THE ROLE OF BIOAVAILABILITY IN RISK REDUCTION OF CONTAMINATED SITES

Joop Harmsen

SETAC 2012, Berlin

How to handle the 3,000,000 contaminated

sites in the world

Traditional approach

- Suspected site (Problem)
 - Sampling and analysis
- Assessment

- Insufficient or not
- Compare with target the proper data
- Human and ecological risks
- Solution
 - Remediation (removal of soil)
 - Treatment on special sites (thermal treatment)

- Logistic problems
- Sampling
- Analysis

- Logistic problems
- Distance
- Costs
- Not available
- costs

The assessment circle

ALTERRA

Bioavailability

What is Bioavailability?

Dynamics of bioavailability

How can Bioavailability Make a Difference?

- If contaminants are not physically accessible, or chemically or biologically available, they should not be included in the calculation of risk
- Can optimize the extent of cleanup required to be protective
- Can provide optimization of remedial approach and cost
- Can be an important factor in balancing the risks caused by remedial action

Situation in 2012 - Better understanding

- Bioavailable part is causing risks
 - Bioavailable part can be measured (ISO 17402)
- Actual available (concentration in pore water)
 - Heavy metals (0.001 M CaCl₂)
 - POP's (Passive sampling)
- Potential available (amount in equilibrium with pore water, reactive fraction)
 - Heavy metals (0.43 M HNO₃)
 - POP's (Tenax, Cyclodextrine)
- Models on fate of contaminants including availability

Fate of POP's

- Limited solubility
- Adsorption mainly to organic matter
- Most are biodegradable
 - Important exceptions DDD, DDE, Dieldrin, PFOS

PAH degradation in sediments Kreekraksluizen

Landfarming Change of conditions: Anaerobic > Aerobic

Petroleum Harbor, from chemical waste to reusable soil

Applicability of passive landfarming

Results have to Bioavailable (long term)

Tenax 60 °C

$$\frac{C_t}{C_0} = F_{fast} \cdot e^{-k_{fast} \cdot t} + F_{slow} \cdot e^{-k_{slow} \cdot t} + F_{very slow} \cdot e^{-k_{very slow} \cdot t}$$

Bioavailable (short term)
Tenax 20°

Prediction PAH's degradation

Use of this knowledge

- Create situations were PAH's degradation will continue
 - Combination with energy crop
 - Creation of temporary depot
- Improve local conditions (vegetation, ground water level)

Africa

- Mali
 - Molodo
 - Sévaré
 - Niogoméra
- Mauretania
 - Nouakchott
 - Letfetar
 - Kiffa

Increase adsorption (non degradable POP's)

- Black carbon (soot, activated carbon....) increases adsorption
 - Use natural (river sediment) and added activated carbon
- Dieldrin contamination in Mali (Africa)
 - OM is low (high temperture)
 - Char coal is locally available
 - Use for isolation in depot

Isolation, prevent contact and decrease leaching

- Cover
 - Stabilization
 - Evaporation of rainfall
 - Fence vegetation, non consumable,
 Vetiver, Jatropha
- Define use

Conclusions

- If contaminants are not physically accessible, or chemically or biologically available, they should not be included in the calculation of risk
- Use of bioavailability
 - Optimizes the extent of cleanup required to be protective
 - Provides optimization of remedial approach and cost
 - Is an important factor in balancing the risks caused by remedial action
- Changing conditions can increase and decrease risks (bioavailability)
- Knowledge on bioavailability and fate of contaminants have to be used to anticipate on possible changes and to (further) minimize risks (Sustainability)

Thank you for your attention

