

Cost-Benefit Analysis of Adaptation Options Lessons from recent Canadian Experience

Pamela Kertland, Gerett Rusnak, Don Lemmen
Climate Change Impacts and Adaptation Division
Natural Resources Canada

Adaptation Futures 2016

Natural Resource

Ressources naturelles Canada

With thanks to

St. Lawrence & Synthesis team:

 Claude Desjarlais, Rene Roy, Caroline Larivee, David Huard, and Nicholas Audet, Unsal Ozdilek, Jean-Pierre Reveret, Laurent Da Silva, Pierre-Marc Rondeau, Claude Comptois, Jie He, Chee Chan, Cedric Coppens, Lucie Bosijoly and Claude Anne Baillargeon

Great Lakes team:

Mark Fisher, Rob Dorling & Kyle Hanniman (Great Lakes team)

Quebec Coasts & Sythesis team:

 Manon Circe, Laurent Da Silva, Claude Desjarlais, U. Boyer-Villemarie, X. Mercier, Claude Desjarlais, F. Morneau, G. Duff, S. Corbeil,

Atlantic Coasts team:

 Stephanie Arnold, Hope Parnham, Jeff Hoyt, Sabine Dietz, D. Walmsey, S. MacDonald, Patrick Withey, Jon Rosborough

Mining Studies teams

 Al Douglas, Sean Capstick, Alison Perrin, Jason Dion, Simon Eng, Joel Nodelman, Dave Sawyer, Susan McGeachie, Luke Baer

Natural Resourc Canada Ressources naturelles

1

The Adaptation Platform: enhancing collaboration

- Mechanism to bring together knowledge, capacity & resources
- Focus on generating specific, decision-useful information and tools that regions and key industries need to understand and adapt to a changing climate
- Expanding the tent
 - + industry, financial sectors
 - + federal departments
- Each participating organization brings its own resources, priorities and mandate

Goals for Economic Research

- To expand the information available about the costs of climate change impacts and the costs and benefits of adaptation action
- To help build the business case for action
- To increase awareness of the contribution of this analysis to adaptation decision-making and build capacity to undertake the work.

ral Resources Ressources naturelles ada Canada

Mining Sector Results

Key Findings:

- Costs, benefits and appropriate timing of actions are site dependent.
- Some actions worth investing in now such as: increasing tailing pond capacity, upgrading water management systems, and installing dust barriers.
- Other actions only become cost effective in the future.
- Valuable information for developing business cases
- Completion of a risk assessment improves ability to do economic study

Natural Canada

Natural Resourc Canada Ressources naturelles Canada

Sample risks modelled

Event	Conditions	Damage	Cost	Preventive Cost	Preventive Measure
Heavy rains	>200 mm over 24 hours in winter or spring	Tailing ponds overflow	\$5M	\$4M	Increase tailing ponds' maximum capacity
Severely heavy rains	> 250 mm over 24 hours in winter or spring	Failure of safety fail in spillway (overflow) and dyke rupture	\$75M	\$150M	Definite restoration of tailing ponds
Local road closure	Ice storm, flood or erosion	Storm inhibits staff transportation to the site	\$10K/hour	\$100K	Training, partnership, shift planning
Regional road closure	Ice storm, flood or erosion	Storm blocks lime supply	\$10K/hour	\$250K	Increase inventory max capacity
Regional road closure	Ice storm, flood or erosion	Storm blocks supply of other critical ingredients (Cyanide, Oxygen, SO2)	\$10K/hour	\$750K	Increase inventory max capacity
Forest fire	Forest fire in the surrounding area	Staff is evacuated, equipment is damaged	\$10K/hour +\$300K	\$1M	Brushing, emergency equipment storage plans
Large scale ice storm	Power outage	Ice storm causes power outage	\$10K/hour	\$2M	Increase power generation capacity at the mine (generators and stock of diesel fuel used for mobile generators)
Severe lightning	Power outage	Power lines are struck down	\$10K/hour	\$2M	Increase power generation capacity (generators and stock of diesel fuel used for mobile generators)

Source Ernst & Young, 2015

ural Resources Ressources naturelle

Mining Sector – Lessons learned

- Manage uncertainty openly
- Need to fit analysis to the nuances of the industry
- Trust is critical 2 of 3 study leaders had existing relationships with the companies studied

Natural Reso Canada

latural Resources Ress anada Cana Canadä

4

Canada

10

St. Lawrence & Great Lakes

- Focus on low water levels
- Great-Lakes evaluation of restoration of water levels
- St. Lawrence studies on waterfront property values, hydroelectricity production, marine transportation, ecological services and fishing, municipal water supply & discharge, recreational boating & tourism
- Reference scenario and 2 what-if scenarios

Canada

- 1

Findings

- Impacts of climate change vary greatly among sectors tens to hundreds of millions of dollars
- No hard structures to manage water levels seem economically justified to minimize potential impacts on maritime transportation or tourism
- Adaptation options like restoration of riparian areas and floodplains could be positive economically especially since they also manage other climate risks beyond low water levels
- The clear requirement to adapt may give consideration to options outside infrastructure changes e.g. reducing electricity demand, alternative energy sources

al Resources Ressources naturelle

12

Quebec and Atlantic Regional Studies

- Quantify & compare net present value of benefit-cost ratio of adaptation options
- 11 case study sites in Quebec and Atlantic Canada
- Common frame 50y time horizon, 4% discount rate, estimates in 2012 C\$
- 3 option categories- hard engineering structures, soft engineering structures, nonstructural options
- Included study, construction, & maintenance costs
- QC studies also included impacts on environmental & social assets

Natural Resourc Canada Ressources naturelles

13

Summary across case studies

Note: Segment groups: Red: 1-Not intervening is not an option; Yellow: 2-Net advantage to intervene (\$0.5 M-\$10 M); Purple: 3-Small advantage (-\$0.5 M); Blue: 4-Within a margin \$25,000; Green: 5-No economic advantage to intervene

Figure 4.3 Benefit-Cost Ratio of the Most Advantageous Options

Source: Boyer-Villemaire, U et al 2016

Natural Resources

Canada

14

Lessons learned

- Collaboration with stakeholders
 - Increase access to numerical data
 - Understanding and acceptance of results
 - Can be challenging where priorities for adaptation vary
- Breaking coasts into segments allows for highly realistic assessment of damages but may be more efficient to work at larger scales
- Consideration of indirect impacts variable or impacts key in decisionmaking processes
- Complementary studies may be needed (e.g. on distributive costs)
- Can assist with decision making e.g. Percé
- Regionally integrated studies are challenging yet offer relevant way to look at multiple interactions and cross-cutting issues.
- Need enough baseline studies to conduct integrated studies efficiently

Natural Resourc Canada Ressources naturelle Canada

15

For more information:

Great Lakes study

councilgreatlakes.org

St. Lawrence & Quebec coastal studies

www.ouranos.ca

Atlantic coastal studies

www.upei.ca/climate

16

For additional information:

