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Abstract 

Enhancing sustainability in food production requires knowledge about the economic, 

environmental and social performance of the various stages of agri-food supply 

chains. An integrated indicator can provide synthetized information about the extent 

to which food products are sustainably produced and can guide sustainability 

improvements. The overall objective of this thesis was to perform integrated 

assessments of relative sustainability performance of (stages of) agri-food supply 

chains using integrated indicators. To achieve the overall objective this thesis first 

developed a theoretical framework for benchmarking agri-food supply chains in terms 

of their relative sustainability performance. Two integrated indicators were proposed, 

i.e. the Social Profit indicator that integrates sustainability performance indicators 

using prices and the Technical Inefficiency indicator that uses distance functions. Next, 

the Social Profit indicator was illustrated for Brazilian soybean meal chains: non-

genetically modified (non-GM) and genetically modified (GM) chains. Further, relative 

sustainability performance (economic and environmental) of specialized potato farms 

in Germany and the Netherlands was assessed using both the Social Profit indicator 

and the Technical Inefficiency indicator. Finally, an alternative approach, the 

Nerlovian social profit Inefficiency indicator, was used for the assessment of relative 

sustainability performance of coffee farms in Vietnam.  

The results of this thesis suggests that the three proposed integrated indicators can be 

used in different socio-economic and environmental contexts to capture the multi-

dimensional nature of relative agri-food supply chain sustainability. Their 

implementation helps to overcome some of the limitations of the single-issue and 

composite indicators that are commonly used in sustainability assessments such as 

incommensurability, subjectivity and comparability. The indicators provide 

information that can be used by businesses, stakeholders and policy makers to 

identify opportunities for relative sustainability performance improvements of agri-

food supply chains.  

Keywords: Total Factor Productivity, Total Price Recovery, technical inefficiency, 

agri-food supply chain, externality, social profit. 
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Background 

The role of agri-food supply chains in dealing with sustainability 

Agri-food supply chains play a critical role in society for meeting food demand of the 

growing world’s population (Yakovleva 2007). Over the next decades the world’s 

population is expected to increase from 6.8 billion in 2008 to 8.3 billion by the 2030, 

and to 9.2 billion by 2050 (FAO 2009; UNEP, 2009). Current food production should 

increase by 70 to 100% by 2050 in order to feed the world population (FAO 2009; 

World Bank 2008). However, expansion and intensification of agriculture and food 

production put significant pressure on the environment and society (Black et al. 2011; 

Yakovleva 2007). Land degradation and deforestation, depletion of natural resources 

such as water and soil and pollution are threatening the integrity of the natural 

system and the delivery of ecosystem services worldwide (Butchart et al. 2010). 

Health problems resulting from potentially indiscriminate use of agro-chemicals, the 

deterioration of labor conditions, especially in tropical countries and, the migration 

and marginalization of rural communities cause social impacts (Koning and Robbins 

2005). Scholars, planners, producers, policy-makers, and other stakeholders have 

pointed out the need for a global strategy to examine ways to ensure sustainable food 

production (Donald 2008; Kissinger 2012; Lewandowski and Faaij 2006). This would 

require changes on all parts of the agri-food supply chain, that is, from input supply 

chains to agricultural production, processing, packaging and distribution (Donald 

2008; Charles et al. 2010). 

 

The concept of sustainability  

Sustainable development was placed on the international agenda of national and 

supra-national governments by the Brundtland Commission Report (World 

Commission on Environment and Development, 1987) (Daly 1990; Clift 2003), who 

defined it as the ‘‘development that meets the needs of the present without 

compromising the ability of future generations to meet their needs’’ (WCED 1987). 

This human-centered definition of sustainable development is in line with Judeo-

Christian religious philosophy in which humans are separated from nature and have 

dominion over it (Jepson 2004).  
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Although the Brundtland definition is one of the most cited definitions, the concept 

still lacks a single and internationally accepted interpretation (Dietz and Neumayer 

2007).  

A diverse set of definitions of sustainable development has developed over time (e.g. 

Hart 1995; Elkington 1999; Pearce et al. 1988; Repetto 1985; Solow, 1986). Most of 

the definitions agree upon three pillars of sustainable development: (1) economic, (2) 

social, and (3) environmental (Málovics et al. 2008). A comprehensive sustainability 

assessment should therefore be based on these three dimensions of sustainability 

(Böhringer and Jochem 2007).  

In recent years, economists have made progress to operationalize the concept of 

sustainable development relying on the capital theory approach (Atkinson 2008; 

Stern 1997). Under this approach, capital is comprised of three main types, each of 

those representing one of the three dimensions of sustainability. (1) natural capital 

which includes renewable and non-renewable natural resources, (2) human capital 

which is constituted by the stock of education, skills, culture, and knowledges, and (3) 

man-made capital which comprises buildings, tools, and other physical assets, thus, all 

produced goods (Ruta and Hamilton 2007). The question whether the three different 

types of capital can be substituted by one another is the central point of two diverging 

views on sustainable development, i.e. the weak sustainability and the strong 

sustainability (Stern 1997). Weak sustainability, on the one hand, assumes that the 

elasticity of substitution between the three types of capital is one, implying that man-

made capital can replace any component of the natural capital and social capital 

(Stern 1997). For example the rents from the depletion of natural resources can be re-

invested in manufactured capital (Hartwick 1977). Under this perspective, 

development can be considered to be sustainable if it ensures a non-decreasing total 

capital stock (the sum of all three types of capital) (Pearce and Atkinson 1993). The 

strong sustainability perspective is less permissive (Málovics et al. 2008). This 

perspective states that natural capital can only to a certain degree be substituted by 

man-made capital. This is the case when substitution of the natural capital stock by 

man-made capital involves irreversible losses, e.g. the species extinction (Hussen 

2000). Equally, it states that there are 'critical' components of natural capital that 

provide irreplaceable life-support functions for humans as well for the resilience of 

ecological systems and thus, cannot be substituted (Barbier et al. 1994; Ekins et al. 

2003; van der Bergh 2007). Those forms of critical natural capital include water, 
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genetic materials, stratospheric ozone layer and conservation of landscapes for other 

human welfare values (aesthetic, spiritual, etc.) (Ekins et al. 2003). Under the strong 

sustainability perspective, development can be considered to be sustainable if it 

ensures that each individual stock of capital is maintained over time (Costanza and 

Daly 1992).  

At the agri-food supply chain level, sustainability can be drawn similar to the 

reasoning above (Figge and Hahn 2004). Contributions to sustainability can be judged 

according to the economic, environmental, and social performance of the agri-food 

supply chain taking into account the interconnectedness of different stages along the 

chain. Based on the strong sustainability perspective, the agri-food supply chain 

would be considered to be performing sustainably only if a minimum performance at 

each stage of the chain and on each dimension of sustainability is achieved (Figge and 

Hahn 2004). On the other hand, following a weak sustainability view, an agri-food 

supply chain would be considered to be performing sustainably if a good accumulated 

performance (i.e. the sum of the economic, environmental and social performance) is 

achieved at the end of the chain. This implies that a good performance in any stage of 

the chain can compensate a low performance in another stage, e.g. good accumulated 

performance in the processing stage can compensate low performance in agricultural 

production. Equally, this entails that good performance in relation to a given 

dimension of sustainability can compensate a decrease in performance in another 

dimension at any or the same stage of the chain, e.g. good economic performance at 

the processing stage can compensate the environmental deterioration at the 

agricultural stage. This brings full flexibility in the tradeoffs and perfect substitution 

between the three dimensions of sustainability and between the performance within 

the stages along the agri-food supply chain. In a weak sustainability view, assessing 

the performance of an agri-food supply chain requires aggregating the performance of 

each stage and each dimension of sustainability into a common metric. 

 

Problem statement 

To support the development of sustainable agri-food supply chains, it is essential to 

increase the knowledge of the economic, environmental and social performance of the 

various stages along the chains (Kissinger 2012). In recent years, the debate has 

centered on how chains (or firms) can be monitored and assessed in terms of their 
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sustainability performance (Atkinson 2000). Sustainability assessments have followed 

an absolute approach and a relative approach (Málovics et al. 2008). The difference 

between the two approaches depends on deciding the point of reference from which 

to determine whether the performance of a chain can be considered sustainable 

(Faber et al. 2005). Using an absolute approach, chains (firms) are expected to be 

assessed against an idealized end state, which implies that it is known what 

sustainability means in order to discriminate between what is and what is not 

sustainable (Faber et al. 2005). Nevertheless, given that our knowledge is limited with 

regard to the extent to which substitution between the different types of capital is 

possible (it depends on hardly controllable ecological threshold and, social contexts 

that determine the degree of substitutability between the three types of capital), this 

approach, which is closer to the strong sustainability perspective, has a limited 

applicability (Callens and Tyteca 1999). Due to these limitations, in this dissertation a 

different approach is used, that is, measuring sustainability performance in relative 

terms from a weak sustainability perspective. The sustainability performance of 

chains can be assessed by comparing similar chains (firms) that are placed in similar 

contexts in terms of their performance (Callens and Tyteca 1999). This assessment 

can result in the formulation of adequate corrective action, regulations, and incentives 

that can contribute to sustainability (Callens and Tyteca 1999; Faber et al. 2005).  

Implementation of this approach requires the use of a sustainability framework and 

the use of performance indicators that provide synthetized information about the 

extent to which food products are sustainably produced (Meul et al. 2008; Van Passel 

et al. 2007), taking into account the multi-dimensional nature of sustainability and the 

interconnectedness of the stages along the chains. A growing number of frameworks 

and indicators to measure sustainability have been developed, e.g. Global Report 

Initiative, International Organization for Standardization ISO 14031, World Business 

Council for Sustainable Development (WBCSD), and Centre for Waste Reduction 

Technologies (CWRT) (Veleva and Ellenbecker 2001). Given that these frameworks 

generally comprise a particular number of performance indicators that cover each of 

the three dimensions of sustainability, the use of these frameworks for an integrated 

sustainability assessment continues to present operational problems (Gómez-Limón 

and Sanchez-Fernandez 2010). The greatest difficulty involves combining the 

indicators that are used to evaluate the performance on the three dimensions of 

sustainability into a single integrated sustainability measure that is convenient for 
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communicating synthetized information to decision makers, producers and 

consumers (OECD 2002). For example, to answer the question of whether a chain 

(firm) is contributing more/less to sustainability than another chain (firm) requires 

making complicated tradeoffs between sustainability issues with different dimensions 

such as kilograms of CO2 emissions and hours of child labor. Such tradeoffs, however, 

are normally not in the mind sets of people (Gómez-Limón and Sanchez-Fernandez 

2010). To solve this limitation, composite indicators/indexes of sustainability that 

combine performance indicators of the different dimensions of sustainability into a 

single integrated measure of sustainability have gained acceptance (OECD 2002; Singh 

et al. 2012). However, so far these composite indicators/indexes have three main 

limitations: (1) the aggregation of performance indicators is in most cases based on 

subjective assessments, introducing an undesirable subjectivity (e.g. Composite 

sustainable development index, Compass Index of Sustainability (CIS), Sustainability 

Performance Index (SPI), Composite Sustainability Performance Index, Dow Jones 

sustainability group indices (DJSGI), Bovespa Corporate Sustainability Index). (2) 

when aggregation is undertaken following an objective approach, some composite 

indicators/indexes fail to incorporate social implications of production (e.g. Eco-

points, COMPLIMENT - environment performance index for industries, Eco-compass, 

ecological footprint and eco-efficiency indices). (3) finally, regardless of the large 

number of available composite indicators/indexes for companies, there is no formal 

framework for benchmarking the sustainability of agri-food supply chains (Yakovleva 

et al. 2011). Thus, although several composite indicators/indexes have been proposed, 

they have limited usefulness for policy makers in supporting decisions about the 

implementation of policies and strategies that enhance sustainability of agri-food 

supply chains. Providing valuable information can help producers in identifying areas 

of intervention and sustainability improvement, based on reduced economic, 

environmental and social impacts (Andrews and Carroll 2001, Gómez-Limón and 

Sanchez-Fernandez 2010). 

 

Objective 

The overall objective of this thesis is to perform integrated assessments of relative 

sustainability performance of (stages of) agri-food supply chains. 
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The general objective of this thesis is met by addressing the following specific 

objectives: 

 

1. To develop a framework for the integrated analysis of the relative sustainability 

performance of agri-food supply chains. 

2. To assess the relative sustainability performance of the Brazilian non-genetically 

modified (non-GM) and genetically modified (GM) soybean meal chains. 

3. To assess the relative sustainability performance of specialized potato farms in the 

Netherlands and Germany. 

4. To assess the relative sustainability performance of coffee farms in Vietnam and, to 

evaluate the impact of socio-economic characteristics and management practices 

on relative sustainability.  

 

Outline of the thesis 

This thesis is divided into six chapters. A general introduction (Chapter 1), four 

research chapters that elaborate on the aforementioned specific objectives (Chapter 

2-5) and a general discussion (Chapter 6). The structure of the dissertation is 

presented in Figure 1.1.  

Chapter 2 develops a framework based on the micro-economic theory of production 

as the basis to measure the relative sustainability performance of agri-food supply 

chains. The framework includes the definition and characterization of an agri-food 

supply chain in terms of outputs, inputs and externalities (which reflect the 

sustainability issues) and, an approach to operationalize sustainability in relative 

terms. Depending on the aggregation method used to combine outputs, inputs and 

externalities, two integrated indicators to measure relative sustainability were 

proposed, i.e. the Social Profit (or Adjusted Profit) indicator and the Technical 

Inefficiency indicator. The Social Profit indicator uses prices to aggregate variables 

whereas the Technical Inefficiency indicator uses distance functions (Figure 1.1). Even 

though the operationalization of sustainability is further developed throughout the 

subsequent chapters, this theoretical framework forms the conceptual basis for the 

remainder of this thesis. 
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Figure 1.1 Structure of the dissertation 

 

Chapter 3 assesses the relative sustainability performance of the Brazilian non-GM 

and GM soybean meal production chains using the Social Profit (or Adjusted Profit) 

indicator. Based on the outcomes and on the sources of variation along these two 
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chains, potential areas on which the sustainability performance of each chain can be 

improved are determined. 

Chapter 4 assesses the relative economic and environmental performance of 

specialized potato farms in the Netherlands and Germany using two integrated 

indicators, i.e. Social Profit and Technical Inefficiency. Based on the outcome of the 

two indicators, potential areas for performance improvement are identified. In 

addition, the advantages and limitations of each indicator in terms of their usefulness 

to measure the economic and environmental performance of farm systems are 

discussed. 

Chapter 5 assesses the relative sustainability performance of coffee farms in Vietnam 

by using an alternative distance-function based indicator, the Nerlovian Social Profit 

Inefficiency indicator. Even though this indicator uses prices for each output, input 

and externality, the aggregation is implicitly undertaken using distance functions. Also, 

this Chapter analyses the impact of a series of external factors that influence on the 

estimated relative sustainability performance. Based on the outcomes potential areas 

where the relative sustainability performance of coffee farms can be improved are 

identified.  

Chapter 6 discusses the overall results of the four research chapters in a wider 

context. The discussion includes critical reflections with regard to the methodologies, 

data issues and policy and business implications. Finally, the chapter provides the 

overall conclusions and gives insights into directions for future research.  
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Abstract 

Sustainable agricultural commodities should be favoured in international trade 

negotiations to meet the growing demand for food in a context of environmental 

conservation, population growth and globalization. There is a need for a metric that 

allows for the differentiation of traded agricultural commodities according to how 

sustainably they were produced. In this context, this paper develops two single 

metrics based on a Total Factor Productivity indexing approach, for benchmarking 

products in terms of their sustainability performance. Both metrics are adjusted to 

internalize the social and environmental externalities of food production, and to 

account for the sustainability effects of stages along agri-food supply chains. Key 

aspects, such as data availability, the selection of variables, and the selection of 

sustainability standards and targets, are discussed.   

 

Keywords: Total Factor Productivity; sustainability performance; agri-food supply 

chain; externalities. 
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Introduction 

Over the last decades, scholars, planners, producers, policy-makers, and other 

stakeholders have pointed out the need of finding possible pathways and 

developments for sustainable food production (Donald 2008). This challenge requires 

changes in the way food is produced in line with the increasing societal concerns and 

growing awareness over the social, environmental and food safety/health costs 

associated with the processes of food production (Ilbery and Maye 2004). Changes 

should go beyond agricultural production to include the rest of the agri-food supply 

chain, that is, from agricultural production to processing, packaging, distribution and 

consumption (Donald 2008; Charles et al. 2010). Therefore, actors throughout the 

chain can potentially play an important role in promoting sustainability (Sundqvist et 

al. 2005). In this context, the whole agri-food supply chain provides a suitable 

framework from which to examine and improve sustainability in food production 

(Cobb et al. 1999). 

Agri-food supply chains account for a significant share of production and consumption, 

and have significant effects on economic growth, social welfare, development and the 

natural system (Yakovleva 2007). Because of the world’s increasing population, food 

production is projected to increase to meet the growing demand for food (FAO 2003). 

This will entail putting significant pressure on land, marine and water resources, as 

well as society and the economy (Black et al. 2011; Yakovleva 2007). Consequently, 

the environmental and socio-economic costs associated with the externalities of the 

intensification of food production are also increasing dramatically (Jackson et al. 

2007). Pollution of soil and water has been augmented, biodiversity in agricultural 

systems and the surrounding ecosystems has been reduced, natural resources have 

been overexploited (Butchart et al. 2010; Dirzo and Raven 2003), impacts on human 

health have increased, and ethical issues have arisen (Yakovleva 2007). For this 

reason, concerns have been raised about whether production is consistent with 

sustainability (Ilbery and Maye 2004). This has pushed agricultural food production 

onto the national and international political and research agenda, with the aim of 

improving the efficiency and sustainability of product lifecycles from cradle to grave 

(Dorward 2013). Clear attempts at increasing sustainability include the introduction 

of certification schemes, encouraging the implementation of better production 
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practices, and highlighting the economic, environmental and social impacts of the 

product (Lines 2005; Sundkvist et al. 2005).  

However, the proliferation of certification schemes, and the lack of international 

accepted standards, have reduced transparency and increased confusion among both 

producers and consumers (Gerbens-Leenes et al. 2003). Different certification 

schemes are used for different feed stocks, criteria, and regions (Sawyer et al. 2008) 

and some of them are in competition with each other. At the most basic level, the 

multiplicity of certification schemes is costly for producers and poses a barrier for 

international trade (Lines 2005; Sawyer et al. 2008). Meeting certification standards 

requires an investment on the part of producers, especially in developing countries 

(Lines 2005). Given the compliance cost of the majority of standards, producers will 

only aim to meet the standards if there is an expectation of value (Lines 2005). This 

value may entail access to a market, or implementing a price premium that would 

incentive producers to engage in sustainable production (Edwards and Laurance 

2012).  

On the other hand, importers face a problem in terms of generating credibility 

regarding to the sustainability of the product (Sundkvist et al. 2005). Some schemes 

certify against prescriptive standards, and thus are not often based on evidence of 

reduced social and environmental impacts resulting from certified commodity 

production (Lines 2005). As a consequence, there are increasing concerns about the 

sustainability of certified production, which increases the insecurity consumers feel 

towards imported agricultural commodities (Sundkvist et al. 2005). All these issues 

constitute a major obstacle in international trade negotiations on sustainability issues 

(Lines 2005). Given that importers of agricultural commodities meet a significant 

portion of food demand in many nations (Hooker 1999; Kissinger 2012), it is clear 

that there is a need for a scientifically validated accepted metric to provide reliable 

and well-synthetized information about the extent to which agricultural commodities 

are sustainably produced. Although significant efforts to create such a metric have 

been made, including Ecological Footprint, Material Input Per Service Unit (MIPS), 

Dow Jones Sustainability Group Indices (DJSGI), Bovespa Corporate Sustainability 

Index, Life Cycle Index, Eco-Points, Eco-compass, and Environment Performance Index 

for Industries (Singh et al. 2009; van Passel et al. 2007), some of these metrics have 

failed to meet scientific criteria (Böhringer and Jochem 2007), and only a few have 

embraced an integrated approach including the environmental, economic and social 
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dimensions of sustainability from a supply-chain perspective (Singh et al. 2009; van 

Passel et al. 2007). There is still a need to look at the interconnectedness of different 

stages along the agri-food supply chain, and the measures which integrate the multi-

dimensional nature of sustainability (Boons et al. 2012; Sloan 2010; Yakovleva et al. 

2011).  

The objective of this paper is to develop an overarching single metric to enable the 

comparison of the sustainability performance of agri-food supply chains by applying a 

Total Factor Productivity (TFP) approach. The concept of TFP has been previously 

used in green growth accounting as an attempt to address sustainability, by 

considering the use of the environment as a source of growth (Barnett et al. 1994; 

Tzouvelekas et al. 2007). Two main advantages exist with respect to making use of the 

TFP approach. First, TFP acknowledges the fact that an agri-food supply chain is 

primarily a system of production, which is intimately connected to the ecological 

integrity of the natural capital. Second, TFP measures can be adjusted to internalize 

social and environmental externalities of agricultural commodity production, such as 

biodiversity loss, carbon sequestration and emission of pollutants (Mulder 2003), and 

thus can be related to some measure of overall welfare. To achieve our objective, we 

start by outlining a methodological framework that defines an agri-food supply chain 

in terms of output-input variables (including externalities of production), and 

introduces TFP as an approach for benchmarking of agricultural commodities in terms 

of its sustainability performance. Afterwards, we introduce two TFP indicators: a 

price-related productivity measure – the Bennet TFP indicator – and a distance-

function-based productivity measure – the Luenberger indicator – which are adjusted 

to account for the interconnectedness of stages along agri-food supply chains and for 

the externalities of production. Potential implementation of the Bennet TFP indicator 

is illustrated through a case study and, implementation of the distance-function-based 

indicator is illustrated using a numerical example. In the final Section, key aspects of 

the implementation of both TFP indicators are analysed, including data requirements, 

selection of variables and indicators, economic valuation of sustainability-related 

outputs and inputs, and selection of targets and thresholds for production of 

externalities.  

Implementation of the TFP indicators will allow us to differentiate sustainable 

agricultural commodity production at different locations and in a variety of socio-

economic contexts. Thus, this can serve as the basis on which to protect sustainable 
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food production from competition with unsustainable food. Objective information 

about the extent to which agricultural commodities are sustainably produced can 

improve the international flow of sustainable agricultural commodities to which the 

international market remains closed due to costly environmental, social and food 

safety requirements (Lines 2005), thus ensuring that preferential market access for 

sustainable commodities are put in place.  

 

Supply chain sustainability performance  

Methodological Framework 

Two main types of agri-food supply chains can be distinguished: food supply chains 

for fresh products (such as vegetables, flowers and fruits), and food supply chains for 

processed food products (including canned food products, dessert products, chilled 

products, frozen products, etc.) (Aramyan et al. 2006). These chains consist of a finite 

set of stages such as farming, wholesaling, importing and retailing, which are 

connected to produce finished outputs to be delivered to the end consumer in an 

integrated input–output system (Sloan 2010; Zhu 2003). Consider an agri-food supply 

chain or Decision Making Unit (𝐷𝑀𝑈𝑘) k = 1,...,K, which consists of stages z = 1,...,Z 

(Figure 2.1). Each stage z transforms multiple inputs (exogenous inputs) such as 

capital, labor and materials, into multiple outputs to produce economic goods and 

services. The exogenous inputs used at each stage are denoted by the vector 

𝑥𝑘
𝑧 = (𝑥𝑘1

𝑧 , 𝑥𝑘2
𝑧 , … 𝑥𝑘𝑁

𝑍 ) ∈ ℜ+
𝑁𝑧

, where 𝑁𝑘 = 𝑁1 + 𝑁2 + ⋯𝑁𝑍, can be written as 

𝑥𝑘 = (𝑥𝑘
1, 𝑥𝑘

2, … , 𝑥𝑘
𝑍). 

Furthermore, each stage z produces good outputs that can be intermediate or final. In 

many cases, a portion of the outputs from one stage may be reprocessed at another 

stage to get a more “pure” form of the product. The intermediate outputs can be 

denoted, so that those produced by stage z and delivered to node i,  i = 1,...,Z, by 

𝑣𝑘
𝑧𝑖 = (𝑣𝑘1

𝑧𝑖 , 𝑣𝑘2
𝑧𝑖 , … , 𝑣𝑘𝑈

𝑧𝑖 ) ∈ ℜ+
𝑈𝑧

, where total intermediate outputs 𝑈𝑘 = 𝑈1 + 𝑈2 +

⋯𝑈𝑍, can be shown as a Z * Z matrix 𝑣𝑘 . For example, returning to Figure 2.1, the total 

intermediate outputs produced by stage 1 consist of two elements, 𝑣𝑘
12 and 𝑣𝑘

1𝑍 , where 

the former is the intermediate output used as the input in stage 2, and the latter is the 

intermediate output used as the input in stage Z. The final output production of stage Z, 

and hence those that are in “finished” form and reach the consumer market, is 
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denoted by 𝑦𝑘
𝑧 = (𝑦𝑘1

𝑧 , 𝑦𝑘2
𝑧 , … 𝑦𝑘𝑀

𝑍 ) ∈ ℜ+
𝑀𝑧

, where total final output 𝑀𝑘 = 𝑀1 + 𝑀2 +

⋯𝑀𝑍, is denoted by 𝑦𝑘 = (𝑦𝑘
1 , 𝑦𝑘

2, … , 𝑦𝑘
𝑍).  

 

 

Figure 2.1 Generic schematic representation of an agri-food supply chain. 

  

On the other hand, each stage z produces undesirable factors. These are normally 

referred to in the literature as bad outputs, and are a set of negative environmental 

and social externalities that have implications for social welfare. Examples of such 

externalities are soil erosion, noise, water pollution, air pollution, damage to human 

health, work dissatisfaction, etc. The production of bad outputs at each stage z is 

denoted by a vector 𝑏𝑘
𝑧 = (𝑏𝑘1

𝑧 , 𝑏𝑘2
𝑧 , … 𝑏𝑘𝐽

𝑧 ) ∈ ℜ+
𝐽𝑧

,  where the overall production of bad 

outputs 𝐽𝑘 = 𝐽1 + 𝐽2 + ⋯ , 𝐽𝑍 can be written as 𝑏𝑘 = (𝑏𝑘
1, 𝑏𝑘

2, … , 𝑏𝑘
𝑍). 

It should be noted that the methodological framework presented is generic in nature 

and could be modified so as to include different agri-food supply chain structures 

(multiple connections between stages) or recycling processes, where some of the final 

outputs, as well as some of the bad outputs (such as solid waste), can be collected to 

be reused within the same stage or as part of a different process. 
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Agri-food supply chain sustainability performance 

In line with the framework presented above, an agri-food supply chain likely will 

perform sustainably if it (i) produces products (good outputs) that generate 

competitive returns on its capital assets, (ii) produces the lowest possible quantity of 

negative externalities or bad outputs; taking into account that a zero level of 

externalities would not be realistic (van der Bergh 2010) and, (iii) uses, as far as 

possible, a set of inputs that are considered most sustainable. A stage in the agri-food 

supply chain may make use of an input for which a variety of categories might apply. 

For example, different sources of energy, such as those derived from natural sources 

(sun, wind, water, etc.) and from non-renewable energy such as fossil fuels, coal, 

natural gas and oil, could be used; slaves, children, low-paid workers, or high-quality 

labor could be employed; land with the existence of legal property rights or illegal 

tenancy could be exploited; either organic or synthesized fertilizers and pesticides 

might be used for farming; etc. Thus, agri-food supply chains that substitute 

undesirable or unsustainable inputs for those perceived to be more sustainable should 

be considered to be performing more sustainable, since a lower impact (lower 

quantity of externalities) will be imposed on the environment, society and the 

economy.  

Nevertheless, it should be noted that the use of some inputs might have contradictory 

influences, depending on the aspects of sustainability and the scale on which it is 

considered (Callens and Tyteca 1999). For example, energy derived from fossil fuels is 

generally encouraged to be minimized from an environmental point of view, but if it is 

the least expensive source of energy it is preferable to maximize its usage from a 

private economic perspective (Callens and Tyteca 1999). With regard to the spatial 

scale, the meaning of a sustainable and unsustainable input may vary for individual 

groups of stakeholders depending on the socio-economic and environmental 

characteristics of a particular place. For example, the use of child labor is 

inconceivable in most situations and countries, but it could be argued that in some 

farming areas it is required for the subsistence of the household, and is a way of 

transmitting traditional knowledge through generations, so as to maintain the cultural 

heritage of rural populations. Thus, the boundaries and sustainability goals for the 

agri-food supply chains under consideration must be defined, and the sustainability 

goals for the society in question specified.  
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Total Factor Productivity as a measure of agri-food supply chain 
sustainability performance  

We use a TFP approach for sustainability performance measurement of agri-food 

supply chains. The general idea behind TFP is to reflect a measure of output per unit 

of input. The economics literature distinguishes indexes of productivity from 

indicators of productivity (Diewert 2005). Productivity measures that make use of 

differences are classified as indicators, whereas measures that make use of ratios are 

considered as indexes (Diewert 2005). Productivity indicators have an advantage over 

productivity indexes in that indicators are more general in structure and 

computationally more convenient when it comes to accounting for the production of 

good and bad output variables. More importantly, if we wish to additively aggregate 

the TFP (productivity scores) for each of the stages along the agri-food supply chain, 

the productivity measures should have an additive, rather than a ratio, form (Färe and 

Grosskopf 2005).  

With respect to a DMU k, wherein each comprises z = 1,...,Z stages at a certain time 

period t, TFP is defined as the difference between all aggregated good and bad outputs, 

and all aggregated inputs: 

 

 

𝑇𝐹𝑃𝑘
𝑡 = 𝑄0(𝑦𝑘

𝑡 , 𝑣𝑘
𝑡 , 𝑏𝑘

𝑡) − 𝑄𝑣(𝑥𝑘
𝑡 , 𝑣𝑘

𝑡), 

 

 

The aggregator functions for good and bad outputs and inputs are denoted by 𝑄0() 

and 𝑄𝑣(), respectively.  The TFP score will reveal the productivity of the DMU k, where 

productivity is taken as performing sustainably or performing unsustainably, as a 

means to transform inputs throughout the stages into final outputs. The bad outputs 

are penalties that lower the TFP score. Note the fact, however, that in this framework 

higher productivity, i.e. higher TFP, is viewed as a necessary, but not sufficient 

criterion, for a system to be considered as performing relatively sustainable. This 

means that an agri-food supply chain should comply with a second criterion: a non-

decreasing TFP over time (Barnett et al. 1994).  

 

 

𝑇𝐹𝑃𝑘
𝑡+1 ≥ 𝑇𝐹𝑃𝑘

𝑡 , 

(2.1) 

(2.2) 
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Additionally, we might want to compare analogous agri-food supply chains with 

different sets of outputs, bad outputs and inputs to detect whether some behave in a 

more appropriate way than others, based on established sustainability goals. We can 

assess and rank agri-food supply chains in terms of best-worst TFP scores; thereby 

providing a relative measure of sustainability performance that can be useful to 

differentiate agricultural commodity production. In this context, for example, the TFP 

score of DMU1 in a period t compared with the TFP score of DMU2 in the same period 

is estimated as:  

 

 

𝑇𝐹�̂�1,2
𝑡 = 𝑇𝐹𝑃2

𝑡 − 𝑇𝐹𝑃1
𝑡 , 

 

 

If the TFP score of DMU2 is greater than that of DMU1, the consolidated production 

technology of DMU2 could be superior to that of DMU1, its production process may be 

considered more efficient than that of DMU1 and/or a lower level of externalities 

might be produced; thus, DMU2 would be considered to be performing more 

sustainably than DMU1, under the assumption that the negative social and 

environmental externalities are included as bad outputs. 

To enable a consistent comparison approach between the TFP of a chain in two 

different time periods, expression (2.2), or between analogous chains with different 

sets of good outputs, bad outputs and inputs, expression (2.3), indexing 

methodologies, in this case indicators of productivity, are used. The indicators of 

productivity vary depending on the approach that is used for the aggregation of good 

outputs, bad outputs and inputs. One approach uses price information as weights, 

known as the Bennet TFP indicator. An alternative approach uses distance functions 

that aggregate the different variables based on the technology set and the information 

of the quantities of good outputs, bad outputs and inputs (Chung et al. 1997), known 

as the Luenberger indicator (Chambers 1996). Therefore, we focus our discussion on 

both the price-related indicator – the Bennet TFP indicator – and its counterpart, 

which is distance-function-based – the Luenberger indicator. A classical pathway to 

compute both indicators would be to estimate the sustainability performance of an 

(2.3) 
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agri-food supply chain without taking into account its internal structure. This would 

require treating the agri-food supply chain as a “black box,” where only the exogenous 

inputs and the final good and bad outputs consumed and produced at each stage of the 

chain are considered (Castelli et al. 2010; Chen and Yan 2011). Consequently, all 

intermediate outputs/inputs would be ignored in the analysis. Although this approach 

could provide useful information, treating an agri-food supply chain as a “black box” 

will mean a failure to incorporate the links that exist between stages along the chain, 

and thus an inability to extract clear evidence of the transformations that the inputs 

are subject to within the considered stages (Castelli et al. 2010). For example, the 

chain’s overall sustainability performance might be positive even though some stages 

have large inefficiencies that are compensated by another stage (or stages) (Castelli et 

al. 2010), thus overrating the real performance of the agri-food supply chain. 

Consequently, both productivity indicators are developed in such a way that access to 

the internal structure is feasible. 

 

Bennet Total Factor Productivity (TFP) indicator  

The adjusted profit (AP) of a DMU k in period t is defined as the difference between 

the value of the aggregated final good outputs minus the aggregated inputs and bad 

outputs:  

 
 

𝐴𝑃𝑘 = 𝑝𝑘
′𝑦𝑘 − 𝑤𝑘

′𝑥𝑘 − 𝑟𝑘
′𝑏𝑘 , 

 

 

where p, r and w, are vectors of (shadow) prices of outputs, inputs and bad outputs 

that are used to aggregate the different variables (prime indicating the transpose of 

the vector). The difference in the AP between two analogous DMUs can be 

decomposed into two additive components using the Bennet price and the Bennet 

quantity indicators: (1) a price component, known as the Total Price Recovery (TPR), 

which provides the differences in AP due to price changes (Miller et al. 1989), and (2) 

a quantity component, known as the TFP component. Leaving out the TPR component 

of the AP difference, the TFP component provides our measure of relative 

sustainability performance.  

(2.4) 
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We first compute the TFP component of the partial AP difference of a stage Z of DMU2 

with the same stage Z of DMU1. In this case the Bennet TFP indicator is defined as: 

 

 

𝐵𝐵1,2
𝑡,𝑧 = [

1

2
(𝑝′2

𝑍 + 𝑝′1
𝑍)(𝑦2

𝑍 − 𝑦1
𝑍) −

1

2
(𝑤′

2
𝑍
+ 𝑤′

1
𝑍
)(𝑥2

𝑍 − 𝑥1
𝑍) −

1

2
(𝑟′

2
𝑍
+ 𝑟′

1
𝑍
)(𝑏2

𝑍 − 𝑏1
𝑍)] 

 

 

The Bennet TFP indicator is a price-weighted arithmetic mean of the difference in 

good outputs, bad outputs and inputs quantities of stage Z of DMU2 relative to stage Z 

of DMU1 expressed in monetary terms. A positive outcome of the Bennet TFP indicator 

will indicate that the stage Z of DMU2 performs more sustainably than the stage Z of 

DMU1. The partial TFP difference can be decomposed into output-specific, input-

specific and bad output-specific quantity differences, which allows a variance analysis 

that provides guidance to determine the sources where the TFP between the stage Z of 

the two chains varies; hence, shedding light on areas for potential sustainability 

performance improvement.  

Due to the additive structure of the Bennet TFP indicator, consolidation of the TFP 

differences at each stage between the DMUs is very straightforward; the overall TFP 

difference can be derived simply via the addition of partial TFP scores. Thus, the 

Bennet TFP indicator reflecting the overall TFP difference between DMU2 relative to 

DMU1 is defined as1: 

 

 

𝐵𝐵1,2
𝑡 = [

1

2
(𝑝′2 + 𝑝′1)(𝑦2 − 𝑦1) +

1

2
(𝑙′2 + 𝑙′1) (∑𝑣2

𝑧𝑖

𝑍

𝑖=1

− ∑𝑣1
𝑧𝑖

𝑍

𝑖=1

)

−
1

2
(𝑤′

2 + 𝑤′
1)(𝑥2 − 𝑥1) −

1

2
(𝑟′

2 + 𝑟′
1)(𝑏2 − 𝑏1)

−
1

2
(𝑙′2 + 𝑙′1) (∑𝑣2

𝑧𝑖

𝑍

𝑖=1

− ∑𝑣1
𝑧𝑖

𝑍

𝑖=1

)] 

 

                                                 
1 Note that the Bennet indicator can be also used to assess the sustainable performance of an 
agri-food supply chain between two time periods. Hence, it can be used to assess the second 
sustainability criterion: non-decreasing TFP over time. 

 

(2.6) 

(2.5) 
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where the vectors 𝑙1 and 𝑙2 ∈ ℜ+
𝑈 are intermediate output prices used to aggregate 

intermediate output quantities ∑ 𝑣1
𝑧𝑖𝑍

𝑖=1  and ∑ 𝑣2
𝑧𝑖𝑍

𝑖=1  of DMU1 and DMU2 respectively. 

Note that when we aggregate a positive number (such as the intermediate output of a 

stage z) and a negative number (such as the intermediate output the stage z used as an 

input in another stage), (1) both are cancelled when they are totalled across all stages, 

(2) only the final outputs are shown to have positive numbers, and (3) all 

intermediate outputs cancel out to zero and only exogenous inputs, such as land, labor, 

and basic raw materials will have negative numbers. By accounting for the 

interconnections along an agri-food supply chain, and internalizing the social and 

environmental externalities of food supply chain production, computation of the 

Bennet TFP indicator reveals the relative sustainability performance of an agri-food 

supply chain reflected in the form of price signals. Thus, productivity is related to 

some measure of overall welfare. The DMU2 will have higher TFP (higher 

sustainability performance) than DMU1 if the difference between the production of 

outputs and the aggregated inputs and bad outputs is larger than the difference in 

DMU1. On the contrary, a lower TFP will indicate that the DMU2 has higher 

consumption of inputs and production of bad outputs that are not compensated by a 

higher final good output production and other beneficial social and environmental 

outputs (Harrington et al. 1994).  

Bearing in mind that the outcome of the Bennet indicator only provides information 

about the relative sustainability performance of one agri-food supply chain against 

other chains, a hypothetical or benchmark chain representing the best practice in 

terms of good outputs, bad outputs and inputs within each stage can be developed. 

The hypothetical chain could include regional, national or/and international targets, 

with limits set with respect to the production of social and environmental 

externalities, maximum allowable usage of certain kind of inputs and, when possible, 

information on social and environmental thresholds. By comparing an agri-food 

supply chain DMU k, against the hypothetical one (used as benchmark), an outcome of 

the Bennet TFP indicator below zero would indicate that there is room for 

performance improvement, and, therefore, DMU k is not on a sustainable path. On the 

other hand, if DMU k outperforms the hypothetical one, this would indicate that DMU k 

performs well in terms of its sustainability performance. 
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Sustainability benchmarking of agri-food supply chains using the Bennet TFP indicator: 

An empirical illustration 

To illustrate the usefulness of the Bennet TFP indicator, we draw on Gaitán-Cremaschi 

et al. (2015). Consider that there are two conventional soybean meal chains either 

using non-genetically modified (non-GM) seeds or genetically modified (GM) seeds. 

Each chain consists of two stages2. The agricultural stage z = 1 and the processing and 

transport to port stage z = 2. At stage z = 1, five inputs 𝑥𝑘1
1 , … , 𝑥𝑘5

1   are used to produce 

one intermediate output 𝑣𝑘1
12, i.e. soybeans. At stage z = 2, the soybeans that were 

produced at stage z = 1 are processed into the final output, soybean meal 𝑦𝑘1
2 . In this 

process, one input 𝑥𝑘1
2  is used. The soybean meal is transported afterwards to the 

nearest port to be traded in the international market. Transportation at this stage 

requires a second input 𝑥𝑘2
2 . The production of soybean meal generates three bad 

outputs: (1) environmental, farm-worker and consumer toxicity associated to 

pesticide use 𝑏𝑘1
1 , (2) loss of employment  𝑏𝑘2

1  and, (3) the emission of green-house 

gases that result from the combustion of fuel 𝑏𝑘1
2 . Both soybean meal chains face their 

own observable prices for outputs, intermediate outputs/inputs and inputs. Shadow 

prices of the bad outputs were estimated using the benefit transfer method (see 

Gaitán-Cremaschi et al. 2015). By using this method, previously computed estimates 

found in existing studies were adjusted to the Brazilian context to derive the 

respective shadow prices. Based on the observed data, the quantities and (shadow) 

prices for the inputs, outputs and bad outputs representing the non-GM and GM 

soybean meal chains are presented in Table 2.1.  

For the Bennet TFP computation using Eq. 2.6 results are illustrated in Figure 2.2. 

Figure 2.2 shows that the non-GM soybean meal chain has a higher TFP score (higher 

sustainability performance) at z = 1, i.e. US $12.31, but a lower performance at z = 2, i.e. 

$6.41. Figure 2.2 also shows that the overall sustainability performance of the non-GM 

soybean meal chain exceeds the GM chain performance by $5.90. The main sources of 

the higher performance are related to a lower consumption of herbicides, insecticides, 

and fungicides which are reflected in a lower cost associated to pesticide toxicity. 

                                                 
2 Note that in the study of Gaitán-Cremaschi et al. (2015) the non-GM and GM soybean meal 
chains are modelled up to the destination port (Rotterdam Port) and consist of four stages. For 
the complete and detailed study of the sustainability analysis of the soybean meal chain in 
Brazil see Gaitán-Cremaschi et al. (2015). 
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Table 2.1 Quantity and (shadow) price information for the output, input and bad output 

variables. Data was taken from Gaitán-Cremaschi et al. (2015).  

 
  

Non-GM soybean meal 
chain 

GM soybean meal chain 

Stage (z = 1)  Quantity/Price Quantity Unit price  Quantity Unit price 

Inputs      

Seed 𝑥𝑘1
1 /𝑤𝑘1

1  17.7 0.8 16.0 1.29 

Fertilizers 𝑥𝑘2
1 /𝑤𝑘2

1  68.4 0.6 68.2 0.56 

Fungicides 𝑥𝑘3
1 /𝑤𝑘3

1  0.3 46.0 0.3 46.74 

Herbicides 𝑥𝑘4
1 /𝑤𝑘4

1  1.0 15.1 1.5 6.46 

Insecticides 𝑥𝑘5
1 /𝑤𝑘5

1  0.2 27.2 0.3 33.54 

Bad outputs      

Toxicity  𝑏𝑘1
1 /𝑟𝑘1

1  35.1 0.3 50.9 0.26 

Loss of employment 𝑏𝑘2
1 /𝑟𝑘2

1  2.4 3.4 3.0 3.40 

 Stage (z = 2) 
     

Outputs      

Soybean meal 𝑦𝑘1
2 /𝑝𝑘1

2  1.0 448.7 1.0 420.0 

Inputs      

Hexane and 
electricity 

𝑥𝑘1
2 /𝑤𝑘1

2  1.0 58.5 1.0 59.2 

Diesel 𝑥𝑘2
2 /𝑤𝑘2

2  217.5 0.07 169.3 0.07 

Bad outputs      

CO2 emissions 𝑏𝑘2
2 /𝑟𝑘2

2  668.1 0.02 520.3 0.02 

Due to the fact that the intermediate output of z = 1 is used as input at z = 2, when they are totalled 
across the chain both are cancelled out to zero. Thus they are not included in the computation. 

 

 

Nevertheless, the non-GM chain has higher consumption of diesel to transport the 

product to the Brazilian port.  This is reflected in a worse performance in terms of 

green-house gas emissions. Although the sustainability assessment focuses on the TFP 

component of the adjusted profit difference between chains, the TPR component of 

such difference may also provide useful information regarding the preference of 

consumers, and/or differences in the quality of inputs and outputs  (see Gaitán-

Cremaschi et al. 2015).  
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Figure 2.2 TFP and TPR components of the adjusted profit differences between the GM soybean 

meal chain relative to the non-GM chain in the form of price signals ($). TFP and TPR deviations 

are illustrated for each output, input and bad output at each chain stage. The higher the 

deviation of the TFP component, the more sustainable is performing the GM soybean meal chain 

compared to the GM chain.  

Agri-food supply chain performance using a measure of directional distance 

functions  

Consider the stages of the agri-food supply chain (DMU) described in Figure 2.1, and 

assume that there are k = 1,...K analogous DMUs each with different observations for 

good outputs, bad outputs, exogenous inputs and intermediate outputs/inputs. The 

network production technology for the set of DMUs is defined as: 

 

 
𝑇 = {(𝑥, 𝑦, 𝑣, 𝑏): 𝑥 can produce 𝑦 𝑎𝑛𝑑 𝑏 via the intermidiate outputs 𝑣},   (2.7) 
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where T consists of z = 1,...,Z sub-technologies T1, T,...,TZ. As the basis for the 

sustainability performance measurement (in terms of economic, environmental and 

social performance), and following Färe and Grosskopf (2005), we impose the weak 

disposability and null-jointness properties. Weak disposability refers to the idea that a 

reduction of bad outputs is costly, and therefore states that a reduction in bad outputs 

is feasible only if good outputs are simultaneously reduced, given a fixed level of 

inputs. On the other hand, null-jointness states that the production of good outputs 

(final and intermediate) inevitably implies production of the bad outputs, and thus the 

only way to avoid producing any bad output is by producing zero good outputs (Färe 

and Grosskopf 2005). Substitutions might be allowed between some good outputs, 

bad outputs and inputs, without necessarily affecting the sustainability performance 

(for instance, substitution may be viable given some sort of technological change). To 

ensure that the assessment is in line with sustainability, targets for bad outputs, 

restrictions and substitutions for the use of certain kind of inputs (for example green 

energy vs. energy derived from fossil fuels) may be included in the construction of the 

network production frontier. These targets and maximum restrictions will safeguard 

the fact that the performance of an agri-food supply is consistent with securing a 

minimum essential level or quality for some components of the environment that can 

be rarely substituted, or non-substitutable, (such as water, biodiversity, etc.). For 

example, farming may have specific limits on emissions of specific undesirable outputs, 

or restrictions on the use of specific inputs such as fertilizers, pesticides, etc. This 

explicit information on regulatory rules and sustainability criteria can be included as 

explicit constraints in the model, rendering parts of the efficient boundary of the 

network production frontier no longer efficient (Figure 2.3). The frontier of the 

network production technology is considered the best-practice frontier, and can be 

regarded as an empirical standard of excellent sustainability performance. Thus, a 

DMU k is said to be technically efficient, and thus will be performing more sustainable 

than other DMUs, if it produces at the network production frontier. 

Empirically, the network production frontier defined above can be estimated from 

good output, bad output and input data through Data Envelopment Analysis (DEA) or 

Stochastic Frontier Analysis (SFA). Although SFA has the advantage that it takes into 

account measurement errors and random noise, the discussion will focus on DEA, as, 

compared to SFA, restrictions do not have to be a priori imposed on the functional 

form representing the technology (Hailu and Veeman 2001b). Furthermore, SFA 
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cannot easily accommodate multiple outputs and inputs, and the regularity conditions 

such as monotonicity, convexity, and homogeneity of the technology frontier are often 

not satisfied (Fried et al. 2007). The DEA approach assumes that all relevant good 

outputs, bad outputs and inputs are observed for all the units of analysis, and thus all 

possible output-input vectors are contained in the data set (Fried et al. 2007).  

Following Färe and Grosskopf (2000), the network production technology T (chain 

technology), illustrated in Figure 2.1, which consists of z = 1,...,Z stages, can be defined 

in terms of piecewise linear technology as: 

 

 
𝑇 = {(𝑥, 𝑦, 𝑣, 𝑏):  
 
      Stage Z 

(𝑎)  𝑦𝑚
𝑍 ≤ ∑ 𝛼𝑘

𝑍𝑦𝑘𝑚
𝑍

𝐾

𝑘=1

,   𝑚 = 1,… ,𝑀𝑍;      (𝑏)   ∑ 𝛼𝑘
𝑍𝑥𝑘𝑛

𝑍

𝐾

𝑘=1

≤ 𝑥𝑛
𝑍,   𝑛 = 1,… , 𝑁𝑍; 

(𝑐)   ∑ 𝛼𝑘
𝑍𝑣𝑘𝑢

1𝑍

𝐾

𝑘=1

≤ 𝑣𝑢
1𝑍 ,   𝑢 = 1,… , 𝑈1;       (𝑑)   ∑ 𝛼𝑘

𝑍𝑣𝑘𝑢
2𝑍

𝐾

𝑘=1

≤ 𝑣𝑢
2𝑍,   𝑢 = 1,… , 𝑈2; 

(𝑒)   ∑ 𝛼𝑘
𝑍𝑏𝑘𝑗

𝑍 = 𝑏𝑗
𝑍,     𝑗 = 1,2, … , 𝐽𝑍

𝐾

𝑘=1

;      (𝑓)  ∑ 𝛼𝑘
𝑍

𝐾

𝑘=1

≥ 0,   𝑘 = 1,2, … , 𝐾; 

..., 
 

Stage 2 

(𝑔) 𝑦𝑚
2 ≤ ∑ 𝛼𝑘

2𝑦𝑘𝑚
2

𝐾

𝑘=1

,   𝑚 = 1,… ,𝑀2;        (ℎ) 𝑣𝑢
2𝑍 ≤ ∑ 𝛼𝑘

2𝑣𝑘𝑢
2𝑍

𝐾

𝑘=1

,   𝑢 = 1,… , 𝑈2; 

(𝑖)   ∑ 𝛼𝑘
2𝑥𝑘𝑛

2

𝐾

𝑘=1

≤ 𝑥𝑛
2,   𝑛 = 1,… , 𝑁2;           (𝑗)    ∑ 𝛼𝑘

2𝑣𝑘𝑢
12

𝐾

𝑘=1

≤ 𝑣𝑢
12,   𝑢 = 1,… , 𝑈1; 

(𝑘)    ∑ 𝛼𝑘
2𝑏𝑘𝑗

2 = 𝑏𝑗
2,     𝑗 = 1,2, … , 𝐽2

𝐾

𝑘=1

;        (𝑙)   ∑ 𝛼𝑘
2

𝐾

𝑘=1

≥ 0,   𝑘 = 1,2, … , 𝐾; 

 
Stage 1 

 

(𝑚) 𝑦𝑚
1 ≤ ∑ 𝛼𝑘

1𝑦𝑘𝑚
1

𝐾

𝑘=1

,   𝑚 = 1,… ,𝑀1;        (𝑛) 𝑣𝑢
12 ≤ ∑ 𝛼𝑘

1𝑣𝑘𝑢
12

𝐾

𝑘=1

,   𝑢 = 1,… , 𝑈1; 
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(𝑜) 𝑣𝑢
1𝑍 ≤ ∑ 𝛼𝑘

1𝑣𝑘𝑢
1𝑍

𝐾

𝑘=1

,   𝑢 = 1,… , 𝑈1;           (𝑝)   ∑ 𝛼𝑘
1𝑥𝑘𝑛

1

𝐾

𝑘=1

≤ 𝑥𝑛
1 ,   𝑛 = 1,… , 𝑁1; 

(𝑞)   ∑ 𝛼𝑘
1𝑏𝑘𝑗

1 = 𝑏𝑗
1,     𝑗 = 1,2, … , 𝐽1

𝐾

𝑘=1

;         (𝑟)  ∑ 𝛼𝑘
1

𝐾

𝑘=1

≥ 0,   𝑘 = 1,2, … , 𝐾} 

         

         𝑥𝑘𝑛
1 ≤ �̂�𝑛

1;  𝑥𝑘𝑛
2 ≤ �̂�𝑛

2; … ; 𝑥𝑘𝑛
𝑍 ≤ �̂�𝑛

𝑍; 

         𝑏𝑘𝑗
1 ≤ �̂�𝑗

1;  𝑏𝑘𝑗
2 ≤ �̂�𝑗

2; … ; 𝑏𝑘𝑗
𝑍 ≤ �̂�𝑗

𝑍  

 

In the network model we can identify the z = 1,...,Z stages with their corresponding 

sub-technologies. Each of the (a-r) expressions is linked to Figure 2.1. Stage 1, with a 

sub-technology 𝑇1, consists of expressions (m)-(r). The second stage with a sub-

technology 𝑇2  is given by (g)-(l), and the Z stage with a sub-technology 𝑇𝑍  is 

represented by the expressions (a)-(f). The model has Z sets of non-negative intensity 

variables (𝛼1, 𝛼2, … , 𝛼𝑍) that are restricted to sum greater or equal to one, which 

implies a network technology that exhibits constant returns to scale. The additional 

constraints �̂�𝑗
𝑧 and �̂�𝑛

𝑧 refer to targets limiting the production of bad outputs and the 

use of certain kinds of inputs for each stage of the agri-food supply chain.  

Having formalized the network production technology, we can reveal which among 

the set of agri-food supply chains are closest to, or farthest from, the frontier. In that 

sense, the next task is to determine how to evaluate the distance of the set of agri-food 

supply chains towards the frontier. We use the directional distance functions 

introduced by Chung et al. (1997), which make it possible to measure the distance to 

the frontier, while searching for the contraction of bad outputs simultaneously with 

the expansion of good outputs and the reduction of certain kinds of unsustainable 

inputs. Figure 2.3 represents this graphically; here, a target for bad output production 

and a maximum allowable usage of an unsustainable input are imposed (the dotted 

parts of the efficient boundary of the production frontier are no longer efficient). On 

the left side, the directional vector (𝑔𝑦𝑚
, −𝑔𝑏𝑗

) scales the output vector in the 

direction of expansion of the good output 𝑦𝑚 and reduction in the bad output 𝑏𝑗  – thus, 

from point A to point B on the production frontier. This means that DMU k produces 

an excessive amount of the bad output (its production is above the target (�̂�𝑗) to 

produce its final output), and hence is not performing sustainably.  

(2.8) 
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Figure 2.3 Directional distance functions with maximum and minimum restrictions in outputs 

and inputs. 

 

Similarly, the right side of Figure 2.3 illustrates how the directional vector (𝑔𝑦𝑚
, −𝑔𝑥𝑛

) 

projects DMU k from point C to point D on the frontier, thereby expanding the final 

output vector and reducing the input 𝑥𝑛 to the maximum allowable quantity (�̂�𝑛). In 

this case, DMU k is not performing fully sustainable, as it uses too much of the 

exogenous input that is considered unsustainable to produce its final outputs. In both 

cases, the distance of DMU k from point A to B, and from point C to D, provides a 

measure of technical inefficiency that is taken as a relative measure of sustainability 

performance of the unit of analysis compared with the best performers. 

Formally, the directional distance function defined on the network production 

technology T is defined as: 

 

 

�⃗⃗� 𝑇(𝑥, 𝑦, 𝑣, 𝑏; 𝑔) = 𝑚𝑎𝑥 {𝛽: (𝑥 − 𝛽𝑔𝑥𝑛
, 𝑦 + 𝛽𝑔𝑦𝑚

, 𝑣 + 𝛽𝑔𝑣𝑢
, 𝑏 − 𝛽𝑔𝑏𝑗

) ∈ 𝑇},   

 

 

where the directional vector 𝑔𝑦𝑚
∈ ℜ+

𝑀 , ≠ 0𝑀, 𝑔𝑣𝑢
∈ ℜ+

𝑈, ≠ 0𝑈, 𝑔𝑥𝑛
∈ ℜ+

𝑁 ≠ 0𝑁  and 

𝑔𝑏𝑗
∈ ℜ+

𝐽 , ≠ 0𝐽, which has to be chosen by the researcher, will determine the final, 

intermediate and bad output vector on the network frontier of T from which a DMU 

would be evaluated. Taking into account the fact that for some inputs and bad outputs 

maximum usage restrictions and targets, respectively, will not be available, the 

directional vector can also be used in such a way that societal preferences with regard 

(2.9) 
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to sustainability aspects are accounted for (Kuosmanen and Kortelainen 2004). This 

will allow the inclusion of trade-offs between economic, environmental and social 

aspects. For example if it is assumed that biodiversity loss is more important than 

acidification, the directional vector can be formulated in relative terms (Kuosmanen 

and Kortelainen 2004); biodiversity loss (b1) considered at least twice as important as 

pressure on acidification (b2). In this case, the directional vector would be defined as 

(𝑔𝑥 , 𝑔𝑦 , 𝑔𝑣 , 2𝑏1, 𝑏2).  

The directional distance function defined on the network technology and computed 

using linear programming techniques is for 𝐷𝑀𝑈𝑘′  the solution for the maximization 

problem:  

 

�⃗⃗� 𝑇(𝑥𝑘′ , 𝑦𝑘′ , 𝑣𝑘′ , 𝑏𝑘′; 𝑔) = max 𝛽 

𝑠. 𝑡. 

Stage Z  

𝑦𝑘′𝑚
𝑍 + 𝛽𝑔𝑦𝑚

𝑍 ≤ ∑ 𝛼𝑘
𝑍𝑦𝑘𝑚

𝑍

𝐾

𝑘=1

,   𝑚 = 1,… ,𝑀𝑍 ,   ∑ 𝛼𝑘
𝑍𝑥𝑘𝑛

𝑍

𝐾

𝑘=1

≤ 𝑥𝑘′𝑛
𝑍 − 𝛽𝑔𝑥𝑛

𝑍 ,   𝑛 = 1,… , 𝑁𝑍; 

∑ 𝛼𝑘
𝑍𝑣𝑘𝑢

1𝑍

𝐾

𝑘=1

≤ 𝑣𝑘′𝑢
1𝑍 ,   𝑢 = 1,… , 𝑈1;                        ∑ 𝛼𝑘

𝑍𝑣𝑘𝑢
2𝑍

𝐾

𝑘=1

≤ 𝑣𝑘′𝑢
2𝑍 ,   𝑢 = 1,… , 𝑈2; 

∑ 𝛼𝑘
𝑍𝑏𝑘𝑗

𝑍 = 𝑏𝑘′𝑗
𝑍 − 𝛽𝑔𝑏𝑗

𝑍 ,     𝑗 = 1,2, … , 𝐽𝑍

𝐾

𝑘=1

;       𝛼𝑘
𝑍 ≥ 0,   𝑘 = 1,2,… , 𝐾; 

..., 

 
Stage 2  

𝑦𝑘′𝑚
2 + 𝛽𝑔𝑦𝑚

2 ≤ ∑ 𝛼𝑘
2𝑦𝑘𝑚

2

𝐾

𝑘=1

,   𝑚 = 1,… ,𝑀2;    𝑣𝑘′𝑢
2𝑍 + 𝛽𝑔𝑣𝑢

2𝑍 ≤ ∑ 𝛼𝑘
2𝑣𝑘𝑢

2𝑍

𝐾

𝑘=1

,   𝑢 = 1,… , 𝑈2; 

∑ 𝛼𝑘
2𝑥𝑘𝑛

2

𝐾

𝑘=1

≤ 𝑥𝑘′𝑛
2 − 𝛽𝑔𝑥𝑛

2 ,   𝑛 = 1,… , 𝑁2;          ∑ 𝛼𝑘
2𝑣𝑘𝑢

12

𝐾

𝑘=1

≤ 𝑣𝑘′𝑢
12 ,   𝑢 = 1,… , 𝑈1; 

∑ 𝛼𝑘
2𝑏𝑘𝑗

2 = 𝑏𝑘′𝑗
2 − 𝛽𝑔𝑏𝑗

2 ,     𝑗 = 1,2,… , 𝐽2
𝐾

𝑘=1

;        𝛼𝑘
2 ≥ 0,   𝑘 = 1,2,… , 𝐾; 

 
Stage 1  

𝑦𝑘′𝑚
1 + 𝛽𝑔𝑦𝑚

1 ≤ ∑ 𝛼𝑘
1𝑦𝑘𝑚

1

𝐾

𝑘=1

,   𝑚 = 1,… ,𝑀1;     𝑣𝑘′𝑢
12 + 𝛽𝑔𝑣𝑢

12 ≤ ∑ 𝛼𝑘
1𝑣𝑘𝑢

12

𝐾

𝑘=1

,   𝑢 = 1,… , 𝑈1; 
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𝑣𝑘′𝑢
1𝑍 + 𝛽𝑔𝑢𝑣

1𝑍 ≤ ∑ 𝛼𝑘
1𝑣𝑘𝑢

1𝑍

𝐾

𝑘=1

,   𝑢 = 1,… , 𝑈1;       ∑ 𝛼𝑘
1𝑥𝑘𝑛

1

𝐾

𝑘=1

≤ 𝑥𝑘′𝑛
1 − 𝛽𝑔𝑥𝑛

1 ,   𝑛 = 1,… ,𝑁1; 

∑ 𝛼𝑘
1𝑏𝑘𝑗

1 = 𝑏𝑘′𝑗
1 − 𝛽𝑔𝑏𝑗

1 ,     𝑗 = 1,2, … , 𝐽1
𝐾

𝑘=1

;             𝛼𝑘
1 ≥ 0,   𝑘 = 1,2, … , 𝐾; 

  𝑥𝑘′𝑛
1 − 𝛽𝑔𝑥𝑛

1 ≤ 𝑥𝑛
1;  𝑥𝑘′𝑛

2 − 𝛽𝑔𝑥𝑛
2 ≤ 𝑥𝑛

2; … ; 𝑥𝑘′𝑛
𝑍 − 𝛽𝑔𝑥𝑛

𝑍 ≤ 𝑥𝑛
𝑍; 

   𝑏𝑘′𝑗
1 − 𝛽𝑔𝑏𝑗

1 ≤ �̂�𝑗
1;  𝑏𝑘′𝑗

2 − 𝛽𝑔𝑏𝑗

2 ≤ �̂�𝑗
2; … ; 𝑏𝑘′𝑗

𝑍 − 𝛽𝑔𝑏𝑗

𝑍 ≤ �̂�𝑗
𝑧,     

      

 

The 𝐷𝑀𝑈𝑘′  is technically efficient and thus it is considered performing more 

sustainably than other DMUs when �⃗⃗� 𝑇(𝑥𝑘′ , 𝑦𝑘′ , 𝑣𝑘′ , 𝑏𝑘′; 𝑔) is equal to zero (the DMU is 

operating on the network production frontier). On the other hand, it is considered 

technically inefficient, thus performing more unsustainable, in the case where a value 

for �⃗⃗� 𝑇(𝑥𝑘′ , 𝑦𝑘′ , 𝑣𝑘′ , 𝑏𝑘′; 𝑔) is greater than 0.  

When we extend the analysis to assess the sustainability performance at country level 

of analogous agri-food supply chains, we define the Luenberger indicator introduced 

by Chambers (1996), using the directional distance functions previously presented, as:  

 

 

𝑆𝐿(. ) =
1

2
{[�⃗⃗� 𝑇𝐵

(𝑥𝑘𝐴, 𝑦𝑘𝐴, 𝑣𝑘𝐴 , 𝑏𝑘𝐴; 𝑔) − �⃗⃗� 𝑇𝐵
(𝑥𝑘𝐵 , 𝑦𝑘𝐵 , 𝑣𝑘𝐵 , 𝑏𝑘𝐵 ; 𝑔)] 

                +[�⃗⃗� 𝑇𝐴
(𝑥𝑘𝐴 , 𝑦𝑘𝐴 , 𝑣𝑘𝐴, 𝑏𝑘𝐴; 𝑔) − �⃗⃗� 𝑇𝐴

(𝑥𝑘𝐵 , 𝑦𝑘𝐵 , 𝑣𝑘𝐵 , 𝑏𝑘𝐵 ; 𝑔)]}, 

 

 

where A and B refer to two different countries, each of which has k = 1,...,K 

observations and a network production technology TA and TB respectively. The 

Luenberger indicator consists of four directional distance functions. Two measure the 

technical inefficiency of a set of DMUs of countries A and B using their own network 

production technology �⃗⃗� 𝑇𝐴
(𝐴)  and �⃗⃗� 𝑇𝐵

(𝐵) , respectively, and two measure the 

technical inefficiency using mixed countries. Therefore, with the observations of 

country B with reference to the network production technology calculated for country 

A, �⃗⃗� 𝑇𝐴
(𝐵), and the network production technology calculated for country B with the 

observations of country A, �⃗⃗� 𝑇𝐵
(𝐴) (Figure 2.4). This means that if there are no 

(2.10) 

(2.11) 
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variations in the technical efficiency between the observations of the two countries 

there will be no differences in the performance of the agri-food supply chains, SL(.) = 0. 

On the other hand, in case SL(.) > 0 or SL(.) < 0, the indicator points out that the agri-

food supply chains of country B are performing better (worse) than those of country A. 

Note that the Luenberger indicator is also used to assess the sustainable performance 

of an agri-food supply chain between two time periods. Hence, it is used to assess the 

second sustainability criterion: non-decreasing TFP over time. 

  

Figure 2.4 Luenberger indicator for pairwise comparison of agri-food supply chains in different 

countries. 

 

In this case, the Luenberger indicator would consist of four directional distance 

functions. Two that will measure the technical inefficiency of a set of DMUs in period t 

and, the same set of DMUs in period t+1, and two that will measure the technical 

inefficiency using mixed periods. Thus, the observations in period t in relation to the 

network production technology calculated for period t+1, and the DMUs in period t+1 

with reference to the network production technology of period t. In case the 

Luenberger indicator for DMU k is greater than zero it will indicate that the DMU has 

non-decreasing TFP over the two periods and therefore it is performing sustainably.   
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Sustainability benchmarking of agri-food supply chains using the directional distance 

function: A numerical example 

Application of the directional distance function approach requires the same type of 

quantity data for good outputs, inputs and externalities as presented for the Bennet 

TFP computation. Nevertheless, quantity data for a large set of DMUs is required. 

Consequently, in this subsection only a numerical example that uses constructed data 

is provided.  

Consider a simple example, where there are four agri-food supply chains DMU1-DMU4 

which each consists of two stages: z = 1 and z = 2. At stage z = 1 one input 𝑥𝑘1
1  is used to 

produce an intermediate output 𝑣𝑘1
12. At stage z = 2 the intermediate output produced 

at stage z = 1 is used as input to produce one final good output 𝑦𝑘1
2 . As side effects of 

production, one bad output (the same bad output) is produced at each stage, i.e. 𝑏𝑘1
1  

and 𝑏𝑘1
2 . The quantities of the network structure appear in Table 2.2.   

 

Table 2.2 Quantity information for the output, bad output and input variables – network 

structure. 

Network Structure 

Stage (z = 1) 
 

DMU1 DMU2 DMU3 DMU4 

Intermediate output 𝑣𝑘1
12 2.5 2.5 4.0 1.0 

Input 𝑥𝑘1
1  4.0 4.0 4.0 4.0 

Bad output 𝑏𝑘1
1  1.0 2.5 4.0 3.0 

  
 

        

Stage (z = 2)   DMU1 DMU2 DMU3 DMU4 

Final output 𝑦𝑘1
2  4.0 9.0 2.0 1.5 

Intermediate input 𝑣𝑘1
12 2.5 2.5 4.0 1.0 

Bad output 𝑏𝑘1
2  1.0 4.0 2.0 3.0 

 

An optional approach would be to consider the agri-food supply chain (DMU) as a 

black box structure. Hence, ignoring the intermediate outputs/inputs and only 

considering the good outputs, inputs and the sum of bad outputs generated in both 

stages. The quantities of the variables in this case appear in Table 2.3. 
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Table 2.3 Quantity information for the output, bad output and input variables – black box 

structure. 

Black box structure a 

 
  DMU1 DMU2 DMU3 DMU4 

Output 𝑦𝑘1
2  4.0 9.0 2.0 1.5 

Input 𝑣𝑘1
12 4.0 4.0 4.0 4.0 

Bad output 𝑏𝑘1
2  2.0 6.5 6.0 6.0 

a.  the production of bad outputs at both stages were added together 

 

To evaluate the performance of the DMUS for both the network structure and the black 

box structure we applied Eq. 2.103 imposing constant returns to scale. We assumed 

the directional vector to be (𝑔𝑦 , 𝑔𝑥, 𝑔𝑏) = (1, −1,−1) . Hence, we credited the 

simultaneous expansion of final outputs and the contraction of inputs and bad outputs 

(see results in Table 2.4).  

 

Table 2.4 Technical inefficiency scores.  

 
DMU1 DMU2 DMU3 DMU4 

Black box  

structure 
- - 2.2 2.3 

Network structure (z1+z2) - - - 1.7 

Directional vector for good outputs = 1, inputs = 1 and bad outputs = 1 

 

The assessment for the black box technology results in 2.2 for DMU3 and 2.3 for DMU4, 

which means that DMU3 and DMU4 are technically inefficient as they could increase 

their outputs and decrease their inputs and bad outputs simultaneously by 2.2 and 2.3 

units respectively. This assessment is illustrated by means of an isoquant map (Figure 

2.5).  

 

                                                 
3 In this example the equality for the bad outputs in Eq. 2.10 does not hold, because bad outputs 
are treated as free disposable inputs. 
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Figure 2.5 Performance assessment in a black box structure.  

 

Given that the black box technology exhibits constant returns to scale, we divided the 

quantity of good outputs, inputs and bad outputs by the good output. Hence, the 

horizontal axis represents the quantity of the input divided the good output and the 

vertical axis represents the quantity of the bad output divided by the quantity of the 

good output. Points ABCD represent the efficient frontier of the production possibility 

set. The broken arrows represent the directional vectors which places technical 

inefficient DMUs, i.e. DMU3 and DMU4, on the efficient frontier by expanding good 

outputs and contracting inputs and bad outputs simultaneously. 

By incorporating the links between the stage z = 1 and stage z = 2, thus modelling 

explicitly the transformation process of intermediate outputs/inputs within the 

considered stages, results give 1.7 units for DMU4. It means that considering the 

linkages between stages the only technical inefficient DMU is DMU4. DMU4 could 

increase by 1.7 units its final output production while at the same time it could reduce 

both bad outputs and inputs by 1.7 units. In the network structure assessment the 

DMU3 resulted to be technically efficient, therefore performing on the frontier. This 

assessment is illustrated by means of isoquant maps for each stage of the network 

structure (Figure 2.6).  

Given that the network technology exhibits constant returns to scale, at stage z = 1 the 

intermediate output, input and bad output were divided by the intermediate output. 

At stage z = 2, the good output, intermediate input and bad output were divided by the 
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quantity of the good output. Points ABCD represent the efficient frontier of the 

production possibility set and the broken arrows the directional vector. The 

directional vector scale technical inefficient DMUs, that are DMU2 and DMU4 at stage z 

= 1, and DMU3 and DMU4 at stage z = 2 on the efficient frontier.  The only technical 

inefficient observation at both stages is DMU4. 

 

 
Figure 2.6 Performance assessment in a network structure.  

 

Implementation issues 

Selection of output (good and bad)-input variables  

As a first point, prior to selecting the output-input variables, comparison of a set of 

agri-food supply chains requires them to be homogenous, which in practice might not 

be the case. Even though the set of DMUs under consideration could produce the same 

product, differences in their internal structure may exist, implying variations in the 

stages along the chains. Consequently, either the aggregation or disaggregation of 

stages might be necessary to make the DMUs comparable with regard to the types of 

output-input variables and the number of stages that would be considered. Once agri-

food supply chains have been homogenized, the selection of output-input variables for 

each stage of the chain should be conducted. The selection of variables, especially 

those related to bad output production, should be based on the issues and aspects of 
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sustainability that are of established concern for expert communities and in relation 

to society’s well-being (such as global warming, energy, innovation, human rights, 

equity, etc.), which in turn are linked to the economic, environmental and social 

dimension of sustainability. These can be identified from regional, national and/or 

international food sustainability debates, which includes the opinions and perceptions 

of a variety of stakeholders including policy makers, academics, the production sector, 

and society as a whole (Michalopoulos et al. 2013). Once these aspects have been 

identified, a standard set of indicators sufficient to provide reliable information about 

the sustainability performance of any food system have to be selected. Nevertheless, 

depending on the level of analysis, supplemental indicators for evaluating production-

specific impacts can be used, as suggested by Veleva and Ellenbecker (2001). 

Indicators should comply with at least three main criteria: relevance, scientific quality 

and data management.  

As a starting point, the Global Reporting Initiative (GRI) guidelines that were created 

to internationally harmonize global standards for measuring sustainability (Sloan 

2010) can be used. However, given that the GRI lacks indicators for some 

sustainability aspects, such as soil, land use, animal welfare and cultural landscape, 

the list can be augmented with indicator sets developed by international 

organizations such as the OECD, ISO, EMAS, Lowell Centre for Sustainable Production, 

FAO, among others, and from a number of scientific publications on agri-food supply 

chain sustainability. It should be noted that, when possible, the aggregation of single 

indicators into sub-indexes should be undertaken (OECD 2002). For example, when 

several pollutants have similar effects, a single sub-index can be constructed – such as 

an index of greenhouse gas emission. The aggregation of single indicators will make it 

possible to convey single messages about complex issues in a synthetized manner, 

thus reducing information overload for environmental and social managers, and for 

policy decision-making (OECD 2002). The final set of indicators and sub-indexes 

should be broad enough to provide relevant information about the economic, 

environmental and social performance of any agri-food supply chain, thereby 

accounting for the multi-dimensional nature of sustainability (Yakovleva et al. 2011).  

 

Data requirements 

The Bennet TFP indicator has the advantage of demanding few observations, i.e. it can 

be applied as long as two or more observations/time periods can be compared). This 
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is, in fact, a benefit with respect to the policy decision-making process in data-poor 

situations, where information about different environmental and social variables is 

lacking (Hailu and Veeman 2001a). Application of the Bennet TFP indicator, however, 

requires derivation of shadow prices for those variables for which economic prices do 

not exist. Although in practice this is a difficult task, shadow prices for non-marketed 

output-input variables can be estimated through standard economic valuation 

methods. These methods involve elicitation of the Willingness to Pay (WTP) for 

improvements to aspects of the environment or society and, conversely, Willingness 

to Accept (WTA) compensation for some degradation and sustainability losses (Farber 

et al. 2002). Methods to estimate WTP or WTA can be classified into three main 

categories: stated preference methods, revealed preference methods and benefit transfer 

methods (Kuosmanen and Kortelainen 2004). Stated preference methods are 

employed through the construction of hypothetical markets to assess the WTP or 

WTA (de Groot 2006). Well-known examples are the contingent valuation method and 

the choice experiment method. Revealed preference methods are used where 

conventional or proxy market prices exist for the non-marketed good and services. 

Examples of these methods are replacement cost, travel cost, avoided cost and 

hedonic pricing (de Groot 2006). Finally, the benefit transfer method uses values 

borrowed from existing studies (Mburu et al. 2005).  

Estimating shadow prices using stated and revealed preference methods would be 

costly and impractical. Thus, we propose making use of the benefit transfer method, 

which assumes a relationship between ecosystem services in geographical areas with 

similar characteristics (Wilson and Hoehn 2006). Shadow prices estimated in existing 

studies can thus be transferred and used to estimate shadow prices in similar socio-

economic and environmental contexts under analysis (Mburu et al. 2005). However, it 

is important to be frank regarding the nature of this task. Market prices theoretically 

exist, however, in some cases they are distorted due to market failures or 

governmental interference such as tariffs, taxation, subsidizing and regulation 

(Kuosmanen et al. 2004). For commodities that currently incur external costs (and/or 

benefits), it is clear that their precise calculation is often impossible. Nevertheless, 

economic calculations are used simply to raise awareness of the social benefits and 

costs associated with agri-food supply chains, which in turn can be used to 

differentiate agricultural commodities that are produced under better economic, 

environmental and social practices. Furthermore, considering that the estimation of 
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shadow prices is context specific, these prices would also reflect the relative regional 

importance of external costs or external benefits valued at social prices (Mburu et al. 

2005). Thus, the implicit regional weights that communities assign to each aspect 

related to sustainability would be considered during trade negotiations of agricultural 

commodities.  

In contrast, conducting the sustainability performance analysis by making use of 

directional distance functions would allow readily integrating multiple outputs, 

including environmental and social externalities and other social outputs, without 

requiring price information (Färe and Primont 2003). Nevertheless, other problems 

related to the dimensionality of the DEA formulation should be addressed. A large 

number of output-input variables will affect the DEA results, implying higher 

probability of fully technical efficient DMUs (Dyson et al. 2001). Thus, care must be 

taken regarding the number of variables selected and the number of observations for 

which the sustainability performance analysis is conducted (Fried et al. 2007, p. 320). 

Two widely adopted rules of thumb are to let the number of DMUs be higher than 

twice the number of outputs multiplied by the number of inputs (Dyson et al. 2001), 

bearing in mind that, whenever possible, the aim is to have as large a set of DMUs as 

possible (Fried et al. 2007, p. 321; Madlener et al. 2009). Aggregation of single 

indicators into sub-indexes, as previously proposed, will make it possible to reduce 

the number of variables and the problems related to the dimensionality of the DEA 

formulation.  

 

Setting maximum restrictions for input–output variables  

Based on concepts such as sustainable reference values, carrying capacity or critical 

load, targets and restrictions (maximum restrictions) for the use of certain inputs, and 

for the production of bad outputs, should be established (Moldan et al. 2012). 

Nevertheless, it should be noted that these targets and restrictions are often not 

agreed upon based on scientific evidence, but rather are set through political 

processes and compromises reached through national or international negotiations 

(Moldan et al. 2012). Consequently, they rarely reflect pure sustainability 

considerations (Moldan et al. 2012). Thus, selection of the maximum restrictions to be 

included in the Bennet TFP indicator (construction of the hypothetical DMU), as well 

as in the Luenberger indicator (construction of the network production technology 
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frontier), should be derived, where possible, from scientific literature, environmental 

and public standards, and expert judgments (Moldan et al. 2012). Although the 

imposition of such maximum restrictions will not necessarily reflect the performance 

required to achieve sustainability, it will provide a benchmark on which to assess 

those agri-food supply chains that are doing best in terms of reaching common 

economic, environmental and social goals, and therefore are on the path to 

sustainability. 

 

Relative importance of sustainability aspects 

Different aspects, such as climate change, equity, profitability, etc., as well as 

indicators to measure the sustainability performance might vary in importance for 

individual groups of stakeholders. The relative importance of bad output variables in 

the Bennet indicator will be expressed in the shadow prices attached. A higher 

shadow value (higher expected cost valued at social prices) will implicitly reveal that 

the bad output is considered as having more importance for sustainability. On the 

other hand, the relative importance of bad outputs in the performance assessment 

using directional distance functions is expressed through incorporating weights in the 

selection of the directional vectors (Madlener et al. 2009). Typically, a large number of 

stakeholders are involved or affected by the sustainability performance of agri-food 

supply chains, and therefore there are different points of view about the relative 

importance of bad output variables in relation to different sustainability aspects, 

especially those for which high risk and uncertainty are involved, such as biodiversity 

or land use change. Thus, as long as the risk and uncertainty are made explicit, and the 

selection of weighting factors is based on the consensus of different groups of 

stakeholders (in different regions and time periods), the incorporation of weights 

within the assessment can provide a useful basis on which to ensure that bad output 

variables that are of particular relevance to society are given higher priority (Becker 

2004).  

 

Conclusions 

Based on the TFP approach this manuscript has introduced two potential metrics for 

uniform measurement of the sustainability performance of agri-food supply chains. 
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The metrics, either the Bennet TFP indicator or the Luenberger indicator, are 

sufficiently flexible to allow aggregation of different sustainability issues taking into 

account the interconnectedness of different stages along agri-food supply chains, and 

the multi-dimensional nature of sustainability. Consequently, they could be used by 

governments and others, e.g. farmers, retailers, companies, to compare the 

sustainability level of various agricultural commodities that are produced at different 

locations and in a variety of socio-economic contexts; thereby providing a consistent 

approach for benchmarking of chains in terms of its sustainability performance. The 

construction of both metrics, however, involves making choices regarding the number 

and types of variables, the targets and restrictions, the prices for non-marketed 

outputs and inputs, and the weighting methodologies for assessing the relative 

importance of economic, environmental and social aspects, which could be subject to 

political and social dispute. This might raise the criticism that the metrics are 

subjective in nature. However, we argue that both of the metrics are useful to 

integrate and summarize the sustainability performance of agri-food supply chains 

into a single metric, which cannot be captured using isolated indicators; thus, the 

indicators support the policy decision-making process. As long as data is available 

regarding the main sustainability aspects and a combination of uncertainty and 

sensitivity analysis is undertaken, providing quantitative information will allow 

uniform agri-food supply chain comparability, which could be the basis of certification 

schemes, international harmonization and corporate sustainability reporting. 

Additionally, application of the TFP indicators can help to frame policy discussions on 

sustainability issues related to the trade of agricultural commodities, by providing 

reliable information about the extent to which commodities are sustainably produced. 

In turn, this will make it possible to impose trade preferences for sustainable 

commodities, and set an incentive to switch production towards better environmental 

and social practices along agri-food supply chains (Lines 2005). 
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Abstract 
A commonly accepted approach for measuring the sustainability of agricultural 

products is the first step towards treating traded products differentially according to 

their sustainability. If we were able to measure sustainability, business stakeholders 

could optimize food production chains, consumers could demand products based on 

reduced environmental and social impacts, and policy makers could intervene to meet 

the growing demand for food in a context of environmental conservation, population 

growth, and globalization. We proposed to measure profit adjusted for the negative 

externalities of production  as a promising single metric for benchmarking products in 

terms of their relative sustainability. The adjusted profit differences between different 

products are then assessed by means of the Bennet Total Factor Productivity (TFP) 

indicator and the Total Price Recovery (TPR) indicator to highlight areas for potential 

sustainability improvement. To illustrate the usefulness of the indicator-based 

approach, we assessed the relative sustainability of two Brazilian conventional 

soybean meal chains, non-genetically modified (non-GM) and genetically modified 

(GM) chains. Based on the results, we indicated potential areas for sustainability 

improvement. Sustainability issues included in the assessment were profitability, 

global warming potential,  eutrophication potential, environmental toxicity, 

farmworker toxicity, consumer toxicity, deforestation, and loss of employment. 

Results showed that the non-GM soybean meal chain is more sustainable than the GM 

chain. However, both chains require joint efforts to address their economic, 

environmental, and social deficiencies. These efforts should focus on providing 

technical and high quality assistance to reduce biocide use, and improving 

transportation. The analysis in this study could be extended by undertaking a 

comparative assessment of the sustainability performance of major soybean meal 

producers, i.e. United States, Argentina, China, and Brazil. The approach proved to be a 

promising benchmarking tool for agricultural trade flows. It allows an integrated 

assessment of the dimensions of sustainability along food chains that is sufficiently 

flexible to compare the sustainability level of various biomass stocks that are 

produced in different locations and in a variety of environmental and socio-economic 

contexts. Nevertheless, it requires consensus on which components of sustainability 

are to be assessed. 

Keywords: Sustainability performance, TFP, TPR, soybean meal chain, externality. 
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Introduction 

Soybeans are one of the main raw materials in the world (Jaguaribe Pontes et al. 

2009). Brazil is the second largest soybean producer, following the United States, with 

a production of 74.8 million tons from 24 million hectares in 2011 (IBGE 2013). In 

Brazil, soybeans are predominantly produced in conventional farming systems, either 

using non-genetically modified (non-GM) seeds, i.e. the non-GM system, or genetically 

modified (GM) seeds, i.e. the GM system. The GM system is different from its non-GM 

equivalent only insofar as the gene that confers degradation of the herbicide 

glyphosate by the soy plant (MAGP and IICA 2012). This means that the GM soy plant 

is resistant to the herbicide glyphosate whereas its non-GM equivalent is not. In the 

GM system, glyphosate can be applied after the crop has emerged to remove weeds 

without causing crop damage (MAGP and IICA 2012; Meyer and Cederberg 2012). In 

contrast, the non-GM system requires the use of a variety of selective herbicides 

and/or non-chemical methods such as mechanical measures (Meyer and Cederberg 

2010). For both types of farming systems, the harvested soybeans are crushed into 

two main products, soy oil and soybean meal. The soybean products are then 

transported, traded, and sold to manufacturers in different industries. Soybeans are 

used for human consumption, as an input in integrated supply chains for livestock 

production, and in the production of many by-products, such as paints and greases 

(Jaguaribe Pontes et al. 2009; The Dutch Soy Coalition 2008; WWF 2003). The main 

trade destinations for soybean products are the European countries and China (Ortega 

et al. 2004).  

Soybean production and its associated industry have brought widespread economic 

benefits and wealth to Brazil. The agricultural sector contributes up to 27% of 

Brazilian GDP (Aprosoja 2014). Nevertheless, the rapid growth of the soy industry has 

raised concerns about environmental and social sustainability, due to the negative 

externalities of production, i.e. the external costs that are borne by society (Ortega et 

al. 2004; Willaarts et al. 2013). Soybean production is associated with environmental 

costs, such as deforestation, pollution of water bodies and soil, and costs associated 

with the transportation of soybeans and their derived products. Potential 

deforestation of the Brazilian biomes, such as the Amazon, the Cerrado, and the Mata 

Atlântica, can lead to the loss of ecosystem functions and services (WWF 2003). 

Pollution of water bodies and soil is mainly caused by the large quantities of pesticides 
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and fertilizers used in soybean production (Pimentel et al. 2009; Willaarts et al. 2013). 

Soybeans and their derived products are often transported large distance from farms 

to the crushing units and then on to the importing countries. Transportation of 

soybeans requires large quantities of fossil fuel combustion, which contributes to the 

depletion of non-renewable energy sources and climate change. In addition to 

environmental costs, social costs are also relevant. Soybean plantations are not labor 

intensive, with an average of one farmworker per 167 ha of soybeans; for large 

plantations this is reduced to one per 200 ha (Fearnside 2001). This has resulted in 

farmworkers migrating to urban areas and the subsequent depopulation of the 

countryside (Fearnside 2001; The Dutch Soy Coalition 2008; WWF 2003). For 

example, in the North of Paraná, labor intensive crops, such as coffee, were replaced 

by soybean cultivation, which resulted in a reduction in agricultural employment 

(WWF 2003). 

The soybean products derived from non-GM and GM soybeans differ in terms of the 

economic, environmental, and social sustainability performance throughout the 

production chain. It is expected that stakeholders, i.e. business stakeholders, 

consumers, and policy makers, would want to treat traded non-GM and GM soybean 

products differently according to how sustainably they were produced. Certification 

schemes are currently used for such differentiation (Sundkvist et al. 2005). These 

schemes typically cover life cycle issues of a product and often, although in some cases 

not explicitly stated, use life cycle assessment (LCA) methods. The labels and 

standards used in these schemes, however, are not commonly accepted (Gaitán-

Cremaschi et al. 2014). The current schemes have two main limitations, which are 

inherent in the use of LCA methods: (i) social and economic implications of food 

production are often left aside, and (ii) the outcomes of the environmental impacts are 

measured using different units and cannot be aggregated into a single metric. Hence, 

decision makers can only judge the most sustainable product by using their own 

weighting factors, which explicitly rely on complicated trade-offs between 

sustainability issues that are not normally in their mind sets, e.g. kg of carbon dioxide 

(CO2) versus kg of nitrates, (Gaitán-Cremaschi et al. 2014). Thus, certification 

schemes and their associated LCA methods have limited usefulness for benchmarking 

purposes.  

Following Gaitán-Cremaschi et al. (2014), this paper proposes an integrated indicator, 

i.e. Adjusted Profit, that is based on the micro-economic theory of production, for 
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benchmarking products in terms of their sustainability. The Adjusted Profit indicator 

takes into account the multiple input-output nature of an agricultural supply chain, 

accounts for the negative externalities of production and provides a single integrated 

measure of sustainability performance. The approach integrates the multiple outputs 

(products), inputs (capital, labor, materials, energy, and services), and externalities 

(e.g. environmental and social impacts such as pollution and loss of employment) 

along the supply chain into adjusted profits, using a common denominator, money 

(Barnett et al. 1995). Observed prices can be used for the marketable inputs and 

outputs, and shadow prices can be attached to the externalities arising from 

production. Based on the Adjusted Profit indicator, a product is more sustainable than 

another if its adjusted profit is higher (Gaitán-Cremaschi et al. 2014). To allow a 

consistent comparison between the adjusted profits of different products, an index 

number methodology, the Bennet Total Price Recovery (TPR) indicator and the 

Bennet Total Factor Productivity (TFP) indicator, can be used. Using the Bennet 

indicators, the variation of total adjusted profit between production chains can be 

decomposed into variation caused by price differences (the price component reflects 

differences in TPR) and, variation caused by quantity differences (the quantity 

component reflects differences in TFP) for each output, input, and externality. The 

latter has been pointed as a key element of sustainability (Barnes 2002; Barnes and 

McVittie 2006; Barnett et al. 1995; Ehui and Spencer 1992; Glendining et al. 2009; 

Lynam and Herdt 1989). Such information is valuable as it highlights areas for 

potential sustainability improvement. Additionally, it provides information that can be 

used to rank products in terms of their sustainability. Hence, it gives information that 

can be used to provide market access preferences to products with the highest 

adjusted profit or green-tariffs to products with the lowest adjusted profit.   

The objective of this study was to assess the relative sustainability performance of the 

Brazilian non-GM and GM soybean meal production chains using the indicator-based 

approach, and to determine potential areas for improving sustainability according to 

the sources of variation along these chains.  
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Data and Methods 

Indicator-based approach 

The Brazilian soybean meal chain, for both non-GM and GM, is defined in this study as 

a set of four life cycle stages, z = 1,2...4, integrated in an input-output system: 

agricultural (z = 1), processing (z = 2), transport to port (z = 3), and transoceanic 

transportation (z = 4). The chain is modelled up to the destination port (Rotterdam 

Port). At each stage, multiple inputs, denoted by vector 𝑥, are transformed into 

multiple outputs, denoted by vector 𝑦. As side effects of production, multiple 

environmental and social externalities are produced, expressed by vector 𝑏, such as 

waste, pollution, poor working conditions, and loss of biodiversity (Figure 3.1). The 

soybean meal chain has a positive (negative) adjusted profit (AP) if the difference 

between the aggregated outputs and the aggregated inputs is positive (negative), as 

the externalities are output penalties that lower the score: 

 

 
𝐴𝑃 = 𝑝′𝑦 − 𝑟′𝑏 − 𝑤′𝑥,    

 

The multiple outputs, inputs, and externalities are aggregated using vectors of 

(shadow)  prices,  𝑝, 𝑤, and 𝑟, respectively (prime indicating the transpose of the 

vector). 

We assume that there are 𝑘 = 1, . . . , 𝐾 observations for the non-GM soybean meal 

chain and 𝑚 = 1, . . . , 𝑀 observations for the GM soybean meal chain. To assess the 

relative sustainability performance, i.e. to compare the adjusted profit within and 

between both soybean meal chains, the Bennet Total Factor Productivity indicator and 

the Bennet Total Price Recovery (TPR) indicators are used: 

 

 

𝐵1,2 = [
1

2
(𝑝′

2
+ 𝑝′

1
)(𝑦2 − 𝑦1)] − [

1

2
(𝑤′

2 + 𝑤′
1)(𝑥2 − 𝑥1)] − [

1

2
(𝑟′

2 + 𝑟′
1)(𝑏2 − 𝑏1)] 

     + [
1

2
(𝑦2 + 𝑦1)(𝑝

′
2
− 𝑝′

1
)] − [

1

2
(𝑥2 + 𝑥1)(𝑤

′
2 − 𝑤′

1)] − [
1

2
(𝑏2 + 𝑏1)(𝑟

′
2 − 𝑟′

1)]   

 

 

(3.1) 

(3.2) 



Sustainability metrics for agri-food supply chains 
 

67 
 

where the best performer in the data set (in terms of the highest adjusted profit) is 

denoted as 1 and any other observation, i.e. 𝑘 or 𝑚, is denoted as 2. Computation of 

the sum of the Bennet indicators reveals in monetary terms the aggregated adjusted 

profit difference of a particular chain relative to the benchmark. Hence, a lower value 

of the sum of the Bennet indicators indicates low sustainability performance of the 

assessed observation relative to the benchmark (note that a positive outcome cannot 

be obtained as the benchmark is the observation with the highest adjusted profit). The 

difference in the adjusted profit between the benchmark and any other observation 

can be decomposed into two parts. A first part that captures differences in (shadow) 

prices 𝑝, 𝑤, and 𝑟 (TPR component – second line of Eq. 3.2) and the second part that 

reflects differences in the quantities of  𝑦, 𝑥, and 𝑏 (TFP component – first line of Eq. 

3.2). The latter is associated, among others, with the production technology, and/or 

the production processes along the production chain (Gaitán-Cremaschi et al. 2014). 

Due to the additive nature of the Bennet indicators, the differences in the adjusted 

profit associated with the TFP or TPR components can be evaluated at each stage of 

the soybean meal chain. This decomposition provides information, which highlights 

potential areas for sustainability improvement. 

 

Selection of outputs, inputs, and externalities 

To assess the relative sustainability performance of the non-GM and GM soybean meal 

chains, the main outputs, inputs, and externalities along the product life cycle were 

selected. The process of selecting the externalities consisted of three steps. (i) A 

generic set of sustainability issues, i.e. topics that are of public concern, such as land 

use, health, energy, biodiversity, profitability, and water, was provided to a group of 

stakeholders involved in chain sustainability. Stakeholders were asked to assign a 

score to each of the issues using a five-point Likert scale, where 1 represented “not at 

all important” and 5 “extremely important” for the given dimension of sustainability, 

either economic, environmental, or social. The group of stakeholders consisted of 

eight academic researchers and eleven practitioners (NGO’s, certifying organizations 

and firms in the agri-food sector). (ii) Once answers were received, the percentage of 

participants who gave a score of 4 or 5 was calculated for each issue. The issues for 

which at least 65% of the participants gave a score of 4 or 5 were selected as being of 

utmost importance (Table 3.1). 
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Table 3.1 Sustainability issues for the different dimensions of sustainability and percentage of 

stakeholder respondents who rated the issue as being of utmost importance (scores 4 and 5). 

Dimension Issue Description 

% respondents 

with a score  

of 4 or 5a  

Environmental 

Atmosphere 

Release of substances that are considered to be 

pollutant to the environment. Includes air and 

soil emissions and effluents. 

70 

Water  
Water quality (pollution of water) and quantity 

(availability) (FAO 2012). 
80 

Soil  
Organic matter, physical structure and chemical 

quality (FAO 2012). 
45 

Biodiversity 
Diversity of genes, species and ecosystems (FAO 

2012). 
65 

Material 

Use of inputs such as raw materials, associated 

process materials and semi-manufactured goods 

along food chains (FAO 2012). 

75 

Energy Use of direct and indirect energy. 50 

Land use 

change 

Land shifting from natural land use covers to 

another land use (FAO 2012). 
45 

Landscape 
Shaped landscapes as the result of human 

activities and the natural environment. 
15 

Economic 

Economic 

performance  

Economic impacts of the system, such as 

profitability, contribution to gross domestic 

product, imports and exports (GRI 2011). 

95 

Innovation 

Use of knowledge to accelerate the market 

expansion and performance of the food chain 

(GRI 2011). 

45 

Uncertainty 

and  risk 

Micro-economic risk and macro-economic 

uncertainty (include issues of geopolitical 

instability, price volatility, labor costs). 

55 

Social  

Labor rights 

Employment, training opportunities, 

occupational health and safety, remuneration 

and gender equality (GRI 2011). 

90 

Product 

responsibility 

Issues of health and safety, labelling and 

marketing (GRI 2011). 
65 

Human rights 

Includes issues such as non-discrimination, 

gender equality, freedom of association, child 

labor and indigenous rights (GRI 2011). 

55 

Society 

Impact on the local communities (development 

programs, corruption, influence in public policy-

making) (GRI 2011). 

50 

    a. Bold numbers indicate that the corresponding issue was selected for the sustainability assessment 
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A total of seven sustainability issues were selected. Four issues were selected for the 

dimension of environmental sustainability: water, materials, atmosphere, and 

biodiversity. Economic performance was selected for the economic dimension, and 

labor practices and product responsibility for the social dimension. (iii) Based on two 

criteria, data availability and relevance, indicators were defined to measure the 

performance of the soybean meal chains for each selected issue. 

 

 

Figure 3.1 Schematic representation of the soybean meal chain (note that intermediate outputs 

are cancelled as they become inputs in the following stage). 
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The following indicators were chosen: profitability for the issues materials and 

economic performance, global warming potential (GWP) for atmosphere, 

eutrophication potential (EP) for the water issue, deforestation (DEF) and 

environmental toxicity (ET) as proxies of biodiversity, and farmer toxicity (FT), 

consumer toxicity (CT), and loss of employment (LE) for product responsibility. The 

selected indicators, in turn, represent the negative externalities arising from soybean 

meal production. The indicator profitability is associated with conventional outputs 𝑦, 

inputs 𝑥, and market prices 𝑝 and 𝑤 throughout the soybean meal chain. 

A schematic representation of the Brazilian soybean meal chain and the indicator-

variables that were included at each life cycle stage is presented in Figure. 3.1. 

 

Data collection 

We quantified the outputs, inputs, and externalities for eleven observations for the 

non-GM soybean meal chain (k=11) and eleven observations for the GM soybean meal 

chain (m=11). At the agricultural stage, each observation represents average 

quantities across farms at the municipality level in the year 2011, differentiated 

between non-GM and GM soybean production in the cases where both farming 

systems were found. The municipalities cover some of the major soybean production 

areas and belong to six different states of Brazil (Table 3.2). The variables were 

quantified for the production of one ton of soybean meal delivered at Rotterdam Port. 

Given that the soybean meal is co-produced with soybean oil, economic allocation was 

performed. Hence, each variable was allocated to soybean meal production based on 

the relative economic value of soybean meal in relation to soybean oil (Middelaar et al. 

2011). Consequently, 60% of the outcome of each variable was allocated to the 

soybean meal production1.  

Once the quantities were collected, the (shadow) prices 𝑝, 𝑤, and 𝑟 associated with the 

variables were derived. Prices were expressed in 2011 US dollars (US $). If it was 

necessary, prices were inflated to 2011 US dollars using Consumer Price Indices. We 

computed the adjusted profit for each observation to identify the “best” performer 

                                                 
1 Average soybean oil price for the year 2011 was US $1023.7 per ton (Soybean meal and oil - 
monthly price, source: The World Bank 2014a). From one ton of soybeans, 75.8% is processed 
into soybean meal (ECOINVENT 2007). 
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from the observed data (in terms of highest adjusted profit) to be used as the 

benchmarking observation in the Bennet computation. All calculations and data 

sources are fully detailed in the supplementary material (Annex 3A). 

 

Table 3.2 Characteristics of soybean production in the selected municipalities of Brazil. 

Municipality 
Farming 

system  

Planted area 

(ha)a 

Share of 

total 

municipality 

area (%) 

Farms 

(units)b  

Production 

(thousand 

tons)a 

State 

Anahy non-GM, GM 5,116.0 64.2 184.0 16.3 Paraná 

Andirá non-GM 11,802.0 30.2 164.0 34.4 Paraná 

Arapoti non-GM 17,933.0 39.5 86.0 58.2 Paraná 

Cafelândia non-GM, GM 22,078.0 70.2 256.0 69.2 Paraná 

Marialva non-GM, GM 23,054.0 52.1 484.0 65.8 Paraná 

Londrina non-GM, GM 40,333.0 39.4 455.0 111.7 Paraná 

C. Mourão non-GM, GM 49,660.0 73.0 318.0 145.6 Paraná 

Guarapuava non-GM, GM 51,452.0 35.8 181.0 159.5 Paraná 

Sorriso non-GM 585,676.0 84.5 367.0 1,831.7 Mato Grosso 

C. Novos non-GM, GM 35,667.0 27.9 141.0 100.6 Sta. Catarina 

Araguari GM 17,100.0 20.6 24.0 54.0 M. Gerais 

P. Afonso non-GM 29,413.0 37.1 25.0 72.2 Tocantins 

P. Missões GM 90,500.0 87.6 663.0 245.4 RGS 

Cruz Alta GM 81,167.0 83.6 343.0 196.8 RGS 

Passo Fundo GM 37,767.0 87.4 413.0 103.6 RGS 

Source IBGE (2013)   

a. Average values for the period 2006-2011.  

b. Data from the Brazilian Agricultural Census 2006.  

Campo (C.) Mourão;  Campo (C.) Novos; Pedro (P.) Afonso; Palmeira das (P.) Missões ; Rio 

Grande du Sul (RGS) 
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Quantification of outputs, inputs, and externalities 

Profitability  

Profitability was estimated as the difference between the revenue and the cost of 

producing one ton of soybean meal. Revenues are given by the market price (𝑝) of one 

ton of non-GM and GM soybean meal at Rotterdam Port. Costs refer to the expenditure 

on inputs used at each stage of the chain. At the agricultural stage, production costs, i.e. 

variable and fixed costs, were obtained from the Brazilian Agricultural Research 

Corporation (EMBRAPA). The variable costs cover operating expenditures on seeds, 

lime, fertilizers, pesticides, other inputs such as adjuvants, fuel, labor, and other 

expenses such as insurance, taxes, and technical assistance. Fixed costs are related to 

machinery and infrastructure depreciation. Costs at the processing stage include the 

expenses related to the use of hexane, electricity, and labor, among others. Because 

quantity and price information for inputs at the processing stage were not accessible, 

the crush margin, i.e. the difference between the market value of soy oil and soybean 

meal and the cost of the soybeans, was used to estimate the processing costs. Finally, 

costs at the transport to port stage were estimated as the cost of diesel used in the 

transportation of soybean meal from the municipalities to the closer exporting port 

(Rio Grande, Paranaguá, or Santos), and costs at the transoceanic transportation stages 

were estimated as the cost of bunker fuel used in the transportation of soybean meal 

from the exporting port to Rotterdam Port.  

 

Environmental and social externalities of soybean meal production 

The GWP of the greenhouse gases (GHGs) emitted by the observations of the soybean 

meal chains was expressed in kg of CO2 equivalents (kg CO2‐eq.). The following GHGs 

were included: carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). At the 

agricultural stage, the inputs considered as having the potential to emit GHGs were 

seeds, lime, fertilizers, pesticides, and fuel. At the processing stage, electricity was the 

only input considered to emit GHGs, and fuel was the only input for the transport to 

port and transoceanic transportation stages. Input-specific emission factors proposed 

by IPCC (2006) were used.  

The EP was calculated based on the difference between the average amount of 

phosphorous (P) absorbed by the soy plant and the amount of P added through 

fertilizer at the agricultural stage. The EP was expressed in kg of P. As soy plants 
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biologically fix nitrogen in soils, the potential eutrophication due to an excess of this 

nutrient was considered to be zero (Hungria et al. 2001).  

The DEF for each municipality was obtained from the project “Monitoring of 

Deforestation of the Brazilian Biomes by Satellite, PMDBBS” (IBAMA 2013). It was 

calculated as the average annual deforestation rate (m2/year) for two different 

biomes, Mata Atlántica and Cerrado, over the periods of 2002-2007, 2008-2009, and 

2010. In situations where both non-GM and GM farming systems are found in a given 

municipality, the allocated annual deforestation rate was divided in equal proportions, 

given that these systems both have a share of about 50% in the total soybean 

production of Brazil (IBGE 2013). 

The ET, FT, and CT were expressed using the Environmental Impact Quotient (EIQ) 

developed by Kovach et al. (1992). The EIQ method gives a toxicity score for a kg of a 

specific active pesticide ingredient for three components: the EIQ for the 

environmental component (EIQe), the EIQ for the farmworker (EIQf) and the EIQ for 

the consumer (EIQc). To quantify the toxicity of the pesticides, the EIQ scores for the 

three components were collected for the different active pesticide ingredients used in 

soybean production. Afterwards, the EIQ scores were added together and were 

adjusted taking into account the percentage of active ingredient in the commercial 

products and the usage rate per ton of soybean meal. Higher scores represent higher 

toxicity. This procedure was performed for each municipality and farming system. 

LE was only estimated for the agricultural stage and was defined as the difference 

between the weighted average workload for the different agricultural land uses for 

each municipality and the workload required for soybean production, both non-GM 

and GM. The workload was expressed in hours per soybean meal ton and included 

both family and contracted labor. Agricultural land uses included permanent crops, 

cattle, horticulture, and temporal crops, such as cotton, sugar cane, tobacco, and 

cereals. 

Table 3.3 summarizes the quantification of the externalities for the non-GM and GM 

soybean meal chains exporting to the European market, for each selected municipality. 

Externalities are expressed in units per ton of soybean meal. 
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Table 3.3 Quantification of the externalities arising from soybean meal production (per ton of 

soybean meal). Stage 1 = agricultural, stage 2 = processing, stage 3 = transport to port, and stage 

4 = transoceanic transportation. 

Indicator GWP EP ET FT CT DEF LE 

Unit kg CO₂-eq. kg P EIQ EIQ EIQ m2 hours 

non-GM chain Stage 1 Stage 2 Stage 3 Stage 4             

Andirá 271.1 20.4 446.0 713.3 0.0 21.2 10.3 4.4 0.0 3.5 

Cafelândia 235.1 20.4 627.3 723.8 0.0 21.9 9.4 4.4 0.05 3.9 

Marialva 254.1 20.4 473.7 723.8 0.0 23.7 10.9 4.7 0.0 3.2 

Arapoti 236.0 20.4 25.5 723.8 2.2 16.3 8.3 4.3 0.9 2.2 

Anahy 248.9 20.4 651.6 723.8 0.0 26.2 12.3 5.7 0.0 2.4 

Campo Mourão 240.8 20.4 539.4 723.8 0.0 18.4 7.0 3.7 0.0 3.9 

Guarapuava 255.8 20.4 303.9 723.8 0.0 21.2 8.0 7.0 2.2 2.2 

Londrina 253.6 20.4 450.4 723.8 0.0 23.3 10.6 5.4 0.0 2.9 

Campos Novos 269.0 20.4 424.6 723.8 0.3 20.5 10.7 4.6 0.0 1.5 

Pedro Afonso 222.8 20.4 1219.0 713.3 1.5 21.2 11.3 4.8 53.8 0.7 

Sorriso 226.2 20.4 2187.8 713.3 0.5 14.6 6.6 3.5 14.4 0.0 

GM chain 
    

            

Cafelândia 233.9 20.4 630.4 723.8 0.0 29.7 7.2 4.2 0.05 4.2 

Marialva 249.3 20.4 480.4 723.8 0.0 31.3 7.7 4.5 0.0 3.4 

Anahy 249.3 20.4 652.3 723.8 0.0 36.4 10.8 6.0 0.0 2.5 

Campo Mourão 248.1 20.4 536.9 723.8 0.0 25.1 5.9 4.0 0.0 4.1 

Guarapuava 249.9 20.4 312.4 723.8 0.0 34.8 8.4 7.6 2.2 2.3 

Londrina 250.4 20.4 457.1 723.8 0.0 36.0 9.3 5.6 0.0 3.1 

Campos Novos 192.9 20.4 430.2 723.8 0.3 34.5 7.8 4.6 0.0 1.6 

Araguari 217.8 20.4 684.6 713.3 2.2 39.2 11.8 6.0 13.8 1.0 

Palmeira das 
Missões 

212.7 20.4 543.8 748.4 0.0 46.0 14.2 4.9 0.01 5.2 

Passo Fundo 270.4 20.4 547.8 748.4 0.0 45.5 13.0 7.2 0.00 5.0 

Cruz Alta 294.5 20.4 447.0 748.4 0.0 35.2 10.8 4.4 0.04 1.0 

  
 

    
 

            

 
Average  
non-GM chain 

246.7 20.4 668.1 720.9 0.4 20.8 9.6 4.8 6.5 2.4 

Average GM  
chain 

242.7 20.4 520.3 729.5 0.2 35.8 9.7 5.4 1.5 3.0 
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Shadow prices attached to the environmental and social externalities  

A number of studies have estimated the costs of releasing CO2 gases into the 

atmosphere (see Tol 2008 for an overview). These costs are associated with the 

impacts of CO2 on the environment, the economy, and human health. These include 

parasitic and vector borne diseases, sea-level rise, river runoff and decreased water 

availability, melting of ice sheets, the loss of ecosystem and its associated biodiversity, 

and climate instabilities, such as higher incidence of droughts, changes in precipitation 

patterns, and higher storm frequency (Nordhaus 2007; Pretty et al. 2000; Tol 2005; 

Tol 2008). To select an appropriate shadow price for CO2 equivalents, the mean value 

of estimates found in existing literature sources was computed. As a result, we used a 

shadow price of USD 0.02 per kg CO2-eq.  

Losses of P from agricultural systems contaminate water and soils, affecting the 

dynamics and processes of different ecosystems (Csathó et al. 2007). To determine a 

shadow price for P losses from soybean production, we used the mean value of two 

estimates, US $1.95 and US $9.51 per kg of P. The first shadow price was calculated by 

de Bruyn et al. (2010) as the external costs of all the direct impacts attributed to P 

emissions into the environment. The second estimate was based on the total monetary 

expenditure by Dutch authorities in the year 2000 in order to reduce P emissions to 

reach a policy target (Huppes et al 2007). Owing to the fact that both shadow prices 

are context dependent and are closely related to income levels, i.e. they reflect the 

willingness to pay for maintaining a certain environmental quality or the willingness 

to accept compensation for the environmental degradation, the shadow prices were 

corrected for the Brazilian context using the ratio of the Gross Domestic Product (GDP) 

per capita of Brazil to the average GDP per capita of the Netherlands. As the 

purchasing power of a dollar varies between Brazil and the Netherlands, we 

expressed the GDP in purchasing power parities (PPP) in current international dollars 

(Int. US $). As a result, we assumed a shadow price of US $1.98 per kg P. 

The mean economic value per hectare of the ecosystem services provided by ten 

biomes around the world was estimated by van der Ploeg et al. (2010). Of the ten 

biomes, two are related to the Cerrado and Mata Atlântica Brazilian biomes, i.e. the 

wood/shrub land and the grass/rangeland. The total monetary value per hectare of 

wood/shrub land was estimated at a median value of US $867.9 per ha. The median 
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value per hectare of grass/rangeland was estimated at US $1.200 per ha2. Assuming 

that the shadow price of deforestation is equivalent to the foregone benefits derived 

from the provision of such ecosystem services, we calculated our shadow price for 

deforestation as the average value of the two estimates, which is US $0.10 per m2. 

To select a shadow price for environmental toxicity, farmworker toxicity, and 

consumer toxicity, we partially used the Pesticide Environmental Accounting (PEA) 

tool developed by Leach and Mumford (2008). The tool adjusts a set of base values for 

external costs categories3 associated with the application of one kg of an average 

active pesticide ingredient, taking into account the relative toxicity of pesticides 

expressed by the EIQ scores (Praneetvatakul et al. 2013). Base values for external cost 

categories were derived by Pretty et al. (2000) and (2001), based on detailed cost 

studies done in the United Kingdom, the United States, and Germany. Following Leach 

and Mumford (2008), we first redistributed the base values over the three EIQ model 

components, i.e., environmental, farmworker, and consumer. Redistributed external 

costs were afterwards adjusted to the Brazilian context using the ratio of the GDP per 

capita of Brazil to the average GDP per capita of the UK, the USA, and Germany 

(Praneetvatakul et al. 2013), expressed in PPP in current Int. US $. In addition, 

following Praneetvatakul et al. (2013), the farmworker external costs were adjusted 

by a factor that represents the ratio of Brazil’s share of employment in agriculture to 

the average share of agricultural employment in the UK, the USA, and Germany. This 

factor scaled the farmworker external costs according to the potential amount of 

people that could come into direct contact with pesticides in Brazil. The adjusted 

external costs of the application of one kg of an average active pesticide ingredient (US 

$9.57 per kg active ingredient) were multiplied by the total quantity of active 

pesticide ingredients used in the USA in the year 2001 (425 million kg active 

ingredient) 4 (Pretty et al. 2000). Total external costs for the USA, US $4,066 million, 

were divided into the three EIQ components according to the external cost share of 

the average active pesticide ingredient. 

                                                 
2 Ecosystem services included in the estimation comprised food and raw materials, benefits for 
air quality, climate regulation, waste treatment, water purification, maintenance of soil fertility 
and erosion prevention, maintenance of genetic diversity, tourism, recreation, and aesthetic 
information (see van der Ploeg et al. 2010 for an overview). 
3 Cost categories included: treating contaminated water, monitoring of pesticides, medical costs 
for treating pesticide poisonings, and costs associated with biodiversity loss (Pretty et al. 2001). 
4 Total kg of active pesticide ingredients used in the USA in the year 2001 (Pretty et al. 2001). 
Due to data availability, the UK and Germany were not used in this calculation.  
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The quantities of the most commonly used active pesticide ingredients in the USA 

were identified and their corresponding EIQ scores were collected (matching the total 

amount of 425 million kg of active pesticide ingredients). Adding the EIQ scores for 

the environmental, farmworker, and consumer components and dividing the 

corresponding total external costs by these amounts, the shadow price of one EIQ for 

each component was estimated at US $0.02 per EIQe, US $0.4 per EIQf and US $0.3 per 

EIQc. 

With regard to the employment that is lost in agricultural soybean production, the 

price used in this study was the overall agricultural average wage of US $3.4 per hour. 

Table 3.4 summarizes the shadow prices that were calculated from literature sources 

and reports and adjusted to the Brazilian context. 

 

Table 3.4 Shadow prices of one unit of externalities in soybean meal production. 

Externality Unit Shadow price 2011 US $ 

Global Warming Potential (GWP) kg CO2-eq 0.02 

Eutrophication Potential (EP) kg PO4-eq 1.98 

Deforestation  (DEF) m2 0.10 

Environmental Toxicity (ET) EIQe 0.02 

Farmer Toxicity (FT) EIQf 0.42 

Consumer Toxicity (CT) EIQc 0.31 

Loss of employment (LE) Hour 3.40 

See the supplementary material for sources and data calculations (Annex 3A) 

 

Adjusted profit of the selected non-GM and GM soybean meal chains in Brazil 

Table 3.5 shows the adjusted profit estimated for each of the observations of the non-

GM and GM soybean meal chains.  
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Table 3.5 Adjusted profit for the observations of the non-GM and GM soybean meal systems in 

Brazil (results in US$ per soybean meal ton). In the column headings, y = vector of outputs,  x = 

vector of inputs, b = vector of externalities, p = vector of prices of outputs, w = vector of prices 

of inputs, r = vector of (shadow) prices of externalities; thus, (p’𝑦) = value of production, (w’𝑥) = 

value of inputs, (r’𝑏) = value of externalities, and adjusted profit = p’𝑦 – w’𝑥 – r’𝑏 (consistent 

with Eq. 3.1). 

non GM soybean chain (𝑝′𝑦) (𝑤′𝑥) (𝑟′𝑏) 
Adjusted 

Profit (AP) 

Guarapuavaa 448.7 262.1 42.7 143.9 

Campos Novos 448.7 275.9 44.1 128.8 

Andirá 448.7 273.3 50.4 125.0 

Campo Mourão 448.7 273.1 51.4 124.2 

Londrina 448.7 279.7 48.6 120.5 

Marialva 448.7 278.4 49.9 120.4 

Anahy 448.7 291.8 52.1 104.8 

Arapoti 448.7 313.3 39.5 95.9 

Cafelândia 448.7 314.0 54.9 79.8 

Sorriso 448.7 341.7 76.4 30.6 

Pedro Afonso b 448.7 368.6 65.9 14.2 

GM soybean meal chain 
    

Guarapuava 420.0 258.1 43.7 118.2 

Campos Novos 420.0 277.2 41.9 100.9 

Campo Mourão 420.0 274.7 52.2 93.2 

Londrina 420.0 284.4 48.9 86.6 

Marialva 420.0 287.0 49.4 83.5 

Cruz Alta 420.0 296.7 43.6 79.7 

Anahy 420.0 295.3 52.2 72.5 

Passo Fundo 420.0 304.6 61.0 54.4 

Cafelândia 420.0 314.4 54.7 50.9 

Araguari 420.0 320.4 53.1 46.5 

Palmeira das Missões 420.0 315.4 59.9 44.7 

     

Average non-GM chain 448.7 297.1 52.4 99.3 
Average GM chain 420.0 295.0 50.9 73.9 

a. highest adjusted profit.  b. lowest adjusted profit. 
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The highest adjusted profit was calculated for the non-GM observation with 

production in the municipality of Guarapuava, equal to $143.9 per ton of soybean 

meal. This observation was used as the benchmark observation for the computation of 

the Bennet TFP and TPR indicators. 

 

Results and discussion 

Results in section ‘Benchmarking of the soybean meal chains using the Bennet TFP 

and TPR indicators; aggregated differences in the adjusted profit at each chain stage 

and in section ‘Decomposition of differences in the adjusted profit into the TFP 

component and the TPR component associated with outputs, inputs, and externalities’, 

provide the outcomes of the Bennet indicators. Differences in the adjusted profit along 

the chain between the observations and the best performing observation (benchmark) 

are presented in section ‘Benchmarking of the soybean meal chains using the Bennet 

TFP and TPR indicators; aggregated differences in the adjusted profit at each chain 

stage’. In section ‘Decomposition of differences in the adjusted profit into the TFP 

component and the TPR component associated with outputs, inputs, and externalities’, 

these differences are further decomposed into those that are related to price 

differences (TPR component) and those that are associated with quantity differences 

(TFP component) for each specific output, input, and externalities. Finally, potential 

areas for improvement of the sustainability performance of the non-GM and GM 

soybean meal chains are suggested in section ‘Potential areas for sustainability 

performance improvements in soybean meal production’.   

 

Benchmarking of the soybean meal chains using the Bennet TFP and TPR 

indicators; aggregated differences in the adjusted profit at each chain stage 

The differences in the adjusted profit between the best performing observation, i.e. 

non-GM soybean meal production at Guarapuava, and the remaining 21 observations 

are presented in Table 3.6 for each life cycle stage of the soybean meal chain and 

decomposed into the TFP and TPR components. In addition, the average GM soybean 

meal chain is compared to the average non-GM soybean meal chain using the latter as 

the benchmark.  

Positive values for the sum of the Bennet indicators show that the observation is more 

sustainable than the benchmark observation, whereas negative values indicate that 
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the observation is less sustainable. Main differences between the non-GM and GM 

observations and the benchmark are found at the agricultural stage, ranging from 

US$4.0 to US$-90.7 per soybean meal ton (sum of the TPR and TFP component), and at 

the transport to port stage where differences range from US$12.1 to US$-81.6 per 

soybean meal ton.  

 

Table 3.6 Differences in the adjusted profit (AP) within and between observations of the non-

GM and GM soybean meal chains at each life cycle stage, expressed in US $ per soybean meal ton. 

The AP difference is decomposed into TFP and TPR components (consistent with Eq. 3.2). 

Non-GM chain 
Agriculture 

(Stage 1) 
Processing  
(Stage 2) 

Transport to port 
(Stage 3) 

Trans. transportation 
(Stage 4) Adjusted Profit  

difference 
  TFP TPR TFP TPR TFP TPR TFP TPR 

Guarapuavaa 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Campos Novos -12.9 3.0 0.0 0.0 -5.2 0.0 0.0 0.0 -15.2 

Andirá -13.7 0.4 0.0 0.0 -6.2 0.0 0.7 -0.2 -18.9 

Campo Mourão -6.9 -2.6 0.0 0.0 -10.2 0.0 0.0 0.0 -19.8 

Londrina -15.8 -1.4 0.0 0.0 -6.3 0.0 0.0 0.0 -23.5 

Marialva -19.3 3.2 0.0 0.0 -7.4 0.0 0.0 0.0 -23.5 

Anahy -21.2 -2.9 0.0 0.0 -15.1 0.0 0.0 0.0 -39.2 

Arapoti -28.5 -31.6 0.0 0.0 12.1 0.0 0.0 0.0 -48.1 

Cafelândia -18.6 -31.5 0.0 0.0 -14.0 0.0 0.0 0.0 -64.2 

Sorriso -14.1 -18.2 0.0 0.0 -81.6 0.0 0.7 -0.2 -113.4 

Pedro Afonso -56.6 -34.0 0.0 0.0 -39.7 0.0 0.7 -0.2 -129.8 

GM chain 
     

Guarapuava -3.9 8.0 0.0 -0.7 -0.4 0.0 0.0 -28.7 -25.7 

Campos Novos -8.9 0.8 0.0 -0.7 -5.5 0.0 0.0 -28.7 -43.0 

Campo Mourão -7.3 -4.0 0.0 -0.7 -10.1 0.0 0.0 -28.7 -50.8 

Londrina -17.0 -4.3 0.0 -0.7 -6.6 0.0 0.0 -28.7 -57.4 

Marialva -17.4 -5.9 0.0 -0.7 -7.7 0.0 0.0 -28.7 -60.4 

Cruz Alta -15.3 -11.7 0.0 -0.7 -6.2 0.0 -1.7 -28.7 -64.2 

Anahy -22.2 -4.8 0.0 -0.7 -15.1 0.0 0.0 -28.7 -71.5 

Passo Fundo -49.0 1.1 0.0 -0.7 -10.6 0.0 -1.7 -28.7 -89.5 

Cafelândia -18.4 -31.1 0.0 -0.7 -14.1 0.0 0.0 -28.7 -93.0 

Araguari -37.1 -15.0 0.0 -0.7 -16.5 0.0 0.7 -28.7 -97.5 

P. das Missões -46.0 -11.7 0.0 -0.7 -10.4 0.0 -1.7 -28.7 -99.3 

GM chain vs. 
benchmark= 
non-GM chain 

-6.6 4.9 0.0 -0.7 6.4 0.0 -0.6 -28.7 -25.3 

A positive value indicates higher performance relative to the benchmark in terms of TFP and TPR.  
a Benchmarking observation 
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At the transport to port stage, differences arise from variation in the distances 

between the municipalities where agricultural production takes place and the closest 

Brazilian port. Even though differences in the adjusted profit at this stage are small for 

most of the observations, large distances for some municipalities entail higher 

transportation costs and a greater release of GHGs. Both of these costs are partially 

associated with obsolete transportation (production is transported by trucks) and the 

lack of well-maintained rural roads and congested routes (Jaguaribe Pontes et al. 

2009). The municipalities of Sorriso and Pedro Afonso are an example. Both belong to 

the states of Mato Grosso and Tocantins, where most non-GM soybean production is 

found.  

The average non-GM soybean meal chain differs from the GM soybean meal chain 

mainly at the transoceanic transportation stage (Table 3.6). At this stage, the average 

GM chain has a lower adjusted profit of about US$29.3 (sum of the TPR and TFP 

component) due to the price premium given to the non-GM soybean meal, which is 

approximately 7% of the soybean meal base price (Embrapa Soja 2012). 

 

Decomposition of differences in the adjusted profit into the TFP component and 

the TPR component associated with outputs, inputs, and externalities 

So far we have presented aggregated differences in the adjusted profit along the chain 

between the benchmark and the remaining non-GM and GM observations (Table 3.6). 

To discover the reasons for the aggregate differences, these are decomposed into 

differences that are related to quantity effects (TFP component) and differences that 

are related to price effects (TPR component) for each specific output, input, and 

externality. As an example of this analysis, the Bennet TFP and TPR indicators for the 

average GM chain compared to the average non-GM chain are computed (Figure 3.2). 

This analysis can easily be conducted for each of the non-GM and GM observations in 

comparison to the benchmark (non-GM soybean meal production at Guarapuava). 

The decomposition of the aggregate difference in the adjusted profit between the 

average GM and non-GM soybean meal chains highlights five main differences in TFP 

and TPR for the inputs, output, and externalities. (1) The GM chain faces a lower price 

for herbicides and fertilizer, which represents a lower expenditure of US $15.3 per 

soybean meal ton if compared to the prices faced by the average non-GM chain. On the 

other hand, a higher price for seeds and insecticides for the GM chain decreases the 
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adjusted profit by approximately US $8.5 per soybean meal ton if compared to the 

benchmark. (2) The average GM soybean chain has a higher consumption of 

herbicides, insecticides, and fungicides. This is also reflected in slightly higher 

environmental, farmworker, and consumer toxicity, i.e. the environmental, 

farmworker, and consumer toxicity decreases the GM chain’s adjusted profit by US 

$5.2 per soybean meal ton. 

 

 

Figure 3.2 Decomposed differences in the adjusted profit between the average GM soybean 

meal chain and the average non-GM chain. The bars represent the deviations of the average GM 

chain relative to the benchmark (average non-GM system) in terms of quantities (TFP 

component) and prices (TPR component) for each output, input, and externality. The higher the 

deviation, the more sustainable the GM chain is in comparison to its non-GM equivalent (Note 

the fact that results vary if the Bennet computation is performed using both shadow prices for 

eutrophication, i.e. US $0.7 per kg P and US $3.3 per kg P. Under the first scenario the adjusted 
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profit per ton of soybean meal for the average non-GM and GM soybean meal chains would 

decrease by US$ 0.5 and US$ 0.3. On the other hand, under the second scenario the adjusted 

profit per ton of soybean meal for the average non-GM and GM soybean meal chains would 

increase by US $ 0.5 and US $ 0.3 respectively).  

 

(3) The average GM chain consumes less diesel to transport the product to the 

Brazilian port. Most GM soybean production is found in the southern states of Brazil, 

which are closer to the ports. This is reflected in a better performance in terms of CO2-

eq. emissions and in lower transportation costs at the transport to port stage. Both the 

TFP and TPR differences imply a higher adjusted profit of the average GM chain of 

about US $6.4 per soybean meal ton in relation to the non-GM chain. (4) The GM 

soybean chain has a higher loss of employment at the agricultural stage. (5) The GM 

soybean meal product has a price US$28.7 per ton lower than its non-GM equivalent. 

The lower price for the GM soybean meal is the main reason for the aggregate 

difference in the adjusted profit. In case the price premium per ton of non-GM soybean 

meal was not paid, the price effect would be zero, implying a difference of the adjusted 

profit between chains of US $3.3 in favor of the GM chain. Nevertheless, it should be 

noted that the price premium paid per ton of non-GM soybean meal is relevant. Such 

difference reflects the preference of European consumers for meat from animals not 

fed with genetically modified crops (Garret et al. 2013), This is related to the fact that 

the risk and potential impacts of the consumption of food containing genetically-

modified material on human health are still unknown (Domingo 2011).” 

Focusing on productivity terms, i.e. excluding the adjusted profit differences due to 

price changes, the average GM chain might be considered less productive than its non-

GM equivalent (lower TFP). It produces less output per unit of input (Figure 3.2), i.e. 

US $2.2 per soybean meal ton in comparison to the average non-GM chain. In addition, 

the Kovach method used to estimate the toxicity of pesticides does not take into 

account the long term effects of persistent substances in the environment (van der 

Werf 1996). Therefore the toxicity of the soybean meal chain may be underestimated, 

particularly for the GM chain, which has a higher consumption of pesticides, especially 

the RoundUp herbicide. Long term impacts of increased RoundUp consumption are 

still relatively unknown, but may include the development of new diseases and 

tolerant weeds (Bonny 2011). 
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Although our study suggests that the non-GM soybean meal chain is performing more 

sustainable than the GM chain (higher adjusted profit), it should be noted that there 

are other externalities of soybean meal production, which were not included in our 

study. Negative externalities not addressed in this research include child labor, land 

concentration, concentration of profits by a small group of stakeholders, illegal land 

tenure, and loss of genetic agricultural diversity (Franke et al. 2011; Petkova et al. 

2011; WWF 2003). Positive externalities not addressed in this research include 

carbon sequestration by soy plantations, landscape, and employment in the 

processing sector. Including these externalities will allow a more precise 

benchmarking of both soybean meal chains in terms of their sustainability.  

 

Potential areas for sustainability performance improvements in soybean meal 

production 

Both chains have areas that show deficiencies in their economic, environmental, and 

social performance. In the areas where performance can be improved, joint efforts 

should be put in place by the main actors in the soybean meal chain, such as farmers, 

governments, the private sector, traders, and non-governmental organizations. The 

following efforts are proposed for each of the two soybean meal chains. 

Most non-GM production is found in Mato Grosso State, mainly in the northern region 

where the Amazon starts (MAGP and IICA 2012). Soybean production in this area is 

mainly transported by trucks to Brazilian Ports located in the north, for which the 

transportation infrastructure is limited and often poorly maintained (Flaskerud 2003; 

Jaguaribe Pontes et al. 2009). These limitations imply the consumption of a larger 

quantity of energy resources, leading to higher transportation costs and greater 

production of GHG emissions than for transgenic beans, which are mainly produced in 

Rio Grande do Sul State and transported shorter distances to the ports in the south. 

Salin (2013) concluded that Brazil’s competitiveness in the world market largely 

depends on its transportation infrastructure. Consequently, efforts should therefore 

focus on providing economic resources for infrastructure projects, such as paving 

roads and increasing the railways and waterways (Jaguaribe Pontes et al. 2009; Salin 

2013). Providing economic resources will not only reduce truck transportation and 

lead to lower non-GM soybean meal’s marketing costs, but will also reduce the 

associated GHG emissions. Other positive side effects of this intervention might 
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include the reduction in the prices for fertilizers and pesticides that are used in non-

GM soybean production at the agricultural stage. Nevertheless, improving the 

infrastructure matrix in remote areas of Brazil might have indirect negative effects on 

other sustainability issues, such as biodiversity. Improving access to remote areas and 

soybean marketing channels, coupled with the reduction in input prices, could 

encourage the expansion of the soybean area. As a result, increased deforestation 

could be expected, affecting the provision of the associated ecosystem goods and 

services (Barona et al. 2010). 

Efforts in GM soybean meal production should be focused at the agricultural stage, 

and aimed at decreasing the application rates and regularity of biocide use. This 

requires specification of the application rates for biocides, through prior tests and 

following technical recommendations. A lower consumption of biocides would entail a 

significant reduction in the agricultural production costs (pesticide use constitutes 

approximately 28% of the variable costs at the agricultural stage), and lead to a 

reduction in both GHGs emissions and potential impacts of pesticide use on the 

environment, the farmworker, and the consumer. 

 

Methodological implications of the indicator-based approach for 
stakeholders 

The assessment presented in this paper can be further complemented by performing a 

comparative assessment of the sustainability of soybean meal production chains, 

either non-GM or GM, from the major production countries, i.e. United States, 

Argentina, China, Paraguay, and Brazil. Such an analysis would provide detailed 

evidence on the relative competitiveness of each country in the world market and 

would shed light on the variation between regions and countries in terms of 

environmental and social sustainability performance. This information can be used to 

construct possible soybean meal production scenarios in a context of environmental 

conservation, climate change, and economic performance.   

This analysis could also be conducted for other internationally traded products. The 

sustainability performance of other products, such as sugar, cotton, cereals, and palm 

oil, which are produced to meet the growing demand for food, feed, and energy (The 

Dutch Soy Coalition 2008) can also be assessed. If enough data is available, future 
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assessments can establish the relative level of sustainability of products; this 

information could then be used in the mitigation of sustainability conflicts in trade 

negotiations. This would require, however, consensus building to define a commonly 

accepted base level of sustainability. Such a base level of sustainability could consist of 

a limited number of outputs, inputs, and externalities; just enough to convey 

information for the decision-making process about the level of sustainability of 

production chains.  

Although the use of the proposed indicator-based approach is justified on the basis of 

a pragmatic argument, i.e. the aggregation of sustainability issues into a common 

metric to facilitate the decision-making process, this approach has a limitation that 

merits special attention. By equating the economic, environmental, and social 

dimensions of sustainability on the basis of monetary values, we accept that an 

increase in the sustainability performance of any of the three dimensions can 

compensate the deterioration of the other(s). In other words, we accept that as long as 

social welfare is maintained (in terms of positive adjusted profits), sustainability will 

be achieved. Although this may be the case for some sustainability issues, e.g. the 

economic profits of soybean production can to some extent be reinvested to improve 

the structure and fertility of soil, for other issues such as biodiversity loss, this may be 

not consistent any more with sustainability. Biodiversity provides several benefits for 

society that can be quantified in monetary terms, but it also provides essential and 

irreplaceable services for which the shadow price to society would be regarded as 

infinite (Ayres et al. 1998; Barbier et al. 1994). Therefore it would not be technically 

and ethically possible to capture these values using monetary metrics on a technical 

basis (Chan et al. 2012). Consequently, when assessing the sustainability performance 

of products using a set of economic, environmental, and social indicators, the 

assessment should be complemented by the identification of key areas that must be 

maintained at certain quantity and quality levels, e.g. high conservation value areas 

where agricultural production cannot take place, and by specifying requirements to 

strictly avoid ethically unacceptable activities, such as child labor and forced labor, as 

a prerequisite for long-term sustainability.   
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Conclusions 

Our results show that the non-GM soybean meal chain is more sustainable than the 

GM chain. Quantity differences (TFP component) include a lower use of biocides, i.e. 

pesticides, fungicides, and herbicides, in the non-GM chain. The main price difference 

(TPR component) is associated with the price premium paid per ton of non-GM 

soybean meal, which reflects consumer preference for non-GM products. In contrast, 

the GM soybean meal chain has a lower emission of GHGs at the transport to port 

stage due to a lower amount of fossil fuel used in transportation. This is because GM 

soybean production is mainly found in the southern Brazilian states that are closer to 

the ports. Our study highlights areas for improving the sustainability of the GM and 

non-GM chains. Externalities arising from soybean meal production could be reduced 

by introducing technical assistance in GM soybean production to reduce the 

application of biocides and by improving the transport infrastructure matrix, 

especially in remote non-GM soybean production areas of Brazil. These efforts would 

also reduce production costs. Nevertheless, negative side effects of these interventions, 

such as increased deforestation, should be taken into consideration.  

Although our study focused on the assessment of the relative economic, 

environmental and social performance of the soybean meal chain, the indicator-based 

approach has a much wider applicability. It is sufficiently flexible to allow aggregation 

of different sustainability issues and therefore can be used to analyze the relative 

sustainability of trade flows at different locations and in a variety of socio-economic 

contexts. Further development and acceptance of this approach as a benchmarking 

tool in trade negotiations could assist in the future imposition of trade preferences for 

sustainable commodities and provide an incentive to switch production towards 

better economic, environmental, and social practices throughout production chains. 
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Annex 3A. 

Data and the related sources used in the calculation of the adjusted profits: Outputs, 

inputs and externalities and the related price information 

 

Quantification of conventional outputs and inputs and price information 

A summary of the quantities for the outputs and inputs and their associated prices 

used for the calculation of the Adjusted Profit indicator are found in Table 3A.3. All 

prices are expressed in 2011 US dollars. The exchange rate used in this study was 1.8 

Reals per 1.0 US $ dollar. 

 
Revenue (quantities 𝑦 and prices 𝑝) 

 Given that the functional unit is the production of one soybean meal ton at the 

Rotterdam port, the output quantity 𝑦1
4 was set to one. The price 𝑝 (CIF price at the 

Rotterdam port) is US $420.0 per soybean meal ton (The World Bank 2014a). A 

price premium of 7% applies for the non-GM soybean meal ton (Pashaei Kamali et 

al. 2014).  

 Intermediate outputs of the agricultural stage (z = 1), processing stage (z = 2), and 

transport to port stage (z = 3) were omitted as they become inputs to the next 

stage. Thus, they are cancelled when they are totaled across all stages.  

 
Cost (input quantities 𝑥 and prices 𝑤) 

Agricultural stage (z = 1) 

Costs of soybean production (quantities and prices) for the non-GM and GM farming 

systems (municipalities) were obtained from the Brazilian Agricultural Research 

Corporation (EMBRAPA) and represent average input quantities and total input prices 

across farms at the municipal level in the year 2010/2011 (Hirakuri 2008; 2010a; 

2010b; Hirakuri and Lazzarotto 2009a; 2009b). For those inputs for which data was 

not explicitly available, the following estimations were undertaken: 

 

 Price data (𝑤) for the different inputs (𝑥1
1, 𝑥2

1 … , 𝑥12
1 ) was obtained by dividing total 

input cost by the quantities consumed. 
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 The quantity of the input “labor” (𝑥9
1), which is expressed in hours per soybean 

meal ton, was not available. Thus, it was derived by dividing the total input cost by 

an assumed hourly wage of US $3.4 per hour (personal communication). 

 The quantity of the inputs “other expenses” (𝑥10
1 ), and “capital fixed costs” (𝑥11

1 ), 

was set to one. 

 The quantity of the input “diesel transport” (𝑥12
1 ) was estimated in two steps: (i) 

the total input cost was divided by the cost of transport (US $ per soybean meal ton 

and per km) in order to estimate the distance (km) from the farm to the processing 

unit. (ii) the quantity of diesel consumed (liters per soybean meal ton) was 

estimated by multiplying the distance (km) times an average consumption of 

diesel (liters per soybean meal ton and per km). 

 

Cost of transport: US $0.07 ton per km (derived from Salin 2013). 

Average consumption of diesel: 0.4 liters per km and per ton (IPCC 2006). 

 

 For the municipalities of Pedro Afonso, Sorriso, Araguari and Palmeira das Missões 

input quantity data was not available. Quantities were derived by dividing the total 

cost of the different inputs by the average price faced in the other municipalities 

with the same farming system. 

 

Processing stage (z = 2) 

Quantity and price information related to the use of hexane, electricity and labor at 

the processing stage was not accessible. Hence, the input quantity (𝑥1
2), was set to one 

and the crush margin, i.e. the difference between the Free on Board Price (FOB) of the 

soy oil and the soybean meal and the cost of the soybean meal at the farm gate 

(soybean price allocated to soybean meal), was used to estimate the processing costs:  

 

 Average soybean meal price (FOB price): US $378.9 per ton (The World Bank 

2014a). 

 Farm gate soybean meal price: US $284.8 per ton (soybean price at the farm gate 

allocated to soybean meal). 

 Gross benefits processing unit (US $ per soybean meal ton) = Average soybean 

meal price (FOB price) minus the farm gate soybean meal price: US $94.1 per 

soymeal ton. 
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 Given that the crush margin is of about US $34.9 per ton of GM soybean meal and 

US $35.6 per ton of non-GM soybean meal (derived from The World Bank 2014a), 

then the gross benefits minus the crush margin is equal to the processing costs. 

Thus, the processing input costs of the non-GM and GM soybean meal are of about 

US $58.5 and US $59.2 per soybean meal ton respectively. 

 
Transport to port stage (z = 3) 

The quantity of the input “diesel transport to port” (𝑥1
3), expressed in liters per 

soybean meal ton, was estimated by multiplying the distance (km) from each 

municipality to the closer Brazilian Port (Table 3A.1) times an average consumption of 

diesel (liters per soybean meal ton and per km).  

 

Table 3A.1 Distances from the selected municipalities of Brazil to the closer Brazilian Ports.  

Distance municipalities to port 

(km) 

Paranaguá 

Port 

Santos  

Port 

Rio Grande  

Port 

non-GM systems       

Andirá   362.9   

Cafelândia 510.4 
 

  

Marialva  385.5 
 

  

Arapoti    20.8 
 

  

Anahy 530.2 
 

  

Campo Mourão 438.9 
 

  

Guarapuava 247.3 
 

  

Londrina 366.5 
 

  

Campos Novos 345.4 
 

  

Pedro Afonso   
 

 1,780.1 

Sorriso   1,780.1   

GM systems       

Cafelândia 512.9     

Marialva 390.9     

Anahy 530.8     

Campo Mourão 436.8     

Guarapuava 254.2     

Londrina 371.9     

Campos Novos 350.1     

Araguari   557.0   

Palmeira das Missões     442.5 

Passo Fundo     445.7 

Cruz Alta     363.7 
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The price of the input was calculated as the distance (km) from each municipality to 

the closer Brazilian Port times the cost of transport (US $ per km and per soybean 

meal ton).  

Cost of transport: US $0.07 ton per km (derived from Salin 2013). 

Average consumption of diesel: 0.4 liters per km and per ton (IPCC 2006). 

 

Transoceanic transportation (z=4) 

The quantity of the input “bunker fuel” (𝑥1
4), expressed in liters per soybean meal ton, 

was estimated by multiplying the average daily fuel requirement of a ship times the 

number of shipping days from the Brazilian port to the Rotterdam port. The price per 

liter of bunker fuel was assumed to be the total transportation cost divided by the 

total quantity of bunker fuel consumed (Table 3A.2).   

 

Table 3A.2 Main data and sources used to calculate the quantity and price of bunker fuel. 

Transoceanic 

transportation 
Unit 

Paranaguá 

Port 

Santos 

Port 

Rio 

Grande 

Port 

Quantity of bunker fuel 

    
Transportation days a day       31.8       31.3        31.4 

Bunker fuel a kg/soybean meal ton/day     207.2    207.2     217.0 

Bunker fuel consumption kg/soybean meal ton 6,579.7 6,484.4 6.803.5 

Price bunker fuel 

    
Total transportation cost a US$/soybean meal ton 35.0 34.7 36.1 

Bunker fuel price US$/kg bunker fuel 0.01 0.01 0.01 

a.   Derived from: Salin (2012)   
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Quantification of externalities 

Global Warming Potential (GWP) 

As proposed by IPCC (2006) GWP at each life cycle stage (𝑏1
1, 𝑏1

2, 𝑏1
3, 𝑏1

4, ) was 

calculated as: 

 

 

𝐺𝑊𝑃 = 𝑏1
𝑧 = ∑𝐺𝐻𝐺𝑖

𝑧 × 𝐺𝑊𝑃𝑖

𝐼

𝑖=1

 ,    

 

 

Where the GWP at each stage z = 1, 2, 3, 4 is the sum of the emission of greenhouse gas 

𝑖 (kg CO2, CH4 and N2O) times its global warming potential over a time frame of 100 

years (Table 3A.4).  

 

Table 3A.4 Global Warming Potential of different green-house gases over a time frame of 100 

years (IPCC 2006). 

Global Warming Potential of green-house gases (𝐺𝑊𝑃𝑖) 

Carbon Dioxide (CO2) CO2-eq/kg CO2 1.0 

Methane (CH4) CO2-eq/kg CH4 25.0 

Nitrous Oxide (N20) CO2-eq/kg N2O 298.0 

 

Emission of greenhouse gas 𝑖 on each stage 𝑧 (𝐺𝐻𝐺𝑖
𝑧) is quantified as: 

 

 

𝐺𝐻𝐺𝑖
𝑧 = ∑ 𝑥𝑛

𝑧 × 𝐸𝐹𝑛𝑖

𝑁

𝑛=1

, 

 

 

where 𝑥𝑛
𝑧 is the mass (kg) of the input 𝑛 multiplied by its corresponding emission 

factor 𝐸𝐹𝑛𝑖  (Table 3A.5). Inputs 𝑛 on each stage 𝑧 included: z = 1: seeds, lime, fertilizer, 

pesticides (herbicides, insecticides, fungicides) and diesel;  z = 2: electricity; z = 3: 

diesel; z = 4:  bunker fuel. 



Chapter 3 
 
 

98 
 

Table 3A.5 CO2 emission factor for the different inputs (ECOINVENT 2007). 

Input Unit Emission factors (𝐸𝐹𝑛𝑖) 

Lime kg CO2/kg 0.1 

Pesticides kg CO2/kg 10.2 

Fertilizer (P2O5) kg CO2/kg 2.3 

Potassium chloride kg CO2/kg 0.5 

Electricity Kg CO2/kw hour 0.5 

Diesel kg CO2/TJ 74,100.0 

Diesel kg CH4/TJ 4.2 

Diesel kg N2O/TJ 28.6 

Bunker fuel kg CO2/kg 0.1 

 

To apply the emission factors to the fuel inputs, i.e. diesel and bunker fuel, we used the 

conversion factors described in Table 3A.6.  

 

Table 3A.6 Conversion factors for fuel (diesel and bunker fuel) (IPCC 2006). 

Conversion factors for fuel 

Density diesel kg /liter  0.8 

Net Calorific Value (NCV) TJ/kg diesel 4.22867E-05 

Density bunker fuel kg/liter 0.95 

 

Relationship between eutrophication and fertilizer application 

The Eutrophication Potential (𝑏2
1) was calculated in kg of elemental phosphorous (P) 

per ton of soybean meal as: 

 

 

𝐸𝑃 = [(𝑥3
1 × 𝑃2𝑂5% × 𝐶𝐹) − 𝑢 × 𝐶𝐹], 

 

 

Where 𝑥3
1 is the fertilizer usage rate per ton of soybean meal on each municipality and 

farming system;  𝑝% is the percentage of P205 in the formulation of the fertilizer; 𝑢 

refers to the phosphorous (P) uptake by the soy plants; and CF is the factor that 

converts P2O5 into P.  
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To estimate the EP the following assumptions were made: 

 A NPK 0-20-20 fertilizer mix was assumed (Embrapa Soja 2014). Thus, the amount 

of P2O5 applied to non-GM and GM soybean production on each municipality was 

calculated as 20% of total fertilizer usage rate.  

 It was used an average uptake of 25 kg P per ha in soybean cultivation, either for 

the non-GM and GM system (Smit et al. 2009). 

 Conversion factor: 1 kg P2O5 = 0.4 kg P (IFIA 2013). 

 

Soybean production and deforestation of natural areas in Brazil 

Deforestation of natural areas (𝑏3
1 ) was expressed in m2 per soybean meal ton and 

was estimated as: 

 
 

 

𝐷𝐸𝐹 = 𝑏3
1 =

([(∑(𝐷𝑒𝑓1) + ∑(𝐷𝑒𝑓2) + ∑(𝐷𝑒𝑓3)) 𝑦𝑒𝑎𝑟𝑠⁄ ] × 𝑠𝑜𝑦𝑠ℎ𝑎𝑟𝑒(%))

𝑦𝑖𝑒𝑙𝑑
 ,  

 

 

Where Def1, Def2 and Def3 represent the deforestation of natural areas per 

municipality (m2 per soybean hectare) in three different periods: 2002-2008, 2008-

2009 and 2009-2010; 𝑦𝑒𝑎𝑟𝑠 is the total of years in the three periods; soyshare (%) is 

the soybean planted area in relation to the total municipality area; and 𝑦𝑖𝑒𝑙𝑑 is the 

average production of soybeans in the given municipality expressed in soybean ton 

per hectare. The outcome of the indicator was afterwards allocated to soybean meal 

production. 

 

The main assumptions to estimate the indicator “Deforestation”: 

 The impact of soybean production on natural areas is proportional to the soybean 

surface in relation to the total municipal area (𝑠𝑜𝑦𝑠ℎ𝑎𝑟𝑒). Thus, if 60% of the 

municipality area is covered by soybean crops, 60% of the deforestation was 

allocated to soybean production.  
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 Given that both soybean farming systems, non-GM and GM, have a share of about 

50% in the total soybean production of Brazil (IBGE 2013), the annual 

deforestation rate allocated to soybean production was divided in equal 

proportions in case both farming systems are found in a given municipality. 

 

Environmental toxicity, farmworker toxicity and consumer toxicity 

The Environmental Impact Quotient developed by Kovack et al. (1992) is divided in 

three components: The environmental component which is the effect of the pesticide 

on fish, birds, bees and beneficial arthropods; the farmworker component defined as 

the sum of applicator exposure plus picker exposure to the pesticide times the long-

term health effect or chronic toxicity; and the consumer component defined as the 

sum of consumer exposure potential plus the potential groundwater effects (For an 

overview of the method see Kovack et al. 1992).  

 

Table 3A.7 The Environmental Impact Quotient (EIQ) scores for the pesticides used in non-GM 

and GM farming systems in Brazil (EIQ scores were obtained from the New York State 

Integrated Pest Management Program, Cornell University 2013). 

EIQ per kg of active ingredient  non GM GM EIQe EIQf EIQc 

Azoxistrobine  X X 66.6 8.1 6.1 

Beta-ciflutrina X X 85.4 6.9 2.5 

Carbaryl X X 47.7 15.0 5.5 

Carbendazim X X 86.0 25.0 40.5 

Chlorimuron-ethyl X X 42.6 8.0 7.0 

Ciproconazole  X X 68.0 20.3 25.9 

Clethodim  X  31.0 12.0 8.0 

Fipronil X X 193.8 60.0 11.0 

Fludioxonil X X 60.5 8.1 3.1 

Fomezafen  X  32.6 32.0 8.8 

Glyphosate  X 35.0 8.0 3.0 

Imidacloprid  X X 92.9 6.9 10.4 

Lambda-cihalotrine  X X 96.7 39.3 5.7 

Metalaxyl- M X X 37.0 8.1 12.2 

Paraquat X X 35.9 32.0 6.3 

Pyraclostrobine X X 68.9 8.1 4.1 

Tepraloxidim  X  44.2 12.0 9.5 

Thiamethoxam  X X 77.5 10.4 12.0 

Thiophanate-methyl X X 40.0 16.2 15.3 

Tiodicarbe X X 46.0 18.0 6.0 
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The EIQ scores for each component and each specific active pesticide ingredient 

(Table 3A.7) were multiplied by the usage rate on each municipality and farming 

system and by the percentage of active pesticide ingredient in the commercial product. 

Doing so, the EIQ field use for each component and active pesticide ingredient was 

obtained. The EIQ field use scores for the different active pesticide ingredients were 

then summed to determine the total EIQe, EIQf and EIQc. 

 

Loss of employability 

The indicator “Loss of employability” was estimated as:  

 

 

𝐿𝐸 = 𝑏𝑘7
1 = wolu − wsp,  

 
 

Where LE is the difference between the average workload of different the land uses on 

each municipality (wolu) minus the amount of labor required in soybean production 

(Table 3A.8). 

 

Table 3A.8 Average workload of land uses in the selected municipalities of Brazil.  

non-GM systems wolu GM systems wolu 

Andirá 6.0 Cafelândia 6.8 

Cafelândia 6.4 Marialva 5.9 

Marialva 5.5 Anahy 4.8 

Arapoti 4.2 Campo Mourão 6.8 

Anahy 4.5 Guarapuava 4.5 

Campo Mourão 6.4 Londrina 5.4 

Guarapuava 4.2 Campos Novos 3.6 

Londrina 5.1 Araguari 2.4 

Campos Novos 3.4 Palmeira das Missões 8.2 

Pedro Afonso 0.7 Passo Fundo 8.0 

Sorriso 1.0 Cruz Alta 2.9 

a. The “wolu” was computed using data from the IBGE (2013) –Agricultural Censous 2006: 

Brasil, Grandes Regiões e Unidades da Federação. Brazil. 
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Estimation of (shadow) price information associated to externalities 

Shadow price of CO2 emissions 

CO2 estimates found in literature sources (Table 3A9): 

 

Table 3A.9 Estimates used for the calculation of the shadow price for CO2-eq. 

Source US $ per t CO2a Description 

Titus (1992) 25-62 Estimation of the marginal cost of climate change 

from burning one gallon of gasoline 

Tol (2005) 6.5-20 Compilation of 103 estimates of the marginal damage 

costs of carbon emissions. From the estimates a 

probability density function was derived to calculate 

the best estimate. Excluding studies in the grey 

literature and using a discount rate of 3%, the mean 

estimate was of about US $16 per tC. Costs of carbon 

are unlikely to exceed US $50 per tC (1995 US $) 

Tol (2008) 9.3-31 Update of the meta-analysis done by Tol (2005). It 

included over 200 estimates gathered from 47 

studies. The mean estimate was US $23 per tC and 

there is 1% probability that the social cost of carbon 

is greater than US $78 per tC. (1995 US $) 

Nordhaus (2007) 8.5 Study using the Dynamic Integrated model of Climate 

and the Economy (DICE) to analyze different 

approaches to cope with global warming. Includes the 

estimation of the social price of carbon which 

measures the present value of additional economic 

damages now and in the future caused by the release 

of an additional metric ton. 

European 

Commission 

(2005) 

7.3-29 External costs based on two methods: 1) estimation 

of the damage costs occurring due to impacts from 

climate change and 2), avoidance costs estimated as 

an equivalent for the preferences followed when 

focusing on a target. 
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Source US $ per t CO2a Description 

Emission 

Allowance Price 

(EEX 2013) 

9-15 Prices of buying an allowance if emission exceeds 

what is permitted (carbon dioxide price). The CO2 

price is what companies are willing to pay for 

emission reductions and does not necessarily reflect 

effects on the environment and human health  

a. If necessary original estimates were inflated to 2011 US $ using the Consumer Price Index.  

 

 

Shadow price for the environmental, farmworker and consumer toxicity of pesticide use 

First step: Base values for external costs reported by Pretty et al. (2000) and (2001) 

were redistributed over the three EIQ model components (derived from Leach and 

Mumford (2008) and adapted to the Brazilian context). Based values were adjusted to 

the Brazilian context (Table 3A.10). 

 

Table 3A.10 Redistributed base values for an average active pesticide ingredient (derived from 

Leach and Mumford, 2008). 

  

 US $ per kg pesticide 

active ingredient 

Pretty et al. (2001) categories         

Sour. 

water 

Poll. 

incidents 
Biod. CLT  

Bee 

losses 
Hum. Total  

EIQ categories        

Applicator effects 0.64 ⁻ ⁻ ⁻ ⁻ 0.34 3.90 

Picker effects 0.64 ⁻ ⁻ ⁻ ⁻ 0.06 2.79 

Subtotal Farmworker 

component       
6.69 

Consumer effects 3.87 ⁻ ⁻ 0.80 ⁻ 0.02 1.59 

Ground water 0.64 0.44 ⁻ ⁻ ⁻ ⁻ 0.37 

Subtotal consumer 

component       
1.96 
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US $ per kg pesticide 

active ingredient 

Sour. 

water 

Poll. 

incidents 
Biod. CLT  

Bee 

losses 
Hum Total  

Aquatic effects 0.64 0.44 0.20 0.32 ⁻ ⁻ 0.54 

Bird effects ⁻ ⁻ 0.20 0.16 ⁻ ⁻ 0.12 

Bee effects ⁻ ⁻ 0.07 0.32 0.17 ⁻ 0.19 

Beneficial insect 

effects 
⁻ ⁻ 0.20 ⁻ ⁻ ⁻ 0.07 

Subtotal 

Environmental 

component 

            0.92 

Total  6.45 0.87 0.65 1.59 0.17 0.43 9.57 

External costs estimated by Pretty et al. (2001) and redistributed to the EIQ categories and converted to 

2011 US $.  

GDP per capita PPP (current Int. US $): Brazil 14,034; average UK, the USA, and Germany 44,228. Source: 

The World Bank (2014b). Adjustment factor for Brazil external costs: 0.34.  

Share of agricultural labor Brazil = 17; average % agricultural labor UK, the USA and Germany = 1.47. 

Source: The World Bank (2014b). Farm worker adjustment factor= 17/1.47= 11.59 

Sources (Sourc.) Water; Pollution (Poll.) incidents; Biodiversity (Biod.); Cultural, landscape and tourism 

(CLT); Humans (Hum.) 

 

Second step: The adjusted external costs of the application of one kg of an average 

active pesticide ingredient (US $9.57 per kg of active ingredient) were multiplied by 

the total quantity of active pesticide ingredients used in the USA in the year 2001 (425 

million of active ingredient). Afterwards the product was divided into the three EIQ 

components according to the external cost share of the average active pesticide 

ingredient (Table 3A.11). 

  

Table 3A.11 External cost share of the average active pesticide ingredient. 

 
Environment Farmworker Consumer 

Share of external costs (%/US $.) 10 70 20 

Share of total US $ (millions)   389.6 2,841 830.0 

Total US $ = 425 million kg of pesticide active ingredients by the average external cost per kg 

(US $ per kg of active ingredient) (derived from Pretty et al. (2000) 

Share of the redistributed external costs of an average pesticide active ingredient = Farmer 

70%, Consumer 20%, and Environmental 10% respectively 
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Third step: The quantity of the most commonly used active pesticide ingredients in 

the USA for the year 2001 and their associated EIQ scores were collected (Table 

3A.12).  

 

Table 3A.12 Most commonly used pesticide active ingredients in USA for the year 2001.  

  

a.i.  

(million kg)a 

EIQ  

farmerb 

EIQ 

consumerb 

EIQ 

environmentb 

Glyphosate 51.0 410.9 154.1 1797.7 

Atrazine 36.0 290.9 254.6 1947.3 

Metam sodium 28.0 680.6 227.7 1340.1 

2,4-D 28.0 225.5 140.9 930.0 

Acetochor 16.0 169.4 84.8 693.5 

Malathion 15.0 130.9 65.5 843.6 

Methyl Bromide 11.0 840.9 118.2 867.1 

Dichloropropene 11.0 470.5 89.8 385.8 

Metolachlor-s 11.0 130.9 98.2 490.9 

Metolachlor 10.0 120.0 90.0 450.0 

Pendimethalin 14.0 163.6 75.0 995.5 

Trifluralin 7.0 65.5 40.0 305.5 

Chlorothalonil 5.0 100.0 55.0 406.3 

Copper Hydroxide 5.0 110.4 41.1 301.1 

Cholorpyrifos 5.00 27.27 9.1 329.8 

Alachlor 4.00 43.57 21.8 153.8 

Propanil 4.00 43.57 21.8 153.8 

Chloropicrin 4.00 141.1 30.5 349.2 

Dimethenamid 4.00 32.73 16.4 82.0 

Mancozeb 4.00 73.64 29.6 177.4 

Ethephon 4.00 77.45 20.55 172.6 

EPTC 4.00 21.82 14.55 66.6 

Simazine 3.00 33.89 46.07 125.4 

Dicamba 5.00 60.00 40.00 295.0 

Sulfosate 3.0 25.5 19.1 210.0 

Diazinon 3.0 18.8 6.7 334.8 

MCPP 3.0 21.8 19.1 84.6 
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a.i.  

(million kg)a 

EIQ  

farmerb 

EIQ 

consumerb 

EIQ 

environmentb 

Carbaryl 2.0 27.3 10.0 86.7 

Copper sulfate 3.0 66.3 35.9 404.3 

Chlorothalanil 2.0 36.4 20.0 147.7 

Chlorpyrifos 2.0 10.9 3.6 131.9 

Diuron 2.0 36.4 15.5 92.6 

MSMA 2.0 14.6 9.1 74.6 

DCPA 1.0 12.3 5.5 45.4 

Benefin 1.0 12.3 5.5 53.2 

Subtotal 311.0 4,747.5 1,934.9 15,325.4 

Remaining 114.0 1,732.7 706.2 5,593.2 

TOTAL 425.0 6,480.1 2,641.2 20,918.5 

a. Derived from: Kiely et al. (2004). 

b. EIQ scores were obtained from the New York State Integrated Pest Management Program, 

Cornell University 2013). 

 

Fourth step: Adding the EIQ scores for the environmental, farmworker and consumer 

component of the most commonly used active pesticide ingredients and, dividing the 

corresponding total external costs by these amounts, the shadow price of one EIQ for 

each component was estimated (Table 3A.13). 

 

Table 3A.13 Shadow price for the environmental, farmworker and consumer toxicity 

associated to pesticide use. 

Shadow prices  associated to pesticide use (ET, FT AND CT) 

 
Environment Farmworker Consumer 

Share of total US $ (millions)   389.6 2,841.0 830.0 

Total EIQs of most commonly used  

pesticide active ingredients a 
20,918.5 6,480.1 2,641.0 

 
   

US $/EIQ 0.44 0.32 0.02 

a. EIQs scores derived from the most commonly used pesticide active ingredients in the USA, 

2001 (Kiely et al. 2004) 
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Abstract 
 

Discriminating trade flows of agricultural commodities in terms of their sustainability 

requires an internationally accepted performance measure. This paper proposes two 

indicators, Social Profit and Technical Inefficiency, for benchmarking farm systems in 

terms of their economic and environmental performance. The Social Profit indicator 

uses prices and shadow prices to integrate the different economic and environmental 

criteria into a single metric, whereas Technical Inefficiency uses a directional distance 

function and Data Envelopment Analysis (DEA). The empirical illustration applies the 

two indicators to specialized potato farms in Germany and the Netherlands. Results of 

both indicators show that Dutch farms overall perform slightly better than German 

farms. The Dutch farms generate higher social profit and are technically and 

environmentally more efficient. Higher Social Profit of Dutch farms relative to German 

farms are mainly the result of higher aggregated productivity. Nevertheless, German 

farms overall have higher partial productivities for inputs such as capital and variable 

inputs. On the other hand, Dutch farms are slightly less technically and 

environmentally inefficient than German farms due to lower pure technical 

inefficiency and technology gap inefficiency. Nevertheless, the main source of 

Technical Inefficiency in both countries is the pure technical inefficiency. This suggests 

that in both countries there is a poor or inadequate use of the existing production 

potential. Both countries could improve their performance substantially following 

recommendations on optimal output combinations and technical advice on the use of 

inputs. Also, German farms can reduce the greenhouse gas emissions. Such 

recommendations, however, should be specific for each group of performers in each 

country and should be subject to the available technology and to the environmental 

conditions.  

 

Key words: Farm system, performance, Social Profit, Technical Inefficiency 

 

Abbreviations: Data Envelopment Analysis (DEA); Total Factor Productivity (TFP); 

Total Price Recovery (TPR); non-radial directional distance function (NDDF); social 

profit (SP); technical inefficiency with respect to the meta-frontier (TIM); pure 

technical inefficiency (PTI); scale inefficiency (SI); technology gap (TG). 
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Introduction 

Potato is the fourth most important crop in terms of global production after rice, 

wheat, and maize (Jones 2014). The crop has great potential to improve food and 

income security, mitigate poverty, and reduce farmers' risk in vulnerable agricultural 

environments (Birch et al. 2012). Approximately half of the world's potato production 

is supplied as fresh (table) potatoes and the remainder is processed into food 

products, such as french-fries, potato flours, and snacks, or used as animal feed or 

seed potatoes (Birch et al. 2012; Rudelsheim and Smets 2012). Europe plays a leading 

role in potato production, accounting for more than 40% of world production (seven 

European countries are among the top 10 global producers) (FAOSTAT 2015). North-

western European countries, in particular, devote a significant proportion of their 

utilizable agricultural area to potatoes (Smit et al. 2008). Among them, Germany and 

the Netherlands are the most prominent producers1. Despite the importance of potato 

production for Germany and the Netherlands, there is growing concern about the 

impact of this activity on the environment. The intensive mode of production needed 

to maintain high yields involves the extensive use of chemical crop protection 

products, fertilizers, energy, and water, which can potentially pollute water bodies, 

soil, and air (Haase and Haverkort 2006; Smit et al. 2008; Vos 1992). Potato 

production suffers from a large number of diseases, especially from potato late blight 

Phytophthora infestans (Suffert and Ward 2015). Consequently, farmers apply a large 

amount of pesticides with inevitable impacts on the environment and human health 

(Haase and Haverkort 2006; Spiertz et al. 1996). Potato crops also require large 

amounts of nitrogen, phosphorous, and potassium (Haase and Haverkort 2006), 

leading to soil and water pollution (Spiertz et al. 1996; Vos 1992). Finally, potato 

production is energy intensive, in terms of the use fossil fuels for operations such as 

tillage, planting, spraying, spreading, and harvesting, and in terms of the energy 

embedded in chemical fertilizers and pesticides. All these factors involve the release of 

greenhouse gases, such as carbon dioxide (CO2), methane (CH4), and nitrous oxide, 

which contribute to climate change (Haverkort and Hillier 2011).  

                                                 
1 Germany is the seventh largest potato producer in the world, and the biggest in Western 
Europe. In 2007, Germany produced 11.6 million tons of potatoes. The Netherlands is the ninth 
largest potato producer in the world, and produced approximately 7.2 million tons in 2007 
(FAOSTAT 2015). 

http://www.fao.org/potato-2008/en/world/europe.html
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Approximately 70% of the potato crop produced in Germany and the Netherlands is 

exported, either as fresh potatoes or processed products (Rudelsheim and Smets 

2012). Buyers increasingly prefer potatoes produced using sustainable practices. Such 

differentiation is currently based on sustainability schemes that use single-item 

indicators to measure the environmental performance of farm systems, such as CO₂ 

emissions and energy intensity (Gerbens-Leenes et al. 2003). However, single-item 

indicators do not provide the necessary information for the multidimensional decision 

making needed in sustainability assessment (Yu and Choi 2014). This limitation 

coupled with the proliferation of sustainability schemes (different schemes ranging 

from voluntary to private and using different sustainability criteria) may lead to 

mistrust and protectionism in world trade and may hamper the production of 

sustainable products (Haase and Haverkort 2006; Lines 2005). A widely accepted 

integrated approach to measure the economic and environmental performance of 

farm systems would therefore be a key step towards improving the market access of 

sustainable products, which in turn may trigger the adoption of best economic and 

environmental management practices (Lines 2005).  

Following Gaitán-Cremaschi et al. (2015), this paper proposes two integrated 

indicators that are based on the micro-economic theory of production. The two 

indicators take into account the multiple input-output nature of agricultural 

production systems, account for the negative externalities of agricultural production, 

and provide a single integrated measure of economic and environmental performance.  

In the first integrated indicator, Social Profit, multiple outputs, inputs, and 

externalities are converted into a common metric, i.e. money. Performance in this case 

is expressed as social profit, which is defined as the profitability of a farm system 

adjusted for the external costs of production. To identify specific areas of performance 

improvement, Social Profit is decomposed into a Total Factor Productivity (TFP) 

component and a Total Price Recovery (TPR) component (Fox 2006). 

The second integrated indicator, Technical Inefficiency, uses Data Envelopment 

Analysis (DEA) to reflect the best practice frontier. In this approach, a farm system is 

benchmarked in terms of its capacity to increase outputs, reduce inputs and reduce 

negative externalities exerted on the environment. Technical Inefficiency is computed 

using the non-radial directional distance function (NDDF). Technical Inefficiency is 

measured relative to the best-practice frontier and can be used to identify potential 

areas for the improvement of performance. Although many studies have employed 
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DEA and directional distance functions to measure technical inefficiency and eco-

efficiency (see for example Ball et al. (2001); Ball et al. (2005); Beltrán-Esteve et al. 

2014; Färe et al. (2007); Färe et al. (2010) Färe et al. (2012), Hoang and Coelli (2011); 

Kumar (2006); Kuosmanen and Kortelainen (2004), Pérez Urdiales et al. (2015); 

Picazo-Tadeo and Prior (2009); Yu and Choi (2014); Zhang et al. (2013), to our 

knowledge none of these studies have applied the NDDF to assess the performance of 

farm systems and to identify potential areas for the improvement of technical and 

environmental performance.  

The primary objective of this study was to assess the integrated performance of 

specialized potato farms in the Netherlands and Germany using Social Profit and 

Technical Inefficiency. The secondary objective was to compare the outcomes of the 

two indicators and to identify potential areas for improvement of the technical and 

environmental performance in each country.  

 

Methodological approach  

Consider two countries (Germany and the Netherlands) indicated by c= (1, 2), each 

with k = 1,...K specialized potato farms (referred to as decision-making units (DMU) in 

the remainder of the paper). Throughout the paper the terms DMU, farm, and farm 

system are used interchangeably. Each DMU k uses N inputs to produce M outputs and 

produces J negative externalities, such as waste and pollution. Let vector 𝑦𝑘
𝑐 =

(𝑦𝑘1
𝑐 , 𝑦𝑘2

𝑐 , … 𝑦𝑘𝑀
𝑐 ) ∈ ℜ+

𝑀   represent the outputs, vector 𝑥𝑘
𝑐 = (𝑥𝑘1

𝑐 , 𝑥𝑘2
𝑐 , … 𝑥𝑘𝑁

𝑐 ) ∈

ℜ+
𝑁  represent the inputs, and vector 𝑏𝑘

𝑐 = (𝑏𝑘1
𝑐 , 𝑏𝑘2

𝑐 , … 𝑏𝑘𝐽
𝑐 ) ∈ ℜ+

𝐽  represent the 

externalities of DMU k in country c, DMUk
c .  

 

Social profit as a relative measure of economic and environmental performance  

The Social Profit (SP) indicator of DMUk
c  is defined as the difference between the 

values of the outputs and the values of the inputs and negative externalities:  

 

 

𝑆𝑃𝑘
𝑐 = 𝑝′𝑘

𝑐𝑦𝑘
𝑐 − 𝑤′

𝑘
𝑐
𝑥𝑘

𝑐 − 𝑟′
𝑘
𝑐
𝑏𝑘

𝑐 , 

 

(4.1) 
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where 𝑝′𝑘
𝑐  is a vector of prices of outputs, 𝑤′𝑘

𝑐  a vector of prices of inputs, and 𝑟′𝑘
𝑐  a 

vector of prices or shadow prices of externalities for DMU k of country c (where prime 

indicates the transpose of the vector). The SP for DMU k is computed on a per-hectare 

basis. This approach implicitly assumes that DMUs operate under a production 

technology that is characterized by constant returns to scale (CRS). A DMUk
c  is 

considered to perform better than any other DMU if its SP per hectare is higher.  

To obtain insight in the variation of the SP score of DMUs between the two countries, 

the Bennet Total Factor Productivity (TFP) indicator and the Bennet Total Price 

Recovery (TPR) indicator are computed. The Bennet TFP and TPR indicators reflect 

the difference in SP between two countries, as shown in the following equation:  

 

 

𝐵1,2 = [
1

2
(𝑝’�̃�

2 + 𝑝’�̃�
1)(𝑦�̃�

2 − 𝑦�̃�
1)] − [

1

2
(𝑤’�̃�

2 + 𝑤’�̃�
1)(𝑥�̃�

2 − 𝑥�̃�
1)] − [

1

2
(𝑟’�̃�

2 + 𝑟’�̃�
1)(𝑏�̃�

2 − 𝑏�̃�
1)] 

 +  [
1

2
(𝑦�̃�

2 + 𝑦�̃�
1)(𝑝’�̃�

2 − 𝑝’�̃�
1)] − [

1

2
(𝑥�̃�

2 + 𝑥�̃�
1)(𝑤’�̃�

2 − 𝑤’�̃�
1)] − [

1

2
(𝑏�̃�

2 + 𝑏�̃�
1)(𝑟’�̃�

2 − 𝑟’�̃�
1)], 

 

 

where the superscript denotes the country (1 for the Netherlands and 2 for Germany) 

and the subscript �̃� denotes a farm that is on the median value of SP for a country. The 

Bennet TFP indicator (first line of Eq. 4.2) captures differences in the quantities of 

outputs, inputs, and externalities between the two countries. The Bennet TPR 

indicator (the second line in Eq. 4.2) captures differences in the prices of outputs, 

inputs, and externalities between country 1 and 2 (Fox 2006). The sum of the Bennet 

TFP and TPR indicators reveals in monetary terms the difference in SP of the Dutch 

farm relative to the German farm (benchmark). A positive value indicates better 

performance of the Dutch farm. The decomposition of the SP differences into TPR and 

TFP indicates the potential areas for improving the production of each output, and for 

reducing the use of each input, and the production of each externality in the two 

countries. 

 

Technical Inefficiency 

The second indicator, Technical Inefficiency, aggregates multiple outputs, inputs, and 

externalities using a NRDDF. In this approach, a DMU k is said to be technically 

efficient if it produces at the frontier. DMUs from different countries, however, 

(4.2) 
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operate under country-specific production technologies. Therefore, the performance 

of DMUs cannot be compared directly across countries (Battese et al. 2004). To obtain 

a consistent cross-country comparison, this paper follows Rao et al. (2003) and 

constructs a meta-technology defined as the totality of the two country-specific 

technologies. Thus, if a particular output vector 𝑦𝑐  and externality vector 𝑏𝑐can be 

produced using a given input vector 𝑥𝑐  in any of the two countries, then (𝑦𝑐 , 𝑥𝑐 , 𝑏𝑐) 

belongs to the meta-technology, Ψo, which is defined as (Rao et al. 2003): 

 

 
𝛹𝑜 = {(𝑦, 𝑥, 𝑏): 𝑦 ≥ 0, 𝑥 ≥ 0, 𝑏 ≥ 0,   𝑥 ca𝑛 produce 𝑦 and 𝑏 in at least one country 

                  −𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑡𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦 𝛹1, … , 𝛹𝐶}, 

 

 

From this definition, it follows that Ψo ⊇ {Ψ1 ∪ …∪ ΨC} (Rao et al. 2003).  

 

The DMUs lying on the meta-frontier are the best cross-country performers. Both the 

country-specific production technology, Ψ𝑐 , and the meta-technology, Ψo are not 

directly observed (Zhou et al. 2012). Hence, this paper uses Data Envelopment 

Analysis (DEA) for the approximation of the meta-frontier and the country-specific 

production frontier. 

A NRDDF is used to measure the performance of DMUs relative to the meta-frontier 

and the country-specific frontier. This function provides a measure of the Technical 

Inefficiency indicator relative to the meta-frontier (TIM) and technical inefficiency 

relative to the country-specific frontier.  

 

Formally, the NRDDF for DMU k relative to the meta-frontier is defined assuming 

constant returns to scale (CRS) as: 

 

(4.3) 
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�⃗⃗� 𝑜(𝑦𝑘
𝑐 , 𝑥𝑘

𝑐 , 𝑏𝑘
𝑐; 𝑔|𝐶𝑅𝑆)

= 𝑠𝑢𝑝 [
1

3
(𝑤1 ∑ 𝛽𝑚

𝑜

𝑀

𝑚=1

+ 𝑤2 ∑ 𝛿𝑛
𝑜

𝑁

𝑛=1

+ 𝑤3 ∑𝜇𝑗
𝑜

𝐽

𝑗=1

) : ((𝑦𝑘1
𝑐 + 𝛽1

𝑜𝑔𝑦1, 𝑥𝑘1
𝑐 − 𝛿𝑖

𝑜𝑔𝑥1, 𝑏𝑘1
𝑐 − 𝜇1

𝑜𝑔𝑏1), … , (𝑦𝑘𝑀
𝑐

+ 𝛽𝑀
𝑜 𝑔𝑦𝑀, 𝑥𝑘𝑁

𝑐 − 𝛿𝑁
𝑜𝑔𝑥𝑁 , 𝑏𝑘𝐽

𝑐 − 𝜇𝐽
𝑜𝑔𝑏𝐽)) ∈ 𝛹𝑜(𝑦, 𝑏, 𝑥);  𝛽𝑚

𝑜 ≥ 0(∀𝑚), 𝛿𝑛
𝑜

≥ 0(∀𝑛), 𝜇𝑗
𝑜 ≥ 0(∀𝑗)],                                                                                (4.4) 

 

Where g is a vector of directions in which the DMU k is assessed relative to the meta-

frontier. In our case, the objective function in Eq. 4.4 seeks to jointly optimize the 

outputs, inputs, and externalities, by increasing the outputs and, reducing the inputs 

and the externalities, 𝑔 = (𝑔𝑦1, … 𝑔𝑦𝑀 , −𝑔𝑥1, …−𝑔𝑥𝑁 , −𝑔𝑏1, …− 𝑔𝑏𝐽). Each computed 

value of 𝛽𝑜, 𝛿𝑜, and 𝜇𝑜, provides the mth output-specific, nth input-specific, and jth 

externality-specific technical inefficiency scores if a DMU k has to operate technically 

efficient given the directional vector2. Given that in this study the directional vectors 

are required to be equal to the observed data, the specific technical inefficiencies are 

interpreted as a percentage by which each output can be increased and each input and 

negative externality reduced (Färe and Grosskopf 2010). The computed mth output-

specific, nth input-specific, and jth externality-specific measures of technical 

inefficiency are weighted respectively by the total number of outputs, inputs, and 

externalities, i.e. 𝑤1, 𝑤2, and 𝑤3. The objective function in Eq. 4.4, Technical Inefficiency 

relative to the meta-frontier (TIM), represents the average of the weighted technical 

inefficiencies of the outputs, inputs, and externalities. In this case, the outputs, inputs, 

and externalities each contribute one third of the TIM score. The choice of weights for 

each specific output, input, and externality as well as for the objective function can 

vary; this choice is subject to political debate and may depend on the purpose of the 

application. For any Technically Inefficient DMUk
c  with respect to the meta-frontier, 

D⃗⃗ o(yk
c , xk

c , bk
c ; g|CRS) > 0 . In contrast, for a Technically Efficient DMUk

c , 

                                                 
2 This is in contrast with the generalized directional distance function introduced by Chung et al. 
(1997), in which outputs, inputs, and bad outputs are scaled at the same rate. 
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D⃗⃗ o(yk
c , xk

c , bk
c ; g|CRS) = 0. The linear programming model to compute the NRDDF 

defined on the meta-technology is presented in Annex 4A. 

To obtain insight in the sources of technical inefficiency with respect to the meta-

frontier, the TIM score for each DMU was decomposed into three additive components: 

1) pure technical inefficiency (PTI), 2) scale inefficiency (SI); and 3) Technology Gap 

(TG). PTI measures the degree of technical inefficiency under variable returns to scale 

(VRS) of DMUk
c  relative to the country-specific frontier. The measure of PTI for DMU k, 

𝑃𝑇𝐼𝑘 , was obtained by estimating the NRDDF relative to the country-specific 

production frontier, Ψc, under the assumption of variable returns to scale (VRS). The 

NRDDF for DMU k relative to the country-specific frontier is defined assuming VRS as: 

 
 

�⃗⃗� 𝑐(𝑦𝑘
𝑐 , 𝑥𝑘

𝑐 , 𝑏𝑘
𝑐; 𝑔|𝑉𝑅𝑆)

= 𝑠𝑢𝑝 [
1

3
(𝑤1 ∑ 𝛽𝑚

𝑐

𝑀

𝑚=1

+ 𝑤2 ∑ 𝛿𝑛
𝑐

𝑁

𝑛=1

+ 𝑤3 ∑𝜇𝑗
𝑐

𝐽

𝑗=1

) : ((𝑦𝑘1
𝑐 + 𝛽1

𝑐𝑔𝑦1, 𝑥𝑘1
𝑐 − 𝛿𝑖

𝑐𝑔𝑥1, 𝑏𝑘1
𝑐 − 𝜇1

𝑐𝑔𝑏1), … , (𝑦𝑘𝑀
𝑐

+ 𝛽𝑀
𝑐 𝑔𝑦𝑀, 𝑥𝑘𝑁

𝑐 − 𝛿𝑁
𝑐𝑔𝑥𝑁 , 𝑏𝑘𝐽

𝑐 − 𝜇𝐽
𝑐𝑔𝑏𝐽)) ∈ 𝛹𝑐(𝑦, 𝑥, 𝑏);  𝛽𝑚

𝑐 ≥ 0(∀𝑚), 𝛿𝑛
𝑐

≥ 0(∀𝑛), 𝜇𝑗
𝑐 ≥ 0(∀𝑗)],                                                                                (4.5) 

 

The objective function in Eq. 4.5, PTI, represents the average of the weighted pure 

technical inefficiencies, of the outputs, inputs, and externalities. For any purely 

technically inefficient DMUk
c , D⃗⃗ c(yk

c , xk
c , bk

c ; g|VRS) > 0 and for any pure technically 

efficient DMUk
c , D⃗⃗ c(yk

c, xk
c , bk

c ; g|VRS) = 0.  

The second component, SI, reflects the ability of DMUk
c  to choose the optimal size of its 

operations. It is computed for DMU k as the difference between the value of the 

country-specific NRDDF under CRS and VRS.  

 

 

𝑆𝐼k = �⃗⃗� 𝑐(𝑦𝑘
𝑐 , 𝑥𝑘

𝑐 , 𝑏𝑘
𝑐; 𝑔|𝐶𝑅𝑆) − �⃗⃗� 𝑐(𝑦𝑘

𝑐 , 𝑥𝑘
𝑐 , 𝑏𝑘

𝑐; 𝑔|𝑉𝑅𝑆), 

 

(4.6) 
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Finally, TG provides a measure of the distance between the production frontier of an 

individual country and the meta-frontier. TG reflects the role of country-specific 

environmental conditions, such as soil and climate, on the production technology. For 

each DMU k , TG is computed as: 

 

 

𝑇𝐺𝑘 = �⃗⃗� 𝑜(𝑦𝑘
𝑐 , 𝑥𝑘

𝑐 , 𝑏𝑘
𝑐; 𝑔|𝐶𝑅𝑆) − �⃗⃗� 𝑐(𝑦𝑘

𝑐 , 𝑥𝑘
𝑐 , 𝑏𝑘

𝑐; 𝑔|𝐶𝑅𝑆), 

 

 

The linear programming models used to compute the country-specific NRDDF under 

both scale assumptions, CRS and VRS, are presented in Annex 4A. 

The mth output-specific, nth input-specific, and jth externality-specific technical 

inefficiency scores computed in Eq. 4.4 for each DMU can be decomposed into output-

specific, input-specific, and externality-specific PTI, SI, and TG scores. This 

decomposition provides deeper insight in the sources of TIM of specialized potato 

farms.  

 

Cross-country performance comparison 

Social Profit (SP) and Technical Inefficiency relative to the meta-frontier (TIM) were 

computed for each DMU in each country. Next, for each of the two indicators, the 

DMUs of each country were divided into four quartiles, i.e. four groups denoted by Q1-

Q4. The Q4 group represents the DMUs with the best performance and the Q1 group 

represents the DMUs with the worst performance. The farms were grouped into 

quartiles to provide information on the distribution of performance scores and to 

enable the comparison of farm performance between the Netherlands and Germany.  

To determine whether the two indicators produce the same performance ranking of 

farms, a Spearman Rank Correlation test was conducted (null hypothesis is that the 

Spearman correlation coefficient, ρ (rho), is 0). A ρ value of 0 indicates that the rank of 

one indicator is not correlated with the rank of the other indicator. A ρ value closer to 

1 indicates that the ranks of the two indicators are strongly correlated.  

 

 

 

(4.7) 



Sustainability metrics for agri-food supply chains 
 

123 
 

Performance improvement 

Cross-country differences were examined to identify potential areas for improving 

performance. The two indicators were calculated for the median farms of each 

quartile, and then compared between countries. The cross-country differences in SP 

were assessed by computing the Bennet TFP indicator and the Bennet TPR indicator 

(Eq. 4.2); the DMU on the median SP value of each quartile in the Netherlands was 

compared to the DMU on the median SP value in Germany (benchmark). Cross-

country differences in TIM were assessed by comparing the TIM values and PTI, SI, 

and TG components for the median farms of each quartile between the two countries. 

By comparing the median farms of each quartile between countries, we ensured that 

the differences in SP and TIM between countries are assessed taking into account 

existing farms in the dataset. Additionally, these median farms better reflect the 

central tendency in the SP and TIM scores. The mean SP and TIM scores of each 

quartile were not used for the comparison because these values may be affected by 

outliers, which represent the best and worst performing farms in each of the two 

countries. 

 

Data and selection of outputs, inputs, and externalities 

Data for this study were obtained from the Farm Accountancy Data Network (FADN). 

The dataset contained the costs and revenues of 205 specialist potato farms in the 

Netherlands (112 farms) and Germany (93 farms), for the year 2008. Specialist potato 

farms were defined in this study as those farms that derived at least 40% of total 

revenue from potato sales. We selected two outputs (potatoes as the main output and 

‘other outputs’ representing all other farm products), five inputs (variable inputs, land, 

capital, natural-resource-based inputs, and labor), and one negative externality 

associated with potato production (greenhouse gas emissions). Data for the outputs 

and inputs were obtained from the FADN, and data for the externality was estimated 

from FADN data and using the Cool Farm Tool software (Haverkort and Hillier 2011). 

The implicit quantity of potatoes is expressed as annual revenue from potato sales in 

Euros (EUR); the implicit quantity of other outputs consists of the sum of annual 

revenues (in EUR) from all other outputs produced at the farm, e.g. cereals, oilseeds, 

forage products, vegetables, mushrooms and flowers, crop products, and other field 

cash crops. The implicit quantity of variable inputs is expressed as annual aggregated 
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expenditures (in EUR) on seeds, fertilizers, pesticides, and other variable inputs, such 

as packing, soil analysis, plastic coverings, storage, and market preparation. Land is 

measured as the total utilized agricultural area (UAA) measured in hectares, including 

owned land, land in sharecropping, and rented land. Capital represents the average 

replacement value (in EUR) of the opening and closing values for machinery, 

equipment, and buildings. Labor is measured as the total annual number of hours 

worked at the farm, including both family and hired labor. Natural-resource-based 

inputs (termed natural-based inputs in this paper) consist of annual expenditures (in 

EUR) on water, electricity, motor fuels, and heating fuels used in the farm.  

Finally, the negative externality green-house gas emissions is measured as the annual 

amount of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) emitted to 

the atmosphere as a result of the use of direct energy during agricultural production 

and fertilizer use. This variable is not available in the FADN database and was 

estimated as follows. (i) Proxy quantities of energy (kWh) and diesel (liters) were 

estimated by dividing total expenditures on these inputs by the country-specific 

annual price of energy and diesel respectively. Quantities of nitrogen (N), 

phosphorous (P), and potassium (K) were estimated for each farm by dividing the 

total fertilizer use by an average price per kg of commercial N, P, and K respectively 

(all calculations and data sources are fully detailed in Annex 4B). (ii) Once the 

quantities of energy, electricity, and the three main nutrients were estimated, the Cool 

Farm Tool software was used (Haverkort and Hillier 2011) to calculate the amount of 

greenhouse gas emissions expressed in kg CO2-equivalents. The amount of 

greenhouse gas emissions is calculated by the Cool Farm Tool software using country-

specific grid electricity, fuel, and fertilizer emission factors (Haverkort and Hillier 

2011). Table 4.1 shows the descriptive statistics of the quantity data for each specific 

output, input, and externality. 

Our study uses implicit quantities of most inputs and outputs, which were obtained by 

expressing them as the monetary value in a base year. By using implicit quantities of 

inputs and outputs, we capture the sources of variation in prices between farms. 

Farm-specific prices reflect differences between farms in the quality of inputs and 

outputs, differences in marketing strategies, distances of farms to markets, and 

differences in the size of the farm. In our approach these factors are reflected in 

differences in the implicit quantities of inputs and outputs. Farms that produce higher 

quality products, are closer to the market, have better marketing strategies, or benefit 
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from discounts related to size, produce higher implicit quantities of outputs and use 

lower implicit quantities of inputs. Therefore, the efficiency estimates reflect both the 

physical quantities and the input and output prices.  

 

Table 4.1 Descriptive statistics of the quantity data for outputs, inputs, and the externality. 

Symbol Variable Unit Mean Std. dev. Min. Max. 

Germany       

Outputs             

y1 Potatoesᵃ Thousand EUR 125.5 116.4 10.9 702.3 

y2 Other outputsᵇ  Thousand EUR 99.6 102.1 2.2 841.2 

Inputs   
 

        

x1 Natural-basedᶜ Thousand EUR 22.5 18.4 2.1 142.7 

x2 Variable inputsᵈ Thousand EUR 110.3 105.7 14.1 817.2 

x3 Capitalᵉ Thousand EUR 213.4 192.4 5.1 1054.3 

x4 Land Hectares 59.1 47.4 7.2 217.7 

x5 Labor Hours 3,713.8 2,829.7 270.0 2,3760.0 

Externality   
 

        

b1 CO₂ emissions Tons 92.4 73.3 8.6 514.0 

Netherlands 

Outputs             

y1 Potatoesᵃ Thousand EUR 208.1 208.1 208.1 208.1 

y2 Other outputsᵇ  Thousand EUR 107.2 95.1 4.9 800.9 

Inputs             

x1 Natural-basedᶜ Thousand EUR 27.3 21.1 1.9 151.1 

x2 Variable inputsᵈ Thousand EUR 141.9 97.6 13.1 705.6 

x3 Capitalᵉ Thousand EUR 399.5 311.3 26.0 2,496.1 

x4 Land Hectares 74.1 51.8 12.0 275.1 

x5 Labor Hours 3,760.9 2,025.7 630.0 12,199.8 

Externality             

b1 CO₂ emissions Tons  94.4 67.0 8.8 473.6 

a. Output of potatoes consists of potatoes for starch and other potatoes, and is measured as total 

revenue (EUR) converted to PPS. 

b. Revenues (EUR) converted to PPS of cereals, oilseeds, proteins, forage, vegetables, and cash crops.  

c. Includes total farm expenditures (EUR) on energy and water, converted to PPS. 

d. Includes total farm expenditures (EUR) converted to PPS on fertilizers, pesticides, seeds, and other 

farm costs. 

e. Replacement value (EUR) converted to PPS of farm machinery, buildings, and permanent crops.  

GDP Purchasing Power Parities (PPP) Germany = 116, GDP (PPP) the Netherlands 134. Index (EU28 

countries is the baseline = 100). 
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The computation of the SP indicator requires prices or shadow prices for all outputs, 

inputs, and the externality. Per unit prices (EUR) were used for land, labor, and CO₂-

equivalents. The quantities of the composite outputs and inputs (potatoes, other 

outputs, natural-based inputs, and variable inputs) were measured as revenues and 

expenditures, which were made comparable across countries by using the purchasing 

power parity (PPP) of the given country relative to the average European purchasing 

power parity. This conversion correct for the effect of the difference in the price levels 

between both countries.  

A description of the prices for each specific output, input, and externality and the 

sources of the price data are shown in Table 4.2. 

 

Table 4.2 Description of price data.  

Symbol Variable Unit 
Unit price  Source 

Germany Netherlands   

Outputs 
   

 
  

p1 Potatoes PPP  0.86 0.74 Eurostat( 2015)ᵃ 

p2 Other outputs PPP 0.86 0.74 Eurostat (2015) ᵃ 

Inputs 
     

 w1 Natural-based PPP 0.86 0.74 Eurostat (2015)ᵃ 

w2 Variable PPP 0.86 0.74 Eurostat (2015)ᵃ 

w31 
Capital 
(machinery) 

Depreciationᵇ 
+ interest  

25% 18% FADN 

w32 
Capital 
(buildings) 

Depreciationᵇ 
+ interest 

7% 7% FADN 

w4 Land EUR/hectareᶜ 259 469 

Eurostat (2015); 
Breustedt and 
Habermann 
(2011) 

w5 Labor EUR/hourᵈ 9.9 11.5 
Agri-info Europe 
(2015) 

Externality 
     

 
r1 CO2 emissions 

EUR/ton CO₂-
eq. 

20 20 
Gaitán-Cremaschi 
et al. (2015) 

a. GDP Purchasing Power Parities (PPP) Germany = 116, GDP (PPP) Netherlands = 134. Index (EU28 

countries is the baseline = 100). 

b. Mean value across farms (average depreciation / average replacement value). 

c. Rental price of farmland. 

d. Agricultural wage. 
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Results and discussion 

The results in section ‘Social Profit and relative economic and environmental 

performance of specialized potato farms’, provide the distribution of the computed SP, 

consistent with Eq. 4.1, for the four quartiles in Germany and the Netherlands. Next, 

the difference in SP between farms on the median value of each quartile in Germany 

and the Netherlands was decomposed, according to Eq. 4.2, into TFP contributions 

and TPR contributions for each specific output, input, and externality. Section 

‘Technical Inefficiency with respect to the meta-frontier (TIM), Pure Technical 

Inefficiencies (PTI), Scale Inefficiencies (SI) and Technology Gaps (TG)’, provides the 

distribution of the TIM scores, computed based on Eq. 4.4, for each of the four 

quartiles in each country. To identify areas of low performance, the TIM scores for the 

farms on the median TIM value of each quartile in Germany and the Netherlands were 

decomposed into output-specific, input-specific, and externality-specific PTI (Eq. 4.5), 

SI (Eq. 4.6), and TG (Eq. 4.7) inefficiencies. Section ‘Comparison of indicators’, 

compares the ranking of the relative performance of farms between Germany and the 

Netherlands for both indicators and highlights potential areas to improve the 

performance of specialized potato farms in each country.  

 

Social Profit and relative economic and environmental performance of specialized 

potato farms 

Figure 4.1 shows the distribution of the computed SP for the four quartiles of farms in 

Germany and the Netherlands. In spite of the higher costs for inputs for most of the 

quartiles in the Netherlands, farmers in this country obtained higher SP per hectare of 

land than farmers in Germany. The overall performance of farms in the Netherlands 

can be considered as slightly better, mainly because of the higher revenues (except for 

Q1) obtained from the sale of potatoes and other outputs. Higher revenues may either 

be due to a higher yield per hectare of land or a higher price paid per ton of product 

produced at the farm. Nevertheless, it should be noted that the median value of SP 

computed for Q1 and Q2 yielded a negative result for both countries.  

The external costs associated with the greenhouse gas emissions are small relative to 

the conventional costs and do not significantly vary between the two countries, for all 
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the quartiles. As SP decreases, external costs also decrease, which might be related to 

the fact that lower production is related to lower use of fertilizers, energy, and fuel.  

 

 

Figure 4.1 Distribution of computed Social Profit (SP) and its components for Germany and the 

Netherlands for the four groups (Q1-Q4). The Q4 group represents the farms with the highest 

SP and the Q1 group represents the farms with the lowest SP. SP is the difference between the 

Revenues = p’𝑦 (second column) and the Costs = w’𝑥  (third column) and External costs = r’𝑏 

(fourth column). The black line on the interior of each box plot indicates the median value. 

Maximum and minimum values are represented by the end of the vertical lines. Black dots 

represent outliers (values greater than 1.5 times the upper quartile or less than 1.5 times the 

lower quartile). 

 

To explore the differences in the performance of the groups of farms between 

Germany and the Netherlands, the computed SP for the farms on the median value of 

each quartile were compared and decomposed into the TFP and TPR components 

(Figure 4.2).  
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Figure 4.2 Decomposed Social Profit differences between the farms on the median values of 

each group (Q4-Q1) into TFP and TPR contributions. The Q4 group represents the farms with 

the highest SP and the Q1 group represents the farms with the lowest SP. The bars represent the 

deviations of each Dutch farm relative to its analogous German farm (benchmark) in terms of 

TFP (quantity difference) and TPR (price difference) for each output, input, and externality 

(consistent with Eq. 4.2). The higher the deviation, the better the performance of the Dutch farm. 

 

The decomposition of the differences in SP between the farms of Q4 and the farms of 

Q3 in the two countries (left and right upper part of Figure 4.2) identifies several main 

differences. The Dutch farms are less productive using labor, capital, and variable 

inputs. Equally, the Dutch farm in Q4 produces a lower amount of other outputs. This 
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lack of productivity coupled with a higher cost of labor and land, and a lower price for 

potatoes and other outputs, reduced the SP by 3,732 PPP (Q4) and 4,741 PPP (Q3) in 

comparison to the German farms. Nevertheless, this lower performance is more than 

compensated by a higher production per hectare of potatoes and other outputs in the 

case of the Dutch farm in Q3 and, by a lower cost of capital and variable inputs. This 

increased the SP of the Dutch farms by 4,249 PPP (Q4) and 4,937 PPP (Q3) per hectare 

compared to the German farms. Hence, overall the farms of Q4 and Q3 in the 

Netherlands are performing better than the German farms, and this is reflected in 

higher SP, namely 649 PPP (Q4) and 149 PPP (Q3) per hectare. 

Differences in SP between the farms of Q2 and Q1 are not large (left and right bottom 

part of Figure 4.2). For the farms of Q2, the SP difference is 148 PPP per hectare, 

implying that the Dutch farm performs better than its analogous German farm. The 

Dutch farm has lower productivity for both potato and other output. However, this 

farm has higher performance in terms of its better use of labor, variable inputs, and 

capital. In the case of the farms in Q1, the Dutch farm has higher SP per hectare, i.e. 

155 PPP per hectare. Higher performance of this farm is mainly due to higher 

production of potatoes and other outputs. Nevertheless, this farm has a much lower 

productivity in the use of variable inputs if compared with its analogous German farm. 

Although the difference in SP is similar for Q2 and Q1, its decomposition shows that 

the underlying causes of the difference in SP are different for the farms in Q2 and Q1. 

 

Technical Inefficiency with respect to the meta-frontier (TIM), Pure Technical 

Inefficiencies (PTI), Scale Inefficiencies (SI) and Technology Gaps (TG) 

Figure 4.3 shows the comparative assessment of the distribution of TIM scores for 

Germany and the Netherlands for each of the four quartiles, and the decomposition 

into the PTI, SI, and TG components. The distribution of farms in Q4 shows that farms 

are almost fully technical efficient in both countries with respect to the meta-frontier 

(the median value of TIM is zero). The German farms and most of the Dutch farms are 

located on the frontier of the meta-technology. Although the median TIM score for the 

Dutch farms in this quartile indicates full technical efficiency, some of the Dutch farms 

have TIM scores between 0 and 10%, which are mainly related to TG inefficiencies. For 

the other quartiles, German farms are slightly more technically inefficient than Dutch 

farms (higher TIM scores) i.e. 1% in Q3, 2% in Q2, and 4% in Q1. 
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Figure 4.3 Distribution of the computed Technical Inefficiency (TIM) score computed relative to 

the meta-frontier (TIM) (first column) and its three additive components in each country, for 

the four groups (Q4-Q1). The Q4 group represents the farms with the lowest TIM score and the 

Q1 group represents the farms with the highest TIM score. PTI = Pure Technical Inefficiency 

(second column), SI = Scale Inefficiency (third column), and TG = Technology Gap (fourth 

column). Zero values indicate full technical efficiency with respect to the meta-frontier. The 

interior black line of each box plot indicates the median value. The upper quartile and lower 

quartile are represented by the top and bottom of each box plot. Maximum and minimum values 

are represented by the end of the vertical lines. Black dots represent outliers (values greater 

than 1.5 times the upper quartile or less than 1.5 times the lower quartile).  

 

The main sources of TIM for these three quartiles in both countries are pure 

operational inefficiencies (PTI scores), with the caveat that the median of this value in 

Q3 for Germany indicates full operational efficiency. In these three quartiles, pure 
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operational inefficiencies account for 75% to 87% of the TIM scores in Germany and 

for 65% to 90% of the TIM scores in the Netherlands. With regard to sources of 

technical inefficiency related to the scale of the operations (SI scores), scale 

inefficiencies account for around 7% to 14% of the TIM scores in the Netherlands and 

for around 4% to 5% for farms in Germany, suggesting that the size of some farms in 

both countries is not optimal. The contribution of TG inefficiencies to the TIM scores is 

higher for German farms in the three quartiles. The TG inefficiencies account for 7% to 

14% of the TIM scores for German farms, but only 1% to 5% for Dutch farms. This 

indicates that the specialized potato farms in Germany operate in a less favorable 

production environment (poorer environmental conditions or technological 

limitations) than the Dutch farms, and that this leads to losses in technical efficiency 

for German farms compared to Dutch farms.  

To explore the sources of differences in the TIM scores of Germany and the 

Netherlands for the different quartiles, the computed TIM scores for the farms on the 

median values for Q3, Q2, and Q1 in each country were compared and decomposed 

into the output-specific, input-specific, and externality-specific sources of technical 

inefficiency (Figure 4.4) 3. The comparison of farms on the median value of Q3 in each 

country shows that higher input-output specific technical inefficiencies for the Dutch 

farm are due to pure technical inefficiencies (PTI) and scale inefficiencies (SI) for 

potato production and the use of labor and land, and to technological limitations (TG) 

in the use of capital in comparison to the German farm. In contrast, lower input-output 

specific technical inefficiencies are associated with the better scale in the use of 

variable and natural-based inputs and with a better environmental performance. The 

comparison of farms for Q2 shows that higher input-output specific technical 

inefficiencies for the Dutch farm are caused by gap differences in technology (TG) for 

natural-based inputs, poorer potato production (PTI) and inefficiencies in the use of 

land (SI) and variable inputs in comparison to the German farm. Lower input-output 

specific technical inefficiencies for this farm are mainly related to better production of 

the other output (PTI), lower overall inefficiency in the use of labor and lower 

amounts of greenhouse gas emissions per unit of outputs (PTI). 

 

                                                 
3 Farms in the fourth quartile, Q4, where not compared because their median TIM values and 

the output-specific, input-specific, and externality-specific technical inefficiency scores were all 

zero. 
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 Figure 4.4 Differences in Technical Inefficiency with respect to the meta-frontier (TIM) and in 

output-specific, input-specific, and externality-specific technical inefficiencies between the 

farms on the median value for three groups in Germany and the Netherlands (Q3-Q1). In 

addition, output-specific, input-specific, and externality-specific technical inefficiencies are 

decomposed into inefficiencies related to the operation of the farm (PTI), size of operations (SI), 

and environmental and technological conditions (TG). The bars represent the deviations of each 

Dutch farm relative to its analogous German farm (benchmark). The higher the deviation, the 

more technically inefficient the Dutch farm.  

 



Chapter 4 
 
 

134 
 

Lastly, differences in the TIM score between the farms of Q1 show that the Dutch farm 

is highly technically inefficient in the production of potatoes, mainly caused by 

technological limitations (TG). In spite of these limitations, the Dutch farm is overall 

more technically efficient than the German farm (lower TIM score). This farm has 

better use of labor (TG), lower inefficiency in the use of land and natural-based inputs 

(PTI), a higher technical efficiency in the production of other outputs (PTI) and a 

lower production of greenhouse gases per unit of outputs.  

 

Comparison of indicators 

To determine whether the two indicators yielded the same performance outcomes, we 

conducted the Spearman Rank Correlation test (Table 4.3). Based on the results of the 

test we concluded that the null hypothesis (the two rankings show significant 

differences) is rejected at the 0.1% level. This implies that the rankings do not differ, 

thus providing support that both indicators provide similar results.  

 

Table 4.3 Correlation between the ranking obtained from the SP indicator (Rank 1) and the 

ranking obtained from the TIM indicator (Rank 2) 

  Rank SP Rank TIM 
Spearman's rho 

Rank SP 

Correlation Coefficient 1.000 ,702** 

Sig. (2-tailed) 
 

.000 

N 205 205 

Rank TIM 

Correlation Coefficient ,702** 1.000 

Sig. (2-tailed) .000 
 

N 205 205 

**. Correlation is significant at the 0.01 level (2-tailed). 

 

Moreira and Bravo-Ureta (2010) suggest that the high correlation between the two 

indicators can be explained by the fact that farmers benefit directly from gains in 

output and input efficiency. Such gains are transformed into higher yields produced at 

a lower cost, which in turn translates into improvements in profit. Therefore, it is 

expected that farms with lower TIM scores obtain higher SP per unit of land. 

Although both indicators yield the same ranking of performance, Figure 4.2 and Figure 

4.4 show that the decomposition of the two indicators produces some inconsistencies 
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in the gains and losses of the median Dutch farms relative to the median German 

farms. The SP indicator shows that most of the four farms representing the Dutch 

quartiles produce higher quantities of potatoes than German farms, but have lower 

production of other outputs. In contrast, the decomposition of the TIM indicator 

shows that these Dutch farms have the same technical efficiency or are technically 

more inefficient in the production of potatoes but these farms are technically less 

inefficient producing other outputs. Such specific differences in the decomposition of 

the two indicators may be caused by an overestimation of the TFP component of 

outputs and variable inputs. A proportion of the difference in SP between Dutch and 

German farms should be regarded as a TPR component (price difference) rather than 

a TFP difference (quantity difference), given that direct information on prices for the 

outputs and the variable inputs was not used in the estimation. Price differences for 

the aggregate outputs and aggregate inputs only reflect differences in the aggregate 

price level of revenues and expenditures between the two countries. 

 

Potential areas of performance improvement 

Although the overall result for the two indicators indicates that specialized potato 

farms in the Netherlands perform slightly better than German farms, the 

decomposition of the two indicators provides insights in areas where the performance 

in both countries can be improved. Considering that the main cause of TIM in both 

countries is related to inadequate technical operations, farmers could improve their 

managerial performance by following technical recommendations. These 

recommendations should focus on two main aspects: 1) recommendations on 

appropriate output combinations (potatoes and other crop combinations and 

rotations) to improve output technical efficiency and maximize land use; and 2) 

recommendations to increase the productivity and reduce the technical inefficiency of 

inputs, especially natural-based inputs for German farms and, land and capital for the 

Dutch farms. For the German farms the strategies should also be focused on reducing 

the amount of greenhouse gas emissions per unit of output. It can be achieved by 

reducing the consumption of natural-based inputs such as motor and heating fuels, 

and especially by reducing the amount of nutrients such as phosphates and potassium. 

The use of these two nutrients in potato production in Germany is much higher than 

their use in the Dutch farms. The reduction in the consumption of nutrients would in 

turn help reduce potential pollution of soils and water. Equally important, a lower use 
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of natural-based inputs and nutrients would decrease the operational costs of the 

farms. For example, reducing the quantity of labor, fuels, and electricity has been 

found to have a significant relation to cost savings in potato production (Rudelsheim 

and Smets 2012). Such recommendations, however, should be specific for each group 

of performers in each country and should be subject to the available technology and 

environmental conditions.  

In addition to policies and strategies focused on improving the managerial 

performance of farms, the following efforts could also be undertaken in each of the 

two countries. Part of the TIM scores for German and Dutch farms for Q3, Q2, and Q1 

is related to technology gap inefficiencies. These inefficiencies can be assumed to be 

explained, at least in part, by differences in the production environment, i.e. 

environmental conditions, weather effects, soil quality and labor quality. However, 

these inefficiencies also suggest that farms in these groups could pursue different 

types of micro and macro strategies to overcome the technological limitations. At the 

macro level, efforts could focus on adaptive research and personal training, and on 

transferring technology and innovations from the best performing German and Dutch 

farms to local conditions (Beltrán-Esteve et al. 2014; Moreira and Bravo-Ureta 2010). 

Our results suggest that for German farms, technological improvements should focus 

on the quality of labor and land. The quality of labor can be increased by training 

farmers in good practices when performing activities such as fertilizing and 

harvesting whereas improvements in land can be achieved by improving soils and 

reducing tillage practices. On the other hand, technological improvements in the 

Netherlands should focus on capital and natural-based inputs. This range of policies 

and strategies may facilitate farms to achieve production on the meta-frontier.  

For Dutch farms that are not on the boundary of the meta-frontier, managers could 

also adopt strategies to change the management and structure of the farm to improve 

their scale efficiency, for example improving the ability of the farm to procure new 

resources and expand or reduce its size. These actions could reduce inefficiencies by 7% 

to 14%. Finally, although the best performing farms in Germany and the Netherlands 

are operating technically fully efficient with respect to the meta-frontier, technological 

differences with other potato producing regions around the world could be evaluated. 

This could be achieved by performing a similar analysis for other potato production 

technologies. Such an analysis could highlight potential additional investments in 
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research or technologies that can be adapted from other regions to potato production 

in these two countries. 

 

Methodological implications of the Social Profit indicator and the 
Technical Inefficiency indicator for stakeholders 

The two proposed integrated indicators are expected to be useful for differentiating 

trade flows of commodities in terms of how sustainably they are produced. A diverse 

set of negative externalities such as soil, water and air pollution, biodiversity loss and 

erosion, can be brought into the two indicators to provide a single measure of 

sustainability performance that takes into account the multiple input-output-

externality nature of agricultural production. Equally important, the aggregation of 

outputs, inputs and externalities using either prices or distance functions, partially 

overcome the incommensurability and subjectivity problem that decision makers face 

when deciding about sustainability based on single-item indicators. Hence, it is 

expected that the implementation of the integrated indicators can guide decision 

making by politicians, managers, and consumers by presenting a systematic and 

consistent approach to compare products, which accounts for a variety of economic 

and environmental criteria and their tradeoffs (Kuosmanen 2005). 

Although the application of the two indicators yielded similar results, each indicator 

has advantages and disadvantages that make them suitable for different situations, 

and we believe that these differences merit special attention. Measuring integrally the 

performance of a farm system requires that the complex set of interactions between 

physical, natural, and economic aspects are known (Moldan et al. 2012). Although a 

comprehensive understanding of the relationship between these aspects cannot be 

adequately modelled with a single approach, our two integrated indicators provide us 

with information about the relative level of performance of different farm systems.  

The Social Profit indicator integrates economic and environmental criteria (in terms of 

negative externalities) and their trade-offs by attaching monetary values to outputs, 

inputs, and negative externalities. Therefore prices and shadow prices function as a 

representation of social preferences and reflect the tradeoffs between economic and 

environmental criteria (Farber et al. 2002). Taking into account that prices reflect 

information (current and past information) regarding diminishing natural assets and 



Chapter 4 
 
 

138 
 

the cost of accumulated environmental liabilities, such criteria would therefore imply 

maximizing social welfare (Atkinson et al. 2007). The ‘true’ shadow price, which 

reflects changes in natural assets and degradation of the environment, is thus a crucial 

element to take decisions based on of this approach (Atkinson et al. 2007). A good 

estimation of shadow prices requires understanding of natural thresholds, knowledge 

about the irreversibility of some components of natural capital, information on an 

ecosystem’s resilience, and quantitative information on the temporal and spatial 

distribution of external effects (Kuosmanen 2005; Moldan et al. 2012). Although the 

estimation of shadow prices and prices as the weights to aggregate outputs, inputs, 

and externalities is a value judgment, this estimation is explicit and transparent along 

the decision-making process and can be subject to social and political debate. If 

sufficient scientific and economic information on the natural system is periodically 

obtained and updated, the SP estimation could therefore approach the absolute value 

of sustainability performance of farm systems. The use of the Social Profit indicator 

also has some disadvantages. It can be costly to apply (time and monetary resources 

needed to estimate the shadow prices of the main negative externalities of commodity 

production), and even though accurate shadow prices can be estimated, these can be 

ethically contested, e.g. commodification of nature, selection of discounting rates, and 

power asymmetries between those that produce the negative externality and those 

that bear its effects (Arrow et al. 1996; Atkinson and Mourato 2008; Farber et al. 2002, 

van den Bergh 2010).  

Our second integrated indicator, Technical Inefficiency, overcomes these limitations. It 

does not require prices to aggregate the multiple variables, which is especially 

advantageous for externalities for which there is a high uncertainty or disagreement 

about their value. Therefore, decision makers do not need to choose pre-defined 

weights. This flexibility is also one of the weaknesses of this approach. Weights are 

data driven (the DEA model derives weights for the outputs, inputs, and externalities 

of each DMU in such a way that each DMU achieves the maximum feasible technical 

efficiency) and decision makers have no input in deciding the importance of the 

economic and environmental criteria. Hence, the approach works as a black-box for 

decision makers in real situations (Allen et al. 1997; Ng 2008).  

A second limitation of this approach is that a large number of output-input variables 

and externalities will affect the results by increasing the probability that the DMUs are 

technically fully efficient (Dyson et al. 2001). Many economic and environmental 
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indicators could be included in performance assessments, and condensing these 

indicators into a few variables could be problematic. This would require aggregation 

of different sub-variables into one common variable, which implicitly requires 

incorporating subjectivity in the assessment (Van der Kerk and Manuel 2008). In spite 

of these two limitations, the Technically Inefficiency indicator provides an outcome 

that might be easier to communicate to policy makers, managers, and consumers. It 

provides useful information to make short-term improvements in performance, taking 

into account the technical operations and the technological limitations of a production 

system in comparison to production systems in other areas and at different scales. 

Additionally, this approach accounts for the impact of the scale of the operations in 

the technical efficiency, which is not considered in the Social Profit indicator. Finally, 

this approach is less costly to implement.  

 

Conclusions 

The computation of the Social Profit and Technical Inefficiency indicators showed that 

specialized potato farms in the Netherlands performed slightly better than German 

farms. Dutch farms had higher SP per hectare and were technically more efficient in 

economic and environmental terms. Our study identified areas, where the 

performance of specialized potato farms in Germany and the Netherlands could be 

improved. Both countries could improve their performance by improving the pure 

managerial operations of the farms, such as following technical recommendations on 

appropriate output combinations and technical advice on the use of inputs, especially 

natural-based inputs for German farms and, land and capital for the Dutch farms. 

Equally, German farms can reduce substantially their emissions of greenhouse gases 

by reducing consumption of motor and heating fuels, and especially by reducing the 

amount of nutrients used in potato production. Additionally, for those German and 

Dutch farms that were not ranked as best performers (do not belong to the Q4 group), 

performance could be improved by adopting production practices from the best 

performing German and Dutch farms.  

The two indicators produced a similar ranking of farms in terms of their performance. 

Thus, both provided useful information to assist decision making in trade negotiations, 

while providing managers with sound information to improve their farm systems. 
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Annex 4A. 

Linear programming model to compute the NRDDF involved in the Technical 

Inefficiency estimation. 

 

The NRDDF defined on the country-specific technology and computed using linear 

programming techniques 
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The model has a set 𝛼𝑘
𝑐  of non-negative intensity variables that is restricted to be 

greater or equal to zero, implying a production technology that exhibits constant 

returns to scale (CRS). To relax the CRS assumption to assess the DMUs under a 

country-specific technology that exhibits variable returns to scale (VRS), the sum of 

the intensity variables is constrained to be equal to one, ∑ 𝛼𝑘
𝑐𝐾𝑐

𝑘=1 = 1. 
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The NRDDF defined on the meta-technology and computed using linear programming 

techniques 
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The DEA model of the NRDDF defined on the meta-technology has a set of non-

negative intensity variables that is restricted to be greater or equal to zero, implying 

that DMUs are assessed based on a meta-production technology that exhibits CRS.  
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Annex 4B.  

Underlying assumptions, data and the related sources used to impute the non-

observed farm-specific quantity of the bad output, i.e. greenhouse-gas emissions 

(GHGs).  

 

Estimation of the bad output, GHGs 

Quantification of inputs with potential to emit GHGs 

The inputs considered as having the potential to emit GHGs were energy, fuel and 

fertilizer (nitrogen, phosphate and potassium oxide). Given that observed quantities 

for these inputs are not available in the FADN database4 those were estimated by: 

 

Energy: The quantity of energy was measured in kilowatts and was estimated by 

dividing the farm-specific expenditures in energy that is found in the FADN database 

by the country-specific average price per kilowatt (the country-specific price per kWh 

is found in Table 4B.1).  

  

Fuel: The quantity of fuel, either motor fuel and heating fuel was measured in liters 

and was estimated by dividing farm-specific expenditures in these two inputs by a 

country-specific average price per liter (the country-specific price per liter of fuel is 

found in Table 4B.1).   

 

Table 4B.1 Country-specific prices for energy and fuel (Prices are expressed in 2008 Euros). 

Input Unit Price 

  Germany Netherlands 

Energy EUR/kWh 0.2 0.2 

Fuel EUR/liter 1.1 1.1 

Source: (Eurostat 2015)    

  

                                                 
4 A variable for energy, fuel and fertilizers (total of Nitrogen, Phosphorous and Potassium), is 

found in the FADN database in terms of farm-specific expenditures (Euros).  
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Fertilizer (N, P2O₅ and K2O): To estimate farm-specific amounts of Nitrogen, 

Phosphate (P2O₅) and Potassium oxide (P2O5) the following steps were undertaken: 

a. The average use (kilograms) of each type of nutrient in each country in a per-

hectare basis was taken from the Forecast of Food, Farming and Fertilizer Use in 

the European Union 2012-2022 published by Fertilizer Europe (Fertilizer Europe, 

2012) (Table 4B.2) 

b. A country-specific average price per kg of each nutrient was estimated by 

multiplying the price of the commercial product by the concentration of the 

nutrient (Table 4B.2). 

c. To estimate the average country-specific expenditures on each nutrient in a per-

hectare basis, we multiplied the average use of each nutrient by its price per kg. 

Given that we assumed that 40% of total Nitrogen consumption in potato 

production comes from the slurry, which is not purchased by the farmer, we 

subtracted this amount from the total expenditures in Nitrogen (Table 4B.2). 

 

Table 4B.2 Step a, b and c of the estimation of farm-specific amounts of Nitrogen (N), 

Phosphate (P₂O₅) and Potassium oxide (K₂O). 

  Germany Netherlands 

  
kg/ha Price/kg 

Total 
EUR/ha 

kg Price/kg Total EUR/ha 

Nitrogen (N) 76.2 2.9 224.0 87.0 2.7 230.6 
Phosphate 
(P2O₅) 

54.2 4.9 262.8 44.5 4.9 215.9 

Potassium 
oxide (K2O) 

152.2 0.7 100.4 57.6 0.7 38.0 

      587.3     484.5 

This amount corresponds to 60% of total Nitrogen consumption as given in Fertilizer Europe (2012). 

The remaining 40% was subtracted as it is assumed it comes from the application of slurry which is 

not purchased by the farmer 

Price of N based on the commercial price of Ammonium nitrate (N concentration 34%)  

Price of P₂O₅ based on the average commercial price of single and triple superphosphate (P₂O₅ 

average concentration 33%)  

Price of K₂O based on the commercial price of Muriate of potash (K₂O concentration of 60% (Index 

Mundi 2015) 
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d. Based on the average country-specific expenditures per hectare, the country-

specific share of expenditures for each type of nutrient was calculated. 

e. To calculate the amounts of each of the three nutrients in each farm, the farm-

specific expenditures in fertilizer (variable that is available in the FADN database) 

was allocated to each of the nutrients based on the share of each type of nutrient 

that was estimated in step d. 

f. The farm-specific quantities of each input were imputed by dividing the farm-

specific expenditures in each nutrient by the price per kg of each nutrient. 

 

Quantification of the farm-specific bad output, i.e. greenhouse gas emissions 

The bad output, GHGs expressed in kg of CO₂-equivalents, in each farm was quantified 

as: 

 

 

𝐺𝐻𝐺𝑘
𝑐 = 𝑏𝑘𝑗

𝑐 = ∑ 𝑥𝑘𝑛
𝑐 × 𝐸𝐹𝑛

𝑁

𝑛=1

,  

  

where 𝑥𝑘𝑛
𝑐  is the quantity of input 𝑛 (energy, fuel, N, P2O₅ and K2O) for DMU k of 

country c multiplied by its corresponding emission factor 𝐸𝐹𝑛. The calculation of 

greenhouse gas emissions was done using the Cool Farm Tool – Potato (CFT-Potato), 

which is a spreadsheet program that allows the calculation of the amount of GHG 

emissions that resulted from the use of fertilizers, chemicals, energy, fuel, among 

others, and during the potato production process, e.g. from the soil after nitrogen 

fertilization. A detailed explanation of the tool and the used emission factors can be 

found in Haverkort and Hillier (2011). 

 

 (Shadow) price for the bad output greenhouse-gas emissions 

To select an appropriate shadow price for CO2-equivalents, the mean value of the 

estimates found in some existing literature sources was computed. As a result, we 

used a shadow price of EUR 0.02 per kg CO2-eq (Table 4B.3). 
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Table 4B.3 Estimates from the existing literature sources used for the calculation of the 

shadow price for the bad output CO2-eq. 

Source EUR per kg CO2-eq. a 

Titus (1992) 18-44 

Tol (2008) 7-22 

Nordhaus (2007) 6 

European Commission (2005) 5-20 

Emission Allowance Price (EEX, 2013)  6-11 

a. Original estimates were converted to 2008 EUR.   
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Abstract 

A first step towards achieving sustainable agricultural production is an integrated 

assessment of the current relative sustainability levels of farms and increased 

knowledge on the factors affecting the sustainability level. We propose to use the 

social profit, that is, the profit of the farm adjusted for the external costs of production, 

as a the basis for a relative sustainability assessment. Under this approach farms that 

achieve the maximum attainable social profit are considered as zero social profit 

inefficient and thus, performing sustainable. To illustrate the usefulness of this 

approach, we assessed both the relative sustainability of coffee farms in Vietnam to 

determine the sources of inefficiency in social profit, and the impact of a set of socio-

economic characteristics and management practices on the relative sustainability 

level. Sustainability issues included in the assessment were profitability, greenhouse 

gas emissions, nitrate pollution, and pesticide toxicity. The results show that coffee 

farms, on average, could increase their social profits threefold at given prices and 

given the current production technology. The main source of social profit inefficiency 

for coffee farms in Vietnam is associated with sub-optimal allocation of resources and 

levels of production, which are mainly the result of the under-utilization of labor and 

variable inputs, and the under-production of coffee. The assessment of the external 

determinants of social profit inefficiency shows that increasing values for socio-

economic characteristics such as the distances from the coffee farm to the closest 

town/city center and to the closest coffee factory/traders, and, increasing frequency 

of spraying increases social profit inefficiency. On the contrary, coffee producers 

belonging to the ethnic group JoRai and increasing values for hired labor and 

frequency of fertilizing and pruning activities reduces social profit inefficiency. 

Improving the sustainability performance of coffee farms in Vietnam would require 

corrective actions to ensure the efficient use of inputs and the correct frequency of 

management activities that were found to affect negatively the level of social profit 

inefficiency. At the regional level policies should focus on providing technical 

assistance by extension services. It is also recommended to perform an in-depth study 

on the management of coffee farms by the JoRai ethnic group to disseminate their 

good management practices to other ethnic groups in Vietnam. 

Keywords: Social profit inefficiency, relative sustainability performance; externalities   
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Introduction  

Coffee is one of the most widely traded agricultural commodities in the world, 

produced by 20 million to 25 million producers in more than 14 countries 

(Giovannucci et al. 2008; Reinecke et al. 2012). Vietnam is the second largest exporter 

of coffee after Brazil, with a 12% to 15% share in the world market (Giovannucci et al. 

2008; Nguyen et al. 2015). In 2013, coffee exports accounted for approximately 2% of 

Vietnam’s gross domestic product (GDP) (OEC 2016) and 17% of all commodity 

exports (Nguyen et al. 2015). Currently, an area of 500,000 hectares is planted in 

coffee, with a production of approximately one million tons (Nguyen et al. 2015). 

Vietnam produces two coffee varieties, Robusta and Arabica, with 90% of the planted 

area under Robusta (D’haeze et al. 2005). Approximately 80% of coffee production is 

cultivated in four provinces located in the Central Highlands, i.e. Kon Tum, Dak Lak, 

Gia Lai, and Lam Dong, typically by smallholder farmers (Amarasinghe et al. 2015; 

Luong and Tauer 2006). The majority of farmers obtain the largest part of their 

income from coffee production (Kuit et al. 2004). 

Coffee production is important for the Vietnamese economy and crucial for the Central 

Highlands. However, the unshaded monoculture farming system used by most 

producers generates harmful environmental impacts that may degrade ecosystems. 

The coffee farming system in Vietnam requires high application of fertilizers to 

provide the necessary nutrients for coffee plants (Ho and Huynh 2007). High 

fertilization rates cause emissions of greenhouse gases and emissions of nutrients to 

water bodies. Emission of greenhouse gases contributes to climate change, whereas 

emission of nutrients to water bodies has adverse effects on biodiversity and water 

quality (Tilman et al. 2002). Chemical biocides are used to control fungal and pest 

diseases, and to remove a variety of weeds. Fungal diseases affecting coffee 

production include antracnosis (by Collelotrichum spp.) and brown eye disease 

(Cercospora coffeicola); pest diseases include brown scale (Sassetia coffea), green scale 

(Coccus viridis), the coffee berry borer (Hypothenemus hampei), and the mealy bug 

(Planococcus lilacinus) (Kuit et al. 2004; Lan and Wintgens 2008). Improper 

application of chemical pesticides in coffee production has adverse effects on the 

environment, biodiversity, and human health, especially farm workers (Garcia and 

Shively 2011; Lan and Wintgens 2008). Ensuring adequate production levels requires 

irrigation of coffee plantations (Carr 2001). Experience in Vietnam shows that farmers 
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often use more water than needed during dry periods and over-irrigate coffee 

plantations (Ho and Huynh 2007). Over-irrigation is especially harmful during 

drought years, when water resources (from groundwater and basins) deplete (Luong 

and Tauer 2006). Scarcity of water may drive additional investments for construction 

of deeper wells and also negatively affect ecosystems.   

Profitability of the coffee farming system is continuously under pressure, due to 

increasing production costs for fertilizers and labor (Kuit et al. 2004), and the 

volatility of coffee prices in the world market (Nguyen et al. 2015; Tran 2007). At low 

coffee price levels, the revenues of coffee production may not cover production costs, 

while other crops, such as pepper, may become more profitable. This situation leads 

to (partial) replacement of coffee plantations by other crops or to the abandonment of 

coffee farms (Nguyen et al. 2015), impacting in turn on the livelihood of rural 

communities, especially the relatively poor.  

The challenges facing coffee production center around the three pillars of 

sustainability, i.e. environmental, economic, and social. A first step towards achieving 

sustainable coffee production in Vietnam is an integrated assessment of the current 

relative sustainability level of coffee farms. A following step is to explore how the 

socio-economic characteristics and management practices of farmers affect the 

sustainability level. The most common approach for sustainability assessment is the 

use of a diverse set of performance indicators, which measure the extent to which 

sustainability goals are achieved (Smith and McDonald 1997). Quantification of a set 

of performance indicators is feasible in many cases. However, it is difficult to combine 

indicators reflecting different aspects of sustainability into an overall measure e.g. to 

combine profitability and greenhouse gas emissions (Gerbens-Leenes et al. 2003; 

Kusiima and Powers 2010). To overcome these difficulties, several authors propose 

using a single metric, namely money, to express the performance on the different 

aspects of sustainability (Atkinson 2000; Ehui and Spencer 1992; Figge and Hahn 

2004; Gaitán-Cremaschi et al. 2015; 2016b). Our approach for an integrated 

sustainability performance measure is the use of social profit, i.e. profit of the system 

(revenues minus production costs) adjusted for the external costs of production 

(environmental and social dimensions of sustainability) (Gaitán-Cremaschi et al. 2015; 

2016b; Kusiima and Powers 2010; Van Passel et al. 2007). In this approach, farms that 

achieve the largest attainable (positive) social profit are considered to perform 

sustainably, that is, are classified as zero social profit inefficient. 
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Some studies have assessed the benefits and the private and social costs of 

agricultural production (see for example Gaitán-Cremaschi et al. (2015); Hartridge 

and Pearce (2001); Pimentel et al. (2009); Pretty et al. (2000) and (2005); Tegtmeier 

and Duffy (2004). Several studies have also employed Data Envelopment Analysis 

(DEA) and directional distance functions (DDF) to measure the environmental and 

economic inefficiency of farm systems (see for example, Ball et al. (2004); Beltrán-

Esteve et al. (2014); Hoang and Coelli (2011); Gaitán-Cremaschi et al. 2016b; Pérez 

Urdiales et al. (2015);  Picazo-Tadeo et al. (2011) and (2012). However, the literature 

lacks an assessment of the extent to which farms achieve the maximum attainable 

social profit. Such an assessment enables the identification of sources of inefficiency: 

the extent to which the current production potential is used, the sub-optimal choice of 

the scale of operation, and the sub-optimal allocation of resources at given prices.  

In the light of the foregoing, the objectives of this study are: (1) assess the 

sustainability performance of a sample of coffee farms in Vietnam in terms of their 

social profit inefficiency and sources of inefficiency, and (2) determine the socio-

economic characteristics and management practices that influence the relative 

sustainability performance. This assessment will identify opportunities to improve the 

relative sustainability performance of coffee production in Vietnam. 

 

Measuring relative farm sustainability using the Nerlovian social 
profit inefficiency (NI) indicator 

Nerlovian social profit inefficiency (NI) indicator  

Suppose there are k = 1,...K coffee farms (termed decision making units – DMUs) using 

N inputs and D fixed inputs to produce M outputs. In the production process, J 

negative externalities are produced, such as waste and pollution. Let vectors 

𝑦 = (𝑦1 , 𝑦2, … 𝑦𝑀) ∈ ℜ+
𝑀 , 𝑥 = (𝑥1, 𝑥2, … 𝑥𝑁) ∈ ℜ+

𝑁 , (𝑓1, 𝑓2, … 𝑓𝐷) ∈ ℜ+
𝐷 , and 𝑏 =

(𝑏1, 𝑏2, … 𝑏𝐽) ∈ ℜ+
𝐽  represent the outputs, inputs, fixed inputs, and negative 

externalities, respectively. The production possibility set is defined as the set of all 

feasible input–output-externality vectors and is represented as: 

 

 
𝑇 = {(𝑦, 𝑥, 𝑓, 𝑏): 𝑥, 𝑓 𝑐𝑎𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 𝑦, 𝑏}, (5.1) 
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If the k-th DMU faces output prices represented by the vector 𝑝 = (𝑝1, 𝑝2, … 𝑝𝑀) ∈ ℜ+
𝑀 , 

input prices by the vector 𝑤 = (𝑤1, 𝑤2, …𝑤𝑁) ∈ ℜ+
𝑁 , fixed input prices by vector 

𝑣 = (𝑣1, 𝑣2, … 𝑣𝐷) ∈ ℜ+
𝐷 , and external unit cost estimates for the externalities 

represented by the vector 𝑟 = (𝑟1, 𝑟2, … 𝑟𝐽) ∈ ℜ+
𝐽 , then the observed social profit is 

defined as: 

 

 
𝑆𝑃 = 𝑝′𝑦 − 𝑤′𝑥 − 𝑓′𝑣 − 𝑟′𝑏, 

 

 

Hence, social profit is defined as revenues (p’y) minus conventional costs (w’x), fixed 

costs (f’v),  and the external costs of production (r’b). 

To evaluate the efficiency with which the k-th DMU operates in terms of social profit, 

the observed social profit in (Eq. 5.2) is compared to the maximum social profit the 

DMU could attain given the current technology used by the sample of DMUs, the 

available levels of the fixed inputs f, and the (shadow) prices. The difference between 

the maximum attainable social profit and the observed social profit provides a 

measure of social profit inefficiency. The maximum social profit for the k-th DMU is 

defined as: 

 

 
𝛱(𝑝,𝑤, 𝑟, 𝑓) = max

𝑦,𝑥,b
{𝑝′𝑦 − 𝑤′𝑥 − 𝑟′𝑏 |(𝑦, 𝑥, 𝑓, 𝑏) ∈ 𝑇} = 𝑝′𝑦∗ − 𝑤′𝑥∗ − 𝑟′𝑏∗, 

 

 

where y*, x*, and b* are the optimal output, input, and externality combinations that 

provide the maximum attainable social profit, given the production technology, prices 

(shadow), and the available levels of the fixed inputs. To provide a unit-free measure 

of social profit inefficiency (Färe and Grosskopf 2005; Fried et al. 2007), the Nerlovian 

social profit inefficiency (NI) is used. The NI is defined as the difference between the 

maximum social profit defined in (Eq. 5.3) and the observed social profit defined in 

(Eq. 5.2), normalized by the value of the directional vectors 𝑔𝑦 ∈ ℜ+
𝑀, 𝑔𝑥 ∈ ℜ+

𝑁 , and 

𝑔𝑏 ∈ ℜ+
𝐽  (Chambers et al. 1998). This normalization arises from the duality between 

the profit function and the DDF, providing the basis for its decomposition (Chambers 

(5.2) 

(5.3) 
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et al. 1998)1. The DDF and the directional vector are discussed in more detail in 

subsection ‘Decomposition of the NI indicator’.  

 

Accordingly, the NI indicator for the k-th DMU is defined as:  

 

 

𝑁𝐼 (𝑝, 𝑤, 𝑟, 𝑦, 𝑥, 𝑓, 𝑏; 𝑔𝑦 , 𝑔𝑥 , 𝑔𝑏) =
𝛱(𝑝, 𝑤, 𝑟, 𝑓)  − (𝑝′𝑦 − 𝑤′𝑥 − 𝑟′𝑏)

𝑝′𝑔𝑦 + 𝑤′𝑔𝑥 + 𝑟′𝑔𝑏

, 

 

 

In this approach, the k-th DMU is performing sustainably, i.e. has zero Nerlovian social 

profit inefficiency, if the observed social profit is equal to the maximum highest 

attainable social profit. In other words, when 𝑁𝐼 (. ) = 0. If the DMU is Nerlovian social 

profit inefficient, 𝑁𝐼 (. ) > 0, then the DMU has scope to improve its sustainability 

performance.  

The NI score can be decomposed to identify the contributions of output-specific, 

input-specific, and externality-specific inefficiencies:  

 

 

𝑁𝐼 (𝑝, 𝑤, 𝑟, 𝑦, 𝑥, 𝑓, 𝑏; 𝑔𝑦 , 𝑔𝑥, 𝑔𝑏)

=  
𝑝′(𝑦∗ − 𝑦)

𝑝′𝑔𝑦 + 𝑤′𝑔𝑥 + 𝑟′𝑔𝑏

+
𝑤′(𝑥 − 𝑥∗)

𝑝′𝑔𝑦 + 𝑤′𝑔𝑥 + 𝑟′𝑔𝑏

+
𝑟′(𝑏−𝑏∗)

𝑝′𝑔𝑦 + 𝑤′𝑔𝑥 + 𝑟′𝑔𝑏

, 

 

 

Decomposition shows whether outputs are under- or over-produced, inputs are 

under- or over-used, and whether externalities are below or above optimum levels.  

Hence, decomposition can help identify opportunities to improve the relative 

sustainability performance of coffee farms. The inefficiency in social profit and the 

variable-specific contributions are illustrated in Figure 5.1, using a simple example 

with one input, one output, and one externality. 

 

                                                 
1 For a detailed explanation of this dual relation see Chambers et al. (1998). 

(5.4) 

(5.5) 
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Sources of farm sustainability 

Decomposition of the NI indicator: pure technical inefficiency (PTI), scale inefficiency 

(SI), and allocative inefficiency (AI) 

Exploiting the dual relation between the profit function and the DDF, the NI indicator 

for the k-th DMU is decomposed into overall technical inefficiency (OTI) and allocative 

inefficiency (AI) (Chambers et al. 1998). The OTI, in turn, is decomposed into pure 

technical inefficiency (PTI) and scale inefficiency (SI): 

 
 

𝑁𝐼 = 𝑂𝑇𝐼 + 𝐴𝐼 = 𝑃𝑇𝐼 + 𝑆𝐼 + 𝐴𝐼, 

 
 

The OTI component reflects the technical inefficiency relative to the best practice 

frontier, assuming a production technology that exhibits constant returns to scale 

(CRS). It reflects the percentage by which a DMU could jointly increase the outputs 

and reduce the inputs and externalities, given the production technology T (Chung et 

al. 1997). If the DMU cannot make further improvements, it is zero technical 

inefficient and therefore operating at the best practice frontier (Chung et al. 1997). 

Estimation of the OTI component requires the use of the DDF associated with an 

explicit direction in which inefficiency is measured. Choosing the directional vector 

enables the projection of the input, output, and externality vectors onto the 

production frontier as defined by the directional vector 𝑔 = (𝑔𝑦 , −𝑔𝑥 , −𝑔𝑏). Formally, 

the DDF measuring technical inefficiency under CRS is defined as (Chung et al. 1997): 

 
 

𝑂𝑇𝐼 = �⃗⃗� 𝑇(𝑦, 𝑥, 𝑓, 𝑏; 𝑔𝑦 , 𝑔𝑥 , 𝑔𝑏|𝐶𝑅𝑆) = 𝑚𝑎𝑥{𝛽: (𝑦 + 𝛽𝑔𝑦 , 𝑥 − 𝛽𝑔𝑥, 𝑏 − 𝛽𝑔𝑏) ∈ 𝑇𝐶𝑅𝑆}, 

 
 

The k-th DMU is overall zero technically inefficient if �⃗⃗� 𝑇(𝑦, 𝑥, 𝑓, 𝑏; 𝑔|𝐶𝑅𝑆) = 0 and 

overall technically inefficient if �⃗⃗� 𝑇(𝑦, 𝑥, 𝑓, 𝑏; 𝑔|𝐶𝑅𝑆) > 0.  

The OTI measure can be further examined by decomposition into PTI and SI. PTI is 

obtained by estimating (Eq. 5.7), assuming a production technology that exhibits 

variable returns to scale (VRS), as follows: 

 

𝑃𝑇𝐼 = �⃗⃗� 𝑇(𝑦, 𝑥, 𝑓, 𝑏; 𝑔𝑦 , 𝑔𝑥 , 𝑔𝑏|𝑉𝑅𝑆) = 𝑚𝑎𝑥{𝛽: (𝑦 + 𝛽𝑔𝑦 , 𝑥 − 𝛽𝑔𝑥 , 𝑏 − 𝛽𝑔𝑏) ∈ 𝑇𝑉𝑅𝑆}, 

(5.6) 

(5.7) 

(5.8) 
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The second component, SI, is computed as the difference between the values obtained 

from (Eq. 5.7) and (Eq. 5.8). This measure reflects the extent to which the k-th DMU 

succeeds in choosing the optimal size of its operations, as follows: 

 

 

𝑆𝐼 = �⃗⃗� 𝑇(𝑦, 𝑥, 𝑓, 𝑏; 𝑔𝑦 , 𝑔𝑥 , 𝑔𝑏|𝐶𝑅𝑆) − �⃗⃗� 𝑇(𝑦, 𝑥, 𝑏; 𝑔𝑦 , 𝑔𝑥 , 𝑔𝑏|𝑉𝑅𝑆),  

  

 

The AI component refers to the loss of potentially attainable social profit as a result of 

a sub-optimal choice on the mix of inputs, outputs, and externalities, given their 

corresponding (shadow) prices (Jayaraman and Srinivasan 2014). The AI component 

is derived as the residual of the difference between (Eq. 5.4), (Eq. 5.8), and (Eq. 5.9): 

 

 

𝐴𝐼 = 𝑁𝐼 − 𝑃𝑇𝐼 − 𝑆𝐼, 

 

 

The PTI, SI, and AI components are necessarily non-negative, which implies that if the 

k-th DMU has zero Nerlovian social profit inefficiency, then it must be pure technical 

efficient, scale efficient and allocative efficient (Jayaraman and Srinivasan 2014). 

The concept of social profit inefficiency and its decomposition into the PTI and AI 

components is illustrated in Figure 5.1, using a simple example with two DMUs (A and 

B), one input (x), one output (y), one externality (b), and with prices (w, p and r). The 

social profit function π=py-wx-rb is rewritten in the form y=(π+rb/p)+(w/p)x, i.e. the 

equation of the isoprofit line with intercept π+rb/p and slope w/p that gives all input-

output-externality combinations capable of producing social profit level π. The 

isoprofit line is tangent to the production technology T at point R, where an optimal 

input-output combination (y*, x*) maximizes social profit given their prices.  

In the first case, DMUA is social profit inefficient, as observed input-output 

combination (yA, xA) generates a lower social profit than it could attain at point Q, 

given prices and the production technology. The inefficiency in social profit for this 

DMU is attributable to pure technical inefficiency (DMUA could increase the output and 

decrease the input in the direction defined by g = (gy, -gx) to reach the production 

(5.10) 

(5.9) 



Chapter 5 
 
 

160 
 

frontier at point P), and allocative inefficiency (given the prices, DMUA is under-using 

the input and under-producing the output). An optimum combination would allow the 

DMUA to increase social profit, i.e. shift from point P to point Q on the isoprofit line.  

 

 

Figure 5.1 Inefficiency in social profit and the decomposition into pure technical inefficiency 

and allocative inefficiency (see text for explanation). 

 

In the second case, DMUB is also social profit inefficient. The observed input-output 

combination (yB, xB) does not yield the maximum attainable social profit. This DMU is 

pure technical efficient as it lies on the boundary of the production frontier. The 

inefficiency in social profit is only attributable to allocative inefficiency mainly caused 

by over-use of the input and over-production of the output. In this case, an optimum 

combination would allow the DMUB to increase social profit, i.e. shift from the 

boundary of the production frontier to point S on the isoprofit line. 
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This paper uses DEA to estimate social profit inefficiency and its components (PTI, SI, 

and AI). The linear programming models used in the computations are presented in 

Annex 5A. 

 

Socio-economic characteristics, management practices and social profit inefficiency  

We hypothesize that a set of farm-specific variables (socio-economic characteristics 

and management practices) affects social profit inefficiency and its components. To 

investigate this, we used a bootstrap truncated regression model (Algorithm number 

1) as proposed by Simar and Wilson (2007). For details of the algorithm we refer the 

reader to Simar and Wilson (2007). Following Simar and Wilson (2007), the bootstrap 

truncated regression model is defined as:  

 

 
𝐼  = 𝑎 + 𝑧𝑘𝛽 + 휀𝑘, 

 

 

where the inefficiency scores I (NI, PTI, SI and AI) obtained in (Eq. 5.4), (5.8), (5.9), 

and (5.10) are regressed on the vector 𝑧 = 1,…𝑉 of farm-specific socio-economic 

characteristics and management practices that may affect the sustainability 

performance of coffee farms in Vietnam. The variables in this vector are different from 

the outputs, inputs, and externalities used to calculate the NI indicator. 𝛽 denotes the 

regression coefficients and 휀𝑘 represents the error term with a normal distribution 

𝑁(0, 𝜎2). Inefficiency scores are truncated between 0 and infinity, where 0 relates to 

the most efficient farms. The dependent variables (NI, PTI, SI and AI) reflect the level 

of inefficiency of coffee farms. A positive coefficient indicates that the variable is 

positively associated with inefficiency, hence this variable increases the inefficiency of 

coffee farms.  

 

Data 

Data used to estimate the NI indicator and the bootstrap truncated regression were 

collected between 2007 and 2009 in Chu Se District, Gia Lai Province. Data was 

collected by the project ‘Quality and Sustainability Improvement of Robusta 

(5.11) 

http://www.sciencedirect.com/science/article/pii/S136655450800015X#bib45
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Production and Trade in Gia Lai, Vietnam’, funded by the Douwe Egberts Foundation 

and conducted by EDE Consulting. Gia Lia province is one of the main coffee-

producing regions. It has 80,000 hectares planted in coffee (Quan & Ward 2015) and 

accounts for 13.5% of total Robusta coffee production in Vietnam. Farm-level data 

were recorded in farmer field books by 361 farmers and then digitalized by project 

staff. The data consist of socio-economic characteristics (e.g. field size and education 

level) and information on daily crop management, such as the type, quantity, and price 

of inputs used and coffee output produced. Farmers who participated in the survey 

voluntarily participated in training on data recording. Furthermore, ‘key farmers’ 

gathered and reviewed the data to check for potential errors. Participating farmers 

received feedback through annual individual reports, containing detailed analysis of 

the financial and physical performance of their farm, and ‘group reports’ that enabled 

farmers to compare themselves with their peers (EDE 2009). Coffee farms in this 

sample are similar in terms of the coffee variety produced, tree age, and soils 

conditions, but vary in farm size and intensity of input use.  

For the estimation of the NI indicator, data were selected for the year 2009 and cover 

one production cycle. One output (coffee beans) and four inputs (variable inputs, labor, 

land, and water) were distinguished. Land was assumed to be a fixed input in coffee 

production. The environmental impacts of coffee production in Vietnam are mainly 

caused by high fertilization, inadequate use of pesticides, deforestation, and depletion 

of groundwater (Ahmad 2000; D’haeze et al. 2005; Lindskog et al. 2005, Wintgens 

2009). Therefore, the following negative environmental externalities were selected: 

greenhouse gas emissions, nitrate pollution, and pesticide toxicity. Due to data 

limitations, externalities related to deforestation and groundwater reduction were not 

included in this assessment.  

 

Quantity of outputs, inputs, and externalities 

The quantity of coffee beans is expressed in tons of green bean equivalents (GBE) 

produced in a production cycle (one year in Vietnam). The implicit quantity of variable 

inputs is expressed as annual aggregated expenditures on fertilizers and biocides 

(herbicides, insecticides, and fungicides) in 2009 US dollars ($). Labor is measured as 

the total number of working days used at the farm, including both family and hired 

labor (a working day equals eight hours of work). Land is defined as the area utilized 
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for coffee production, measured in hectares (ha). The quantity of water used for 

irrigation is expressed in cubic meters (m3).  

The negative externality greenhouse gas emissions is expressed in CO2 equivalents 

(CO2-eq.). Three greenhouse gasses were considered: carbon dioxide (CO2), methane 

(CH4), and nitrous oxide (N2O). For each greenhouse gas, the annual amount of gas 

emitted to the atmosphere was multiplied by its global warming potential over a time 

frame of 100 years, relative to that of CO2 (IPCC 2006). These amounts were then 

summed to obtain the total annual amount of greenhouse gas emissions emitted to the 

atmosphere. We estimated the annual emission of greenhouse gases for two sources 

associated with coffee production: (1) emissions that are intrinsically associated with 

the production of fertilizers and pesticides (embedded emissions); and (2) N2O 

emissions due to direct and indirect Nitrogen (N) emissions (see below).  

The externality nitrate pollution captures the amount of N that is released to the 

environment in the form of nitrates (NO3-N) and is expressed in kilograms of nitrates 

as N (kg NO3-N). This externality was calculated for each coffee farm as the difference 

between the amount of N that enters the system and the amount of N that leaves the 

system, as we assumed that coffee farm systems are in equilibrium with respect to N 

in the system. N enters the system through the application of fertilizers and pruning 

residues. The amount of N that leaves the system includes the amount of N that is lost 

via background emissions (N2O-N), fertilizer-induced and crop residue emissions 

(N2O-N and NO-N), N lost via volatilization (NH3-N and NO-N), and N that is exported 

in the harvest material.  

N inputs from fertilizers were estimated as the quantity of each type of fertilizer (kg of 

synthetic and organic fertilizer) multiplied by the known (or estimated 2 ) N 

concentration per kilogram of fertilizer. Nitrogen inputs from crop residues were 

estimated as the annual amount of crop residues (kg of dry matter per year), 

multiplied by the average estimated N concentration per kilogram of dry matter (% N 

per kg dry matter). N2O-N background emissions were calculated based on the 

emission factor proposed by the IPCC (2006) for tropical climates on a per-hectare 

basis. Fertilizer-induced and crop-residue N emissions were estimated using the 

generic emission factors of Bouwman et al. (2002), which reflect the percentage of the 

                                                 
2 N contents of organic material used as fertilizer are generally not measured and estimates are 
based on existing literature. 
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applied N that is lost via N2O-N and NO-N emissions. The generic emission factors 

differ per type of fertilizer; the average emission factor of Bouwman et al. (2002) is 

approximately 1% of total N fertilizer. This value is similar to the default value 

published by the IPCC (2006) and to the results of N2O-N emissions found in the field 

by Harmand et al. (2007) and Hergoualc’h et al. (2008) in coffee plantations in Costa 

Rica. N loss via volatilization was estimated using Tier II IPCC (2006). N export 

through the coffee harvest was estimated using yield data and data on nutrient 

removal from harvesting coffee beans (Wintgens 2009).  

The externality pesticide toxicity is expressed using the environmental impact quotient 

(EIQ) score and was estimated using the EIQ model developed by Kovach et al. (1992) 

to provide an assessment of the risks involved with biocide use. The EIQ model does 

not provide exact measurements of the impact of biocide application, but allows the 

comparison of potential impacts from different farm management practices regarding 

the use of biocides. The model gives an EIQ score to each active ingredient for three 

components: environment, farm worker and consumer. The EIQ score for the 

environmental component reflects the impact of the active ingredient on aquatic life, 

bees, birds, and beneficial insects. The EIQ score for the farm worker component 

reflects the impact on applicators and pickers, and the EIQ score for the consumer 

component reflects the impact of the pesticide active ingredient on the consumer, 

caused by residues in groundwater and food (Praneetvatakul et al. 2013). The total 

EIQ score is calculated as the average of the three components and reflects the overall 

toxicity of each pesticide active ingredient. To estimate the toxicity of the weed, pest, 

and disease control strategy of each coffee farm, the total EIQ score for each active 

ingredient used at each farm was multiplied by its application rate (kg of active 

ingredient). The EIQ scores were summed over all the active ingredients used at the 

farm, yielding the externality pesticide toxicity.  Higher scores represent a higher 

potential impact of the weed, pest, and disease control strategy of a given coffee farm.  

Table 5.1 shows the descriptive statistics for the quantities of output, inputs, and 

externalities. The equations, emission and conversion factors, assumptions, and 

calculations of the three externalities are fully detailed in the supplementary material 

(Annex 5B). 
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Table 5.1 Descriptive statistics for the quantities of outputs, inputs, and externalities for the 

year 2009.  

Symbol Variable Unit Mean Std. dev. Min. Max. 

Output             
y1 Coffee tons GBE 2.9 1.5 0.4 9.0 

Inputs             

x1 Labor working days  239.9 109.0 36.10 638.5 

x2 Water m3 1,463.0 836.9 240.0 5,900.0 

x3 Variable inputs US $ 947.2 563.3 44.1 4,558.8 

x4 Land hectares 1.1 0.6 0.1 6.0 

Externalities             

b1 Pesticide toxicity EIQ 20.8 51.6 0.0 457.1 

b2 N pollution kg NO3-N 143.8 85.4 0.0 842.6 

b3 
Greenhouse gas 
emissions tons CO2-eq. 4.3 2.4 0.2 22.0 

GBE = green bean equivalents; EIQ = environmental impact quotient score; NO3-N = nitrates as 
Nitrogen; CO2-eq. = CO2 equivalents 

 

Prices for outputs, inputs and externalities 

Prices for outputs and inputs and the shadow prices for externalities are all expressed 

in 2009 US dollars ($).  

 

Prices for outputs and conventional inputs 

Observed market prices for the output and the conventional inputs were obtained 

from field book data. The price used for the output coffee beans is the average annual 

price per ton of Robusta coffee received by coffee farmers in 2009 ($ per ton). The 

quantities of pesticides and fertilizers are expressed in total expenditures. As these 

quantities implicitly incorporate farm-specific prices, the price of the variable input 

was set to one. The price of labor is the daily minimum wage in Vietnam ($ per 

working day); this implicitly assumes that the shadow price of family labor is equal to 

the market wage3. The annual rental value of agricultural land is used as the proxy 

price of land ($ per ha of agricultural land per year). The price of irrigation water in 

                                                 
3 The social profit indicator is a measure of social welfare and measures the net benefits of the 
farm system for society. Hence, family labor is taken as a cost in coffee production.    
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Vietnam is computed as the cost of the fuel, electricity, and labor needed to irrigate 

one cubic meter of water ($ per m3).  

Shadow prices for externalities 

The externalities of coffee production are not traded in well-defined markets and 

therefore market price information does not exist. Shadow prices for the three 

externalities were transferred from empirical studies in published literature. Shadow 

prices were adjusted to the Vietnamese context using the ratio of GDP per capita of 

Vietnam to the average GDP per capita of the country, where the estimation was made, 

expressed in purchasing power parities (PPP). This assumes that the willingness to 

pay (WTP) to avoid or to mitigate the damages is proportional to the per capita 

income of each country (Silalertruksa et al. 2012) and is locally determined.  

Shadow price of greenhouse gas emissions  

We used the value estimate reported by Gaitán-Cremaschi et al. (2015) as an 

appropriate shadow price for greenhouse gas emissions that reflects the associated 

impacts of climate change. In this study, an average shadow price of $19 per ton of 

CO2-eq. was calculated based on external costs that were reported in peer-reviewed 

journals.  

Shadow price of nitrate pollution  

Nitrate pollution associated with the over-fertilization of agricultural fields affects 

streams, rivers, and lakes. Nitrate pollution can cause serious environmental 

problems, such as eutrophication, and human health problems related to water 

quality impairments (Addiscott et al. 1991; Wick et al. 2012). A comprehensive 

overview and estimation of the context-specific external costs of nitrate pollution is a 

difficult task (Van Grinsven et al. 2013). The external cost of a unit of nitrate from 

agricultural areas can depend on the weather conditions that influence its transport 

and on the exposure of humans and ecosystems to the pollutant (Van Grinsven et al. 

2013; Wick et al. 2012). Attempts have been made to quantify the external costs of 

nitrate pollution by assessing the expenditures on drinking water treatment (Pretty et 

al. 2000, 2001; Tegtmeier and Duffy 2004), and by estimating the economic damage 

associated with health impacts and ecosystem degradation (Van Grinsven et al. 2013). 

As an appropriate shadow price for nitrate pollution, we used the results of the study 

of Van Grinsven et al. (2013). This study provides a comprehensive assessment of the 
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external costs of different N flows for the EU27 in the year 2008, including the unit 

costs for health damage and eutrophication damage associated with nitrate leaching. 

As external cost estimates from WTP studies are closely linked to income levels, we 

used the lower bound of the external costs for the EU27: $0.1 per kg of N for health-

related damages and $2.0 per kg of nitrate for eutrophication-related damages. The 

per capita income in Vietnam is substantially lower than in the EU (World Bank, 2015). 

We therefore assumed that the awareness of environmental and health problems 

derived from nitrate pollution is lower in Vietnam than in most European countries, 

and that Vietnam’s WTP for treating polluted water and eutrophication may be lower 

than in the EU. Adding together the unit damage costs, and adjusting them to the 

Vietnamese context (using the ratio of GDP per capita), we obtained a shadow price 

for nitrate pollution of $2.0 per kg of nitrate. 

Shadow price of pesticide toxicity 

A proxy shadow price for pesticide toxicity was estimated using the pesticide 

environmental accounting (PEA) tool developed by Leach and Mumford (2008), 

combined with the approach of Gaitán-Cremaschi et al. (2015). We used base values 

reported by Pretty et al. (2001) for the external costs associated with the application 

of one kg of pesticide active ingredient. These base values are based on studies in the 

USA, Germany, and the UK, and include expenditures on pesticide monitoring, 

poisonings, water treatment costs, and biodiversity loss.  

Using the PEA tool, the set of base values were redistributed over the three 

components of the EIQ model, i.e. environmental, farmworker, and consumer 

components. This provided an external cost for each component associated with the 

application of one kg of an average pesticide active ingredient. The average EIQ score 

of an average pesticide active ingredient for each of the three components was then 

estimated, by identifying the pesticide active ingredients that were used in the USA in 

2001 and collecting their respective EIQ scores for each component. The redistributed 

base values for external costs for each component were then divided by their 

respective EIQ scores to obtain an external cost per unit of EIQ. We adjusted the 

estimated external costs per unit of EIQ for each component to reflect the difference in 

socio-economic conditions in Vietnam compared to the countries for which the base 

values were estimated. To adjust the costs, we used the ratio of the GDP per capita of 

Vietnam to the average GDP per capita of the USA, Germany and the UK.  
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The base values associated with the farmworker EIQ component depend on the 

number of people that potentially come into direct contact with pesticides. Therefore, 

the farmworker external costs were adjusted by a factor that represents the difference 

between the share of agricultural employment in Vietnam and the average share of 

agricultural employment in the USA, Germany, and the UK (Praneetvatakul et al. 

2013). This procedure resulted in a shadow price for pesticide toxicity of $0.15 per EIQ. 

The detailed calculation of the shadow price for pesticide toxicity, including the 

assumptions, is provided in the supplementary material (Annex 5B). 

Table 5.2 provides the descriptive statistics for the farm-specific (shadow) prices of 

outputs, inputs, and externalities.  

 

Table 5.2 Descriptive statistics for prices of outputs, inputs, and externalities in 2009 US 

dollars ($). 

Symbol Variable Unit Unit price  

Outputs     

p1 Coffee $/ton GBE 1764.7 

Inputs     
w1 Labor $/working day 4.1 

w2 Water $/m3 0.1 

w3 Variable inputs 
 

1.04 

w4 Land $/hectare per year 352.9 

Externalities     
r1 Pesticide toxicity $/EIQ 0.15 

r2 N pollution $/kg NO3-N 2.00 

r3 Greenhouse gas emissions $/ton CO₂-eq. 19.00 

 

Determinants of Nerlovian social profit inefficiency 

We selected twelve socio-economic and management variables (Table 5.3) as 

potential determinants of NI and its components. The socio-economic variables were: 

(i) distance of the farm to the fertilizer shop (measured in kilometers); (ii) distance of 

the farm to the closest city/town center (measured in kilometers); (iii) distance to the 

closest coffee trader/factory (measured in kilometers); (iv) family members 

                                                 
4 No additional price estimates were needed for ‘variable inputs’ because these inputs were 
already defined in monetary terms (Table 5.1).  
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(measured as the number of family members); (v) two variables representing the 

education of the husband and the education of the wife (each measured as a 

categorical variable, where 0 reflects five years of primary education, 1 reflects an 

additional 4 years of intermediate education, and 2 reflects an additional 3 years of 

secondary education); and (vi) ethnic group (binary variable, where 0 refers to the 

ethnic group Kinh, which is the major group in Vietnam, and 1 to the ethnic group 

JoRai). Five explanatory variables reflecting management practices in coffee 

production were included: the frequency of (i) pruning, (ii) fertilization, (iii) weeding, 

and (iv) pest and disease control (each measured as the number of times that the 

activity is performed in one production cycle), and (v) the share of hired labor in total 

labor (measured as the percentage of total labor). Only coffee farms with complete 

information for the selected variables were used in the bootstrap truncated regression: 

302 of the 361 coffee farms in the sample were used.   

 

Table 5.3 Descriptive statistics for socio-economic characteristics and management practices 

(302  DMUs). 

Variable Unit Mean Std. dev. Min. Max. 

Continuous variables           

Distance to fertilizer shop kilometers 2.3 2.2 0.1 12.0 

Distance to city/town center kilometers 36.4 6.8 2.0 53.0 

Distance to coffee 

factory/trader 
kilometers 3.3 3.0 0.0 15.0 

Family members number 4.0 2.0 1.0 9.0 

Hired labor % of total labor 39.3 23.8 0.0 94.6 

Pruning frequency 6.4 2.6 0.0 11.0 

Spraying frequency 0.4 0.6 0.0 2.0 

Fertilizing frequency  3.9 1.2 1.0 7.0 

Weeding frequency 4.8 1.6 0.0 9.0 

Categorical variables      

Education husband  1.1 0.6 0.0 2.0 

Education woman  1.0 0.6 0.0 2.0 

Ethnic group  0.1 0.3 0.0 1.0 

Education = 0 reflects primary education, 1 reflects intermediate education, and 2 reflects secondary 

education); Ethnic group = 0 refers to the ethnic group Kinh and 1 to the ethnic group JoRai 
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We hypothesized that the inefficiency scores (NI, PTI, SI, and AI) are positively 

associated with the variables related to distance, spraying, and ethnic group, and that 

the inefficiency scores are negatively associated with family members, hired labor, 

pruning, fertilizing, weeding, and education. Our hypotheses are based on the 

following assumptions: 

- The greater the distance to the fertilizer shop, town/city center, and coffee 

factory/trader, the more difficult or costly it is for farmers to commercialize 

products and to have access to credit and extension services;  

- A large number of spraying events indicates overuse of biocides;  

- The JoRai ethnic group has lower profit maximization behavior in comparison to 

the Kinh group (Tran 2007); 

- Families with more members have more potential labor (time) to allocate to coffee 

production; 

- Higher education levels of adults indicate higher managerial skills and specific 

professional training (Picazo-Tadeo et al. 2011);  

- Hired labor is better qualified to perform (particular) field activities (Latruffe et al. 

2004), hence a more efficient use of labor is achieved with hired labor; and  

- More frequent pruning, fertilizing, and weeding leads to better crop productivity, 

because the availability and uptake of nutrients is higher, which in turn leads to 

more efficient use of inputs.  

 

Results 

Composition of the Nerlovian social profit inefficiency  

Table 5.4 presents summary statistics for the observed social profits, the computed NI 

scores, and the decomposition into PTI, SI, and AI.  

The average observed social profit for our sample of coffee farms in Vietnam is 

approximately $2,300. The distribution of the observed social profits shows that 95% 

of the sampled coffee farms obtained a positive social profit. This indicates that, on 

average, the revenues of coffee sales cover the costs of inputs used in coffee 

production as well as the social costs associated with the environmental externalities. 
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However, our results show a large potential for improvement in social profit. NI scores 

for our sample range between 0.00 and 4.76, with mean values per quartile5 varying 

between 0.36 and 1.47 (Table 5.4). 

 

Table 5.4 Mean values for the total sample and mean values for each quartile (Q1 – Q4) for the 

observed social profit and NI, PTI, SI, and AI scores. The Q1 group represents the farms with the 

lowest inefficiency scores and the Q4 represents the farms with the highest inefficiency scores.  

Variable   Mean        Std. dev.        Q1         Q2        Q3       Q4 

Observed social profit 2,279.3 1,829.7 3,949.6 2,334.4 1,877.8 959.7 

NI  0.84 0.48 0.36 0.62 0.89 1.47 

PTI  0.26 0.15 0.14 0.22 0.31 0.38 

SI 0.02 0.05 0.01 0.02 0.03 0.03 

AI 0.56 0.40 0.21 0.38 0.55 1.06 

PTI = pure technical inefficiency; SI = Scale inefficiency; AI = Allocative inefficiency.  NI = Nerlovian 

social profit inefficiency = PTI + TI + AI 

 

The NI indicator equals zero when the observed farm is located on the production 

frontier. This means that, on average, the farms in our sample could increase their 

social profit by at least 290%, that is, 84% or more of the value of the NI denominator 

(normalization of the NI indicator).  This can be achieved by choosing an optimal mix 

of inputs, outputs, and externalities at given prices and, if the production potential is 

fully used.   

The decomposition of the NI scores into the three components highlights the following 

findings. (1) Up to 67% of the social profit inefficiency (allocative inefficiency accounts 

for 0.56 of the value of the NI denominator, which is 0.84) can be attributed to 

allocative inefficiency. This component is the main source of social profit inefficiency. 

Hence, a significant improvement in sustainability performance could be achieved by 

choosing a better combination of inputs and pollution levels in coffee production. (2) 

Pure technical inefficiency, with 26% of the value of the NI denominator, is the second 

source of social profit inefficiency. Although we did not find any study that used a DDF 

                                                 
5 Each quartile consists of 25% of farms. The first quartile (Q1) represents the farms with the 
lowest NI scores and Q4 represents the farms with the highest NI scores. 
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to measure the pure technical inefficiency of coffee farms in Vietnam, our results are 

similar to those found by Rios and Shively (2005), who estimated a technical 

inefficiency of about 18% for Robusta coffee farms in Dak Lak province. (3) The loss of 

social profit due to scale inefficiency is small in our sample, suggesting that farmers 

generally operate close to the optimal size and therefore there is little potential to 

improve the efficiency of production by adjusting the scale at which they operate.  

Table 5.5 presents the results of the decomposition of NI scores to identify the output-

specific, input-specific, and externality-specific contributions. The results of this 

decomposition highlight the following findings. (1) The main source of NI is under-

production of the output; the production of most coffee farms is low, compared to the 

maximum possible production level. (2) Inputs in coffee production are, on average, 

under-used in our sample. The use of variable inputs can be increased to reach 

optimum coffee production levels. However, we cannot indicate which variable input 

(fertilizers or biocides) contributes the most to the increase. (3) The quantities of 

externalities produced are generally close to the optimum levels.   

  

Table 5.5 Mean values for the total sample and each quartile (Q1 – Q4) for the decomposition of 

NI scores into output-specific, input-specific, and externality-specific inefficiencies. The Q1 

group represents the farms with the lowest NI scores and the Q4 represents the farms with the 

highest NI scores.   

    Mean      Q1      Q2    Q3     Q4 

Coffee 1.13 0.54 0.86 1.17 1.97 

Labor -0.16 -0.09 -0.13 -0.16 -0.27 

Water -0.01 -0.01 -0.01 -0.01 -0.02 

Variable inputs -0.10 -0.06 -0.07 -0.09 -0.17 

Pesticide toxicity 0.00 0.00 0.00 0.00 0.00 

N pollution -0.02 -0.01 -0.01 -0.01 -0.03 

Greenhouse gas emissions -0.01 0.00 0.00 -0.01 -0.01 

NI 0.84 0.36 0.62 0.89 1.47 

A positive (negative) sign for the output indicates that it is under-produced (over-produced).  
A positive (negative) sign for the inputs indicate that they are over-used (under-used).  
A positive (negative) sign for the externalities indicates that these are produced above (below) 
the optimum pollution level.  
The land input is not included as it is taken as fixed factor of production.  
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The sustainability of coffee production in Vietnam depends on the world market price 

of coffee and on the local prices of labor, variable inputs, and water. We conducted a 

sensitivity analysis to explore the effect of changes in these prices on the sustainability 

of coffee production in Vietnam. A further reason for the sensitivity analysis is the 

likelihood that we underestimated the price of water.  

 

Table 5.6 Maximum attainable and observed values for social profits and quantities of outputs, 

inputs, and externalities for the three price changes. Change 1: reduction of coffee price by 15%; 

Change 2: increase in the unit price of labor by 40%; Change 3: a one dollar increase in the unit 

price of water. 

Variable Unit   Current Change 1 Change 2 Change 3 

Social Profit $ 
Max. 7475.3 5500.0 6711.4 5368.7 

Obs.a 2128.9 1332.5 1761.0 732.6 

Outputs             

Coffee tons GBE 
Max. 6.8 6.3 6.5 5.5 

Obs. 2.6 2.6 2.6 2.6 

Inputs             

Labor working days  
Max. 482.0 410.4 433.6 282.0 

Obs. 226.6 226.6 226.6 226.6 

Water m3 
Max. 2200.0 2030.5 2085.3 1723.0 

Obs. 1396.4 1396.4 1396.4 1396.4 

Variable 

inputs 
$ 

Max. 1465.8 1227.5 1304.6 799.9 

Obs. 877.2 877.2 877.2 877.2 

Externalities             

Pesticide 

toxicity 
EIQ 

Max. 52.2 37.5 42.2 11.4 

Obs. 17.6 17.6 17.6 17.6 

N pollution kg NO3-N 
Max. 192.0 151.0 164.3 77.3 

Obs. 142.2 142.2 142.2 142.2 

Greenhouse 

gas emissions tons CO2-eq. 
Max. 6.0 5.0 5.3 3.3 

Obs. 4.0 4.0 4.0 4.0 

a. Under the three price changes, the revenues and expenditures change. Therefore, the term 

"observed social profit", in this case, refers to the social profit that would be obtained under each 

price change. The term “observed” for the output, inputs and externalities refers to the actual 

quantities. 
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In the sensitivity analysis, we analyzed the sensitivity of the results for three price 

changes: (1) a reduction in the unit price of coffee of 15%, (2) an increase in the unit 

price of labor of 40%, and (3) a one dollar increase in the unit price of water. The 

latter price change reflects the internalization of external costs that might result from 

reduced groundwater availability, changes in recharge and discharge patterns, 

waterlogging, salinity, and loss of biodiversity.  

The results of the sensitivity analysis in Table 5.6 show that the maximum attainable 

social profits decreased by 26%, 10%, and 28%, and the observed social profits by 

37%, 17%, and 66% for the price change 1, 2, and 3, respectively. Equally important, 

the distribution of the observed social profits shows that the percentage of farms in 

the sample that obtained a positive social profit declined from 95% to 88% under 

price change 1, 92% under price change 2, and 69% under price change 3. Maximum 

attainable social profit and observed social profit are both lower in the three price 

changes because fewer economic resources are available for production. To maximize 

social profits, farmers have to reduce their expenditures by allocating fewer economic 

resources, especially for those inputs for which the price has increased, which in turn 

would imply a lower production of coffee beans and a lower gross income. 

 

Determinants of Nerlovain social profit inefficiency 

After the calculation of NI and its components PTI, SI, and AI, the next step was to 

explore the effect of socio-economic characteristics and management practices on the 

sustainability performance of the farms. Table 5.7 presents the coefficient estimates 

and confidence intervals for the bootstrap truncated regression of the NI scores and 

the PTI, SI, and AI components. The dependent variables are framed in terms of 

inefficiency, so a positive (negative) coefficient indicates greater (lower) inefficiency. 

Most of the explanatory variables were found to be highly statistically significant in 

explaining farm-specific NI scores (Table 5.7), and are mainly associated with 

allocative inefficiencies. Exceptions are the variables distance to the fertilizer shop, 

family members and weeding and the categorical variables for education. None of these 

variables have a statistically significant effect on social profit inefficiency or its 

components.  
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Distance to city/town center: The positive effect on farm-specific NI scores and the AI 

component shows that distance is associated with a higher inefficiency in social profit; 

this effect is attributable to allocative inefficiency. This result suggests that farmers 

farther away from city or town centers may have less access to credit, which may 

hamper an efficient allocation of inputs (The World Bank 2004). Distance of the farm 

could also increase the costs of bringing inputs to the farm and hiring labor. 

Furthermore, extension services may have more difficulty to reach remote areas of 

Vietnam.  A study by the World Bank (2004) stated that, although the Vietnamese 

government has attempted to improve the access of farmers to extension services, 

poor infrastructure still reduces access for those farmers located further from centers. 

Distance to coffee factory/traders:  The positive values for NI and AI indicate that 

greater distance to regional traders leads to higher social profit inefficiency; this effect 

is mainly due to an inefficient allocation of resources (AI). Most farmers in Vietnam 

sell their coffee production to regional traders or deliver it themselves to coffee 

processing factories (The World Bank 2004). Farmers located farther away from 

traders need to allocate more economic resources, i.e. labor and time, to the 

transportation of coffee. Hence, a larger distance could lead to sub-optimal allocation 

of inputs and outputs. 

Hired labor: NI, PTI, and AI all have negative coefficients associated with the share of 

hired labor. This shows that greater use of hired labor decreases pure technical 

inefficiency and allocative inefficiency, thereby leading to lower social profit 

inefficiency. Hired labor is generally more qualified to perform specialized tasks, 

compared with family labor (Latruffe et al. 2004, 2008). Coffee plantations with 

higher productivity levels tend to use labor more efficiently, as more time is spent on 

picking from heavily loaded trees and relatively less time is needed to find the 

cherries and to walk from tree to tree. Therefore, a higher use of specialized hired 

labor may be associated with more productive farms. More efficient use of labor 

reduces labor costs and increases the profitability of the coffee farm. 

Ethnic group: The variable ethnic group has a negative effect on the NI, PTI, and AI 

scores. This indicates that the minority group JoRai has a lower pure technical 

inefficiency and a better allocation of resources than the other ethnic group. 
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This finding is contrary to our expectations, as minority groups, such as the JoRai, 

often farm areas that are less favorable for coffee production and sometimes cannot 

afford to purchase inputs, such as fertilizers and water (Thang 2011; The World Bank 

2004). 

One reason for the lower social profit inefficiency could be the higher dependency of 

the JoRai on coffee production for their livelihood. Consequently, the members of this 

group may undertake key farm activities, such as pruning and fertilizing, with more 

care. In contrast, the Kinh people tend to have relatively more diversified sources of 

income (The World Bank 2004; Tran 2007). Thus, less effort and family labor may be 

allocated to coffee production 

Pruning: The negative coefficient for NI shows that the frequency of pruning activities 

is negatively associated with social profit inefficiency, consistent with our 

expectations. More frequent pruning improves ventilation and increases reception of 

sunlight, avoids excessive competition for nutrients and water between the cherries, 

and reduces non-productive structures of trees (Kuit et al. 2004; Wintgens 2009). 

Additionally, a part of the nutrients taken up by coffee trees is available to coffee 

plants in following years, by placing the pruning residues into soils (van der Vossen 

2005). Coffee trees with better structural and physiological characteristics have 

higher yields and therefore reduce the social profit inefficiency of coffee farms.  

Spraying: NI, PTI, and AI are all positively associated with spraying, meaning that more 

applications of biocides increase the social profit inefficiency, and the technical and 

allocative inefficiencies. The most likely reason is that the application of biocides is 

not effective, especially for control of fungal diseases and insect pests, possibly due to 

improper use of biocides and incorrect timing of spraying. Coffee plantations with 

higher incidences of diseases and pests may also require more frequent use of 

pesticides to maintain productivity. However, as most farms in the sample are 

operating under similar agro-ecological conditions, there is little difference in the 

intensity of diseases and pests (observation by Don M. Jansen).  

Fertilizing: The coefficient for the effect of fertilizing on farm-specific NI scores is 

statistically not significant. However, coefficients for the effect of fertilizing on AI and 

PTI scores indicate that these are statistically significant. This effect is complex 

however, as increasing the frequency of fertilizer application increases the PTI 
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component, but reduces the AI component. An explanation for the positive effect on 

PTI is that more frequent application of fertilizers implies higher input use per unit of 

output, and therefore increased pure technical inefficiency. An explanation for the 

negative effect on AI is suggested by the results of a previous study on fertilizer 

application (Kuit et al. 2004; Tillman 2002). These studies showed that an adequate 

application of fertilizers during periods of greatest crop demand, in smaller and more 

frequent applications, was positively related to reduced nutrient losses and 

improvements in yields.  Hence, a higher allocation of labor for this activity is 

expected to decrease the allocative inefficiency, and thereby the social profit 

inefficiency. 

 

Policy implications 

The net benefits to society of coffee production can be maximized by minimizing the 

conventional and external costs of coffee production and maximizing the revenues. 

The results of this study can help farmers, researchers, and policy makers identify 

opportunities to improve the sustainability performance of coffee farms in Vietnam.  

At the farm level, the inefficiency in social profit may be greatly reduced by decreasing 

the inefficient use of nutrients. An optimal use of nutrients not only positively affects 

coffee yields, but also reduces greenhouse gas emissions, reduces the emission of 

nitrates into soils and water bodies, and leads to a lower need for the application of 

pesticides. Greater use of pesticide inputs is caused, in some cases, by nutrient 

deficiencies or over-fertilization of coffee plantations (Kuit et al. 2004). Corrective 

actions to reach an optimal use of fertilizer inputs would reduce expenditures and the 

amount of labor required to perform activities, such as weeding and spraying. Some of 

the labor used to perform these activities could then be allocated to other activities, 

such as pruning, which are negatively associated with social profit inefficiency.  

At the regional level, we recommend that policies stimulate the adoption of optimal 

management practices on farms (proper timing and frequency). An appropriate policy 

tool is the provision of technical assistance by extension services. In remote areas, 

where access to extension services is limited, the focus should be on first improving 

access.  This is expected to provide additional benefits: (1) help integrate the coffee 

chain (producers, traders, and processing companies), (2) increase the bargaining 
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power of farmers (access to information on coffee prices, traders, and new products 

and technologies) and, (3) increase the access of farmers to credit. 

Finally, we recommend performing an in-depth study on the management of coffee 

farms by the JoRai ethnic group. These farmers were found to be less inefficient in 

terms of social profit. The results of the study can be used to identify best 

management practices; extension services can then disseminate this information and 

stimulate the adoption of best management practices on more inefficient farms. 

 

Conclusions 

This paper compared the sustainability performance of a sample of coffee farms in 

Vietnam using the Nerlovian social profit inefficiency (NI) indicator. Furthermore, this 

study identified the socio-economic characteristics and management practices that 

affect social profit inefficiency. The results show that farms, on average, could improve 

their social profits by almost three times the current social profit levels (84% of the 

value of the NI denominator). This suggests a large potential for performance 

improvements. The main source of NI is allocative inefficiency (58% of the value of the 

NI denominator), rather than pure technical inefficiency or scale inefficiency. The 

determination of variable-specific contributions to NI provides evidence of the 

sources of inefficiency. The comparison between the actual and optimal quantities of 

each specific output, input, and externality reveals that inefficiencies are mainly 

driven by the low level of coffee production and the under-utilization of inputs, 

particularly labor and variable inputs. Most coffee farms have optimum pollution 

levels, given the shadow prices of externalities and the prices of inputs and outputs.  

The assessment of the external determinants of NI shows that most of the selected 

variables (socio-economic characteristics and management practices) have 

statistically significantly effects on inefficiency. Farm-specific NI scores are positively 

associated with the variables distance to city/town center, distance to traders and 

spraying. Farm-specific NI scores are negatively associated with the following 

variables: hired labor, ethnic group, pruning, and fertilizing. Corrective actions to 

ensure the efficient use of inputs and the correct timing and frequency of farm 

management activities would reduce social profit inefficiency for most coffee farms.   
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Although our study focused on assessing the relative sustainability performance of 

coffee production at the farm level, this can be extended to include other stages 

throughout the coffee chain. Future development of this sustainability assessment 

approach could provide a decision support tool that can be used to translate the 

concept of sustainability into concrete management actions, thereby helping to 

maximize the total net benefits to society of food production. 
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Annex 5A. 
 

The maximum social profit is obtained by solving the following linear programming 

model:  

 

Π(𝑝, 𝑤, 𝑟, 𝑓) = 𝑚𝑎𝑥
𝑦,𝑥,𝑏

(∑ 𝑝𝑚𝑦𝑚

𝑀

𝑚=1

− ∑ 𝑤𝑛𝑥𝑛

𝑁

𝑛=1

− ∑𝑟𝑗𝑏𝑗

𝐽

𝑗=1

) 

𝑠. 𝑡.  

∑ 𝛼𝑘𝑦𝑚
𝑘 ≥ 𝑦𝑚,     𝑚 = 1,2, … ,𝑀

𝐾

𝑘=1

 

∑ 𝛼𝑘𝑥𝑛
𝑘 ≤ 𝑥𝑛 ,     𝑛 = 1,2, … , 𝑁

𝐾

𝑘=1

 

∑ 𝛼𝑘𝑓𝑑
𝑘 ≤ 𝑓𝑑

𝐾

𝑘=1

,     𝑑 = 1,2, … , 𝐷 

∑ 𝛼𝑘𝑏𝑗
𝑘 ≤ 𝑏𝑗 ,     𝑗 = 1,2, … , 𝐽

𝐾

𝑘=1

 

𝛼 ≥ 0;       𝑘 = 1,2… , 𝐾 

 

 

The model yields the optimum output, input and externality combinations that 

provide the maximum attainable social profit given the production technology, prices 

(shadow), and the available level of the fixed inputs.  

In the model, the set  𝛼 of intensity variables is restricted to be greater or equal to zero, 

implying a production technology that exhibits constant returns to scale (CRS).  

 

 

 



Chapter 5 
 
 

182 
 

The Overall Technical Inefficiency (OTI) and Pure Technical Inefficiency (PTI) 

component for DMU k’ is obtained by solving the following linear programming model: 

 

 

𝐷𝑇
𝑘′⃗⃗ ⃗⃗ ⃗⃗  (𝑦𝑘 , 𝑥𝑘, 𝑓𝑘 , 𝑏𝑘; 𝑔𝑦 , 𝑔𝑥, 𝑔𝑏|𝐶𝑅𝑆) = 𝑚𝑎𝑥𝛽 

𝑠. 𝑡.  

∑ 𝛼𝑘𝑦𝑚
𝑘 ≥ 𝑦𝑚

𝑘′
+ 𝛽𝑔𝑦 ,     𝑚 = 1,2, … ,𝑀

𝐾

𝑘=1

 

∑ 𝛼𝑘𝑥𝑛
𝑘 ≤ 𝑥𝑛

𝑘′
− 𝛽𝑔𝑥 ,     𝑛 = 1,2, … , 𝑁

𝐾

𝑘=1

 

∑ 𝛼𝑘𝑓𝑑
𝑘 ≤ 𝑓𝑑

𝑘′

𝐾

𝑘=1

,     𝑑 = 1,2, … , 𝐷 

∑ 𝛼𝑘𝑏𝑗
𝑘 ≤ 𝑏𝑗

𝑘′
− 𝛽𝑔𝑏 ,     𝑗 = 1,2, … , 𝐽

𝐾

𝑘=1

 

𝛼𝑘 ≥ 0;       𝑘 = 1,2… , 𝐾 

 

 

The Overall Technical Inefficiency (OTI) is computed with this model that has a set  𝛼𝑘 

of intensity variables that is restricted to be greater or equal to zero, implying a 

production technology that exhibits constant returns to scale (CRS). To compute the 

Pure Technical Inefficiency (PTI) the CRS assumption is relaxed to assess the DMUs 

under a production technology that exhibits variable returns to scale.  In this case the 

sum of intensity variables is constrained to be equal to one  ∑ 𝛼𝑘 = 1𝐾
𝑘=1 .  
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Annex 5B.  

Underlying assumptions, data and the related sources used for the calculation of the 

externalities and their respective shadow prices. 

 

Nitrate pollution 

A tentative Nitrogen (N) balance was calculated to estimate the nitrate pollution 

externality. As it is assumed that coffee farm systems are in equilibrium with respect 

to N in the system, the nitrate pollution (leaching) externality was calculated for each 

coffee farm as the difference between the N that enter the system (N inputs) and the N 

that leaves the system (N outputs and N loss): 

 

 
𝑁𝑂3

− − 𝑁 =  𝑁 𝑖𝑛𝑝𝑢𝑡𝑠 – (𝑁 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 + 𝑁 𝑙𝑜𝑠𝑠) ∗ 𝐹𝑝𝑜𝑙, 

 

 

Where: N inputs = amount of N in fertilizers (synthetic and organic) + N amount in 

residues; N outputs = amount of N in harvest material; N loss = N loss via background 

N2O-N emissions (N2O-N+NO-N) + fertilizer induced and crop residue N2O-N 

emissions (N2O-N+NO-N) + volatilization (NH3-N and NO-N). Fpol = given that  about 

50% of the difference between the N that enters and leaves the system remains stored 

in soils and plants for several years in the permanent framework of roots, stems and 

branches (Van der Vossen 2005), it is assumed that only the remaining 50% causes 

nitrate pollution problems. 

 

N inputs: 

N amount in fertilizers (NI) 

Nitrogen inputs via fertilizer were estimated by multiplying the quantity of fertilizer 

(synthetic and organic) in kilograms by the known (or estimated) N concentration. 

 

 
𝑁𝐼𝑖 = 𝐹𝑖 ∗ 𝐶𝑁𝑖,  
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Where: Fi = amount of fertilizer type i (kg product year-1); CNi: N concentration in 

fertilizer i (kg N per kg product). 

 

N content in residues (NR) 

Nitrogen inputs via crop residues were estimated by calculating the annual amount of 

pruning residues (kg of dry matter per year), times the average estimated N 

concentration per kg of dry matter (% N per kg dry matter). As it is assumed that the 

amount of pruning residues proportionally increases with the number of coffee trees 

our estimate was corrected for each farm according to number of trees per hectare.  

 

 
𝑁𝑅 = 𝑅 ∗ 𝐶𝑁𝑅 , 

 

 

Where: R = amount of residues (kg dry matter year-1); CNR = N concentration in 

residues (kg N per kg dry matter). 

  

N harvest material (NH) 

Nutrient export through the coffee harvest was estimated using yield data and 

published values of nutrient removal in coffee beans.  

 

 
𝑁𝐻 = 𝑌 ∗ 𝐶𝑁𝐻 ,  

 

 

Where: Y = yield (kg year−1); CNH = N concentration in harvest (kg N per kg of coffee 

cherries). 

 

N loss: 

N loss via N2O and NO background emissions 

Based on IPCC (2006) N loss as N2O-N+NO-N in background emissions is of about 16 

kg N2O–N ha−1 yr−1, which refers to the mineralization rates in tropical climates. 
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𝑁2𝑂(𝑏𝑘𝑔) − 𝑁 = 𝐸𝐹𝑏𝑘𝑔 ∗ 𝑎𝑟𝑒𝑎, 

 
 

Where: N2O(NIR)–N= annual background N2O–N emissions from tropical areas (kg N2O–

N yr-1); EFbkg = emission factor annual direct N2O–N emissions from tropical areas (kg 

N2O–N yr-1). The default value f is 16 kg N2O–N ha year as it is assumed to be twice the 

N2O emission for temperate climates (mineralization rates are assumed to be about 2 

times greater in tropical climates) (IPCC 2006). 

 

Nitrogen loss via fertilizer and crop residues – N2O emissions 

N2O-N (N2O-N+NO-N) emissions were estimated based on the generic emission factors 

of Bouwman et al. (2002) which reflect the percentage of applied N for different 

fertilizer types that is lost via N2O-N and NO-N emissions. N loss via N2O fertilizer 

induced and crop residue emissions is estimated as: 

 

 

𝑁2𝑂(𝑁𝐼𝑅) − 𝑁 = ∑𝑁𝐼𝑖 ∗ 𝐸𝐹(𝑁𝐼𝑖)

𝑖

+ 𝑁𝑅 ∗ 𝐸𝐹(𝑅), 

 

 

Where: N2O(NIR)–N = annual amount of N2O–N produced from fertilizer use and crop 

residues (kg N2O–N yr-1); NIi =  N amount via fertilizer i (kg N yr-1); NR =  applied N via 

crop residues (kg N yr-1); EF(NIi) = Bouwman N2O-N (N2O-N+NO-N) emission factor for 

fertilizer i (kg N2O–N per kg N-1) (Table 5B.1); EF(R) = N2O-N emission factor for crop 

residues (kg N2O–N per kg N-1). Based on the IPCC (2006) the emission factor for crop 

residues is 1%.  

 

N loss via NH3 volatilization 

Nitrogen loss via NH3 volatilization is estimated using Tier II IPCC (2006) as: 

 

 

𝑁2𝑂(𝑉) − 𝑁 = [∑𝑁𝐼𝑖 ∗ 𝐹𝑟𝑎𝑐𝑉𝑖

𝑖

+ (𝑁𝑅 ∗ 𝐹𝑟𝑎𝑐(𝑅)) ] ∗ 𝐸𝐹(𝑉), 
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Table 5B.1 Generic emission factors (EF(NIi)) as percentage of applied N for different fertilizer 

types (Bouwman et al. 2002). 

Fertilizer type 
Bouwman N2O-N 
(N2O-N+NO-N)- 

EF(NIi) 

Volatilization (NH3) - 
FracVi 

Ammonium Bicarbonate  0.0107   

Ammonium nitrate 0.0101 0.037 

Ammonium sulphate 0.0107 0.013 

Ammonium sulphate nitrate  0.0105   

Anhydrous ammonia  0.0107 0.011 

Calcium ammonium nitrate 0.0099 0.022 

Calcium nitrate  0.0088 0.009 

Compound NK  0.0088 0.037 

Compound NPK  0.0094 0.037 

Diammonium phosphate  0.0094 0.113 

Kainit / Magnesium Sulphate 0.0000   

Lime - 52% CaO 0.0000   

Limestone - 55% CaCO3 / 29%CaO 0.0000   

Lime, algal - 30% CaO 0.0000   

Monoammonium phosphate  0.0094 0.113 

Muriate of potash / Potassium Chloride  0.0000   

Phosphate/Rock Phosphate  0.0000   

Potassium sulphate  0.0000   

Super phosphate  0.0000   

Triple super phosphate  0.0000   

Urea  0.0112 0.243 

Urea ammonium nitrate solution 0.0057 0.125 

Compost (zero emissions) 0.0037   

Manure 0.0037   

Emission factors for N2O-N fertilizer induced emissions from soils (kg N2O-N kg N year-1)  

(Bouwman et al. 2002); Emission factors for total NH3 emissions from soils due to N fertilizer 

volatilization and foliar emissions (kg NH3 kg N year-1) EMEP and EEA (2013) 

 

Where: N2O(V)–N = annual amount of N2O–N produced from atmospheric deposition of 

N volatilized (kg N2O–N yr-1); NIi = amount of N applied via fertilizer i (kg N year-1); NR 

= applied N via crop residues (kg N yr-1); FracVi =  fraction of fertilizer i that volatilizes 

as NH3 (kg N applied year-1) (Table 5B.1); Frac(R) = fraction of N in crop residues that 
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volatilizes as NH3 (kg N year-1); EF(V) = emission factor for N2O emissions from 

atmospheric deposition of N on soils and water surfaces (kg N-N2O per kg NH3–N 

volatilized year-1).  

 
Global Warming Potential 

The Global Warming Potential (GWP) of the greenhouse gases (GHGs) emitted in a 

coffee farm is the result of the sum of the emission of GHG 𝑖 (kg CO2, CH4 and N2O) 

times its global warming potential over a time frame of 100 years (Table 5B.2).  

 

Table 5B.2 Global Warming Potential of greenhouse gases (GWPs) 

Carbon dioxide CO2-eq./kg CO2 1.00 

Methane CO2-eq./kg CO2 25.00 

Nitrous Oxide CO2-eq./kg CO2 298.00 

Source: IPCC (2006)   

 

We estimated the emission of GHGs in coffee production as:  

 

 
𝑇𝑜𝑡𝑎𝑙 𝐺𝑊𝑃 = 𝐺𝐻𝐺(𝑒𝑚𝑏𝑜𝑑𝑖𝑒𝑑) + 𝐺𝑊𝑃(𝑁2𝑂), 

 

 

Where: GWP come from the emission of GHGs from two different sources: 1) emission 

of GHGs embodied in fertilizers and pesticides, GHG(embodied) and 2) N2O emissions 

from managed soils, GWP(N2O). 

 

Greenhouse Gas Emissions embodied in fertilizer and pesticide production: 

GHGs emitted in the production of the fertilizers and inputs that are used in coffee 

production. The GHGs embodied in inputs (CO2-eq. year-1) are estimated as: 

 

𝐺𝐻𝐺(𝑒𝑚𝑏𝑜𝑑𝑖𝑒𝑑) = ∑𝐹𝑖 ∗ 𝐸𝐹𝐹𝑖

𝑖

+ ∑𝑃𝑗 ∗ 𝐸𝐹𝑃𝑗
 ,

𝑗
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Table 5B.3 Emission Factors of production of fertilizers (CO2-eq. per kg N; kg P2O5 , kg K2O or 

product). 

Fertilizers 
Emission Factor per 

kg 
Unit 

Ammonium nitrate - 35% N 11.80 (10.18-16.71) per kg N 

Ammonium sulphate - 21% N 5.20 (1.69-8.17) per kg N 

Ammonium sulphate nitrate - 26%N a 1.14 per kg product 

Anhydrous ammonia - 82% N 6.36 (5.16-7.98) per kg N 

Calcium ammonium nitrate -27% N 11.86 (10.24-16.77) per kg N 

Calcium nitrate - 15% N a 1.49 per kg product 

Compound NK - 14% N; 44% K2O
 a 2.67 per kg product 

Compound NPK 15%N 15% K2O 15% P2O5 8.98 (8.11-9.67) per kg N 

Diammonium phosphate - 18% N; 46% P2O5 6.76 (3.97-8.38) per kg N 

Kainit / Magnesium Sulphate - 11% K2O; 5% 

MgO a 
0.00 per kg product 

Lime - 52% CaO 0.074 (0.054-0.089) per kg lime 

Monoammonium phosphate - 11% N; 52% P2O5 7.06 (2.42-9.37) per kg N 

Muriate of potash / Potassium Chloride - 60% K2O 0.91 (0.62-1.12) per kg K2O 

Phosphate/Rock Phosphate - 25% P2O5 0.31 (0.03-0.34) per kg P2O5 

Potassium sulphate - 50% K2O; 45% SO3 0.31 (0.08-0.37) per kg K2O 

Single Super phosphate - 21% P2O5 0.21 (-1.10-0.74) per kg P2O5  

Triple super phosphate - 48% P2O5 0.59 (-0.07-0.83) per kg P2O5  

Urea - 46.4% N 7.41 (6.64-8.34) per kg N 

Urea ammonium nitrate solution - 32% N (UAN) 9.65 (5.23-17.12) per kg N 

Compost (zero emissions) - 1% N a 0.00 per kg product 

Compost (fully aerated production) - 1% N a 0.24 per kg product 

Compost (non-fully aerated production) - 1% N a 0.36 per kg product 

Source: Values for China and India in Kool et al. (2012). a. Not available values for China-India were 

taken from The European Fertilizer Manufacturers Association (EFMA, 2002) in Cool Farm Tool. 

 

Where: Fi = amount of fertilizer type i (kg product year-1); Pj = amount of active 

pesticide ingredient j (kg active pesticide ingredient year-1); EFFi = CO2-eq. emission 

factor for fertilizer type i (kg CO2-eq. per kg of product year-1) (Table 5B.3); EFPj = CO2-



Sustainability metrics for agri-food supply chains 
 

189 
 

eq. emission factor for pesticide type j (kg of CO2-eq. per kg of active pesticide 

ingredient year-1) (Table 5B.4).  

 

Table 5B.4 Emission Factors of production of pesticides (CO2-eq. per kg a.i.). 

Herbicides CO2-eq. per kg a.i. Fungicides CO2-eq. per kg a.i. 

2, 4-D 6.23 Ferbam 4.40 

Alachlor 20.53 Maneb 7.33 

Atrazine  13.93 Captam 8.43 

Diquat 29.33 Benomyl 29.33 

Glyphosate 33.37 
Insecticides 

 

Metolachlor 20.17 Methyl Parathion 11.73 

Paraquat 33.73 Phorate 15.40 

Propachlor 21.27 Carbofuran 33.37 

Diuron 19.80 Carbaryl 11.37 

Dicamba 21.63 Cypermethrin 42.90 

Linuron 21.27 Chlorodimeform 18.33 

  Methoxychlor 5.13 

  Malathion 16.87 

Source: Values according to Lal (2004). Values were converted from C to CO2-eq using the factor 

44/12. 

 

GHG emission resulting from direct and indirect N2O-N emissions: 

 

 

𝑇𝑜𝑡𝑎𝑙 𝑁2𝑂 = (𝑁2𝑂(𝑏𝑘𝑔) − 𝑁 + 𝑁2𝑂(𝑁𝐼𝑅) − 𝑁 + 𝑁2𝑂(𝑉)) ∗
44

28
, 

 
 

Where N2O-N emissions estimated in the subsection ‘Nitrate pollution’, are converted 

to N2O emissions using the factor 44/28. 

 

𝐺𝑊𝑃(𝑁2𝑂) =  𝑇𝑜𝑡𝑎𝑙 𝑁2𝑂 ∗ 𝐺𝑊𝑃𝑁2𝑂 , 
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N2O emissions are afterwards converted to CO2-eq. by using the Nitrous Oxide Global 

Warming Potential (GWPN2O) (Table 5B.2). 

 

Table 5B.5 Description of variables, emission factors and sources. 

Variable name Variable Unit Value 
 

Source 
 

Description 

N outputs 
 

      
 

    

N concentration 
in harvest 

CNH 

kg N per 
100 kg of 
coffee 
cherries 

0.55   
Vietnam 
data 

    

N inputs     
 

  
 

    

Crop residues R 
kg dry 
matter ha-1 
year-1  

5,764   

Glover and 
Beer (1986) 
Hergoualc’h 
et al. (2008) 
 

  
 

N concentration 
crop residues 

CNR  
kg N per kg 
dry matter 

0.02   

Glover and 
Beer (1986) 
Hergoualc’h 
et al. (2008) 
Cannavo et 
al. (2013) 

  

Average 
concentration of 
N in litterfall and 
pruning (leaves 
and branches). 

N loss     
 

  
 

    

Emission Factor 
background 

EFbkg 
kg N2O–N 
ha-1 yr-1 

16   IPCC (2006)   

Mineralization 
rates are 
assumed to be 
about 2 times 
greater in 
tropical climates 
than in 
temperate 
climates. 

Emission Factor 
crop residues 

EF(R) 
kg N2O–N 
per kg N 

year-1 
0.01   IPCC (2006)   

N losses from 
crop residues 
are comparable 
with application 
of N in fertilizers 
and manure. 

N2O emission 
factor from N 
volatilized 

EF(V) 

kg N2O-N 
per kg 
NH3–N 
volatilized 
year-1 

0.01   IPCC (2006)     

Fraction of N in 
fertilizers and 
crop residues 
that volatilizes  
 

Frac(R) 

kg NH3-N 
per kg of N 
additions 
year-1 

0.10   IPCC (2006)     
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Shadow price Pesticide toxicity 

Shadow price for the environmental, farmworker and consumer toxicity of pesticide use: 

First step: External costs associated with the application of one kg of pesticide active 

ingredient reported by Pretty et al. (2001), were redistributed over the three 

components of the EIQ model, i.e. environmental, farmworker, and consumer 

components (derived from Leach and Mumford (2008) (Table 5B.6). 
 

Table 5B.6 Redistributed base values for an average active pesticide ingredient (derived from 

Leach and Mumford, 2008).  

  

 US $ per kg pesticide 

active ingredient 

Pretty et al. (2001) categories         

Sour. 

water 

Poll. 

incidents 
Biod. CLT  

Bee 

losses 
Hum. Total  

EIQ categories        

Applicator effects 0.64 ⁻ ⁻ ⁻ ⁻ 0.34 0.98 

Picker effects 0.64 ⁻ ⁻ ⁻ ⁻ 0.06 0.70 

Subtotal Farmworker 

component       
1.68 

Consumer effects 3.87 ⁻ ⁻ 0.80 ⁻ 0.02 4.69 

Ground water 0.64 0.44 ⁻ ⁻ ⁻ ⁻ 1.08 

Subtotal consumer 

component       
5.77 

Aquatic effects 0.64 0.44 0.20 0.32 ⁻ ⁻ 1.60 

Bird effects ⁻ ⁻ 0.20 0.16 ⁻ ⁻ 0.36 

Bee effects ⁻ ⁻ 0.07 0.32 0.17 ⁻ 0.56 

Beneficial insect 

effects 
⁻ ⁻ 0.20 ⁻ ⁻ ⁻ 0.20 

Subtotal 

Environmental 

component 

            2.72 

Total  6.45 0.87 0.65 1.59 0.17 0.43 10.17 

External costs estimated by Pretty et al. (2001) and redistributed to the EIQ categories and converted to 
2011 US $.  

Sourc. Water = Sources of water; Poll. incidents = Pollutions incidents; Biod. = Biodiversity; CLT = Cultural, 
landscape and tourism; Hum. = Humans 

 

Second step: The average EIQ score of an average pesticide active ingredient on each 

of the three components was estimated. It was done by listing the pesticide active 
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ingredients that were used in the USA in 2001 and collecting their respective EIQ 

scores for each component (Table 5B.7). 

 

Table 5B.7 Average EIQ score for the three components for an average pesticide active 

ingredient. 

Product a 
EIQ farmer per 

kg a.i. b 
EIQ farmer per 

kg a.i. b 
EIQ environment 

per kg a.i. b 

Glyphosate 8 3 35 
Atrazine 8 7 53.55 
Metam sodium 24.15 8.08 47.55 
2,4-D 8 5 33 
Acetochor 10.65 5.33 43.59 
Malathion 9 4.5 58 
Methyl Bromide 74 10.4 76.3 
Dichloropropene 41.4 7.9 33.95 
Metolachlor-s 12 9 45 
Metolachlor 12 9 45 
Pendimethalin 12 5.5 73 
Trifluralin 9 5.5 42 
Chlorothalonil 20 11 81.25 
Copper Hydroxide 24.3 9.05 66.25 
Cholorpyrifos 6 2 72.55 
Alachlor 10.65 5.33 37.59 
Propanil 10.65 5.33 37.59 
Chloropicrin 34.5 7.45 85.36 
Dimethenamid 9 4.5 22.55 
Mancozeb 20.25 8.13 48.79 
Ethephon 21.3 5.65 47.45 
EPTC 6 4 18.3 
Simazine 10.65 14.48 39.42 
Dicamba 12 8 59 
Sulfosate 8 6 66 
Diazinon 6.9 2.45 122.75 
MCPP 8 7 31 
Carbaryl 15 5.5 47.7 
Copper sulfate 24.3 13.15 148.25 
Chlorothalanil 20 11 81.25 
Chlorpyrifos 6 2 72.55 
Diuron 20 8.5 50.9 
MSMA 8 5 41 
DCPA 9 4 33.3 
Benefin 9 4 39 
TOTAL 15.65 6.68 55.31 

a. Derived from: Kiely et al. (2004). 
  

b. EIQ scores were obtained from the Integrated Pest Management Program, Cornell University 
2013). 



Sustainability metrics for agri-food supply chains 
 

193 
 

Third step: The redistributed base values for external costs on each component 

(Table 5B.6) were divided by their respective average EIQ scores (total values in Table 

5B.7) to obtain an external cost per unit of EIQ.  

 

Table 5B.8 External cost per unit of EIQ on each component. 

  2011 US $/EIQ 

EIQ Environment 0.05 

EIQ Farm worker 0.86 

EIQ Consumer 0.11 

 

Fourth step: To estimate the shadow price for pesticide toxicity the estimated 

external costs per unit of EIQ on each component were adjusted to reflect the 

differences in socio-economic conditions in Vietnam. Hence, the external cost per unit 

of EIQ on each component was multiplied by the factor 0.12, which represents the 

ratio of the GDP per capita of Vietnam to the average GDP per capita of the USA, 

Germany and the UK (source the World Bank 2015). In addition, the external cost unit 

for the farm worker component was adjusted by the factor 28.8, which represents the 

difference between the share of agricultural employment in Vietnam and the average 

share of agricultural employment in the USA, Germany, and the UK (derived from The 

World Bank (2015). 

 

Table 5B.9 Adjusted external cost unit estimates for the Vietnamese context and shadow price 

for the externality pesticide toxicity. 

  2009 US $/EIQ 

EIQ Environment 0.01 

EIQ Farm worker 0.10 

EIQ Consumer 0.35 

Shadow price pesticide toxicity 
0.15 
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Introduction 

The overall objective of this dissertation was to perform integrated assessments of 

relative sustainability performance of (stages of) agri-food supply chains. As described 

in Chapter 1, the overall objective was split into four sub-objectives that were 

addressed in Chapters 2-5.  

Chapter 2 developed a framework for benchmarking agri-food supply chains in terms 

of their relative sustainability performance. Depending on the aggregation method 

that is used to combine sustainability issues, two integrated indicators were proposed, 

i.e. the Social Profit indicator (also called Adjusted Profit indicator) and the Technical 

Inefficiency indicator. In this framework sustainability issues are operationalized by 

expressing them as outputs, inputs and externalities (hereafter, the expressions 

“outputs, inputs and externalities” and “variables” are used interchangeably). Key 

aspects for the implementation of the indicators such as data availability, the selection 

of sustainability issues, and sustainability standards and targets were discussed. 

Chapter 3 assessed the relative sustainability performance of two Brazilian soybean 

meal chains using the Social Profit indicator. Differences in the sustainability 

performance of both chains were assessed by means of the Bennet Total Factor 

Productivity (TFP) and Total Price Recovery (TPR) indicators. Based on the outcomes 

of this assessment, potential areas for improving the sustainability performance of 

each chain were highlighted. Chapter 4 assessed the relative sustainability 

performance (economic and environmental) of specialized potato farms in Germany 

and the Netherlands using the Social Profit indicator and the Technical Inefficiency 

indicator. Based on the decomposition of each indicator, the areas for improving the 

sustainability performance in each country were identified. In addition, the 

advantages and limitations of each indicator for the sustainability assessments were 

discussed. In Chapter 5, a third approach, the Nerlovian Social Profit Inefficiency 

indicator was used to assess the relative sustainability performance of coffee farms in 

Vietnam. Also, the impact of socio-economic characteristics and management 

practices on the estimated relative sustainability was assessed.  

This concluding chapter synthesizes the results of the four research chapters, 

discusses the implications of the results for policy makers and business stakeholders, 

outlines directions for future research and finally, it provides the main conclusions of 

the dissertation.  
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Synthesis of results 

Each of the three integrated indicators partially overcome the main weaknesses of the 

single and composite indicators/indexes that are currently used in sustainability 

assessments, i.e. incommensurability, subjectivity, comparability, multi-

dimensionality (see Chapter 1, section ‘Problem Statement’). First, the proposed 

indicators reduce the incommensurability problem in decision-making that arises 

with indicators that cover two or more dimensions of sustainability. This is possible 

by aggregating the set of outputs, inputs and externalities, into a single metric of 

relative sustainability performance by using one of two aggregation methods: prices 

or distance functions. Second, the aggregation of outputs, inputs and externalities 

using either prices or distance functions reduces the subjectivity that is implicit in 

composite indicators/indexes when aggregation is performed by using the 

practitioner’s own weighing factors. These two points are detailed in subsection 

‘Aggregation method’. Third, the three integrated indicators allow a consistent 

comparison between the relative sustainability performance of (stages of) agri-food 

supply chains. In the case of the Technical Inefficiency indicator and the Nerlovian 

Social Profit Inefficiency, Data Envelopment Analysis (DEA) is used to construct the 

performance frontier which reveals the relative performance of (stages of) chains. In 

the case of the Social Profit indicator, consistent comparison between (stages of) 

chains is performed by means of the Bennet TFP indicator and the Bennet TPR 

indicator. This point is explained in more detail in the following subsections. And 

fourth, the indicators allow for the inclusion of social implications of food production. 

However, as discussed in next subsections, which sustainability issues and thus, which 

outputs, inputs and externalities can be incorporated depends on data availability.   

The three indicators were implemented in Chapter 3, Chapter 4 and Chapter 5. Results 

in these chapters show that the indicators differ in terms of the scope to incorporate 

outputs, inputs and externalities, in the data requirements and in the information 

provided for improving relative sustainability. Also, their implementation provided 

insights in the importance of selecting the most important sustainability issues. Each 

of these points, along with a discussion of the advantages of these indicators over 

existing indicators, is discussed below (subsections ‘Aggregation method’ to 

Improvement options’) in the light of their empirical implementation. 
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Aggregation method 

Outputs, inputs and externalities were aggregated into a single measure of relative 

sustainability using prices (Chapter 3 and Chapter 4) or distance functions (Chapter 4 

and Chapter 5). In the Social Profit indicator these variables were aggregated using 

prices. Observed prices were used for the outputs and the inputs that are traded in 

well-defined markets. As there is not a well-defined market for most of the 

externalities, shadow prices were obtained from the literature and were adjusted to 

the context of the country under investigation. In this aggregation method, the 

(shadow) prices serve as social weights for the outputs, inputs and externalities, in the 

construction of the Social Profit indicator. In this respect, a high price for an output, 

input or externality indicates high Willingness to Pay (WTP) for an additional unit of a 

product or scarce resource used in production, or high WTP to reduce the impacts 

caused by the (negative) externality. It was assumed that prices adequately reflect the 

tradeoffs between economic, environmental and social issues in the relative 

sustainability assessment.  

The aggregation of outputs, inputs and externalities using distance functions did not 

require a priori weights regarding their relative importance. As shown in Chapter 4 

and Chapter 5, the computation of the distance functions in the Technical Inefficiency 

and the Nerlovian Social Profit Inefficiency indicators using DEA, generates weights 

that are determined directly from the quantity data of outputs, inputs and 

externalities. DEA assigns weights to each output, each input and each externality for a 

given chain (stage), in such a way that its ratio of weighted outputs to weighted inputs 

and externalities is maximized subject to constraints (Cooper et al. 2002; Fried et al. 

2007). The dual values of the constraints in the DEA models in Chapter 4 and Chapter 

5 are the weights assigned to outputs, inputs and externalities. Thus, in these two 

chapters, these dual values reflect the input tradeoffs, the output tradeoffs, the 

externality tradeoffs and the output-input-externality tradeoffs that a farm gives to 

each variable. This implicitly gives information on how high each output, input and 

externality is valued by a farmer.  

The aggregation of outputs, inputs and externalities using distance functions has some 

advantages over prices. First, (shadow) prices are not always available and their 

estimation can be costly and time consuming. Second, market prices can be distorted 

due to tariffs, taxation, subsidies and market failures (Kuosmanen et al. 2004). In spite 

of these two main advantages, the aggregation of outputs, inputs and externalities 
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using distance functions has the drawback that data-derived weights are not 

presented explicitly. Hence, the distance function method may work as a black box 

tool for decision makers (Chapter 4).  

Notwithstanding the advantages and limitations of each aggregation method, in 

Chapter 4 it was shown that the implementation of the Social Profit indicator and the 

Technical Inefficiency indicator yields similar outcomes in terms of best-worst 

sustainability performers. This result suggests that the weights used in the 

computation of both indicators indicate similar levels of relative importance for each 

of the outputs, inputs and externalities that were included in the assessment. Although 

an empirical comparison between the Social Profit indicator and the Nerlovian Social 

Profit Inefficiency indicator was not performed, I hold the view that the ranking of 

chains/farms in terms of their sustainability performance would be similar. This is 

due to the fact that chains/farms with the highest social profit are commonly the ones 

with the lowest inefficiency in social profit.   

 

Valuation and monetization of externalities 

A broad set of economic valuation methods exists for deriving shadow prices for the 

externalities. Methods include stated preference methods (e.g. Contingent Valuation 

and the Choice Experiment), revealed preference methods (e.g. Replacement Cost, 

Travel Cost, Avoided Cost and Hedonic Pricing) and the benefit transfer method (de 

Groot 2006; Kuosmanen and Kortelainen 2004; TEEB 2010). In Chapter 3, Chapter 4 

and Chapter 5, the benefit transfer method was used to obtain the shadow prices. In 

this way, first, shadow prices for the same externalities selected in these chapters 

were obtained from valuation studies that were found in the scientific literature. Next, 

as the shadow prices coming from these valuation studies were generally estimated in 

another location and context, these prices were adjusted to the prevailing socio-

economic conditions of the study site in which these were applied. Although shadow 

prices were adjusted based on the socio-economic characteristics of the study site, a 

lower accuracy is expected for those externalities such as pesticide toxicity and 

eutrophication (Chapter 3 and Chapter 5) and nitrate pollution (Chapter 5) with 

impacts that are highly determined by specific environmental conditions (e.g. soil 

types, vegetation cover and climatic conditions). The WTP for the reduction of these 

externalities could have varied depending on the severity of the environmental and 

social problems. While stated or revealed preference methods can be preferred to 
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derive shadow prices, the benefit transfer method is a practical way of getting weights 

in the situation of poor data availability. 

Regarding the valuation of externalities, two issues deserve special attention. First, 

although economic valuation methods have had considerable progress in recent years 

(Dalal-Clayton and Sadler 2014), there is still a lack of knowledge about the 

environmental and socio-economic consequences caused by some externalities and 

about the time-spans at which they operate. This knowledge gap limits the extent to 

which all external costs can be accounted for in the valuation exercise. For example, in 

Chapter 3 and Chapter 5 the external costs associated to acute and chronic pesticide 

poisoning of humans and the environment and synergetic and multiplicative effects of 

the use of pesticides (Pretty 2005) were not considered in the estimation of the 

shadow price for pesticide toxicity. Also, in Chapter 3 and Chapter 5, the shadow price 

for eutrophication and nitrate pollution did not take into account long-term effects of 

pollution in water bodies and soils in Brazil and Vietnam, nor were the potential 

impacts on biodiversity taken into account. Moreover, in Chapter 5, the external costs 

that might result from the over-irrigation of coffee plantations, such as the reduction 

in the availability of groundwater, salinity and the loss of biodiversity (D’haeze et al. 

2005; Lindskog et al. 2005), were not considered in the price of water. The second 

issue that deserves special attention is how to deal with the intergenerational equity 

in the valuation of externalities. Thus, to which extent the future external costs should 

be discounted to estimate an optimal intergenerational shadow price, an issue which 

is currently subject to lively debate (Atkinson and Mourato 2008; Freeman and Groom 

2013). A notable example is the use of different discount rates to discount future 

external costs of global warming in different climate economic models (see for 

example Ackerman 2007 and the controversy following the publication of the Stern 

report (Stern 2007). 

The sensitivity of the Social Profit indicator and the Nerlovian Social Profit indicator to 

changes in (shadow) prices of outputs, inputs and externalities was computed in 

Chapter 3 and Chapter 5. Also, in Chapter 3 the social profit of the average non-GM 

and GM soybean meal chains was calculated under two alternative shadow prices for 

eutrophication (a higher and a lower shadow price as compared with the shadow 

price used in the study). Results show that under the two shadow price alternatives 

the social profit of the average non-GM soybean meal chain and the GM chain did not 

vary considerably. Therefore, the conclusions that were drawn from the relative 
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sustainability assessment did not change. In Chapter 5, the impact of changes in the 

price of coffee, labor and water on the computed observed and maximum social profit 

for coffee farms in Vietnam was evaluated. The observed profit would have been 

considerably reduced by higher input prices, or by a lower coffee price. Consequently, 

the maximum attainable social profit would be also reduced. Nevertheless, the social 

profit inefficiency that was estimated for each coffee farm in our sample would not 

differ substantially (especially under the first two price changes), because the ratio of 

maximum to observed social profit would be similar.  

 

Number of variables that can be incorporated in the relative sustainability 

assessment 

The Technical Inefficiency indicator and the Nerlovian Social Profit Inefficiency 

indicator have less scope for including outputs, inputs and externalities than the Social 

Profit indicator. The probability that all observations operate at the efficient frontier 

increases with increasing number of outputs, inputs and externalities in the model 

(Dyson et al. 2001; Hughes and Yaisawarng 2004). Therefore, in Chapter 4 and 

Chapter 5, the number of variables that were included in the computation of the 

Technical Inefficiency indicator and in the Nerlovian Social Profit Inefficiency 

indicator was limited to eight. Reducing the number of outputs, inputs and 

externalities can be problematic because it might lead to the omission of important 

issues for the sustainability of agri-food supply chains. Hence, applying the Technical 

Inefficiency indicator and the Nerlovian Social Profit Inefficiency indicator would 

require tradeoffs between sustainability issues to select the most important variables 

for the assessment (this issue is discussed in more detail in subsection ‘Selection of 

sustainability issues’). On the contrary, the implementation of the Social Profit 

indicator shows that all considered important variables can be included if there is data 

available to quantify them and information to estimate the corresponding (shadow) 

prices. This is due to the additive nature of this indicator. In comparison, the 

computation of the Social Profit indicator in Chapter 3 included 26 variables.  

 

Data requirements of each indicator and quality of the data sources 

Implementation of the Social Profit indicator in Chapter 3 and Chapter 4, the Technical 

Inefficiency indicator in Chapter 4 and, the Nerlovian Social Profit Inefficiency 
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indicator in Chapter 5, demonstrate that the three approaches are sufficiently flexible 

to assess the relative sustainability performance in a variety of socio-economic 

contexts: non-GM and GM soybean meal production in Brazil, potato production in 

North-Western Europe and coffee production in Vietnam. The implementation of 

these indicators in each chapter provides insights into the suitability of each indicator 

for assessing the relative sustainability performance at the chain level and, on the 

impact of the data source on the quality of results. 

The Social Profit indicator was found to be more suitable than the Technical 

Inefficiency and Nerlovian Social Profit Inefficiency for implementation at the chain 

level. As shown in Chapter 3, the Social Profit indicator can be implemented at the 

chain level as long as there is data on quantities and prices for at least two chains. In 

Chapter 3 the Social Profit indicator was used to assess the relative sustainability 

performance of non-GM and GM soybean meal chains. In contrast, in Chapter 4 and in 

Chapter 5 the Technical Inefficiency indicator and the Nerlovian Social Profit 

Inefficiency indicator only could be estimated at the farm level. This is due to the fact 

that the construction of the benchmarking frontier in the computation of these two 

indicators requires a large sample of observations. Due to the common lack of data for 

post-farm stages (processing, retailing), a large sample of chains with the related 

information on quantities for outputs, inputs and externalities is generally not 

available.  

Although the sustainability assessment was performed at the chain level in Chapter 3, 

the precision of the results might be affected by the quality of the data. At the 

agricultural stage, farm-specific data was not available in Brazil. Hence, for this stage, 

average quantities of outputs and inputs across non-GM and GM soybean farms at the 

municipality level were used. This data was obtained from the Brazilian Agricultural 

Research Corporation (EMBRAPA). The quantities of the externalities were computed 

based on the average quantities of inputs in non-GM and GM soybean production. 

Averaging quantities of outputs, inputs and externalities at the municipality level 

could result in a bias of the Social Profit indicator. This bias could arise from the 

potential existence of outliers and from differences in the way the data was collected 

at each farm. In addition, data was not available for soybean post-farm stages. To 

estimate the quantities of outputs, inputs and externalities for these stages, secondary 

data sources were used and several assumptions were made. Given these data issues, 
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the results of Chapter 3 may be less precise than the results of Chapter 4 and Chapter 

5, in which farm-specific data was used. 

Although the farm-specific data may have higher quality than the municipality data, 

the quality of farm-specific data in each chapter is different. In Chapter 4, data was 

obtained from the European Farm Accountancy Data Network (FADN). The dataset 

consisted of output and input data for 205 specialized potato farms expressed in 

terms of annual revenues (Euros) and annual expenditures (Euros). Hence, output and 

input quantities were not available in physical terms. Equally important is that input 

data was not very detailed in terms of purchased inputs, e.g. type of pesticide product 

and type of fertilizer product. Although much more detailed data is collected by the 

FADN agencies, this data was not available for this research. For these reasons, and 

given that for the quantification of externalities physical quantities of each type of 

input is needed, in Chapter 4 only one externality was incorporated. Other important 

externalities could have been included in the assessment, taking into account the 

limitation in the number of variables that can be incorporated in the Technical 

Inefficiency indicator (subsection ‘Number of variables that can be incorporated in the 

relative sustainability assessment’), if disaggregated quantities for inputs had been 

available.  

In contrast to the data used in Chapter 4, the farm-specific quantity data that was used 

to estimate the Nerlovian Social Profit Inefficiency indicator was very detailed by type 

of input and product. Likewise, the data was directly collected by farmers who were 

previously trained in data recording. Therefore, the data was checked by the farmers 

for potential errors. In this way, a more comprehensive quantification of the 

externalities arising from coffee production was possible. Although this method of 

data collection allows for a more detailed representation of outputs, inputs and 

externalities, this method is costly in terms of time and economic resources. 

 

Selection of sustainability issues 

In this thesis, two approaches were used to select the main sustainability issues and 

the corresponding outputs, inputs and externalities in the sustainability assessments. 

In Chapter 4 and Chapter 5, the issues and the variables were selected based on 

reported economic and environmental impacts of potato production in North-Western 

Europe and the reported impacts of coffee production in Vietnam. In Chapter 3, the 
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main sustainability issues and variables were selected in three steps. First, a 

preliminary list of sustainability issues was made based on literature review on the 

impacts of soybean meal production. Second, once the list was defined, a diverse 

group of stakeholders was consulted to select, based on their opinion, the most 

important issues associated with soybean meal production. Stakeholders included 

academic researchers, representative of NGO’s, certifying organizations and firms in 

the agri-food sector. Third, for all the selected issues a set of output, input and 

externality variables was defined. A specific issue was represented by one variable or 

by a set of variables. The second approach is preferred for sustainability assessments 

that serve as input for decision making, because the involvement of relevant 

stakeholders can improve the quality and transparency of the outcomes of the 

sustainability assessments (Gibson 2006).  

Nevertheless, it should be noted that not all selected main sustainability issues in 

Chapter 3, Chapter 4 and Chapter 5 were included in the assessments. As previously 

mentioned in subsection ‘Data requirements of each indicator and quality of the data 

sources’, the final issues that were selected in each chapter depended on the 

availability of the data. Product responsibility and health in potato production and soil 

and biodiversity in coffee production are of utmost importance for the sustainability 

of these production systems (Haase and Haverkort, 2006; Spiertz et al., 1996; D’haeze 

et al. 2005; Lindskog et al. 2005). Nevertheless, these issues were not considered in 

the assessments. Similarly, in Chapter 3, the consulted stakeholders gave high 

importance to issues that reflect labor rights, biodiversity and water (Chapter 3, Table 

3.1). Also, due to lack of data, these issues were not accounted for in the relative 

sustainability assessment of soybean meal chains in Brazil. 

 

Improvement options 

Differences in relative sustainability performance between chain/farms (social profit 

differences in Chapter 3 and Chapter 4) were assessed using the Bennet indicator. 

This assessment provided information on the social profit differences that are caused 

by higher (lower) aggregate productivity (TFP component) and, the social profit 

differences that are caused by higher (lower) total price recovery (TPR component). 

In Chapter 3, higher sustainability performance of the non-GM soybean meal chain 

relative to the GM soybean meal chain was mainly caused by higher total price 

recovery. The main factor driving the difference in the price recovery between the two 
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chains is the higher selling price for the non-GM soybean meal. This might reflect 

consumer preferences for non-genetically modified products. To a lower extent, 

higher sustainability performance of the non-GM soybean meal was also the result of a 

better productivity in the use of inputs, especially herbicides, insecticides, and 

fungicides that are used at the agricultural stage. The decomposition of the social 

profit differences between the two soybean meal chains provided insights, not only 

into each chain’s overall performance, but also into the contribution of individual 

stages to the performance of the entire chain.  

In Chapter 4, the decomposition of the Social profit indicator was used to assess the 

social profit differences at the farm level. In this case, the results show that specialized 

potato farms in the Netherlands perform more sustainably than German farms (higher 

social profit). Although Dutch farms have a lower partial productivity for some inputs 

and lower partial price recovery than German farms, the overall productivity of Dutch 

farms is higher. Higher overall productivity of Dutch farms was mainly driven by 

higher yields in potato production and renders Dutch farms socially more profitable.  

Both in the relative sustainability assessment of soybean meal chains and in the 

assessment of potato farms, the decomposition of the social profit differences in 

monetary terms gives a clear link between potential sustainability investments and, 

expected private and social returns. 

Chapter 4 also used the Technical Inefficiency indicator to assess the relative 

sustainability of specialized potato farms. Although the ranking of farms in terms of 

best-worst performers was similar to the ranking obtained by the Social Profit 

indicator, the Technical Inefficiency indicator provided different insights into the 

potential improvements of the performance in each country. The decomposition of the 

performance scores obtained in the Technical Inefficiency indicator show that the 

sources of technical inefficiency in the Netherlands and Germany are mainly driven by 

pure technical inefficiencies rather than technology gap inefficiencies and scale 

inefficiencies. This suggests that in both countries there is a poor or inadequate use of 

the existing production potential. Although in this assessment the technology gap 

between the production frontier of each country and the meta-frontier and, the 

inefficiency in scale were small compared to the pure technical inefficiency, these two 

components still provide useful information for sustainability improvements. The 

technology gap component shows to which extent the differences in sustainability 

performance between the observations of two or more regions are the result of 
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differences in the production technology. Also, this source of inefficiency shows in 

which regions the production of a given product would be a priori more sustainable 

due to more favorable production conditions. This can lead to setting up macro-

policies and strategies that might be implemented by governments towards a better 

allocation of production across regions.  

The scale inefficiency component, on the other hand (also computed in the 

decomposition of the Nerlovian Social Profit Inefficiency indicator), shows whether 

farmers have potential for improving their performance by adjusting the scale at 

which they operate. Based on the outcome of the scale inefficiency component, it can 

be decided whether to procure new resources to expand the size of the operations or 

whether to reduce it, to achieve an optimal size. In contrast to the Social Profit 

indicator, which implicitly assumes that chains/farms operate under a production 

technology that is characterized by constant returns to scale (CRS), this source of 

inefficiency provides additional information for sustainability performance 

improvements.  

In Chapter 5, the Nerlovian Social Profit Inefficiency indicator provided information 

about the extent to which coffee farms are maximizing the benefits to society. Results 

of Chapter 5 show that coffee farms in Vietnam, on average, can significantly increase 

their social profit given the existing production technology, land and the current 

(shadow) prices. The decomposition of inefficiency in social profit revealed that by 

choosing a better combination of inputs and coffee (allocative inefficiency component) 

and by improving operation managerial practices (pure technical inefficiency 

component), significant improvements in the sustainability performance could be 

achieved. Although the pure technical inefficiency and the scale inefficiency 

components are similar in the Technical Inefficiency indicator (Chapter 4), in the 

Nerlovian Social Profit indicator these two components were computed using the 

radial directional distance function. Consequently, output-specific, input-specific and 

externality-specific pure technical and scale inefficiencies provided by the Technical 

Inefficiency indicator (Chapter 4) were not estimated. Only an overall score for each of 

these components on each farm was obtained. Compared to the sources of low 

sustainability performance derived from the decomposition of the other two 

indicators, the decomposition of the Nerlovian Social Profit Inefficiency indicator 

provides additional information about the allocation of resources and about the 

optimum levels of pollution. This information can help deciding on the proper use of 
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scarce resources and might help to set up strategies to reduce most expensive costs to 

society. 

Finally, in the efficiency literature, low performance has been associated with specific 

socio-economic characteristics, institutional deficiencies and poor management 

practices of farmers (Balcombe et al. 2008). To investigate the extent to which the 

relative sustainability performance of coffee farms is influenced by external factors, in 

Chapter 5 a bootstrap truncated regression was performed. Results show that with 

increasing values for the socio-economic characteristics such as the distance of the 

farm to the closest town/center and the distance to the closest coffee factory/traders, 

the social profit inefficiency increases. An increase in the social profit inefficiency was 

also associated with an increase in the frequency of management activities such as 

spraying of chemical pesticides. On the other hand, a decrease in the social profit 

inefficiency was found to be associated with an increasing value for characteristics 

such as the share of hired labor, the ethnic group and the frequency of fertilizing and 

pruning. 

 

Policy and business implications 

The three indicators facilitate relative sustainability assessment of agri-food supply 

chains. Below I mention some possible application areas that are relevant to 

businesses stakeholders and policy makers. First, the indicators can be the basis of 

sustainability certification schemes, standards and labels, which in turn can be useful 

in resolving trade disputes on sustainability issues. Second, indicators can be used by 

governments as tools to internalize the negative externalities of production into public 

policy frameworks such as subsidies and taxes. Third, stakeholders along the chain 

can use the indicators to increase the sustainability of their own businesses by 

considering the sustainability of inputs along with other factors when buying inputs. 

Fourth, the indicators can be used by retailers to differentiate themselves from their 

competitors by communicating the environmental and social impacts of food products. 

Finally, the indicators could potentially be used for each stage of agri-food supply 

chains to identify opportunities to improve the relative sustainability performance. 

Application requires involvement of all relevant business stakeholders and policy 

makers in further development and implementation of the indicators. Wide 
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acceptance of the indicators can only be achieved when consensus is reached on 

which sustainability issues should be included, and when standards to collect 

quantitative information of outputs, inputs and externalities have been adopted and 

implemented. Definitions and perceptions of sustainability might vary among the 

different stakeholders involved in food production (policy makers, business 

stakeholders, NGOs). Therefore, international harmonization will require bringing 

together the most important stakeholders to reach a consensus about a common set of 

sustainability issues and variables that should be included in any sustainability 

assessment. Multilateral organizations such as the OECD could play an important role 

in facilitating the required interaction and in stimulating discussions between these 

stakeholders.  

Apart from harmonization of sustainability issues and variables, agreements on 

implementation aspects will have to be reached before the indicators can be used 

widely. First, agreement about what data will be used and who will be responsible for 

the collection of this data is needed. Second, further agreement on the method of 

analysis of the data and the computation of the indicators is needed, e.g. the 

quantification of externalities and aggregation method. Third, discussions are needed 

with regard to how the policies and measures will be implemented based on the 

outcome of the indicators. Thus, for example, how governments can use the results to 

give market access preferences or to impose green tariffs. And fourth, discussions are 

needed on the ways the outcome of the indicators can be communicated by 

governments and retailers to consumers to raise awareness about the impact of their 

purchasing behavior. In the case of the Social Profit indicator and the Nerlovian Social 

Profit Inefficiency indicator, the ground-level implementation would also require the 

development of a database of robust and transferable estimates of shadow prices at 

the regional and country level. 

At a lower scale, the harmonization of sustainability issues and variables could be 

coupled to the selection of the indicators that are used for public payment schemes, 

such as agri-environmental programs. Instead of making payment conditional on 

adherence to prescriptive standards, the payments could be related to the farmer’s 

performance. For example, as a function of the performance of each farm/chain 

relative to the sustainable production frontier. Additionally, national governmental 

institutions could set standards for the production of different externalities or make 

recommendations on the maximum amounts of inputs that would yield the best 
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sustainability performance scores. These standards can be derived on the basis of the 

observed input use and externality level of the best performers. On the production 

side, the decomposition of the indicators in Chapter 3, Chapter 4 and Chapter 5 

provide information to producers about the potential sustainability improvement that 

can result from adoption of better management and practices. Improvement options 

provided by the indicators have a clear link with efficiency gains, productivity gains, 

or profit gains. 

 

Future Research 

This dissertation developed tools and generated insights that help in assessing the 

relative sustainability of (stages) of agri-food supply chains in different socio-

economic and environmental contexts. There are, however, further research areas 

that could be explored to improve the conclusions that are drawn from these 

assessments. In the case of aggregating outputs, inputs and externalities using 

distance functions, the DEA models account for substitution possibilities between the 

different variables without requiring subjective weighting (Kuosmanen and 

Kortelainen 2005). In these models, the flexibility of substitution between the 

variables highly depends on the way the production process is modelled in the 

presence of externalities. However, a scientifically unique model of the production 

process in the presence of externalities does not exist. Some authors have proposed 

modelling the externalities as strongly disposable inputs (e.g. Hailu and Veeman 2001; 

Yang and Pollitt 2009). Others have suggested treating the externalities as weakly 

disposable bad outputs (Färe and Grosskopf 2005). More recently, it has been 

proposed to divide the production process in two sub-technologies, i.e. a by-

production approach. A first sub-technology that models the production of intended 

outputs and a second sub-technology for externalities (Dakpo 2015; Førsund 2009; 

Murty et al. 2012). As an illustration, Annex 6A shows how the results of the pure 

technical inefficiency component for coffee farms in Vietnam (Chapter 5) changes 

when applying alternative models of the production process based on the by-

production approach. Results of Annex 6A show that the pure technical inefficiency of 

coffee farms in Vietnam increases considerably when using the by-production 

approach. Modelling the production process using two sub-technologies allows for 

more flexibility in the substitution of the outputs, inputs and externalities. Therefore, 
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different conclusions from this assessment could be drawn. Further research might 

explore adequate ways of modelling pollution-generating technologies in performance 

benchmarking. Developments on this area of research can be incorporated afterwards 

in the Technical Inefficiency and Nerlovian Social Profit Inefficiency indicators. In the 

case of the Nerlovian indicator, additional work would be required to establish the 

duality between the profit function and the directional distance function in an 

alternative production technology such as the by-production approach. 

Our three indicators are based on the assumption that a good performance in any of 

the three dimensions of sustainability and at any stage of the agri-food supply chain 

can compensate lower performance in the any other dimension and stage, as long as 

the overall chain's performance is maintained. Complete substitution between or 

within some of the components of each dimension, however, could be ethically and 

morally unacceptable. For example the substitution of adult labor by child and slave 

labor can be inconceivable, even if the profitability obtained from agricultural 

production is higher. Another example is the deforestation of the Amazon forest at the 

expense of higher agricultural economic returns. Consequently, further work needs to 

be done to identify the critical components of the natural and social capital that must 

be maintained at minimum quantity and quality levels (cannot be substituted), as a 

prerequisite for long-term sustainability. 

It is also recommended to undertake participatory workshops for further use and 

development of the indicators. In these workshops, stakeholders can be guided about 

how the indicators can be used in practice and, it can be explained, openly and 

transparently, the assumptions and weighting factors that are used in the construction 

and estimation of the indicators. By providing information to the diverse stakeholders 

involved in food production and by stimulating debate between them, the exchange of 

perceptions and ideas will allow adjusting the indicators based on common 

sustainability concerns. This participatory approach will enhance the uptake of the 

concepts by the stakeholders. Furthermore, it will help in generating indicators that 

are acceptable by end users. This process can follow the participatory approach of 

initiatives such as the Global Reporting Initiative (GRI). In the GRI initiative, guidelines 

for sustainability reporting at the company level are created in a collaborative 

participation process between international working groups. These working groups 

include members representing business, civil society, organizations, consultancy and 

academic institutions and experts on diverse sustainability issues (GRI 2006). Once 
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sustainability guidelines are proposed, these are put into consideration of society to 

get feedback on their interests with regard to sustainability.  

Finally, the relative sustainability assessments performed in this dissertation only 

included negative externalities such as green-house gas emission, nitrate pollution 

and pesticide toxicity, among others. Future implementation of the three indicators 

should also include positive externalities originating from food production such as 

carbon sequestration by agricultural plantations, landscape beauty, and creation of 

employment at any stage of the chain. This would allow making a more complete 

assessment of the social costs and benefits derived from agri-food supply chains.    

 

Main conclusions 

The main conclusions of this dissertation are: 

 The multi-dimensional nature of relative sustainability can be captured into a 

single metric using prices or distance functions as aggregation methods (Chapter 

2-5). 

 The integrated indicators developed in this dissertation partially overcome the 

limitations of the single-issue and the composite indicators that are commonly 

used in sustainability assessments: incommensurability, subjectivity, 

comparability and multi-dimensionality (Chapter 2-6). 

  The integrated indicators of relative sustainability performance can be used in 

different socio-economic and environmental contexts (Chapter 3-5). 

 The Social Profit indicator is more suitable for conducting a relative sustainability 

assessment of agri-food supply chains than the Technical Inefficiency and 

Nerlovian Social Profit Inefficiency indicators, due to lower data requirements 

(number of observations) and a larger scope to include a diverse set of 

sustainability issues (Chapter 3-5). 

 The Brazilian non-GM soybean meal chain performs overall more sustainably than 

the GM chain because of higher TFP and higher TPR (Chapter 3). 
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 Specialized potato farms in the Netherlands have higher social profit per hectare 

than German specialized potato farms. Dutch farms are also environmentally and 

technically more efficient than German farms (Chapter 4).  

 German farms are slightly more technically and environmentally inefficient than 

Dutch farms due to higher pure technical inefficiencies and technology gap 

inefficiencies (Chapter 4). 

 The differences in the rankings of specialized potato farms produced by the Social 

Profit indicator (economic and environmental performance) and the Technical 

Inefficiency indicator (technical and environmental performance) is statistically 

not significant (Chapter 4).  

 Social profit in Vietnamese coffee farms can be increased threefold if farmers 

choose a better combination of inputs and levels of coffee production at given 

prices (allocative efficiency) and if the production potential is fully used (pure 

technical efficiency) (Chapter 5). 

 Larger distances from the coffee farm to the closest town/city center and to the 

closest coffee factory/traders, increase social profit inefficiency of coffee farms in 

Vietnam. (Chapter 5). 

 Coffee producers belonging to the ethnic group JoRai and increasing values for 

socio-economic characteristics such as the share of hired labor, reduce social profit 

inefficiency (Chapter 5). 

 Increasing the frequency of farm management practices such as spraying increases 

social profit inefficiency of coffee farms in Vietnam, whereas increasing the 

frequency of fertilizing and pruning reduces social profit inefficiency (Chapter 5). 
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Annex 6A.  

Pure Technical Inefficiency under a by-production polluting technology 

The way the production process is modelled in the presence of externalities has 

implications on the results regarding the technical inefficiency of coffee farms. In 

Chapter 5, the production technology of coffee farms was modelled following a 

standard neoclassical technology and assuming that externalities behave as strongly 

disposable inputs (see Chapter 5, subsection ‘Nerlovian social profit inefficiency (NI) 

indicator’, for the definition of the production technology T). An alternative approach 

to the one used in this Chapter proposes modelling the production process using two 

independent sub-technologies, i.e. the production technology that describes how 

inputs are transformed into intended outputs (𝑇1) and, a technology that reflects the 

relationship between externalities and the inputs that cause those externalities (𝑇2) 

(For details see Murty et al. 2012).  

Suppose there are k = 1,...K DMUs (farms) using N inputs and D fixed inputs to produce 

M outputs. In the production process, J negative externalities are produced. Let 

vectors 𝑦 = (𝑦1, 𝑦2, … 𝑦𝑀) ∈ ℜ+
𝑀  , 𝑥 = (𝑥1, 𝑥2, … 𝑥𝑁) ∈ ℜ+

𝑁 , (𝑓1, 𝑓2, … 𝑓𝐷) ∈ ℜ+
𝐷 , and 

𝑏 = (𝑏1, 𝑏2, … 𝑏𝐽) ∈ ℜ+
𝐽  represent the outputs, inputs, fixed inputs, and negative 

externalities, respectively.  

 

Under the by-production approach, the two technologies are given by: 

 

 

𝑇1 = [(𝑦, 𝑥1, 𝑥2, 𝑓, 𝑏) ∈ ℝ+
𝑀,𝑁,𝐷,𝐽|ℎ(𝑦, 𝑥1, 𝑥2, 𝑓) ≤ 0], 

𝑇2 = [(𝑦, 𝑥1, 𝑥2, 𝑓, 𝑏) ∈ ℝ+
𝑀,𝑁,𝐷,𝐽|𝑏 ≥ 𝑢(𝑥2)]  ,             

 

 

Where the total N input vector that enter in the production process is partitioned into 

two sub-input vectors: the first S sub-vector of inputs that do not cause pollution 𝑥1 = 

(1,...,S) and, the remaining (N-S) sub-vector of inputs causing pollution 𝑥2 = (𝑆 +

1,…𝑁). h and u are both continuously and differentiable functions. The set 𝑇1 is a 

standard technology set that is independent of pollution. The set 𝑇2 reflects the 

externality-generating mechanism (Murty 2010). 
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The overall production technology is represented as:  

  

 
𝑇 = 𝑇1 ∩ 𝑇2, 

  

 

Based on the by production technology, two inefficiency scores can be computed for 

each DMU.  A technical inefficiency score related to the intended production 

technology or operational inefficiency (analogous to the technical inefficiency score 

computed in Chapter 5) and, an environmental inefficiency score related to the 

residual generation technology. The overall inefficiency score is given by the weighted 

average of the two inefficiency scores.  

 

The DDF defined on the by-production polluting technology and computed using 

linear programming techniques is defined for DMU k’ as: 

  

 

�⃗⃗� (𝑦, 𝑥, 𝑓, 𝑏; 𝑔𝑦 , 𝑔𝑥 , 𝑔𝑏) = 𝑚𝑎𝑥
1

2
(𝛽1 + 𝛽2) 

s.t. 

∑ 𝛼𝑘𝑦𝑚
𝑘

𝐾

𝑘=1

≥ 𝑦𝑚
𝑘′

+ 𝛽1𝑔𝑦 ,     𝑚 = 1,… . ,𝑀   

∑ 𝛼𝑘

𝐾

𝑘=1

𝑥𝑛
𝑘 ≤ 𝑥𝑛

𝑘′
− 𝛽1𝑔𝑛 ,   𝑛 = 1,… , 𝑁       

∑ 𝛼𝑘𝑓𝑑
𝑘 ≤ 𝑓𝑑

𝑘′

𝐾

𝑘=1

,     𝑑 = 1,2, … , 𝐷                 

∑ 𝛼𝑘

𝐾

𝑘=1

= 1;       𝛽1 ≥ 0     

∑ 𝜉𝑘𝑏𝑗
𝑘

𝐾

𝑘=1

≤ 𝑏𝑗
𝑘′

− 𝛽2𝑔𝑏 ,     𝑗 = 1, … , 𝐽         
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    ∑ 𝜉𝑘𝑥2𝑛
𝑘

𝐾

𝑘=1

≥ 𝑥2𝑛
𝑘′

− 𝛽2𝑔𝑥2 ,    𝑛 = 𝑠 + 1,… , 𝑁 

    ∑ 𝜉𝑘

𝐾

𝑘=1

= 1;        𝛽2 ≥ 0;                                  

 

Where ∑ 𝜉𝑘𝑥2𝑛
𝑘𝐾

𝑘=1 ≥ 𝑥2𝑛
𝑘′

 reflects the cost disposability of pollution causing inputs and 

∑ 𝜉𝑘𝑏𝑗
𝑘𝐾

𝑘=1 ≤ 𝑏𝑗
𝑘′

 the cost disposability of the bad output. 𝛼 and 𝜉 represent the two 

different set of intensity variables of each sub-technology. The model has two sets of 

non-negative intensity variables 𝛼𝑘 and 𝜉𝑘  that are restricted to be equal to one, 

implying an intended production technology and a residual generation technology 

that exhibit variable returns to scale (VRS). As presented the by-production approach 

offers the advantage of separating the operational inefficiency (𝛽1) and the 

environmental inefficiency (𝛽2). 

 

The by-production approach proposed by Murty et al. (2012) assumes independence 

between the two sub-technologies. Dakpo (2015) developed an extension of the Murty 

et al. (2012) by-production model by augmenting the model with a dependence 

constraint relative to the pollution generating inputs. The constraint is defined as: 

  

 

∑ 𝛼𝑘𝑥𝑛2𝑘

𝐾

𝑘=1

= ∑ 𝜉𝑘𝑥𝑛2𝑘

𝐾

𝑘=1

 ,    

  

To show how results of the Pure technical inefficiency component in Chapter 5 would 

differ under a by-production approach, the by-production model with independency 

of the two sub-technologies (Model B) and the by-production model with the 

interdependence constraint (Model C) were computed for our sample of coffee farms 

in Vietnam. Afterwards, the results were compared to the outcome of the Pure 

technical inefficiency component that was computed using Eq. 5.8 (see Chapter 5, sub-
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section ‘Sources of farm sustainability’). Table 6A.1 shows the outcomes of the three 

models. 

  

Table 6A.1 Inefficiency scores (mean values for the whole sample of coffee farms N= 361). 

  Standard Murty Dakpo 

Operational 

inefficiency N/A 0.27 0.26 

Environmental  

inefficiency N/A 0.93 0.89 

Overall technical 

inefficiency 0.26 0.60 0.57 

Standard = Standard neoclassical production technology (mean value of the PTI component. See 

Chapter 5, subsection ‘Results’); Murty = By-production model independent technologies; 

Dakpo = By-production model with inter-dependence constraint 

 

Results show that the substitution possibilities are bigger in the two by-production 

models as compared with a standard neoclassical production technology.  The 

operational inefficiency in the Murty and Dakpo models is similar to the value of the 

pure technical inefficiency computed based on the standard technology, which 

indicates that externalities do not have a large effect in the standard model. It can be 

explained by the fact that the level of externalities is related to the level of inputs 

(polluting inputs). A reduction in the polluting inputs will automatically reduce the 

amount of externalities. Nevertheless, when dividing the production process in two 

sub-technologies, the environmental inefficiency component shows that even though 

the Pure technical inefficiency component in the standard model indicates that coffee 

farms can reduce by 26% the externalities, these farms could even have bigger 

reductions at least up to 93% and 89%, by adopting clean technologies or clean 

practices that could be currently be used by best coffee farm performers. Hence, the 

flexibility in the by-production technology allows for further reduction as externalities 

are not constrained by the outputs and the non-polluting inputs. 
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Summary 

Increasing food production is crucial to meet the expected growing demand for food in 

the coming decades. However, increasing production may lead to undesirable social 

and environmental impacts such as land degradation, deforestation, depletion of 

water, health problems, and deterioration of labor conditions, among others. Scholars, 

planners, producers, policy-makers, and other stakeholders have pointed out the need 

to examine ways to ensure sustainable food production. Ensuring sustainability in 

food production requires increasing our knowledge about the economic, 

environmental and social performance of the various stages along the agri-food 

supply chains. In this respect, there is a need for integrated indicators that can provide 

synthetized information about the extent to which food products are sustainably 

produced. Such information would provide valuable insights that can help business 

stakeholders in identifying areas of intervention and would help policy makers to set 

up policies and strategies to encourage sustainable food production. In the light of the 

foregoing, the overall objective of this thesis was to perform integrated assessments of 

relative sustainability performance of (stages of) agri-food supply chains using 

different integrated indicators.  

Chapter 2 developed a framework for the integrated analysis of the relative 

sustainability performance of (stages of) agri-food supply chains. To operationalize 

the concept of sustainability, agri-food supply chains are characterized and defined in 

terms of outputs, inputs and externalities, which reflect the economic, environmental 

and social implications of production. The outputs, inputs and externalities are 

aggregated into two different integrated indicators of relative sustainability 

performance using either prices, i.e. the Social Profit indicator or distance functions, 

i.e. the Technical Inefficiency indicator. This thesis proposes the Bennet Total Factor 

Productivity (TFP) indicator and the Bennet Total Price Recovery (TPR) indicator for 

a consistent comparison of the score of the Social Profit indicator between (stages of) 

agri-food chains. On the other hand, the comparison of the Technical Inefficiency 

indicator score between (stages of) chains uses a production frontier, which 

represents the best practice in terms of sustainability performance. The chapter is 

finalized with a discussion about some of the key issues for implementation of both 

indicators including data availability, the selection of variables, and the selection of 

sustainability standards and targets.   
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Chapter 3 assessed the relative sustainability performance of two Brazilian 

conventional soybean meal chains, non-genetically modified (non-GM) and genetically 

modified (GM) chains, using the Social Profit indicator. Sustainability issues included 

in the assessment were profitability, global warming potential, eutrophication 

potential, environmental toxicity, farmworker toxicity, consumer toxicity, 

deforestation, and loss of employment. Social profit differences between both chains 

were assessed using the Bennet Total Factor Productivity (TFP) indicator and the 

Total Price Recovery (TPR) indicator. Results show that the non-GM soybean meal 

chain has higher social profit and thus, performs more sustainable than the GM chain. 

Main reasons for higher sustainability performance include higher productivity of 

biocides, i.e. pesticides, fungicides, and herbicides (TFP component) and higher price 

premium paid per ton of non-GM soybean meal (TPR component). By contrast, the GM 

soybean meal chain has a lower emission of greenhouse gases at the transport to port 

stage. Although the non-GM soybean meal chain performs more sustainably than the 

GM chain, both chains could further improve their sustainability. Efforts should focus 

on providing technical and high quality assistance to reduce biocide use in GM 

soybean production, whereas in non-GM soybean production strategies should be 

designed for reducing the emission of greenhouse gases that are caused in the 

transportation of soybeans.  

Chapter 4 assessed the relative economic and environmental performance of 

specialized potato farms in Germany and the Netherlands using the Social Profit 

indicator and the Technical Inefficiency indicator. Afterwards, cross-country 

differences in Social Profit and Technical Inefficiency were assessed to identify 

opportunities for improving the performance of potato production. Cross-country 

differences in Social Profit were assessed by computing the Bennet TFP indicator and 

the Bennet TPR indicator whereas cross-country differences in Technical Inefficiency 

were assessed by identifying three components: pure technical inefficiency, scale 

inefficiency and technology gap inefficiency. Results of both indicators show that 

Dutch farms overall perform slightly better than German farms. The Dutch farms 

generate higher social profit and are technically and environmentally more efficient. 

Higher social profits of Dutch farms relative to German farms are mainly the result of 

higher aggregated productivity (TFP component), which is mainly driven by higher 

revenues in potato production. Nevertheless, German farms overall have higher 

partial productivities for inputs such as capital and variable inputs and a higher Total 



Sustainability metrics for agri-food supply chains 
 

231 
 

Price Recovery component. On the other hand, the main source of Technical 

Inefficiency in both countries is pure technical inefficiencies rather than technology 

gap inefficiencies and scale inefficiencies. This suggests that in both countries, there is 

a poor or inadequate use of the existing production potential. Differences in the 

outcome of each indicator suggest that both countries could improve substantially 

their performance by improving the pure managerial operations of the farms. This 

could be achieved by providing recommendations on economically optimal output 

combinations and technical advice on the use of inputs. Also, German farms can 

reduce substantially the greenhouse gas emissions. Such recommendations, however, 

should be specific for each group of performers in each country and should be subject 

to the available technology and to the environmental conditions.  

Chapter 5 assessed the relative sustainability performance of coffee farms in Vietnam 

using the Nerlovian Social Profit Inefficiency indicator. To determine the sources of 

social profit inefficiency, the farm-specific social profit inefficiency scores were 

decomposed into three components: pure technical inefficiency, allocative inefficiency 

and, scale inefficiency. This decomposition allowed the identification of opportunities 

for increasing the social profit of coffee farms to the maximum attainable levels. As a 

second objective, this study assessed the impact of a set of socio-economic 

characteristics and management practices on the social profit inefficiency of coffee 

farms. The results show that coffee farms, on average, could increase their social 

profits threefold at given prices and given the current production technology. The 

main sources of social profit inefficiency are associated with the sub-optimal 

allocation of resources and levels of production and technical inefficiency. The sub-

optimal allocation of resources is due to under-utilization of inputs and the under-

production of coffee. The assessment of the external determinants of social profit 

inefficiency shows that larger distances from the coffee farm to the town/city center 

and to the traders, and higher frequency of spraying, increase the inefficiency in social 

profit. Management practices of the ethnic group JoRai and increasing values for hired 

labor and for the frequency of fertilizing and pruning activities reduce social profit 

inefficiency. The improvement of the relative sustainability performance of coffee 

farms in Vietnam would require corrective actions to ensure the efficient use of inputs 

and an adjustment of the frequency of management activities that were found to affect 

negatively the level of Social Profit inefficiency. At the regional level, policies should be 

focused on the provision of technical assistance by extension services. Finally, it is 
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recommended to perform an in-depth study on the management of coffee farms by the 

JoRai ethnic group. It could allow identifying best management practices which 

extension services can then disseminate to other ethnic groups to reduce the Social 

Profit inefficiency of coffee production in Vietnam. 

Finally, in Chapter 6 the advantages of the proposed three indicators over existing 

approaches are discussed and the results of the research chapters are synthetized. 

The synthesis of results comprises issues regarding: (1) the scope of each indicator to 

incorporate outputs, inputs and externalities; (2) the data requirements; (3) the 

improvement options and; (4) the selection of sustainability issues. Subsequently, the 

chapter provides the implications of the results for policy makers and business 

stakeholders, and finalizes by outlying possible directions for future research.  

 

From this dissertation the following conclusions were drawn: 

 The multi-dimensional nature of relative sustainability can be captured into a 

single metric using prices or distance functions as aggregation methods (Chapter 

2-5). 

 The integrated indicators developed in this dissertation partially overcome the 

limitations of the single-issue and the composite indicators that are commonly 

used in sustainability assessments: incommensurability, subjectivity, 

comparability and multi-dimensionality (Chapter 2-6). 

  The integrated indicators of relative sustainability performance can be used in 

different socio-economic and environmental contexts (Chapter 3-5). 

 The Social Profit indicator is more suitable for conducting a relative sustainability 

assessment of agri-food supply chains than the Technical Inefficiency and 

Nerlovian Social Profit Inefficiency indicators, due to lower data requirements 

(number of observations) and a larger scope to include a diverse set of 

sustainability issues (Chapter 3-5). 

 The Brazilian non-GM soybean meal chain performs overall more sustainably than 
the GM chain because of higher TFP and higher TPR (Chapter 3). 

 Specialized potato farms in the Netherlands have higher social profit per hectare 

than German specialized potato farms. Dutch farms are also environmentally and 

technically more efficient than German farms (Chapter 4).  
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 German farms are slightly more technically and environmentally inefficient than 

Dutch farms due to higher pure technical inefficiencies and technology gap 

inefficiencies (Chapter 4). 

 The differences in the rankings of specialized potato farms produced by the Social 

Profit indicator (economic and environmental performance) and the Technical 

Inefficiency indicator (technical and environmental performance) is statistically 

not significant (Chapter 4).  

 Social profit in Vietnamese coffee farms can be increased threefold if farmers 

choose a better combination of inputs and levels of coffee production at given 

prices (allocative efficiency) and if the production potential is fully used (pure 

technical efficiency) (Chapter 5). 

 Larger distances from the coffee farm to the closest town/city center and to the 

closest coffee factory/traders, increase social profit inefficiency of coffee farms in 

Vietnam. (Chapter 5). 

 Coffee producers belonging to the ethnic group JoRai and increasing values for 

socio-economic characteristics such as the share of hired labor, reduce social profit 

inefficiency (Chapter 5). 

 Increasing the frequency of farm management practices such as spraying increases 

social profit inefficiency of coffee farms in Vietnam, whereas increasing the 

frequency of fertilizing and pruning reduces social profit inefficiency (Chapter 5). 
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