from Yeshaneh (2013). The historical land use maps in 

this study were not detailed enough to see the land use for the Minizr sub-catchment in which this study has been done. 

Therefore, the land use percentages provided in tables (which were for the Koga catchment as a whole) were compared with 

the land use percentages in the catchments of the gullies. Although these catchments were only a very small subset of the Koga 

catchment, this method was preferred over doing a land use analysis for the entire Koga catchment in 2014 for two reasons. 

First, the Yeshaneh study (2013) used automated image analysis on various satellite imagery to classify the land: the software 

to do so was not available, thus their method could not be replicated. The second reason was the construction of the reservoir, 

which had led to significant land use changes (cropland to water) that in itself did not impact the gully system. Since there was 

high-resolution satellite imagery available for 2010 and 2014, it was deemed more relevant to the research question to only 

evaluate land use change for the catchments of the studied gullies. Similarly, increase in land use intensity, specifically grazing 

intensity after reservoir construction, could not be measured but will be discussed in the Finding root causes of erosion section 

of the Discussion chapter. 

How have SWC measures, implemented uphill, influenced the gully formation process? 

 

The first step consisted of field observations and discussions with extension workers to select which were present in the area 

and when they were constructed. Only those that could reasonably be expected to influence the area’s hydrology (due to their 

number or covered area) were then selected for mapping and further analysis. A shapefile containing the digitized contour 

barriers were available through ongoing PhD-research in the Koga catchment by M. Getahun. These were imported into 

ArcScene and georeferenced using the Koga catchment DEM. Total length was determined through the layer statistics function.  

The DESIRE for a Greener Land project descriptions guide provided the classification and potential effects of the SWC 

measures. Detailed (potential) effects of measures were from more diverse sources and have been referenced in the Results and 

Discussion chapter where applicable. 

 

  

Objective Method Equipment Output 

Determine land use change  Literature study / Field 

observations / AP 

analysis 

Yeshaneh (2013) / GPS / AP data 

(listed in Yeshaneh, 2013) 

Land use change from 1950-

2010  

Objective Method Equipment Output 

Determine the SWC 

measures that have been 

implemented in the study 

area 

Digitally map SWC 

measures in the area. 

 

Aerial photography, ARCgis 

 

 

Digital map of SWC measures present 

in the study area. 

Determine impact of SWC 

measures 

Literature study DESIRE Project descriptions of 

SWC measures.  

Qualitative impact of SWC measures 

on lowland gully erosion 
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3. Results 

This section describes the results obtained through the methodology as listed in 

the previous chapter. For ease of reading, the results have presented grouped in 

the same order as the methodology chapter: first, the soil analysis, followed by 

DSMs and soil profiles of the gullies, and finally the baseline erosion rate in 

t/ha/year in the 2010-2014 period compared to pre-2010 rates. Illustrations 

showing soil horizons use the six master soil horizons (O, A, E, B, C, and R) 

and have been explained in relevant captions. 

 

Soil analysis 

At three sites spread through the study area, samples were taken at 15 cm depth. 

The Bahir Dar Regional Soil Laboratory analysed these samples. Since there 

were some doubts on the proper identification of other samples in the set (not 

used for this study), all samples were analysed twice. This means that the 95% 

confidence interval for the values could be derived. All data was provided by 

the laboratory in the form of a measurement report. As Figure 7 shows, clay is 

the main texture class taking up 67% (±6pp) of the volume, with sand and silt at 

16% (±5pp) and 17% (±5pp), respectively.  

 

“Waterfall” gully 

The “Waterfall” gully (Figure 8) is a medium size gully with clear subsurface flow streaming out of several pipes near the gully 

head, including an active pipe of 3 cm diameter, meriting the name “waterfall”. The gully exits in a bend of a large gully system 

with extensive slumping. There is some vegetation around the walls near the gully exit, and a 2 m x 1 m patch of Wanza tree 

(cordia Africana) saplings can be found in the gully itself. The remainder of the gully edge and surrounding land is fully 

covered grassland. 

 

Figure 9 shows a triple display of the gully head. It represents the soil profile at location (1) in Figure 8. In characterizing a 

gully head, structures such as overhang, ridges or protruding parts are important. However, these are not always visible in 

photos. The images in Figure 9 have been derived from a 3d composite of 24 photos, allowing for view angles that could not 

have been photographed because of the confined space. The gully head has steep, practically perpendicular walls with a 10 cm 

overhang at surface level. The transition towards the gully bottom is visible in the bottom. The topsoil if followed by a bleached 

layer, from which minerals have been deposited in a thick subsoil. It lies upon a layer of heavy grey clay, which upon first look 

1 2

1 

3 

Elevation (m) 

AMSL 

       

      2064.0 

 

 

      2060.0 

Figure 8: Top view for "Waterfall" gully with contour lines projected on a DSM derived through photogrammetry in September 2014. Pipes 

are present in the gully head (1), with trees on the banks near the exit (2) and bushes up to 1 m in height at (3).  

Figure 7: Mean volumetric content for clay, sand and 

silt for Vertisols in  the study area.  
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seemed like stone. A multitude of exfiltration holes ranging from 1 mm to 3 cm are present in the lower 30 cm of the B-layer. 

This same zone was saturated with water, flowing over the exposed clay towards the gully exit. 

 

“School” gully 

School-gully (Figure 10 and 11, next page) is a small-to-medium-sized gully in front of a primary school building. It starts 20 

m downstream of a stabilized older gully. Between the two gullies there is a heavily vegetated depression that serves as a 

flowpath. It is littered with plastic and pieces of wood, deposited by school kids or employees. In the inactive downstream gully 

section, shrubs cover most of the banks that are not vertical. Extension workers reported this gully had grown “extremely fast”. 

In its course, the gully bends to the South-East and connects to the main gully (the largest gully in the study area, to which 

most other gullies connect and that runs towards the wetland in a South-Western direction). 

1

 

2

1 

3 

Figure 9: Soil texture for the gully head in the "Waterfall" gully. All three parts display the same section of the gully head, first seen from 

left (1), in a front view (2), and from right (3). The main pipe has been indicated in the three parts with an asterisk. The soil horizons have 

been indicated: A) mineral topsoil, E) eluviated soil, B) Subsoil, C) parent material. Water table below visible profile, saturated soil visible 

up to halfway the B horizon. 

A 
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Figure 10: Top view for "School" gully with contour lines projected on a DSM derived through photogrammetry in September 2014. The 

gully is connected via a depression (1) to an upstream stabilized gully, the overhang at the gully head at (2) is not visible in the DSM. Away 

from the gully head, the side bank become less steep (3).  

The soil profile composite on   was located at the (2) mark in Figure 10. Two soil horizons show over the 1.6 m depth of the 

soil profile. Surface cover, also including the overhanging gully edges, at the time consisted yellow, short grass. First, the 

topsoil, which consist of 0.8 m of red soil, with an abundance of grass roots up to 0.7 m depth, as well as visible worm holes. 

The subsoil consists of 0.8 m of greyish clay with no traces of animal activity. The majority of cracks appeared in this layer. 

(see also Figure 11). The gully bottom was covered mostly with the remains of collapsed bank sections, mixed with large 

branches, natural and man-made debris. 

 

  

1 

2 

3 

Elevation (m) 

AMSL 

       

      2057.7 

 

 

      2055.9 

Figure 11: composite of the soil column in "School" gully, from photographs taken in December 2014. Views are from the front (left) and right (right 

when standing in the gully center ((2) in Figure 10). Note the major crack, visible on both angles and the rubbish on the gully bottom (asterisk). The 

soil horizons have been indicated: A) mineral topsoil, B) Subsoil. Ground water level below gully bottom. 
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“Tentacle” gully 

The “Tentacle” gully differs from the other two gullies because of its complexity. Rather than one, it has 4 separate gully heads. 

The heads are elevated above the gully trunk, but quickly drop down to its level. The main gully head (in Figure 12, see caption 

note (1)) has a depression above the head that functions as a preferential flow path. There is no vegetation in this gully. The 

gully bends South-East and connects to the study-area’s main gully.  

 

 
Figure 12: Top view for "Tentacle" gully with contour lines projected on a DSM derived through photogrammetry in September 2014. The 

most active gullyhead.has been indicated by (1). The main trunk of the gully continues downstream from (2). Side slopes on the main trunk 

were covered with very sticky black clay.  

Its soil profile was taken at the sidewall of the main gully trunk (indicated with (3) in Figure 12), since the gully heads were 

too shallow, around 30 cm, and had too much overhang to photograph the wall properly without extensive digging. As opposed 

to the other soil profiles, this gully did not have a representative straight wall to show a proper soil profile. The side slope was 

covered with porous material, very sticky black clay. When digging, there was an extremely compact layer with a high 

percentage of stone fragments at a depth of approximately 10 cm from the gully floor. Based on these characteristics and known 

presence in the region, this would be the impermeable saprolite layer of weathered bedrock as also found by Tebebu (2009: pp. 

6-7) in a close, geologically similar area.  
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Elevation 
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Gully volume and erosion rates over time 

The next step was to determine gully volume growth. Figure 14 shows the gully volumes over time. The aerial imagery of the 

gully system proved suitably detailed to measure the gully lengths for subsequent years. To measure the volume (cm3 precision) 

of the open-ended geo-referenced 3d-models resulting from the photogrammetry, they had to be bound by a plane closing the 

end of the gully zone eroded in 2014, and a plane as close to the surrounding ground surface. The output of the cut-and-fill 

volume operation in ArcGIS was in cubic centimetres. Accumulating the results from both methods yielded the total gully 

volume over time  

The volume has grown for all three gullies. The “Waterfall” gully showed the biggest jump in eroded volume, in the 2014 rainy 

season.  

 
Figure 14: The Cumulative volumes for three researched gullies, from 2010 to 2014. The volumes have been derived from length 

measurements on aerial photographs (2010-2013) and through terrestrial photogrammetry (2014). 
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Figure 13: Gully wall for "Tentacle" gully, composite showing the front view (left) and view front the right (right) viewing from the gully centre. 

Sticky clay forms the side slopes, with extensive slumping (1) along the gully slopes. The soil horizons have been indicated: A) mineral topsoil, 

D) consolidated layer, referring to the impenetrable layer in the gully bottom. Groundwater level below surface, not visible. 
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To see if there is a difference between the erosion rate before and after 2010, one must compare the erosion rate in tonnes per 

hectare per year. For the 2010-2014 period these rates have been calculated from the gully volumes in Figure 14. The ArcGIS 

procedure to delineate watersheds contributing to the researched gullies delivered satisfactory results for “Tentacle” gully (2.45 

ha), but unsatisfactory results for “Waterfall” and “School” gully (both <1 ha). The resulting watersheds of the latter two were 

shown as a single diagonal line instead of an area. For these, the watersheds were determined manually, using the contour lines 

from the 3m-resolution DEM. The resulting sizes were 3.44 ha for “Waterfall” gully and 4.58 ha for “School” gully. Dividing 

the gully volumes by these areas and multiplying by the average bulk density for each respective gully resulted in the erosion 

rates for 2010-2014 (Figure 15). Figure 16 shows the average erosion rates for the three gullies. 

 

 
Figure 15: Erosion rates in tonnes per hectare per year for the period 2010-2014, per gully. 

 

 
Figure 16: Average erosion rate for all three researched gullies over 2010 - 2014. The 95% confidence interval for the mean has been added. 
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Pore water pressure distribution 

The Bahir Dar Regional Soil Laboratory (BDRSL) analysed the soil samples for soil moisture content six days after sampling. 

Figure 17 shows the differences between the soil moisture contents resulting from this analysis and those from the TDR. In 3 

out of 4 cases, the TDR provided significantly (p < 0.05) higher values for the soil moisture content than the laboratory-analysed 

soil samples. The soil laboratory did not provide error margins for their results. 

 
Figure 17: Comparison of soil moisture content values derived from TDR measurements and those determined 

after oven-drying soil samples. The error bar for the TDR measurements is the 95% confidence interval for the 

mean. 

Interpolating the SMC samples from the TDR resulted in a distribution map of soil moisture in the 0-10 cm depth for each 

sampling date. The data has been classified, with each class representing 5% soil moisture. These values are taken directly from 

the TDR. In general, active infiltration took place at TDR readings above 45%, denoted by the two highest classes in the 

distribution maps below. The maps have been presented in isometric view, with the axes in each bottom right corner for 

orientation. The depicted gullies have the same size as those outlined in their respective sections earlier in this chapter, refer to 

their respective DEMs for scale. 
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September 30 

October 5 

November 24 

Figure 18: Soil moisture content map for "Waterfall" gully, 

interpolated from September 30 data samples. 

Figure 19: Soil moisture content map for "Waterfall" gully, 

interpolated from October 5 data samples. 

Figure 20: Soil moisture content map for "Waterfall" gully, 

interpolated from November 24 data samples. 

The straight banks of the gully clearly 

show the drying pattern after the end of the 

rainy season. At the end of September, 

water is flowing from the exfiltration faces 

in the lowest 1m zone in the gully. There 

are dry spots, mainly along the edge of the 

gully, where there is some overhang. The 

measurements outside the gully edge, 

however, are above 20% SMC indicating 

that the soil outside the gully is wet. On the 

head-end of the gully, there is no overland 

flow visible. The gully head is at some 

places saturated for up to 2 meters from the 

gully bottom, where several pipes release 

their water.  

After nightly rainfall, water has accumulated 

in the preferential flowpath (a ~5 cm 

depression at the head of the gully). Now, 

there are no more dry spots and the gully 

area is at its wettest. Several slight 

depressions have started ponding around the 

gully. Flow in the gully is still high, with 

exfiltration visible in the entire 1m band. 

The porous layers towards the exit of the 

gully are very unstable and have started to 

slump in two places. Where these slumps 

have taken place, water is flowing out in a 

stream. 

 

The bottom of the gully is still an active 

stream, with water depth above the clay 

layer up to 8 cm. 

The rains have stopped, as has the overland 

flow. There are no more signs of ponding 

around the gully, but the exfiltration from 

the soil pipes and the porous layers has 

continued: there is still water flowing in the 

gully.  

 

Cracks have appeared in the gully walls, and 

at several places blocks of soil are 

overhanging because of this. With SMC 

values dropping below 10% above 1 m from 

the gully bottom, there is a clear distinction 

between the wet and dry zones in the gully. 
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December 1 

Figure 21: Soil moisture content map for "Waterfall" gully, 

interpolated from December 1 data samples. 

The exfiltration zone has shrunk to 0.8 m from 

the gully bottom, but the main pipes are still 

active. In the porous zones, water does not 

reach the surface anymore but trickles down 

until the gully bottom and exfiltrates above the 

clay.  

 

The gully head has retreated another 0.5 m 

because cracked portions of the wall have 

collapsed and are now lying on the gully 

bottom. The vegetation, although sparse) is still 

green. There are no significant changes from 

December 1 until December 15 (the last date of 

sampling).  x 

y 

z 
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Nearing the end of the rainy season, there is 

some ponding at the gully bottoms but no 

running water. Diffuse exfiltration occurs at 

the overhanging gully heads, but are barely 

visible in the interpolated map shown left. 

Overall, there is no strong soil moisture 

pattern visible, although the wettest spots 

are close the gully bottom. The porous 

slopes in the main trunk were extremely 

sticky. 

The gully head at the top right had a slight 

depression leading up to it, where overland 

flow could be observed on days after 

rainfall (<1 litre/minute).  

 

 

 

 

 

 

September 30 

December Through October and November, the gully 

dried quite uniformly. This shows in the 

final situation, where SMC was under 15% 

throughout the gully. Ponding stopped 

halfway through October. Few cracks 

appeared, confined to the gully head-end.  

“Tentacle” gully 
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October 4 yielded the wettest 

measurements. A trickle was flowing in 

from an upstream, stabilized gully. It 

accumulated with water flowing from the 

exfiltration zone (concentrated within 3 m 

from the gully head). The extensive 

vegetation on the porous layers >10 m 

from the gully head was at its highest, and 

diffuse exfiltration could be seen 

throughout the gully.  

The driest areas were those on the gully 

banks. There was ponding around the 

gully, but all upstream of the gully head. 

 

 

October 4 

November 17 Over time, the edges of the gully dried 

fastest. By November, all water on the 

bottom of the gully (which still had 

standing water) was provided by 

subsurface flow, now only present in the 

gully head proper. School children had 

littered and treaded on the porous side 

slopes of the gully by this time, 

compacting it.  

 

December 08 December 8 was the last measurement with 

yielded a value over 35% moisture, 

whereas the rest of the gully had dried by 

this time. The wet spot (barely visible on 

the image) was taken at the bottom of the 

gully head.  

Sections of the gully walls had collapsed 

into the gully, mostly on the school-side 

(above in image). A final measurement was 

done at December 15, where the wet spot 

had dried as well. It showed no different 

pattern than the December 8 situation 

pictured here. 

 

 

“School” gully 
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Figure 22 presents the total amount of soil moisture and its trend throughout time, to give a better overview of the SMC 

distribution maps presented above. Absolute values were different for each gully due to size, so all values were compared to 

the values for the first sampling date for that gully, which was assigned a reference value of 100. The overall trend is similar 

for all gullies: first, the values increase for all gullies, before falling when the dry season progresses. The soil moisture peak 

trails the last rain day. Time off and lack of transport to the study area caused the 30-day data gap. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As for the trends in the individual gullies, the “Waterfall” gully has the most stable SMC totals. Together with “School” 

gully, its moisture peak is not as pronounced as “Tentacle” gully’s. In addition, its decline is the slowest of the three gullies. 

Missing data for a set of sampling points has caused the outlier at day 58: the values for the completed points at that day do 

fit in the overall downwards trend. The “Tentacle” gully has shown the most pronounced trend: it first shows the highest total 

SMC value, before its decline. The decline is the fastest out of the three gullies and drops to the lowest level. The “School” 

gully has a very linear downwards trend, more so than the other two gullies.  

The rainfall in the two weeks before, and week after the first sampling date totalled 201 mm. After 4 October, no significant 

rainfall had been registered in the area, signalling the end of the 2014 rainy season. 

 

Presence and cause of piping and seepage 

Since the soil moisture can arrive from both surface runoff and subsurface flow, a checklist was completed to check for signs 

of subsurface flows. Table 1 (next page) presents the results for all gullies and for both survey data in the beginning of 

September and halfway through December, correlating with the end of the rainy season and 10 weeks into the dry season. The 

results from both surveys are almost identical, with only one case (indicated by an asterisk) where less evidence could be found 

10 weeks from the end of the rainy season. Not only were the numbers of evidence identical, so was the specific evidence. This 

means the evidence found on September 7 was in all cases bar one the same as on December 15. The detailed checklists have 

been added to the Annex (Evidence for Piping) and contain descriptions of the evidence types, as well as remarks and 

photographs, where relevant. In both cases the survey could be completed as outlined in the methodology.  

 
  

Figure 22: Change in total soil moisture content during the study period, per gully, and rainfall. The values at the first sampling date for each 

gully serve as reference point (100%). The asterisk indicates a sample date for “Waterfall” gully that has some missing values. Day 0 is the 

first sampling date, September 27, 2014. 
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Table 1: Number of signs of subsurface flow observed as part of all signs as listed by Hagerty (1991), for each gully at two sampling dates. 

A decrease between two sampling dates has been marked by an asterisk. 

Gully name Evidence type Evidence 

present 

Sep 7 

Evidence 

present 

Dec 15 

“Waterfall” gully Primary direct 1/2 1/2  

 Primary indirect 2/2 2/2 

 Secondary indirect 1/2 1/2 

 Tertiary indirect 2/4 2/4 

“School” gully Primary direct 1/2 1/2 

 Primary indirect 2/4 2/4 

 Secondary indirect 1/2 1/2 

 Tertiary indirect 2/4 1/4* 

“Tentacle” gully Primary direct 1/2 1/2 

 Primary indirect 2/2 2/2 

 Secondary indirect 0/2 0/2 

 Tertiary indirect 1/4 1/4 

 

Sampling in the three gullies was done at the end of November, when the upper layers of the soil were already dry. The resulting 

cracks and dried clay made inserting sample rings difficult. Since the clay layers below the phreatic zone were still wet in the 

“Waterfall” and “Tentacle” gully, sampling was easier for those. Since the clay layer lay exposed, the samples were taken on 

from the surface. In “Tentacle” gully, however, loose material from the side slopes had covered the impermeable layer, which 

had also already dried up by the sampling date. The digging involved, combined with the very compacted, stone-fragmented 

layer meant that the sample ring could not be extracted without losing some material. 

Employees of the Regional Soil Laboratory were responsible for determining the bulk density. The laboratory did not analyse 

the samples before 7 days from the sampling date, due to time constraints on their side. In the mean-time, the samples were 

stored in the open air, although they were capped. Results were presented on a measurement report, which have been presented 

in Figure 23. The laboratory did not provide error margins for their measurements.  

In two out of three gullies, the layer below the water-carrying (phreatic) layer had a higher density, at 9.3% and 13.6% 

for the “Waterfall” and “School” gullies, respectively. The “Tentacle” gully reversed this pattern and has a slight decrease in 

bulk density, at 3.6%. It also has the highest absolute bulk density values. 
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Figure 23: Comparison of the soil bulk density in and below the water-carrying 

layer, for all three gullies. The percentage difference from samples inside, to below 

the phreatic layer has been indicated. 
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Presence and impact of SWC measures 

Both fanja yuu and stone bunds have been implemented extensively in the area’s watershed. They have been digitally mapped 

and projected on a 3m DEM (derived from 30m DEM) in Figure 24. In total, 160 km of barriers have been constructed, the 

majority since 2010. In general, observations showed that the most all agricultural (cropping) fields have a form of contour 

barrier implemented. The barriers are restricted to sloped cultured lands and have been built along the contour lines. Most stone 

and soil bunds have some form of planting: either grass or shrubs. Observations on the bunds in the area surrounding the gully 

system showed the remarkable width of the bunds. The majority of observed bunds were 0.5 to 1 m wider than had been 

advised, according to a local extension worker, despite small plot sizes. The area of the main gully system (marked orange in 

Figure 24) coincides with uncultured grassland used as pasture until it was closed for grazing in 2013. Observations showed 

an insignificant number of infiltration pits dug mainly in the greater study area’s South-East.  

 
 

  

Figure 24: A 3 m resolution DEM of the greater study area. The area affected by gully formation has 

been outlined in orange. Constructed stone bunds and fanya juu have been indicated in black. 
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Water level change since Reservoir construction 
With the limited physical possibilities to determine the ground water, the water level in the wells of seven farmers were measured and the 

farmers answered questions about trends on December 18 ( 

Table 3). The wells were hand-dug and used a large earthen vase, with the bottom removed, as a cap. All farmers were located 

on the North side of the gully, within the area of the accompanying extension worker. The level was measured to the edge of 

the wells, which was elevated ca. 0.5 m above the surrounding area. The estimations for highest level, however, use the soil 

surface as reference.  

At three farms the water would reach the surface at its highest point. There were few wells that had been in operation before 

2010. From those that were, half (2/4) farmers reported a change in water levels: both had increased. From these, one farmer 

proposed a cause for the rising water levels: the extensive implementation of soil and water conservation measures since 2010. 
 

Table 3: Ground water levels and changes therein since 2010, with proposed reasons for any change. Data based on measurements and farmer 

interviews. 

Well ID 
Distance from 

gully system (m) 

Ground water 

level in 

December (m 

from surface) 

Highest ground 

water level (m 

from surface) 

Changes 

observed since 

2010 

Proposed reason 

behind change 

a 259 -14.08 -8 

Well has not dried 

completely in the 

dry season, as was 

the case before 

2010 

Implementation of 

SWC measures 

b 11 -1.55 0 

N/A (well was 

constructed in 

2013) 

N/A 

c 138 -3.20 0 None N/A 

d 23 -3.20 -2 N/A (no owner) N/A 

e 77 -2.00 0 

N/A (well was 

constructed in 

2013 

N/A 

f 192 -3.72 -1.8 
1.5 m rise in year-

round level 

Farmer does not 

know 

g 270 -4.35 -3 None N/A 

. 
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Determining land use change 

Overall, the dominant land use was cropland, with 97%, 89% and 88% for the “Waterfall”, “School”, and “Tentacle” gullies, 

respectively. The remainder of land was taken up by grassland used as pasture, except for 0.23 ha of grassland that serves 

mainly as a school yard. Some plots contain a building constructed, but built-up area constituted less than 1% of the watershed, 

so it has been excluded from this study. Nevertheless, the number of building has risen in two of the watersheds: in “Waterfall”, 

from 5 to 7, and in “School” gully watershed from 6 to 9. There was little to no change in the land use in the studied period. 

Only “Tentacle Gully” showed a 1% increase in cropland and subsequently a 1% decrease in pasture. The aerial imagery for 

2010 survey dated from April 2012; the imagery for 2014 from January 2015.  

 
Figure 25: Changes have been low or absent in land use cover of each watershed for the studied gullies, over the period 2010 - 2014. 
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4. Discussion 

This chapter discusses the results that have been obtained during the data collection phase. It aims to relate findings to literature 

and to place findings in perspective. In addition, it includes the limitations of the study. To keep with the overall structure of 

the thesis, the chapter is structured per research question.  

 

Strengths and limitations of the methodology 

Aspects of the methods used during this study influenced its results. These will be discussed here, according to the order of the 

research questions. 

All gully 3d models have been based on photographs taken towards the end of the wet season. It should be noted that the end 

of the precipitation did not coincide with the end of erosion. Several chunks broke off weeks after the rains had stopped. This 

was due to cracking of the gully banks, and impacted the width of the gully more so than the length. These chunks were 

deposited at the gully bottom, and will probably be washed away during the next rainy season. Therefore, they did not influence 

the volume calculations - but to better represent gully dynamics it would have been better to postpone gathering imagery until 

further into the dry season. 

 

The use of terrestrial photogrammetry to survey the gully volume that has been added in 2014 had two consequences for the 

results. The first relates to the impact of the 3d workflow. The model resulting from the photo alignment is in true 3d, but does 

not allow for advanced analysis: for example, volume calculations are not possible on objects that are not completely enclosed. 

Therefore, the analysis has been done in ArcScene. However, 3d models in ArcScene can only be edited and analysed as what 

is in essence a 2.5d model. The main difference is that a x,y-coordinate can only have one associated z-value (elevation). Issues 

arise when dealing with overhangs: for any x,y-point with two elevations, the algorithm creating the DSM will only use the 

one with the highest elevation. This makes any overhangs into vertical walls (Figure 26) and ignores hollowed spaces. The 

contour lines approach each other so closely they form jagged edges. Since adjacent pixels have such differing elevation values, 

the colouring on the DSM has artefacts on the vertical walls. Since all soil moisture distribution maps use the simplified 

elevation data from the DSM, it simplifies the dynamics of the gully. All three gully heads had an overhang with the main 

exfiltration zone in a cave-in under surface overhang, caused by slumping of the over-saturated soil. The dense grassroots held 

the topsoil in place, while the soil below eroded, creating the overhang. This is not visible on the soil moisture distribution 

maps. The core of the issue is the lack of 3d tools in the ArcGIS package. Interpolated layers (such as those created from soil 

moisture sampling points) can only be displayed in 3d by ‘draping’ them over a layer with unique x/y/z values for each pixel, 

such as a raster DEM. The original, detailed 3d model cannot provide elevation data for another layer, nor can features (such 

as sample points) be placed on the 3d-model surface directly.  

This is an example of a wider issue with working in 3d. Creating 3d objects is becoming more and more accessible: editing and 

displaying 3d data is following at a slower pace. Since common document formats (e.g. Word and PDF files) do not properly 

integrate moving images such as gifs or videos, detailed 3d models are shown as a still image from one or two viewpoints – 

meaning information obscured by objects or perspective is not shown. Pending better support for moving images, perhaps the 

better way to display 3d information is digitally, through video clips or 3d viewers.  
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The second consequence of using photogrammetry for volume calculations relates to the accuracy of the results. The resulting 

3d model present a digital surface model (DSM) of the gullies, and not a digital elevation model (DEM). Any substantial 

amount of vegetation is represented as a part of the surface (small patches or single plants are filtered from the results). A 

similar problem occurs in LiDAR technology, where laser pulses also bounce on vegetation canopies, presenting it as the 

surface (Raber et al., 2012). In LiDAR, however, more options for accurate correction are available, as LiDAR devices have 

so-called ‘multiple-return’ pulses. In these, transmitted pulses can bounce of multiple layers: the tree canopy trunk, branches, 

stems, and leaves; the understory trunk, branches and leaves; and at last the actual terrain surface. These multiple-returns allow 

for a variety of vegetation point removal techniques aimed at revealing the true ground surface (Raber et al., 2012; Plaut et al., 

1999; Hodgson et al., 2002). 

Hypothetically, the vegetation detections options are also viable for the high-density point clouds generated through 

photogrammetry, by exporting these to LiDAR data analysis and editing software such as those published by LAStools. 

Detection of vegetation points, especially for imagery containing a near-infrared (NIR) band, can reach 90% (Maltezos and 

Ioannidis, 2015). However, since NIR-filters are rare on consumer cameras, using only the visible colour spectrum would lower 

accuracy as only shades of green can be used to assign points to a vegetation class. Furthermore, no ground pulses as in LiDAR 

are available to trace the ground surface underneath the removed vegetation, only interpolation from surrounding surface points. 

If vegetation is too high or covers most of the surface, this will not work or will not be accurate (Isenburg, 2014). Therefore, 

this method should be applied to bare or recently developed landscape features, where vegetation has not yet had time to 

develop. 

Relating this issue to the studied area, it has lowered the accuracy for the “Waterfall” and especially the “School” gully. The 

“Waterfall” gully had a patch of bushy vegetation near its exit: since it was quite dense, the Photoscan software treated it as a 

bump on the soil surface (Figure 27). This has added approximately 2 m3 to the gully volume. In “School” gully, vegetation 

covered most of the west bank up to 0.5-meter height, over an area of approximately 15 m2. Therefore, the gully volume has 

been overstated by approximately 7.5 m3. Due to this low impact, no further effort to correct the DTM has been undertaken. 

 

These drawbacks beside, the models were very detailed and accurate, especially since manual calibration is simple and time-

effective. Gathering video material for the gullies took approximately 15 minutes per gully, and an additional 10 minutes was 

spent on measuring distances between reference points for calibration of the scaling. This greatly limits the time necessary to 

spend in the field compared to traditional methods. Data processing in Agisoft Photoscan Pro however can be more time 

consuming. The transfer of the resulting 3d models between software is complicated as documentation is sparse. 

Figure 26: Comparison between the original 3d-model of the "Waterfall" gully (in Agisoft Photoscan Pro, left), and the derived DSM 

(in ArcScene, right). Note how the overhang in the 3d-model is reduced to a near-vertical wall, leading to artefacts in the colouring. 
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Historic erosion rates cited in literature served as a baseline for to compare the found rates to. Although both the study by 

Tebebu et al. (2012) that was used and this study have not had extensive soil analysis done to compare the soils, the factors 

mentioned in section Comparing soil erosion rates and the similarity between the erosion features photographed in the paper, 

and those observed in the study area, justify the use of the cited historical erosion rate. The 2012 study does not indicate the 

error margin on the erosion rate figure. The error margins for this study, displayed in Figure 16 (chapter Results), have been 

based on the spread in bulk density measured in the different horizons of the gully. It does not take into account the error in 

delineating the watershed, nor the error in measuring the gully volumes. As seen in the figure, the error margin for average 

bulk density alone is enough to negate any statistically significant difference. The error margin is large relative to the small 

differences in the absolute values of the density, as the samples were only measured twice, and in the procedure of establishing 

bulk density variations occur. These variations include different amounts of residue left in the sampling rings, and most 

importantly the difference in the amount of soil in the sample rings. Sampled soil was either very hard (dried) or very sticky 

(most clay) and after retrieving the embedded sample rings they were not uniformly filled and small air spaces around the edges 

of the sample rings will have led to differences in samples even as they were taken close together in the same soil layer. 

In addition, establishing the watershed for a feature such as a gully is not exact: the watersheds are small in comparison to the 

low detail of the DEM. Despite this, the 2012 study cites an exact 17.4 ha watershed size without notes on the method that was 

used to get such an accurate number. Despite this, the 2012 study cites an exact 17.4 ha watershed size without notes on the 

method that was used to get such an accurate number. Taking into account the importance of the watershed size in establishing 

erosion rates per hectare, finding the statistical significance of the difference in erosion rates between this study and the 2012 

study was not possible. 

The first step in researching the process behind the gully erosion was to check for the presence of subsurface flow using 

checklist of subsurface flow signs, taken from Hagerty (1991). Although the secondary and tertiary signs of subsurface flow 

can be open to interpretation, the direct signs are clearly defined and accompanied by clear pictures. Since these were found, 

there is no doubt that subsurface flow was present according to this method. In addition, the practical method complements the 

data of the more theoretical approach of indirect soil moisture measurement with the TDR 

On this topic of soil moisture, the lack of piezometers made a direct measurement of pore pressures impossible. The indirect 

method of measuring soil moisture content through TDRs and comparing it to a soil moisture retention curve from literature 

has two potential weaknesses. First, related to the Time-Domain Reflectometer (TDR). The results of the reading are very local, 

but give the impression of accuracy due to its precise (one-tenth of a percent) results. It is therefore important to take the 

samples in the same spot, every sampling date. However, the studied gullies were active gullies: banks slumped during the 

research period and material deposited in the gully bottom had moved after heavy rainfall. That meant subsequent samples 

were sometimes taken in different patches of soil, mostly in newly exposed parts of the gully wall directly behind a slumped 

piece. A related issue is the sampling of dried soil: the dried, hard vertisols made sampling below approximately 10% SMC 

cumbersome. Often, cracks would appear around the TDR prongs, resulting in very low (1-3%) readings. Therefore, the 

Figure 27: Looking from the gully head to gully exit, and example of the representation of vegetation in a 3d 

model. The bushes (circled) in "Waterfall" gully are part of the surface. 
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accuracy of readings below 5% should only be interpreted as very dry, cracked soil and not as an absolute SMC value. Such 

problems did not occur at soil moisture levels near saturation, which is what this study focuses on. Overall, the results are still 

deemed accurate: the readings for samples on opposite sides of a gully, often very similar in terms of soil texture and hydrology, 

were very similar in results as well. Furthermore, the raw data shows very few outliers going against an established drying 

trend for that sampling point. Both arguments show that although the TDR data is local, and that the locality might change 

slightly over time, this does not take away from the patterns that were established.   

The second potential weakness lies in the conversion from the TDR readings to actual soil moisture content. Results show 

significant differences between the soil moisture content measured with the soil samples and with the TDR in 3 of 4 samples. 

The soil moisture distribution maps were however created using unadjusted TDR readings. Two considerations led to this 

choice. The laboratory readings did not provide error margins, even though error must have been introduced during the removal 

of the soil samples and the repeated weighing. Adding to this, the hard soil from which the samples were taken meant that some 

sample rings were not fully filled or had crumbles that had caved in during the hammering of the ring. Therefore, the volume 

in the ring was probably closer to 90 cc than 100 cc. This could have artificially lowered the SMC percentage for the laboratory-

analysed samples. It would have been better to take the samples during a wetter period, when the sampling process was easier 

and the rings would have been filled more evenly. The second consideration is the unequal difference between the different 

methods in the different samples. The increase is not clear and uniform enough justify an adjustment for the TDR values.  

The implication of this choice is that the TDR numbers could be slightly lower (0-5% points) than displayed, but it is unclear 

how much exactly. 

In a wider perspective, combining bulk density measurements with direct infiltration measurement methods, such as a double 

ring infiltrometer or permeameter, could add value to future similar research. In hindsight, there was enough water available to 

do these measurements, as opposed to what was reasoned when deciding on the methodology. Then there is the recurring lack 

of error margins: due to the cost the soil laboratory analysed only one sample per layer per gully. Therefore, little can be said 

on the significance of the differences. However, the soil samples were taken with care and the weighting and drying procedure 

was done with care, so the outcomes have been judged as accurate. 

Progressing from formation processes to potential root causes, the final cause that has been investigated was land use change. 

The imagery was highly detailed and land use was easily identifiable. The results are dependent on the accuracy with which 

the watersheds were identified. As mentioned earlier in this discussion, this might not have been completely accurate. In case 

the watersheds were overestimated, the proportion of pasture would have increased; in case of underestimation, the proportion 

of cropland would have increased. There would be no impacts on the land use change: the land surrounding the watersheds is 

uniformly in use as cropland 

As for the comparison of these results with land use change before 2010,  an analysis of aerial imagery for the period before 

would have been the most effective, as had been done for 2010 - 2014. This was not possible because there was no imagery 

dated before 2011 for the study area that was sufficiently detailed to do such an analysis. Instead, the research by Yeshaneh et 

al. (2013) served as the source. A potential weakness is that the gullies’ watersheds form of only a part of the study’s Koga 

catchment. There are no indications however, that there were major ongoing land use changes in the Koga catchment in 2010 

and the literature did not provide clues that a more detailed research for a subset of the catchment would yield different results. 

Therefore, the literature research is deemed sufficiently reliable and accurate to use its findings for the study area. 

 

Comparing soil erosion rates 

It is clear from observations and from the presented data that gully volume has increased over time, drastically in some cases. 

However, the results do not show a significant (p > 0.05) increase in the growth factor during the researched 2010-2014 time 

period. From a visual observation of the graphs, there does seem to be an increase, especially during the last 2 years: however, 

data collection has been too short to prove a significant trend. Two factors probably played a role in the extension workers’ 

reports stating the threat of gully erosion has increased since 2010. First, during the past few years, gullies have encroached on 

farmers’ fields and a school yard, making the gully erosion more visible and therefore increasing the urgency for farmers and 

extension workers. Secondly, what could be called a form of reversed “exponential growth bias” could have played a role. This 

bias is used in economics, especially personal finances, to describe the common tendency to underestimate the effect of 

compound interest, a form of exponential growth, on a starting capital. This reasoning can also be applied the other way around, 

when observing the added gully volume for 2014. Based on the large eroded volume, it seems that growth ‘must’ have increased 

from earlier years. However, the mechanisms and their magnitude of these mechanisms could still be the same, simply acting 

upon a larger initial gully area. 

 

The impact of the data point in 2014 for “Waterfall” gully becomes clear when looking at the average erosion rate for all three 

gullies over the research period has been shown in Figure 16. As for erosion rates before the studied period, Tebebu et al. 

(2012) presented historical erosion rates. These figures were chosen over more frequently cited review studies (e.g. Poesen et 

al., 2003), for their origin in a close-by catchment (less than 50 km) and similar hydrogeology. It measured gully branches in 

a downslope area (6-10% slope) with a dominant Vertisol and grass vegetation. For the 1981 – 2007 period, they cite an erosion 
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rate of 17.5 t/ha/year for the measured gully branches. This figure only includes erosion in the branches, not in the main gully 

stem – which would have doubled the rates. The lower figures were used because this study has also focused on branches only 

(parts of the gully at an angle with and feeding into the larger main gully). These rates were compiled based on historical aerial 

imagery and farmer interviews through the AGERTIM method. The historical erosion rate has been surpassed by the erosion 

rate in the study area since 2013, and was nearly triple for the 2014 rainy season. 

All values cited fall within or reasonably close to the range of 0.01 – 65 t/ha/year found by Poesen et al. (2013) for 60 globally 

distributed locations. 

Determining gully formation processes 

After establishing the development of erosion over time, the results provide clues on the mechanics of gully erosion in the 

study area. Specifically, the methodology had been designed to give insight into the role of subsurface flows. The first step in 

researching the process behind the gully erosion was to check for the presence of subsurface flow using checklist of subsurface 

flow signs, taken from Hagerty (1991). Since at least one direct primary indicator of subsurface flow was present in each gully 

during at both sampling dates, the presence of subsurface flow in the study area is clear. 

The dominance of subsurface flow as erosion process is supported by the clues that Figure 22 (caption: change in total soil 

moisture content over time) provide. The soil moisture peak lags the rainfall peaks, and recedes more slowly than would have 

been the case in a catchment dominated by surface runoff. Unfortunately, the data gap in October makes it impossible to see if 

values would rise further and what the recession limb would look like in the initial phase. Despite this, if the soil moisture 

content is taken as a hydrograph of gully flow, the pattern fits the description of shallow subsurface flow as described by 

Guebert and Gardner (2001), visualized in Figure 28 (marked 3). They observe that this flow might exit the soil near the base 

of a hillslope (Figure 28, marked 5), as has been observed in the study area. 

 

 

 

Beside the methodological limitations of the TDR that have been discussed,  a third potential weakness lies in determining the 

threshold value for soil saturation. The SMC percentages from the TDR readings need to be related to a soil water retention 

curve to determine the pore pressure. However, soil water retention or pF curves are highly dependent on soil characteristics 

(Matula et al., 2012). There was no equipment available for determining the pF curve; nor had the soil samples been analysed 

for the factors, such as soil organic matter, necessary to model the pF curve. So to place the observation of active exfiltration 

above 45% in context, it is necessary to compare it with an existing pF curve for a similar soil. Mile and Mitkova (2012) present 

pf curves for Vertisols, depending on the soil horizon. Their threshold value for soil saturation is 46% (Mile and Mitkova, 

2012: p. 110). SMC higher than this would denote a positive pore pressure. The threshold value was the one established for the 

transition layer from topsoil to substrate, the layer showing of the signs of subsurface flow in the study area. The study was 

done for a Macedonian vertisol, but the sand/silt/clay fractions (p. 105) are similar to those found in the study area (Figure 7, 

Chapter Results). This coincides with observations of active exfiltration in this transition zone at places with a value of >45%. 

Therefore, the 45-50% and 50% classes in the soil distribution maps in the Results section are indicative of zones of active 

exfiltration.  

The results on the cause of the positive pore pressures were more ambiguous. From Figure 29, it becomes clear that the water 

table nears the surface close to the gully area. In general, the highest ground water level get closer to the surface when 

descending into the gully system (Figure 29). The correlation between distance from the gully system and the water level is 

significant (p<0.05). One sampling point suggests an outlier (well ID “a”, annotated with an asterisk in Figure 29). This well 

was located circa 400 m from the other wells, which were quite clustered. From this well, the terrain slope to the gully system 

was at a SSW direction, as opposed to the SE direction of the other six wells. Therefore, the trend line in Figure 29 does not 

Figure 28: Examples of hill slope flow processes: 1. infiltration-excess overland flow, 2. 

ground water recharge, 3. shallow subsurface flow, 4. return flow, and 5. saturation 

overland flow on a hillslope. Modified from Guebert and Gardner (2001). 
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take the data point for well “A” into account. Doing otherwise would not change the conclusions, but it would increase the 

slope of the trend line. 

 

 
Figure 29: The relation between the ground water level measured in water wells in December, and their distance to the edge of the main 

gully system. The asterisk at (275,14) denotes an outlier for well "a", which has not been taken into account when creating the trend line. 

 

This fits with the observations of standing water in and around the gullies, as described in the results – the gully system lies in 

the foothills of the catchment. Research has suggested a perched water table following from a contrast in soil texture as cause 

for positive pore pressures (Tebebu et al., 2013; Wilson and Fox, 2010; Faulkner, 2006). Differences as small as 10% in bulk 

density between soil layers could be the cause of this. The reasoning is that increased bulk density decreases the amount of 

macropores in the soil, lowering the hydraulic conductivity (Iversen et al., 2001). The data for bulk density in the studied gullies 

supports this in 2 out of 3 gullies: for the “Tentacle” gully however, the pattern reversed. Here, the bulk density was slightly 

higher in the phreatic layer than in the layer below. This contradicted observations as well: this gully was bound by a very 

solid, gravely soil that was hard to penetrate with a sample ring, even when using a hammer. It was very distinct from the sticky 

but porous black clay that the phreatic layer consisted of – near the gully bottom, water could be observed exiting the clay layer 

and streaming on top of the gravely soil. The results can be explained by an exception on the link between higher bulk density 

and lower hydraulic conductivity. Dec et al. (2008) studied a similar case, where samples with a higher bulk density did not 

show a lower hydraulic conductivity. They concluded that the influence of continuity in the pore system led to this result, and 

that continuity is not only dependent on bulk density but also on aggregate formation and disturbance. The continuity of the 

pores could not be determined in the study area, but from observation it is plausible that the porous clay has more continuous 

pores than the compacted layer underneath, despite its slightly higher bulk density. Indeed, differences in macro porosity 

between soil layers may be a stronger determinant of subsurface flow, as opposed to differences in bulk density as has been 

proposed by Fox and Wilson in their 2010 review, especially in soils prone to cracking, such as Vertisols. 

Finding root causes of erosion 

The final research questions dealt with the possible root causes of erosion. The first was the construction of a reservoir, finished 

in December 2010. Major issues with the administration of the Koga Project Office in Merawi meant that no historical data 

was available for groundwater levels surrounding the reservoir before and after the construction of the reservoirs. The head of 

the Project Office blamed the lack of trained workers to monitor the levels in the piezometer that had been installed surrounding 

the reservoir. Upon asking if it were possible to visit the piezometers ourselves to measure the current water levels, it became 

clear that the coordinates of the piezometers were lost. Possible leads on these coordinates at Bahir Dar University did not yield 

any results. Seeing the potential rise of groundwater level following the construction of a reservoir and its potential impact on 

the surroundings, this seems like an oversight from the Project Office. However, the reservoir is 4.35 km downstream of the 

gully system, and with a 51 m lower elevation it would seem unlikely there would be significant impact from the reservoir. 

None of the interviewed farmers mentioned the impact on the reservoir by themselves. When influence of the reservoir was 

suggested to the farmers, none were convinced this was the case. These interviews of course only selected a small portion of 

farmers, all on the West-side of the gully system, which was in the direction of the reservoir. These farmers also used very 

crude measurement methods to determine the water levels (a rope with knots). Besides the inherent difficulties in monitoring 

water levels throughout the years with such tools, the farmers often had difficulties accurately estimating distances and lengths. 
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These results fit with the notion asserted in literature that water level changes are mostly present directly around and directly 

downstream of a reservoir (Winter et al., 1998: pp. 68-69). 

 

The second possible root cause was the implementation of land and water conservation measures. The finding that only contour 

barrier type of SWC measure has been implemented in the study area contradicts the more diverse set of measures that had 

been found in the greater Koga Catchment by Mengstie (2009). This was caused by two factors. First, the study area was only 

a relatively homogenous subset of the Koga catchment, which excluded for example steep slopes where other SWC measures 

have been taken. Secondly, measures that are only visible during parts of the year could not be included. This refers to no tillage 

and mulching practices that had not been applied at before harvest and are not visible on aerial imagery. Continuing with the 

barrier type measures, digitization of the contour lines barriers could be done accurately as they were clearly visible on aerial 

imagery. The imagery dated from 2014, so any new measures implemented since then have not been included. Also, the method 

did not allow for the classification of the type of barrier, nor for characteristics, such as width and height, other than length. 

This means that any difference between barrier types in their effects on the hydrology could not be analysed. The mapping 

exercise does show that the barriers cover virtually every field on the hills of the watershed, and that they end at the edge of 

the gully system. To get more insight into the hydrology surrounding these different barrier types, a separate but parallel study 

was planned but had to be cancelled.  Therefore, to look at the impact of these measures on the area’s hydrology, these measures 

need to be grouped. Both fanya juu and stone bunds are forms of contour barriers. The main effect of this type of anti-erosion 

measure on the area’s hydrology is increased infiltration as barriers stop or slow run-off (Schwilch et al., 2012: p.43). 

Hengstdijk et al. (2004) suggested a 50% increase in infiltration in a modelling study. This will lead to increased soil moisture 

behind the barriers, and increased percolation, if subsurface soil porosity permits. These effects have been reported for 5 out of 

7 case studies (Schwilch et al., 2012: p.51). The results from the farmer interviews pointed at the same effect in the study area: 

the sole farmer suggesting a cause for increased water levels suggested the cause lay with the implementation of the contour 

barriers. 

 

The final possible root cause that has been investigated was land use change. The imagery was highly detailed and land use 

was easily identifiable. The results are dependent on the accuracy with which the watersheds were identified. As mentioned 

earlier in the limitations of methodology, this might not have been completely accurate. In case the watersheds were 

overestimated, the proportion of pasture would have increased; in case of underestimation, the proportion of cropland would 

have increased. There would be no impacts on the land use change: the land surrounding the watersheds is uniformly in use as 

cropland. The roughly equal proportion of pasture in all watersheds is due to the proximity of the gully heads to the boundary 

between cropland and pasture – all gullies started in pasture, close to this boundary, with the majority of their watershed in the 

cropland (where the soil water conservation measures have been constructed). It is possible that the construction of the reservoir 

meant a loss of grazing area there and directly downstream, and a movement of cattle to the study area. There, it could have 

led to an increased grazing intensity, even if overall pasture area there has not changed. If so, overgrazing could have lowered 

the threshold for gully establishment. Before the 2014 rainy season, the pasture had been closed for grazing, a measure that had 

been properly enforced according to a local extension worker. Seeing as there was no grazing during the study period, this was 

deemed true. The goal was to reduce erosion. Observations showed that the grass layer had grown to about 15 cm, and was 

very dense and uniformly covering the ground surface. However, the closing has not impacted gully growth rate. The increase 

in gully area and impact has come not from the establishment of new gully heads, but rather from gully expansion. As has been 

argued in this thesis, expansion is mainly driven by soil saturation and not so much vegetation cover.  

How does this compare with land use change before 2010?  An analysis of aerial imagery for the period before would have 

been the most effective method in determining the land use change, as had been done for 2010 - 2014. This was not possible 

because there was no imagery dated before 2011 for the study area that was sufficiently detailed to do such an analysis. 

Yeshaneh et al. (2013) studied land use change in the Koga catchment, to which the gully area belongs. They concluded that 

between 1979 and 2010, cropland has decreased by 10%, while pasture has increased by 67%. Still, pasture makes up the 

minority of agricultural land in the Koga catchment. Overall, agricultural land over the time period has increased by less than 

1%. By 2010, there was no unused land in the Koga catchment.  

 An interesting note in the study is the rise in woody vegetation since 1986, which the authors contribute to the planting of 

Eucalypt trees on plot boundaries and for tree nurseries. Although there are no tree nurseries in the gullies watersheds, trees 

are present on most plot boundaries (none were found within the boundaries of the gully system). It was not possible to verify 

their increase between 2010 and 2014 since the imagery was taken at different moments of the season, making the canopy sizes 

impossible to compare. However, it is reasonable to expect that the overall trend of increasing the planting of trees on plot 

boundaries and contour barriers has also applied to the gully watersheds. Effects of the planted trees on the hydrology are 

improved infiltration of rainwater and increased uptake of soil moisture (Hengsdijk et al., 2004). According to Lane et al. 

(2004), the net effect of these eucalypt trees is a lowering of the water table.  
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5. Conclusion 

This study aimed to find the root cause of gully formation over the last decade in the low-lands of the Minizr sub-catchment, 

in North-Western Ethiopia. To do so, we have researched and discussed the soil and size characteristics of the gullies; how 

terrestrial photogrammetry can help in establishing these; the mechanism of the erosion; how the soil erosion rate has changed 

after 2010; and the influence of the construction of a reservoir, land use change and the implementation of SWC measures on 

this mechanic? 

The merit of this study has been threefold. First, it shows the applicability of a fast, accessible and accurate way to digitally 

represent gullies and other landscape features through the use of video footage and photogrammetry. Secondly, it lends 

validation to claims by farmers and extension workers that the gully erosion issue has become more urgent since 2010. Finally, 

it shows the dominant processes in gully formation in the area, allowing for a justified selection of measures to halt further 

gully growth and rehabilitate existing gullies.  

 

Gully erosion rates in 2013-2014 have increased, in cases showing a two- or three-fold increase, up to 74 ton/ha/year, far above 

soil replenishment rates and very high on a global scale. What is more important to policy makers and indeed local population, 

is the increased impact of the erosion as gully heads currently encroaching on roads and school yards. 

 

The erosion in the study area is driven mainly by subsurface flows. Water infiltrates on the slopes surrounding the gully system 

as the water table approaches the surface near the gully system. The high soil moisture content in and following the rainy season 

has been shown to be analogous to positive pore pressures leading to piping and bank collapse, as the water pressure negates 

the cohesive strength of the clay aggregates. The positive pore pressures, extending from 6 weeks until at least 3 months into 

the dry season, stem from differences in the permeability of layers, but these differences could not be explained exclusively by 

differences in bulk density, but rather by differences between the continuous pore structures in the water-carrying layer and 

disconnected pore structures in the layer underneath. The gully growth has not slowed by closing the pasture, a measure aimed 

at reducing gully erosion. Therefore at least for existing gully heads subsurface erosion must be the dominant driver.  

 

 No evidence points towards influence of the reservoir, in use since 2011, on erosion rates in the study area. It was hypothesized 

that the reservoir could have led to heightened ground water table in the study area, causing soil saturation and therefore 

lowering the soil stability. This would make the soil increasingly prone to erosion. However, this study did not find changes in 

the water table nor testimonies from farmers to support this. An important finding, though, was the lack of monitoring of 

groundwater levels near the reservoir. Piezometers around the reservoir have been installed but have not been monitored; 

neither were their locations available to the Koga Project Office. Because of this oversight, changes in water level change closer 

to the reservoir might have been missed. These could influence agricultural practices in these areas. 

The same holds true for land use changes. The gully system consisted of pasture, surrounded by cropland. The land use in the 

watersheds of the gully area has been stable since 2010, and a literature study on land use change before that did not find 

reasons to suppose the land use had changed significantly in the 1985 – 2010 period. Clsoing of grazing land in the gully area 

has led to increase grass cover. This measure cannot be expected to fully reverse the gully expansion issue as it does not relate 

to the formation process of the gullies, although more time is needed to see if it has effect on the establishment of new gully 

heads in the study area. 

More than 160 km of contour barriers have been implemented in the study area since 2010, including on most farm plots in the 

gullies’ watersheds. These measures have been implemented in an effort to decrease runoff and the following surface erosion. 

A side-effect of these measures is an increase in the infiltration rate by up to 50%. This would increase the subsurface flow 

towards the gully system.  

Therefore, the only researched factor shown to have changed the dynamics responsible for the erosion process in the study 

area, is the implementation of soil and water conservation measures since 2010 on slopes surrounding the gully system. It is 

plausible that these SWC measures have been the root cause of increased subsurface flows towards the gully system. This has 

rendered the soil in the gully system more susceptible to erosion.  

 

  



 

 

 

P
ag

e4
1
 

6. Recommendations 

These conclusions lead to two recommendations for the organization dealing with sustainable land management in the study 

Minizr sub-catchment. An extension worker who regularly joined field work suggested filling the gullies with soil and installing 

check dams. Neither should be implemented as a first step, as the new soil will be washed away and check dams will be easily 

bypassed along the sides and through piping. Tebebu et al. (2013) advised constructing a drainage system in a comparable 

situation, to control the subsurface flows. Further study should look into the engineering and financial aspects of such a drainage 

system: suggested starting points include Muirhead and others’ 1996 study on subsurface drainage in an irrigated vertisol with 

a perched water table, and Asamenew and others’ 1989 study used by the FAO on the economic evaluation of improved Vertisol 

drainage for food crop production in the Ethiopian highlands. 

A recommendation perhaps more related to the larger Koga catchment than to the study area proper, the Koga Project Office 

should start monitoring ground water levels surrounding the Koga Reservoir by tracing the installed piezometers and enlisting 

data collectors to check and register the levels as was planned at construction. This will provide more insight into the reservoir’s 

influence on the area’s hydrology. 
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8. Appendix 

Evidence for piping  

Table 4: Evidence types for identifying piping/sapping in the field, with description and examples. Compiled based on data from Hagerty 

(1991). 

Evidence type Description Examples 

Direct Direct observation of water and soil grains outflow 

from an exfiltration face 

1. holes in the exfiltration face 

2. soil particles can be caught 

with cupped hands 

Primary Indirect Features or conditions that are caused solely or 

predominantly by the piping/sapping mechanism 

1. Fan-shaped deposit of 

particles from cavity in 

bank/shore 

2. "Blind" gully or rill:  water 

has flowed out of the soil face 

and not overland flow. 

Secondary Indirect Features associated with piping/sapping but that are 

somewhat removed from the exfiltration zone per se 

or that indicate persistent seepage outflow without 

conclusively indicating that piping has occurred.  

1. Stained zones in a stream bank 

or shoreline and holes where 

soil pipes have collapsed 

remote from the seepage exit 

point in the bank or shore. 

2. Presence of holes in the 

floodplain adjacent to a 

stream or in a terrace above a 

streamline (often in a 

depression) 

Tertiary Indirect Features or conditions associated with a process 

ancillary to piping/sapping or that may have been 

created by another mechanism or progress. 

1. Collapse of upper bank or 

shore zones 

2. Cantilevered soil layers 

3. Lateral spreading and rapid 

flow of loose pervious soil 

layers 

4. Nearly vertical faces in a 

bank or shore (scarps 

characterized by small cusps).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


