
Recovery of nutrients 

from biogas digestate 

with biochar and clinoptilolite 

 

 

 

 

 

 

 

 

 

 

Nazl  Pelin Kocatürk 

 



  ii 

Thesis committee 

 

Promotors 

Prof. Dr L. Stoumann Jensen 
Professor of Soil Fertility and Waste Resource Recycling 
Department of Plant and Environmental Sciences 
University of Copenhagen, Denmark 
 
Prof. Dr L. Brussaard 
Professor of Soil Biology and Biological Soil Quality 
Wageningen University 
 

Co-promotors 

Dr. S. Bruun 
Associate professor at the Department of Plant and Environmental Sciences 
University of Copenhagen, Denmark 
 
Dr. Kor B. Zwart 
Senior Scientist 
Alterra, Wageningen University and Research Centre 
 

Other members of the committee 

Prof. Dr. R.N.J. Comans, Wageningen University 
Prof. Dr. E. Meers, Ghent University, Belgium 
Prof. Dr. A. de Neergaard, University of Copenhagen, Denmark 
Dr. H.J.M. Visser, Energy Research Centre of the Netherlands  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This research was conducted under the auspices of the Ph.D. School of Science of the 
University of Copenhagen and the C.T. de Wit Graduate School for Production 
Ecology and Resource Conservation of Wageningen University under the ERASMUS 
MUNDUS Joint Doctorate Program Agricultural Transformation by Innovation 
(AgTraIn). 



  iii 

Recovery of nutrients 

from biogas digestate 

with biochar and clinoptilolite 
 

 

 

Nazl  Pelin Kocatürk 
 

 

 

 

 

 

 

 

 

 

 

Thesis 

submitted in fulfilment of the requirements for the joint degree of Doctor 

at Wageningen University and University of Copenhagen 

by the authority of the Rector Magnificus Prof. Dr A.P.J. Mol, 

and Head of Ph.D. School of SCIENCE, Prof. Morten Pejrup 

in the presence of the 

Thesis Committee appointed by 

the Academic Board, Wageningen University, and 

the Ph.D. School of SCIENCE, University of Copenhagen 

to be defended in public 

on Friday 24 June 2016 

at 11:00 a.m. in the Aula of Wageningen University. 



 iv 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N.P. Kocatürk 

Recovery of nutrients from biogas digestate with biochar and clinoptilolite  

130 pages. 

PhD thesis, University of Copenhagen, Copenhagen, Denmark 

Wageningen University, Wageningen, The Netherlands (2016) 

With references, with summaries in English and Danish 

ISBN: 978-94-6257-823-4 

DOI: 10.18174/382569 



 v 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In memory of my mother Aysel Kocatürk 

 

Annem Aysel Kocatürk�ün de!erli an"s"na adanm"#t"r 

 
 
 
 
 
 
 
  
 
 
 
 
 
 
  



 vi 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

"Science is the most reliable guide for civilization,  

for life,  for success in the world. " 

Mustafa Kemal Atatürk 

The Founder of Turkish Republic 

 

 

"Dünyada her !ey için; uygarl"k için, hayat için, ba!ar" için  

en hakiki mür!it ilimdir; fendir. " 

Mustafa Kemal Atatürk



Table of Contents 

Chapter 1 General Introduction 1 

Chapter 2 Nutrient recovery from the liquid fraction of digestate by clinoptilolite 15 

Chapter 3 Chemical activation of biochar for enhanced nutrient removal from 

liquid manure digestate 31 

Chapter 4 Does the combination of biochar and clinoptilolite enhance nutrient 

recovery from the liquid fraction of biogas digestate? 51 

Chapter 5 Efficiency of digestate-enriched clinoptilolite and biochar as nitrogen 

fertilisers 69 

Chapter 6 General Discussion 85 

Chapter 7 Conclusions and Outlook 97 

References  103 

Summary  113 

Resumé  117 

Acknowledgements 121 

Curriculum Vitae 125 

PE&RC Training and Education Statement 127 

 

  



 viii 

  



 1 

Chapter 1  

General Introduction 

 



 2 

 

 

 



 3 

1.1 Motivation 

The number of biogas plants has rapidly increased over the last decades 

(Vázquez-Rowe et al., 2015). This has brought the need to improve techniques to 

handle digestate, the by-product of anaerobic digestion in biogas plants. Separation 

of digestate into liquid and solid fractions is often used at centralised biogas plants, 

which facilitates the subsequent transportation of nutrients (Jensen, 2013a). The 

liquid fraction of digestate contains nutrients mainly in ionic form which makes it a 

valuable fertiliser in agricultural crop production systems. The most common 

practice of utilising the liquid fraction of digestate is direct field application if the 

biogas plant is in the vicinity (Drosg et al., 2015). However, direct application of 

digestate may raise practical and environmental problems if the biogas plant is 

farther away (Fuchs & Drosg, 2013). Therefore, processes to concentrate nutrients 

have been proposed aiming not only to treat the liquid fraction of digestate to 

overcome the problems related to direct application, but also to recover of nutrients 

of which natural reserves are being depleted such as phosphorus and potassium. In 

this thesis, the focus is on the evaluation of the use of clinoptilolite and biochar to 

recover nutrients from the liquid fraction of digestate; and to investigate the further 

use of these nutrient-enriched materials as fertiliser. 

 

1.2 Digestate as a source of nutrients 

The focus of waste management has shifted from disposal to minimization, 

recovery and recycling. Anaerobic digestion as a biological treatment technology 

applied to manure slurry is becoming widespread. The products from this 

technology comprise biogas (methane, carbon dioxide and other trace gases), which 

is a potential energy source, and a nutrient-rich sludge, which can be used as a 

fertiliser. Thus, the production of biogas as well as the recovery of nutrients makes 

anaerobic digestion of manure slurry a valuable waste treatment concept 

(Hartmann & Ahring, 2006). 

Digestates are reported to have decreased organic matter content, decreased 

total and organic carbon contents, elevated pH, and lower carbon to nitrogen ratios 

(C:N ratios) compared to undigested manures (Möller & Müller, 2012). The 

differences in digestate compared to manure may have both benefits and 
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disadvantages when they are applied in the soil as fertiliser (Jensen, 2013a). The 

characteristics and the fertiliser value of digestate depend on the nutrients present 

in the feedstock as well as on the operational parameters of the anaerobic digestion 

process (Drosg et al., 2015). Under anaerobic conditions, organic forms of nitrogen 

(N) are converted into ammonium (NH4-N) due to mineralisation during the 

digestion. Feedstocks with a high degradability such as poultry and pig manures 

may result in over 80% NH4-N (Sørensen & Jensen, 2013). Following land 

application, nitrogen can be taken up directly by plants as NH4-N or as nitrate (NO3-

N) following nitrification, a process which occurs very rapidly in most soils. 

However, excessive application or inefficient utilisation of N by crops may result in 

risk of NO3-N leaching and therefore N losses. 

 

1.3 Benefits and challenges related to direct land 

application of digestate 

Benefits of direct application of digestate 

During anaerobic digestion, the nutrient content of the waste (animal manure) is 

mostly conserved, hence digestate contains a broad range of nutrients such as N, 

phosphorus (P), potassium (K), magnesium (Mg), sulphur (S) and trace elements 

(Møller et al., 2009). Therefore digestate can serve as an organic fertiliser which can 

replace inorganic fertilisers (Möller & Müller, 2012). Nitrogen is often the growth 

limiting factor for crops (Walsh et al., 2012) and the form of N is important for plant 

availability. Digestate has a higher content of plant-available N than undigested 

manure due to the increase in ammonium content during the anaerobic digestion 

process, (Jensen, 2013a).  It has been reported that the application of digestate as 

fertiliser has benefits over undigested slurry (Möller & Müller, 2012; Vaneeckhaute 

et al., 2013). Additionally, the replacement of  inorganic fertilisers with digestate has 

the potential to reduce dependence on inorganic fertiliser and so the energy 

demand for their production, and also the economic costs associated with their use 

(Walsh et al., 2012). 

Environmental challenges 

Direct application of digestate may result in air and water pollution due to 

nutrient losses in the environment, especially via ammonia emission and leaching 
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and runoff of N and P (Velthof et al., 2015). Digestate contains ammonium which is 

the form of N that can readily be adsorbed in the soil. Leaching of ammonium is 

usually very low except in sandy soils with low cation exchange capacity (CEC). 

However, ammonium can be converted to nitrate through nitrification within a few 

days. Nitrate cannot be adsorbed in the soil and is, therefore, prone to leaching 

(Sørensen & Jensen, 2013). Leaching of N can contribute to pollution of 

groundwater and surface waters (Sørensen & Jensen, 2013; EPA, 2016). Emission of 

ammonia, nitrous oxide (N2O) and malodorous gases may occur which cause 

unpleasant odours during storage and after field application (Feilberg & Sommer, 

2013; Velthof et al., 2015). In addition to odour problems, use of digestate may 

contribute to soil pollution via deposition of ammonia and nitrogen oxides 

(Zarebska et al., 2015). 

Leaching of P holds the risk of eutrophication in sensitive areas. The liquid 

fraction of digestate mainly contains the soluble, ionic from of P, orthophosphate, 

which is prone to losses shortly after field application (Sørensen & Jensen, 2013). 

More effective use of P is necessary because of environmental concerns and 

benefits. Phosphorus is an important nutrient for agricultural production, an 

essential element for all living species, and a non-renewable resource on a human 

time scale (van Dijk et al., 2016). 

Potassium in digestate can potentially be lost by runoff and leaching. Potassium 

losses are not considered an environmental problem as most K in the liquid fraction 

of digestate is present in ionic form, K+, which can be adsorbed on negatively 

charged soil particles after field application. However, losses should be minimized 

as K is a valuable plant nutrient (Sørensen & Jensen, 2013). 

Although most plant nutrients that are in the ionic form can be adsorbed in the 

soil, they can also be quickly leached after field application of liquid fraction of 

digestate by macropore flow or lost by surface runoff (Sørensen & Jensen, 2013). 

 

Practical challenges 

In the European Union (EU) the annual biogas production increased by 106% 

from 2006 to 2011, predominantly in countries such as Germany, Belgium and Italy 

(Vázquez-Rowe et al., 2015). The recent growth in number of biogas plants, hence, 

digestate produced, has led to restrictions in several EU countries, not only in the 

allowed nutrient input per hectare on agricultural land, but also in the fertiliser 
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application periods to minimize nutrient leaching (Paavola & Rintala, 2008; Drosg et 

al., 2015). Therefore, adequate digestate storage capacity is required, to be able to 

synchronize application with crop demand. Furthermore, the high volumes of 

digestate to be applied on agricultural land often lead to logistic problems (Ghafoori 

& Flynn, 2007; Møller et al., 2009; Rehl & Müller, 2011). Transportation of digestate 

to wider application areas is necessary to prevent overloading of the receiving land 

with nutrients in excess of crop demand. Management and utilisation of the 

untreated or liquid fraction of digestate presents a challenge in areas with very high 

animal densities or no cropping land suitable for digestate fertilisation (Zarebska et 

al., 2015). 

 

1.4 Treatment of digestate 

Restrictions on manure and digestate application in areas with high livestock 

density require further treatment of manure and digestate. Another important 

motivation for treatment of manures and digestate is the recovery of nutrients 

whose natural reserves are being depleted such as phosphorus and potassium 

(Lebuf et al., 2013; Drosg et al., 2015). Phosphate-rich rocks used for P fertiliser 

production are projected to become exhausted within the next few hundred years 

(van Dijk et al., 2016). 

Mechanical  separation is usually the first treatment step for manure, digestate 

from anaerobic digestion of manure and other biowastes (Jensen, 2013b). 

Mechanical separation of digestate can be implemented with several techniques 

such as screw presses, decanting centrifuges, etc. This results in a solid fraction rich 

in organic N and P, and a liquid fraction with low P, but higher mineral N and K 

contents (Møller et al., 2002; Figure 1.1). 

Separated solids can directly be applied due to lower transportation costs and 

decreased storage volume than liquid digestate (Teglia et al., 2011a; Fuchs & Drosg, 

2013). On the other hand, separated solids can be further stabilised through 

composting to be used as a soil amendment (Teglia et al., 2011b) or can be 

thermally dried (Pantelopoulos et al., 2016). Combustion/thermal gasification, ash 

extraction and pyrolysis can also be applied for further treatment of solid digestates 

(Jensen, 2013b; Christel et al., 2014). 
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Figure 1.1 Distribution of dry matter and nutrients in liquid and solid fraction of digestate after 
separation (Adapted from Fuchs & Drosg, 2013). 

 

Further treatment methods for the liquid fraction of digestate with the intention 

of reducing volume and recovering nutrients are summarized in Figure 1.2. 

Increasing nutrient concentrations can be achieved by NH3 stripping, or through 

membrane technologies such as ultrafiltration or reverse osmosis. Another way to 

recover nutrients is by chemical precipitation with magnesium ammonium 

phosphate (struvite) or calcium phosphates (Lebuf et al., 2013; Sigurnjak et al., 

2016). As ammonium is almost always in excess, magnesium oxide and phosphoric 

acid are added to the liquid fraction of digestate (Drosg et al., 2015). 

Sorption processes such as ion exchange can also be applied to concentrate 

nutrients from the liquid fraction of digestate. However, ion exchange is only 

marginally applied in practice, usually for final ammonium removal after membrane 

processes (Drosg et al., 2015). Some researchers studied removal of ammonium and 

phosphorus from treated pig production and pre-treated dairy wastewaters by ion 

exchange (Sánchez et al., 1995; Milan et al., 1997; Henriksen et al., 1998; Nguyen & 

Tanner, 1998) or as an additional N  

 

Carbon

Potassium

Total P

Ammonium

Total N

Dry Matter

Liquid fraction Solid fraction

40-50 % 

65-75 % 

70-80 % 

35-45 % 

70-80 % 

30-40 % 

55-65 % 

20-30 % 

25-35 % 

50-60 % 

60-70 % 

20-30 % 



 8 

 
Figure 1.2 Overview of different options for processing liquid fraction of digestate and for final 
products obtained from these processes (Adapted from Jensen, 2013). 

 

removal process after membrane separation or evaporation (Guo et al., 2007; Fuchs 

& Drosg, 2013). However, none of these studies reported ion exchange from 

digestate or the liquid fraction, which has a much higher ammonium concentration 

compared to treated pig production and dairy wastewaters. 

The recovered nutrients in precipitates and mineral concentrates can be directly 

applied to land. The residues of the treated liquids may further be treated at a 

wastewater treatment plant to be eventually discharged (Drosg et al., 2015). 

Aforementioned methods can be considered as promising techniques in terms of 

obtaining high nutrient separation efficiencies from digestate. However, the 

operational cost of the processes should be taken into consideration in terms of 

chemicals and energy. It should also be noted that the final product of recovery 

processes should be plant available and environmentally acceptable in terms of field 

application. Therefore, economical, agricultural and environmental aspects should 

be considered at the same time when selecting a treatment method. 
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1.5 Clinoptilolite as a sorbent 

Clinoptilolite, a natural zeolite, is a cation exchanger which belongs to the 

heulandite group. It has a three-dimensional framework of silicon and aluminium 

tetrahedra, with the chemical formula Na6[(Al2O3)(SiO2)30] 24H2O (Inglezakis, 

2005). The CEC of clinoptilolite is constituted by the replacement of Si4+ by Al3+ 

which causes a negative charge which is balanced by mono- or di- valent cations 

such as sodium, calcium, potassium, and ammonium, which are exchangeable with 

other cations (Hedström, 2008). 

Clinoptilolite has a high selectivity for ammonium and potassium which is the 

result of its selective nature towards cations with the selectivity ranking given by 

Ames (1960) as Cs+ > Rb+ > K+ > NH4
+ > Ba2+ > Sr2+ > Na+ > Ca2+ > Fe3+ > Al3+ > Mg2+ > 

Li+. Clinoptilolite has been found to be efficient at removing orthophosphate from 

aqueous solutions (Milan et al., 1997; Ganrot et al., 2007; Allar & Beler-Baykal, 

2013; Lin et al., 2015), even though orthophosphate is an anion and cannot be 

removed through ion exchange by clinoptilolite. Orthophosphate removal occurs via 

physical adsorption on Al3+ sites of clinoptilolite (Sakadevan & Bavor, 1998; Ganrot 

et al., 2008). 

Clinoptilolite has been extensively used for industrial treatment to remove 

heavy metals (Erdem et al., 2004; Günay et al., 2007; Kocasoy & Sahin, 2007) and 

domestic wastewater treatment, especially for ammonium removal (Beler-Baykal et 

al., 1996; Beler Baykal & Guven, 1997; Nguyen & Tanner, 1998; Hedström, 2008). It 

has been used for nutrient recovery from human urine with high efficiencies 

(Ganrot et al., 2007, 2008; Beler Baykal et al., 2009; Kocatürk & Baykal, 2012; Allar 

& Beler Baykal, 2015). As a natural mineral, it can be regarded as an easily available 

and reasonably-priced product since there are many deposits around the world 

(Inglezakis, 2005). 

One possible route to recover nutrients from the liquid fraction of digestate can 

be by processing with clinoptilolite. Since the liquid fraction of digestate contains 

nutrients (particularly N and K) predominantly in ionic forms, ion exchange and 

adsorption technologies can potentially be applied to recover and concentrate 

valuable nutrients from the liquid fraction of digestate. The final product (nutrient-

enriched clinoptilolite) could subsequently be used as a slow-release fertiliser for 

agricultural purposes. 
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1.6 Biochar as a sorbent 

Biochar is a relatively-new term for the solid product obtained by pyrolysis of 

biomass under complete or partial exclusion of oxygen (Lehmann & Joseph, 2015). 

International Biochar Initiative (IBI, 2016) defines biochar as: �A solid material 

obtained from thermochemical conversion of biomass in an oxygen-limited 

environment�. Biochar can be used for a range of applications, as an agent for soil 

improvement, improved resource use efficiency, remediation and/or protection 

against particular environmental pollution and greenhouse gas mitigation. In 

addition, to be recognized as biochar, the material has to pass a number of material 

property definitions that relate both to its quality (e.g., H:Corg ratios relate to the 

degree of charring and therefore mineralisation in soil) and its safety (e.g., heavy 

metal and other contaminant content). Shackley et al. (2010) define biochar as: �a 

porous carbonaceous solid, produced by thermochemical conversion of organic 

materials in an oxygen depleted atmosphere which has physicochemical properties 

suitable for the safe and long-term storage of carbon in the environment and, 

potentially, soil improvement�. As it can be deduced from the definitions of biochar, 

the potential biochar applications have been reported as carbon sequestration, soil 

fertility improvement, pollution remediation, and agricultural by-product and waste 

recycling (Ahmad et al., 2014). 

The physical and structural characteristics of biochar are dependent on both the 

characteristics of the original biomass feedstock and those of the pyrolysis process 

such as pyrolysis temperature and heating rate (Chia et al., 2015). These parameters 

affect the elemental composition of biochar as well as the surface area and CEC, 

which both influence the nutrient retention properties of biochar. In general, 

biochars produced by slow pyrolysis show greater N, S, available P, Ca, Mg, surface 

area and CEC as compared to biochars produced with fast pyrolysis (Ippolito et al., 

2015). Increasing pyrolysis temperature usually results in decreasing biochar yield 

but increasing biochar total C, K, Mg and ash content, pH and surface area, and 

decreasing CEC (Mukherjee et al., 2011; Ippolito et al., 2015). 

Cation retention by biochar is explained by electrostatic adsorption to 

negatively-charged oxygen-containing surface functional groups (Wang et al., 

2015a). Newly produced biochars are known to have a low ability to adsorb cations 

due to the presence of fewer oxygen-containing functional groups (Cheng et al., 
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2014). Therefore chemical oxidation (or activation) of biochar has been proposed to 

increase the sorption ability of biochar (Xue et al., 2012). 

Biochar has been proposed as a sorbent for removing organic and inorganic 

contaminants from various types of wastewaters (Ahmad et al., 2014). Biochar has 

also been discussed as a potential material to recover nutrients from liquid wastes 

with high nutrient concentrations, such as dairy manure and ruminant urine 

(Taghizadeh-Toosi et al., 2012a; Sarkhot et al., 2013). Therefore biochar might be 

used as a sorbent to recover and concentrate valuable nutrients from the liquid 

fraction of digestate. 

 

1.7 Objectives 

The overall objective of this thesis is to investigate the use of clinoptilolite and 

biochar to recover plant nutrients from the liquid fraction of digestate resulting 

from anaerobic digestion of animal manure, and to investigate the plant-availability 

of the recovered form of nutrients. 

The specific objectives are to: 

 

· Determine the effects of preconditioning of clinoptilolite and initial loading ratio 

on the removal efficiency of plant nutrients from the liquid fraction of digestate 

(Chapter 2). 

· Determine the effect of chemical activation of biochar on nutrient removal 

efficiency from the liquid fraction of digestate (Chapter 3). 

· Determine the effects of initial loading ratio on the nutrient removal efficiency of 

biochar; and the effect of clinoptilolite and biochar combinations on the nutrient 

removal from the liquid fraction of digestate (Chapter 4). 

· Quantify the plant growth promotion, nitrogen uptake and fertiliser efficiency of 

nutrient-enriched biochar and clinoptilolite (Chapter 5). 

 

1.8 Thesis outline and experimental approach 

Following the General Introduction (Chapter 1), I investigated the use of 

clinoptilolite as a sorbent to recover nutrients from the liquid fraction of digestate in 

Chapter 2. Clinoptilolite has been used for decades to remove ammonium from 
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wastewaters (Hedström, 2008) and more recently to recover nutrients from human 

urine (Kocatürk & Baykal, 2012; Allar & Beler Baykal, 2015). In this chapter, I 

studied the effects of preconditioning of clinoptilolite on the removal efficiency of 

nutrients from the liquid fraction of digestate. I conducted experiments where both 

a synthetic solution and the liquid fraction of digestate are brought into contact with 

clinoptilolite, preconditioned at various concentrations of sodium chloride. In 

addition, I determined the effect of initial loading ratio in column experiments on 

the nutrient-removal efficiency from the liquid fraction of digestate. 

In Chapter 3, I studied the chemical activation of biochar by treating the biochar 

with deionised water and hydrogen peroxide, sulfuric acid and sodium hydroxide 

solutions. Biochar has been suggested as a sorbent for ammonium (Taghizadeh-

Toosi et al., 2012a; Hale et al., 2013; Gai et al., 2014; Carey et al., 2015; Cui et al., 

2016), orthophosphate (Hollister et al., 2013; Sarkhot et al., 2013; Xu et al., 2014) 

and organic contaminants (Ahmad et al., 2014; Mohan et al., 2014; Wang et al., 

2015b) removal from various wastewaters. Chemical activation of biochar has been 

shown to increase the oxygen-containing functional groups (Xue et al., 2012; Wang 

et al., 2015a) which affects the cation sorption on biochar, and orthophosphate 

removal due to cation bridge bonding (Lin et al., 2012; Qian et al., 2013). I 

investigated the effects of activation on oxygen-containing functional groups and 

ammonium, orthophosphate and potassium removal from the liquid fraction of 

digestate. 

In Chapter 4, I studied the use of biochar, and the combination of biochar with 

clinoptilolite for nutrient recovery from liquid fraction digestate in column 

experiments. I investigated the effects of initial loading ratio of biochar on the 

removal efficiency of ammonium, potassium, orthophosphate and organic matter 

from the liquid fraction of digestate. In the second part of the experimental work in 

this chapter, I investigated the effects of combinations of clinoptilolite and biochar 

on the nutrient removal efficiency as compared to clinoptilolite and biochar alone. 

In Chapter 5, I tested nutrient enriched biochar and clinoptilolite as nitrogen 

fertiliser. I investigate the ability of biochar and clinoptilolite enriched with 

digestate nutrients to supply N to plants. I conducted a pot experiment in the 

greenhouse (Figure 1.3) using the double-pot technique (Janssen, 1990) with  
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Figure 1.3 Pot experiment using the double pot technique. 

 

ryegrass to test the effect of nutrient-enriched clinoptilolite and biochar, including 

the effect of initial loading ratio, by determining plant biomass growth and N uptake. 

In the General Discussion (Chapter 6), I synthesised and integrated the main 

findings of my research in light of the literature and discussed their implications. 

I conclude this thesis with a general conclusion in Chapter 7 (Conclusions and 

Outlook) with a reflection on the findings of this thesis in the context of practical 

applicability of biochar and clinoptilolite for digestate treatment. 
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Abstract 

The direct application of the liquid fraction of biogas digestate to the agricultural 

fields as a fertiliser may result in practical and environmental problems. 

Concentrating nutrients onto clinoptilolite and subsequently using clinoptilolite as a 

fertiliser could be an alternative solution for the management of nutrients in the 

liquid fraction of digestate. In this study, we investigated the use of clinoptilolite to 

recover ammonium, potassium and orthophosphate from the liquid fraction of 

digestate by determining the optimal preconditioning of clinoptilolite and the 

optimal initial nutrient-to-clinoptilolite loading ratio for highest nutrient removal 

efficiency. 

Preconditioning of clinoptilolite had no significant effect on the total ammonium 

and potassium removal from the liquid fraction of digestate. 

An increase in the initial loading ratio significantly increased nutrient 

concentrations on the clinoptilolite, but decreased nutrient removal efficiencies 

from the liquid fraction of digestate: removal efficiencies ranged from 40 % to 89 % 

for ammonium, 37 to 78 % for potassium and 64 to 80 % for orthophosphate at 

various initial loading ratios. 

Overall, the increase in the concentration of nutrients on the clinoptilolite was 

rather low, however nutrients could be removed from the liquid fraction of 

digestate with high removal efficiencies, and this indicated that the use of 

clinoptilolite could be a solution for improved management and utilisation of the 

liquid fractions of digestate. 
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2.1 Introduction 

Digestate from the anaerobic digestion of manure and other organic wastes has a 

nutrient content which typically is favorable for use as a crop fertiliser, with direct 

land application often being the most cost-effective solution (Rico et al., 2011; Fuchs 

& Drosg, 2013). However, digestate is not an easy by-product to handle due to its 

high water content and consequently its large volume and low nutrient 

concentration. In many European Union countries, manure and digestate-spreading 

periods on agricultural land are restricted in order to minimize nutrient leaching 

and run-off, and therefore a large storage capacity for manure and digestate is 

needed. Storage is expensive and the transportation of large volumes of water is 

ineffective from both a logistical and economic point of view (Paavola & Rintala, 

2008; Rehl & Müller, 2011). Moreover, environmental problems such as gaseous 

emissions of malodors, ammonia and greenhouse gases as well as nutrient runoff to 

streams and waterways may occur when digestate is applied to agricultural land 

(Hjorth et al., 2009). Processing of manure and digestate may potentially overcome 

practical and environmental problems related to their direct application on land by 

reducing their environmental impacts, and improve the fertilising efficiency of 

manure and digestate (Fuchs & Drosg, 2013; Zarebska et al., 2015). 

One of the processing techniques used is the separation of manure or digestate 

into liquid and solid fractions before spreading the products on land (Ghafoori & 

Flynn, 2007; Hjorth et al., 2010; Teglia et al., 2011a). Separation of liquids and solids 

will also result in a partial separation of nitrogen (N) and phosphorus (P). The liquid 

fraction contains the majority of inorganic N and potassium (K), while P and organic 

N mainly remain in the solid fraction (Møller et al., 2002). However, a certain 

amount of phosphorus will be in the liquid fraction of the digestate, which still 

remains a very dilute nutrient solution. Further concentration of these nutrients in 

the liquid fraction could reduce transportation costs and potentially increase the 

fertiliser efficiency of the liquid fraction of manure and digestate. Concentration 

techniques using water evaporation and ammonia stripping consume a great deal of 

energy and are usually rather costly (Christensen et al., 2013; Fuchs & Drosg, 2013; 

Zarebska et al., 2015). Treatment of digestate using an ion exchanger/adsorptive 

agent may therefore present an attractive alternative. 

Clinoptilolite (a natural zeolite) can potentially be used as an adsorptive agent 

for such purposes as it is a highly selective cation exchanger, especially for 
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potassium and ammonium. In a number of studies, ion exchange with clinoptilolite 

has been shown to be very effective for the removal of ammonium from domestic 

wastewater (Koon & Kaufman, 1975; Beler-Baykal et al., 1996; Beler Baykal & 

Guven, 1997; Hedström, 2008) and high removal efficiencies for both ammonium 

and potassium from source-separated human urine have been reported in literature 

(Ban & Dave, 2004; Beler Baykal et al., 2009; Kocatürk & Baykal, 2012). Since the 

liquid fractions of manure and digestate contain nutrients, particularly nitrogen and 

potassium, predominantly in ionic forms, ion exchange and adsorption technologies 

can potentially also be applied to recover and concentrate valuable nutrients from 

the liquid fraction of manure and digestate. The final product (nutrient enriched 

clinoptilolite) can be used as a slow release fertiliser for agricultural purposes. 

The homoionic state of zeolites has been found to improve their effective 

exchange capacity and performance in ion exchange applications (Inglezakis, 2005; 

Inglezakis & Zorpas, 2012). The homoionic form can be produced by 

preconditioning clinoptilolite which aims to replace ions from the clinoptilolite 

surface with ions that can be removed more easily (Inglezakis et al., 2001). Sodium 

chloride is a widely used agent for preconditioning clinoptilolite (Inglezakis et al., 

2001; Lin et al., 2013, 2015) and has been found to be the most efficient 

preconditioning agent, compared to other salts, for removing ammonium (Koon & 

Kaufman, 1975; Milan et al., 1997). This is because sodium ions can be easily 

exchanged with cations such as ammonium from solutions (Inglezakis et al., 2001; 

Inglezakis, 2005) as a result of the selective nature of clinoptilolite towards cations 

with the selectivity ranking given by Ames (Ames, 1960) as Cs+ > Rb+ > K+ > NH4
+ > 

Ba2+ > Sr2+ > Na+ > Ca2+ > Fe3+ > Al3+ > Mg2+ > Li+. Preconditioning has been reported 

to increase ammonium removal from domestic wastewater or from other solutions 

(Inglezakis et al., 2001). However these solutions have lower ammonium and 

organic matter concentrations than the liquid fractions of digestate, and the effects 

of preconditioning on the nutrient removal from the liquid fraction of digestate have 

not been reported so far. 

Clinoptilolite has also been found to be efficient at removing phosphorus from 

aqueous solutions (Milan et al., 1997; Ganrot et al., 2007; Allar & Beler-Baykal, 

2013; Lin et al., 2015). Investigations of the effect of the initial ammonium loading 

ratio (the starting amount of ammonium provided in the system per gram of 

clinoptilolite) on the removal of ammonium and potassium from human urine with 

clinoptilolite has shown that initial loading is a significant parameter affecting 
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removal efficiency (Beler Baykal et al., 2009). However, the effects of initial loading 

ratio on the phosphorus removal from liquid solutions have not been reported. 

The overall objective of the current study was to test the use of clinoptilolite for 

the recovery of important plant nutrients from the liquid fraction of digestate 

resulting from the anaerobic digestion of animal manure. The specific objectives 

were to determine i) the optimal preconditioning of clinoptilolite and ii) the optimal 

initial nutrient/clinoptilolite loading ratio for maximum nutrient removal efficiency. 

It was hypothesized that clinoptilolite would act as an efficient cation exchanger 

from the liquid fraction of digestate, that preconditioning would increase its cation 

exchange capacity and that nutrient removal efficiency would be affected by the 

initial loading ratio. 

2.2 Materials and Methods 

The clinoptilolite used was from Gördes in the Western Anatolian region of 

Turkey and has a typical composition (provided by the manufacturer) of 65-72 % 

SiO2, 10-12 % Al2O3, 0.7-1.9 % Fe2O3, 0.1-0.5 % Na2O, 2.5-3.8 % K2O, 2.4-3.7 % CaO, 

0.9-1.2 % MgO, 0-0.08 % MnO and 0.02-0.05 % P2O5. The particle size of the 

clinoptilolite used in the experiments was 1�3 mm. 

The liquid fraction of digestate was collected from a centralised biogas plant 

(Fangel Bioenergy ApS, Odense, Denmark) where digestate is separated into liquid 

and solid fractions by a decanter centrifuge (Gea Westfalia, AD 1220, Oelde, 

Germany). The characterization of the liquid fraction of digestate samples (different 

batches) and synthetic solution (prepared with NH4Cl and KCl) is shown in Table 

2.1. In all experiments, the pH of the liquid fraction of digestate and synthetic 

solution was adjusted to 6.5-7.0 using HCl (37 %) to prevent ammonia volatilisation. 

 

Table 2.1 Characterization of the liquid fractions of digestate (range indicates concentration 
variation between liquid fractions used) and synthetic solution used in the experiments. 

Parameters Liquid fraction of digestate Synthetic solution 

NH4-N  (mg L-1) 3750-4120 2960 
K (mg L-1) 2185-2440 2370 
PO4-P  (mg L-1) 110-125 -- 

Ca (mg L-1) 118-223 -- 

Mg (mg L-1) 45-81 -- 

Na (mg L-1) 1385-1655 -- 

Fe (mg L-1) 35-87 -- 
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Effect of preconditioning of clinoptilolite on nutrient removal 

Preconditioning of clinoptilolite was established by loading the clinoptilolite 

with sodium ions using different concentrations of sodium chloride, i.e. 0.01 M, 0.1 

M and 1 M NaCl. Preconditioning of clinoptilolite was performed in Plexiglas 

columns 2.4 cm in diameter and 100 cm long, with 60 min residence time and a flow 

rate of 2 mL min-1 for 24 hours (Figure 2.1a). 

Subsequently, the natural or preconditioned clinoptilolite was mixed with 

synthetic solution or the liquid fraction of digestate at a ratio of 1:10 clinoptilolite 

(g) to synthetic solution or liquid fraction of digestate (mL), and shaken for 24 hours 

in an orbital shaker at 20-25 ºC. 

 

Effect of initial ammonium loading ratio on nutrient removal efficiency 

The effect of the initial loading ratio on the ammonium, potassium and 

orthophosphate removal efficiency was investigated in column experiments in 

which the liquid fraction of digestate was pumped through a column packed with 

clinoptilolite. Plexiglas columns were filled with 50-100 g of preconditioned 

clinoptilolite. The liquid fraction of digestate was fed into the columns by a 

peristaltic pump (Masterflex L/S Series) at 100 % recycling in the upflow mode for 

120 hours (Figure 2.1b) 

 

 
Figure 2.1 Experimental setup for the preconditioning of clinoptilolite (a) and nutrient loading 
experiments (b). 
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Column experiments with various initial ammonium loading ratios were conducted. 

The experimental conditions are summarized in Table 2.2 (L10 - L52 designates the 

different initial ammonium loading ratios). The amount of clinoptilolite used in L31, 

L41, L52 was lower in order to decrease the volume of the liquid fraction of digestate 

needed to run the experiments. 

 

Analytical Methods 

The ammonium (NH4-N) and orthophosphate (PO4-P) concentrations were 

measured by flow injection analysis (FIAstar 5000) according to ISO 11732  

(International Organization for Standardization, 2005) and ISO 15681-1 

(International Organization for Standardization, 2003) respectively. Potassium was 

analyzed according to Standard Methods using a flame photometer (Perkin Elmer 

3300). 

 

Statistical Analyses 

One-way analysis of variance was performed to test the effect of preconditioning 

of clinoptilolite on nutrient removal. The effect of the initial ammonium loading 

ratio on nutrient removal efficiency was analyzed by Pearson�s product-moment 

correlation test using the statistical software R version 3.1.0 (R Core Team, 2015). 

 

 

Table 2.2 Experimental conditions used in the nutrient loading experiments. 

Designation 

Initial NH4-N  
loading ratio  
(mg NH4-N g-1 
clinoptilolite) 

Digestate  
volume 
(mL) 

Amount of 
clinoptilolit
e  
(g) 

Packed  
height  
(cm) 

Residence  
time  
(min) 

L10 10.1 270 100 27 60 

L15 15.2 405 100 27 60 

L20 20.2 540 100 27 60 

L31 30.9 405 50 14 60 
L41 41.3 540 50 14 60 
L52 51.6 680 50 14 60 
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2.3 Results and Discussion 

Effect of preconditioning of clinoptilolite on nutrient removal 

The ammonium concentration of the synthetic solution in the batch experiments 

decreased more rapidly with preconditioned clinoptilolite than with natural 

clinoptilolite (Figure 2.2a), indicating a higher ion exchange capability after 

preconditioning. Clinoptilolite preconditioned with 1 M NaCl showed the highest 

ammonium ion exchange rate, but the differences between preconditioning 

treatments were relatively small after 24 hours. Similarly, Lin et al. (2013) reported 

a faster ammonium ion exchange rate in synthetic solutions with modified zeolite 

(modified with 2 M NaCl), as compared to natural zeolite. Ammonium ion exchange 

using the liquid fraction of digestate gave comparable results, but with a smaller 

effect from the prior preconditioning of clinoptilolite (Figure 2.2b). 

Clinoptilolite preconditioned with 1 M NaCl also showed the highest ion 

exchange rate for potassium in synthetic solution (Figure 2.3a), which was similar to 

the results in the liquid fraction of digestate (Figure 2.3b). For potassium, the effects 

of preconditioning were greater than for ammonium in the liquid fraction of 

digestate. 

 

 

 
Figure 2.2 Ammonium concentration in batch experiments where clinoptilolite was in contact 
with synthetic solution (a) and the liquid fraction of digestate (b) after different preconditionings 
of clinoptilolite. Error bars indicate standard deviation (n=2). 
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Figure 2.3 Potassium concentration in batch experiments where clinoptilolite was in contact 
with synthetic solution (a) and the liquid fraction of digestate (b) after different preconditionings 
of clinoptilolite. Error bars indicate standard deviation (n=2). 

 

Based on the changes in the concentrations of ammonium and potassium in 

the liquid, it was possible to calculate the total amount of ammonium and potassium 

removed per gram of clinoptilolite (Table 2.3). In the synthetic solution, this amount 

ranged from 0.914 to 1.256 meq g-1 and from 0.188 to 0.436 meq g-1 clinoptilolite 

for ammonium and potassium, respectively. For the liquid fraction of digestate it 

ranged from 1.166 to 1.427 meq g-1 and 0.333 to 0.468 meq g-1 for ammonium and 

potassium respectively. In our study we found a lower ammonium removal from the 

synthetic solution compared to liquid fraction of digestate. This was somewhat an 

unexpected result due to the existence of cations such as Ca2+, Na+, Mg2+ in the liquid 

fraction of digestate which are known to compete with ammonium and hence 

decrease the ammonium removal by clinoptilolite (Nguyen & Tanner, 1998). 

 

 

Table 2.3 Specific ammonium and potassium removal achieved with batch experiments with 
synthetic solution and the liquid fraction of digestate (n=2). 

Pre- 
conditioned 
with 

Synthetic solution  Liquid fraction of digestate 

NH4-N K Total  NH4-N K Total 

meq g-1 clinoptilolite  meq g-1 clinoptilolite 

Natural form 0.979±0.017 0.188±0.032 1.167±0.049  1.390±0.028 0.333±0.003 1.723±0.025 

0.01 M NaCl 1.160±0.053 0.221±0.019 1.380±0.034  1.427±0.017 0.351±0.005 1.777±0.011 

0.1 M NaCl 0.914±0.003 0.284±0.004 1.196±0.000  1.222±0.096 0.378±0.000 1.600±0.096 

1 M NaCl 1.256±0.163 0.436±0.026 1.691±0.188  1.166±0.044 0.468±0.002 1.634±0.046 
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The difference between the results for the liquid fraction of digestate and synthetic 

solution might be attributed to the difference in initial ammonium concentrations. 

The liquid fraction of digestate had a higher ammonium concentration (4120 mg 

NH4-N L-1) than synthetic solution (2960 mg NH4-N L-1) so that there were more 

NH4
+ cations available for exchange which resulted in a higher ammonium removal 

per gram of clinoptilolite. Another explanation could be that the organic matter and 

suspended solids in the liquid fraction of digestate may affect the surface charge 

density and provide more cation exchangeable sites for ammonium and potassium 

(Nguyen & Tanner, 1998; Jorgensen & Weatherley, 2003). 

We found that the ammonium removal using preconditioned clinoptilolite from 

the synthetic solution and the liquid fraction of digestate was not significantly 

different from natural form of zeolite. For potassium alone, the greatest removal by 

far from both the synthetic solution (p = 0.005) and the liquid fraction of digestate 

(p < 0.001) was obtained for clinoptilolite preconditioned with 1 M NaCl. 

Our results indicated that preconditioning of clinoptilolite with NaCl had no 

significant effect on total ammonium and potassium removal from the synthetic 

solution and the liquid fraction of digestate. The results regarding preconditioning 

in the literature are contrasting. Inglezakis et al. (2001) found that preconditioning 

of clinoptilolite using NaCl concentrations above 0.4 M had no effect on the 

exchange capacity for ammonium. This was explained by the fact that at 0.4 M NaCl, 

clinoptilolite was saturated with sodium ions and increasing it further would not 

increase the number of exchanged ions. Semmens & Martin (1988) reported that the 

total exchange capacity was not affected by preconditioning, and only the 

composition of the exchanging ions differed between the natural and 

preconditioned clinoptilolite samples. Lin et al. (2013) reported Na+ was the cation 

which dominated cation exchange with ammonium when the initial ammonium 

concentration was less than 500 mg L-1, but Ca2+ dominated cation exchange at 1000 

mg L-1 initial ammonium concentration. They reported increasing ammonium 

removal at 1000 mg L-1 initial ammonium concentration when clinoptilolite was 

preconditioned with NaCl. But they also reported increasing ammonium removal 

with natural (untreated) clinoptilolite at an initial concentration of 4000 mg L-1, as 

compared to 1000 mg L-1 initial ammonium concentration. An explanation for the 

lack of an effect of preconditioning could be that both the synthetic solution and the 

liquid fraction of digestate had a high ammonium concentration (around 3000 to 

more than 4000 mg NH4-N L-1) in the solution and this resulted in a very large 
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difference between the solid and liquid phase. Therefore a large difference between 

the concentration gradient in the solid phase and in the liquid phase can cause most 

of the exchangeable cations on clinoptilolite surface to be replaced by ammonium to 

a similar degree in both natural form of clinoptilolite and preconditioned 

clinoptilolite. Further studies to explore the effects of preconditioning at different 

initial ammonium concentrations could be useful. 

Total ammonium and potassium removal ranged between 1.167 and 1.691 meq 

g-1 clinoptilolite for the synthetic solution and between 1.600 and 1.777 meq g-1 

clinoptilolite for the liquid fraction of digestate. Our results were comparable with 

the total exchange capacities reported in the literature. Koon & Kaufman (1975) 

reported a total exchange capacity of clinoptilolite between 1.6 and 2.0 meq g-1, 

Semmens & Martin (1988) reported a total exchange capacity between 1.98 and 

2.07 meq g-1 for ammonium and potassium ions together. 

 

Effect of the initial ammonium loading ratio on nutrient removal 

efficiency 

In the column loading experiments, a higher decrease in ammonium 

concentration was observed with smaller initial loading ratios (Figure 2.4a), with 

L10 showing the highest and L52 the lowest ammonium removal from the liquid 

fraction of digestate. Similarly, lower initial loading ratios resulted in a greater 

decrease in potassium concentration in the liquid fraction of digestate (Figure 2.4b). 

These results were in accordance with literature, e.g. Beler Baykal et al. (2009) 

investigated the removal of ammonium and potassium from source-separated 

human urine and found that increasing loading ratios resulted in higher ammonium 

and potassium concentrations remaining in the urine solution. 

In contrast to ammonium and potassium, the removal of orthophosphate did not 

differ between loading ratios (Figure 2.4c). This might be due to different removal 

mechanisms responsible for the removal of anions. Ammonium and potassium are 

removed from the liquid primarily through ion exchange, however orthophosphate 

is an anion and therefore likely to be removed by adsorption. Clinoptilolite has been 

reported to adsorb considerable amount of phosphates (Sakadevan & Bavor, 1998; 

Ganrot et al., 2007; Kocatürk & Baykal, 2012) and Ban & Dave (2004) reported that 

clinoptilolite-rich zeolite itself worked as P adsorbent. Other mechanisms for P 

removal   could  be  precipitation and   filtration   since  a  visible  color  change  was  
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Figure 2.4 Ammonium (a), potassium (b) and orthophosphate (c) concentration changes in the 
liquid fraction of digestate in the column nutrient loading at different initial ammonium loading 
ratios (LX: signifies an ammonium loading ratio of X mg NH4-N g-1 clinoptilolite). 

 

observed in all samples, however we have not conducted further analyses to 

support this explanation. Further studies are needed for understanding the 

orthophosphate removal mechanisms from liquid fraction of digestate, which was 

not our objective in this study. 
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Figure 2.5 Relationship between ammonium (a), potassium (b) and orthophosphate (c) removal 
per gram of clinoptilolite and the corresponding removal efficiencies for the different initial 
loading ratios. 

 

Ammonium removal efficiencies ranged from 40 % to 89 % (Figure 2.5a) and the 

highest removal efficiency was achieved with the lowest loading ratio, L10, where 

the amount of NH4-N removed per g clinoptilolite was 9.1 mg NH4-N g-1. The highest 

ammonium removal per g clinoptilolite was 20.58 mg NH4-N g-1 with the highest 

initial loading ratio in L52, although the ammonium removal efficiency was only 40 

%. Lin et al. (2013) reported an ammonium removal 17.3 mg N per g clinoptilolite in 

an experiment with a synthetic wastewater with 1000 mg NH4-N L-1 initial 

concentration. Karadag et al. (2006) found 20.37 mg N per g clinoptilolite removal 

from sanitary landfill leachate with 3750 mg NH4-N L-1 initial concentration. Beler 

Baykal et al. (2009) reported an ammonium removal of 18.7 NH4-N per g 

clinoptilolite from human urine with initial ammonium concentration up to 6950 

mg NH4-N L-1. 

Potassium removal efficiencies decreased with increasing loading ratios, and the 

highest removal efficiency was 78 % for both L10 and L15 (Figure 2.5b). The highest 

potassium removal per g clinoptilolite was 12.57 mg K g-1 obtained with the highest 

initial loading ratio L52, but the efficiency decreased to 37 %. Similarly, Beler Baykal 

et al. (2009) reported decreasing removal efficiencies with increasing loading ratios 

when clinoptilolite was used to remove potassium from human urine. 

Orthophosphate removal efficiencies ranged from 64 to 80 % and similar 

removal efficiencies were observed for all the loading ratios up to L31 (Figure 2.5c). 

However a further increase in loading ratios, i.e. L41, L52, led to a decrease in PO4-P 

removal efficiencies. Kocatürk & Baykal (2012) investigated PO4-P removal from 

diluted urine solutions and  found more than 90 % orthophosphate removal 
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efficiencies where the initial PO4-P concentration varied from 50 to 300 mg PO4-P L-

1. P adsorption capacities reported varying from 0.090 g-1 to 1.33 mg P g-1 

clinoptilolite (Allar & Beler-Baykal, 2013; Lin et al., 2015). Sakadevan & Bavor 

(1998) reported a P adsorption of 2.15 mg P g-1 for clinoptilolite-rich zeolite from a 

pure solution, which is much higher than the value in the present study. The 

difference between their results and the results in the present study might be 

attributed to different experimental conditions since the liquid solutions, the 

amount of clinoptilolite and the experimental setups used in the two studies were 

completely different from each other. They found more than 50 % P removal when 

the initial P concentration in the solution was below 200 mg P L-1, while the removal 

efficiency was less than 30 % for solutions with an initial P concentration above 200 

mg P L-1. Milan et al. (1997) reported 20-35% PO4-P removal from anaerobically 

treated piggery waste with 115 mg PO4-P L-1 by using clinoptilolite-rich homoionic 

zeolites. In the present study the highest orthophosphate removal per g 

clinoptilolite was 0.95 mg PO4-P g-1 with the lowest removal efficiency, which might 

mean that further adsorption could have been possible with a higher 

orthophosphate concentration in the liquid fraction of digestate. 

Overall, the initial loading ratio had a significant effect on removal efficiency for 

both ammonium and potassium removal (p < 0.001) and for orthophosphate 

removal (p=0.012), and increasing loading ratios led to decreasing removal 

efficiencies (r= -0.99, r= -0.98, r= -0.91 for ammonium, potassium and 

orthophosphate respectively). The removal efficiencies were as high as 86 %, 78 % 

and 80 % for ammonium, potassium and orthophosphate respectively up to the L15 

loading ratio. For ammonium and potassium, our results were in accordance with 

Beler Baykal et al. (2009) who reported that increases in the initial loading ratio 

lead to higher surface concentrations (i.e. amount of ammonium or potassium 

removed per g clinoptilolite) on the clinoptilolite but result in significant reductions 

in removal efficiencies. 

Although high removal efficiencies can be obtained using clinoptilolite, leading 

to low ammonium, phosphate and potassium concentrations in the treated 

digestate, the increase in the concentration of nutrients from the liquid fraction of 

digestate into the loaded clinoptilolite appears to be relatively modest. 300 kg of 

clinoptilolite would be needed to process 1 ton of liquid fraction of digestate by 

using L15 loading if the NH4-N concentration of the liquid fraction of digestate were 

3900 mg L-1, and 13 mg NH4-N could be removed per g clinoptilolite. Therefore the 
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reduction in weight appears to be on the low side, with only a reduction factor of 3-

4 as compared to the untreated liquid fraction of digestate. In order to make the 

treatment process economically attractive, a greater increase in concentration or 

weight reduction would normally be required, but the economy depends on both 

the cost of the ion exchanger/adsorbent and transportation, as well as the fertiliser 

properties of the nutrient bound to clinoptilolite, which may be more stable and 

easier to manage (to store, distribute and apply to soil). 

Another important aspect is the remaining ammonium and orthophosphate 

concentrations in the liquid fraction of digestate, if the remaining liquid is to be 

disposed after nutrient recovery. Although we observed high removal efficiencies, 

the remaining concentrations in the liquid were between 435 and 2383 mg NH4-N L-

1 for ammonium and between 32 and 37 mg PO4-P L-1 for orthophosphate, which are 

still high from the pollution prevention point of view. Allar & Beler Baykal (2015) 

studied further treatment of the treated human urine with clinoptilolite by 

stagewise operation (operating a new column after finalising the previous 

column)of clinoptilolite columns. They found that stagewise operation resulted in 

reduced residual concentration in the liquid but provided only limited improvement 

in terms of nutrient recovery. Stagewise operation can be considered for obtaining 

lower nutrient concentrations and higher removal efficiencies compared to one step 

operation also for nutrient recovery from the liquid fraction of digestate. 

 

2.4 Concluding remarks 

Preconditioning of clinoptilolite before application in a column system for the 

treatment of digestate only has a minor effect on total ammonium and potassium 

removal. Preconditioning is a resource-demanding process and is therefore unlikely 

to be economically relevant for such systems. 

Increases in the initial loading leads to higher nutrient removal per g 

clinoptilolite (higher nutrient concentration on clinoptilolite), but results in 

reductions in removal efficiencies. 

Our study demonstrated that nutrients (in our study: N, P and K) can be 

removed from the liquid fraction of digestate with high removal efficiencies. 

Therefore, loading clinoptilolite may be a viable option for the management of 

nutrients from the liquid fraction of digestate. However, the value of the loaded 

clinoptilolite depends on its suitability and efficacy as a fertiliser for plants. In 
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column systems we could only increase the concentration of the nutrients on 

clinoptilolite with a factor of 3-4 by weight as compared to the untreated liquid 

fraction of digestate. This means that savings on nutrient transportation are limited. 

However, loading of clinoptilolite with digestate may be an attractive option in 

situations where the clinoptilolite is available cheaply, and where its value as a soil 

amendment to improve soil properties, e.g. in poor soils, is high. 
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Abstract 

Nutrient sorption to biochar has been suggested as a means of recovering and 

handling nutrients from liquid waste streams, with several studies proposing 

activation of biochar as a way of improving its ability for nutrient sorption. This 

study examined the effects of biochar activation with various chemical agents, i.e. 

sulfuric acid, sodium hydroxide and hydrogen peroxide, on surface properties and 

biochar�s ability to remove nutrients from the liquid fraction of digestate. 

Ammonium removal from the liquid fraction of digestate with untreated biochar 

was found to be 4.74 mg NH4-N g-1, increasing to 10.40 mg NH4-N g-1 with NaOH-

activated biochar. Potassium was released from untreated biochar into the liquid 

fraction of digestate, and only minor potassium removal, 1.22 mg K g-1, was achieved 

after H2SO4 activation. Activation with H2SO4 increased orthophosphate removal 

from 1.38 to 2.02 mg PO4-P g-1. A significant positive correlation was found between 

orthophosphate removal and the carboxyl functional groups, as evidenced by FTIR 

photoacoustic spectroscopy. However, ammonium removal was not related to any 

oxygen-containing functional groups of biochar, probably because other 

mechanisms were dominant. In conclusion, activation of biochar can increase 

nutrient removal from the liquid fraction of digestate, but effects differ between 

elements. 
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3.1 Introduction 

Europe�s capacity for biogas production has been rapidly increasing in recent 

years (Fuchs & Drosg, 2013). This also means that a large amount of digestate, the 

nutrient-rich effluent from the anaerobic digestion of waste feedstocks, is produced. 

Often the digestate is separated into a liquid fraction and a solid fraction. The solid 

fraction can be transported to places where the nutrients and organic matter are 

needed. The liquid fraction also has a potential value as a fertiliser due to its 

contents of dissolved nutrients. However the high water content of the liquid 

fraction of digestate means that it is relatively expensive to store and transport 

(Zarebska et al., 2015). It is therefore desirable to develop methods that can be used 

to concentrate or remove the nutrients from the liquid fraction. 

Biochar is a carbon-rich product resulting from the thermal degradation of 

organic material in the absence of air (pyrolysis), and is promoted as a soil 

amendment (Lehmann & Joseph, 2015). Biochar has been proposed as a sorbent for 

removing organic and inorganic contaminants from various types of wastewaters 

(Ahmad et al., 2014). The potential of biochar to recover nutrients from liquid 

wastes with high nutrient concentrations, such as dairy manure and ruminant urine, 

has also been discussed in the literature (Taghizadeh-Toosi et al., 2012; Sarkhot et 

al., 2013). 

It has been suggested that the removal of ammonium by biochar is mainly 

controlled by interactions between ammonium ions and oxygen-containing 

functional groups, such as carboxylates or carboxylic acids, on the biochar surface 

(Wang et al., 2015a; Cui et al., 2016). Several studies have suggested that pyrolysis 

temperature is an important parameter affecting biochar properties (Ahmad et al., 

2014; Lehmann & Joseph, 2015). Increasing pyrolysis temperatures results in the 

removal of oxygen-containing functional groups and produces high aromaticity and 

low polarity biochars, which may negatively affect ammonium sorption to biochar 

(Gai et al., 2014). Newly produced biochars are also known to have a low ability to 

adsorb cations due to the presence of fewer oxygen-containing functional groups 

(Cheng et al., 2014). 

Biochar�s ability to remove orthophosphate has been attributed to bridge 

bonding with polyvalent cations. Ca2+, Mg2+, Al3+ and Fe3+ ions can act as a bridge to 

connect negatively-charged functional groups on the biochar surface with 

orthophosphate (Lin et al., 2012; Qian et al., 2013). 
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Chemical activation of biochar has been shown to increase the oxygen-

containing functional groups (Xue et al., 2012). Therefore, it was hypothesised that 

the chemical activation of biochar results in an increasing number of oxygen-

containing functional groups and that the biochar has a greater sorption ability for 

ammonium, potassium and orthophosphate compared to untreated biochar. 

The overall objective of this study was to investigate the effect of various 

activation procedures for biochar on its ability to remove nutrients from the liquid 

fraction of digestate. The specific objectives were to determine i) the effect of 

chemical activation on the oxygen-containing functional groups of biochar and ii) 

the effect of activation on ammonium, potassium and orthophosphate removal from 

the liquid fraction of digestate. 

 

3.2 Materials and Methods 

Activation of Biochar 

Wood biochar was used in the experiments, produced by the slow pyrolysis of 

holm oak at 650 °C (Proininso Inc. Málaga, Spain). Biochar samples had an ash 

content of 11.3 % (dry basis) and a composition of 76.5 % C, 1.4 % H, 0.8 % N, 7 % 

O, 0.2 % P, 0.6 % K, 0.04 % Na, 5 % Ca, 0.3 % Mg, 0.05 % Fe, 0.14 % Al (Ross, 2016). 

The particle size of the biochar samples was 1-4 mm. Activation of biochar was 

performed by treating the biochar with deionised water and different 

concentrations of the H2O2, H2SO4 and NaOH solutions, i.e. 1 M and 3 M, as well as 

different temperatures i.e. 20 ºC and 80 ºC, with a solid-to-liquid ratio of 1:20. 

Activation was conducted in conical flasks that were stirred for 24 h with a magnetic 

stirrer. 

Activated biochars were rinsed twice with 500 mL deionised water and dried at 

70 ºC for 24 h. Dry biochar samples, except for the untreated biochar (no rinsing 

and no pH adjustment applied to untreated biochar samples), were transferred into 

beakers to adjust pH. 1 M H2SO4 and 1 M NaOH were used to adjust the pH of the 

activated biochar and water mixture to between 6 and 7. Biochars were dried at 

room temperature for 24 h and then at 70 ºC for a further 24 h prior to the sorption 

experiments. 
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Sorption experiments 

Sorption experiments were conducted by contacting untreated and activated 

biochars with a synthetic solution of minerals and the liquid fraction of digestate 

separately. Table 3.1 gives an overview of all the treatments. The synthetic solution 

was prepared as a solution of NH4Cl, KCl and Na2HPO4 salts. The liquid fraction of 

digestate was collected from a centralised biogas plant (Fangel Bioenergy ApS, 

Odense, Denmark) where digestate is separated into liquid and solid fractions by a 

decanter centrifuge (Gea Westfalia, AD 1220, Oelde, Germany). The characterisation 

of the synthetic solutions and liquid fractions of digestate is presented in Table 3.2; 

the synthetic solution was made up to resemble digestate ammonium, phosphate 

and potassium concentrations. The pH of the synthetic solution and liquid fraction 

of digestate was adjusted to 6.5-7 using HCl (37 %) prior to contact with biochars to 

prevent ammonia volatilisation. The sorption experiments were conducted by 

adding 2.5 g of the untreated or activated biochar to a conical flask with 50 mL 

synthetic solution and liquid fraction of digestate and shaking the flasks on a 

laboratory shaker at 150 rpm for 48 h. 

 

Table 3.1 Overview of the treatments. 

Biochar type Abbreviation  
Concentration  
of the activation 
agent (mol L-1) 

Activation 
temperature 
(ºC) 

Untreated U-BC n/a n/a 

De-ionised water activated DW-BC n/a 20 

Sulfuric acid activated H2SO4-L20-BC 1 20 

 H2SO4-H20-BC 3 20 

 H2SO4-L80-BC 1 80 

 H2SO4-L80-BC 3 80 

Sodium hydroxide activated NaOH-L20-BC 1 20 

 NaOH-H20-BC 3 20 

 NaOH-L80-BC 1 80 

 NaOH-L80-BC 3 80 

Hydrogen peroxide activated H2O2-L20-BC 1 20 

 H2O2-H20-BC 3 20 
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Table 3.2 Characterisation of the synthetic solutions and the liquid fractions of digestate (range 
indicates concentration variation). 

Parameter 
Synthetic  
solutions 

Liquid fractions  
of digestate 

NH4-N (mg L-1) 3339-3448 4094-4384 

K (mg L-1) 2406-2511 1795-2035 

PO4-P  (mg L-1) 147-159 104-115 

Ca (mg L-1) n/a 228-300 

Mg (mg L-1) n/a 58-64 

Na (mg L-1) n/a 1100-1320 

Fe (mg L-1) n/a 55-86 

pH 6.96-7.23 7.64-8.72 

 

Analytical methods 

Ammonium (NH4-N) and orthophosphate (PO4-P) concentrations were 

measured by flow injection analysis (FIAstar 5000) according to ISO 11732 (2005) 

and ISO 15681-1 (2003), respectively. Potassium was analysed according to 

Standard Methods (2005) using a flame photometer (Perkin Elmer 3300). 

 

Fourier Transform-Infrared Spectroscopy (FTIR) analysis 

The FTIR-PAS spectra of the untreated and activated biochars were recorded on 

a Nicolet 6700 spectrometer (ThermoScientific, USA) equipped  

with a PA-301 photoacoustic detector (Gasera Ltd, Finland), as described previously 

by Bekiaris et al. (in preparation). Briefly, a small quantity of biochar was placed in a 

cup with Ø of 10 mm. The sample chamber was purged with helium prior to 

measurement in order to decrease the effect of moisture evaporation from the 

sample and increase the signal-to-noise (S/N) ratio. Activated charcoal (Sigma-

Aldrich Denmark ApS, CAS number: 7440-44-0) was used to record the background, 

which was subtracted from the sample spectra to remove the effect of ambient CO2 

and moisture. For each sample, 128 scans in the mid-infrared region between 4000 

and 600 cm-1 were recorded and averaged. Fityk 0.9.8 software (Wojdyr, 2010) was 

used for peak deconvolution of the region of interest between 1900 and 900 cm-1. 
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Statistical analysis 

Statistical analyses were conducted using the statistical package R, version 3.2.2 

(The R Project, 2015). Data from the sorption experiments were analysed using a 

one-way analysis of variance (ANOVA) procedure for ammonium, potassium and 

orthophosphate removal separately, and Tukey�s honestly significant difference 

(HSD) test was conducted to investigate differences between various activation 

conditions at the P < 0.05 level. 

A Pearson product-moment correlation test was performed to investigate the 

correlation between the area of deconvoluted peaks and ammonium and 

orthophosphate removal separately. 

 

3.3 Results and Discussion 

Sorption experiments 

Ammonium removal 

Figure 3.1a shows that activation had a significant effect on ammonium removal 

compared to untreated biochar (p<0.001). The removal using H2SO4-H80-BC 

(p=0.026), NaOH-L20 (p=0.017), NaOH-L80 (p=0.001), NaOH-H80 (p=0.006) and 

H2O2-L20-BC (p=0.008) was significantly different from that of the untreated 

biochar. The highest NH4-N removal from synthetic solutions was found with NaOH-

L80-BC at 3.95 mg g-1 biochar, and this was significantly different from U-BC, DW-

BC, H2SO4-L80-BC, H2O2-L20-BC and H2O2-H20-BC. The lowest ammonium removal 

was found with H2O2-L20, which resulted in a negative removal (i.e. release). 

Our results showed that activation of biochar with deionised water and 

hydrogen peroxide did not improve ammonium removal compared to untreated 

biochar. Similarly, Gai et al. (2014) reported a decrease in biochar�s ability to 

remove ammonium after being washed in deionised water. Wang et al. (2015) found 

that the ammonium adsorption capacity of biochar did not change after activation 

with H2O2 unless the pH of activated biochar was adjusted from 3.7 to 7. Adjusting 

the pH of biochar prior to sorption resulted in an increase in adsorption capacity. In 

the present study, the final pH in synthetic solutions  
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Figure 3.1 Ammonium removal per g biochar from (a) synthetic solution and (b) the liquid 
fraction of digestate with untreated biochar and as a result of various activation procedures. 
Error bars indicate standard error (n=3). 

 

after 48 h of contact with H2O2-activated biochar was between 7.62±0.19 and 

7.77±0.06 (Table 3.3), but no increase in ammonium removal was observed. 

The removal of ammonium from synthetic solutions by untreated biochar has 

previously been studied and several mechanisms discussed in the literature. Cation 
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exchange was used as one possible mechanism to explain ammonium removal 

(Sarkhot et al., 2013; Gai et al., 2014; Cui et al., 2016). Sarkhot et al. (2013) observed 

the release of Ca+ ions and Cui et al. (2016) reported that Mg2+ and Ca2+ were 

released into the liquid solutions whereas NH4
+ was removed, therefore concluding 

that these cations play an important role in the sorption of ammonium. K+ release 

from biochar (Figure 3.2a) was observed, which could be due to cation exchange 

with NH4
+ in the synthetic solution. In all the treatments except the acid treatment, 

ammonia volatilisation may also have contributed to ammonium removal from 

synthetic solutions as the final pH ranged from 7.62±0.19 to 8.67±0.05 (Table 3.3). 

In this pH range struvite (MgNH4PO4.6H2O) precipitation may also be responsible 

for ammonium removal (De Graaff et al., 2011). However no further measurements 

were conducted to explain which mechanism was dominant for ammonium 

removal. 

A higher ammonium removal by acid and base-treated chars could be explained 

by cation exchange: cations in biochar were replaced with H+ and Na+ ions as a 

result of H2SO4 and NaOH treatments, and thereby H+ and Na+ could easily be 

exchanged with NH4
+ ions, since NH4

+ is more competitive than the aforementioned 

ions (Cui et al., 2016). 

 

Table 3.3 Final pH in synthetic solutions and the liquid fraction of digestates after 48 h contact 
with untreated or activated biochars. 

Treatment 

pH 
(synthetic 
solution) 

pH 
(digestate) 

U-BC 7.89±0.07 8.58±0.08 
DW-BC 7.83±0.05 8.52±0.16 

H2SO4-L20-BC 5.23±0.05 7.65±0.48 

H2SO4-H20-BC 3.46±0.15 7.54±0.45 

H2SO4-L80-BC 3.17±0.08 7.42±0.16 

H2SO4-L80-BC 2.14±0.05 8.17±0.16 
NaOH-L20-BC n/a 8.67±0.05 
NaOH-H20-BC 8.47±0.13 8.87±0.18 
NaOH-L80-BC n/a 8.47±0.13 
NaOH-L80-BC 8.67±0.05 8.32±0.14 

H2O2-L20-BC 7.62±0.19 8.3±0.23 

H2O2-H20-BC 7.77±0.06 8.06±0.44 
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Activation of biochar significantly affected ammonium removal (p<0.001) from 

the liquid fraction of digestate (Figure 3.1b). Removal with H2SO4-H20-BC 

(p=0.012), H2SO4-H80-BC (p<0.001) and NaOH-H20-BC (p=0.039) resulted in a 

significantly different removal compared to untreated biochar. The highest NH4-N 

removal from the liquid fraction of digestate was observed in H2SO4-H80-BC with a 

removal of 10.4 mg g-1 biochar and this was significantly different from U-BC, DW-

BC, H2O2-L20-BC, H2O2-H20-BC, NaOH-H80-BC, H2SO4-H20-BC and H2SO4-L80-BC. 

H2SO4-H20-BC resulted in the lowest NH4-N removal from the liquid fraction of 

digestate with 1.57 mg g-1 biochar. 

In the liquid fraction of digestate, higher ammonium removal compared to 

synthetic solution was observed. This could be attributed to the presence of organic 

matter in the liquid fraction of digestate, which increases ammonium removal by co-

adsorption with dissolved organic molecules. Similarly Sarkhot et al. (2013) found 

higher ammonium removal from manure compared to pure solution. Lehmann et al. 

(2002) reported increased ammonium adsorption on biochar with the presence of 

soluble organic matter. Both studies explain this increase in ammonium adsorption 

by the presence of organic matter and thereby co-adsorption of ammonium and 

dissolved organic matter. Another explanation for higher ammonium removal could 

be struvite (MgNH4PO4.6H2O) precipitation due to higher concentrations of 

magnesium in the liquid fraction of digestate. Cui et al. (2016) reported the 

formation of struvite when biochar is used to remove ammonium from liquid 

solutions. 

Potassium removal 

Potassium removal from synthetic solution was significantly affected by the 

activation of biochar (Figure 3.2a) and K removal in activated biochars was 

significantly different compared to the untreated biochar (p<0.001). The highest K 

removal was observed in H2SO4-H80-BC, NaOH-L20-BC and H2SO4-L80-BC with 

1.22, 1.06 and 0.87 mg K g-1 biochar removal respectively. Negative values were 

found with U-BC, DW-BC, DW-BC, H2O2-L20-BC, H2O2-H20-BC and NaOH-H80-BC, 

indicating that K was released into the synthetic solution. Figure 3.2b shows that 

potassium removal from the liquid fraction of digestate was also affected and K 

removal in activated biochars was significantly different compared to the untreated 

biochar (p<0.001). The highest K removal was found with H2SO4-H80-BC, H2SO4-

L80-BC and NaOH-H80-BC with 2.10, 1.21 and 0.53 mg K g-1 biochar removal 
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respectively, and K release into the liquid fraction of digestate was observed after all 

the other treatments. 

The highest potassium release was observed from untreated biochar which was 

not washed prior to the sorption experiments. This was probably the reason why it 

released   higher   amounts  of  potassium  compared  to  the  deionised  water  and  

 

Figure 3.2 Potassium removal per g biochar from (a) synthetic solution and (b) the liquid 
fraction of digestate with untreated biochar and as a result of various activation procedures. 
Error bars indicate standard error (n=3). 
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peroxide-treated chars. Potassium release from wood biochar was also observed by 

(Angst & Sohi, 2013), who studied K release from hardwood biochar with water 

extraction, and found complete extraction of K, up to 4.48 mg K g-1 release. Wu et al. 

(2011) reported that 90 % of potassium in wood biochar could be released in water. 

As discussed previously, cations in biochar, including potassium, are likely to have 

been replaced with H+ and Na+ ions as a result of the H2SO4 and NaOH treatments. 

Once K was removed from the biochar, biochar could exchange H+ and Na+ ions with 

K+ in the solution and in the liquid fraction of digestate, and this could be the reason 

for the potassium removal with most of the H2SO4 and NaOH-treated biochars. 

Asada et al. (2006) found that a higher amount of potassium was released from 

untreated charcoal than from H2SO4-treated charcoal, concluding that sulfuric acid 

treatment removes minerals. 

However, even though the ability for potassium adsorption can be obtained by 

H2SO4 and NaOH activation, the adsorption capacity is rather low and will also result 

in biochar potassium being present in the activation media, which subsequently 

cannot be reused to activate new biochar samples. 

 

Orthophosphate removal  

Figure 3.3a shows that activation of biochar had a significant, but rather 

differentiated effect on orthophosphate removal from the synthetic solutions 

(p<0.001). PO4-P removal was highest with DW-BC (1.91 mg g-1 biochar) and this 

was significantly different from all the other treatments. All H2SO4-activated 

biochars showed dramatically reduced PO4-P removal, which was significantly 

lower than the other treatments in synthetic solutions. 

In the literature, several possible mechanisms for phosphate removal from liquid 

solutions by biochar have been proposed, including phosphate adsorption to MgO 

on the biochar surface (Yao et al., 2011), precipitation reactions between phosphate 

and Ca+ and Mg+ ions in biochar (Wang et al., 2015), anion exchange with surface 

hydroxyl groups (Sarkhot et al., 2013) and electrostatic interaction of the phosphate 

anions with charged hydroxide surfaces (Chen et al., 2011). The results of the 

present study showed that untreated and activated biochars could remove 

orthophosphate, except for the biochars activated with sulfuric acid. This could be 

due to the low equilibrium pH in the synthetic solution that was in contact with acid 

treated biochar. All other solutions had a final pH of between 7.62 and 8.67 (Table 
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3.3), which allows precipitation reactions for hydroxyapatite (Ca5OH(PO4)3) and 

struvite (MgNH4PO4.6H2O) in the presence of  Ca+ and Mg+ ions (De Graaff et al., 

2011). In contrast, the final pH of the synthetic solution contacted with H2SO4-

treated chars varied between 2.16 and 5.23 and therefore the hydroxyapatite and 

struvite precipitation reactions would be limited. Furthermore, it is likely that the 

acid treatment of biochar removes most of the Ca+ and Mg+ ions together with Fe3+ 

and Al3+ in the biochar, which may contribute to cation bridging in all the other 

treatments (Lin et al., 2012; Qian et al., 2013). 

 

 
Figure 3.3 Orthophosphate removal per g biochar from (a) synthetic solution and (b) the liquid 
fraction of digestate with untreated biochar and as a result of various activation procedures. 
Error bars indicate standard error (n=3). 
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For the liquid fraction of digestate, all treatments resulted in a significantly 

different removal of orthophosphate from U-BC (p<0.001), except for DW-BC and 

NaOH-L80-BC (Figure 3.3b). In contrast to the results in the synthetic solution, 

H2SO4-activated biochars resulted in the highest PO4-P removal with up to 2.02 mg 

PO4-P g-1 removal. The very different removal from synthetic solution and the liquid 

fraction of digestate for the H2SO4 treatment may be attributed to the difference in 

pH between the two solutions. All liquid digestates had a final pH (at the end of the 

sorption experiment) of between 7.42 and 8.87 (Table 3.3), which would be within a 

suitable pH range for hydroxyapatite and struvite precipitation (De Graaff et al., 

2011). Moreover, cation bridging of divalent and trivalent cations (which were not 

likely to be present in acid-treated biochar, but would be present in the digestate) 

with orthophosphate may explain the differences in orthophosphate removal 

between the synthetic solution and the liquid fraction of digestate (Lin et al., 2012; 

Qian et al., 2013). 

 

Functional groups on the biochar surface 

According to Cui et al. (2016), oxygen-containing functional groups play an 

important role in the sorption of ammonium since ammonium can form surface 

complexes with carbonyl and carboxyl groups. However, FTIR-PA spectra from the 

differently activated biochars only revealed visible differences between the 

spectrum of the biochar activated with H2SO4 and the other biochars 

(Supplementary Figure 3.1). Deconvolution of the spectrum in the region between 

1800 and 900 cm-1, where oxygen-containing functional groups occur, was used to 

resolve the overlapping peaks and separate peaks related to oxygen-containing 

bonds. The results can be found in Supplementary Figure 3.2 and Table 3.4. 

Deconvoluted peaks corresponding to the vibration of oxygen-containing 

functional groups were observed at 1710 cm-1 (C=O stretching from carboxylic 

acids), 1590 cm-1 (symmetric and asymmetric C=O stretching vibration of carboxyl 

groups), 1420-1390 cm-1 (symmetric and asymmetric C-O stretching vibration of 

carboxyl groups), 1270 cm-1 (aromatic CO- and phenolic -OH 
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groups) and 1160-1130 cm-1 (C-O stretching vibrations of oxygenated functional 

groups of cellulose) (Cheng et al., 2008; Cui et al., 2016). 

The sum of the area of the peaks corresponding to the oxygen-containing 

functional groups revealed that activated biochars contained more oxygen-

containing functional groups than untreated biochars or deionised water-treated 

biochars (U-BC and DW-BC respectively) (Table 3.4). The greatest increase was 

observed after H2SO4 activation, followed by H2O2 and NaOH activation. This 

followed the removal of PO4-P from the liquid fraction of digestate, while it 

appeared that in the case of NH4-N removal the biochars activated with NaOH 

removed more NH4-N than the biochars activated with H2O2. However, as described 

earlier, NH4-N can also be removed from the digestate due to cation exchange, co-

adsorption with organic matter, precipitation in the form of struvite and ammonia 

volatilisation, which means that this is not related to the oxygen-containing 

functional groups of the biochar. 

The correlation between the area of each peak and the removal of NH4-N and PO4-P 

from the liquid digestate after the addition of biochar revealed that none of the 

peaks ascribed to oxygen-containing bonds were significantly correlated with NH4-

N removal (Table 3.4). Again, removal of NH4-N may be through other mechanisms 

such as cation exchange, co-adsorption with organic matter, precipitation in the 

form of struvite and ammonia volatilisation, therefore the amount of NH4 that can 

be adsorbed to oxygen-containing surface groups of biochar may be limited. 

However, peaks at 1590 cm-1 and 1420-1390 cm-1 ascribed to carboxylate groups 

were significantly positively correlated with PO4-P removal. The sum of the area of 

all peaks positively correlated with PO4-P removal, including carboxylate peaks 

together with peaks at 1270 cm-1 (aromatic CO- and phenolic -OH groups) and 

1160-1130 cm-1 (C-O stretching vibrations of oxygenated functional groups of 

cellulose), was found to be significantly correlated with PO4-P removal (r=0.82). The 

peak corresponding to carboxylic acids at 1710 cm-1 was not correlated with PO4-P 

removal. Peaks corresponding to carboxyl groups could reflect the presence of the 

carboxylate ion COO- once it was in contact with the liquid fraction of digestate. The 

positive correlation between carboxyl peaks and PO4-P removal suggested that the 

formation of cation bridges between carboxylate ion and orthophosphate was an 

important mechanism for PO4-P removal from liquid fraction of digestate. Again, the 

formation of cation bridges could be due to the presence of polyvalent cations such 
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as Ca2+, Mg2+ Al3+ and Fe3+ in biochar and in the liquid fraction of digestate (Lin et al., 

2012; Qian et al., 2013). 

 

3.4 Conclusions 

Our results showed that wood biochar could remove ammonium and 

orthophosphate from the liquid fraction of digestate and that removals were 

somewhat improved by chemical activation of biochar with sulfuric acid, sodium 

hydroxide and hydrogen peroxide.  Potassium removal was not possible with 

untreated, deionised water-treated and H2O2-activated biochar since they released 

potassium into the liquid fraction of digestate. However chemical activation of 

biochar with NaOH and H2SO4 enabled potassium removal from the liquid fraction of 

digestate, but resulted in biochar potassium being present in the activation media, 

which could not then be reused 

A strong positive correlation was found between orthophosphate removal and 

the carboxyl functional groups, which might be due to cation bridging between 

carboxylate ions and orthophosphate. 

Ammonium removal was not related to any oxygen-containing functional groups 

of biochar and other mechanisms are probably dominant in ammonium removal, 

such as cation exchange, co-adsorption with organic matter and struvite 

precipitation. Further investigations might be useful to understand fully the 

mechanisms behind nutrient removal by biochar and its relationship with the 

surface functional groups. 
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Supplementary Figures 

 

 
Supplementary Figure 3.1 Averaged FTIR-PA spectra across the different activations of the 
biochars. 
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Supplementary Figure 3.2 An example of peak deconvolution of the region of interest (1800-
900 cm-1) for the biochar activated with (A) 1M H2O2 at 20 oC and (B) 1M H2SO4 at 20 oC. 
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Abstract 

Concentrating nutrients on sorbents such as biochar and clinoptilolite and 

subsequently using the nutrient-enriched sorbents as a fertiliser could be an 

alternative way to manage nutrients in the liquid fraction of digestate. In this study, 

we investigated the use of biochar and clinoptilolite columns in removing 

ammonium, potassium, orthophosphate and dissolved organic carbon (DOC) from 

the liquid fraction of digestate. Our objectives were to investigate the effect of the 

initial loading ratio between liquid and biochar on nutrient removal, and to 

investigate the effect of combining biochar with clinoptilolite on nutrient and DOC 

removal efficiency.  

Increasing the initial loading ratios increased nutrient concentrations on biochar 

to 8.61 mg NH4-N g-1, 1.95 mg PO4-P g-1 and 13.01 mg DOC g-1. However, an increase 

in the initial loading ratio resulted in decreasing removal efficiencies. Potassium 

removal was not possible since biochar released potassium into the liquid fraction 

of digestate. 

The combination of biochar and clinoptilolite resulted in improved ammonium, 

potassium and DOC removal efficiencies compared to biochar alone, but did not 

significantly change PO4-P removal efficiencies. Removal efficiencies with combined 

sorbents were up to 67 % for ammonium, 58 % for DOC and 58 % for potassium. 

Clinoptilolite alone showed higher removal efficiencies compared to biochar alone, 

and combining clinoptilolite with biochar only improved total P removal efficiency. 

Nutrient removal from the liquid fraction of digestate with clinoptilolite and 

biochar may be an option for concentrating nutrients from the liquid fraction of 

digestate when both sorbents are available at a low cost. 

Keywords: biochar; clinoptilolite; nutrient recovery; sorption; liquid fraction of 

digestate. 
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4.1 Introduction 

Management solutions for digestate are becoming increasingly important with 

the rising number of biogas plants in which animal manure is anaerobically digested 

with or without the addition of other types of organic waste or bioenergy crops. In 

regions that have a nutrient surplus due to intensive animal production, mechanical 

separation is often used to facilitate the redistribution of nutrient surpluses to other 

regions (Møller, 2000; Paavola & Rintala, 2008; Jørgensen & Jensen, 2009). 

Mechanical separation can also be valid for large-scale, centralised biogas plants 

where the solid fraction of mechanically separated digestate can be transported 

more easily and economically to regions with lower animal densities and no 

nutrient surplus (Møller, 2000; Møller et al., 2007). This still leaves the voluminous 

liquid fraction of digestate, and the most common practice is to apply it directly to 

agricultural fields where it may serve as a fertiliser due to its high content of plant-

available nutrients (Hjorth et al., 2010; Fuchs & Drosg, 2013). However, nutrient 

balancing in the soil is important to avoid nutrient runoff to streams and waterways 

and protect groundwater resources and in Europe nutrient loads must remain 

within certain legal limits (Fuchs & Drosg, 2013). Hence long-distance 

transportation and storage of large volumes of liquid manure or digestate is usually 

necessary, which can be problematic due to high transportation costs and large 

storage capacity requirements (Rehl & Müller, 2011; Fuchs & Drosg, 2013; Zarebska 

et al., 2015). 

The recovery and concentration of nutrients from the liquid fraction of digestate 

by using sorbent materials could therefore potentially offer one solution for 

reducing practical and environmental issues. Sorbent materials enriched in 

nutrients can be considered to be nutrient carriers, which can subsequently be used 

as a fertiliser in agricultural fields. Biochar has been suggested as a sorbent for the 

removal of ammonium (Mukherjee et al., 2011; Hale et al., 2013; Hollister et al., 

2013; Sarkhot et al., 2013; Hina et al., 2014; Wang et al., 2015a) and phosphate (Yao 

et al., 2013; Zeng et al., 2013; Wang et al., 2015c) from various wastewaters. Biochar 

has also attracted growing interest as an effective sorbent for removing organic 

contaminants due to its porous structure and large surface area (Chen et al., 2011; 

Ahmad et al., 2014; Mohan et al., 2014; Oh & Seo, 2015; Wang et al., 2015b). 

Clinoptilolite, a natural zeolite mineral, is a well-known sorbent (cation exchanger), 

especially in the removal of ammonium from wastewater (Koon & Kaufman, 1975; 
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Beler-Baykal et al., 1996; Beler Baykal & Guven, 1997; Hedström, 2008). Several 

studies have described the use of clinoptilolite for ammonium, potassium and 

orthophosphate recovery with high efficiencies from source-separated human urine 

(Ganrot et al., 2007, 2008; Beler Baykal et al., 2009; Beler-Baykal et al., 2011; 

Kocatürk & Baykal, 2012; Allar & Beler Baykal, 2015) and the liquid fraction of 

digestate (Kocatürk et al.). 

The initial loading ratio (the initial amount of ammonium N in the liquid divided 

by the amount of sorbent in the system) is reported to be an important design 

parameter, which influences the nutrient removal efficiency in sorption systems 

with clinoptilolite (Kocatürk et al.; Beler Baykal et al., 2009). However, as yet there 

have been no studies that report on the effect of the initial loading ratio on the 

nutrient removal efficiency of biochar. 

Combining biochar and clinoptilolite may represent a complementary solution 

for nutrient recovery from the liquid fraction of digestate, considering the 

specialised nature of biochar for ammonium, phosphate and organic matter 

adsorption and clinoptilolite�s efficiency as a cation exchanger with high selectivity 

for ammonium and potassium. We hypothesised that: i) biochar adsorbs nutrients, 

i.e. ammonium, potassium and orthophosphate, and organic matter from the liquid 

fraction of digestate, and nutrient removal efficiency is affected by the initial loading 

ratio, ii) combining clinoptilolite and biochar provides greater complementary 

sorption which can remove nutrients and organic matter from the liquid fraction of 

digestate more efficiently than either one of them alone. 

The objectives of our study were to investigate: i) the effect of the initial loading 

ratio of biochar on the removal efficiency of ammonium, potassium, orthophosphate 

and organic matter from the liquid fraction of digestate, ii) the effect of the 

combination of clinoptilolite and biochar on nutrient removal efficiency as 

compared to clinoptilolite and biochar alone. 

4.2 Materials and Methods 

Wood biochar was used in the experiments, which was produced by slow 

pyrolysis of holm oak at 650 °C and at atmospheric pressure (Proininso Inc. Málaga, 

Spain). Biochar samples had a composition of 76.5 % C, 1.4 % H, 0.8 % N, 7 % O, 0.2 

% P, 0.6 % K, 0.04 % Na, 5 % Ca, 0.3 % Mg, 0.05 % Fe, 0.14 % Al (Ross, 2016) and a 

particle size of 1-4 mm. 
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The clinoptilolite was from Gördes, Turkey and had a typical composition of 65-

72 % SiO2, 10-12 % Al2O3, 0.7-1.9 % Fe2O3, 0.1-0.5 % Na2O, 2.5-3.8 % K2O, 2.4-3.7 % 

CaO, 0.9-1.2 % MgO, 0-0.08 % MnO and 0.02-0.05 % P2O5 (data provided by the 

manufacturer, Rota Mining Co.). The particle size of the clinoptilolite was 1�3 mm. 

The properties of the biochar and clinoptilolite samples are given in Table 4.1. pH 

and specific surface area analyses of clinoptilolite and biochar were performed by a 

commercial laboratory (Eurofins, Germany). The cation exchange capacity (CEC) of 

clinoptilolite was provided by the manufacturer, while CEC of biochar was provided 

by (Dijk, 2015). 

The liquid fraction of digestate was collected from a centralised biogas plant 

(Morsø Bioenergi ApS, Redsted, Denmark) where pig and cattle slurry as the main 

feedstock and various food wastes as the co-substrate are anaerobically digested 

and separated into liquid and solid fractions by a Gea Westfalia (UCA  

501-00-02) decanter centrifuge. Table 4.2 shows the characterisation of the liquid 

fraction of digestate. In all the experiments, the pH of the liquid fraction of digestate 

was adjusted to 6.5-7.0 using HCl (37 %) to prevent ammonia volatilisation. 

 

Table 4.1 Properties of biochar and clinoptilolite samples 

Sorbent 
Cation exchange capacity 
(cmolc kg-1) 

Surface area (m2 
g-1) 

pH 

Biochar 42.3 166 8.2 

Clinoptilolite 150-210 35.5 8.5 

 

Table 4.2 Characterisation of the liquid fractions of digestate used in the study (range indicates 
concentration variation between two batches of the digestate liquids used). 

Parameter Concentration 

NH4-N  (mg L-1) 3195-4207 

K (mg L-1) 1337-2850 

PO4-P  (mg L-1) 113-206 

Total N (mg L-1) 4268-4507 

Total P (mg L-1) 292-315 

Dissolved organic carbon (mg L-1) 1418-2910 

Ca (mg L-1) 322-445 

Mg (mg L-1) 61-87 

Na (mg L-1) 1412-1800 

Fe (mg L-1) 45-108 

pH 8.46-8-84 
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Effect of the initial loading ratio on nutrient and organic matter 

removal 

We conducted column experiments with biochar to investigate the effect of the 

initial loading ratio on NH4
+, PO4

3-, K+ and DOC removal.  The liquid fraction of 

digestate was pumped through Plexiglas columns (100 cm height and 2.4 cm 

diameter) packed with 120 g biochar. A peristaltic pump (Masterflex L/S  

Series) was used to pump the liquid fraction of digestate at 100 % recycling  

in the upflow mode at 1 bed volume per hour for 72 hours. 

Column experiments were conducted in two replicates, with various initial 

ammonium loading ratios, i.e. 10, 15, 20, 30, 40, 80 mg NH4-N g-1 biochar designated 

as L10, L15, L20, L30, L40, L80 respectively. The volume of the liquid fraction of 

digestate in the feed tank was dependent on the initial loading ratio and the 

ammonium concentration in the liquid fraction of digestate, and varied between 300 

and 2800 mL to achieve the desired loading ratios. A 5 mL sample volume was taken 

from the feed tank every 24 hours. 

 

Nutrient removal by combining biochar and clinoptilolite 

Column experiments were conducted to investigate the effect of combining 

biochar with clinoptilolite by comparing removal efficiency in columns with biochar 

and clinoptilolite alone. We also investigated the effect of sequencing or mixing the 

sorbents in combined systems on nutrient removal efficiency. The tested columns 

were biochar alone (B), clinoptilolite alone (C), biochar and clinoptilolite 

homogenously mixed in one column (M), a biochar column followed by a 

clinoptilolite column (BC) and a clinoptilolite column followed by a biochar column 

(CB). The liquid fraction of digestate was pumped through Plexiglas columns (25 

and 50 cm height, 2.4 cm diameter) packed with clinoptilolite and/or biochar. The 

amount of sorbent added to the columns and the volume of the liquid fraction of 

digestate in the feed tank was based on the initial loading ratio and ammonium 

concentration in the liquid fraction of digestate. An overview of the experimental 

setup is shown in Figure 4.1 and the experimental conditions are summarised in 

Table 4.3. Column experiments were run at 100 % recycling in the upflow mode for 

72 hours in three replicates. A 10 mL sample volume was taken from the feed tank 

every 24 hours. 
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Figure 4.1 Experimental setup for a) biochar-alone column (B), b) clinoptilolite-alone column 
(C), c) biochar and clinoptilolite homogenously mixed in one column (M), d) biochar column 
followed by a clinoptilolite column (BC) and e) clinoptilolite column followed by a biochar 
column (CB). 

Analyses 

Samples from the different experimental setups were analysed for NH4-N, PO4-P and 

K in different laboratories using different instruments. The ammonium (NH4-N) and 

orthophosphate (PO4-P) concentrations were measured on a flow injection analyser 

(FIAstar 5000) and a segmented flow analyser according to ISO 11732 

(International Organization for Standardization, 2005) and ISO 15681-1 

(International Organization for Standardization, 2003)   respectively   for   samples  

 

Table 4.3 Experimental conditions used in the nutrient loading experiments with biochar-alone 
column (B), clinoptilolite-alone column (C), biochar and clinoptilolite homogenously mixed in 
one column (M), biochar column followed by a clinoptilolite column (BC), clinoptilolite column 
followed by a biochar column (CB). 

Designation Initial  
loading ratio  

Amount of 
clinoptilolite (g) 

Amount of 
biochar (g) 

Bed height  
(cm) 

Digestate  
volume (mL) 

B 15a n/a 60 50 450 

C 15b 60 n/a 17 450 

M 15c 45 45 50 338 

BC 15c 60 60 50, 17 450 

CB 15c 60 60 17, 50 450 
a initial loading ratio is 15 mg NH4-N g-1 biochar 
b initial loading ratio is 15 mg NH4-N g-1 clinoptilolite 
c initial loading ratio for the combined columns is chosen as 15 mg NH4-N g-1 clinoptilolite 
and the same amount of biochar has been added to the system 
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from the �effect of initial loading ratio on nutrient removal� and �nutrient removal by 

combining biochar and clinoptilolite� experiments. Potassium was analysed using a 

flame photometer (Perkin Elmer 3300) and inductively coupled plasma atomic 

emission spectroscopy according to Standard Methods and for the same set of 

samples. 

 

Dissolved carbon (DC) and dissolved inorganic carbon (DIC) were measured in 

all samples by a segmented flow analyser according to Dutch Standards (Dutch 

Standards, 1997). Dissolved organic carbon (DOC) was calculated as the difference 

between DC and DIC (DOC = DC - DIC). Total N and total P were analysed after 

digesting samples in a mixture of sulphuric acid, salicylic acid and Se, to which H2O2 

was added, and were colorimetrically determined by a segmented flow analyser 

according to (Novozamsky et al., 1984; International Organization for 

Standardization, 2003, 2005). 

 

The removal was determined for each sampling occasion as: 

    (4.1) 

where Rx is the amount of sorbate removed from the solution by the sorbent (mg g-

1) between sampling occasion x and x+1, Cx is the concentration (mg L-1) of the 

sorbate on sampling occasion x, Vx is the volume (L) of the aqueous solution 

(digestate) on sampling occasion x and M (g) is the mass of the sorbent. The total 

removal at the end of the experiment was calculated as: 

     (4.2) 

where R is the total amount of sorbate removed from the solution by the sorbent at 

the end of the experiment (mg g-1), and n is the total number of sampling occasions. 

Removal efficiency (RE) was determined as: 

    (4.3) 

where RE is the removal efficiency (%), R is the total removal of the sorbate, C0 is 

the initial concentration of the sorbate and V0 is the initial volume of the liquid 

fraction of digestate. 
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Statistical analyses 

Statistical analyses were conducted using the statistical package R, version 3.2.2 

(The R Project, 2015). Data from the experiments on nutrient removal by biochar 

were analysed using a one-way analysis of variance (ANOVA) procedure for 

independent samples to test for statistically significant differences (p<0.05). We 

performed a Pearson product-moment correlation test to investigate the correlation 

between the initial loading ratio and NH4-N removal, NH4-N removal efficiency, PO4-

P removal, PO4-P removal efficiency, DOC removal and DOC removal efficiency 

separately. 

For nutrient removal in the combining biochar and clinoptilolite experiment, 

Tukey�s Honest Significant Difference (HSD) test was conducted to investigate 

differences between biochar, clinoptilolite and various combined column systems at 

the P < 0.05 level. 

 

4.3 Results and Discussion 

Effect of the initial loading ratio on nutrient and organic matter 

removal 

Figure 4.2a shows the change in ammonium concentration over time as a result 

of various loading ratios. A higher decrease in ammonium concentration was 

observed with lower initial loading ratios. Ammonium removal by biochar (Figure 

4.2b) was significantly affected by the initial loading ratio (p=0.014). L80 resulted in 

the highest ammonium removal with 8.61 mg NH4-N g-1 biochar. An increase was 

observed in NH4-N removal with rising initial loading ratios, and this observation 

was supported by a correlation test which showed a strong positive linear 

correlation between the initial loading ratio and NH4-N removal (r=0.86, p<0.001). 

Several potential mechanisms for ammonium removal by biochar from liquid 

solutions have been proposed: cation exchange with cations such as Ca2+, Mg2+, K+, 

Na+ in biochar (Hale et al., 2013; Sarkhot et al., 2013; Zeng et al., 2013; Cui et al., 

2016), chemical reactions with (oxygen-containing) surface functional groups 

(Kizito et al., 2015; Wang et al., 2015a, 2015c; Cui et al., 2016), surface area-

dependent  

 



 60 

 
Figure 4.2 Ammonium concentration changes over time during removal in a column with 
biochar for different loading ratios (a), NH4-N removal per g biochar and NH4-N removal 
efficiency as a result of various initial loading ratios (b). L10-L80 signifies initial loading ratios 
between 10 and 80 mg NH4-N g-1 biochar. Error bars indicate standard deviations (n=2). 

 

physical diffusion and physical entrapment of NH4
+ in biochar pores (Clough et al., 

2013; Kizito et al., 2015), co-adsorption with soluble organic matter (Lehmann et al., 

2002; Sarkhot et al., 2013) and struvite (MgNH4PO4.6H2O) precipitation on biochar 

(Cui et al., 2016). Lehmann et al. (2002) attribute ammonium adsorption to the co-

adsorption with soluble organic matter. They found that the addition of extracted 

DOC from manure increases ammonium adsorption. Nutrient sorption with biochar 

has not previously been studied in column systems, but there are several studies 

that report ammonium removal in batch studies, mostly from synthetic solutions. 

Reported values for the amount of ammonium removal per g vary between 0.10 and 

5.40 mg g-1 from synthetic solutions with wood biochar (Hollister et al., 2013; Hina 

et al., 2014; Jassal et al., 2015; Wang et al., 2015a, 2015c). Few studies have reported 

ammonium removal from manure or manure digestates, which usually have a 

higher ammonium concentration and organic matter content than synthetic 

solutions. Sarkhot et al. (2013) found ammonium removal of 5.30 mg NH4-N g-1, 

whereas Kizito et al. (2015) found ammonium removal of 44.64 mg NH4-N g-1, both 

of which are higher than that reported for synthetic solutions. Our results were in 

the range of the results reported, except for the results presented by Takaya et al. 

(2016). They reported an ammonium removal of 114.4 mg g-1 from synthetic 

solutions with holm oak wood biochar pyrolysed at 650 °C (the same biochar as that 
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used in this study), which is very high compared with our results and with other 

studies in the literature. 

Ammonium removal efficiency (Figure 4.2b) varied between 10 % and 32 % and 

was significantly affected by different initial loading ratios (p=0.007). The highest 

removal efficiency was observed at the lowest loading ratio (L10), with increasing 

loading ratio generally resulting in decreasing removal efficiencies. This observation 

was supported by a correlation test that indicated a negative correlation between 

initial loading ratio and ammonium removal efficiency (r=-0.76, p=0.003). Overall, 

our results showed that the removal of ammonium by biochar was possible but 

limited. The highest removal was achieved with L80, but its removal efficiency was 

the lowest, just 10 % at this loading ratio. Even with the L10 loading ratio the 

efficiency was only 32 %. In the literature, ammonium removal efficiencies range 

between 7 % and 33 % from synthetic solutions (Sarkhot et al., 2013; Hina et al., 

2014) and 18 % and 60 % from manure products (Sarkhot et al., 2013; Kizito et al., 

2015). Our results for digestate were therefore lower than the efficiencies 

previously reported; however, removal efficiency is dependent on the initial loading 

ratio and these studies have not reported the initial loading ratios, hence our results 

may not be comparable. 

DOC removal per g biochar was significantly affected by the initial loading ratio 

(Figure 4.3, p<0.001). The highest initial loading ratio resulted in the highest DOC 

removal with 13.0 mg DOC g-1 biochar. Similarly to the ammonium results, DOC 

removal increased significantly with increasing initial loading ratios, and a 

correlation test showed a strong positive correlation between initial loading ratio 

and DOC removal (r=0.93, p<0.001). In previous studies, biochar has been shown to 

be an efficient sorbent for removing various organic compounds due to its high 

surface area and microporosity (Ahmad et al., 2014), but we have not found any 

studies that have reported DOC removal with biochar. Xing et al. (2008) studied 

DOC sorption with granular activated carbon from biologically treated sewage 

effluents that had a DOC concentration of 55 mg L-1. They applied various amounts 

of activated carbon and found that increasing the dosage of activated carbon from 

0.25 g to 5 g in 1 L wastewater results in a decrease in the amount of DOC removed, 

which is a similar observation to ours. 

We found DOC removal efficiencies ranging from 25 % to 68 %, and decreasing 

significantly with an increasing initial loading ratio (p=0.004). There was a strong 

negative correlation between initial loading ratio and DOC removal 
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Figure 4.3 Dissolved organic carbon (DOC) removal per g biochar and DOC removal efficiency 
for different initial loading ratios. L10-L80 signifies initial loading ratios between 10 and 80 mg 
NH4-N g-1 biochar. Error bars indicate standard deviations (n=2). 

 

efficiency (r=-0.86, p<0.001). Xing et al. (2008) also reported that DOC removal 

efficiency fell from 82 % to 48 % with a decreasing dosage, which corresponds to an 

increasing initial loading ratio in our study. 

Orthophosphate concentration declined over time at all initial loading ratios 

(Figure 4.4a). The highest final PO4-P concentration at the end of the experiments 

was observed with the highest loading ratio (L80). Orthophosphate removal was 

significantly affected by the initial loading ratio (p=0.02, Figure 4.4b). The highest 

loading ratio resulted in the highest PO4-P removal with 1.95 mg PO4-P g-1 biochar. 

There was a strong positive correlation between initial loading ratio and PO4-P 

removal (r=0.89, p<0.001). Our results for orthophosphate removal were in line 

with other studies, which reported up to  
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Figure 4.4 Orthophosphate concentration changes over time during removal in a column with 
biochar for different loading ratios (a), PO4-P removal per g biochar and PO4-P removal efficiency 
as a result of various initial loading ratios (b). L10-L80 signifies initial loading ratios between 10 
and 80 mg NH4-N g-1 biochar. Error bars indicate standard deviations (n=2). 

 

approximately 1.0 mg PO4-P g-1 removal from synthetic solutions and dairy manure 

(Chen et al., 2011; Hale et al., 2013; Hollister et al., 2013; Sarkhot et al., 2013). 

However, the removal in our experiments was low compared with Wang et al. 

(2015c) and Takaya et al. (2016) who used oak wood  

biochar and reported orthophosphate removal of 10.1 and 15.1 PO4-P g-1 biochar 

respectively. 

Orthophosphate removal efficiency ranged from 57 % to 91 % and decreased 

significantly with an increasing initial loading ratio (p=0.02, Figure 4.4b). There was 

a strong negative correlation between initial loading ratio and PO4-P removal 

efficiency (r=-0.72, p=0.008). Our results for orthophosphate removal efficiency 

were in line with other studies which reported removal efficiencies of between 38 % 

and 95 % (Sarkhot et al., 2013; Zeng et al., 2013). We did not investigate the 

mechanisms involved in orthophosphate removal by biochar, but potential 

mechanisms suggested for orthophosphate removal from liquid solutions include 

phosphate adsorption to MgO on the biochar surface (Yao et al., 2011), precipitation 

reactions between phosphate and Ca+ and Mg+ ions (Wang et al., 2015c), anion 

exchange with surface hydroxyl groups (Sarkhot et al., 2013) and electrostatic 

interaction of phosphate anions with charged hydroxide surfaces (Chen et al., 2011). 

In our study, precipitation reactions between phosphate and Ca+ and Mg+ were 
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likely to occur due to the relatively high pH (8.50-8.65, data not shown) in the liquid 

fraction of digestate at the end of the experiments. 

We observed increasing potassium concentrations (Figure 4.5) in the feed tank 

at all initial loading ratios, which indicated potassium release from the biochar 

regardless of the loading ratio. The potassium concentration at the end of the 

experiment was highest with the lowest initial loading ratio (L10).  

Potassium release from wood biochar was also observed by Angst & Sohi (2013), 

and they reported up to 4.48 mg K g-1 release. Wu et al. (2011) reported that 90 % 

of potassium in wood biochar is released in water. However, in a study on activation 

of biochar, Kocatürk et al. showed that chemical activation of biochars with H2SO4 

and NaOH enables potassium removal from the liquid fraction of digestate. Thus 

raw, untreated biochar cannot be used alone as a sorbent for potassium. 

 

 

 
Figure 4.5 Potassium concentration changes in time as a result of various initial loading ratios. 
L10-L80 signifies initial loading ratios between 10 and 80 mg NH4-N g-1 biochar. Error bars 
indicate standard deviations (n=2). 
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Nutrient removal by combining biochar and clinoptilolite 

We observed the lowest ammonium removal efficiency in the column with 

biochar alone (Figure 4.6a), whereas higher NH4-N removal efficiencies were 

observed in the column with clinoptilolite alone as well as in the combined column 

systems. We observed a similar pattern for both total N (Figure 4.6b) and DOC 

(Figure 4.6c). This indicated that NH4-N, total N and DOC removal by combining 

biochar with clinoptilolite resulted in improved removal efficiency as compared to 

columns with biochar alone. This was due to the higher sorption capacity of 

clinoptilolite for ammonium, total N and DOC. Clinoptilolite is reported to be an 

efficient sorbent for removing ammonium from the liquid fraction of digestate, with 

up to 89 % efficiency (Kocatürk et al.). There are studies that have compared the 

efficiency of biochar and zeolites in removing ammonium, and greater efficiencies 

have been reported with zeolites than with biochar. Carey et al. (2015) found that 

base-modified biochar could remove 5.3 mg NH3-N, whereas clinoptilolite removed 

9.8 mg NH3-N. Hina et al. (2014) also reported a higher ammonium removal 

efficiency with zeolite (91 %) compared to biochar (49 %). Halim et al. (2010) 

compared activated carbon and zeolite in the removal of ammonia from landfill 

leachate and found approximately 20 % and 80 % NH3-N removal efficiency with 

activated carbon and zeolite respectively. Farka� et al. (2005) reported that 

wastewater treatment with activated carbon and subsequent treatment with zeolite 

resulted in 62 % additional total organic carbon removal compared to activated 

carbon treatment alone. Ganrot et al. (2007) compared the efficiency of activated 

carbon and zeolite in removing total N from human urine and found comparable 

efficiencies for both sorbents, although they state that activated carbon adsorbs 

ammonium, but also larger organic molecules containing nitrogen, whereas zeolite 

mainly removes ammonium. Our results were in line with previous studies and 

provided clear evidence of the higher efficiency of clinoptilolite in the removal of 

ammonium, total N and DOC. Our results also indicated that the efficiency of 

clinoptilolite in removing ammonium, total N and DOC could not be improved upon 

in combined columns. 
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Figure 4.6 Ammonium (a), total nitrogen (b), dissolved organic carbon (c), potassium (d), 
orthophosphate (e), total phosphorus (f) removal from the liquid fraction of digestate with 
biochar-alone column (B), clinoptilolite-alone column (C), biochar and clinoptilolite 
homogenously mixed in one column (M), biochar column followed by a clinoptilolite column 
(BC), clinoptilolite column followed by a biochar column (CB). Letters inside the bars indicate 
significant differences (p<0.05) among various column systems. Error bars indicate standard 
errors (n=3). 

 

Potassium removal was not possible in the biochar columns as biochar released 

K in the liquid fraction of digestate (Figure 4.6d), which was in line with our 

observations in the experiments with biochar alone. Clinoptilolite on the other hand 

could remove approximately 70 % of K in the liquid fraction of digestate. As a result, 

combining clinoptilolite with biochar resulted in 50 % K removal efficiency, which 

was lower than in the columns with clinoptilolite alone. Clinoptilolite is known as a 

selective cation exchanger with a higher selectivity for potassium than for 

ammonium (Koon & Kaufman, 1975). Beler Baykal et al. (2009) reported up to 90 % 

potassium removal efficiencies from human urine and Kocatürk et al. reported up to 

78 % removal efficiencies from the liquid fraction of digestate using clinoptilolite. 

Our results showed that biochar cannot be used on its own as a sorbent for 

potassium and it decreases the potassium removal efficiency of clinoptilolite when 

they are used in combination. 
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Orthophosphate removal efficiency was similar in all columns (Figure 4.6e). 

Clinoptilolite removed on average 79 % of orthophosphate, which was in line with 

the results from Kocatürk et al. who reported 80 % orthophosphate removal from 

the liquid fraction of digestate with clinoptilolite. However, total P removal 

efficiency was the lowest in the column with clinoptilolite alone and was higher in 

the columns with biochar alone (Figure 4.6f). Biochar has a typical solid density 

ranging from 1.5 to 2.0 g cm-3 (Lehmann & Joseph, 2015) whereas clinoptilolite has a 

solid density of 2.2 to 2.4 g cm-3 (data provided by the manufacturer) and this 

affects filtration efficiency (Tchobanoglous et al., 2003). The differences between 

solid densities also created differences in bed volume for the same amount (of 

weight) of the two materials. Total phosphorus is mainly attached to the particles 

and higher filtration efficiency and a higher bed volume in the biochar column could 

be the reason for the difference in total P removal for biochar and clinoptilolite. 

Combined columns resulted in the highest total P removal, indicating improved 

removal compared to the clinoptilolite and biochar-alone columns, which may also 

be due to a higher bed volume since combined columns had more sorbent materials 

compared to clinoptilolite and biochar-alone columns. 

Overall, combining biochar with clinoptilolite improved NH4-N, total N, DOC, K 

and total P removal efficiencies and did not change PO4-P removal efficiencies 

compared to columns with biochar alone. As for clinoptilolite, combining it with 

biochar was only beneficial in improving total P removal efficiency. We did not 

observe a significant effect of sequencing or mixing the sorbents in combined 

systems on the nutrient removal efficiency from the liquid fraction of digestate. 

Therefore in circulating systems such as our setup, the sequence of adsorbents does 

not matter. 

Nutrient-enriched products from digestates as well as the liquid fraction of 

digestates need to be concentrated and highly enriched with nutrients if they are to 

be used as fertilisers (Fuchs & Drosg, 2013). Kocatürk et al. reported that 300 kg of 

clinoptilolite would be needed to process 1 Mg of liquid fraction of digestate 

(assuming 3900 mg L-1 NH4-N concentration) if the column system were designed 

with a 15 mg NH4-N g clinoptilolite initial loading ratio. A similar calculation for 

biochar would result in 1466 kg biochar since the removal was around 2.66 mg NH4-

N g-1, with less than 20 % ammonium removal, whereas clinoptilolite resulted in 13 

mg NH4-N g-1 removal and 86 % ammonium removal at the same initial loading ratio 

(L15).  The concentration of nutrients on biochar is much lower compared to 
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clinoptilolite, which may not be economically and practically feasible. Nevertheless, 

the use of biochar as a sorbent material may still be attractive in regions where 

biochar is produced for energy recovery and is needed as a soil improver. Another 

important aspect for selecting a sorbent material for removing nutrients from the 

liquid fractions of digestate is the effectiveness of the enriched sorbents as a 

fertiliser (Kocatürk et al.). 

 

4.4 Conclusions 

Our results indicated that biochar could be used as a sorbent material to remove 

ammonium, orthophosphate and dissolved organic carbon from the liquid fraction 

of digestate and concentrate it on its surface. However potassium removal was not 

possible and biochar even released potassium into the liquid fraction of digestate. 

Ammonium, orthophosphate and dissolved organic carbon removal increased with 

increasing initial loading ratios, but removal efficiencies decreased. 

Biochar addition in the combined systems did not improve clinoptilolite�s 

efficiency at removing NH4-N, PO4-P, total N and DOC except for total P removal, and 

resulted in a lower K removal efficiency compared to clinoptilolite-alone columns. 

Concentration of nutrients on biochar is limited and occurs at low levels, but 

may still be an option where large volumes of biochar are available at a low cost. 

Clinoptilolite presents higher removal efficiencies and a higher concentration of 

nutrients compared to biochar. Nutrient removal from the liquid fraction of 

digestate with clinoptilolite and biochar may be an attractive option where they are 

both available and inexpensive, and where their value as soil improvers is high, e.g. 

when soils are depleted in nutrients and organic matter. 

 

Acknowledgements 

This work has been conducted as part of a PhD thesis project supported by the 

Agricultural Transformation by Innovation (AgTraIn) Erasmus Mundus Joint 

Doctorate Programme funded by the Education, Audiovisual and Culture Executive 

Agency (EACEA). We gratefully acknowledge the provision of biochar samples from 

the EU FP-7 FertiPlus Project (grant no. 289853) and clinoptilolite samples from 

Rota Mining Co., Turkey. We also thank Andrew Ross and Evert Jan Dijk for 

providing the data on biochar samples. 



 69 

Chapter 5  

Efficiency of digestate-enriched 

clinoptilolite and biochar as 

nitrogen fertilisers 

 

 

 

 

 

N.Pelin Kocatürk 

Kor Zwart 

Sander Bruun 

Lars Stoumann Jensen 

Helle Sørensen 

Lijbert Brussaard 

 

 

 

 

 
This chapter is under review. 



 70 

Abstract  

Aims: The liquid fraction of biogas digestate can be directly applied in the field as 

a fertiliser, but this may result in practical and environmental problems. One 

solution to this could be to concentrate nutrients onto sorbents, which can 

subsequently be used as a fertiliser. This study investigated the ability of biochar 

and clinoptilolite enriched with digestate nutrients to supply nitrogen (N) when 

used as a fertiliser. 

Methods: A pot experiment with ryegrass was conducted to test the effect of 

nutrient-enriched clinoptilolite and biochar, including the effect of initial loading 

ratio, by determining plant biomass growth and uptake of N. 

Results: Nutrient-enriched biochar and clinoptilolite increased plant biomass 

yield and N uptake compared to the control (untreated sorbents) treatments. 

Enriched clinoptilolite resulted in a higher plant biomass yield and N uptake 

compared to enriched biochar. Initial loading ratio had a significant effect on plant 

biomass response and apparent N recovery (ANR) for enriched clinoptilolite, but for 

biochar it only affected ANR. 

Conclusions: Nitrogen from enriched clinoptilolite and biochar could be taken up 

by the plants, and clinoptilolite performed more effectively than biochar. Initial 

loading ratio affected the performance of the sorbents when used as a fertiliser. 
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5.1 Introduction 

Digestate from anaerobic digestion in biogas plants shows comparable 

properties to animal slurry, both physically and as a fertiliser. This is the case not 

only when manure is the only feedstock, but also when additional organic waste 

feedstock is used for co-fermentation. Digestate is therefore often processed and 

managed in a similar way to animal slurry. In areas with a high animal density and 

hence a nutrient surplus compared to crop requirements, mechanical slurry 

separation can be used as a method to facilitate redistribution of nutrient surpluses 

to other areas (Møller, 2000; Paavola & Rintala, 2008; Jørgensen & Jensen, 2009). 

The solid fraction resulting from the separation contains most of the dry matter and 

phosphorus (Hjorth et al., 2009, 2010), but constitutes only 10-25 % of the total 

mass, so it can be transported more easily and economically to regions with lower 

animal densities and no nutrient surplus (Møller, 2000; Møller et al., 2007). 

The liquid fraction of separated manure and digestate, which has a high water 

content and low nutrient concentration, can be applied directly to agricultural land 

in the vicinity of the farm or the biogas plant (Hjorth et al., 2010; Fuchs & Drosg, 

2013). However, in areas with very high animal densities or no cropping land 

suitable for digestate fertilisation, management and utilisation of the liquid fraction 

presents a challenge (Zarebska et al., 2015). Transportation of large volumes of 

liquids is costly and ineffective (Paavola & Rintala, 2008; Hjorth et al., 2009; Rehl & 

Müller, 2011). Furthermore, environmental problems, such as gaseous emissions of 

malodours, ammonia and greenhouse gases as well as nutrient runoff to streams 

and waterways, may occur when the liquid fraction of digestate is applied to 

agricultural land (Hjorth et al., 2009). To overcome such problems, recovery and 

concentration of nutrients from the liquid fraction may be a desirable option, and 

one potential method for this could be sorption to a solid carrier. Both inorganic and 

organic materials have been used successfully for nutrient sorption. Clinoptilolite (a 

natural zeolite) has been used to remove nutrients from source-separated urine 

(Ganrot et al., 2007; Beler Baykal et al., 2009; Beler-Baykal et al., 2011; Kocatürk & 

Baykal, 2012; Allar & Beler Baykal, 2015) and several studies have described the 

adsorption of ammonium and other nutrients to biochar, a carbonaceous product 

from the pyrolysis of biomass (Eldridge & ChengRong, 2010; Hale et al., 2013; 

Sarkhot et al., 2013; Gai et al., 2014; Jassal et al., 2015; Wang et al., 2015c). 
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A sorbent should be cost-effective in concentrating nutrients. However, if the 

product is to be used as a fertiliser, the nutrient-enriched sorbent should also 

release the nutrients upon application to soil, in order for the nutrients to become 

plant available. Clinoptilolite acts a slow release fertiliser when added to soil (Perrin 

et al., 1998; Reháková et al., 2004) since it is able to desorb nutrients following the 

enrichment step (Kithome et al., 1998; Ganrot et al., 2007; Hedström, 2008; Beler-

Baykal et al., 2011; Cyrus & Reddy, 2011). Biochar has also been reported to release 

nutrients subsequent to enrichment (Hale et al., 2013; Sarkhot et al., 2013; Hina et 

al., 2014; Jassal et al., 2015; Wang et al., 2015a), but only a few studies report on the 

performance of enriched biochar as a fertiliser (Taghizadeh-Toosi et al., 2012a, 

2012b). For the practical implications of using sorbents to remove nutrients from 

the liquid fractions of digestate, it is important have knowledge of the effectiveness 

of the enriched sorbents.  

Initial loading ratio, i.e. the ratio of the amount of nutrients to the amount of 

sorbents, has been described as an important design parameter for ion 

exchange/adsorption processes which influences the nutrient removal efficiency 

from the liquid fraction and consequently the degree of enrichment of nutrients on 

the sorbent material (Kocatürk et al.; Beler Baykal et al., 2009). To the authors� 

knowledge, the effect of initial loading ratio on the plant availability of N sorbed to 

clinoptilolite and biochar has not been investigated when enriched clinoptilolite and 

biochar are used as fertilisers. This information is important when clinoptilolite and 

biochar are to be used both for the treatment of the liquid fraction of digestate and 

as fertilisers following the enrichment process. 

The objectives of this study were to assess the effects of digestate nutrient-

enriched clinoptilolite and biochar on plant growth by measuring biomass yield and 

nitrogen uptake and by calculating biomass response (BR) and apparent nitrogen 

recovery (ANR). 

We hypothesised that: 

· nitrogen sorbed to clinoptilolite and biochar is available to plants and will result 

in a higher biomass yield and N uptake compared to the control (untreated 

clinoptilolite and biochar) 

· nitrogen sorbed to clinoptilolite is as available to plants as N sorbed to biochar, 

and both enriched sorbents will result in similar BR and ANR at the same N 

application level 
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· initial loading ratio and hence the N enrichment of clinoptilolite and biochar do 

not affect plant growth, and low and high initial loading ratios will result in 

similar BR and ANR at the same N application level. 

5.2 Materials and Methods 

Experimental set-up 

We used the double-pot technique (Janssen, 1990), in which plants are grown in 

a two-tiered pot. The upper compartment contains quartz sand without nutrients, to 

which only the material to be tested has been added; the lower compartment 

contains a nutrient solution with all the essential nutrients except the one whose 

availability is being quantified in the top compartment. At the bottom of the upper 

compartment, a mesh (1 mm pore size) allows roots to grow through to the bottom 

compartment. With the double-pot technique, the optimal availability of all 

nutrients, except the one being tested, can be guaranteed by the nutrient solution in 

the lower pot (Antil et al., 2009). The difference in growth between plants is a 

measure of the availability of the tested nutrient in the upper compartment. 

In our study, the upper pot (0.25 L) was filled in two steps. In the first step, a 

mixture of 200 g quartz sand (1435 g L-1) and the product to be tested (biochar, 

clinoptilolite or synthetic fertiliser, see Table 5.1) was added. In the second step, a 

germination layer was created by adding 100 g quartz sand and ryegrass (Lolium 

perenne L.) seeds, sown at 1 cm depth at a rate of 0.40 g seeds per pot. The quartz 

sand was inoculated with a solution containing soil micro-organisms, which was 

prepared by filtering a mixture of 50 g soil and 2 L deionised water through a coarse 

filter paper. Each upper pot was placed on a lower pot (1 L) containing a nutrient 

solution, from which N was omitted. The composition of the nutrient solution in the 

lower pots was (mM) 1 MgSO4, 0.5 KH2PO4, 1.0 K2SO4, 2.0 CaCl2, with trace elements 

(mg L"1) 0.5 B, 0.5 Mn, 0.05 Zn, 0.02 Cu, 0.01 Mo, and 5.3 Fe (as Fe-EDTA). The 

nutrient solutions in the lower pots were changed once a week. 

There was a small space between the upper and lower pot in order to prevent 

direct transport of water and nutrients between the two layers. The upper pots 

were watered with deionised water three times a week to keep the moisture level 

corresponding to approximately 60 % of the water-holding capacity of the control 

treatment (only sand and water). Double pots were allocated at random to trays 

(eight plants per tray) at the beginning of the experiment, and shifted at random 
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between trays every seven days. The experiment was carried out in a greenhouse 

with four replicates at an average temperature of 17 °C and an average humidity of 

62 %. 

Aboveground biomass was harvested after 21, 36 and 70 days. On the last date, 

roots in the lower and upper pots were also harvested. Roots were separated from 

sand and fertiliser materials by washing with deionised water. The separated roots 

were dipped into 0.01 M HCl solution and rinsed again with deionised water. Dry 

matter yields of aboveground biomass and roots were determined after drying the 

plant materials at 70 °C for 72 h. Samples were ground and digested in a mixture of 

sulphuric acid, salicylic acid and Se, to which H2O2 was added. Total N was 

colorimetrically determined in the digest by a segmented flow analyser 

(Temminghoff & Houba, 2004). 

 

 

Table 5.1 Overview of the treatments. 

Treatment  
Abbre
vi-
ation 

Initial loading 
ratio  
(mg NH4-N g-1) 

Total N 
content of 
sorbent 
(mg N g-1) 

N application 
(mg N pot-1) 

Amount of 
sorbent or N 
solution applied  
(g pot-1) 

Biochar  
  

 
 

Control BCon 0 1.68 0 5.58a 

Low  
 

BL15 10 8.07 15 1.86 
BL45 45 5.58 

High  
 

BH15 40 9.58 15 1.57 
BH45 45 4.70 

Clinoptilolite  
 

   
Control CCon 0 0.05 0 5.98a 

Low  CL15 10 7.52 15 1.99 
CL45 45 5.98 

High  CH15 52 14.73 15 1.02 
CH45 45 3.05 

Reference   (mg N L-1)  (mL pot-1) 

Control, 
unfertilised 

SCon n/a 0 0 0 

Synthetic N 
solution  

S15 n/a 2000 15 25 
S45 45 75 

a The amount of untreated biochar and clinoptilolite in the control experiments was set to 
the same amount as that used for the low initial loading ratio (10 mg NH4-N g-1) and 45 mg 
N pot-1  application rate for biochar and clinoptilolite. 
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Biomass yield was calculated as the sum of the aboveground biomass of all three 

cuts, plus the roots at the final harvest. Total N uptake was calculated as the sum of 

N in all cuts and roots. The root-mass ratio (RMR), which is an indicator of N 

availability, was calculated as: 

     (5.1) 

where Br is root biomass and Bt is total biomass for each treatment. RMR is bounded 

between 0 and 1; lower RMR values indicate increasing nitrogen availability due to 

less biomass allocation to the roots as compared to the leaves (Wilson, 1988; Poorte 

& Nagel, 2000; Pérez-Harguindeguy et al., 2013). 

 

Treatments 

Nutrient-enriched clinoptilolite and biochar were produced by adsorption of 

nutrients (N, P, K) from the liquid fraction of digestate. The clinoptilolite used was 

from Gördes in Turkey with a typical composition of 65-72 % SiO2, 10-12 % Al2O3, 

0.7-1.9 % Fe2O3, 0.1-0.5 % Na2O, 2.5-3.8 % K2O, 2.4-3.7 % CaO, 0.9-1.2 % MgO, 0-

0.08 % MnO and 0.02-0.05 % P2O5 (Rota Mining Co.). The clinoptilolite samples used 

in the nutrient enrichment procedure had a particle size of 1-3 mm, a pH of 8.5, with 

150-210 cmolc kg-1 cation exchange capacity (CEC, data provided by the 

manufacturer), and 35.5 m2 g-1 specific surface area (analysed by a commercial lab, 

Eurofins, Germany). Biochar was produced from holm oak by slow pyrolysis at 650 

°C and atmospheric pressure (Proininso Inc. Málaga, Spain) and had an ash content 

of 11.3 % (dry basis) and a composition of 76.5 % C, 1.4 % H, 0.8 % N, 7 % O, 0.2 % 

P, 0.6 % K, 0.04 % Na, 5 % Ca, 0.3 % Mg, 0.05 % Fe, 0.14 % Al (Ross, 2016). Biochar 

samples with a particle size of 1-4 mm were used in the enrichment procedure and 

the samples had a pH of 8.2, 42.3 cmolc kg-1 CEC (Dijk, 2015), and 166 m2 g-1 specific 

surface area (analysed by Eurofins, Germany). 

Sorbent materials were separately brought into contact with the liquid fraction 

of digestate in Plexiglas columns (50 and 100 cm length, 2.4 cm diameter), which 

resulted in the retention of nutrients on the sorbent materials. The liquid fraction of 

digestate was from a full-scale biogas plant (Fangel Bioenergy ApS, Odense, 

Denmark) using pig slurry as the main feedstock with co-digestion of food waste; 

the liquid fraction was produced by a decanting centrifuge treatment of the 

digestate. The liquid fraction of digestate was fed into the columns using a 
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peristaltic pump at 100 % recycling in the upflow mode for 120 and 72 hours for 

clinoptilolite and biochar, respectively, to secure a stable ammonium concentration 

in the feed tank. Two initial loading ratios were applied, namely 10 (low) and 52 

(high) mg NH4-N g-1 for clinoptilolite, and 10 (low) and 40 (high) mg NH4-N g-1 for 

biochar. The N contents of the biochar and clinoptilolite prior to and after nutrient 

enrichment are shown in Table 5.1. 

Enriched sorbents were mixed with quartz sand at two levels, 15 and 45 mg N 

pot-1, which corresponded to 150 and 450 kg of N per ha respectively. A synthetic 

NH4NO3 solution was used as a reference fertiliser and applied at the same N 

application levels. Sand mixed with untreated (non-enriched) biochar or 

clinoptilolite and pure sand (no addition of N solution, biochar or clinoptilolite) 

were used as controls. 

Untreated biochar and clinoptilolite, used for the control treatments, contained 

some N, but less than in the nutrient-enriched sorbents in all cases (Table 5.1). The 

amount of untreated clinoptilolite and biochar applied in the controls was the same 

as the highest amount of nutrient-enriched biochar and clinoptilolite applied in the 

experiment. 

 

Statistical analysis 

We tested the effect of enriched sorbents on plant growth by analysing biomass 

and total N-uptake data separately for each treatment (clinoptilolite, biochar and 

synthetic solution) with one-way ANOVA tests. Each sub-treatment was compared 

to the corresponding control, and for each outcome (biomass and N uptake) the p-

values were adjusted with the Holm method in order to correct for multiple testing. 

Biomass and N uptake data were analysed using linear regression on the amount 

of applied N. The slopes of the regression models represented the biomass response 

(BR) and apparent N recovery (ANR) for each treatment. The effect of different N 

applications (enriched biochar, enriched clinoptilolite and synthetic N solution) was 

tested by comparing BR and ANR for each treatment. 

Furthermore, regression analysis was used to test for the effect of initial loading 

ratio of the biochar and clinoptilolite on plant availability of N by comparing BR and 

ANR for clinoptilolite and biochar separately. The statistical analysis was conducted 

using the statistical software R version 3.2.1 (R Core Team, 2015). 
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5.3 Results 

Biomass yield and N uptake were significantly lower for the control compared to 

the N-enriched materials in all ANOVA comparisons (p< 0.05 after Holm correction), 

which indicated that application of enriched biochar and clinoptilolite increased 

both biomass and N uptake (Figure 5.1). For both biomass and N uptake, the largest 

means were obtained with CL45 for clinoptilolite, BH45 for biochar and S45 for the 

synthetic solution treatment. Among all treatments, nutrient-enriched clinoptilolite 

at a low initial loading ratio (CL) showed the highest BR and ANR (Figure 5.2). 

Enriched biochar treatments (BL and BH) resulted in the lowest BR and ANR. 

We investigated the effects of initial loading ratio on BR and ANR for biochar and 

clinoptilolite enriched at low and high initial loading ratios. Figure 5.2 shows that 

clinoptilolite enriched at a low initial loading ratio resulted in higher BR and ANR 

compared to clinoptilolite enriched at a high initial loading  

ratio (p<0.0001 for both BR and ANR). Biochar enriched at a high initial loading 

ratio resulted in higher BR, but the difference between the low and high initial 

loading ratios for biochar was not significant (p=0.10). For ANR, the difference 

between the low and the high initial loading ratios was small, but statistically 

significant (p=0.034). 

 

 
Figure 5.1 Biomass yield (g pot-1) and N uptake (mg N pot-1) of ryegrass after 70 days of plant 
growth in all treatments as a result of 0, 15 and 45 mg N pot-1 nitrogen application levels using 
nutrient-enriched clinoptilolite (CL: low initial loading ratio; CH: high initial loading ratio), 
biochar (BL: low initial loading ratio and BH: high initial loading ratio) and synthetic nitrogen 
(S). Error bars indicate standard errors (n=4). 
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Figure 5.2 Biomass response (BR) and b) apparent N recovery (ANR) as a result of different 
treatments using nutrient-enriched clinoptilolite (CL: low initial loading ratio; CH: high initial 
loading ratio), biochar (BL: low initial loading ratio and BH: high initial loading ratio) and 
synthetic nitrogen (S). Standard errors in brackets (n=4). 

We found a strong negative correlation between RMR and N uptake (R2=0.82, 

Figure 5.3). Treatments with a low N uptake resulted in a high RMR of around 0.70, 

while the lowest RMR was around 0.45 for both clinoptilolite enriched at a low 

initial loading ratio and synthetic N application. For all N-enriched biochar 

treatments, the mean RMR values ranged between 0.57 and 0.66, which were higher 

than for the treatment in which clinoptilolite was enriched at a low initial loading 

ratio. 

 

5.4 Discussion 

Effects of enriched sorbents on plant growth and N uptake 

The application of enriched clinoptilolite and biochar resulted in a higher 

biomass yield and N uptake compared to the control treatments (Figure 5.1) and 

this indicated that N from enriched sorbents was available to plants. Nutrient-

enriched clinoptilolite at a low initial loading ratio (CL) resulted in more than a 

twofold increase in yield and more than a threefold increase in nitrogen uptake at 

15 mg N pot-1 N application when compared to the control (untreated) clinoptilolite 

treatment (Figure 5.1). The increases were even greater at 45 mg N pot-1 N 

application, with almost a fourfold and sixfold increase in yield and nitrogen uptake 

respectively. This  clearly  showed  that  N  from nutrient-enriched clinoptilolite was  
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Figure 5.3 Root-to-mass ratio and N uptake of ryegrass per pot after 70 days of plant growth in 
all treatments as a result of different nitrogen applications at 15 and 45 mg N pot-1 using 
nutrient-enriched clinoptilolite (C) and biochar (B) and synthetic nitrogen (S); Con: control 
treatments; L: low initial loading ratio; H: high initial loading ratio. 

available to the grass. These findings were in line with studies that report nitrogen-

loaded zeolite to be a good source of N (Ganrot et al., 2008) and urine-

enrichedclinoptilolite to be as effective as chemical fertiliser in preliminary pot 

trials (Beler-Baykal et al., 2011; Kocatürk & Baykal, 2012). 

Enrichment of biochar resulted in a small, but statistically significant increase in 

grass biomass yield and N uptake compared to the control (untreated) biochar 

application (Figure 5.1). Taghizadeh-Toosi et al. (2012a) report a two to threefold 

increase in leaf dry matter yields, and a twofold increase in root dry matter yields 

after application of 15N enriched biochar when compared to treatments receiving 

untreated biochar. In another study, Taghizadeh-Toosi et al. (2012b) investigated 

the plant availability of N in ruminant urine-treated biochar in pot experiments with 

ryegrass. They found that plant growth is not affected, but the N uptake in plant 

tissues increases, indicating that the adsorbed N is plant available. In the present 

study, less than a twofold increase was found for both enriched biochar treatments 

and this meant that only a small proportion of the N with which biochar had been 

enriched had become available to the plants. This could be due to a high retention of 
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N on biochar which limits the availability of N to the plants through desorption. 

Many researchers have reported a high retention of nitrogen on the surface of 

biochar, even when using KCl extraction for desorption, which should replace NH4
+ 

ions with K+ and result in high desorption ratios. Hina et al. (2014) found that the 

amount of NH4-N desorbed is only 11-18 % of NH4-N from enriched biochar with 2 

M KCl extraction. Sarkhot et al. (2013) report a desorption ratio of 9-22 % of NH4-N 

from manure-enriched biochar with 0.001 CaCl2 extraction, whereas Taghizadeh-

Toosi et al. (2012b) report this ratio to be as low as 3-13 % of the total N on 

enriched biochar with 1 M KCl extraction. Jassal et al. (2015) also report that only a 

small proportion of N (0.2-0.4 mg N g-1 biochar) is able to be released from N-

enriched biochar with a surface concentration of 2.9-48.7 mg N g-1 biochar. 

The difference in N availability between the clinoptilolite and biochar treatments 

may be attributed to the different sorption mechanisms of ammonium on biochar 

and clinoptilolite during enrichment which subsequently affects the release of N 

from sorbents after soil incorporation. Ammonium is sorbed onto the clinoptilolite 

surface mainly through ion exchange and can subsequently can be released slowly 

through desorption (Kithome et al., 1998; Hedström, 2008; Beler-Baykal et al., 2011; 

Cyrus & Reddy, 2011; Kocatürk & Baykal, 2012). For biochar, some researchers 

report a strong relationship between cation exchange capacity and NH4-N sorption 

capacity (Hale et al., 2013; Cheng et al., 2014; Wang et al., 2015a), but other sorption 

mechanisms have been suggested, such as adsorption of NH3 on the biochar surface 

by acidic functional groups (Taghizadeh-Toosi et al., 2012b), chemisorption of NH3 

(Petit et al., 2010), physical entrapment of NH3 in pores (Spokas et al., 2012; Jassal 

et al., 2015) and co-sorption of NH4
+ with soluble organic matter (Sarkhot et al., 

2013), which can cause a strong retention of nitrogen on the biochar surface. 

Clinoptilolite and biochar samples used in this study had different cation exchange 

capacities: Up to 210 cmolc kg-1 for clinoptilolite and 42.3 cmolc kg-1 for biochar. This 

difference in cation exchange capacity may indicate that cation exchange plays an 

important role for ammonium removal by clinoptilolite; however other mechanisms 

may be involved for biochar to remove ammonium which subsequently affects N 

release from sorbents when they are used as N fertilisers. 

Figure 5.2 shows that nutrient-enriched clinoptilolite application resulted in a 

higher BR and ANR with clinoptilolite enriched at a low initial loading ratio (CL) 

compared to synthetic fertiliser application. This was a somewhat unexpected result 

as synthetic solution contains ammonium nitrate as an immediately available form 
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of nitrogen. Therefore higher nitrogen availability would be expected with synthetic 

fertiliser as compared to the other forms of nitrogen used in this study. The reasons 

for this observation can only be speculated upon; it could be attributed to N losses 

in the synthetic fertiliser application, such as i) nitrogen leaching from the upper pot 

to the lower pot during watering events and removal of that N during refreshing of 

the nutrient solution in the lower pot, and ii) ammonia volatilisation, as some of the 

N in the synthetic solution is ammonium and ammonium sorption on the quartz is 

likely to be limited and there is a chance that some of the ammonium has volatilised 

as ammonia. No tests were conducted for any losses in the synthetic N treatment, 

however the relatively low ANR value of 0.45 in a nutrient-limited system seemed to 

indicate that losses could be substantial in the synthetic fertiliser. Clinoptilolite has 

been widely reported to increase plant N uptake and decrease losses of N from soil 

in several studies (Ferguson & Pepper, 1987; Perrin et al., 1998; Reháková et al., 

2004; Tsadilas & Argyropoulos, 2006; Liu & Lal, 2015) and it may potentially 

prevent losses by retaining the nutrients as a slow release fertiliser. 

When selecting a sorbent material for removing nutrients from the liquid 

fractions of digestate, one of the most important factors is the effectiveness of the 

enriched sorbents if the sorbent material is to be used as a fertiliser after the 

nutrient removal process. The findings from this pot experiment indicated that 

digestate-enriched clinoptilolite resulted in better plant growth compared to 

enriched biochar. However further research is necessary to observe the effects of 

enriched biochar on plant growth in a long-term experiment. 

 

Effects of initial loading ratio of sorbents on plant growth and N 

uptake 

A significant effect of initial loading ratio was found on plant growth with the 

enriched clinoptilolite treatments. An increasing initial loading ratio resulted in 

decreasing BR and ANR (Figure 5.2). This might have been due to the different 

desorption behaviour of clinoptilolite enriched at different initial loading ratios. 

Initial loading ratio influences the final amount of ammonium retained on the 

clinoptilolite surface, and increasing the loading ratios results in increasing 

ammonium concentrations (Kocatürk et al.; Beler Baykal et al., 2009). In our study, 

the N content of clinoptilolite enriched at a high initial loading ratio was almost two 

times greater than at the low initial loading ratio (Table 5.1). Differences in 
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desorption from clinoptilolite with different amounts of ammonium on the surface 

have been found previously by Dimova et al. (1999), who report a decrease of 

approximately 10 % in the amount of ammonium desorbed from clinoptilolite, with 

a 30 % increase in enrichment of clinoptilolite. Our results were in line with their 

results to explain different desorption behaviours of clinoptilolite when it has a 

higher N content. This may also explain the limited release of N, hence less 

availability to plants from clinoptilolite enriched at a higher initial loading ratio. 

For biochar, the effect of initial loading ratio was statistically significant only for 

ANR. Contrary to clinoptilolite, increasing the initial loading ratio resulted in higher 

ANR, which may indicate that more N was released from biochar enriched at a high 

initial loading ratio. As discussed earlier, in literature biochar has been reported to 

strongly retain NH4-N, which allows biochar to release only a small proportion of N 

from the biochar surface. Even so, the desorption behaviour of biochar was found to 

be different with different amounts of N transferred onto the biochar surface, and a 

higher desorption from the biochar surface with an increasing N content in biochar 

(Sarkhot et al., 2013; Hina et al., 2014) and therefore an increasing initial loading 

ratio. 

Initial loading ratio is an important factor when designing a system to remove 

nutrients by sorption processes since it affects the removal efficiency and amount of 

nutrients sorbed by sorbents (Kocatürk et al.; Beler Baykal et al., 2009). In this study 

we found that initial loading ratio is an important factor, including when the 

enriched sorbents are to be used as a fertiliser, since it affects the availability of N. 

This information is important when clinoptilolite and biochar are to be used both 

for the treatment of the liquid fraction of digestate and as fertilisers after the 

enrichment process. 

Root-to mass ratio (RMR) 

A higher biomass allocation to the roots than to the leaves can be observed 

under low and limiting nitrogen levels (Wilson, 1988; Poorte & Nagel, 2000) and 

therefore a lower root-to-total biomass ratio indicates increasing nitrogen 

availability (Pérez-Harguindeguy et al., 2013). The data presented in Figure 5.3 

shows that a strong negative correlation (R2=0.82) was also found between RMR 

and N uptake. Clinoptilolite enriched at a low initial loading ratio (CL45) and 

synthetic (S45) treatment resulted in a similarly low RMR. This observation 

supported our findings discussed above, that both treatments led to similar N 
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availability although they resulted in different N uptake. In contrast to nutrient-

enriched clinoptilolite, enriched biochar resulted in a high RMR as a result of 

invariably low N availability in all N application levels. 

In conclusion, our results revealed that: i) N sorbed to clinoptilolite and biochar 

was available to plants, ii) the availability of N sorbed to clinoptilolite was higher 

than the availability of N sorbed to biochar, and iii) initial loading ratio had a 

significant effect on N availability and thereby on the performance of the sorbents as 

a fertiliser. 

Our study highlights the importance of the choice of sorbent material to remove 

nutrients from the liquid fraction of digestate if the enriched sorbent is to be used as 

a fertiliser following the removal process. We found that both enriched clinoptilolite 

and biochar were able to increase biomass yield and N uptake, but clinoptilolite 

resulted in much higher BR and ANR compared to enriched biochar. However, 

further research in a long-term experiment is crucial to observe the effects of 

enriched biochar on plant growth. We also found that initial loading ratio is an 

important parameter that not only affects the nutrient removal efficiency from the 

liquid fraction of digestate, but also affects the availability of N and thereby the 

efficiency of the enriched material when used as a fertiliser. This information is 

important when selecting a sorbent as a nutrient carrier for the treatment of the 

liquid fraction of digestate if the enriched material is to be applied on soil as a 

fertiliser. 
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6.1 Introduction 

The treatment of liquid fraction of digestate with the intention to recover 

nutrients is necessary in areas with high livestock density due to practical and 

environmental problems. The nutrients contained in the liquid fraction of digestate 

can be concentrated through a range of technologies and processes to produce 

marketable end-products, which would help to reduce nutrient losses (Drosg et al., 

2015). In this thesis, I aimed to assess the use of sorbent materials, namely biochar 

and clinoptilolite, to recover plant nutrients from the liquid fraction of digestate 

resulting from anaerobic digestion of animal manure, and to assess the further use 

of these nutrient-enriched materials as fertiliser. In Chapters 2-5, I investigated the 

effects of i) initial loading ratio, and ii) combining sorbents, on the nutrient removal 

efficiency from the liquid fraction of digestate, iii) activation, or preconditioning of 

sorbents, and iv) N fertiliser efficiency of nutrient-enriched biochar and 

clinoptilolite. 

In this chapter, I summarise the main findings of my thesis and I discuss these 

findings in a broader context. 

 

6.2 The use of clinoptilolite and biochar for nutrient 

recovery from liquid fraction of digestate 

Nutrient removal efficiency of clinoptilolite and biochar 

Clinoptilolite has been known as an efficient cation exchanger which has been 

used for wastewater treatment (Beler Baykal & Guven, 1997; Hedström, 2008) as 

well as for nutrient recovery from human urine, which has much higher nutrient 

concentrations compared to domestic wastewater (Ganrot et al., 2007; Kocatürk & 

Baykal, 2012; Allar & Beler Baykal, 2015). The initial loading ratio has been 

suggested to be an important design parameter in column sorption experiments 

with clinoptilolite for nutrient recovery from human urine and defined as �the initial 

amount of ammonium N in the liquid divided by the amount of sorbent in the 

system�, which affects nutrient removal efficiency (Beler Baykal et al., 2009). 

In Chapter 2, I found that the removal efficiency of ammonium, potassium and 

orthophosphate from the liquid fraction of digestate was significantly affected by 
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the initial loading ratio. Increasing initial loading ratios resulted in increasing 

removals (concentration of nutrients on clinoptilolite) but decreasing removal 

efficiencies of clinoptilolite. These results were similar to those of Beler Baykal et al., 

(2009) who reported increased ammonium and potassium removal, but decreasing 

efficiencies, from source-separated human urine. 

In Chapter 4, I investigated the effects of initial loading ratio on nutrient 

removal by biochar for the first time in literature. I observed similar effects of initial 

loading ratio on biochar (holm oak wood pyrolysed at 650 ºC) as on clinoptilolite. 

Increasing the initial loading ratio resulted in higher removals with lower 

efficiencies to remove ammonium and orthophosphate from the liquid fraction of 

digestate. However, untreated biochar did not remove potassium from the liquid 

fraction of digestate, but did release potassium due to its high potassium content. 

Potassium release from wood biochar into aqueous solutions was also reported in 

earlier studies (Wu et al., 2011; Angst & Sohi, 2013). 

In Chapter 5, I found that an increasing initial loading ratio resulted in 

decreasing biomass response (BR) and apparent N recovery (ANR) for enriched 

clinoptilolite when it was used as N fertiliser. However, I observed the opposite 

effect of initial loading ratio with biochar, and ANR increased with an increasing 

initial loading ratio. The differences in plant availability of N from clinoptilolite and 

biochar enriched at different initial loading ratios can be related to different release 

behaviours. Dimova et al. (1999) reported a smaller amount of ammonium 

desorption with increasing initial amount of ammonium on clinoptilolite surface, 

whereas for biochar Sarkhot et al. (2013) and Hina et al. (2014) reported a higher 

desorption with increasing N content in biochar. 

Considering the data from Chapters 2, 4 and 5 , it can be stated that initial 

loading ratio is an important parameter that not only affects the nutrient removal 

efficiency from the liquid fraction of digestate, but also affects the availability of N 

and thereby the efficiency of the enriched material when used as a fertiliser. From 

the practical point of view, initial loading ratio is an important parameter affecting 

the efficiency of the sorbent material, as well as the degree of concentration of 

nutrients on the sorbent material; both are important factors when selecting a 

sorbent. Lower initial loading ratios resulted in high removal efficiencies (Chapter 

2 and 4). However, this would also result in a lower concentration of nutrients on 

biochar and clinoptilolite. In order to make the treatment process economically 

attractive, a greater increase in concentration or weight reduction would be 
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required. Nevertheless, if the nutrient-enriched clinoptilolite and biochar are to be 

applied on soil as a fertiliser, it is also important to consider the availability of the 

recovered form of nutrients. 

 

Combining biochar and clinoptilolite for enhanced nutrient removal 

Biochar has not only been suggested as a sorbent for ammonium and phosphate 

removal but also as an effective sorbent to remove organic contaminants from 

various wastewaters due to its porous structure and large surface area  (Chen et al., 

2011; Ahmad et al., 2014; Mohan et al., 2014; Wang et al., 2015b). Therefore, 

combining biochar and clinoptilolite may represent a complementary solution for 

nutrient recovery considering the specialised nature of biochar for ammonium, 

phosphate and organic matter adsorption, and the efficiency of clinoptilolite as a 

cation exchanger with high selectivity for ammonium and potassium. In Chapter 4, I 

found that combining biochar with clinoptilolite did not improve the efficiency of 

clinoptilolite to remove ammonium, orthophosphate, total N and dissolved organic 

carbon except for total P. Furthermore, I found that the combination of biochar and 

clinoptilolite decreased potassium removal efficiency compared to clinoptilolite 

alone. Therefore use of clinoptilolite and biochar sorbents in combination is not a 

reasonable option for nutrient recovery from liquid fraction of digestate from a 

system efficiency point of view. 

 

Improving nutrient removal by pre-treatment of clinoptilolite and 

biochar 

Preconditioning of clinoptilolite with sodium chloride has been found to improve 

the effective exchange capacity of clinoptilolite and its performance in ion exchange 

applications (Inglezakis et al., 2001; Inglezakis, 2005). In Chapter 2, however, no 

effect of preconditioning was found on the total ammonium and potassium removal 

from the synthetic solutions, where only ammonium and potassium were present as 

cations, as well as from the liquid fraction of digestate where other species of 

cations were also present. In the literature, contradictory results were reported 

regarding the effects of preconditioning on the exchange capacity. Inglezakis et al. 

(2001) reported that the cation exchange capacity could be improved with NaCl (up 

to 0.4 M NaCl) preconditioning, whereas Semmens & Martin (1988) reported that 
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the total exchange capacity was not affected by preconditioning. A reason for the 

lack of an effect of preconditioning on the total exchange capacity could be high 

ammonium concentrations in both the synthetic solution and liquid fraction of 

digestate which caused a very large difference in ammonium concentrations 

between the solid and liquid phase. Therefore, a large difference between the 

concentration gradients in the solid and liquid phase can result in most of the 

exchangeable cations on the clinoptilolite surface being replaced by ammonium to a 

similar degree in both natural forms of clinoptilolite and preconditioned 

clinoptilolite. Further studies are needed to explore the effects of preconditioning at 

different initial ammonium concentrations. 

Newly produced biochars have a low capacity for adsorbing cations due to the 

presence of fewer oxygen-containing functional groups (Cheng et al., 2014). 

Chemical activation of biochar has been suggested to increase the oxygen-

containing functional groups (Xue et al., 2012). In Chapter 3, I found that 

ammonium removal from synthetic solutions was improved by chemical activation 

with sulfuric acid and sodium hydroxide. This could be due to the cations being 

replaced with H+ and Na+ as a result of H2SO4 and NaOH treatments, which allow 

NH4
+ ions to exchange as they are more competitive than hydrogen and sodium ions. 

Ammonium removal was higher from the liquid fraction of digestate where other 

cation species, as well as dissolved organic molecules were present. The higher 

removal of ammonium from digestate was likely due to co-adsorption of ammonium 

and dissolved organic matter (Lehmann et al., 2002; Sarkhot et al., 2013). Activation 

of biochar with sulfuric acid and sodium hydroxide enabled potassium removal, 

whereas untreated and hydrogen peroxide-treated biochar released potassium into 

the liquid fraction of digestate. However, the potassium removal was still rather low 

from the liquid fraction of digestate, and potassium remained in the activation 

media which cannot be reused. 

Fourier transform infrared (FTIR) photoacoustic spectroscopy revealed that 

orthophosphate removal was related to oxygen-containing functional groups such 

as carboxyl. However, this was not the case for ammonium removal from liquid 

fraction of digestate. The positive correlation found between the oxygen-containing 

functional groups and orthophosphate removal could be due to cation bridging (Lin 

et al., 2012; Qian et al., 2013). 

Overall, preconditioning of clinoptilolite did not seem to improve removal of 

ammonium and potassium, whereas removal of nutrients could be improved by 
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activation of biochar. However, preconditioning and chemical activation of sorbents 

are resource demanding processes. Such pre-treatment processes may only be 

relevant where the resources are available at low cost or the savings on costs by 

improving removal (including savings due to volume reduction) are bigger than the 

costs of pre-treatment. 

 

Fertiliser efficiency of digestate-enriched biochar and clinoptilolite 

An important aspect of concentrating nutrients on a sorbent is the cost-

effectiveness of the sorbent material. In addition, it is important that nutrients can 

be released from the enriched sorbent if the product is to be applied to soil as 

fertiliser. Clinoptilolite is known to act as a slow-release fertiliser as it can desorb 

nutrients following nutrient enrichment (Kithome et al., 1998; Ganrot et al., 2007; 

Kocatürk & Baykal, 2012).  Biochar is also reported to release nutrients subsequent 

to enrichment (Hale et al., 2013; Sarkhot et al., 2013; Hina et al., 2014). In Chapter 

5, I found that N sorbed to clinoptilolite and biochar from liquid fraction of digestate 

was available to plants and both enriched biochar and clinoptilolite were able to 

increase biomass yield and N uptake. However, clinoptilolite resulted in much 

higher biomass and N uptake compared to enriched biochar. As mentioned earlier, 

initial loading ratio was also an important parameter affecting the availability of N, 

and thereby affecting the efficiency of enriched material when used as an N 

fertiliser. 

The differences in the availability of N between the enriched clinoptilolite and 

biochar can be due to different sorption mechanisms of ammonium on biochar and 

clinoptilolite during enrichment, which subsequently affect the release of N from 

sorbents after soil incorporation. The enrichment of clinoptilolite with ammonium 

occurs mainly through ion exchange, and ammonium can subsequently be released 

through desorption (Kithome et al., 1998; Hedström, 2008; Beler-Baykal et al., 2011; 

Cyrus and Reddy, 2011; Kocatürk and Baykal, 2012). Nevertheless, other sorption 

mechanisms have been suggested for biochar, such as adsorption of NH3 on the 

biochar surface by acidic functional groups (Taghizadeh-Toosi et al., 2012b), 

chemisorption of NH3 (Petit et al., 2010), physical entrapment of NH3 in pores 

(Spokas et al., 2012; Jassal et al., 2015) and co-sorption of NH4
+ with soluble organic 

matter (Lehmann et al., 2002; Sarkhot et al., 2013), which can cause a strong 

retention of nitrogen on the biochar surface. 
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The results highlight the importance of the choice of sorbent material to remove 

nutrients from the liquid fraction of digestate if the enriched sorbent is to be applied 

in the soil as N fertiliser (Chapter 5). Further research of the long-term effects of 

fertilisation with enriched sorbents is needed to fully understand the interactions 

between the sorbents, treatments, and their individual and their combined effects 

on soil quality and fertility. 

 

Practical implications of nutrient recovery with biochar and 

clinoptilolite 

Clinoptilolite 

In Chapter 2, the nutrient removals achieved from the liquid fraction of 

digestate ranged from 9.05 to 20.58 mg NH4-N g-1 for ammonium, from 4.62 to 12.07 

mg K g-1 for potassium, and from 0.26 to 0.95 mg PO4-P g-1 for orthophosphate for 

varying initial loading ratios (L10-L52). In Chapter 4, clinoptilolite alone columns 

showed higher removal efficiencies compared to biochar alone. Combining 

clinoptilolite with biochar only improved total P removal efficiency, whereas 

ammonium and orthophosphate removal efficiency remained unaltered, and 

potassium removal efficiency decreased. In Chapter 5, I found that the plant 

availability of N in digestate-enriched clinoptilolite was much higher than that of 

enriched biochar. 

Nutrient removal efficiencies from digestate using clinoptilolite can be as high as 

89% for ammonium, 78% for potassium and 77% for orthophosphate (Chapter 2), 

which can be considered high efficiencies in practice. Apparent N recovery by the 

plants was as high as 0.75 when enriched clinoptilolite was applied as fertiliser 

(Chapter 5). These results indicate a superior performance of clinoptilolite as a 

sorbent material to remove and recover nutrients from the liquid fraction of 

digestate, and subsequently to apply it as a nutrient-enriched fertiliser compared to 

biochar. As indicated earlier, the plant availability of the recovered form of nutrients 

is also very important when selecting a treatment technology for digestate, and 

clinoptilolite seems to be an efficient material in both areas. 

In spite of the high removal efficiencies by clinoptilolite resulting in low 

ammonium, phosphate and potassium concentrations in the treated digestate, the 

increase in the concentration of nutrients from the liquid fraction of digestate on the 

enriched clinoptilolite appears to be rather modest. A greater reduction in weight 
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and volume would be desirable, but the economy depends mostly on the price of 

clinoptilolite, operation costs and costs of transport. A simple calculation is as 

follows: 194 Kg of clinoptilolite would be needed to process 1 Mg of liquid fraction 

of digestate if the NH4-N concentration of the liquid fraction of digestate were 4000 

mg L-1, and 20.58 mg NH4-N were removed per g clinoptilolite (as the highest NH4-N 

removal reported in Chapter 2). The price of clinoptilolite is approximately � 150 

Mg-1 including the transport cost to Denmark, the Netherlands or Belgium (Rota 

Mining Co., 2016), where treatment of digestate is necessary due to intensive 

livestock production. It follows that the cost of clinoptilolite would be 

approximately � 29 Mg-1 digestate. However this estimated cost may be different in 

practice as the operational costs are not included here and the cost for clinoptilolite 

may be lower in large amounts. The costs of the existing treatment technologies in 

practice such as evaporation, membrane separation and ammonia stripping are in 

the range of � 11-13 Mg-1 (Drosg et al., 2015). However, mineral concentrates, the 

end-product of membrane processes are in the liquid form and prone to N losses 

(mainly through ammonia volatilisation) when applied in the soil as fertiliser, which 

also reduces N-use efficiency by the plants (Klop et al., 2012). The use of 

clinoptilolite does not seem to be economically feasible for recovering nutrients 

from liquid fraction of digestate. However the high fertiliser value of digestate-

enriched clinoptilolite and the nature of clinoptilolite to slowly release nutrients are 

superior compared to the end-products of the other treatment technologies. 

 

Biochar 

In Chapter 3 the highest ammonium and orthophosphate removal with 

untreated biochar was 4.74 mg NH4-N g-1 and 1.38 mg PO4-P g-1 biochar, 

respectively. These removals could be improved up to 10.40 mg NH4-N g-1 and 2.02 

mg PO4-P g-1 with NaOH-activated biochar and H2SO4-activated biochar, 

respectively. On the other hand, potassium removal was not possible with untreated 

biochars due to high potassium content of the biochars used, and only minor 

potassium removal (1.22 mg K g-1) was achieved with H2SO4-activated biochar. In 

Chapter 4, the highest ammonium and orthophosphate removal achieved from the 

liquid fraction of digestate was 8.61 mg NH4-N g-1 and 1.95 mg PO4-P g-1 biochar, 

respectively, when the columns were designed and run with the highest initial 

loading ratio. In Chapter 5, pot experiments resulted in an apparent N recovery of 
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approximately 0.11 when enriched biochar was used as fertiliser, which is much 

lower compared to enriched clinoptilolite (apparent N recovery is 0.75 for 

clinoptilolite). 

Biochar samples used in this thesis (produced by pyrolysing holm oak wood at 

650 ºC) were not as efficient as clinoptilolite for removing nutrients from liquid 

fraction of digestate, and as N fertiliser following the enrichment. However, it is 

important to bear in mind that feedstock type and pyrolysis conditions, i.e. pyrolysis 

temperature, presence of oxygen, pyrolysis rate (slow or fast) can have a large effect 

on the  characteristics of biochar such as surface area, CEC, and pH, which are 

related to the effectiveness of biochar for sorption processes (Mukherjee et al., 

2011; Spokas et al., 2012; Clough et al., 2013; Hollister et al., 2013; Gai et al., 2014; 

Jassal et al., 2015). Novak and Busscher (2012) indicated that the quality of biochars 

can vary, and different biochars can react differently in soils. Therefore, they state 

that one type of biochar type will not resolve all issues in all soils. Designing a 

biochar with specific chemical and physical properties targeting specific problems is 

often a better option (Novak & Busscher, 2012; Novak et al., 2014). 

In recent years, many studies have been published attempting to explain the 

mechanisms involved in the ability of biochar to remove nutrients. As discussed 

through Chapters 3-5, the mechanisms responsible for nutrient retention reported 

in the literature vary. Possible mechanisms reported for ammonium removal are: 

cation exchange with cations such as Ca2+, Mg2+, K+, Na+ in biochar (Hale et al., 2013; 

Sarkhot et al., 2013; Zeng et al., 2013; Cui et al., 2016), chemical reactions with 

(oxygen-containing) surface functional groups (Kizito et al., 2015; Wang et al., 

2015a, 2015c; Cui et al., 2016), surface area-dependent physical diffusion and 

physical entrapment of NH4
+ in biochar pores (Clough et al., 2013; Kizito et al., 

2015), co-adsorption with soluble organic matter (Lehmann et al., 2002; Sarkhot et 

al., 2013) and struvite (MgNH4PO4.6H2O) precipitation on biochar (Cui et al., 2016). 

Orthophosphate removal has been explained by phosphate adsorption to MgO on 

the biochar surface (Yao et al., 2011), precipitation reactions between phosphate 

and Ca+ and Mg+ ions (Wang et al., 2015c), anion exchange with surface hydroxyl 

groups (Sarkhot et al., 2013) and electrostatic interaction of phosphate anions with 

charged hydroxide surfaces (Chen et al., 2011). Our understanding of the 

mechanisms responsible for nutrient removal by biochar is still limited, and 

therefore the answer to the question: �what is the most efficient biochar type to 

remove nutrients from liquid fraction of digestate?� is not straightforward. 
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Answering this question was not the objective here, however, my thesis 

demonstrates that biochar has the potential to recover nutrients from liquid 

digestate, and this potential can be enhanced by activation processes. Continuing 

research in this field is necessary to improve our understanding of what constitutes 

biochar with desirable characteristics in the context of agronomic and 

environmental management applications. 
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Chapter 7  

Conclusions and Outlook 
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7.1 Main Conclusions 

This thesis demonstrates that clinoptilolite and biochar are able to remove 

nutrients from the liquid fraction of digestate resulting from anaerobic digestion of 

animal manure; and both enriched clinoptilolite and biochar act as N fertilisers. My 

conclusions based on the specific objectives of the thesis are: 

 

· Preconditioning of clinoptilolite with sodium chloride does not increase total 

ammonium and potassium removal from the liquid fraction of digestate. 

· Initial loading ratio is an important design parameter in sorption processes to 

determine the amount of nutrient removal and nutrient removal efficiency. 

· Increasing initial loading ratio results in increasing removal of ammonium, 

potassium and orthophosphate by clinoptilolite, but the removal efficiency 

concomitantly decreases. 

· Initial loading ratio affects ammonium and orthophosphate removal and 

potassium release by biochar: Increasing initial loading ratio results in higher 

ammonium and orthophosphate removal and potassium release. Removal 

efficiency is also influenced and increasing initial loading ratio results in lower 

removal efficiency. 

· Initial loading ratio also affects the plant availability of the recovered nitrogen in 

digestate-enriched clinoptilolite and biochar. 

· Chemical activation of biochar increases ammonium and orthophosphate 

removal compared to untreated biochar, and enables potassium removal from 

the liquid fraction of digestate.  

· Clinoptilolite alone shows higher removal efficiencies compared to biochar 

alone, and combining clinoptilolite with biochar only improves total P removal 

efficiency. 

· Biochar cannot be used on its own as a sorbent for potassium and it decreases 

the potassium removal efficiency of clinoptilolite when they are used in 

combination. 

· Both enriched clinoptilolite and biochar act as N fertilisers, but clinoptilolite 

results in much higher plant growth than biochar. 

 



 100 

7.2 Perspectives, outlook and further research 

Nutrient recovery from liquid fraction of digestate is gaining more and more 

importance due to environmental regulations in many countries concerning manure 

digestate management, especially in areas with high livestock density, and 

considering depletion of the global natural reserves of phosphorus and potassium. 

Considering the high energy demands for the production of nitrogen fertilisers, 

recovery of nitrogen is also of high importance. A range of possible technologies can 

be applied for nutrient recovery from the liquid fraction of digestate. In some cases 

ion exchange is used after membrane separation or evaporation in digestate 

treatment, but it has not been applied alone as a single treatment process. This 

thesis confirms that sorption with clinoptilolite and biochar can be a promising 

technology to recover nutrients from the liquid fraction of digestate. Using biochar 

and clinoptilolite increases the concentration of nutrients and thereby decreases 

volume, which allows for savings on storage, transport and application of the 

voluminous liquid fraction of digestate. The end-product of this technology is 

nutrient-enriched clinoptilolite and biochar which can be directly applied to soils as 

fertiliser. Concentrating nutrients on clinoptilolite and biochar, and subsequently 

applying them as fertiliser can provide a win-win scenario as a result of combining 

the fertiliser effect with their soil improving properties. Besides, slow nutrient-

release properties of sorbents can reduce nutrient losses to the environment. As 

compared to direct land application of liquid fraction of digestate, concentrating 

nutrients on clinoptilolite and biochar, and subsequently applying them as 

fertilisers may provide benefits in terms of: 

 

· Reduction of digestate volume and volume-related costs such as storage and 

transport; 

· Reduction of nutrient losses to the environment; 

· Efficient use of nutrients by plants due to the slow nutrient-releasing nature of 

sorbents; 

· Improvement in soil quality, in areas where the combined soil-improving 

properties of biochar and clinoptilolite can be beneficial. 

 

Nevertheless, cost is an important factor when selecting a technology for 

nutrient recovery, and the concentration of nutrients on clinoptilolite and biochar is 
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only moderate. Therefore, improvement of the technology is needed. For 

clinoptilolite, it does not seem possible to improve cation exchange capacity and, 

thus, the level of nutrient concentration. However, improvement of nutrient 

removal of biochar is possible and other techniques can be investigated such as 

chemical and thermal activation in combination. 

I end this thesis with a list of research subjects which I find relevant and 

interesting for future research: 

 

· Desorption experiments on the desorption behaviours of enriched (loaded) 

biochar and clinoptilolite which mimic the nutrient release from enriched 

sorbents as fertilisers; 

· Testing the plant availability of P from digestate-enriched biochar and 

clinoptilolite; 

· Testing the plant availability of K from digestate-enriched clinoptilolite; 

· Long-term pot and field experiments to test the fertiliser efficiency of enriched 

biochar and clinoptilolite separately and together, and to observe their 

interactions with different soils; 

· Liquid fraction of digestate is a complex solution with many anions, cations and 

dissolved organics which makes it difficult to understand the mechanisms 

behind nutrient removal. Therefore, sorption experiments with simple aqueous 

solutions at various pH levels could be insightful to understand the effects of 

biochar on the removal of one anion or cation at a time. I believe that 

understanding the mechanistic aspects of nutrient removal with biochar would 

allow us to get one step closer to creating a bespoke biochar for the specific 

purpose of nutrient recovery. 
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Summary 

The increasing number of biogas plants over the last decades has brought the 

need to improve techniques to handle digestate, the by-product of anaerobic 

digestion in biogas plants.  Separation of digestate into liquid and solid fractions is 

often applied in centralised biogas plants, which necessitates the subsequent 

distribution of nutrients.  The liquid fraction of digestate can be used as fertiliser in 

agricultural crop production systems and the most common practice of utilising the 

liquid fraction of digestate is direct field application in the vicinity of the biogas 

plant. However, direct application may result in practical problems such as need for 

high storage volume, and environmental problems as a result of nutrient losses in 

the environment. To overcome such problems, recovery and concentration of 

nutrients from the liquid fraction may be a desirable option which, would also result 

in recovery of nutrients whose natural reserves are being depleted such as 

phosphorus and potassium. In this thesis I propose the use of sorbents i.e. biochar 

and clinoptilolite to concentrate nutrients and subsequently the application of 

digestate-enriched biochar and clinoptilolite as fertiliser. Therefore the overall 

objective of this thesis is to investigate the use of clinoptilolite and biochar to 

recover plant nutrients from the liquid fraction of digestate resulting from 

anaerobic digestion of animal manure and investigate the plant-availability of the 

recovered form of nutrients. 

In Chapter 1 (General Introduction), I summarised the motivation for this 

thesis, the objectives and experimental approach. 

In Chapter 2, I investigated the use of clinoptilolite as a sorbent to recover 

nutrients from the liquid fraction of digestate. I found no effect of preconditioning 

on the total ammonium and potassium removal from the liquid fraction of digestate. 

I also found that the removal efficiency of ammonium, potassium and 

orthophosphate from the liquid fraction of digestate was significantly affected by 

the initial loading ratio; and increasing initial loading ratios resulted in increasing 

removals (concentration of nutrients on sorbent) but decreasing efficiencies of 

clinoptilolite to remove nutrients from the liquid fraction of digestate. 

In Chapter 3, I studied the chemical activation of biochar by treating the biochar 

with deionised water, hydrogen peroxide, sulfuric acid and sodium hydroxide 

solutions to investigate the effects of activation on oxygen-containing functional 
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groups, and ammonium, orthophosphate and potassium removal from the liquid 

fraction of digestate. I found that ammonium, potassium and orthophosphate 

removal from liquid fraction of digestate was improved by chemical activation. FTIR 

photoacoustic spectroscopy revealed that orthophosphate removal was related to 

oxygen-containing functional groups. However, no strong correlation was found 

between the oxygen-containing functional groups and ammonium removal from 

liquid fraction of digestate. 

In Chapter 4, I investigated the effects of initial loading ratio on the ammonium, 

potassium, orthophosphate removal efficiency by biochar from the liquid fraction of 

digestate. I observed similar effects of initial loading ratio on the biochar (holm oak 

wood pyrolysed at 650 ºC) as for clinoptilolite. I also investigated the effect of the 

combination of clinoptilolite and biochar on the nutrient removal efficiency and 

found that combining biochar with clinoptilolite did not improve the efficiency of 

clinoptilolite to remove ammonium, orthophosphate, total N and dissolved organic 

carbon except for total P; and decreased potassium removal efficiency compared to 

clinoptilolite alone. 

In Chapter 5, I tested nutrient enriched biochar and clinoptilolite as nitrogen 

fertilisers with a pot experiment using the double-pot technique with ryegrass. I 

found that N sorbed to clinoptilolite and biochar from liquid fraction of digestate 

was available to plans and both enriched biochar and clinoptilolite were able to 

increase biomass yield and N uptake. However, clinoptilolite resulted in much 

higher biomass and N uptake compared to enriched biochar. I demonstrated that 

the initial loading ratio was an important parameter that not only affected the 

nutrient removal efficiency from the liquid fraction of digestate, but also affected the 

availability of N and thereby the efficiency of the enriched material when used as a 

fertiliser. 

In Chapter 6 (General Discussion), I synthesised the main findings of my 

research chapters and discuss their implications. 

I concluded this thesis with a general conclusion in Chapter 7 (Conclusions and 

outlook) with a reflection on the findings of this thesis in the context of practical 

applicability of biochar and clinoptilolite for digestate treatment. I finalised this 

chapter with reflecting on the relevance of my main conclusions for future research. 

In conclusion, this thesis confirms that sorption with clinoptilolite and biochar 

can be a promising technology to recover nutrients from liquid fraction of digestate. 

Using biochar and clinoptilolite provides concentration of nutrients and, thereby, 
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volume reduction which allows for savings on storage, transport and application of 

the voluminous liquid fraction of digestate. The end-products are digestate-enriched 

clinoptilolite and enriched biochar can act as N fertilisers. 
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Resumé 

Det stigende antal biogasanlæg i de seneste årtier har forårsaget behov for at 

forbedre teknikker til at håndtere digestat, biproduktet af anaerobisk udrådning i 

biogasanlæg. Adskillelse af digestat i flydende og faste fraktioner anvendes ofte i 

biogasanlæg, hvilket forårsager fordeling af næringsstoffer. Den flydende fraktion af 

digestat kan anvendes som gødning i landbruget og den mest almindelige praksis 

ved at udnytte den flydende fraktion af digestat er direkte udbringning i nærheden 

af biogasanlægget. Dog kan direkte udbringning medføre praktiske udfordringer, 

såsom behovet for opbevaring og miljømæssige problemer som følge af 

næringsstoftab til vandmiljøet. For at overvinde sådanne udfordringer kan 

recirkulering og opkoncentrering af næringsstoffer fra den flydende fraktion være 

en ønskelig mulighed, som også kunne føre til genanvendelse af næringsstoffer, hvis 

naturlige reserver udtømmes såsom fosfor og kalium. I denne afhandling foreslår 

jeg brugen af sorbenter dvs. biochar og clinoptilolit til at opkoncentrere 

næringsstoffer og efterfølgende anvendelse af digestat -beriget biochar og 

clinoptilolit som gødning på landbrugsjord. Det overordnede formål med denne 

afhandling er derfor at undersøge brugen af clinoptilolit og biochar til at recirkulere 

plantenæringsstoffer fra den flydende fraktion af digestat som følge af anaerob 

udrådning af husdyrgødning og undersøge tilgængelighed af den genanvendte form 

af næringsstoffer. 

I kapitel 1 (Generel introduktion), har jeg sammenfattet motivation for denne 

afhandling, formål og den eksperimentelle tilgang. 

I kapitel 2, har jeg undersøgt brug af clinoptilolit som sorbent til at recirkulere 

næringsstoffer fra den flydende fraktion af  digestat. Jeg fandt ingen effekt af 

forbehandling på den totale ammonium og kalium fjernelse fra den flydende 

fraktion af digestat. Derudover fandt jeg at effektiviteten af fjernelse af ammonium, 

kalium og orthophosphat fra den flydende fraktion af digestat var signifikant 

påvirket af det initiale forhold af digestat og næringsstof; og at stigende initiale 

forhold resulterede i øget fjernelse (koncentration af næringsstof på sorbent), men 

faldende effektivitet af clinoptilolit til at fjerne næringsstoffer fra den flydende 

fraktionen af digestat. 
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I kapitel 3, studerede jeg kemisk aktivering af biochar ved behandling af biochar 

med deioniseret vand, hydrogenperoxid, svovlsyre og natriumhydroxid opløsninger 

for at undersøge effekterne af aktivering af oxygenholdige funktionelle grupper, og 

ammonium, orthophosphat og kalium fjernelse fra den flydende fraktion af digestat. 

Jeg fandt, at ammonium, kalium og orthophosphat fjernelse fra den flydende 

fraktion af digestat blev øget ved kemisk aktivering. FTIR fotoakustisk spektroskopi 

viste, at orthophosphat fjernelse var relateret til oxygenholdige funktionelle 

grupper. Ingen stærk korrelation mellem oxygenholdige funktionelle grupper og 

ammonium fjernelse fra den flydende fraktion af digestat blev fundet. 

I kapitel 4, undersøgte jeg effekterne af det initiale forhold af digestat og 

næringsstof på ammonium, kalium og orthophosphat fjernelse ved tilførsel af 

biochar fra den flydende fraktion af digestat. Jeg observerede sammenlignelige 

effektiviteter af det initiale forhold af digestat og næringsstof for biochar (egetræ 

pyrolyseret ved 650 ºC) som for clinoptilolit. Jeg undersøgte også effekten af 

kombinationen af clinoptilolit og biochar for fjernelseseffektivitet af næringsstoffer, 

og fandt at ved at kombinere biochar med clinoptilolit ikke forbedrede effektiviteten 

af clinoptilolit til at fjerne ammonium, orthophosphat, total N og opløst organisk 

kulstof, undtagen for total P; og at dette reducerede kalium fjernelseseffektivitet i 

forhold til clinoptilolit alene. 

I kapitel 5, testede jeg næringsstof-beriget biochar og clinoptilolit som 

kvælstofgødning i et potteforsøg ved dobbelt-potte teknik med rajgræs. Jeg fandt, at 

N bundet til clinoptilolit og biochar fra den flydende fraktion af digestat var 

tilgængeligt for planterne, og både beriget biochar og clinoptilolit var i stand til at 

øge udbyttet af biomasse og N optagelse. Men clinoptilolit resulterede i langt højere 

biomasse og N-optagelse i forhold til beriget biochar. Jeg viste yderligere, at det 

initiale forhold af digestat og næringsstof var en vigtig parameter ikke kun til i 

forhold til fjernelseseffektivitet af næringsstof fra den flydende fraktion af digestat, 

men at det også påvirkede tilgængeligheden af N og dermed effektiviteten af det 

berigede materiale som anvendelse til gødning. 

I kapitel 6 (Generel diskussion), kombinerede jeg de vigtigste resultater af min 

forskning og diskuterede deres konsekvenser. 

Jeg konkluderede denne afhandling med en generel konklusion i kapitel 7 

(Konklusioner og outlook) med en refleksion over resultaterne af denne afhandling i 

forhold til praktisk anvendelse af biochar og clinoptilolit til behandling af digestat. 
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Jeg afsluttede dette kapitel med refleksion over relevansen af mine vigtigste 

konklusioner for fremtidig forskning. 

Afslutningsvis, denne afhandling bekræfter at sorption med clinoptilolit og 

biochar kan være en lovende teknologi til at recirkulere næringsstoffer fra den 

flydende fraktion af digestat. Anvendelse af biochar og clinoptilolit giver en 

opkoncentrering af næringsstoffer og dermed reducerer digestatets volumen hvilket 

muliggør besparelser på opbevaring, transport og anvendelse af den omfangsrige 

flydende fraktion af digestat. Restprodukterne er digestat-beriget clinoptilolit og 

biochar som kan anvendes som N gødning. 
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