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Abstract: Rearranging and reparameterizing a discrete-time nonlinear model with poly-
nomial quotient structure in input, output and parameters (xk = f(Z, p)) leads to a model
linear in its (new) parameters. As a result, the parameter estimation problem becomes a
so-called errors-in-variables problem for which a total least squares approach provides
a natural solution. Retrieving the predictor form after estimation leads to the modified
predictor: x̂ = f̃(Z, θ̂). The objective of this paper is to evaluate the predictive quality
of x̂k = f̃(Z, θ̂) and x̂k = f(Z, p̂) with parameters estimated using different least
squares methods. The well-known Michaelis-Menten kinetics are used as an illustration
with simulated (noisy) data. Finally, an example of a storage facility containing biological
products is presented with real experimental data. c©IFAC 2006
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1. INTRODUCTION

In general, in a model calibration procedure, the pa-
rameters of the model are estimated such that the
model predictions fit well on measured data. Sev-
eral techniques are available to obtain suitable esti-
mates. For models that are linear in their parameters,
the ordinary and weighted least squares techniques
(Norton, 1986; Ljung, 1987) are probably the most
frequently used. However, when errors are not only
present in the current output but also in the previous
outputs and inputs, a modification of the ordinary least
squares technique is required. The overdetermined set
of linear equations is then given by:

Aθ ≈ b (1)

where A ∈ R
m×n with m > n the data matrix,

θ ∈ R
n the linear parameters and b ∈ R

m the
output. The total least squares (TLS) approach (Golub
and Van Loan, 1980) provides a solution if errors
are not only present in the output b but also in the
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atrix A. The TLS technique is currently widely
n several application areas, e.g. Van Huffel and
erling (2002) and references in Van Huffel and
walle (1991), and examples are present where
hows its superiority over ordinary least squares.

ly, for nonlinear in the parameter models, pa-
r estimates are found iteratively using optimiza-

lgorithms. The existence of local minima and
omputational effort may impede the application
linear estimation methods.

the nonlinear discrete-time model

xk = f(Z, p) (2)

Z =(xk−1, · · · , xk−τ , uk−1, · · · , uk−τ ), k, τ ∈

d τ < k with τ the time delay, and f(·) a finite
mial quotient in the elements of Z and p ∈ R

q.
odel can be rearranged and reparameterized

hat a model arises that is linear in its (new)
eters θ, a polynomial quotient in p (Doeswijk
eesman, 2005). These parameters can then be



estimated with a non-iterative least squares estima-
tor. If noise is added to (2), then by rearranging the
model, errors become part of the data matrix. Hence,
in general the parameter estimation problem becomes
an errors-in-variables (EIV) problem for which TLS
provides a natural solution. Finally, the linear in the
parameters model can be rewritten in predictor form,
i.e.

x̂k = f̃(Z, θ̂) (3)

where θ̂ contains the least squares estimate in the
linearly reparameterized model. Note that the original
parameter vector p is not necessarily re-estimated
from θ̂. In what follows, the main focus is on the
predictive quality of (2) and (3).

The validity of reparameterization and linear estima-
tion was illustrated in Doeswijk and Keesman (2005)
with an example of Michaelis-Menten kinetics. In the
noise free case the linearly reparameterizing method
led to the exact solution where the nonlinear least
squares approach could end up in local minima. Fur-
thermore, the linear regressive reparameterization ap-
proach was applied to a storage facility containing a
biological product. Real data were used to evaluate
the predictive quality of (3) with θ estimated with
a truncated least squares estimator. The results were
compared with the original model (2) where the pa-
rameters p were estimated by a traditional nonlin-
ear estimation approach. The linearly reparameterized
storage model, however, got an EIV structure because
errors appeared in the data matrix. In a previous paper
(Doeswijk and Keesman, 2005) this was neglected
initially but it has been noticed that a TLS approach
would be more appropriate for parameter estimation
than the truncated least squares method. To our knowl-
edge this reparameterization, analysis and application
of a TLS approach to a nonlinear in the parameter
model has never been explicitly reported.

The objective of this paper is to evaluate the predictive
quality of (3) with θ estimated with OLS and TLS
and compare this with the predictive quality of the
nonlinear original model (2) with p estimated with a
nonlinear least squares technique. First, the Michaelis-
Menten model is used with simulated noisy data.
Second, a storage model with real data is used.

2. BACKGROUND

2.1 Algebraic non-linear parameter estimation

If f(·) is a polynomial quotient in Z and p, reparame-
terizing the original model (2) leads to

F0(xk, Z) = [F1(·) F2(·) . . . Fn(·)] θ (4)

with, Fi(·) = Fi(xk, Z), i = 1, . . . , n. The new
parameters are given by θi = ϕi(p), a polynomial
quotient in p. The model (4) is a linear regressor (see
also (1)) and the parameters θ can be estimated by
least squares.
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(·) can be a function of xk, even in case of an
on error structure, the data matrix may contain
. Furthermore, the columns Fi(·) can become
dependant which leads to (near) rank deficiency.
y, nonlinearities can occur in uncertain regres-
ariables which in turn can lead to biased esti-
. Regularization and bias compensation there-
ight be needed.

estimating the parameters θ, the model can be
ten in predictor form (3). Remark that no effort
e to estimate the original parameters p from θ̂
r details Doeswijk and Keesman (2005)).

ichaelis-Menten kinetics

rete-time model describing the substrate con-
tion in a batch bioreactor with Michaelis-Menten
s is given by:

Sk = Sk−1 − Vmax
Sk−1

Km + Sk−1
(5)

the substrate concentration, Vmax the maxi-
ubstrate conversion rate and Km the Michaelis-
n constant. Estimating Km and Vmax may lead
al minima (Doeswijk and Keesman, 2005). Re-
ing (5) leads to:

Sk−Sk−1)=[−(Sk−Sk−1) −Sk−1]

[
Km

Vmax

]

(6)
is linear in the parameters. Remark that in this

o reparameterization has taken place, i.e. θ = p.
substrate concentration is the measured (noisy)

le in this system, it can be clearly seen that the
atrix A, in this case [− (Sk − Sk−1) − Sk−1]
= 1, . . . , m, contains measurement errors and
, (6) has become EIV.

orage model

el that describes temperature dynamics in stor-
cilities for biological products such as fruits and
bles, is given by (Keesman et al., 2003):(

p1 +
p2

p3 + p4uk−1
+

p5

p6 + p7uk−1

)
Tp,k−1

p8 + p9uk−1

p3 + p4uk−1
Te,k−1 +

p10 + p11uk−1

p6 + p7uk−1
Xe,k−1(

p12 +
p13

p6 + p7uk−1

)

(7)

Tp,k is the measured output variable. The vari-
Tp denotes the temperature of the produce (oC),

external temperature (oC) and Xe the external
te humidity (kg/kg). Finally, the input u de-
the product of fresh inlet and ventilation and is
ed by: 0 ≤ u ≤ 1. The nonlinearities in (7) are
to heat and mass transfer.



Rearranging (7) into a linear regression format leads
to:

Tp,k =
[
uk−1Tp,k u2

k−1Tp,k Tp,k−1 uk−1Tp,k−1

u2
k−1Tp,k−1 Te,k−1 uk−1Te,k−1 u2

k−1Te,k−1

Xe,k−1 uk−1Xe,k−1 u2
k−1Xe,k−1 uk−1

u2
k−1 1

][
θ1 · · · θ14

]T

(8)

where θi = ϕi(p).

As can be seen from (8) the model clearly is EIV as
Tp,k is no longer only the output variable but now
also appears in the data matrix. Furthermore, Tp,k−1,
Te,k−1 and Xe,k−1 are also measured uncertain vari-
ables. After estimating θ the model (8) can be rewrit-
ten in predictor form

T̂p,k =
θ̂3Tp,k−1

1 − θ̂1uk−1 − θ̂2u2
k−1

+

. . . +
θ̂13u

2
k−1

1 − θ̂1uk−1 − θ̂2u2
k−1

+ θ̂14

(9)

In what follows, the quality of the predictor (9) will be
evaluated in terms of the mean square error (MSE) of
the prediction errors.

3. ESTIMATION METHODS

To evaluate the performance of predictors (2) and (3)
with estimates p̂ and θ̂, several estimation methods are
compared.

A nonlinear parameter estimation procedure for esti-
mating the parameters of (7) is used in this paper as a
reference for the alternative estimation methods. The
vector p of (7) consists of several physical and design
parameters. A selection of these physical and design
parameters has been estimated using a nonlinear least
squares procedure.

For systems linear in their parameters the ordi-
nary least squares procedure is widely used. For ill-
conditioned systems, however, the estimates are very
sensitive to the data and hence, the errors therein. The
predictive quality of the original system with the esti-
mated parameters is then very poor. A regularization
method to overcome these limitations is the truncated
least squares method which uses the numerical rank of
the data matrix to stabilize the solution (Norton, 1986,
p.77).

An underlying assumption of the ordinary least squares
estimator is that all errors are subjected to the output
vector. However, frequently errors are not only present
in the output vector but also in the data matrix. A fit-
ting technique that compensates for errors in the data
is TLS. Golub and Van Loan (1980) outlined a TLS-
solution of the EIV problem which is heavily based on
the singular value decomposition (SVD) of (1), i.e.:

UΣV T = [A, b] (10)

T
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able 1. Nominal and estimated parameter
values for different numerical ranks.

θ̂(R = 5) θ̂(R = 4) θ̂(R = 3) θ̂(R = 2)

0 0.9643 0.9600 0.9527 0.9827
0 2.1947 -1.7327 0.0903 0.0355
0 -8.2878 -0.2826 0.1877 0.0706
0 5.1155 1.1424 0.2879 0.1061

∈ R
m×(n+1) and V ∈ R

(n+1)×(n+1) orthog-
nd Σ ∈ R

(n+1)×(n+1) diagonal, containing the
ar values. Their method assumes that the errors
dependent and identically distributed. Then, if
solute size of the errors are all roughly equal
uffel and Vandewalle, 1991) good results can

ained.

l extensions of the TLS algorithm have been
sed. In this paper the generalized TLS (GTLS)

uffel and Vandewalle, 1989) algorithm is used.
overcomes the limitation of independent and
ally distributed errors. GTLS considers differ-

zed and correlated errors as well as error-free
les where the covariance matrix of the errors
be known or estimated. If there are no error-
ata and the covariance matrix equals the identity

the GTLS solution is equal to the classical TLS
n. The key problem is how to choose the covari-
atrix if the error distributions are unknown.

storage model example, the matrix of interest
LS estimation, i.e. [A, b], of the linearly repa-
rized model (8) has a large condition number

06). The large condition number implies that
columns are highly correlated which leads to
rank deficiency. This, in turn, leads to an es-
r that is very sensitive to the data. Hence, a reg-
tion method was chosen. Both truncated least
s and the nongeneric GTLS use a numerical

o overcome the problem of ill-conditioning. By
ing an appropriate numerical rank a compromise
nd between the stabilization of the solution and
curacy of the GTLS estimator.

, as an illustrative example, consider the follow-
namic system:

xk+1 = θ1xk + θ2u1 + θ3u2 + θ4u3

yk = xk (11)

u1, u2 and u3 are all constant inputs related
= 1.5u2 = 3u1. Given the set of nominal

eters, the constant input signals and the initial
ion, the system is simulated for 1000 steps. All
ns of the data matrix A = [yk, u1, u2, u3] ∈

and output vector b = yk+1 ∈ R
m×1 are

orrupted with additive independent and identi-
istributed zero mean gaussian white noise. The
[A, b] is now ill-conditioned due to the near

dependency. However, the parameters can still
ntified with nongeneric GTLS by evaluating the
ical rank R of [A, b]. From table 1 it can be seen
r R = 3 the estimates approach the nominal pa-
rs. Notice from Fig. 1 that the predictive value
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Fig. 1. MSE of simulated output with nominal pa-
rameters minus simulated output with estimated
parameters for various numerical ranks

of the estimates is best in terms of MSE for numerical
rank R = 3 and the predictive performance dramati-
cally decreases for higher (and lower) numerical rank.

The GTLS is elaborated for the bioreactor model
(6) and for the storage model (8). In section 4 the
predictive quality of the predictors (5) and (9) with
GTLS estimates are evaluated.

4. RESULTS

4.1 Michaelis-Menten kinetics

It is known that the parameters of the Michaelis-
Menten equation (5) in a batch reactor are theoreti-
cally identifiable if the initial conditions are known
(Godfrey, 1983). If noise is present, however, the
parameters, specifically Km, are hard to identify
(Holmberg, 1982). Furthermore, a nonlinear estima-
tion method can suffer from local minima. In the fol-
lowing, a comparison between ordinary least squares
and GTLS using (5) and simulation data is made. The
aim of this simulation experiment is to distinguish
between the predictive quality of (5) with the least
squares estimates versus the GTLS estimates.

First, the substrate concentration was simulated for
k = 1, · · · , m, with m = 30 using (5) and where
Km = 10, S0 = 30, and Vmax = 2. In addition, a
Gaussian white noise sequence is generated with zero
mean and unit variance. Next, the noise sequence is
multiplied with a factor varying from 0.01 to 0.2 to ob-
tain a range of standard deviations of the measurement
noise. The noise corrupted substrate concentrations
were then used to generate the data vectors: −Sk−1

and Sk−1

Sk−Sk−1

for k = 1, · · · , m. Given these data
Km and Vmax could be estimated. This procedure was
repeated 100 times. The mean of the estimated param-
eters K̂m and V̂max for each standard deviation were
then used for open loop prediction of the substrate
concentration with (5) and S0 = 30.

In order to reduce the number of data errors, the
modified Michaelis-Menten equation (6) was further
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. MSE of predictors (5) with parameters esti-
ated by LS of (6) (−·) and of (12) (- - -), and by
TLS of (12) (—).

nged such that only one column of the data-
contains errors, i.e.

−Sk−1 = Km +
Sk−1

Sk − Sk−1
Vmax (12)

for applying GTLS, the covariance matrix had to
sen. Given the error ek = bk − Sk the variance
regressor of Vmax was assumed to be much

than the variance of the output error because the
f the denominator ek − ek−1 can become close
. The covariance matrix was chosen as:

cov([
ek−1

ek − ek−1
,−ek−1]) =

[
106 0
0 1

]

quently, the parameters were estimated with the
quares estimators related to (6) and (12) and

he GTLS estimator related to (12). The MSE of
ediction error ( 1

N
ΣN

k=1(Sk − Ŝk)2) is given in
.

clearly outperforms the ordinary least squares.
her noise levels, however, the estimates may
singularities. At this point the ordinary least

s estimates already have a poor predictive per-
nce.

orage model

consider again eqn (8). If the size of the errors
h column of the matrix [A, b] correspond to the
te values of the measurements then the errors
t identically distributed. The absolute humidity
an order of magnitude of 3 smaller than Te and
rthermore, the last column of the data matrix A
r free. Hence, better estimates are expected for
compared to truncated least squares.

plying GTLS a proper covariance matrix must
sen. As the exact sizes of the errors were not
these were approximated by the variance of

lumns. The correlation terms are neglected for
nience. They are relatively small and therefore
ave a minor effect on the results.



Table 2. MSE of predictors with parameters
estimated by nonlinear LS, truncated LS
and GTLS in calibration (data set 1) and

validation (data set 2) period.

nonlinear LS truncated LS GTLS
calibration 0.027 0.019 0.023
validation 0.113 0.031 0.053
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Fig. 3. Measured and predicted product temperatures
in the calibration period (data set 1) with parame-
ters obtained by different calibration techniques.

If the system is rewritten as a predictor (9) there
appears to be a constraint on the estimated parameters
θ̂1 and θ̂2. The denominator may not be equal to zero
for the whole range of u. Hence, the constraint is given
by:

1 − θ̂1uk−1 − θ̂2u
2
k−1 �= 0, 0 ≤ u ≤ 1 (13)

If the constraint is violated, the solution is rejected.

Two data-sets with measured variables, i.e. Tp, Te, Xe

and u, of about 50 days with a sampling interval of
15 minutes were available. The data were obtained
from the same location at the same season but for a
different period within the season. All parameters are
assumed to be constant during the whole season. The
parameters are calibrated over one data set (calibration
period). The predictive quality is then obtained by us-
ing an open loop prediction over the same data set and
cross-validated over the second data set (validation
period).

The MSE of the predictor (7) with parameters esti-
mated by nonlinear least squares (p̂) and the MSE of
predictor (9) with the parameters estimated by trun-
cated least squares and GTLS (θ̂), with data set 1 the
calibration period and data set 2 the validation period,
are presented in Table 2. The predicted and measured
temperatures of truncated least squares and GTLS are
given in Figs. 3 and 4.

The same estimation, validation and cross-validation
procedures were performed but now with the data-
sets switched, i.e. the second data-set was used for
estimation of p̂ and θ̂. The results are given in Table
3 and Figs. 5 and 6.

GTLS has a good performance in each of the four
cases and clearly outperforms the nonlinear least
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able 3. MSE of predictors with parameters
stimated by nonlinear LS, truncated LS
nd GTLS in calibration (data set 2) and

validation (data set 1) period.

nonlinear LS truncated LS GTLS
alibration 0.097 0.035 0.017
alidation 0.036 0.766 0.016
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squares estimates. The ordinary least squares estimate
only has a good performance if the calibration data-
set is informative enough. This can be clearly seen
in the first part of figure 6 where the ordinary least
squares estimate has a very poor performance. There
appears to be some time variation in Figures 3 to 6,
with estimated values above the actual values early on
and below actual values late on. This is particularly
the case for the nonlinear least squares estimates.

If a nonlinear model is linearly regressive reparameter-
ized (from (2) to (4)) not only ordinary least squares
or total least squares methods become available but a
whole set of linear identification tools. As we focus
on long-term predictive quality, a prediction error ap-
proach may be a good alternative to the presented least
squares methods.

5. CONCLUSIONS

Reparameterization of nonlinear discrete-time models
with polynomial quotient structure in Z and p towards
linear regression can result in estimates that lead to
good predictive quality. In a simulation environment
with low noise signals GTLS outperforms ordinary
least squares in predictive context. In a real world
example it is shown that if the calibration data set is
informative, ordinary least squares estimation gener-
ates good results in predictive context. For a less in-
formative dataset, the ordinary least squares estimate
behaves badly in the region where no information is
available. GTLS generates good results in both cases.
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