

Micronutrients: small quantities

■ Fe, Mn, Zn, B, Cu, Mo, (Ni, Co, Cl) ■ Elements in small quantities ■ Essential for plant ■ Deficiency as well as toxicity ■ No building blocks for the plant like macro nutrients ■ Roles in metabolic processes

Fe-chelates decomposition				
Light				
Microbes				
Disinfection				
Ozone				
• UV				
WAGENINGEN UR For quality of Me				

High pH Yield reduction Decrease in micronutrient uptake pH 4.5 performed best pH control most effective in chlorosis prevention Fe-EDDHA more stable, higher Fe-uptake, however unable to prevent chlorosis Fe-EDDHA enhance risk of Mn deficiency at high pH

Iron (Fe) Young leaves: yellow Role Chlorophyll Photosynthesis (electron transport) Enzymes Uptake as Fe²⁺, Fe³⁺ Chelate essential for sufficient availability Immobile in plant Toxicity; rare (chelate toxicity?)

■ Role ■ Enzymes ■ chlorophyll ■ Uptake as Zn²+ ■ Immobile in plant ■ Deficiency: ■ Young leaves very small, short internodes ■ Chlorosis between veins ■ Toxicity: ■ Bleaching, stunted growth

Toxicity rarely occurs, except Copper pipes Disinfection with copper products Water from heat exchanger with copper wire

Conclusion

- Micronutrients very small concentrations
- Metabolic processes
- Deficiency as well as toxicity
- Availability dependent on pH
- Chelates important, but also pH dependent
 - Differences between chelates and nutrients
 - Chelates may degrade (light, UV, ozone)
- Deficiency or toxicity
 - → first study pH, chelates

