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1.1 “Twice the food production at half the ecological footprint” by 

2050  

Food and environment play very important roles in human survival and development. 

With the rapidly growing world population and improving living standards, food demand 

is increasing daily at a high rate. Today, for a better environment, human activities must 

have less impact on the earth’s ecosystems. “Twice the food production at half the 

ecological footprint” is the goal for 2050 to feed the world (Nellemann et al., February 

2009); however, in fact, not all countries need a food production boost.  

The two major factors that influence food demand are population and economy, 

suggesting that the increase in 

food demand is mainly from 

developing countries. African 

countries are expected to have 

a population boost, followed by 

countries in Asia and America. 

Nigeria and Kenya, for 

example, are expected to have a 

population increase of 176% 

and 138%, respectively by 

2050 (2013). India, Mexico, 

and Brazil are expected to have 

relatively low increases in 

population growth rate, ranging 

from 17% to 34% (2013). 

However, owing to their large populations, an increase of 3 billion people is still 

expected from these three countries by 2050. Other than an expected population boost, 

African, Asian, and Latin American countries also have rapid economic growth rates 

(Table 1.1) that are above the world average, which further suggests an increased food 

demand in these countries in the future. With the implementation of the “one-child 

Table 1.1 Variation of gross domestic product in selected 

regions (% change compared to the previous year) 

Regions 2011 2012 2013 2014 2015 

World 4.2 3.4 3.4 3.4 3.5 

Emerging and 
developing Asia 

7.7 6.8 7.0 6.8 6.6 

European Union 1.8 -0.4 0.1 1.4 1.8 

Latin America and 

the Caribbean 
4.9 3.1 2.9 1.3 0.9 

Emerging and 

developing Europe 
5.4 1.3 2.9 2.8 2.9 

Middle East and 
North Africa 

4.5 4.9 2.3 2.4 2.7 

Sub-Saharan Africa 5.0 4.2 5.2 5.0 4.5 

Australia 2.7 3.6 2.1 2.7 2.8 

USA 1.6 2.3 2.2 2.4 3.1 

UK 1.6 0.7 1.7 2.6 2.7 

China 9.3 7.8 7.8 7.4 6.8 

India 6.6 5.1 6.9 7.2 7.5 

Source: International Monetary Fund. Download URL: http:// 
knoema.com/IMFWEO2015Apr/imf-world-economic-outlook- 

weo-april-2015.  
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policy”, China is expected to have only a 2% increase in population by 2050 (2013). 

Neverthelss, the driving force of food demand is the improving living standards of the 

Chinese population, because of an increased average economic rate of 7.8% over the 

past five years (OECD and FAO Secretariats). Developed countries, except the USA, are 

expected to experience a decline in population with steady economic increase, indicating 

a small contribution to the increasing food demand in the future. 

Attitudes of governments to the “food crisis” debate depend not only on the increasing 

food demands, but also on food productivity. The agriculture gross production values of 

selected regions and countries are presented in Table 1.2. As shown, developed countries 

in Europe, Oceania, and North America produce 

more food than they demand. To balance food 

prices in worldwide trade, some agricultural 

products are used to produce fuels, thereby 

generating a debate on food and biofuel 

(Pimentel et al., 2008). Agriculture gross 

product values of China and Brazil are quite 

similar. However, owing to the potential for 

increase in food production, Brazil (which has a 

higher potential) tends to develop biofuel 

technologies, whereas China, which has limited 

farmlands, is still looking for additional food sources to feed the next generation (OECD 

and FAO Secretariats, 2013). Most countries in Asia and Africa have low agricultural 

production, which is only half of the world average. Owing to the limited number and 

poor quality of farmlands, these countries suffer from a food shortage. Increased food 

production is therefore a priority of these countries. 

Nevertheless, although only some counties require a boost in food production by 2050, 

“twice the food production at half the ecological footprint” is the goal for all countries 

worldwide. Looking back on the history of agriculture, a boost in agricultural production 

resulted from an increase in either productivity or farm lands, and it also came with its 

share of environmental and health threats. The three primary factors that led to recent 

Table 1.2 Agricultural gross production 

value USD/person 

 2011 2012 2013 

World 306 307 312 

Oceania 846 898 878 

Europe 526 499 521 

Asia 266 272 273 

Americas 435 435 453 

Africa 171 175 180 

USA 605 585 605 

Brazil 432 422 453 

China 432 446 451 

India 152 153 157 

Source: FAO. 
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increases in worldwide crop production are increased cropland and rangeland area (15%), 

increased yield (78%), and greater cropping intensity (7%) (Alexandratos and Bruinsma, 

2012; Diouf, 2002). Over-farming and overuse of fertilizer have already resulted in a 5% 

degradation of arable land (Nellemann et al., February 2009). Overuse of pesticide not 

only affects biodiversity, but also poses a threat to human health (Nellemann et al., 

February 2009). The effects of some agricultural practices on the environment in 

developing countries can spread to all other countries in terms of climate change, 

air/ocean pollution, etc.  

In fact, many developed countries are assuming the responsibility of looking for new 

food sources and technologies that can increase food production with less environmental 

impact. The concept of a “Bio-economy” was therefore proposed to fulfil the target of 

“twice the food production at half the ecological footprint”. Using biorefinery 

technologies on unused biomass to produce more food or animal feed could be a solution 

to compensate for the inadequacy of the food supply. 

1.2 To fulfil the demand – Biorefinery of leafy biomass 

Residual biomass, including leaf, stem, and/or root, are often abandoned after 

agricultural products are harvested. Leaves, which may account for 35–50% dry weight 

of the whole plant, are the most valuable biomass that can be obtained from all types of 

plants (Fig. 1.1).  

The composition of leaves differ as a result of adaption to environmental conditions, 

including climate and available light, and other factors such as grazing animals, available 

nutrients, and ecological competition from other plants (James and Bell, 2000). Through 

the process of photosynthesis, leaves become rich in protein, minerals, and sugars, 

whereas through the structure and transportation of nutrients, leaves also require large 

amounts of lignocellulose for biofuel production. To adapt to various environmental 

conditions, structural and functional components of leafy biomass are needed, such as 

pigments, lipid, polyphenol, and pectin (Dashek and Harrison, 2006a; Haslam and Cai, 

1994).  

http://en.wikipedia.org/wiki/Protein
http://en.wikipedia.org/wiki/Minerals
http://en.wikipedia.org/wiki/Sugars
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After 

harvest leaf

Stem

Root

Leaves are the most abundant 

and protein-rich resource 

without deep exploitation

0-25%

35-50%

0-15%

% of residue on dry 

weight

Plant Species 
Dry matter yield 

Mg ha
-1

 year
-1

 

Protein% of 

dry matter 

Rapeseed (Telek, 1983) 28 25.4 

butterfly pea (Telek, 1983) 28 24 

Goa bean (Telek, 1983) 20 22.2 

Mung bean (Telek, 1983) 16 22.9 

Cassava leaf (Ravindran, 1993) 4.64 20.5 

Sugarcane leaf (Chandel et al., 2012; 

Devi et al., 1965) 
6-8 10 

Olive leaf (Martı́n Garcı́a et al., 2003) - 7 
 

 

Leafy biomass is considered a good food source due to its production yield and high 

protein content. Dry matter yield of bean leaves range from 10–30 ton ha
-1

 year
-1

, with 

protein content between 18% and 30% (Telek, 1983) (Fig. 1.1). In comparison, soybean 

production is 3 ton ha
-1

 year
-1

 (Cordonnier, November 1, 2013) with protein content of 

30–40% (Wolf et al., 1982), which is only about a quarter of the production of their 

leaves. In addition to soybean, protein production yields of leaves from other 

commercial agricultural plants, such as cassava (Ravindran, 1993), sugarcane (Chandel 

et al., 2012; Devi et al., 1965), and olive (Martı́n Garcı́a et al., 2003), are also 

considerable ( Fig. 1.1). The leaves of many species can be found in developing 

countries (Telek, 1983), in which developments of leaf biorefinery technologies can 

directly contribute to the food supply, where a food production boost is required to feed 

an increasing population.  

1.3 Products from leafy biomass  

1.3.1 Upgrading the value of leaf components 

Current and potential applications of leaf components are illustrated in Fig. 1.2. More 

than 90% of leafy biomass, such as fallen leaves from trees, is used in burning or 

compositing, which are among the lowest categories of biomass applications. Although 

Fig. 1.1 Residual biomass after harvesting and protein production yield of different leaf species. 
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leafy biomass can be applied to the production of second-generation ethanol (Taherzadeh 

and Karimi, 2008), few efforts have been successful, which is because of the difficulties 

encountered in the hydrolysis of lignocellulose (Taherzadeh and Karimi, 2008). Leaf 

biomass that is used for animal feed or human food is often used entirely for its 

digestible protein and carbohydrates, which account for only 30% of the total biomass. 

The functional components of herbs, which likely represent less than 10% on a dry 

weight basis, are used in medicine and functional beverage. The residues obtained after 

extraction of functional components are then abandoned or used for their energy through 

burning. Development of leaf biorefinery technologies by which leafy components are 

solubilized and fractionated, and used for their highest value can augment the supply of 

food, animal feed, and chemicals and fuels. 

 

 

 

 

 

Although the compositions of leafy biomass are very diverse depending on the plant 

species and growing period, there are four major components in all species: protein, 

pectin, lignin, and (hemi-) cellulose (Table 1.3). These four major components account 

for more than 70% of total dried biomass and can be considered as target products of all 

leafy biomass. Among these four components, protein and pectin can be used in food and 

animal feed, which are the key components to supplementing food production. Some leaf 

biomass, such as tea and olive leaves contain high amount of polyphenols, which can be 

used in food additives or in medicine as anti-oxidants (Altiok et al., 2008; Figueirinha et 

al., 2008; Harold N, 1992). Some leaves contain lipid (Bals et al., 2007a; Latif and 

Müller, 2015), which can be used in food or biodiesel. In addition, minerals in leafy 

biomass should be considered for recycling as fertilizer. 

Fig. 1.2 Current (Left) and potential (Right) applications for leaf components. 

M: medicine; F: food; A: animal feed. 

 

 

High value 

Low value 
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1.3.2 Protein and pectin 

Protein can be used in food (Ghaly and Alkoaik, 2010), animal feed (Kondo et al., 2004), 

or, when hydrolysed to amino acids, for other applications such as bulk chemicals 

(Sanders et al., 2007). Proteins are large biological molecules or macromolecules, 

consisting of one or more long chains of amino acid residues. In food applications, the 

functionalities of leaf protein, including its foaming, water absorbing, emulsifying, and 

gelling properties, determine the protein value. In animal feed applications, the 

digestibility and amino acid composition of leaf protein are very important. Owing to the 

absence of key enzymes that synthesize certain amino acids, most animals (including 

humans) must obtain some amino acids from their diet, which can be synthesized by 

plants (Donald Voet and Voet, 2011). These amino acids, which cannot be synthesized by 

animals, are referred to as essential amino acids, and they also determine the value of 

leaf protein. The non-essential amino acids can be separated from animal feed to produce 

other useful chemicals, such as nitriles for polyamides like Stanyl
®

 (Lammens et al., 

2011). 

Other than protein, pectin is another major component in leaves that can be used in food 

applications. Pectin is a structural heteropolysaccharide in the primary cell walls of 

terrestrial plants. It can be roughly divided into three types: homogalacturonan (HG), 

rhamnogalacturonan I (RGI), and rhamnogalacturonan II (RGII) (Ridley et al., 2001). 

Owing to its gelling properties, pectin is mainly used as a food additive. Current 

commercial pectin is mainly obtained from apple pomace and citrus peel (Wang et al., 

Table 1.3 Composition of leafy biomasses of several selected plant species (% in dry weight) 

Plant species Protein Pectin 
(Hemi-) 

cellulose 
lignin 

Other 

components 

Premna microphylla turcz (Chen et al., 2014) 13 30 34 17  

Peat moss (Ballance et al., 2012) 20* 20 31 16.5  

Green tea (Harold N, 1992) 15 5 20 6.5 Polyphenol 36 

Switchgrass (Bals et al., 2007a; DeMartini et al., 2013) 7 10* 43 11 Lipid 7 

Cassava (very young) (Latif and Müller, 2015) 38 14* 18 1 Lipid 4 

Cassava (young) (Latif and Müller, 2015) 29 12* 28 4 Lipid 6 

Cassava (mature) (Latif and Müller, 2015) 18 10* 38 8 Lipid 7 

Olive (Martı́n Garcı́a et al., 2003) 7 7 25 19 Polyphenol 25 

* Estimation based on the content of other components. 

http://en.wikipedia.org/wiki/Biomolecule
http://en.wikipedia.org/wiki/Macromolecule
http://en.wikipedia.org/wiki/Amino_acid
http://en.wikipedia.org/wiki/Residue_(biochemistry)
http://en.wikipedia.org/wiki/Diet_(nutrition)
http://en.wikipedia.org/wiki/Essential_amino_acids
http://en.wikipedia.org/wiki/Heteropolysaccharide
http://en.wikipedia.org/wiki/Cell_wall
http://en.wikipedia.org/wiki/Terrestrial_plant
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2014; Willats et al., 2006). Although leaf pectin constitutes approximately 15% of dried 

leafy biomass, it is rarely used because of its poor gelling properties and high production 

costs compared to commercial pectin. Therefore, to improve the market value of leaf 

pectins, either their structure or molecules should be modified to improve their 

functionalities, or alternative applications should be found, based on their constituent 

chemicals, such as galacturonic acid (Lavilla et al., 2012; Lavilla et al., 2011; 

Muñoz-Guerra, 2012) . 

1.3.3 Polyphenol and lignocellulose 

The White–Bate–Smith–Swain–Haslam definition (Haslam and Cai, 1994) describes the 

polyphenol class as: moderately water-soluble compounds with more than 12 phenolic 

hydroxyl groups and molecular weight of 500–4000 Da, with 5–7 aromatic rings per 

1000 Da. Polyphenols have high values in practical uses. Herbal polyphenols are used in 

food additives or in medicine. Other polyphenols, such as tannins, were used 

traditionally for tanning leather and today they are used as precursors in green chemistry 

(Hillis and Urbach, 1959; Pizzi et al., 1994; Polshettiwar and Varma Rajender, 2008).  

Lignocellulose, which consists of lignin and (hemi-) cellulose, may account for 30–50% 

of leafy biomass. Currently, applications of lignocellulose are limited; board, paper, or 

combustible energy are its major applications (Anwar et al., 2014; Pothiraj et al., 2006). 

It has huge potential for production of biofuel and bulk chemicals (Anwar et al., 2014; 

Pothiraj et al., 2006), but has not been very successful owing to the complexity of the 

structure of lignin and the difficulties encountered in its hydrolysis (Boerjan et al., 2003; 

Grabber, 2005). 

1.4 Challenges of leaf biorefinery 

The concept of leaf biorefinery to supplement the food supply had been proposed 70 

years ago, but few commercial cases have been successful. The main challenge of leaf 

biorefinery is its low cost-effectiveness. Developments of leaf biorefinery are not only 

limited scientifically from unstable raw materials, complex components, and rigid plant 

cell walls, but also influenced by social factors such as underdeveloped leaf economics.  

http://en.wikipedia.org/wiki/Water-soluble
http://en.wikipedia.org/wiki/Green_chemistry
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1.4.1 Variation of leaf composition 

Compositions of leafy biomass differ not only by species, but also by growing period 

(Nagy et al., 1978). Generally, young shoots, as compared to old leaves, have higher 

concentrations of protein and soluble sugars, whereas old leaves contain higher 

concentrations of lignocellulose (Latif and Müller, 2015; Waring et al., 1985). Leaves of 

deciduous plants, for example, change colour from green to yellow, bright-orange, or red, 

as various accessory pigments (carotenoids and xanthophylls) become evident when the 

plant responds to cold and reduced sunlight by curtailing chlorophyll production (Feild 

et al., 2001). The variation in leaf composition of various plant species leads to 

inconsistencies in leaf biorefinery research and leaf product quality through biorefinery. 

1.4.2 Rigidity of plant tissues 

Leaves have three major tissue systems: epidermal, mesophilic, and vascular. Vascular 

tissues are located in mesophyll tissues, covered by epidermal tissue. Those tissues are 

adhered by the lamella layer, and they contain a large quantity of pectin. The epidermis 

is a tabular and layered sheet of cells on the surface of the leaf, covered by a waxy 

cuticle that functions as mechanical protection for mesophyll tissue (Dashek and 

Harrison, 2006b; Mauseth, 2009). Furthermore, organelles in mesophyll tissues are well 

protected by the cell walls, which each consist of middle lamella, primary wall, and 

secondary wall. Besides protein, carbohydrate (including pectin, hemi-cellulose, and 

cellulose) and lignin are two major components of the cell wall (Dashek and Harrison, 

2006b). Pectin is a family of complex polysaccharides located in the primary plant cell 

wall and middle lamella (Dashek and Harrison, 2006b; Somerville et al., 2004). 

Hemi-cellulose and cellulose are mainly found in both primary and secondary plant cell 

walls, and they both have simpler compositions than pectin. In comparison, lignin could 

be the most complicated component located in the secondary plant cell wall (Dashek and 

Harrison, 2006b). It is a complex phenolic polymer that drives out water and strengthens 

the cell wall. The rigidity of the epidermis and the two-layer cell wall increase the 

difficulty of leaf biorefinery. 

http://en.wikipedia.org/wiki/Deciduous#Botany
http://en.wikipedia.org/wiki/Autumn_leaf_color
http://en.wikipedia.org/wiki/Yellow
http://en.wikipedia.org/wiki/Orange_(colour)
http://en.wikipedia.org/wiki/Red
http://en.wikipedia.org/wiki/Carotenoid
http://en.wikipedia.org/wiki/Xanthophyll
http://en.wikipedia.org/wiki/Sunlight
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1.4.3 Complexity of components 

Although the diverse components indicate the potential of leaves for high value 

applications in food or medicine, they also result in relatively high costs of production 

(extraction). Unlike commercial agricultural products, such as potato, which may 

comprise only one or two major components, the amounts of the four major components, 

protein, pectin, polyphenol, and lignocellulose, are quite similar in leaves (see Table 1.3). 

The similarity of these four components result in relatively low amounts compared to 

that of the same components in commercial agricultural products. Furthermore, these 

four components are entwined in leaf tissues resulting in difficulties in separation. The 

production cost of obtaining one component from leaves would be 2–3 times higher than 

that from commercial crops. In addition, during processing, these components may be 

hydrolysed (Sari et al., 2015a) or may react mutually (Osawa and Walsh, 1993; 

Whitmore, 1978; Zahedifar et al., 2002) to form new unexpected products. 

1.4.4 Undeveloped leaf economics 

For commercial crops, the whole chain from plantation to the final product in market is 

mature. The cost of logistics and the impact on the environment (waste management) are 

low, whereas the market demands are high. Development of these commercial crops in 

all fields from the plantation steps to the final products can be fully supported by current 

mature economics. By contrast, for most species, leaf economics, from harvesting to 

sales, need to be established.  

The main challenge in the undeveloped leaf economics is the logistics system. Logistics 

is the process of planning, implementing, and controlling the effective and efficient flow 

of goods and services from the point of origin to the point of consumption (Vitasek, 

2013). Considering potato as an example, information and machines for its growth and 

harvesting can be obtained from related bureaus or companies, and related factories have 

been built at a reasonable distance to reduce the cost of transportation. Information on 

potato related products is clear enough for customers, that no extra effect is required to 

convince them to purchase. Generating products from leaves however, does not establish 

the production chain only, but the logistics chain as well, encompassing harvest 
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machinery, transportation, and design to sales. Currently, the poor logistics of leaf 

biorefinery limit its development and distract investors from relevant research.  

1.5 Extraction technologies for leaf components  

To overcome the challenges of leaf biorefinery, extraction technologies for specific 

components and/or specific species of leafy biomass have been investigated (Badar and 

Kulkarni, 2011; Nie and Xie, 2011; Willats et al., 2006), but only few cases have been 

transferred successfully to practical production. These successful cases are mainly in the 

extraction of functional components, such as tea polyphenol or taxol, which can be used 

as functional food or medicine (Day and Frisvold, 1993; Khan and Mukhtar, 2007). 

Production of other components, including leaf protein, which may account for 25% of 

total leafy biomass in dry weight and can be used in food or animal feed, are not 

economically feasible yet.  

1.5.1 Protein extraction 

For protein extraction, many technologies are tested, including mechanical press, 

alkaline extraction, enzymatic extraction, and steam explosion. According to the 

conditions of processing, pH, temperature, and pressure, these techniques are divided 

into mild, medium, and severe. Protein products obtained by these conditions can be 

accordingly applied in food, animal feed, and amino acid related products. Protein yield 

obtained by these technologies can be higher than 80% from seed biomass (Sari et al., 

2015a), but is at present not cost-efficient for leaf protein extraction, which severely 

impedes the applications of leaf protein. The efficiencies of current protein extraction 

technologies for the leaves of several species are listed in Table 1.4.  

Protein extraction yield is different depending on the species and the practical conditions 

(Chiesa and Gnansounou, 2011; Dale et al., 2009b; Kammes et al., 2011; Sari et al., 

2015b; Telek, 1983). Extraction yield by mechanical pressing is relatively low and varies 

from 15 to 45% of total protein (Fasakin, 1999; Fasuyi, 2005; Kammes et al., 2011). However, 

as they are treated by mild conditions, these proteins are regarded as food grade. 

Alkaline extraction has a better extraction yield that varies from 30 to 55%, which could 
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be further improved by enzyme assistance or the combination of mechanical disruption 

(Huang et al., 1971). Proteins can be denatured and hydrolysed in alkaline conditions; 

therefore, proteins extracted under these conditions are of lower quality and are difficult 

to be recovered (Bals and Dale, 2011; Chiesa and Gnansounou, 2011). These proteins are 

suitable to be used as animal feed, or for its amino acids through hydrolysis. Ammonia 

fibre explosion (AFEX) was suggested to use as a pre-treatment for protein extraction, 

which may increase protein to higher than 60% (Bals et al., 2007a). Nevertheless, its 

capital costs are very high due to the requested high pressure and ammonia recycle 

system. In addition, other techniques have been also tested for protein extraction, such as 

ultra-sonic and pulsed electric field. All these methods of protein extraction are energy 

intensive with a low cost-efficiency. 

1.5.2 Extraction of components other than protein 

Pectin extraction with the use of acid, alkaline, buffer solutions, ionic solutions, enzymes, 

and subcritical water has been studied (Lim et al., 2012; Methacanon et al., 2014; Seixas 

et al., 2014; Sengkhamparn et al., 2010; Wang et al., 2014; Westereng et al., 2008; 

Zykwinska et al., 2006). Generally, more than 90% pectin can be extracted by acid 

extraction, which can be recovered by ethanol precipitation. Pectin can be extracted in its 

Table 1.4 Protein extraction yield obtained by various technologies on different leafy biomass 

Plant species Method Protein yield (%, Wprotein) 

Orchardgrass Screw press 15~25 (Kammes et al., 2011) 

Water fern Press and heat 11 (Fasakin, 1999) 

Duck weed Press and heat 10 (Fasakin, 1999) 

Alfalfa leaves Press and heat 38 (Edwards et al., 1975) 

Cassava leaf Screw-press 50 (Fasuyi, 2005) 

Switchgrass Screw press 15~25 (Kammes et al., 2011) 

Tea residue 
Alkaline extraction 

enzymatic 

58 (Shen et al., 2008) 

48 (Shen et al., 2008) 

Comptonia peregrina Alkaline extraction 27.2 (Jones et al., 1989) 

Dwarf Elephant Grass Ammonia 35 (Davison et al., 2005) 

Tobacco  Phosphate buffer  18 (Fu et al., 2010) 

Orthosiphon aristatus Tris–sucrose buffer 50 (Koay and Gam, 2011) 

Alfalfa leaves Milling in buffer, acid coagulate 61 (Huang et al., 1971) 

Monochoria hastata Solms Homogenized and filtered 60 (Pandey and Srivastava, 1991) 

Switchgrass Ammonia fiber explosion 68 (Bals et al., 2007a) 
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native form by acid extraction, which means its gelling property can be preserved. Alkali 

has also been applied in pectin extraction, by which more than 80% of pectin can be 

extracted (Renard et al., 1990; Zykwinska et al., 2006). Although alkaline extracted 

pectin retains its structure and the length of its molecular chains, the loss of its degree of 

esterification reduces the gelling property, and therefore reduces its value in food 

applications. In addition, enzymatic methods may have the potential for obtaining high 

yield chemicals derived from pectin, such as galacturonic acid, rhamnose, galactose, and 

arabinose (Garna et al., 2006; Ridley et al., 2001).  

Research on the extraction of lignocellulose is limited. Peer research is more focusing on 

hydrolysis of lignocellulose using concentrated acid, H2O2, or enzymes (Doner and 

Hicks, 1997; Pothiraj et al., 2006; Taherzadeh and Karimi, 2008). After hydrolysis, 

lignocellulose is often used as a substrate in a fermentation system to produce biodiesel, 

bioethanol, or other bulk chemicals (Pothiraj et al., 2006; Taherzadeh and Karimi, 2008).  

1.5.3 Integrated biorefinery for multiple products 

Integrated processes were considered the best option for leaf biorefinery (Badar and 

Kulkarni, 2011). The extra costs generated from multiple processes could be covered by 

higher product quality and relatively low production costs. By obtaining multiple 

products from various processes, it is possible to reach the highest value of all 

components in leafy biomass. For example, producing animal feed protein along with 

fuels and chemicals in a biorefinery context, increased total economic value with 

relatively lower production costs (Dale et al., 2009b). 

The difficulties of integrated biorefinery include the incompatibilities of processes. 

Extractions of different components from leafy biomass are often studied separately; 

therefore, their compatibility in an integrated process is rarely tested. Pigments and 

polyphenol have been extracted by organic solvents (Arvayo-Enriquez et al., 2013; 

Sybesma et al., 1984; Turkmen et al., 2006); pectin is usually extracted by acid (Lim et 

al., 2012); and leaf protein extraction by alkali has been suggested (Shen et al., 2008; 

Zhang et al., 2014). Combining above processes to obtain highest yields of protein, 

pectin, and polyphenols is technically possible, but it will not be economically feasible. 
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This is because of the cost of organic solvents, the influence of the solvent in 

pectin/protein extraction, and the generation of salts from the neutralization reaction. The 

compatibilities of processes should be investigated and adapted in the research of leaf 

biorefinery.  

1.6 General description of this thesis 

1.6.1 Using green tea residue as a starting material 

In this study, green tea residue (GTR) was used as a starting material. This decision was 

made mainly for four reasons: it is produced in developing countries with relatively high 

yields, its components have high potential economic value, it can be easily recycled from 

tea factories where it is already gathered and pre-processed for tea production, and it can 

be supported by local economics.  

Table 1.5 Tea production in different countries (k ton dry leaves) 

Country  2011  2012 Country  2011  2012 

China 1623 1700 F Malawi 52F 54 F 

India 967 1000 F Uganda 35 51 

Kenya 378 369 Tanzania 32 33 

Sri Lanka 328 330 Myanmar 31* 32 F 

Turkey 222 225 Mozambique 27 22 

Vietnam 207 217 Rwanda 24 23 

Indonesia 150 150 Zimbabwe 18Im 19 F 

Iran 104 158 F Nepal 17 19 

Argentina 97 100 F Taiwan 17 15 

Japan 82 86 Malaysia 17 17 

Thailand 73 75 F Azerbaijan 11 12 

Bangladesh 61 62 F  

Source: http://faostat.fao.org/. *: Unofficial figure; F: FAO estimate; Im: FAO data based on 

imputation methodology. 

Tea production is relatively high and it is produced mainly in developing countries 

(Table 1.5), in which food shortage remains a challenge. In 2011, world tea production 

reached over 4.7 million tons after having increased by 5% between 2010 and 2011. 

Production rose by 4% between 2011 and 2012. The greatest amounts of tea were 

produced in developing countries such as China, India, Kenya, Sri Lanka, and Turkey. 

Traditionally, tea has been consumed individually, and the residue was considered 

unrecyclable. However, thanks to the appearance of colossal beverage companies, such 

http://en.wikipedia.org/wiki/Kenya
http://en.wikipedia.org/wiki/Sri_Lanka
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as Coca Cola and Lipton, tea residues are now produced centrally. It is estimated that 

350k tons of dry tea residues are generated and can be collected from instant tea 

factories in China alone . 

Tea has been made for hundreds of years, and therefore the tea leaf economic chains 

have been already formed. Although these chains focus only on the beverages that 

mainly contains tea polyphenols, it offers a relatively stable raw biomass and convenient 

logistics if other tea products can be produced. Green tea residue (GTR), used as a model 

material for this study, contains more than 25% protein represent a waste stream from tea 

factories, which amounted to 50,000 ton year
-1

 from Damin Company, Fujian Province, 

China, in 2010. Currently, GTR is only used for energy generation through burning. The 

aforementioned company is looking for methods to increase the value of GTR that 

scaling-up production of GTR products that found in this study can be fully supported. 

GTR is also an excellent model of a starting material that can be used as an example for 

the leaves of other species. It has a relatively high protein content (Jayasuriya et al., 1978; 

Shen et al., 2008) in which at least seven different types of proteins have been 

discovered, including RuBisCO (Ribulose-1,5-bisphosphate carboxylase/oxygenase) and 

glycoproteins (Lin et al., 2009; Shen et al., 2008; YuXiang; and Liu ShenKui, 2005). The 

superior quality of tea leaf protein in terms of amino acid profile, as compared to soy 

bean meal, has been documented (Shen et al., 2008). Tea residue also contains relatively 

high amounts of valuable components other than protein, such as pectin, phenolic 

compounds (polyphenol and lignin) and (hemi-) cellulose. The value of these 

compounds makes an integrated biorefinery attractive from both economic and 

sustainability perspectives. 

1.6.2 Objective and research questions 

The aim of this study is to develop new processes and applications to optimally utilize 

all components, particularly protein, of leafy biomass in the feed and/or food industry 

using green tea residues as a starting material.  
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The research questions are: 

1. Can we use alkaline protein extraction cost-effectively for GTR? 

2. How does alkali aid protein extraction? 

3. Can protein products be used for animal feed?  

4. Are there any pre-treatments that can be used to further improve the cost-efficiency of 

alkaline protein extraction with the yield of other GTR components? 

5. Are these processes technically and economically feasible for sustainable production? 

6. Is it possible to upgrade the applications of protein and pectin for human food? 

7. Do pre-treatments and alkaline extraction remove or degrade plant toxicants in protein 

products for animal feed?  

8. Can the knowledge gained from work on GTR be applied to the leaves of other 

species? 

1.6.3 Thesis layout 

Chapter 1 is the introduction of this thesis. 

Chapter 2 describes the critical parameters in alkaline protein extraction that are related 

to protein extraction yield or production cost from GTR. Nutritional value based on 

amino acid profile of alkaline protein extracts is investigated. The chapter also shows the 

applicability of alkaline extraction on the leaves of various species. This chapter will 

answer the questions 1, 3, and 7. 

Chapter 3 shows the variations of GTR in terms of leaf tissues, protein properties, and 

extraction of non-protein components during alkaline protein extraction. Limiting factors 

for protein extraction and the possible components that can be extracted prior to protein 

are discussed. This chapter will answer question 2. 

Chapter 4 presents the efficiency of pre-treatments that target selected components 

according to Chapter 3 and their influence on the subsequent alkaline protein extraction, 

including the production(yield, purity, and alkali consumption) and protein quality 

(colour, digestibility, composition, and amino acid profile). This chapter answers 
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questions 3 and 4. 

Chapter 5 introduces the production of leaf pectin and its integration with alkaline 

protein extraction. Influence of processing techniques on pectin structure and properties 

are discussed. This chapter supplement the answer to question 4. 

Chapter 6 discusses improvements in alkaline extraction by using potassium and/or 

calcium alkali instead of sodium alkali. Cost-efficiency and sustainability of the alkaline 

extraction scheme are analysed. This Chapter answers question 5.  

Chapter 7 is a general discussion of all our unpublished data. It refers to our 

understanding of the biorefinery concept, the alkaline extraction mechanism, possible 

improvements for extraction techniques, and product quality. In addition, the prospects 

of leaf biorefinery are presented based on our findings and state-of-the-art techniques. 

This chapter answers questions 1-8.   
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CHAPTER 2: CRITICAL PARAMETERS IN COST- EFFECTIVE 

ALKALINE EXTRACTION FOR HIGH PROTEIN YIELD FROM 

LEAVES  
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Abstract:  

Leaves are potential resources for feed or food, but their applications are limited due to a 

high proportion of insoluble protein and inefficient processing. To overcome these 

problems, parameters of alkaline extraction were evaluated using green tea residue 

(GTR). Protein extraction could be maximized to 95% of total protein, and, after 

precipitation by pH adjustment to 3.5, 85% of extracted protein was recovered with a 

purity of 52%. Temperature, NaOH amount, and extraction time are the protein yield 

determining parameters, while pH and volume of extraction liquid are critical parameters 

for production cost. The cost of energy and chemicals for producing 1 ton GTR proteins 

is minimized to 102 €, and its nutritional value is comparable to soybean protein. 

Furthermore, this technology was successfully applied to other sources of biomass and 

has potential to be used as a part of an integrated biorefinery process. 
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2.1 Introduction 

Leaf protein has been regarded as an additional protein source since 1960s (Akeson and 

Stahmann, 1965; Badar and Kulkarni, 2011; Gerloff et al., 1965). These proteins can be 

used in food (Badar and Kulkarni, 2011; Ghaly and Alkoaik, 2010), animal feed 

(Kammes et al., 2011; Kondo et al., 2004), or when hydrolyzed to amino acids for other 

applications, such as bulk chemicals (Sanders et al., 2007). Tea leaf residue is one 

example of a potential new protein source. As a major agro product in China, 1.6 Million 

tons (dry weight) of tea leaf products were produced in 2011 (FAOSTAT, 2012). Tea 

producers estimate that around one fifth (dry weight) of the tea residues are produced 

centrally and can be collected from instant tea factories .Tea residues, which are the 

waste of tea leaves after hot water extraction, contain 20-30% protein (Jayasuriya et al., 

1978; Shen et al., 2008). There are at least seven different types of protein, including 

Rubisco and glycoproteins (Lin et al., 2009; Shen et al., 2008; YuXiang; and Liu 

ShenKui, 2005). The superior quality of tea leaf protein in terms of amino acid profile 

compared to soy bean meal has been documented (Shen et al., 2008). 

However, although huge economic potential lies in leaf protein, its applications are 

severely impeded by low cost-efficient production. Protein extraction yield is relatively 

low that varies from 15% to 60% of total protein, depending on species and processing 

methods (Chiesa and Gnansounou, 2011; Dale et al., 2009b; Kammes et al., 2011; Telek, 

1983). Furthermore, protein production yields are reduced during recovery, particularly 

for those processes, such as alkaline extraction, that generate protein hydrolysates (Bals 

and Dale, 2011; Chiesa and Gnansounou, 2011). Conventional alkaline extraction has 

already been studied decades ago, but no significant improvement was made in leaf 

protein extraction. Despite the lower cost, alkaline extraction has the lowest profit 

among all extraction techniques for leaves primarily due to low protein yield (Bals and 

Dale, 2011). If protein yield can be increased without increasing cost for extraction, the 

economic value of leaf protein can be exploited.  

The low productivity of alkaline extraction may result from overlooking two points. 

Firstly, applying high temperature in alkaline extraction has shown to increase protein 
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yield in some cases (Choi and Markakis, 1981), which is conflicting with the general 

knowledge that heating results in protein precipitation. Secondly, the influence of 

solution to raw material ratio (v/w) and alkaline concentration (pH) on protein yield 

were always studied independently (Harnedy and FitzGerald, 2013; Lestari et al., 2010; 

Shen et al., 2008), but the influence of alkali amount, which is determined by both v/w 

and alkaline concentration, was never considered. 

In this study, the possibility to increase protein yield at elevated temperature was 

investigated, followed by an evaluation of the influence of v/w and alkali amount on 

protein extraction yield. The parameters that involves in alkaline extraction were 

grouped to protein yield related and cost related, and its economic value was estimated. 

In addition, the general applicability of new parameter setup was tested by using other 

materials, like oolong tea residue, grass, and barley straw.  

2.2 Materials &Methods 

2.2.1 Materials 

Green tea residue (GTR) is our main material, which is a gift from Damin Company, 

Fujian Province, China. This residue from tea lemonade production was collected from 

camellia sinensis trees in Zhejiang province, and it was sun-dried after soaking green tea 

leaves in water at 85 °C for 45 min. The dried residue was then ground into powder. Its 

protein content is 26.5%, which was determined by the method of Kjeldahl (Kjeldahl, 

1883).  

Oolong tea residue (leaves collected from the Camellia sinensis trees in Fujian province, 

processed by Damin company, Fujian, China), and Barley straw (Hordeum vulgare L., 

from Cargill B.V., the Netherlands) were sundried, collected, and stored at room 

temperature for further use. Grass (Poa pratensis, from Wageningen, The Netherlands) 

was freshly harvested and used immediately. 

NaOH, HCl, and other chemicals for analysis were of analytical grade, purchased from 

Sigma, the USA. 
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2.2.2 Protein extraction 

Protein extraction was performed by soaking 0.5 g GTR in alkaline solution. NaOH 

concentration (0-0.1 M), temperature (25-95 °C), extraction time (5 min - 24 h), and v/w 

(8-60 mL
 

g
-1

), were varied. After subsequent centrifugation, which was always 

performed at 15000 g for 10 min (Sorvall centrifuge, Thermo Fisher Scientific, the USA), 

supernatants were collected and stored at -20 °C until further analysis.  

In two-step protein extractions, 0.5 g GTR was first extracted with 0.1 M NaOH at v/w 

of 40 mL
 
g

-1
 and 40 °C for 4 h. After centrifugation, the supernatant was obtained and 

stored at -20 °C until further analysis while the precipitate was then soaked in 0.1 M 

NaOH at v/w of 40 mL
 
g

-1
 and 95 °C for 2 h. The supernatant from the second extraction 

and final cake were separated by centrifugation and stored at -20 °C until further 

analysis. 

2.2.3 Protein precipitation 

Protein supernatants obtained from two experiments: 1) 0.1 M NaOH at v/w of 40 mL
 
g

-1 

and 40 °C for 4 h, and 2) 0.1M NaOH at v/w of 40 mL
 
g

-1 
and 95 °C for 4 h, were 

concentrated to 5 g protein L
-1 

by a rotary evaporator (IKA, Labortechnick, Germany). 

The pH of each sample (10 mL) was adjusted to pH 3-5, by the addition of 1 M HCl, and 

left still at 4 °C for 24 h. Protein precipitates were collected by centrifugation and stored 

at -20 °C until further analysis.  

All the experiments were performed in triplicate, and the errors were calculated using 

standard deviation. 

2.2.4 Sample analysis 

2.2.4.1 Protein content: 

Protein content (g L
-1

) was determined by Kjeldahl method (Kjeldahl, 1883), using 

Kjeldahl equipment from Gerhardt, which consist of digestion unit (Gerhardt 

Kjeldahlterm) and rapid distillation unit (Gerhardt Vapodest). Kjeldahl measures all 

nitrogen, including non-protein N-containing components, such as caffeine, chlorophyll, 

and theobromine (Harbowy; and Balentine, 1997). However, we assumed that it is all 

http://www.thermofisher.com/
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protein and used a conversion factor of 6.25 to calculate protein concentrations.  

Protein extraction yield was calculated as extracted protein / total protein (TP) × 100%. 

Protein recovery was calculated as precipitated protein / extracted protein × 100 %. 

2.2.4.2 Weight of extracted GTR 

Weight of extracted GTR was determined by analytical balance after oven drying at 

60 °C for 24 h in glass containers, corrected for the amount of NaOH added, and 

subtracted by the amount of OH
-
 that was consumed to H2O due to pH decrease. GTR 

extraction yield was calculated as extracted GTR / total GTR × 100%. 

2.2.4.3 Amino acid composition 

Amino acid compositions were determined via UPLC (Meussen et al., 2013). Samples 

were obtained from extraction with 0.1 M NaOH (40 v/w, for 4 h) at 40 °C and 95 °C. 

They were first hydrolyzed in 6 N HCl containing 1% (w/v) phenol at 110 °C for 24 h 

and the amino acids were separated by using an Acquity UPLC BEH C18 reserved phase 

column. Detection was performed at the wavelength of 338 nm and 263 nm using 

Dionex RSLC (Dionex Corporation, Sunnyvale, CA, USA).  

2.2.5 Protein extraction process for cost calculation 

GTR (10 g) was soaked in 80 mL 0.4M NaOH with thorough stirring at 95 °C for 4 h, 

and the solid-liquid mixture was separated by centrifugation. The pellet was washed with 

40 mL water twice with sequential centrifugations, and the supernatants were then mixed. 

The pH was adjusted to 3.5 using 1 M HCl to precipitate the protein. The results were 

used to calculate the cost of producing 1 ton leaf protein product. 

2.3 Results and discussion 

2.3.1 Alkaline protein extraction in elevated temperature  

2.3.1.1 Protein yield 

To test the influence of temperature on protein extraction yields from GTR, 0.1 M NaOH 

was tested at v/w of 40 mL
 
g

-1 
and different temperatures. As shown in Fig. 2.1a, 
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approximately 20% of protein can be easily extracted in 15 min and the increase in 

protein yield is temperature dependent. At 95°C, about 95% protein can be extracted in 4 

h, which is almost twice the amount using peer technology in green tea leaves or other 

leaf species (Badar and Kulkarni, 2011; Bals et al., 2007a; Chen et al., 2012; Dale et al., 

2009b; Fernández et al., 1999; Fu et al., 2010; Schwenzfeier et al., 2011; Shen et al., 

2008).   

In protein extraction, high temperature is not favorable, for it may not only reduce 

protein yield because of protein coagulation (Tangka, 2003) and protein hydrolysis (in 

recovery step) (Bals and Dale, 2011), but may also reduce protein quality as a result of 

denaturation, hydrolysis, or amino acid racemization (Bals and Dale, 2011; Tangka, 2003; 

Zhu et al., 2010). However, at low temperature (25 °C), only 35% of protein was 

extracted even when extraction was extended to 3 days (data not shown). This barrier in 

alkaline protein extraction for leafy biomass can only be overcome by applying high 

temperature. 

 

 

 

 

 

 

 

 

For better understanding of the extraction process and to enable calculation of protein 

purity, extracted dry matter from GTR was also measured. Similar to protein extraction, 

yield of extracted GTR increased over time and its increase was also temperature 

dependent (see Fig. 2.1b). Approximately 25% of GTR was dissolved within 15 min, and 

roughly 63% of GTR was extracted in 4h at 95 °C. 

Fig. 2.1b Total mass extracted from GTR (%, w/w 
Total GTR) with 0.1M NaOH and v/w of 40 at 

different temperatures: 95 °C; ◆◆ 80 °C; 

60 °C; ×× 40 °C; ○○ 25 °C. 
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Fig. 2.1a Protein extraction yield (%, w/w Total 
Protein) with 0.1 M NaOH and v/w of 40 at 

different temperatures: 95 °C; ◆◆  

80 °C; 60 °C; ×× 40 °C; ○○ 25 °C. 
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2.3.1.2 Amino acid composition 

Since Kjeldahl determines total N content, real protein content is less than the calculated 

value (Kjeldahl, 1883). For comparisons, total amino acid composition was determined 

via UPLC. In the extract obtained at 40 °C, total amino acid amount is only 50% of 

Kjeldahl protein, while 88% of N-containing compound consists of amino acid in the 

95 °C sample. The proportion of real protein in the 95 °C sample (without purification) 

is even higher than the purified protein product obtained by peer studies (Shen et al., 

2008) (See Table 2.1). It is suggested that non-protein N-containing compounds, such as 

chlorophyll and caffeine, are easier to extract, leading to a low nutrition value of the 

GTR protein product extracted at mild conditions (Lin et al., 2003).  

Table 2.1. Amino acid composition of 100 g protein extracts (%) 

Amino acid 

40 °C GTR 

extract 

95 °C GTR 

extract 

GTR 

extract a 

Soy bean 

meal b 

His 1.3 ± 0.1 1.9± 0.1  1.96 2.7 

Arg 2.0 ± 0.1 3.4± 0.2  4.83 7.5 

Thr 2.6 ± 0.1 3.1± 0.2  3.83 4.0 

Val 2.9 ± 0.2 5.5± 0.2  4.63 4.8 

Met 0.8 ± 0.1 1.9± 0.1  1.12 1.4 

Try* - -  3.05 1.4 

Ile 3.2 ± 0.2 6.3± 0.3  3.98 4.6 

Phe 2.1 ± 0.2 4.4± 0.2  4.46 5.1 

Leu 4.2 ± 0.3 9.0± 0.3  7.78 7.7 

Lys 1.8 ± 0.1 2.8± 0.2  5.62 6.3 

Asp+Asn 5.8 ± 0.5 11.6± 0.7  8.01 11.6 

Glu+Gln 7.7 ± 0.4 12.4± 0.5  10.12 18.3 

Ser 3.0 ± 0.1 4.3± 0.1  3.94 5.1 

Gly 3.9 ± 0.2 5.9± 0.2  4.59 4.3 

Tyr 2.3 ± 0.2 4.3± 0.1  - 3.5 

Ala 3.4 ± 0.2 6.0± 0.1  4.90 4.4 

Pro 3.1 ± 0.2 4.8± 0.2  3.62 5.2 

Cys* - -  0.80 1.5 

Total 50.3 ± 2.3 87.7± 2.1  77.2 99.3 

a, Amino acid composition of soy bean meal based on (Shen et al., 2008) 
b, Amino acid composition of soy bean meal based on (Frikha et al., 2012) 

The nutritional value of proteins for monogastric animals and humans is often limited to 

the amount of essential amino acids, being arginine, histidine, leucine, isoleucine, lysine, 

methionine, phenylalanine, threonine, tryptophan, and valine (Dale et al., 2009a). 

Demonstrated in Table 2.1, the extract obtained at 40 °C contained 21% of essential 

amino acids in N-containing compounds. In the 95 °C sample, the number was 38%, 
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suggesting a higher nutrition value. Compared to the amino acid composition of soybean 

protein (Frikha et al., 2012), GTR extracts from the 95 °C process has higher leucine, 

valine, isoleucine, methionine content, similar histidine, threonine, phenylalanine 

content, and less arginine and lysine content.  

2.3.1.3 Protein purity  

To quantify protein purity, the yield of extracted GTR (WGTR, %) was plotted against the 

corresponding extracted protein (WGTR, %) in Fig. 2.2, based on the data obtained from 

3.1. Here, two constant slopes can be seen. When GTR extraction yield is below 33%, 

the slope is 0.25, which is less than half of the slope (0.57) above 33%. This was caused 

by a relative increase of extracted protein compared to extracted GTR, which indicates 

two regimes for extraction with protein purities of 25% and 57%. The first part may only 

contain easy solubilizable protein, while the second part also contains protein that is 

harder to solubilize. The lower slope 

corresponds to the experiments 

performed at 25 °C, 40 °C, and some 

at 60 °C, while the steeper slope 

covers the measurements of 60 °C and 

higher temperatures. It indicates that 

temperatures of 60 °C and higher may 

cause this change in the extraction 

mechanism, leading to higher yields.  

A two-step extraction could separate 

the easy solubilizable protein from 

harder to solubilize ones. An advantage from using two steps is the reduction the amount 

of non-protein components in the second fraction, since they are already extracted in the 

first step. Based on the above assumption, a two-step extraction was performed, yielding 

two separate protein fractions. About 34% GTR was extracted in the first fraction with a 

protein purity of 23%, while 31% of GTR was extracted in the second fraction with a 

protein purity of 52%. The absolute amount of extracted protein in the second fraction 

Fig. 2.2 The variation of protein purity (%, w extracted 
protein / w extracted GTR) after extraction: ○: 25°C; ×: 

40°C; ▲: 60°C; : 80°C; ■: 95°C. Lines are fitted to 25, 

40 and 60°C (left part), and to 60, 80 and 95°C (right part). 
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was over twice as that in the first one showing that temperatures above 60 °C are needed 

for high protein yield. 

2.3.1.4 Protein recovery 

As protein may be hydrolyzed in alkaline solution at high temperature, leading to a low 

recovery of subsequent acid precipitation (Pedroche et al., 2004), the efficiency of acid 

precipitation was tested by lowering pH of GTR extracts to pH-range of 3 to 5. As 

shown, protein recovery of the extracts obtained at 40 °C was generally lower than those 

obtained at 95 °C (Fig. 2.3). The 

optimal pH for recovering protein from 

the 95 °C sample is 3.5, at which 

approximately 85% protein was 

precipitated. Whereas, the optimal pH 

of the 40 °C sample was 3 or lower, 

yielding a protein recovery of 75%. 

Protein content of the 95 °C 

precipitates obtained by pH 3.5 was 

52%，which is almost twice the highest 

protein content of the precipitates from 

40 °C. This phenomenon may be caused by the presence of non-protein N-containing 

compounds, such as caffeine and chlorophyll (Lin et al., 2003), which are easier to 

extract and more difficult to precipitate. Combined with the extraction, approximately 

80% of protein can be recovered. This number is higher than those from other studies 

(Badar and Kulkarni, 2011; Bals et al., 2007a; Chen et al., 2012; Fernández et al., 1999; 

Fu et al., 2010; Schwenzfeier et al., 2011; Shen et al., 2008).  

2.3.2 Influence of v/w, [alkali], and alkali amount on protein yield 

In alkaline extraction, the ratio of the volume of solvent and the weight of material (v/w), 

as well as alkaline concentration, is regarded as a key parameter for protein yield 

(Harnedy and FitzGerald, 2013; Lestari et al., 2010; Shen et al., 2008). To test its 

influence on protein yield, varied v/w was tested using 0.1 M NaOH, at 95 °C for 2 h. 

Fig. 2.3 Protein recovery (%, w/w Initial Protein) at 

different pH: ■ 95 °C sample; ∆ 40 °C sample. 
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Fig. 2.4 illustrates that protein extraction yield and v/w are positively related until 

extraction reached 82% at around v/w of 32 mL
 
g

-1
. When varied alkaline concentrations 

were tested, it showed a similar 

pattern (data not shown). However, 

this influence cannot simply be 

attributed to a change in volume (or 

alkaline concentration), for the total 

NaOH amount also varied 

proportionally. Therefore, protein 

extraction was also tested by varying 

the volume with a fixed total amount 

of NaOH (4 mmol
 
g

-1
 GTR) at 95 °C 

for 2 h. This means that an indirect 

parameter like alkaline concentration decreases with an increase in volume and a 

constant NaOH amount. As can be seen in Fig. 2.4, almost constant protein yields are 

obtained at varying combinations. This demonstrates that the absolute amount of applied 

alkali is a critical parameter for protein extraction yield, which can be indirectly 

influenced by both alkaline concentration (pH) and v/w. Additionally, it sums up with 

that approximately 3.2 mmol NaOH is needed to process 1 g GTR to obtain high protein 

yield. 

2.3.3 Grouping parameters to protein yield and production cost  

Based on the above analysis, five parameters are involved in alkaline extraction, in 

which temperature, amount of alkali, and extraction time can be attributed to protein 

yield determining parameters, while v/w and alkali concentration can be considered as 

factors that affect production cost.  

2.3.3.1 Protein yield related parameters 

To profile the combined influence of NaOH amount, temperature, and extraction time on 

protein yield, these parameters were analyzed in pairs. Influence of extraction time on 

protein yield is only within the first 2 hours (Fig. 2.5a, Fig. 2.5b). NaOH amount and 

Fig.2.4 Influence of v/w at 95 °C for 2 h on protein 

yield (WProtein,%). ■ by using 0.1 M NaOH; ▲ by 

using a fix amount of 4mmol NaOH to 1 g GTR 
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temperature both influenced protein extraction yield in a positive way, consolidating 

each other. To reach high protein yield (>80%), 4 mmol NaOH was needed at 60 °C to 

process 1 g GTR (Fig. 2.5a); where at 80 °C the minimal NaOH amount can be 3 mmol 

(Fig. 2.5b). Their combined influence is also demonstrated in Fig. 2.5c.  

 

 

 

 

 

 

 

 

 

 

Choosing appropriate parameters and their 

scopes is critical for optimization. 

Unfortunately, pH, v/w, temperature, and 

extraction time are almost always selected 

as parameters (Bals et al., 2007a; Harnedy 

and FitzGerald, 2013; Shen et al., 2008), 

and the scope of temperature is normally 

lower than 60 °C. Low protein yield was 

therefore always demonstrated in alkaline 

protein extraction from leaves, even 

though an experimental designed was 

carried out (Shen et al., 2008). By using temperature, alkali amount, and extraction time 

as parameters with using temperature scope higher than 60 °C, a better optimization can 

be obtained. 

Fig. 2.5b Influence of temperature (°C) and extraction 
time (h) on extracted protein (Wprotein, %) by using 

0.1 M NaOH and v/w of 40 mL g-1. 

Fig. 2.5c Influence of temperature (°C) and added 

amount of NaOH (mmol) on extracted protein 

(Wprotein, %) by extracting 1 g of GTR with v/w 

of 40 mL g-1 for 4 h. 

Fig. 2.5a Influence of added amount of NaOH 

(mmol) and extraction time (h) on extracted protein 

(Wprotein, %) by using v/w of 40 mL g-1at 80°C. 
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2.3.3.2 Production cost related parameters 

Although v/w and alkali concentration are proved less important in the protein yield, a 

decent combination of v/w and alkali concentration is critical to production cost. Protein 

concentration in the extracts is inversely proportional to v/w. At v/w of 8 mL
 
g

-1
, in 

which 0.5 M NaOH was applied, protein concentration can be up to 28 mL
 
g

-1
. As lower 

v/w and high protein concentration means less cost on heating, transmission, and protein 

recovery steps, the cost-efficiency of NaOH extraction is hereby improved. 

The chemical cost and energy cost were calculated for the optimized process (Bals and 

Dale, 2011). The total cost of chemicals and energy for producing 1 ton protein product 

is only 148 € ton
-1

 with 2.5 ton GTR as starting material (Table 2.2). Furthermore, cost 

of heating can be decreased by applying cheaper energy sources or incorporating other 

processes. For instance, making full 

use of the heating energy from tea 

production (GTR is made by using 

water at 85 °C for 45 min) and the 

energy derived from dissolving NaOH, the heating cost can be reduced to less than 24 € 

ton
-1

 protein product, resulting in a final cost of only 102 € ton
-1

 protein product. 

Others also optimized alkaline extractions, leading to different optimized conditions 

(Bals and Dale, 2011; Chiesa and Gnansounou, 2011; Shen et al., 2008). However, using 

the above mentioned calculation method, our optimized alkaline extraction has the 

lowest chemicals and energy cost with highest protein yield among peer studies (Bals 

and Dale, 2011; Chiesa and Gnansounou, 2011; Shen et al., 2008). Also the capital cost 

of alkaline extraction is low compared to other techniques (Bals and Dale, 2011). The 

total cost (including logistics) of producing 1t protein product from GTR may even be 

less than one third of the selling price of soy bean meal (around 360 € t
-1

 in 2012 

(WorldBank, March 2014)), showing a competitiveness to protein products from other 

sources. 

 

Table 2.2. Cost of energy and chemical for obtaining one 

ton protein product 

Cost (€) 
NaOH HCl Heating a Total 

76 2 70 (24) 148 (102) 

a, 70€ is the cost of using electric energy, while 24 € is the 
estimation of using other cheap energy sources. 
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2.3.4 Application 

To test the general applicability of using alkaline extraction at elevated temperature, 

other sorts of biomass were tested as substrates. Application of 0.1 M NaOH at v/w of 40 

mL
 
g

-1
and 95 °C for 4h extracted 92%, 95%, and 95% of total protein from oolong tea 

residue, grass, and barley straw respectively. The corresponding alkali consumption was 

3.3, 2.0, and 0.8 mmol g
-1

 biomass, which can be further decreased after optimization. 

These results show that alkaline protein extraction has a wide applicability in various 

materials. It can be not only applied on material from same species of residues with 

different treatments (oolong tea residue), but also on fresh leaf species (grass), and even 

on the stem of plants (barley straw).  

The positive results on our current high protein yield stimulate an interest in the 

underlying mechanism. Determining the influence of alkaline extraction on leaf tissues, 

cell wall and cell components may clarify how alkali aid protein extraction for leafy 

biomass. This knowledge can then be used to further develop extraction techniques.  

Next to protein, other valuable components, such as polyphenols (Li et al., 2005), pectin 

(Ele-Ekouna et al., 2010), or pigments (Vencl et al., 2009) can be obtained by an 

integrated processing based on the core process of alkaline extraction. The alkaline 

pre-treated residue, which contains more than 70% cellulose, has for instance been 

proven to be good substrate for producing second generation ethanol with promising 

cost-efficiency (Knill and Kennedy, 2003). 

2.4 Conclusion  

In this study, we proved that high protein yield can be obtained by alkaline extraction 

from leaves in an economic way. In the extraction, temperature, alkaline amount, and 

extraction time were crucial for high extraction yields, while pH and v/w could be varied 

to limit production cost. Protein product, which is comparable to soy bean meal in 

protein content and nutritional value, can be then obtained at low cost. This technology 

can be universally applied to other leaf species, such as grass, which brings promising 

prospects for leaf protein products. 
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Abstract:  

Leaf protein can be obtained cost-efficiently by alkaline extraction, but overuse of 

chemicals and low quality of (denatured) protein limits its application. The research 

objective was to investigate how alkali aids protein extraction of green tea leaf residue, 

and use these results for further improvements in alkaline protein biorefinery. Protein 

extraction yield was studied for correlation to morphology of leaf tissue structure, 

protein solubility and hydrolysis degree, and yields of non-protein components obtained 

at various conditions. Alkaline protein extraction was not facilitated by increased 

solubility or hydrolysis of protein, but positively correlated to leaf tissue disruption. HG 

pectin, RGII pectin, and organic acids were extracted before protein extraction, which 

was followed by the extraction of cellulose and hemi-cellulose. RGI pectin and lignin 

were both linear to protein yield. The yields of these two components were 80% and 

25% respectively when 95% protein was extracted, which indicated that RGI pectin is 

more likely  to be the key limitation to leaf protein extraction. An integrated biorefinery 

was designed based on these results. 
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3.1 Introduction 

Leaf protein has been considered as an additional protein source since 1960s (Akeson 

and Stahmann, 1965; Gerloff et al., 1965). These proteins can be used in food (Ghaly 

and Alkoaik, 2010), animal feed (Kondo et al., 2004), or when hydrolysed to amino 

acids for N-chemicals bulk chemicals (Sanders et al., 2007).  However, applications of 

these proteins are limited by its low cost-efficient production (Bals and Dale, 2011), 

particularly in extraction processes. This limitation was preliminarily solved by using 

alkaline conditions at higher than 60 °C (Zhang et al., 2014). Drawbacks of this 

technique are overuse of chemicals and low quality of (denatured) protein. To overcome 

these drawbacks and design an integrated process for protein and other products, the 

basis of alkaline protein extraction in leaf should be better understood.  

Alkali might aid leaf protein extraction as a result of leaf tissue disruption. Leaf has three 

major tissue systems: epidermis, mesophyll, and vascular. Vascular tissues are located in 

mesophyll tissues covered by epidermis tissue. Those tissues are adhered by lamella 

layer embracing a large quantity of pectin. Epidermis is a tabular and layered sheet of 

cells on surface of leaf covered by a waxy cuticle functioning as mechanical protection 

of mesophyll tissue (Dashek and Harrison, 2006b; Mauseth, 2009). As most leaf proteins, 

including lectins, enzymes (Rubisco), storage proteins, cell wall proteins and some 

toxins (Feller et al., 2008) are located in mesophyll tissues (Dashek and Harrison, b), 

disruption of epidermis and lamella might aid protein release from mesophyll tissues. 

Alkali might also aid leaf protein extraction by increasing protein solubility or / and 

hydrolysis degree. Most leaf proteins are considered insoluble (Badar and Kulkarni, 

2011; Chiesa and Gnansounou, 2011; Lamsal et al., 2007). These protein are 

hydrophobic in neutral solution, because they are bound to other compounds, such as 

polyphenol (Brovko and Zagranichnaya, 1998) or polysaccharides (membrane protein) 

(Henriques and Park, 1976). Solubility of these proteins can be increased with the 

increase of pH by adding alkali. At high temperature, alkali can even hydrolyse protein 

into small peptides (Jamdar et al., 2010; Yalçın and Çelik, 2007), which reduces protein 

molecular size, and therefore increases protein solubility and accelerates protein 
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diffusion.   

Finally, alkali might aid in disruption of cell wall and thus leading to high protein yield. 

Leaf proteins within cells are well protected by the cell walls, which consist of middle 

lamella, primary wall, and secondary wall (Dashek and Harrison, 2006b). In cell wall, 

carbohydrates (including pectin, hemi-cellulose, and cellulose) and lignin are two major 

components other than protein (Dashek and Harrison, 2006b). Pectin is a family of 

complex polysaccharides located in primary plant cell wall and middle lamella (Dashek 

and Harrison, 2006b; Somerville et al., 2004). It can be roughly divided into three types: 

homogalacturonan (HG), rhamnogalacturonan I (RGI), and rhamnogalacturonan II (RGII) 

(Ridley et al., 2001). Hemi-cellulose and cellulose are mainly found in both primary and 

secondary plant cell wall, and they have a simpler composition than pectin. In 

comparison, lignin could be the most complicated component located in secondary plant 

cell wall (Dashek and Harrison, 2006b). It is a complex phenolic polymer that drives out 

water and strengthens the cell wall (Dashek and Harrison, 2006b). Solubilisation of 

carbohydrates and lignin performs differently under different alkaline conditions 

(Carvalheiro et al., 2008; Knill and Kennedy, 2003; Renard et al., 1990; Xiao et al., 

2001). Correlating yields of these components with protein yield may profile how alkali 

disrupts cell wall, and offer a basis for integrated leaf biorefinery. 

Green tea residue (GTR) is used as a model material for research on leaf biorefinery. It 

was demonstrated earlier that the concept of protein extraction using GTR as a model 

material can also be applied in Oolong tea leaf residue, Jatropha leaf, barley straw 

(Zhang et al., 2014 ), and even on algae. GTR is the waste of tea leaves after hot water 

extraction, containing high value components, such as polyphenols (10-15%), proteins 

(20-30%), and carbohydrates (30-40%) (Jayasuriya et al., 1978; Shen et al., 2008). It is 

now only used for energy generation through burning. An integrated biorefinery 

targeting on high value components of GTR will increase its value.  

In this study, GTR was again used as a model material, and protein extracts were 

obtained at various alkaline extraction conditions based on our previous work (Zhang et 

al., 2014 ). Alkaline treated leaf tissues were analysed by microscope; solubility and 
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hydrolysis degree of extracted protein and the composition of extracted carbohydrates 

was determined; extracted amounts of lignin were estimated. These results were all 

correlated to protein yield to analyse how alkali aids protein extraction in GTR. Based 

on these results, potential of integrated biorefinery of protein and other components for 

leaves was discussed. 

3.2 Methods and materials 

3.2.1 Materials 

Green tea residue (GTR) is our main material, which is a gift from Damin Company, 

Fujian Province, China. This residue from tea lemonade production was collected from 

C. sinensis trees in Zhejiang province, and it was sun-dried after soaking green tea leaves 

in water at 85 °C for 45 min. Chemicals used for analysis were purchased from Sigma 

(USA, analytic grade) if not stated otherwise. 

3.2.2 Preparation of alkaline extracts 

Protein extraction was performed by soaking 0.5 g GTR in 20 mL 0.1 M NaOH at 25 °C, 

60 °C, and 95 °C for 2h. After subsequent centrifugation, which was always performed 

at 15000 g for 10 min (Sorvall centrifuge, Thermo Fisher Scientific, the USA), the 

supernatants were then stored at -20 °C for further analysis. The corresponding solid 

residues were collected and washed with water for 3 times, and then they were immersed 

in water and analysed by microscopy immediately.  

 

For analysing the correlations of carbohydrates or lignin with protein, samples were 

made by soaking 0.5 g GTR in 20 mL 0.1 M NaOH at 25 °C, 60 °C, and 95 °C over time 

(5 min-24 h). Samples were freeze-dried and stored at room temperature till further use. 

3.2.3 Visualization of leaf tissues  

Solid samples obtained after alkaline treatment for 2 h, as well as a control of untreated 

material and a control treated by 0.05M NaOH, were examined under the microscope 

(SMZ-U, Nikon, Japan). Pictures were taken with a BCE-C050 Camara (Mightex, US) 

http://www.thermofisher.com/
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that was fitted on to the microscope.         

3.2.4 Determination of protein properties 

3.2.4.1 Protein content of extracts 

Protein content (g L
-1

) was determined by Kjeldahl method (Kjeldahl, 1883), using 

Kjeldahl equipment from Gerhardt, which consist of digestion unit (Gerhardt 

Kjeldahlterm) and rapid distillation unit (Gerhardt Vapodest). Kjeldahl measures all 

nitrogen, including non-protein N-containing components, such as caffeine, chlorophyll, 

and theobromine (Harbowy; and Balentine, 1997). However, we assumed that it is all 

protein and used a conversion factor of 6.25 to calculate protein concentrations. Protein 

extraction yield was calculated as extracted protein / total protein * 100%. 

3.2.4.2 Protein hydrolysis degree 

Protein hydrolysis degree is defined as the percentage of cleaved peptides bonds. As the 

amount of fully hydrolysed protein from GTR is the same for each sample, here we use 

the difference of -NH2 residue before and after hydrolysis to discuss the hydrolysis 

degree. The content of -NH2 residue was determined by a modified o-phthaldialdehyde 

(OPA) method (Nielsen et al., 2001). 1.5 mL OPA reagent (OPA 0.88 g L
-1

, dithiothreitol 

0.88 g L
-1

, SDS 1 g L
-1

, and Na2B4O7·10H2O 38.1 g L
-1

) was mixed with 200 μl serine 

(0.1 g L
-1

), sample, or water (as a blank). After exactly 2 min, absorbance of the mixture 

was determined spectrophotometrically at 340nm. Concentration of -NH2 residue was 

calculated using serine as a reference. 

3.2.4.3 Protein solubility 

Alkaline extracts were diluted to a protein concentration of 10g L
-1

. Protein solutions 

pHs were adjusted to 2-11 using 0.5 M HCl, after which the solution was kept stirring at 

room temperature for 1 h. Samples were subsequently centrifuged at 15000 g for 10 min 

at room temperature and the supernatant was collected. The amount of soluble protein in 

the filtrate was determined by Lowry method (Sigma, Lowry total protein determination 

kit) using bovine serum albumin as standard. Solubility is presented as a percentage of 

total protein in weight. 
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3.2.5 Water and ash content 

Samples were pre-weight and dried for 24 hours at 60 °C to evaporate all water. After 

cooling down in a desiccator, the residual weights of samples were measured. Then, 

samples were transferred to a 550 °C furnace for 16h to burn off all the organic matter. 

After cooling in a desiccator, the crucibles were weighed. Water content and ash content 

were calculated as weight percentage of the starting material. 

3.2.6 Polyphenol content 

Content of tea polyphenols in tea extracts was determined spectrophotometrically with 

scaling down reagent usage (Li et al., 2005; Turkmen et al., 2006). Polyphenols content 

was calculated assuming a concentration of polyphenols of 3.914g L
-1

leads to an 

adsorption of 1 at 540 nm after reaction.    

3.2.7 Galacturonic acid determination 

Galacturonic acid content was determined as anhydro-uronic acid by an automated 

m-hydroxydiphenyl assay with an auto-analyzer (Skalar Analytical BV, Breda, The 

Netherlands) (Van Dongen et al., 2011). Galacturonic acid (Fluka AG, Buchs, 

Switzerland) was used as a reference in a concentration range from 12.5 to 200 mg L
−1

. 

3.2.8 Neutral sugar composition 

Freeze dried alkaline extracts were pre-hydrolysed with 72% (w/w) sulphuric acid at 

39 °C for 1 h, followed by hydrolysis in 1 M sulphuric acid at 100 °C for 3 h. 

Monosaccharides were analysed using GC according to Englyst’s method (Englyst and 

Cummings, 1984). Inositol was used as internal standard. Response factor was 

determined using a standard sugar solution of L-(+)-rhamnose , L-(+)-arabinose, 

D-(+)-xylose, D-(+)-mannose, D-(+)-galactose (97%), D-(+)-glucose (99,5%) with 

concentrations of 1 g L
-1

. 

To quantify carbohydrates, indirect assays are often used. Samples are hydrolysed to 

mono-sugars, and these sugars are quantified by HPLC or GC (Englyst and Cummings, 

1984).HG pectin consists only of galacturonic acid of which some of the carboxyl 

groups are methyl esterified (Ridley et al., 2001; Willats et al., 2006).HG pectin can be 
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analysed by galacturonic acid content. RGI consists of a backbone of repeating 

disaccharide of galacturonic acid and rhamnose. A variety of different glycan chains 

(principally arabinan and galactan) are attached to the rhamnose residues. As RGI pectin 

is predominated by side chains (Ridley et al., 2001; Willats et al., 2006) mainly 

constituted from arabinose and galactose, it can be analysed by the contents of these two 

mono-sugars. In comparison, RGII has a backbone of HG with complex side chains 

attached to the galacturonic acid (Ridley et al., 2001; Willats et al., 2006). Therefore 

RGII analysis needs information of all sugars contents.  Hemi-cellulose’s backbone 

comprises of xylose and glucose, while cellulose is a linear chain of glucose 

(Carvalheiro et al., 2008; Knill and Kennedy, 2003).  

All the experiments were performed in duplicate, and all results were plotted in the 

figures. 

3.3 Results  

3.3.1 Influence of alkali on leaf tissues  

As mentioned, leaf consists of three major tissues systems adhered by middle lamella. To 

study the disruption of leaf tissues under alkaline conditions, alkali treated GTRs were 

analysed microscopically. Although GTR is the leftover of green tea leaves treated by 

hot water, the structure of its tissue is still intact. Shown in Fig. 3.1a, the epidermal layer 

of untreated GTR was normally attached to the mesophyll tissue and the lamella was not 

solubilized, shown as a low transparency of leaf tissue and visible fragments suspended 

in the solution. After treatment with 0.1M NaOH, leaf tissues were transparent and 

solutions became clear (Fig. 3.1c, Fig. 3.1d, and Fig. 3.1e). At 25 °C, the epidermal layer 

was still attached to the mesophyll tissue (Fig. 3.1c), but it started to peel off when 

higher temperature was applied (Fig. 3.1d, Fig. 3.1e). As protein yield increased with the 

increase of temperature (23% obtained by 25 °C, 38% obtained by 60 °C, and 84% 

obtained by 95 °C), these figures indicate a correlation of leaf tissue disruption with 

protein yield under alkaline conditions.  

When alkaline concentration was limited to 0.05M, GTR tissues (Fig. 3.1b) are similar 
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as the untreated one (Fig. 3.1a). The protein yield obtained by using 0.05M NaOH at 

95 °C was about 40% (Zhang et al., 2014), which was similar to the yield obtained by 

0.1M NaOH at 60 °C (38%). However, the transparency of the tissue treated with 0.05M 

NaOH was lower than that treated by 0.1M NaOH. This indicates that alkali was used to 

solubilize substances between cells, while high temperature was related to protein 

located inside cells or membrane, which is commonly identified as insoluble (Henriques 

and Park, 1976). To further understand how does alkali aids in protein extraction, 

influence of alkali on protein hydrolysis and solubility was tested, and yields of 

non-protein components were subsequently analysed and correlated to protein yields. 
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3.3.2 Composition of GTR  

To calculate yields of all components in alkaline condition, composition of GTR was 

analysed. Carbohydrate and protein (or more accurate: all N-containing components) are 

the two major components, accounting for 31% and 27% of GTR. Other components are 

Fig. 3.1 Morphology of GTR tissues after a 2h treatment with 40 v/w solution (scale bar: 100μm). a, 
GTR treated with water at 25°C; b, GTR treated with 0.05M NaOH at 95°C; c, GTR treated with 0.1M 

NaOH at 25°C; d, GTR treated with 0.1M NaOH at 60°C; e, GTR treated with 0.1M NaOH at 95°C. 
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polyphenol (8%), water (7%), and ash (6%). The residual undetermined part majorly 

consists of lipid (wax, organic acids) and lignin (Harold N, 1992). As lipid and lignin 

will not be extracted by the pre-treatment with hot water that was done in the factory, the 

ratio of lipid to lignin (2:6.5) presented in green tea leaf (Harold N, 1992) is estimated  

to remain constant in GTR, leading to 5% and 17% of dry GTR respectively. 

Carbohydrates were quantified by summing all mono-sugars. Glucose and galacturonic 

acid are the major sugar components constituting 13.4% and 7.6% of GTR, followed by 

galactose, arabinose, and xylose with percentages of 3.4%, 2.8%, and 2.1% of GTR 

respectively. Other less abundant sugars are mannose with 1.1%, rhamnose with 0.8%, 

and fucose with 0.4%.  

3.3.3 Influence of alkali on protein hydrolysis and solubility  

Generally, 1g native protein already contains 0.342-0.457 mmol -NH2 groups, when 

protein is fully hydrolysed, -NH2 content will increase to 8.6 mmol depending on amino 

acid composition (Nielsen et al., 2001; Zhang et al., 2014). To compare hydrolysis 

degree, protein extracts obtained using 0.1M NaOH with v/w of 40 for 2h at 25 °C, 

60 °C, and 95 °C were tested by OPA method. The protein yields were 23% at 25 °C, 

38% at 60 °C, and 84% at 95 °C. In these samples, -NH2 content in 1g protein was 0.43 

± 0.03 mmol, 0.54 ± 0.07 mmol, 0.19 ± 0.02 mmol respectively. Those numbers are 

close to the value of native protein, suggesting that only very limited hydrolysis occurred. 

When 95 °C was applied, the -NH2 content was even reduced. This may result from 

reactions of -NH2 with  other components, such as polyphenol (Ozdal et al., 2013). 

Protein hydrolysis degree did not correlate with protein yield.  

To determine the correlation of protein solubility with protein yield, protein solubility 

was measured as a function of pH. Samples from three temperatures, as mentioned 

above, were used and the result is depicted in Fig. 3.2. At pH higher than 6, protein 

solubility of all samples remained at the maximal, added amount of 10g L
-1

. This is over 

twice the amount of extracts from other research (Chen et al., 2012; Shen et al., 2008). 

Based on these results, we conclude that protein solubility was not a limitation to protein 

yield. Below pH 6, solubility of all three protein extracts decreased. The 95 °C sample 
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had its lowest protein solubility at 

pH<4.5. In other cases solubility of 

hydrolysed protein increased between 

pH 2-6 when more severe hydrolysis 

had happened (Jamdar et al., 2010; 

Yalçın and Çelik, 2007). This again 

indicates that protein was not severely 

hydrolyzed after alkaline treatment at 

95 °C. Alkaline protein extraction is 

therefore not facilitated by hydrolysis 

or increased solubility of protein.  

3.3.4 Correlation of carbohydrates yields with protein yields 

3.3.4.1 Pectin  

As mentioned in introduction, galacturonic acid, rhamnose, galactose, and arabinose can 

be used to analyse pectin yields and types. Yields of galacturonic acid, rhamnose, 

galactose, and arabinose in protein extracts were plotted against protein yields in Fig. 

3.3.  

At mild conditions (all 25°C samples and samples of 60 °C treated less than 4h), yields 

of galacturonic acid were positively correlated with protein yield. Galacturonic acid 

yield was highest at 95% when around 40% of protein was extracted (Fig 3.3a), which 

occurred at 60 °C, after 2-4 hours of extraction. When higher temperature was applied 

(95 °C), galacturonic acid yield was less. This lower yield might result from the 

β-elimination of galacturonic acid under harsh alkaline conditions (Renard et al., 1996). 

As HG pectin consists of only galacturonic acids, HG pectin was suggested to be 

completely extracted at relatively mild conditions. Therefore, HG pectin is not the 

limitation for obtaining high protein yield. 

Fig.3.2 Solubility of protein extract as a function 
of pH obtained from experiments using 0.1 M 

NaOH with v/w of 40 for 2 h at different 

temperatures. : 25 °C;: 60 °C; ▲:95 °C. 
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Rhamnose yields were also positively correlated to protein yields, but a bend was 

observed in the curve in Fig. 3.3b and two different lines and slopes were obtained. The 

coefficient of rhamnose yield to protein yield was 1.09 when less than 40% of protein 

was extracted, and their coefficient was 0.25 when more than 40% protein was extracted. 

The two coefficients indicate that rhamnose may originate from two pectin sources, RGI 

and RGII, and one of them might be already completely extracted at mild conditions. 

Yields of galactose and arabinose were linear to protein yields throughout the entire time 

and temperature range (Fig. 3.3c & Fig. 3.3d). When 95% protein was extracted, the 

yields of galactose and arabinose were about 70% and 80% respectively. The coefficient 

of galactose yield to protein yield was 0.53, while the coefficient of arabinose yield to 

protein yield was 0.68. As galactose and arabinose majorly originate from RGI pectin 

(Ridley et al., 2001; Willats et al., 2006), these results indicate a linearity of RGI pectin 

yield to protein yield, and RGI may therefore be the limitation to protein extraction. 

Fig.3.3 Weight based correlation of extracted pectin related sugars with extracted protein (%,WProtein)  

by using 0.1M NaOH with 40 v/w at : 25°C; : 60°C ; ▲ 95°C. a, Galacturonic acid 

(%,WGalacturonic Acid); b, Rhamnose (%,WRhamnose); c, Galactose (%,WGalactose); d, Arabinose (%,WArabinose). 
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Combined with the result of the correlation on rhamnose yield to protein yield, RGII 

pectin was probably completely extracted at mild conditions. This conclusion could be 

confirmed by another study, in which RGII of green tea leaf was shown to be more 

soluble than RGI in water (Ele-Ekouna et al., 2010). 

3.3.5 Hemi-cellulose& cellulose  

 

 

 

 

 

 

To analyse the correlation of the solubilised hemi-cellulose and cellulose with protein 

extraction, yields of xylose and glucose were measured and plotted against protein yields. 

Generally, yields of xylose and glucose are less than 8% (Fig. 3.4a, Fig. 3.4b) with a 

highest yield of around 20% only at the harshest condition applied, when all protein had 

already been extracted. The yield coefficients of these two sugars to protein are therefore 

relatively low, 0.06 for xylose and 0.05 for glucose. Considering some xylose and 

glucose may be emanated from side chains of RGI and RGII pectin, the correlation 

slopes of these two sugars with protein are close to zero. Therefore, high protein yield is 

probably not due to disruption of hemi-cellulose or cellulose. 

3.3.6 Correlation of non-determined component yields with protein yields 

To investigate the influence of lignin on protein extraction, yields of non-determined 

components (likely to be majorly lignin and lipid) were plotted against yields of protein 

(Fig. 3.5). Generally, yields of non-determined components were positively correlated to 

protein yields, but a bend was observed in the curve of Fig. 3.5 and two correlation 

slopes were calculated. When protein yield was less than 40%, the yield coefficient of 

a b 

Fig.3.4 Correlation of extracted cellulose and hemi-cellulose related sugars with extracted protein 

(%,WProtein) by using 0.1M NaOH with 40 v/w at : 25°C; : 60°C ; ▲ 95°C. a, Xylose (%,WXylose); 

b, Glucose (%,WGlucose). 
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non-determined components to protein was 1.28, which was almost 3 times higher as 

when protein yield was above 40%. The two coefficients might indicate that the yields of 

two major non-determined 

components, lipid and lignin, have 

different correlation with yields of 

protein, and one of them was 

completely extracted at mild 

condition. As lipid can be released 

with mild alkaline while lignin was 

insoluble in the same condition 

(Carvalheiro et al., 2008; Parajó et 

al., 1996), lipid possibly 

contributed to the higher slope 

while lignin contributed to the lower 

(0.44). The extractability of lignin 

showed a maximum of only 25% of total lignin at 95% protein extraction. This means 

that it is either not necessary to completely dissolve lignin to facilitate protein extraction, 

or that another component is limiting protein extraction. 

3.4 Discussion 

3.4.1 How does alkali aid protein extraction in leaves  

Although the role of lignin in protein extraction is still unclear, the correlation of RGI 

extraction yield with protein extraction yield is clearly shown. In leaf cell wall, RGI is 

rooted in a putative structure functioning as a scaffold in which galactan and arabinan 

occur as side chains, forming a kind of molecular brush (Vincken, 2003). It is often 

correlated with stages of cell development (Ridley et al., 2001) and can covalently-link 

to xylogulcan (hemi-cellulose) (Thompson and Fry, 2000; Zaidel and Meyer, 2012),  

phenolic acids (lignin) (Saulnier and Thibault, 1999; Zaidel and Meyer, 2012) and 

cellulose (Zykwinska et al., 2005). The mechanism of how RGI links to other 

components is still controversial, but how alkaline solutions can extract RGI has been 

Fig.3.5 Correlation of extract undetermined components 

(%,WNon-determined Components) with extracted protein 
(%,WProtein) by using 0.1 M NaOH with 40 v/w at : 

25 °C; : 60 °C ; ▲ 95 °C. 
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reported. It has been stated that extraction of pectin with side chains of arabinan and 

galactan is more sensitive to temperature than alkaline concentration (Zykwinska et al., 

2006). Previous conditions for extracting 80% of arabinose and galactose (Zykwinska et 

al., 2006) were similar to our protein extraction condition for 95% protein (0.1M NaOH 

at 95 °C) again suggesting RGI pectin is the key to obtaining high protein yields. 

3.4.2 Integrated biorefinery concept for leaves 

An optimized alkaline protein extraction process that is based on our previous work 

(Zhang et al., 2014)has the lowest chemicals and energy cost with highest protein yield 

among peer studies (Bals and Dale, 2011; Chiesa and Gnansounou, 2011; Shen et al., 

2008). To further reduce the use of chemicals and improve quality of protein, an 

integrated biorefinery concept is recommendable.   

Phenolic components and organic acids in leaves can be removed by solvent extraction 

(Durling et al., 2007; Turkmen et al., 2006) in the first step. For example, using ethanol 

pre-treatment at ambient temperature can extract all caffeine and soluble polyphenols 

from GTR (data not shown). In the extracts, a yield of 10% N-containing components 

was detected (Zhang et al., 2014). These N however was not derived from protein, but 

from caffeine and chlorophyll (data not shown). This step does not only yield product, 

but the removal of phenolic compounds also prevents their reaction with protein under  

alkaline conditions,  and may thereby also improve the digestibility of the final protein 

product (de Toledo et al., 2013).   

Using relatively mild alkaline conditions (20 °C<T<60 °C), leaf components, such as 

HG pectin, RG II pectin, protein and lipids (or organic acids), can be obtained. When all 

HG pectin (galacturonic acid) was extracted, approximately 32% of N-containing 

components were also extracted (Fig. 3.3a). Assuming that from this 32%, 10% are 

non-protein N-containing components extracted by solvent extraction, in this step 

approximately 22% of protein (25% of total real protein) will be obtained. To reduce 

alkali consumption, relatively low pH (9-11) is recommended; for excess alkali will only 

be consumed by the buffering components, such as polyphenol or pectin. The products 

obtained in this second step can be applied in food industry as functional ingredients, as 
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they are obtained at relatively mild conditions. 

When more severe conditions (95 °C, pH 13) are applied, the network of RGI pectin and 

lignin that makes up the cell wall starts to collapse, and membrane protein and proteins 

from inside the cells begin to liberate. When all protein is extracted approximately 80% 

of galactose and arabinose (Fig. 3.3), 8% xylose and glucose (Fig. 3.4), and 42% 

non-determined components (Fig. 3.5) can be extracted. After solvent extraction and 

subsequent mild alkaline extraction, 68% N-contain components (75% of total real 

protein), 60% RGI pectin (galactose and arabinose), 5% (hemi-) cellulose, and 25% 

lignin are obtained. Protein purity will be approximately 55%. Due to this high 

concentration, these protein products have a high value for application in animal feed. 

The remainder, which majorly contains lignocellulose can be hydrolysed at extreme 

conditions with temperatures above 100 °C and alkali concentrations above 0.5M to 

release mono-sugars (Testova et al.; Xiao et al., 2001). Alternatively, the lignocellulose 

can be used as a feedstock for producing bio-ethanol, for which alkaline pre-treatment 

was proved to increase the conversion rate (Maas et al., 2008).  

Based on the results presented here, and on previous results from literature that aimed 

for extracting pectin, lignin, hemi-cellulose, and cellulose (Testova et al.; Xiao et al., 

2001; Zykwinska et al., 2006), an integrated leaf biorefinery scheme, which may consist 

of four steps, can be designed. This is illustrated in Fig. 3.6 with our results on green tea 

residues.  

 

 
Fig. 3.6 Integrated leaf biorefinery concept. Numbers are estimated based on results with green tea residue. 
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3.4.3 Outlook 

Next to the presented chemical approach to leaf biorefinery, new approaches can be 

developed. Using enzymes to specifically break down RGI pectin or mechanical 

disruption of the epidermal layer in plant cell tissue may improve protein yields in mild 

conditions such that native protein with higher quantity and quality may be obtained.  

3.5 Conclusion 

The use of the integrated biorefinery concept under alkaline conditions will add revenue 

because of the increased value of final products and reduction of production cost. 

Polyphenol, lipid, pectin, protein and lignocellulose can be obtained separately with 

higher purity and quality that improves their commercial value as final products or 

mediates further conversion. The integrated process can reduce alkali consumption for 

protein extraction, as buffering components such as polyphenol and pectin will be 

extracted priory. Alkaline treatment can be universally applied to other leaf species 

(Zhang et al., 2014), such as grass, which brings promising prospects for leaf biorefinery. 
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CHAPTER 4: EFFECT OF PRE-TREATMENT ON THE 

EFFICIENCY OF ALKALINE PROTEIN EXTRACTION FROM 

GREEN TEA RESIDUE AND ON THE FEED QUALITY OF ITS 

PROTEIN PRODUCT  
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Abstract:  

Leaf protein for animal feed can be obtained cost-efficiently by alkaline extraction. 

However, alkali usage is high and the resulting low protein quality limits its application. 

The research objective was to investigate if pre-treatment with ethanol, Viscozyme
®
 L, 

and/or H2O2 can improve the efficiency of alkaline extraction and at the same time 

improve the nutritious value of its protein products using green tea residue as a model 

material. The extraction yield of chlorophyll, carotenoids, polyphenols, carbohydrates, as 

well as the protein content in the extract, were measured to analyse the extraction 

efficiencies of these pre-treatments. After that, alkali consumption, protein yield, protein 

purity, color formation, dry matter digestibility, sample composition, and amino acid 

composition were measured as efficiency indicators of these pre-treatments on alkaline 

protein extraction and protein quality. Ethanol pre-treatment removed polyphenols 

and/or pigments depending on its concentration, but only the removal of polyphenols 

had a positive effect on protein yield, protein purity, alkali consumption, and reduction 

of colored components in the subsequent alkaline protein extraction. Viscozyme
®
 L 

pre-treatment removed carbohydrates, including pectin and cellulose, which also had a 

positive effect on subsequent alkaline extraction except for the reduction of colored 

components. H2O2 didn’t release lignin, and had a negative effect on the alkaline protein 

extraction. As alkaline protein extracts were fully digestible, the utility of protein in 

animal feed was 2 times improved. A combined pre-treatment of Viscozyme
®
 L with 

50% ethanol could further reduce alkali consumption and color formation by over 50%, 

and improve protein purity and animal feed nutritive value with less essential amino acid 

degradation. The suggested pre-treatment and subsequent alkaline protein extraction can 

be applied for other leafy biomass, which significantly increases protein sources for 

animal feed. 
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4.1 Introduction 

Leaves have been fed to animals for hundreds of years. Protein is a major component of 

leaf, however, due to the low protein digestibility and the presence of anti-nutritional 

components in whole leaf (Hanczakowski and Skraba, 1989; Jayasuriya et al., 1978; 

Ravindran, 1993; Szymczyk et al., 1995), the use of leaf sources in diets of monogastrics 

is limited. To increase protein digestibility and to extend the application of leaf proteins, 

extraction techniques, such as mechanical pressing, alkaline extraction, and ammonia 

fiber explosion were studied (Bals and Dale, 2011; Chiesa and Gnansounou, 2011; Sari 

et al., 2015a). The nutritional quality of these protein extracts could be further improved 

by removing anti-nutritional components that are still present after extraction. The 

bottleneck of these techniques are their low cost-efficiencies (Bals and Dale, 2011). 

Although the cost-efficiency of the alkaline extraction technique was recently improved, 

the use of chemicals, the generation of large amounts of salts, and the low protein quality 

in terms of taste, digestibility and nutritional value, brings down its applicability (Zhang 

et al., 2014).  

During extraction, alkali is first consumed by buffering components, such as polyphenol, 

pectin, and lignin, where after it is used in protein extraction(Zhang et al., 2014; Zhang 

et al., 2015). The requested alkali amount for obtaining high yield may be reduced when 

these buffering components are removed prior to protein extraction. Leaf protein quality 

decrease in alkaline extracts may due to the reaction of pigments, polyphenols, lignin, or 

carbohydrates with protein, which generates bitterness and decreases protein digestibility 

(Felicetti and Schrader, 2009) (de Toledo et al., 2013) (Rubanza et al., 2005; van Soest 

and Mason, 1991). These reactions can be detected by the degree of browning, as all the 

reaction products can result in brown color of protein products under alkaline conditions. 

Chlorophyll and carotenoids are the main pigments in leaves, which can turn brown at 

high temperature (Felicetti and Schrader, 2009). Soluble polyphenols and lignin form 

highly conjugated brown compounds when reacting with protein (Ozdal et al., 2013). 

Carbohydrates, containing reducing sugars can react with amino acids generating brown 

color, which is well-known as the Maillard reaction (van Soest and Mason, 1991). These 

http://en.wikipedia.org/wiki/Reducing_sugars
http://en.wikipedia.org/wiki/Amino_acids
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reactions can be accelerated when high temperature or pH are applied (Carvalheiro et al., 

2008). Removal or prevention of coloring components can improve the protein quality. 

Many chemicals and/or enzymes may be used during pre-treatments to remove pigments, 

polyphenols, carbohydrates, and lignins. Solvents (ethanol, acetone, hexane) are used for 

isolating pigments and polyphenols (Turkmen et al., 2006). Cell wall degrading enzymes, 

such as Viscozyme
®
 L, pectinase, and Celluclast

®
 are used to enhance protein extraction 

by degrading cell wall polysaccharides, such as pectin, and (hemi-) cellulose (Bals et al., 

2007b; Jodayree et al., 2012; Rosset et al., 2014). H2O2, which breaks down lignin, is 

also used to increase the dry matter digestibility of biomass used as animal feed 

(Chaudhry, 1998). As all these pre-treatments can be carried out under mild conditions 

(T<60 °C), the integrity of other side products such as pigments, polyphenols, and 

carbohydrates are preserved.  

Pre-treatments using ethanol, Viscozyme
®
 L, and/or H2O2 may fit in an integrated 

bio-refinery concept for leafy material (Zhang et al., 2015), but three main questions 

remain to be answered. First, how efficient are these pre-treatments for isolating pigment, 

polyphenol, carbohydrate, and lignin from biomass? Second, how do these 

pre-treatments influence the efficiency of a subsequent alkaline protein extraction in 

terms of alkali consumption, protein yield, and protein purity? Finally, how do these 

pre-treatments influence the color, nutrient digestibility and nutritive value of the 

extracted proteins? To answer these questions, we tested ethanol, Viscozyme
®
 L, and/or 

H2O2 as pre-treatments using green tea residue (GTR), a potential source for animal feed 

(Jayasuriya et al., 1978; Wu et al., 2014), thereby aiming to make leaf proteins available 

for monogastrics. The yield of chlorophyll, carotenoid, polyphenol, carbohydrate, as well 

as the protein content, were measured to analyse the extraction efficiencies of these 

pre-treatments. Alkali consumption, protein yield, protein purity, color formation, and 

dry matter digestibility were measured as efficiency indicators of these pre-treatments on 

alkaline protein extraction and protein quality.  
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4.2 Materials & Methods 

4.2.1 Materials 

Green tea residues, which are the waste of tea leaves after hot water extraction, contain 

8% polyphenols, 25% proteins, and 31% carbohydrates. Currently, these tea residues are 

only used in a low value application, namely for energy generation through burning.  

Viscozyme
®
 L (Multi-enzyme complex containing a wide range of carbohydrases, 

including arabanase, cellulase, β-glucanase, hemicellulase, and xylanase) was purchased 

from Sigma, USA. If not stated otherwise, other chemicals used for analysis were 

purchased from Sigma (USA) and of analytic grade.  

4.2.2 Pre-treatments & protein extraction 

4.2.2.1 Ethanol pre-treatment 

To optimise ethanol extraction efficiency, GTR (200 mg) was first soaked in 4mL 

0-100% v/v ethanol, and incubated in a Thermomixer (VWR International B.V., USA) at 

60 °C and 1000 rpm for 2 h. In subsequent experiments, GTR (200 mg) was soaked in 

4mL 50% ethanol or absolute ethanol in 10 mL tubes, and then they were incubated in a 

Thermomixer (60 °C, 1000 rpm) for 1, 5, 15, 30, 60, or 90 min. After centrifugation 

(7,000 g, 20 °C, 10 min), liquid extracts were collected and stored at 4 °C until further 

analysis.  

4.2.2.2 Viscozyme
®
 L pre-treatment 

GTR (200 mg) was suspended in 4 mL 0.02 M sodium acetate – acetic acid buffer at pH 

4.5, and then mixed with Viscozyme
®
 L of 0, 12, 30, 60, or 120 UFBG g

-1
 GTR activity, 

and supplemented to 4.2 mL with demi-water. After incubation in Thermomixer (30 °C, 

1000 rpm) for 20 h, 4 mL demi-water or ethanol was added to the mixtures, and then 

centrifuged (7,000 g, 20 °C, and 10 min). The liquid extracts were collected and stored at 

4 °C until further analysis.  

4.2.2.3 H2O2 pre-treatment 

GTR (200mg) was suspended in 4 mL H2O2 solution with concentration of 0, 0.5, 1, or 
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2% v/v. After incubation in Thermomixer (60 °C, 1000 rpm) for 2 h, 4 mL demi-water or 

ethanol was added to the mixtures, and then centrifuged (7,000 g, 20 °C, and 10 min). 

The liquid extracts were collected and freeze-dried for the removal of excess H2O2. 

Dried samples were store at room temperature until further analysis.  

4.2.2.4 Alkaline protein extraction 

The residual pellets obtained after pre-treatment were washed with 4 mL solution that 

corresponded to the extraction liquid, and used for a subsequent alkaline protein 

extraction. The alkaline protein extraction protocol was based on our previous research 

(Zhang et al., 2014). Pipetting 7 mL 0.1 M NaOH to the pre-treated GTR, the mixture 

was homogenised and incubated in a thermo mixer (95 °C, 1000 rpm) for 2h. After 

centrifugation (7,000 g, 20 °C, 10 min), protein extracts were collected and stored at 

4 °C until further analysis. 

4.2.2.5 Samples for analysis of the nutritional value  

Several samples were selected for analysing the influence of pre-treatments on the 

nutritional value of protein samples. For this, larger amounts of protein product had to be 

generated: 150 g GTR was used in pre-treatments with 1.5 L liquid, in which 50% 

ethanol, 10 mL Viscozyme
®

 L with water, or 2% H2O2 with water were used. The 

extractions were carried out in 2 L Scott bottles, and incubating was done in a water bath 

with a shaking speed of 170 rpm min
-1

. Temperature, extraction time, and combinations 

for two-step pre-treatments were the same as in previous experiments. Alkaline protein 

extraction was performed on 100 g pre-treated GTR samples that were mixed with 1.5 L 

0.2 M NaOH in 2 L Scott bottles. After incubating in a water bath with a shaking speed 

of 170 rpm min
-1

 for 2.5 h, supernatants were collected by centrifugation. To obtain the 

final product, protein extracts were purified by acid precipitation at pH 4 at 4 °C 

overnight. After centrifugation, and neutralisation samples were freeze-dried and stored 

at room temperature until further analysis.  
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4.2.3 Determinations 

4.2.3.1 Polyphenol  

Content of tea polyphenols in GTR extracts was determined by ferrous tartrate method 

(Turkmen et al., 2006). Polyphenols content was calculated assuming a concentration of 

polyphenols of 3.914 g L
-1 

leads to an adsorption of 1 at 540 nm after reaction (Turkmen 

et al., 2006).    

4.2.3.2 Total sugar   

Total sugar content was determined by DuBois method at 492 nm (DuBois et al., 1956; 

Taylor, 1995). Glucose was used as a reference in a concentration range from 0 to 50 mg 

L
-1

. 

4.2.3.3 Galacturonic acid 

Content of galacturonic acid was determined spectrophotometrically with scaling down 

reagent usage (Taylor, 1993). Galacturonic acid (Fluka AG, Buchs, Switzerland) was 

used as a reference in a concentration range from 0 to 50 mg L
-1

. 

4.2.3.4 Chlorophyll & Carotenoids 

Chlorophyll that was extracted by ethanol was measured using a spectrophotometer 

(Ritchie, 2006). Data of absorbance at wavelengths of 470 nm, 649 nm and 664 nm were 

collected. Chlorophyll content (mg/L) was calculated by using 22.24∙A649 + 5.24∙A664, 

and carotenoid content was calculated as 4.78∙A470 – 12.76∙A649 + 3.66∙A664 (Sumanta; et 

al., 2014). 

4.2.3.5 Protein yield and protein purity  

Protein content (g L
-1

) was determined by Dumas analysis using a Nitrogen analyzer, 

FlashEA 1112 series from Thermo Scientific (Interscience, Breda, The Netherlands). 

Although Dumas measures all nitrogen, we assumed that it is all protein and used a 

conversion factor of 6.25 to calculate protein concentrations. Protein extraction yield 

was calculated as WExtracted protein / WTotal protein ∙ 100%. 

Protein purity was calculated as WExtracted protein / WÈxtracted GTR ∙ 100%. Here, weight of 

extracted GTR was determined by analytical balance after oven drying at 80 °C for 24 h 
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in glass containers, corrected for the amount of NaOH added, and subtracted by the 

amount of OH
-
 that was consumed to H2O due to pH decrease.  

4.2.3.6 Alkali consumption  

Alkali consumption was calculated from the pH decrease after protein extraction, 

originally starting from pH 13 (0.1 M NaOH).  

4.2.3.7 Color of protein extracts  

Protein extracts were diluted 20 times, and the absorbance of diluted samples was 

scanning spectrophotometrically (DU
®
700, Beckman, USA) from 200 to 850 nm. The 

absorbance at 500 nm was finally used to determine the extent of browning in protein 

extracts. 

4.2.3.8 Analysis of nutritional value 

Sample composition: All samples were analyzed in duplicate. For determination of the 

DM content, feed was freeze-dried according to ISO 6496 (1998). Following 

freeze-drying, feed was ground to pass a 1 mm screen and kept for analysis. Air-dry feed 

was dried in a forced air oven at 103 °C to a constant weight according to ISO 6496 

(1998). Kjeldahl nitrogen content was measured according to ISO 5983 (1997) in fresh 

feed. Crude protein content was calculated as nitrogen times 6.25. Crude fat content was 

determined after acid hydrolysis  according to ISO 6492 (1999). For determining the 

crude ash content, samples were incinerated at 550 °C in a muffle furnace according to 

ISO 5984 (2002). The starch content was analyzed enzymatically as described by Brunt 

(1993). Reducing sugars were extracted from the feed samples, using 40% ethanol, and 

determined as described by Suárez et al. (2006).  

Amino acid composition: To quantify the nutritional value, amino acid compositions of 

pre-treated GTR samples and their protein extracts were determined via UPLC (Meussen 

et al., 2014). Samples were first hydrolysed in 6N HCl containing 1% (g L
 -1

) phenol at 

110 °C for 24 h and the amino acids were separated using an Acquity UPLC BEH C18 

reversed phase column. The analysis was performed at the wavelength of 338 nm and 

263 nm using Dionex RSLC (Dionex Corporation, Sunnyvale, CA, USA).  
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4.2.3.9 In vitro digestibility 

In vitro incubations were performed according to a modified Boisen two-step method 

(Boisen and Fernandez, 1997), which simulates the digestive process in the stomach and 

small intestine of a pig and estimates the ileal nutrient digestibility. Substrates (1 g) were 

incubated in beakers with a phosphate buffer solution (75 mL, 0.1 M, pH 6.0) and a HCl 

solution (30 mL, 0.2 M). The pH was adjusted to 2.0 with 1 M HCl or 10 M NaOH. 

Fresh pepsin solution (1 mL, 25 g L
-1

, porcine pepsin 2000 FIP U g
-1

, Sigma P7000) was 

added and each beaker was covered with a glaze and placed in a heating chamber at 

39 °C for 2 h under constant magnetic stirring. Then, 30 mL phosphate buffer (0.2 M, pH 

6.8) and 12 mL of a 0.6 M NaOH solution were added. The pH was adjusted to 6.8 with 

1 M HCl or 10 M NaOH. Fresh pancreatin solution (1 mL, 100 g L
-1

 pancreatin, Porcine 

pancreas grade VI, SigmaP-1750) was added and hydrolysis was continued for 4 h under 

the same conditions. Then 30 mL of a 0.2 M EDTA solution was added and the pH 

adjusted to 4.8 with 30% acetic acid. After hydrolysis, the residues were collected by 

filtration of the slurries on a nylon gauze (37 μm) folded in a Büchner porcelain funnel. 

The sample was washed twice by acetone (99.5 %) followed by ethanol (96 %). Then the 

cloth with the residue was temporarily placed on a clean paper to evaporate the 

remaining ethanol/acetone overnight. The residue was scraped off the nylon cloth and 

collected in a pre-weighed jar and dry matter digestibility was calculated. 

4.3 Results & discussion 

4.3.1 Extraction efficiencies of pre-treatments 

4.3.1.1 Single pre-treatments  

Ethanol, Viscozyme
®
 L, and H2O2 were used aiming for removal of polyphenol, 

carbohydrates, and lignin, respectively. Polyphenols and carbohydrates were extracted 

efficiently in their respective pre-treatments, but lignin was not extracted by H2O2. To 

further clarify what can be extracted with the various pre-treatments, dry matter, 

N-containing components, galacturonic acid, polyphenol, and total sugar content of the 

extracts were determined and plotted in Fig. 4.1a, 4.1b, and 4.1c. 
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Fig. 4.1 Components extracted (g kg
-1

 GTR) by different methods. : Polyphenol; : Galacturonic acid; : 

N-containing components; : Sugars; : Other components. a, Ethanol with different concentration (%, v/v) 

at 60 °C for 1h; b, Viscozyme® L with different activity (UFBG g
-1

 GTR)  treatment at 30 °C for 18h with 

water extraction; c, H2O2 at various concentrations (%, v/v) at 60 °C for 2h; d, Absorbance of extracts obtained 
by using various ethanol concentrations at 60 °C for 2h. Ethanol concentration: ▬▬: 100%; ▬▬: 80%; ▬▬: 

60%; ▬▬: 40%; ▬▬: 20%; ▬▬: 0%. 

In ethanol extraction, the amount of extractable dry matter showed a bell-shaped curve 

against the applied concentration of ethanol (Fig. 4.1a). The highest amount of dry 

matter (140 g kg
-1

 GTR) was extracted when 60% ethanol was used as solvent, which is 

higher than in the H2O2 pre-treated samples, but much lower than the Viscozyme
®
 L 

treated samples. When 40-80% ethanol was applied, all polyphenols (78 g kg
-1

 GTR) 

were extracted (Fig. 4.1a). Under these conditions, very low amounts (<2% GTR) of 

galacturonic acid and glucose, and a fixed amount of protein (2-3% GTR), were 

extracted. The amount of non-determined components was high when 60% ethanol was 

a. b. 

c. d. 
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used, suggesting an extraction of complex compounds with both polar and non-polar 

groups (Harold N, 1992; Turkmen et al., 2006). Most pigments can only be extracted in 

high ethanol concentration. Looking at the wavelength scan of the ethanol extracted 

samples (Fig. 4.1d), absorption peaks in the 80% ethanol and pure ethanol extracts can 

be seen at 510nm, 540nm, 630nm, and 670nm, while these peaks are not present or 

smaller at lower ethanol concentrations. These absorption peaks were contributions from 

chlorophyll a, chlorophyll b, and carotenoid (Harbowy; and Balentine, 1997; Mantoura 

and Llewellyn, 1983; Ritchie, 2006). 

Viscozyme
®
 L had the highest extraction efficiency. Over 30% of GTR was extracted 

(Fig. 4.1b) at 30 °C, and its total extraction yield was positively dosage dependent. Upon 

addition of 12 FBGU of Viscozyme
®

 L in 1g GTR, the extraction yield of galacturonic 

acids, sugars, and other components was at 50, 110, and 90 g kg
-1

 GTR correspondingly, 

which is 10 times higher than without adding enzyme. Addition of more enzyme had no 

influence on extraction yields of sugar and polyphenol, but led to higher yields of 

galacturonic acid and N-containing components. As polyphenols are more soluble in 

50% ethanol (Brennan, 2005; Turkmen et al., 2006), while protein is not, a combined 

extraction with ethanol aided extraction after Viscozyme
®
 L pre-treatment may extract 

non-protein components with low protein yield. 

 H2O2 had the lowest extraction efficiency with only 80 g kg
-1

 GTR extracted (Fig. 4.1c). 

Its extraction yield was not influenced by the H2O2 concentration and even lower than 

the blanc. Residual GTR was bleached (data not shown), indicating reactions of H2O2 

with color related compounds. As lignin has a very low solubility in water, an ethanol 

extraction after H2O2 pre-treatment may aid extraction of lignin. 

4.3.1.2 Viscozyme
®
 L or H2O2 combined with 50% ethanol  

To test the potential of combined Viscozyme
®
 L or H2O2 treatment with ethanol 

extraction, the same volume of ethanol was added to the samples after Viscozyme
®
 L or 

H2O2 extraction. Based on the previous results and other research, final ethanol 

concentration was 50%, by which most polyphenol can be extracted with least ethanol 

addition (Turkmen et al., 2006). The composition of Viscozyme
®
 L and H2O2 extracts 
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combined with ethanol extraction were plotted in Fig. 4.2a and Fig. 4.2b. 

 

 

 

 

 

 

 

The total amount that was extracted from GTR was increased due to additional 

polyphenol solubilisation compared to water extraction. As protein has a low solubility 

in 50% ethanol, less protein was extracted leading to a higher remaining protein content 

in the residue. This 340 g kg
-1

 protein content in residue will probably also lead to higher 

protein content in subsequent alkaline protein extracts. The amount of extractable 

polyphenol and non-determined components was less when higher H2O2 concentrations 

were applied under 50% ethanol conditions. This suggests that the bleaching effect of 

H2O2 on GTR that was observed did not lead to a solubilisation of lignin.  

4.3.2 Influence of pre-treatments on efficiency of alkaline extraction  

The influence of individual pre-treatments on a subsequent alkaline extraction was 

quantified by measuring alkali consumption, protein extraction yield, and protein purity. 

As shown in Table 4.1a, using ethanol or Viscozyme
®

 L as pre-treatments could improve 

the efficiency of alkaline extraction, while using H2O2 as a pre-treatment had a negative 

effect.  

 

 

Table 4.1a. Influence of three individual pre-treatments on subsequent alkaline protein extraction 

a. b. 

Fig. 4.2 Components (g kg
-1

 GTR) extracted by two combined methods. : Polyphenol; : Galacturonic 

acid; : N-containing components; : Sugars; : Other components. a, Viscozyme® L treatment at 30°C for 

18h with 50% ethanol extraction; b, H2O2 at 60°C for 2h in 50% ethanol extraction. 
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Alkali consumption 

(mmol g-1 GTR) 

Protein yield 

  (g kg-1 leaf protein) 

Protein purity 

(g kg-1 dry matter) 

Ethanol 

concentration (L/L) 

0 2.9 ±0.05 685 ±18 349 ±20 

0.2 2.7 ±0.05 735 ±38 365 ±11 

0.4 2.4 ±0.1 764 ±12 396 ±10 

0.6 2.2 ±0.05 770 ±34 388 ±22 

0.8 2.1 ±0.1 781 ±41 411 ±10 

10 2.7 ±0.1 804 ±36 367 ±11 

Viscozyme® L 

activity 
(FBGU/g GTR) 

0 3.0 ±0.2 615 ±14 325 ±10 

12 2.6 ±0.1 742 ±34 416 ±51 

30 2.5 ±0.1 770 ±16 464 ±13 

60 2.6 ±0.1 799 ±40 451 ±42 

120 2.4 ±0.3 753 ±7 457 ±49 

H2O2 concentration 

(mL/L) 

0 3.0 ±0.2 722 ±60 351 ±3 

5 3.1 ±0.1 716 ±12 357 ±6 

10 3.1 ±0.2 667 ±3 338 ±2 

20 3.3 ±0.2 696 ±8 335 ±4 

NaOH consumption could be reduced by 0.8 mmol g
-1

 GTR when ethanol was used as a 

pre-treatment and by 0.6 mmol g
-1

 GTR using Viscozyme
®

 L as pre-treatment, while it 

slightly increased when H2O2 was used. The reductions were due to the removal of 

polyphenol and carbohydrates that were specifically targeted in the ethanol and 

Viscozyme
®
 L pre-treatment. The increased alkali consumption with H2O2 pre-treatment 

may result from the reaction of residual H2O2 with alkali. Protein yields and purity in 

alkaline extracts were both influenced by the extraction of non-protein components and 

by protein loss in pre-treatments. Although Viscozyme
®
 L can release protein from plant 

seeds due to the degradation of plant cell wall (Guan and Yao, 2008; Rosset et al., 2014), 

Viscozyme
®
 L has only a limited effect on leaf protein extraction due to the low 

efficiency on hydrolysing rhamnogalacturonan I pectin and lignin, which probably 

hampered protein extraction (Zhang et al., 2015). A relatively low protein yield (75%) 

was obtained when as much as 120 FBGU Viscozyme
®
 L was used, because 23% of the 

protein components were lost in the pre-treatment step. Improvements can probably be 

made combining pre-treatments. Using ethanol as solvent for Viscozyme
®
 L or H2O2 

pre-treatment to change the distribution of protein fractions may improve protein yield 

and purity in the alkaline extracts. 

The influences of combined pre-treatment are shown in Table 4.1b. The maximum 

protein yield and purity were 89% and 53% respectively in protein extracts, obtained  
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after using Viscozyme
®
 L of 120 FBGU g

-1
 GTR in 50% ethanol, which was higher than 

those obtained without addition of ethanol. The amount of alkali that was consumed by 

polyphenol was calculated 

as 0.7 mmol NaOH g
-1

 GTR 

and by carbohydrates was 

0.6 NaOH g
-1

 GTR and in 

alkaline protein extraction 

without pre-treatment. H2O2 

pre-treatment was not 

improved by 50% ethanol 

extraction. The bleaching 

reactions between H2O2 and color related components did not result in their 

solubilisation. Excess H2O2, which was not totally separated from solid GTR, even 

increased alkali consumption in the subsequent protein extraction step. 

4.3.3 Influence of pre-treatments on protein color formation 

To analyse the influence of pre-treatments on protein color formation, protein extracts 

obtained after various pre-treatments were 

scanned spectrophotometrically at 

wavelengths ranging from 400 to 750 nm 

(Fig. 4.3a, Fig. 4.3b, and Fig. 4.3c). 

Protein color derived from pigments, 

polyphenol, carbohydrates, and lignin 

were identified by associating amounts of 

these components removed in the 

pre-treatments and the change of color 

absorbance in alkaline protein extracts.   

 

 

Table 4.1b. Influence of Viscozyme® L and H2O2 pre-treatments using 

50% ethanol as solvent on subsequent alkaline protein extraction 

 
Alkali 

consumption 

(mmol g-1 GTR) 

Protein yield 
(g kg-1 leaf 

protein) 

Protein purity 
(g kg-1 dry 

matter) 

Viscozyme® L   

activity 

(FBGU/g 

GTR) 

0 2.3 ±0.1 706 ±9 373 ±12 

12 1.6 ±0.1 725 ±45 442 ±67 

30 1.6 ±0.05 766 ±43 454 ±46 

60 1.6 ±0.05 823 ±38 506 ±36 

120 1.5 ±0.1 890 ±15 531 ±20 

H2O2 

Concentration 

(mL/L) 

0 2.5 ±0.1 692 ±12 367 ±7 

0.5 2.5 ±0.1 683 ±17 359 ±9 

1 2.5 ±0.1 662 ±2 373 ±2 

2 2.6 ±0.1 671 ±7 381 ±4 

Fig. 4.3a Influence of ethanol pre-treatment on the 

color of protein extracts obtained by 0.1 M NaOH 
with 40 v/w and 95 °C for 2 h (10 times diluted). 

Ethanol concentration: ▬▬: 100%; ▬▬: 80%; 

▬▬: 60%; ▬▬: 40%; ▬▬: 20%; ▬▬: 0%. 
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The lowest absorbance was found for protein extracts pre-treated by 60% ethanol and 

80% ethanol (Fig. 4.3a), while the absorbance of protein extracts with pre-treatment of 

40% ethanol was slightly higher. The 

absorbance of protein extracts with pure 

ethanol pre-treatment, which removed 

pigments, was similar as that with water 

pre-treatments, suggesting pigments had 

a minor influence on color formation. 

To quantify the influence of pigment 

and polyphenols on color formation, the 

amount of polyphenols and pigments 

(chlorophyll and carotenoid) removed by 

pure ethanol and 50% ethanol at various 

conditions was correlated to absorbance 

of protein extracts at 500nm (Fig. 4.3b). 

When all polyphenols were removed 

during pre-treatment, the A500 of protein 

extracts was reduced by 59%. 

Chlorophyll and carotenoids were only 

detected in pure ethanol extracts, in 

which some polyphenol was also 

solubilised. Considering the influence 

from polyphenol, the influence on color 

formation from chlorophyll and 

carotenoid was neglect able. 

When 50% ethanol was used as solvent 

(Fig. 3c), the absorbance of control coincided with the absorbance of protein extracts 

with Viscozyme
®
 L in 50% ethanol pre-treatment, demonstrating the released 

carbohydrates had no influence on color generation. This conclusion was further 

confirmed experiments with addition of extra sugars in alkaline extraction without 

Fig. 4.3c Full wavelength scanning (400-750 nm) of 
protein extracts with viscozyme pre-treatment (20 times 

diluted). ▬ ▬: control with 50% ethanol extraction; 

▬▬: viscozyme pre-treatments with different enzyme 
activities and 50% ethanol extraction; ▬ ▬ : control 

with water extraction; ▬▬: viscozyme pre-treatments 

with different activities and water extraction. 

Fig. 4.3b Influence of removed pigments and 

polyphenols on the color of protein extracts obtained 
by 0.1 M NaOH with 40 v/w and 95 °C for 2 h. ▲: 

Carotenoid;: Chlorophyll; : Polyphenol extracted 

by pure ethanol; □: extracted by 50% ethanol. 



Chapter 4: Effect of pre-treatment 

 

Page | 72 

 

pre-treatments, in which colors of protein extracts also did not increase (results not 

shown). When water was used as solvent, the absorbance of the control deviated from 

the absorbance of protein extracts with Viscozyme
®
 L pre-treatment. These phenomenon 

may suggest that Viscozyme
®

 L also hydrolysed carbohydrates that formed a complex 

with the more hydrophobic phenolic compounds (Hong et al., 2013). This hydrolysis 

leads to free phenolic compounds again, with decreased solubility in water and increased 

solubility in 50% ethanol. 

As polyphenol contributed to about 59% of protein color, while carbohydrates and 

pigments had no contribution, the remaining color contribution was assumed to come 

from lignin. The influence of lignin on color formation was expected to become clear 

using H2O2 as pre-treatment to remove or degrade lignin. However, Fig. 4.1c and Fig. 

4.2b showed that lignin was not removed by H2O2. As there was no influence of H2O2 on 

the color formation during the subsequent alkaline protein extraction (data not shown), 

this indicates that H2O2 has no effect on the degradation of lignin or at least does not 

influences the color formation from lignin in protein extracts. 

4.3.4 Influence of pre-treatments on nutritional value of GTR samples and 

subsequent protein extracts 

4.3.4.1 Composition and digestible components  

The composition of GTR and protein extracts with and without pre-treatment were 

determined (Table 4.2) and compared. Ethanol pre-treatment has a small positive 

influence on dry matter (DM) digestible components, while the combined pre-treatments 

increased the digestibility of DM considerably. With pre-treatment of Viscozyme
®
 L plus 

50% ethanol, the digestible components increased from 200 to 340 g kg
-1

 DM. Likewise, 

pre-treatment of GTR with H2O2 plus ethanol increased digestible components 200 to 

360 g kg
-1

 DM. Alkali treatment, however, resulted in protein extracts with a close to full 

digestibility, independent of pre-treatment. This might be explained by the reduced 

NSP-content, which was below 300 g kg
-1

 DM in the alkali treated samples, thereby 

allowing digestive enzymes to solubilize all available nutrients. The protein content of 

the protein extracts was affected by the method of pre-treatment, and ranged from 450 g 
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kg
-1

 DM in the control residue to 560 g kg
-1

 DM after pre-treatment with Viscozyme
®
 L 

plus 50% ethanol.  

Table 4.2. Composition and digestibility of GTR samples (g kg-1) 

 
Original 

GTR 

GTR after pre-treatments Protein 

extracts 

(Control) 

Protein extracts with pre-treatments 

50% EtOH 
Viscozyme® L + 

50% EtOH 

H2O2+ 

50% EtOH 
50% EtOH 

Viscozyme® L + 

50% EtOH 

H2O2+ 

50% EtOH 

Dry mattera 934 ±1 909 ±9 944 ±1 919 ±1 892 ±1 902 ±1 924 ±1 913 ±1 

Digestible 

componentb 
201 ±3 231 ±8 339 ±17 335 ±59 1000 1000 1000 1000 

Ash 41 ±1 39 ±3 40 ±1 35 ±1 111 ±1 132 ±1 77 ±2 133 ±8 

Crude 

protein 
251 ±8 274 ±6 323 ±1 252 ±3 451 ±2 493 ±1 558 ±2 436 ±23 

Crude fiber 231 ±8 273 ±7 242 ±3 235 ±10 9 ±1 21 ±4 11 ±2 18 ±1 

Fat 18 ±1 13 ±5 28 ±1 21 ±1 17 ±3 7 ±1 28 ±2 33 ±22 

Starch 29 ±1 52 ±24 10 ±1 19 ±7 7 ±1 10 ±1 1 ±1 19 ±7 

Sugar 48 ±2 3 ±1 33 ±1 20 ±7 13 ±1 8 ±1 9 ±1 28 ±21 

NSPc 550 530 510 570    290   250 250 260 

a, Based on sample weight after freeze drying; b, Digestible components were presented as g kg-1; c, Non-Starch Polysaccharides 

are calculated as dry matter – ash – crude protein – fat – starch – sugar. 

The larger scale, at which these experiments were performed, caused some differences 

with the results in 4.3.1 and 4.3.2. As the shaking efficiency of the water bath is lower 

than that of the Thermomixer, not all targeted components were removed in the 

pre-treatment. After alkaline extraction and acid precipitation, protein content in protein 

products was generally increased. It was mainly due to the complete protein extraction at 

alkaline conditions (Zhang et al., 2014). Protein can be further purified by acid 

precipitation, in which most protein can be precipitated while non-protein N containing 

components, such as caffeine, will not (Tangka, 2003).  

4.3.4.2 Amino acids composition  

To test the influence of pre-treatments on protein nutritional value, the amino acid 

contents of GTR and protein extracts with and without pre-treatment were determined 

(Table 4.3) and compared.  

The nutritional value of proteins for monogastric animals and humans is often limited by 

the amount of essential amino acids, being arginine, histidine, leucine, isoleucine, lysine, 

methionine, phenylalanine, threonine, tryptophan, and valine (Dale et al., 2009b). All 

three pre-treatments increased the content of total essential amino acid in both GTR 

samples after pre-treatments and their protein extracts. This is due to the removal of 



Chapter 4: Effect of pre-treatment 

 

Page | 74 

 

non-protein N-containing components, such as caffeine, during pre-treatments. Although 

it was reported that digestibility of biomass can be improved by using alkali or H2O2 

(Chaudhry, 2000; Mishra et al., 2000), these protein extracts had a lower total essential 

amino acid content compared to the original GTR samples. This reduction generally 

resulted from reduced contents of arginine, threonine, and lysine. These amino acids 

tended to degrade under strong alkaline conditions, which are related to pH, temperature, 

and reaction time (Hurrell and Finot, 2012). 

Table 4.3. Amino acid content in N-containing components (g kg-1) 

Amino 

acid 

Original 

GTR 

GTR after pre-treatments  Subsequent protein extracts from GTR samples 

50% EtOH 
Viscozyme® L + 

50% EtOH 

H2O2+ 

50% EtOH 
 Control 50% EtOH 

Viscozyme® L + 

50% EtOH 

H2O2+ 

50% EtOH 

His 17 ±2 18 ±1 18 ±2 17 ±1  23 ±2 23 ±1 21 ±3 19 ±1 

Arg 44 ±2 40 ±3 50 ±2 44 ±2  8 ±1 27 ±1 39 ±2 27 ±1 

Thr 41 ±2 42 ±3 46 ±1 44 ±2  15 ±1 17 ±1 25 ±1 18 ±1 

Val 45 ±2 48 ±3 51 ±1 51 ±2  54 ±1 57 ±1 56 ±1 54 ±1 

Met 14 ±1 15 ±1 16 ±1 14 ±1  18 ±1 18 ±1 14 ±2 15 ±1 

Trya  -  -  -  -   -  -  -  - 

Ile 50 ±3 52 ±3 56 ±2 55 ±2  59 ±3 63 ±1 62 ±1 61 ±1 

Phe 39 ±2 41 ±2 43 ±1 43 ±2  50 ±1 54 ±1 50 ±1 52 ±1 

Leu 78 ±4 82 ±5 86 ±2 86 ±3  95 ±3 102 ±1 97 ±2 97 ±1 

Lys 54 ±7 55 ±6 56 ±5 54 ±2  39 ±4 43 ±2 35 ±6 27 ±2 

Total 381 ±25 392 ±27 421 ±16 408 ±17  360 ±15 404 ±7 409 ±18 372 ±8 

Asp+Asn 84 ±5 83 ±5 93 ±2 84 ±3  91 ±1 89 ±1 91 ±1 82 ±1 

Glu+Gln 92 ±4 93 ±6 100 ±2 98 ±4  106 ±11 103 ±3 104 ±1 99 ±1 

Ser 43 ±2 45 ±3 48 ±1 48 ±2  21 ±2 22 ±1 35 ±1 25 ±1 

Gly 49 ±2 52 ±4 55 ±1 54 ±2  62 ±2 63 ±1 58 ±2 57 ±1 

Tyr 29 ±2 25 ±1 33 ±2 29 ±2  41 ±1 39 ±1 40 ±1 34 ±1 

Ala 51 ±3 53 ±3 56 ±1 56 ±2  58 ±2 61 ±1 59 ±2 56 ±1 

Pro 43 ±3 47 ±3 48 ±1 48 ±1  49 ±1 49 ±1 51 ±1 48 ±1 

Cysa  -  -  -  -   -  -  -  - 

Ornithine 0  0  0  0   5 ±1 5 ±1 3 ±1 5 ±1 

Total 775 ±42 792 ±51 855 ±23 826 ±28  814 ±25 834 ±6 840 ±14 778 ±2 

a, Try and Cys were destroyed during the determination (Meussen et al., 2014) 

In protein extracts, addition of Viscozyme
®
 L in 50% ethanol had little influence on the 

essential amino acid composition compared to the single use of 50% ethanol as 

pre-treatment. The main differences of essential amino acid contents in these two protein 

extracts were the contents of threonine, arginine, and lysine, which had higher content 

with addition of Viscozyme
®
 L. Using Viscozyme

®
 L and 50% ethanol as pre-treatment, 

less alkali was consumed during alkaline extraction, and so the pH of extracts was higher. 

This higher pH may have resulted in more sever degradation of amino acids, and 

therefore reduced nutritional value of protein products. When H2O2 was used, almost all 

amino acids were less compared to those of the control, indicating that H2O2 degrades 

amino acids under alkaline condition. The extent of amino acid degradation due to H2O2 
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depends on H2O2 concentration, temperature, and reaction time (Roberts et al., 1989). 

Since Kjeldahl determines total N content and protein was calculated using a factor of 

6.25, real protein content counted not add up to 100%. The highest real protein content 

calculated based on amino acid content (855 g kg
-1

 protein) was present in GTR samples 

pre-treated by Viscozyme
®
 L and 50% ethanol. Using this combined pre-treatment, most 

non-protein N containing components, such as chlorophyll and caffeine, can be extracted 

(Castle et al., 2011; Jun, 2009). Assuming for this case that all non-protein N containing 

components were removed, the amount of non-protein N containing components is 

approximately 10% of total N and the true N conversion factor that used for GTR is 

approximately 5.4. 

4.4 Conclusions 

Ethanol pre-treatment removed polyphenols from GTR, while Viscozyme
®
 L removed 

carbohydrates, which both led to a high protein yield, protein purity, and less alkali 

consumption in the subsequent alkaline extraction. The removal of polyphenols 

decreased 59% of the color components normally generated in alkaline protein 

extraction, but removal of carbohydrates had no influence. H2O2 pre-treatment is not 

suggested as it didn’t release lignin, and it had a negative effect on the alkaline protein 

extraction with no color change on protein extracts. As less protein was extracted during 

Viscozyme
®
 L pre-treatment when 50% ethanol was used as solvent, the highest 

improvement on the protein extraction efficiency of the subsequent alkaline extraction 

was shown with this combined pre-treatment. Although total essential amino acid 

contents increased with pre-treatments of Viscozyme
®
 L and/or ethanol, contents of 

arginine, threonine, and lysine decreased during alkaline protein extraction. An 

improvement on nutritional value of the final protein extracts can be further improved by 

an optimization of the integrated processes. It can be concluded that pre-treatment of leaf 

materials with Viscozyme
®
 L and ethanol, followed by alkali protein extraction, results 

in protein concentrates (55% of crude protein) that seem to be highly applicable in 

monogastric diets. The suggested pre-treatment and subsequent alkaline protein 

extraction can be applied for other leafy biomass, which significantly increases the 
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Abstract: Leaf pectin can be used as a feedstock for galacturonic acid (GA) production, 

but high pectin extraction costs limit economic feasibility. To improve the extraction 

efficiency, leaf pectin extraction was integrated with an already cost-effective alkaline 

protein extraction, focusing on high yield of GA without losses of protein. GA extraction 

efficiencies in NaOH, HCl, phosphate buffer solution, or with Viscozyme
®

 L were 

determined using green tea residues (GTR) as model material. Most pectin was extracted 

using Viscozyme
®
 L, mainly due to its cellulase activity. Extraction yielded more than 

95% GA with only 5% protein. Alternatively, pectin can be extracted in a weak alkaline 

solution. Here, pectin yield is dominated by the ratio of extraction volume to biomass 

weight. The profits of these two integrated processes can be higher than one step protein 

extraction. The Viscozyme
®
 L integrated process is suitable for GA production for 

application in chemicals, and may have a profit of 142$/ton GTR when enzyme cost are 

sufficiently lowered. The profit of the weak alkaline integrated process is estimated at 

118$/ton GTR.   
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5.1 Introduction 

Pectin is a family of complex polysaccharides located in the primary plant cell wall and 

middle lamella (Dashek and Harrison, 2006a; Somerville et al., 2004) that is commonly 

used as functional ingredient in food industry (Willats et al., 2006). However, leaf pectin 

has usually been degraded and lost its functionality during plant growth, biomass 

harvesting, and/or pre-processing before extraction, and may no longer be suitable for 

food application. Alternatively, leaf pectin can be applied as chemical building block 

using its predominant components, such as galacturonic acid (GA). GA can be used as 

the starting material for vitamin C production (Mapson and Isherwood, 1956), and can 

be chemically transferred into various aromatic compounds under aqueous acidic 

conditions (Popoff and Theander, 1972). Furthermore, GA can be oxidized to its 

corresponding aldaric acid (C6-sugar di-acid), which has shown to be an interesting 

starting material for the production of 2,5-FDCA (Knoop et al., 2013), polyaldaramides 

and-esters (Lavilla et al., 2012; Lavilla et al., 2011; Muñoz-Guerra, 2012), sequestering 

agents (Abbadi et al., 1999), and corrosion inhibitors (Koefod, 2007).  

However, applying leaf pectin as bulk chemical has a lower value than its application in 

food, and the production costs are relatively high due to its low content in leaf. To lower 

extraction costs, pectin extraction can be integrated with an already cost-effective 

alkaline protein extraction (Zhang et al., 2015; Zhang et al., 2016b). This alkaline protein 

extraction can be applied with a profit of about 85 €/ton GTR excluding capital and labor 

cost (Zhang et al., 2014). An integrated biorefinery concept was proposed to further 

improve the cost-effectiveness of this protein extraction (Zhang et al., 2015). It was 

suggested that removal of leaf pectin prior to protein extraction can reduce alkali 

consumption and improve protein quality (Zhang et al., 2016b). Therefore, the next logic 

step is to consider pectin as a side product of protein extraction. 

When integrated with protein extraction under alkaline conditions, pectin extraction 

should rather focus on GA yield and its influence on the efficiency of alkaline protein 

extraction rather than on pectin functionalities. Methods that can be used for extracting 

high yield pectin include use of acid or alkali, and enzymatic methods (Lim et al., 2012; 



Chapter 5: Integration of pectin extraction 

 

Page | 82 

 

Renard et al., 1990; Seixas et al.; Sengkhamparn et al., 2010; Shi et al., 1996; Wang et al., 

2014; Westereng et al., 2008). Acid is commonly used for pectin extraction, but its 

integration with alkaline protein extraction will generate large amounts of salts that 

increase the cost of both pectin and protein extraction. Pectin can be extracted by weak 

alkaline solution, but the product is rarely used due to the decrease in pectin 

esterification degree (Jiang et al., 2005), which influences pectin functionality (Assoi et 

al., 2014). However, this method may be suitable for the proposed integration, since the 

pH that is required for pectin extraction is lower compared to alkaline extraction, by 

which pectin product can be extracted separately with no extra salts generated. Enzymes 

can be used to aid pectin extraction by hydrolyzing pectin into GA (Su et al., 2015) or by 

hydrolyzing cell wall carbohydrates (Wikiera et al., 2015). Pectate lyase and/or pectinase 

can be used for hydrolysis of pectin, while galactanase, arabinanase, hemi-celllulase and 

cellulase are often used for the degradation of cell wall carbohydrates, including 

rhamnogalacturonan I pectin, hemi-cellulose and cellulose (Taherzadeh and Karimi, 

2008). Using an enzyme mixture such as Viscozyme
®
 L, that contains several or even all 

enzymes mentioned above for cell wall degradation is popular for its high efficiency on 

hydrolysis (Sari et al., 2015a) and relative low price compared to individual enzymes. 

Enzyme aided extraction is carried out under either weak acid or alkaline conditions, and 

may also be suitable for integration with protein extraction.  

To determine the most suitable pectin extraction method for integration with protein 

extraction, green tea residue (GTR) was used as a model material, as it was previously 

used for a study on alkaline protein extraction (Zhang et al., 2014; Zhang et al., 2015; 

Zhang et al., 2016b). Pectin extraction yield (represented by GA yield) in NaOH, 

phosphate buffer solution (PBS), and with Viscozyme
®
 L (containing arabanase, 

cellulase, β-glucanase, hemicellulase, and xylanase) and its relation to protein yield were 

first tested using acid or water as controls. Viscozyme
®
 L aided pectin extraction was 

then optimized. To further investigate what enzymes determine pectin extraction, 

extraction effects of specific enzymes, including pectinase, arabanase, galactanase, 

cellulase, and hemicellulase were tested individually. Conditions for weak alkaline 

pectin extraction were optimized using a uniform experimental design. Economics of 
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both Viscozyme
®
 L aided or weak alkaline pectin extraction with the integration of 

alkaline protein extraction were estimated and discussed.  

5.2 Materials and methods 

5.2.1 Materials  

Green tea residue (GTR) is a gift from Damin Company, Fujian Province, China. This 

residue from tea lemonade production was collected from Camellia sinensis trees in 

Zhejiang province, China, in 2014, and it was sun-dried after soaking green tea leaves in 

water at 85 °C for 45 min. It contains 25% protein and around 6.7% of GA based on dry 

matter weight. 

Viscozyme® L (Multi-enzyme mixture containing a wide range of carbohydrases, 

including arabanase, cellulase, β-glucanase, hemicellulase, and xylanase), pectinase (EC 

3.2.1.15 ), hemi-cellulase (An mixture of glycolytic enzymes containing xylanase, 

mannanase and other activities), and cellulase (EC 3.2.1.4) were purchased from Sigma, 

USA. Endo-1,5-α-L-arabinanase (EC 3.2.1.99) and endo-1,4-β-galactanase (EC 3.2.1.89) 

were purchased from Megazyme, Ireland.  

Other chemicals if not stated otherwise were of analytical grade and purchased from 

Sigma company, the USA. 

5.2.2 Pectin extractions 

5.2.2.1 Under acid, weak alkaline, or alkaline conditions 

Pectin extraction was performed by mixing 200 mg GTR with 4 mL 0.1M HCl, 0.1M 

PBS (pH 8), or 0.1M NaOH at 60 °C, and then incubated in a thermo-mixer (1000 rpm 

min
-1

) for 2 h using water extraction as control. After subsequent centrifugation at 8000 

g for 10 min (Sorvall centrifuge, Thermo Fisher Scientific, the USA), supernatants were 

obtained and stored at 4 °C until further analysis.  

5.2.2.2 Viscozyme
®
 L aided pectin extraction  

Viscozyme
®
 L with an activity of 2.4 U was added to 200 mg GTR mixed in 4 mL 

demi-water or 0.02 M pH 4.7 sodium acetate-hydrochloric acid buffer at 30 °C 

http://www.sigmaaldrich.com/catalog/search?term=3.2.1.15&interface=Enzyme%20Commission%20(EC)%20Number&N=0&mode=partialmax&lang=en&region=US&focus=product
http://www.thermofisher.com/
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(Thermomixer, 1000 rpm) for different incubation time (30 min - 28 h). After subsequent 

centrifugation, supernatants were collected and stored at 4 °C until further analysis. 

5.2.2.3 Extraction efficiency of specific enzymes embraced in Viscozyme
®
 L  

Arabinanase (4 or 20 U g
-1

 GTR), galactanase (13 or 65 U g
-1

 GTR), cellulase (13 or 26 

U g
-1

 GTR) , hemi-cellulase (15 or 30 U g
-1

 GTR), or pectinase (10 or 20 U g
-1

 GTR) 

were applied to 200 mg GTR mixed in 4 mL 0.02 M pH 4.7 sodium acetate-hydrochloric 

acid buffer at 30 °C and incubated for 20 h. After centrifugation, supernatants were 

collected and stored at 4 °C until further analysis. 

5.2.2.4 Optimization of weak alkaline pectin extraction  

Weak alkaline pectin extraction was optimized using a uniform design (Fang and Lin, 

2003). Twenty-four experiments (Table 5.1) were performed to analyze the co-efficiency 

of five parameters (pH, buffer concentration, temperature, extraction time, and ratio of 

liquid to solid) and their mutual influences on the yield of GA and the ratio of GA to 

protein yield. The buffer solution used for pH7 and pH8 was PBS, while for pH9 and 

PH10 was a sodium-carbonate buffer solution.  

Table 5.1. Experimental conditions for weak alkaline pectin extraction 

No 
Tempera- 

ture(℃) 

Extraction 

time (h) 

V/ W* 

(mL g-1) 
pH 

[Buffer] 

(mol L-1) 
No. 

Tempera- 

ture (℃) 

Extraction 

time (h) 

V/ W 

(mL 

g-1) 

pH 
[buffer] 

(mol L-1) 

1 40 2 40 10 0.08 13 40 1 20 7 0.04 

2 50 1.5 30 7 0.06 14 70 1.5 50 8 0.02 

3 30 3 10 8 0.12 15 40 0.5 10 10 0.1 

4 30 1 60 7 0.04 16 70 1 40 8 0.08 

5 30 1.5 20 10 0.1 17 50 0.5 10 9 0.02 

6 60 0.5 10 9 0.06 18 60 0.5 60 9 0.08 

7 80 2.5 50 9 0.12 19 50 2 40 10 0.06 

8 30 2.5 50 7 0.1 20 50 3 30 8 0.1 

9 60 3 20 9 0.02 21 60 1 30 10 0.06 

10 40 2 60 7 0.12 22 70 2.5 40 7 0.08 

11 80 2.5 60 8 0.04 23 70 2 50 8 0.12 

12 80 1.5 30 9 0.02 24 80 3 20 10 0.04 

*: V/W, Liquid (Volume, mL) to solid GTR (Weight, g) ratio. 

 



Chapter 5: Integration of pectin extraction 

 

Page | 85 

 

5 

5.2.3 Determinations 

5.2.3.1 Galacturonic acid  

Content of GA was determined by modified carbazole method (Taylor, 1993). 

Galacturonic acid (Fluka AG, Buchs, Switzerland) was used as a reference in a 

concentration range from 0 to 50 mg L
−1

. As GA is the main component of pectin, it 

represents relative pectin content (or homogalacturonan pectin). 

5.2.3.2 Protein content  

Protein content was determined with the Dumas combustion method on an NA 2100 

nitrogen and protein analyzer (Thermo Quest-CE Instruments, Rodeno, Italy) using 

methionine as a standard. Although Dumas measures all nitrogen, we assumed that this 

is all protein and used a conversion factor of 6.25 to calculate protein concentrations. In 

the enzyme extraction experiments, protein content of samples was subtracted by the 

amount of protein from the added enzymes. 

5.2.3.3 Dry matter  

Dry matter weights of samples extracts were determined by analytical balance after oven 

drying at 60 °C for 48h in glass containers, and corrected for the added chemicals. 

5.2.3.4 Xylose, galactose and arabinose, and glucose 

Xylose was determined with a D-xylose assay kit (K-XYLOSE, Megazyme, Ireland), 

galactose and arabinose were determined by L-arabinose & D-galactose kit (K-ARGA, 

Megazyme, Ireland), and glucose was determined by D-fructose and D-glucose kit 

(K-FRGLQR, Megazyme, Ireland). These kits determine solubilized sugar content in 

both mono-sugar and polysaccharide forms. Solubilized hemi-cellulose and cellulose can 

be presented as xylose content and glucose content, and solubilized rhamnogalacturonan 

I pectin can be presented by the amount of arabinose and galactose.  

5.2.3.5 Polyphenols 

Content of tea polyphenols in tea extracts was determined spectrophotometrically (Li et 

al., 2005; Turkmen et al., 2006). Polyphenols content was calculated assuming 

polyphenol concentration of 3.914 g L
-1 

leads to an adsorption of 1 at 540 nm.    
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5.2.4 Result analysis and statistics  

Each sample (except from the experiments using uniform design) had duplicates in both 

extraction and determination, and the standard deviation of the four measurements was 

calculated by Excel. Experiments in uniform design had no duplicates in extraction, but 

two determinations were carried for each sample. 

For optimization of the weak alkaline pectin extraction, the relation between factors and 

GA extraction yield as well as relation between factors and values of GA/protein was 

studied via response surface methodology (Box and Draper, 1987). Response surfaces 

for extraction yield and GA/protein ratio were obtained using linear regression to fit 

respective experimental data to second order polynomial functions that in its complete 

form can be described by the following expression:   

Y(i) = β0 + β1F1(i)+β11F1(i)
2
+β2F2(i)+β12F1(i)F2(i)+β22F2(i)

2
+⋯+β45F4(i)F5(i)+є(i)     

Where Y(i) is value of protein extraction yield or GA yield/protein yield for i
th

 

experiment (factor-level combination), Fn(i) is a value of n
th

 factor for i
th

 experiment, β 

-coefficients are unknown regression coefficients, є(i) is the approximation error for i
th

 

experiment. Estimated β-coefficients are further used to calculate maximal values of 

protein extraction yield of GA yield/protein yield. Furthermore, normalized values of 

estimated β-coefficients (provided in the Appendix) are used as indicators of 

corresponding factor impacts on GA extraction yield or ratio of GA yield to protein 

yield. 

In this study we used a simplified form of regression that only contained significant 

parameters (regression coefficients). Parameter significance was determined by fitting 

the experimental data to the model with ascending number of parameters and calculating 

the corresponding root mean square error (RMSE). The parameters with the highest 

contribution to reducing RMSE were step-wise added to model. This was first carried 

out for all linear effect parameters, including temperature (T), extraction time (t), buffer 

concentration ([buffer]), pH, and volume to weight ratio (V/W), and resulted in 

screening out the least significant parameters. Consequently, it was repeated for 

non-linear and interaction effect parameters taking into account the results of screening. 
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After parameter screening, the significance of each parameter (P value) was further 

evaluated. The parameter with highest P value was additional removed when it was 

higher than 0.05.  

5.3 Results and discussion 

5.3.1 Comparison of acid, alkaline, weak alkaline, and Viscozyme
®
 L aided 

pectin extractions  

To establish a process with high GA yield and high ratio of GA to protein yield, GA 

content and protein content of extracts obtained through different methods were 

determined and plotted in Fig. 5.1. As shown, neither GA nor protein can be efficiently 

extracted with water, but almost all GA (6.5 % out of 6.7% present in GTR) can be 

extracted when HCl, NaOH, weak 

alkaline or Viscozyme
®
 L were 

used. Protein yield obtained using 

NaOH solution is about 8% GTR, 

which is at least 4 times higher than 

other methods, leading to a low 

GA/protein ratio. In comparison, 

the GA/protein ratios obtained by 

PBS extraction and Viscozyme
®
 L 

extraction are much higher (2.9 and 

3.7 respectively).  

Next to protein and GA, other components are extracted that are of different composition 

for each method. Using PBS of pH8, polyphenols can be also oxidized and solubilized, 

while using Viscozyme
®
 L other carbohydrates such as hemi-cellulose and cellulose can 

be hydrolyzed and released with only little amounts of polyphenol (Zhang et al., 2015; 

Zhang et al., 2016b).  

Fig. 5.1 Extracted components from 500 mg GTR by 20 mL 

water, 0.1 M HCl, 0.1 M NaOH, or 0.1 M pH 8 at 60 ℃ for 

2 h, or Viscozyme (30 U g-1 GTR, in 10 mL PBS at pH 4.7) 

at 30 ℃ for 20 h. : Galacturonic acid; : Protein; : 

Other Components;: Ratio of galacturonic acid to protein. 
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5.3.2 Is pH control by buffer addition necessary in Viscozyme
®
 L aided 

pectin extraction?  

Viscozyme
®
 L aided pectin extraction is optimal at pH 4.7, for which sodium 

acetate-hydrochloric acid buffer was used. However, this buffer is mainly used to keep 

the pH below 7 and the buffer may be not necessary for pectin extraction, as the extract 

is acidifying during the extraction due to the release of acidic components such as 

organic acids and pectin.  

To test if buffer usage is necessary for Viscozyme
®
 L aided pectin extractions, pectin 

extraction efficiencies were determined in water or weak acidic conditions. The results 

on GA yield, protein yield, and 

their ratio are shown in Fig. 5.2. 

Pectin yield obtained by 

Viscozyme® L aided pectin 

extraction using buffer are 

generally lower than those without. 

The lower pectin yield is possibly 

due to the low solubility of 

substrate at pH 4.7 compared to 

that at pH 7 (water). Protein yield 

was not influenced by the addition 

of acidic buffer, therefore values of 

GA/protein obtained at buffer free conditions are generally higher than those with buffer. 

The highest GA/protein value of 6.8 can be obtained by Viscozyme
®
 L pectin aided 

extraction at 30 °C for 2h without buffer addition.  

5.3.3 Which enzymes in Viscozyme
®
 L determine GA extraction 

Viscozyme
®
 L showed high GA extraction with low protein extraction, demonstrating its 

potential for the integration with the subsequent alkaline protein extraction (Zhang et al., 

2016b). To look into the mechanism of enzyme aided pectin extraction, the separate 

enzymes in Viscozyme
®
 L, including arabinanase, hemi-cellulase, and cellulase on GTR 

Fig. 5.2 Extracted components (%, w/w GTR) in time 
from GTR using Viscozyme (30U/g GTR)  at 30°C. : 

GA yield without buffer ; : GA yield with buffer ; : 

Protein yield without buffer; : Protein yield with 
buffer ; ▬▬: GA/protein without buffer; ▬ 

▬:GA/protein with buffer. 
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were tested using extractions with pectinase and galactanase as controls. Compositions 

of GTR extracts obtained after using specific enzymes are presented in Fig. 5.3. 

As presented in Fig. 5.3, cellulase and pectinase extracted the largest amounts of 

components from GTR, compared 

to the other enzymes tested. 

Approximately 33% and 28% dry 

matter from GTR was extracted 

respectively, which is similar to 

Viscozyme
®
 L aided extraction. 

Other enzymes extracted only minor 

amounts, suggesting the effects of 

Viscozyme
®
 L extraction mainly 

originated from cellulase activity. 

The highest GA purity, 35%, was 

obtained by using 10 U g
-1

 GTR 

pectinase, where almost all GA was extracted with only little cellulose solubilized 

(Glucose yield). This result illustrates that although hydrolysis of cellulose can lead to 

high pectin yield, cellulose is not the limiting component for pectin extraction. Addition 

of Viscozyme
®
 L (12 U g

-1
 GTR) hydrolyzed more components than the addition of 13 U 

g
-1

 GTR cellulase. This was due to the aid from other enzymes, by which more GA, 

xylose, arabinose, and galactose were extracted. To further interpret how enzymes work 

during GTR extraction, values of extracted components are presented in Table 5.2 

relative to their concentration in untreated GTR.  

As shown in Table 5.2, using Viscozyme
®
 L, more than 90% of GA was extracted with 

the other sugar yields are at 50-60%. Arabinanase, galactanase, and hemi-cellulase have 

no or minor influence on the hydrolysis of side chains of Rhamnogalacturonan I pectin 

(arabinan and galactanan) and hemi-cellulose when they were used individually. This 

was probably due to the low substrate accessibility for these enzymes in leaf cell wall 

(Ding et al., 2012). Cellulase and pectinase not only hydrolyzed cellulose and pectin, but 

also released the other components. Using 10 U g
-1

 GTR cellulase, cellulose was almost 

Fig. 5.3 Extracted components from 200 mg GTR by using 

different enzymes in 4 mL 0.02 M pH 4.7 sodium acetate- 

hydrochloric acid at 30 ℃ for 20 h. : Galacturonic acid; 

: Protein; : Xylose; : Glucose; : Arabinose & 

Galactose; : Polyphenol; : Other Components. 
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completely hydrolyzed (96% glucose) resulting in the solubilisation of 77% 

homogalacturonan pectin (GA content), 25% Rhamnogalacturonan I pectin (arabinose & 

galactose), and 50% polyphenol. Although cellulose is considered to be the skeleton of 

plant cell walls (Somerville et al., 2004), its full extraction did not lead to the 

solubilisation of all components in plant cells. Pectin can be extracted without hydrolysis 

of cellulose. Using pectinase at 10 U g
-1

 GTR, 77% homogalacturonan pectin (GA 

content) and 47% Rhamnogalacturonan I pectin were obtained with only minor cellulose 

released (21% glucose). However, with a further hydrolysis of pectin, large quantities of 

cellulose were released (76% glucose) suggesting that the hydrolysis and solubility of 

pectin and cellulose can be both increased by the hydrolysis of only one of these 

compounds. These results indicate that our enzyme aided extractions are functioning on 

the primary plant cell wall, which mainly consists of pectin and cellulose that are 

crosslinked (Ridley et al., 2001). Viscozyme
®
 L, pectinase, and cellulase are 

recommended for leaf pectin extraction with the integration of alkaline protein 

extraction. 

5.3.4 Optimization of weak alkaline conditions for GA extraction  

GA yield could be described by Equation (1). The statistics of coefficients, including the 

normalized sensitivity coefficients for this equation can be seen in Appendix, Table A1. 

 GA yield = -31.2+2.34V/W+168 [Buffer] +0.0147T∙V⁄W-0.0261(V/W)
2
  Equation (1)   

Table 5.2. Components extracted by enzymes with  different activities at pH4.7 and 30℃ for 20h 

(on the basis of initial content in GTR) 

 
Activity 

(U g-1 GTR) 

Protein 

(%) 

GA 

(%) 

Xylose 

(%) 

Arabinose & 

Galactose (%) 

Glucose 

(%) 

Polyphenol 

(%) 

Initial contenta - 24.5 ±1.2 6.7 ±0.1 2.1 ±0.3 6.2 ±0.3 16.3 ±1.3 7.8 ±0.5 

Viscozyme® L 12 2.3 ±1.1  90.8 ±4.9 55.7 ±2.4 63.4 ±4.3 67.7 ±1.3 53.8 ±1.2 

Arabinanase 
4 6.3 ±2.8  5.4 ±0.1 1.7 ±0.5 1.9 ±0.2 0.8 ±0.1 14.4 ±0.3 

20 11.1 ±1.6  5.7 ±0.4 1.8 ±0.2 2.1 ±0.1 1.6 ±0.4 14.1 ±0.6 

Galactanase 
13 4.8 ±5.3  12.3 ±0.2 1.9 ±0.1 2.2 ±0.0 1.2 ±0.3 16.1 ±0.2 

65 14.9 ±2.2  24.1 ±0.2 2.0 ±0.4 2.2 ±0.1 2.2 ±0.1 15.5 ±0.4 

Cellulase 
13 4.9 ±0.3  53.9 ±1.0 4.2 ±0.4 10.0 ±1.8 31.1 ±1.8 35.8 ±0.8 

26 5.0 ±0.6  76.6 ±2.2 11.8 ±1.7 24.8 ±0.5 95.9 ±4.7 50.4 ±0.5 

Hemi-cellulase 
30 4.0 ±0.5  13.9 ±0.3 1.7 ±0.4 0.4 ±0.0 3.5 ±0.3 18.9 ±0.4 

10 3.8 ±0.1  27.9 ±0.6 3.1 ±0.1 0.5 ±0.0 12.9 ±1.4 20.6 ±0.2 

Pectinase 
20 4.0 ±0.4  77.4 ±2.1 13.7 ±1.3 46.8 ±0.8 21.1 ±2.5 18.5 ±0.4 

65 4.2 ±1.1  87.4 ±2.3 20.5 ±0.4 48.2 ±3.4 75.7 ±3.5 19.2 ±0.1 

a: on the basis of GTR dry weight.  
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Analysis of normalized coefficients suggests that GA yield was mainly influenced by 

V/W, as can be seen from the high normalized impact of V/W (see Appendix). This 

suggests that increasing V/W strongly increases GA yield, however the higher V/W the 

less pronounced is its effect, also indicated by the negative second order normalized 

coefficient β(V/W)
2

-V/W=-24.3. Furthermore, the effect of V/W on GA yield depends on 

temperature, as indicated by the normalized interaction coefficient βT-V/W=21.3. The 

dominating effect of V/W could be related to the low pectin solubility in water that a 

higher volume to weight ratio will lead to higher GA yield. At higher V/W ratios, most 

pectin can be extracted and therefore the second order of V/W was incorporated to 

model the non-linearity in this part of the graph. Buffer concentration and temperature 

also influence the solubility of pectin (Stephen and Phillips, 2006; Thakur et al., 1997) 

and are incorporated in the equation. The dependence of V/W on temperature could 

furthermore be related to the GA determination procedure, as GA determinations were 

done after samples were cooled down to room temperature, and part of the pectin might 

have precipitated. Extraction time and pH have no influence on GA yield, indicating that 

the minimum extraction time in the studied range was sufficient for pectin extraction and 

that pH in the range studied (7-10) has no influence on pectin solubility. The results 

additionally suggest that a large set of conditions exists that ensure 100% GA yield. To 

further optimize and prevent protein loss during pectin extraction, influence of factors on 

ratio of GA yield to protein yield were tested. 

Ratio of GA to protein yield could be described by Equation (2). The statistics of 

coefficients, including the normalized sensitivity coefficients for this equation can be 

seen in Appendix, Table A2. 

GA yield/ protein yield = -0.42 + 5.9[Salts] + 0.029V/W + 0.00025T∙V⁄W  Equation (2) 

Similar to the GA yield, it was found that the ratio of GA to protein yield was also 

dominated by V/W, and additionally influenced by buffer concentration and temperature.  

Influence of the three factors (V/W, T, and [Buffer]) on GA to protein yield was only due 

to the increase of GA yield, and it was therefore concluded that protein yield was not 

influenced by these factors in the study range. Previous research showed that high 
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protein yield from leafy biomass correlates to the applied amount of alkali and 

temperature (Zhang et al., 2014). However, the amount of applied alkali (pH 7-10) in our 

current experiments is hundred times less than the required amount for high yield protein, 

3.2 mmol NaOH g
-1

 GTR (about pH 12.7), leading to very low protein extraction yield. 

The model estimates that the highest GA to protein yield of 3.3 occurs at 0.12 mol PBS, 

60V/W, 80 °C with the minimum extraction time (0.5 h) and neutral pH (pH 7).  

To verify the above prediction, GA extraction yield and protein yield obtained at optimal 

conditions were experimentally determined using 0.09 mol PBS (pH 8), 0.12 mol NaCl, 

and pure water as control. GA extraction yield obtained by PBS was 6.2% GTR, which is 

almost 4 times as high as GA yields obtained by water (1.6%GTR) or NaCl (1.6%GTR). 

The low GA yields in water or NaCl may due to low pH that occurs during extraction. 

Final pH of PBS pectin extraction was 6.7 while in water or NaCl the final pH was 4.9. 

At pH above 5, pectin can be degraded as a the result of a β-elimination cleavage of the 

glycosidic linkage (Stephen and Phillips, 2006). As hydrolysis is needed to facilitate 

extraction therefore the pH should be above 5 (Stephen and Phillips, 2006; Thakur et al., 

1997). The ratio of GA yield to protein yield using 0.09 mol PBS or 0.12 mol PBS was 

3.3 and 3.4 respectively, which was close to the predicted results, suggesting the model 

is able to predict the actual pectin extraction. Previous experiments (Zhang et al., 2016b) 

with preceding pectin extraction using Viscozyme
®
 L, gave protein yields of 23% GTR 

and a reduction in alkali consumption with 40%, indicating the benefits of integrating 

weak alkaline pectin extraction and alkaline protein extraction.    

5.3.5 Profit estimation of integrated processes  

An optimized one-step alkaline protein extraction based on our previous work has the 

lowest chemicals and energy cost with highest protein yield among peer studies (Zhang 

et al., 2014). This process can be improved by an integrated biorefinery concept, in 

which the extraction of pectin and polyphenol is conducted prior to protein extraction 

(Zhang et al., 2015). This integration reduces alkali consumption by half and improves 

protein quality (Zhang et al., 2016b). In this study, pectin was selected as a second 

product and its extraction was optimized for the highest GA yield and highest GA to 
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protein yield ratio. Extractions using enzymes or weak alkali were the best candidates for 

integration with alkaline protein extraction. To further investigate the economic 

feasibility of the integrated processes, the profits of integrated Viscozyme
®
 L aided or 

weak alkaline pectin extraction with alkaline protein extraction with the capacity of 

processing 5,000 ton GTR year
-1

 were estimated using the process and production data 

as shown in Fig. 5.4a and Fig. 5.4b, and economic data listed in the Appendix (Table A3 

and A4). Production cost, capital cost, labor cost, revenue of integrated processes, and 

their possible profits are listed in Table 5.3. 
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mixing
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Fig. 5.4 Optimal conditions and products of Viscozyme aided integrated process (a) and weak alkaline 

integrated process (b). P: press; UF: ultra-filtration. 

Viscozyme
®
 L aided pectin extraction integrated with alkaline protein extraction is 

presented in Fig. 5.4a. Viscozyme
®
 L with 12 million U activity and 10m

3
 water is added 

to one ton GTR, and incubated at 30 °C for 3h. After pressing, 60kg GA, 110kg glucose, 

50kg other sugars, and 40kg polyphenols can be obtained with 9m
3
 water in the 

supernatant, while about 680kg GTR press cake is ready for protein extraction. After 

concentration, GA and sugar can be directly used for chemical conversion through 

fermentation (Grohmann et al., 1994), but further purification is needed to use 
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polyphenol as an anti-oxidant in food. Therefore, only the values of GA and glucose are 

included in the revenue. After adding 1500 mol NaOH and 6 m
3
 water to the press cake, 

alkaline protein extraction will be carried out at 95 °C for 4 h. From this, 230 kg protein, 

and 205 kg lignocellulose can be obtained via pressing. The cost of this enzyme aided 

integrated process is 264 $ ton
-1

 GTR (Table 5.3). Compared to the weak alkaline pectin 

extraction integrated process, the revenue of enzyme aided integrated process was 

increased with around 231 $ ton
-1

 GTR to 286 $ ton
-1

 due to the added value of glucose. 

The largest cost were the enzyme cost that accounted for 60 $ ton
-1

 GTR. The current 

price of Viscozyme
®
 L could be 15 $ kg

-1
 protein, but it can be reduced further with the 

development of enzyme production. Here, an enzyme price of 5$ kg
-1

 protein was used 

according to data on optimized cellulase production (Liu et al., 2015). The profit of the 

Viscozyme
®
 L integrated process is estimated at 142 $ ton

-1
, which is higher than that of 

one-step protein extraction.  

Table 5.3. Estimation of cost, revenue and profit of Viscozyme® L aided and weak alkaline pectin 

extraction integrated processes a. (Based on $ ton-1 GTR) 

Input (cost) 

GA extraction Protein extraction 
Output 

(revenue) 

Visco 

zyme 

Weak 

alkaline 
Visco 
zyme 

Weak 
alkaline 

Visco 
zyme 

Weak 
alkaline 

GTR 16 16   GA 48 48 
Chemical/ Enzyme 60 1282 24 24 Protein 175 171 

Water 5 33 5 3 Energyb 8 12 

Heating 1 25 4 4 Glucose 55  
Waste waterc 1 8 1 1    

Press-filtration 2 3 1 1 

   Ultra-filtration   2 2 

Capital 7 7 7 7 

Labor 4 4 4 4    

Subtotal 96 1378 48 46 Subtotal 286  231 

 Profit 142 -1193 

a, Calculation based on data in Fig. 5.4a and Fig. 5.4b. 

b, Energy derived from the combustion.(Robak et al., 2012) 
c, Waste water management fee was according to Chinese government policy. 

Weak alkaline pectin extraction integrated with alkaline protein extraction is presented in 

Fig. 5.4b. One thousand kilogram GTR is mixed with 300 mol NaH2PO4, 5100 mol 

Na2HPO4, and 60 m
3
 water (pH 8, 95 °C, 0.5 h) for pectin extraction. After filtration, 60 

kg pectin and 20 kg protein can be obtained with 56 m
3
 water and 4800 mol sodium 

buffer in the supernatant, while about 800 kg GTR press cake is ready for protein 

extraction. Adding 1500 mol NaOH and 4 m
3
 water to the press cake, alkaline protein 
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extraction will be carried out at 95 °C for 4 h. After filtration, 220 kg protein, and 340 kg 

lignocellulose can be obtained. In this process, the cost for pectin extraction accumulated 

to 1378 $ ton
-1

 GTR as large amounts of water and heating energy were required (Table 

5.3). The cost of capital and labor were higher than the enzyme aided integrated process. 

The large amount of water that is used, increases reactor size and amount of labor 

needed. The potential revenue of weak alkaline integrated process is only 231 $ ton
-1

 

GTR. Adding the high processing cost makes this process economically not feasible with 

a loss of 1193 $ ton
-1

 GTR. 

5.3.6 Improvement of weak alkaline pectin extraction integrated processes 

The cost-efficiency of the weak alkaline integrated process can be improved using a 

recycle system as presented in Fig. 5.5. In this system, extraction will start from alkaline 

protein extraction producing a protein supernatant and a lignocellulosic cake after 

pressing. The lignocellulose fraction can be sundried and used as fuel for heating energy. 

The supernatant can be further treated by ultra-filtration obtaining concentrated protein 

and a residual weak alkaline solution at pH 10-11. The weak alkaline solution can be 

diluted by fresh water until pH at 9-10 is reached and then used for GA extraction. GA 

products can be collected using ultrafiltration, and the recycled water can be used for the 

dilution of the weak alkaline solution obtained from previous alkaline protein extraction. 

According to Equation (2), using pH 9-10 with 60 V/W at 80 °C for 0.5 h will lead to 

almost 100% GA extraction with GA to protein ratio of 3. Cost, revenue, and profit of 

this recycle system are presented in Table 5.4.  
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10m3 water 770kg GTR 
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120mol salts
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Fig. 5.5 Conditions and possible products in weak alkaline integrated process using a recycle system. P: press; 

UF: ultra-filtration. 
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Using this recycle system, the cost-efficiency of the weak alkaline pectin extraction 

integrated process is improved and a profit of 118$ ton
-1

 GTR can be made. The increase 

in profit is due to the reduction in chemicals, water, and energy use by using 

ultrafiltration. At weak alkaline conditions, GA is extracted as a pectin polymer. Further 

hydrolysis may be needed for subsequent chemical conversion. Alternatively, the weak 

alkaline extracted pectin can be applied as food pectin or food fiber. The value of pectin 

(Chang, 2008) can be 10 times higher, which makes this integration more valuable.  

Table 5.4. Comparison of one-step protein extraction with weak alkaline pectin extraction 

integrated recycle systema in cost, revenue and profit. (Based on $ ton-1 GTR) 

Input (cost) 

One-step 

protein 
extraction 

Recycle system 
Output 

(revenue) 

One-step 

protein 
extraction 

Recycle 

system 
GA 

extraction 
Protein 

extraction  

GTR 16 16   GA  48 
Chemical 41  21 Protein 171 163 

Water 14 5 2 Energyb 12 12 

Heating 13 14 3 
   

Waste waterc 2 1 1 

Press Filtration 1 3 1    

Ultra-filtration 2 14 2    
Capital 7 7 7    

Labor 4 4 4    

Subtotal 100 64 41 Subtotal 183 223 

     Profit 83 118 

a, Calculation based on Fig. 5.5, which is a stable process after a recycle of second round. 

b, Energy derived from the combustion.(Robak et al., 2012) 
c, Waste water management fee was calculated according to Chinese policy. 

 

To sum up, the profit of the integrated process using both Viscozyme
®
 L and weak 

alkaline can be higher than that of the one-step protein extraction. However, additions 

improvements are needed to fully exploit the potentials that lie in both integrated 

protocols. The gain in this integrated biorefinery is not only in obtaining multiple 

products, but also in reducing production cost by introducing new technologies to reduce 

water, chemicals, energy, labor, and capital input. A simple combination of processes 

without proper integration will not lead to a profit increase compared to one-step 

extraction.  

5.4 Conclusion 

Viscozyme
®
 L aided and weak alkaline pectin extraction can be used to obtain high GA 

yield while keeping protein yield low. Viscozyme
®
 L aided in pectin extraction by 
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hydrolyzing cellulose, while weak alkaline degraded and solubilized pectin. Compared to 

the profit of one step protein extraction (83$ ton
-1 

GTR), the profit of both integrated 

processes using either Viscozyme
®
 L or weak alkaline can be higher. The Viscozyme® L 

integrated process is suitable for GA production with application in chemical industry, 

and may have a profit of 142$ ton
-1

 GTR when enzyme cost are sufficiently low. The 

profit of the integrated process using weak alkali is estimated at 118$ ton
-1

 GTR, which 

can be further increased when pectin is applied in food. Both integrated processes may be 

applied to other leafy biomass, such as Jatropha leaf and grass (Zhang et al., 2014), which 

significantly expands resources of pectin (or GA) and protein. 
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Abstract:  

Leaf protein can be extracted cost-efficiently using 0.1M NaOH, but this process is less 

sustainable due to the generation of large amounts of sodium salts. Two scenarios to 

reuse or recycle salts for leaf protein extraction using either KOH or Ca(OH)2 were 

proposed. Protein extraction yields of KOH and Ca(OH)2 were tested on green tea 

residue (GTR), and the economics of these two scenarios were analyzed. KOH extracted 

over 90% protein and use of this chemical can be readily integrated with pretreatments 

that were already designed for NaOH protein extraction. The amount of potassium salts 

generated by KOH protein extraction from GTR is similar to the demand of K-fertilizer 

on the tea leaf production field. Profits using KOH are comparable to those with NaOH. 

Ca(OH)2 extracted less than 50% protein from GTR. This low protein yield may be due 

to interaction between lignin and the calcium ions, which was further verified by using 

microalgae, a biomass which contains no lignin. Profits using Ca(OH)2 highly depend on 

yields of protein products. Only with a protein yield higher than 70%, using Ca(OH)2 

can be more profitable than with NaOH. Application of KOH protein extraction and 

Ca(OH)2 protein extraction on different types of biomass enables commercialization of 

yet untapped protein resources, which can be beneficial for both environment and 

economics. 
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6.1 Introduction 

Since the 1960s, leaf proteins have been considered as a new alternative source of 

protein (Akeson and Stahmann, 1965; Gerloff et al., 1965). Some leaf proteins have been 

used in food (Ghaly and Alkoaik, 2010), animal feed (Kondo et al., 2004), or when 

hydrolyzed to amino acids for N-containing bulk chemicals (Sanders et al., 2007). 

However, application of leaf protein was so far limited by the low cost-efficiency of leaf 

protein production (Bals and Dale, 2011). Recently, the cost-efficiency of leaf protein 

extraction was improved by redefining alkaline extraction conditions (Zhang et al., 2014) 

and by an integration with pre-treatments using Viscozyme
®

 L and ethanol (Zhang et al., 

2016a; Zhang et al., 2016b). With these improvements, leaf biorefinery becomes 

economically feasible. However, the process, is still not very sustainable due to the 

generation of a large quantity of sodium salts in the alkaline protein extraction and 

subsequent acidic precipitation. To improve the sustainability of alkaline protein 

extraction, a suitable alternative should be found. Other alkali sources, such as KOH or 

Ca(OH)2, can be used instead of NaOH. Salts that are generated from KOH or Ca(OH)2 

can be used as fertilizer or can be recycled.  

When using KOH for protein extraction, the residual water containing potassium salts 

can be used as fertilizer turning waste into a product (Hasler et al., 2015). The extra cost 

associated with the higher price of KOH compared to that of NaOH can be compensated 

by the value of potassium fertilizer generated at the end of the protein extraction process 

and by the reduction of waste water management fees. KOH has similar chemical 

characteristics as NaOH, and therefore a high protein yield is to be expected. The 

chemical similarity will additionally allow for easy integration with pre-treatments, such 

as Viscozyme
®
 L aided pectin extraction or weak-alkaline pectin extraction, which were 

already integrated with protein extraction using NaOH to improve cost-efficiency 

(Zhang et al., 2016a; Zhang et al., 2016b). Ideally, all the watery potassium salts residues 

needs to be directly used in local fields as fertilizer. Otherwise, additional processing is 

needed to reduce the water content of the side stream to lower transportation cost.  

Alternatively, leaf protein can be extracted by Ca(OH)2. The residual water and the 
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calcium salts can be recycled on-site. Pumping CO2 into the liquid remainder after 

protein extraction can be used to precipitate the calcium salts as CaCO3. After a 

subsequent separation, solid residuals, including CaCO3 and waste GTR, can be dried in 

the sun and subsequently combusted to CaO and CO2. Heating energy and CaO 

generated from combustion can be re-used for protein extraction, and produced CO2 can 

be re-used for either calcium precipitation again or in green houses. This calcium ion 

recycle system will improve efficient chemical use. No waste salts are generated and less 

acid is needed for further protein purification (Baraniak and Baraniak, 1987). In addition, 

Ca(OH)2 protein extraction can benefit from the lower price of Ca(OH)2 compared to 

KOH or NaOH. However, using Ca(OH)2 for leaf protein extraction may result in 

relatively low protein yield (Davison et al., 2005; Holtzapple et al., 2005). This low yield 

might be due to the low solubility of Ca(OH)2 in water(Bates et al., 1956), which results 

in a more mild alkaline solution with a relatively low pH compared to NaOH and KOH. 

Besides, as calcium atoms contain two valence electrons, calcium ions can function as 

bridges between different chelating molecules (Fontana et al., 1977; Ropers and Leroy, 

2008). This chelating effect of calcium ions is widely applied on the coagulation of 

polymers (Chen et al., 2014; Li et al., 2012). In protein extraction, the bridge function of 

calcium ions may coagulate leaf components, including polyphenol (Boukhoubza et al., 

2009), pectin (Ropers and Leroy, 2008), lignin (Zahrim et al., 2015), and even protein 

(Marfo and Oke, 1989; Zahrim et al., 2015), and thereby reduce protein extraction yield.  

To investigate the possibility of using KOH or Ca(OH)2 for leaf protein extraction, green 

tea residue (GTR) was used as model material. Protein extraction yields obtained by 

KOH and Ca(OH)2 were determined using NaOH as a control. To further investigate the 

influence of calcium ions on protein extraction, GTR extracts, including, polyphenol 

extracts, pectin extracts, and protein extracts, were analyzed with and without the 

presence of calcium ions or magnesium ions. To improve Ca(OH)2 protein extraction 

yield, influence of a combined Viscozyme
®
 L with 50% ethanol pre-treatment (Zhang et 

al., 2016a; Zhang et al., 2016b) was also analyzed. Ca(OH)2 protein extraction was then 

further tested using microalgae to confirm some conclusions of the applied techniques. 

Based on the results, the sustainability and economics using KOH or Ca(OH)2 were 
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estimated and discussed. 

6.2 Materials and methods 

6.2.1 Materials 

GTR is obtained after hot water extraction of tea leaves product. Carbohydrates and 

N-containing components account for 31% and 27% of dried GTR. Other components 

are polyphenol (8%), water (7%), and ash (6%) (Zhang et al., 2015). The residual 

undetermined part majorly consists of lipid (wax, organic acids) and lignin (Harold N, 

1992). Pre-treated GTR was made based on previous work (Zhang et al., 2016b). GTR 

was treated using Viscozyme
®
 L and 50% ethanol and then freeze dried before further 

treatments with alkali.   

Microalgae (Nannochloropsis sp., CCAP 211/78) were obtained from AlgaePARC, FBR, 

Wageningen UR. They were grown on natural seawater in a turbidostat set-up, and 

collected by self-cleaning disc separators (SSD 6-06-007, GEA Westfalia Separator, 

Germany). The dry matter of the microalgae sample was 11% with a protein content of 

37% in dry weight. 

6.2.2 Protein extraction yield 

6.2.2.1 KOH protein extraction 

200 mg (pre-treated) GTR was mixed with 8 mL water and 0.4 mmol or 0.8 mmol KOH, 

using NaOH as control. The mixtures, were incubated in a thermomixer (VWR 

International B.V., USA) at 95 °C for 2 h with shaking speed of 1000 rpm min
-1

. 

Solid-liquid separation was performed by centrifugation (Sorvall centrifuge, Thermo 

Fisher Scientific, the USA) at 7000 g and 25 °C for 10 min. Supernatants were collected 

and stored at 4 °C for further analysis. 

6.2.2.2 Ca(OH)2 protein extraction 

0.5 g sample was mixed with 20 mL H2O and 1 or 2 mmol Ca(OH)2 in 50 mL tubes. The 

mixtures were incubated in a thermomixer at 95 °C for 2 h or 24 h with shaking speed of 

1000 rpm min
-1

. To reach temperatures higher than 100 °C, mixtures were incubated in 

http://www.thermofisher.com/
http://www.thermofisher.com/
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75 mL Parr pressure reactors (Parr multiple reactor system series 5000). The reactions 

were carried out at 150 °C for 2 h (Spekreijse et al., 2012). After pressure release, 

reactors were allowed to cool down to room temperature. Supernatants were collected by 

centrifugation, and then stored at 4 °C for further analysis.  

6.2.3 Influence of divalent ions on GTR extracts 

6.2.3.1 Polyphenol extracts 

Most polyphenol can be extracted from GTR using 50% ethanol (Castle et al., 2011; Li 

et al., 2005; Zhang et al., 2016b). GTR (200 mg) was soaked in 4 mL 50% ethanol or 

absolute ethanol in 10 mL tubes, followed by incubation in a thermomixer (60 °C, 1000 

rpm) for 2 h. After centrifugation, polyphenol extracts with 55% purity on dry weight 

were collected and stored at 4 °C for further experiments.  

6.2.3.2 Pectin extracts 

GTR material (2 g) was mixed with 120 mL sodium phosphate buffer (0.02 M, pH 8.2) 

and incubated in a thermomixer (1000 rpm) at 80 °C for 3 h. After centrifugation, the 

supernatant was collected and mixed with pure ethanol until the ethanol concentration 

was around 40% v/v. After keeping the mixture at 4 °C for 30 min, pectin was 

precipitated and collected by centrifugation. After adding 50 mL demi-water to 

solubilize the pectin precipitate, the pectin solution was freeze-dried to obtain a powder 

and then stored at room temperature. The pectin content based on dry weight was 75%. 

Dried pectin was re-dissolved in demi-water with a final concentration of 5 g L
-1

 right 

before further experiments. 

6.2.3.3 Protein extracts 

GTR protein obtained by extraction from GTR with 0.1 M NaOH was purified by acid 

precipitation (Zhang et al., 2014). Purified protein extract was freeze-dried and then at 

stored at room temperature. The protein content based on dry weight was about 55%. 

Dried protein was re-dissolved in demi-water to a concentration of 10 g L
-1

 right before 

further experiments. 
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6.2.3.4 Incubation of GTR extracts with different chemicals 

4.5 mL of the above three GTR extracts were mixed with 0.5 mL water and 0.25 mmol 

of MgCl2, CaCl2, Mg(OH)2, Ca(OH)2, or NaOH, and then stirred thoroughly for 3 h at 

70 °C. After incubation, the mixtures were stored at 4 °C for 1 h. Images of the mixtures 

were taken by camera. The supernatants were collected by centrifugation and were ready 

for further analysis.  

6.2.4 Analysis 

6.2.4.1 Protein 

The protein concentration (g L
-1

) was determined using Dumas analysis (Nitrogen 

analyzer, FlashEA 1112 series, Thermo Scientific, Interscience, Breda, and The 

Netherlands). A conversion factor of 5.4 was used to calculate the protein concentration 

of GTR (Zhang et al., 2016b), while a conversion factor of 4.9 was used to calculate the 

protein concentration of microalgae (Lourenço et al., 1998). The protein extraction yield 

was calculated as extracted protein / total protein (TP) * 100%. 

6.2.4.2 Polyphenol  

Polyphenol content in the tea extracts was determined spectrophotometrically (DU
®
700, 

Beckman, USA) (Li et al., 2005; Turkmen et al., 2006). The polyphenol concentration 

was calculated following the assumption that a concentration of polyphenol of 3.914 g 

L
-1 

leads to an adsorption of 1 at 540 nm (Li et al., 2005; Turkmen et al., 2006).  

6.2.4.3 Galacturonic acid 

Pectin content is represented by the amount of  galacturonic acid (GA) and was 

determined spectrophotometrically (DU
®
700, Beckman, USA) (Taylor, 1993) using 

galacturonic acid (Fluka AG, Buchs, Switzerland) as a reference in a concentration range 

of 12.5 to 50 mg L
−1

. 

6.2.4.4 Full wavelength scanning 

Supernatants of GTR extracts incubated with different chemicals were scanned 

spectrophotometrically (DU
®

700, Beckman, USA) at wavelengths ranging from 200 nm 

to 850 nm. Samples were diluted when the highest absorbance was higher than 2.5. 
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6.2.5 Statistics  

Each sample (except from the experiments using uniform design) had duplicates in both 

extraction and determination, and the standard deviation of the four measurements was 

calculated by Excel.  

6.3 Results and discussion 

6.3.1 Potassium hydroxide scenario  

6.3.1.1 Protein extraction yield  

Protein extraction yields obtained using 0.1 M NaOH or KOH on GTR were tested. 

KOH and NaOH showed similar protein extraction efficiencies. Almost all protein was 

extracted (>90%). Pre-treatment for polyphenols removal reduced NaOH consumption 

by 50% in the subsequent protein extraction (Zhang et al., 2016b). This pre-treatment is 

also applicable for KOH protein extraction. Based on previous studies (Zhang et al., 

2016a; Zhang et al., 2016b), the process that combines pectin and protein extraction 

using alkali, as presented in Fig. 6.1, has been proven to be economically feasible for 

NaOH and is expected to minimize the generation of potassium salts (Zhang et al., 

2016a).  

pH9-10, 80°C, 
0.5h, mixing1000kg GTR

2.4m3 H2O

60kgGA
20kg GTR protein

140kg other GTR components
56m3 water and 4800mol salts

770kg GTR 
4m3 H2O

400 mol salts

42m3 H2O (50°C)
3600mol salts

95°C, 4h,
mixing

340kg Lignocellulose
0.8m3 H2O and 180mol salts

60kgGA
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14m3 H2O and1200mol salts
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Combustion
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Fertilizer

180 mol salts

2.4m3 H2O
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In the proposed protein extraction system based on KOH (Fig. 6.1), extraction will start 

with protein extraction producing a protein supernatant and lignocellulose after press 

filtration. The lignocellulose fraction can be sundried and combusted for heating energy. 

Fig. 6.1 Integrated process of weak alkaline pectin extraction with KOH protein 

extraction using potassium salts as fertilizer. P: Press; UF: Ultra-filtration. 
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The supernatant can be further treated by ultra-filtration obtaining concentrated protein 

and a residual weak alkaline solution at pH 10-11. The weak alkaline solution can be 

diluted by fresh water until pH at 9-10 and subsequently used for pectin extraction. 

Pectin products can be collected using ultrafiltration, and the recycled water can be 

re-used for the dilution of the weak alkaline solution obtained from previous alkaline 

protein extraction. The concentrated pectin fraction can be further concentrated by 

ultrafiltration. This leads to about 1150 mol potassium salts in the residual water. 

Combined with the potassium salts from combustion, the total amount of potassium salts 

is 1250 mol.   

6.3.1.2 Demands of potassium fertilizer in tea farm 

As mentioned, all the potassium salts waste should be directly used on local fields as 

fertilizer. It implies that the amount of potassium salts generated from KOH protein 

extraction should be lower than the required amount of K fertilizer for tea fields. 

Approximately 480 mol (19 kg) K in aboveground parts was required to produce 1 ton 

dried tea leaf product without considering any losses by leaching and fixation in the soils. 

As the K fertilizer–use efficiency is 35-50%, the amount of required K fertilizer for tea 

field could be 960-1370 mol per ton dried tea product (Ruan et al., 2013). After hot 

water extraction of 1 ton of tea product for tea drinks, most potassium and approximately 

40% of dry matter, mainly containing catechins (Harbowy; and Balentine, 1997; Harold 

N, 1992), are extracted as tea while 0.6 ton GTR remained with little potassium. 

According to Fig. 6.1, approximately 750 mol potassium salts can be recovered from 

processing 0.6 ton GTR. The amount of potassium recovered from protein production is 

lower than the demand of potassium fertilizer in the tea farm for production of the same 

amount of tea leaves. As waste water is best used directly onto the field without 

long-distance transportation, small scale production would be suitable for this 

application (Bruins and Sanders, 2012). Based on the process presented in Fig. 6.1, 

production costs, revenues, and profits of using either KOH or NaOH were estimated 

and listed in Table 6.1. The specifics of the economic estimation can be seen in 

Appendix (Table A3 and A4). 
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As illustrated in Table 6.1, the profit from processing the GTR only slightly increased 

from 103 $ ton
-1

 GTR to 105 $ ton
-1

 when using KOH instead of NaOH. Using KOH, 

costs of chemicals increased from 21 to 84 $ ton
-1

 due to the higher price of KOH, while 

ultrafiltration costs increased due to the larger processing volume for the isolation of 

potassium salts from pectin extract. The economic benefit in the KOH scenario is due to 

the decreased cost of waste water management fees and the increased revenue on 

fertilizer. Compared to using NaOH, less than 10% of waste water is generated in KOH 

scenario, and thus the costs for waste water management reduce to only 1 $ ton
-1

 GTR in 

both pectin extraction and protein extraction steps. Using potassium salts as fertilizer, an 

extra revenue of 55 $ ton
-1

 GTR is expected (Clarke, 2015). Overall, a similar profit is 

expected for the KOH scenario compared to that using NaOH. In addition, the KOH 

scenario has lower environmental impact as it reduces the demand of commercial 

muriate of potassium (Clarke, 2015) and therefore improves the life cycle of potassium 

fertilizer by reducing CO2 emissions during conventional potassium production from 

parent rock materials (Hasler et al., 2015). 

Table 6.1 Cost, revenue, and profit of integrated weak alkaline pectin extraction with 

alkaline protein extraction using NaOH or KOH a. (Based on $ ton-1 feedstock) 

Input (cost) NaOH KOH 
Output 

(Revenue) 
NaOH KOH 

GTR 16 16 GA 48 48 

Weak alkaline 

pectin extraction 
55 48 Protein 163 163 

Chemical 21 84 Energyc 12 12 

Water 3 3 Fertilizer  55 

Heating 3 3    
Waste waterb 8 1    

Press Filtration 1 1    

Ultra-filtration 2 6    
Capital 7 7    

Labor 4 4    

Subtotal 120 173 Subtotal 223 278 

   Profit 103 105 

 a, Calculation based on data in Fig. 6.1. 

b, Waste water management fee was calculated based on American standard (Waterworld, 2014).. 
c,  Energy derived from the combustion.(Robak et al., 2012) 

6.3.2 Calcium hydroxide scenario of recycling calcium ions 

6.3.2.1 Protein extraction yield 

To test Ca(OH)2 protein extraction efficiency, protein yields were determined by 
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applying different amounts of Ca(OH)2 or Ca(OH)2 with NaOH in 20 mL water on 0.5 g 

GTR over time using NaOH as control. The results of these experiments are presented in 

Fig. 6.2. Compared to protein yields that were obtained by NaOH, protein yields 

obtained by Ca(OH)2 were generally lower. The highest protein yield was 47%, when 

applying 2mmol Ca(OH)2 on 0.5 g GTR at 95 °C for 24 h or at 150 °C for 2 h. This yield 

was only half of the protein yield when applying 0.1 M NaOH under the same conditions 

(Zhang et al., 2014).  

Low protein yield from Ca(OH)2 protein extraction may be due to chelating effect of 

calcium ions with GTR components 

(Eliaz et al., 2006; Harbowy; and 

Balentine, 1997) and/or insufficient 

alkali as a result of low Ca(OH)2 

solubility (Bates et al., 1956). 

However, the latter can be excluded 

from the causes to low protein yield. 

As can be seen from Fig. 6.2, 

protein yield obtained from 1mmol 

NaOH (45%) was higher than that 

obtained from a mixture of 0.5 

mmol Ca(OH)2 and 1mmol NaOH 

(30%). The addition of Ca(OH)2 did 

not aid the NaOH protein extraction, but even had a negative effect, which demonstrates 

that the low protein yield using Ca(OH)2 is not resulted from the insufficient amount of 

solubilized Ca(OH)2. 

6.3.2.2 Chelating effect of GTR polyphenol, pectin, and protein with divalent ions 

The chelating effect of GTR components with calcium ions could be the reason for a low 

protein yield obtained by Ca(OH)2 protein extraction. To determine which GTR 

component hinders Ca(OH)2 protein extraction, chelating effects of divalent ions with 

polyphenol, pectin, or protein extracts from GTR were tested. The images and 
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absorbance (from 340 nm to 700 nm) of these three extracts incubated with different ions 

are presented in Fig. 6.3a, Fig. 6.3b, and Fig. 6.3c. 

Polyphenols (Fig. 6.3a) only 

coagulated when treated by Ca(OH)2. 

Approximately 95% of total 

polyphenols were precipitated. The 

color of the polyphenol extract was 

brownish when treated with 

Mg(OH)2 or NaOH. This browning 

process may be due to the 

oxidization of polyphenols under 

alkaline conditions, and thereby 

contributing to the absorbance peak 

at 410 nm. The oxidization speed of 

polyphenols is positively related to 

pH, and therefore resulting in a 

stronger browning with NaOH than 

with Mg(OH)2 (Couzinet-Mossion et 

al., 2010; Vieira and Fatibello-Filho, 

1999). Owing to the chelating effect 

of calcium ions with components that 

potentially cause browning, such as 

pigments and polyphenols, Ca(OH)2 

extracted protein is either white or 

yellowish showing a better visual 

appearance than that of NaOH 

extracted protein.  

In the presence of divalent ions, GTR pectins were more prone to coagulation under 

neutral conditions (Fig. 6.3b). Approximately 60% pectin or 85% pectin was detected in 

Fig. 6.3a Absorbance variation (within wavelength of 
340-700 nm) of 4.5 mL polyphenol extracts treated by 0.5 

mL 0.1 M different chemicals at 70 °C for 3 h. ▬▬: 

H2O; ▬▬: NaOH; ▬▬: MgCl2; ▬▬: CaCl2; ▬▬: 

Mg(OH)2; ▬▬: Ca(OH)2. 

Fig. 6.3b Absorbance variation (within wavelength of 

200-700 nm) of 4.5 mL polyphenol extracts treated by 
0.5 mL 0.1 M different chemicals at 70 °C for 3 h. 

▬▬: H2O; ▬▬: MgCl2; ▬▬: CaCl2; ▬▬: 

Mg(OH)2; ▬▬: Ca(OH)2. 
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the precipitates when pectin 

extracts were treated by MgCl2 or 

CaCl2 respectively. Pectin 

precipitates were jelly, which was 

probably due to the rigid networks 

of homogalacturonan pectin 

solution that are created in the 

presence of divalent ions under 

neutral conditions (Fissore et al., 

2012; Willats et al., 2006). In 

comparison, no pectin was 

precipitated under alkaline 

conditions with Ca(OH)2 or 

Mg(OH)2. Absorbance of pectin extracts treated by Ca(OH)2 and Mg(OH)2 coincided 

with the control suggesting no chelation occurred.  

GTR Protein behaved similarly as GTR pectin and was also prone to coagulation under 

neutral conditions. Similar absorbance spectrum lines for different experimental 

conditions show the same pattern (Fig. 6.3c). The chelating effects of calcium ions with 

GTR components are greater than those of magnesium ions indicating a better stability 

of the formed calcium chelate.  

Generally, chelating effects of polyphenol, pectin, or protein with calcium ions did not 

hinder Ca(OH)2 protein extraction. GTR pectin and protein obtained under alkaline 

conditions can be fully solubilized in Ca(OH)2 solution (Fig. 6.3b and Fig. 6.3c). 

Polyphenol may influence Ca(OH)2 protein extraction because of complexation of 

polyphenol with protein (Jervis and Pierpoint, 1989), but this possibility can be excluded 

as the possible polyphenol-protein complex extracted by NaOH can be fully solubilized 

in Ca(OH)2 solution (Dashek and Harrison, 2006b).  

6.3.2.3 Influence of (hemi-) cellulose and lignin on Ca(OH)2 protein extraction  

Due to the difficulties in the extraction of GTR lignocellulose, its chelating effect with 

Fig. 6.3c Absorbance variation (within wavelength of 
340-700 nm) of 4.5 mL polyphenol extracts treated by 

0.5 mL 0.1 M different chemicals at 70 °C for 3 h. ▬▬: 

H2O; ▬▬: MgCl2; ▬▬: CaCl2; ▬▬: Mg(OH)2; ▬▬: 

Ca(OH)2. 
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calcium ions cannot be tested directly as was done for other components. Therefore, 

indirect methods were applied. A 

Viscozyme
®
 L and ethanol combined 

pre-treatment, which removes almost all 

cellulose, polyphenol, and pectin, as well 

as 50% hemi-cellulose(Zhang et al., 

2016a; Zhang et al., 2016b), was used to 

analyze the influence of cellulose on 

Ca(OH)2 protein extraction. Microalgae 

(Nannochloropsis sp.) with no lignin 

content, was introduced as a control 

feedstock to analyze the influence of 

lignin on Ca(OH)2 protein extraction. 

All results are presented in Fig. 6.4. 

Pre-treatment with Viscozyme
®
 L and ethanol increase the protein yield of subsequent 1 

mmol NaOH protein extraction from 45% (Fig. 6.2) to about 80% (Fig. 6.4). However, 

this pre-treatment did not aid the efficiency of Ca(OH)2 protein extraction. As presented 

in Fig. 6.4, only respectively 11% or 34% protein from pre-treated GTR was extracted 

with 1 mmol Ca(OH)2 or a mixture of 0.5 mmol Ca(OH)2 with 1 mmol NaOH. 

Compared to the protein yields obtained under the same conditions from original GTR 

(8% and 32%, see Fig. 6.2), no significant improvements were made by the 

pre-treatment. The similarity of protein yield obtained from original GTR and pre-treated 

GTR indicates that cellulose is not the reason of low protein yield in Ca(OH)2 protein 

extraction. It is also likely that hemi-cellulose did not cause the low protein yield, as 

removal of half the hemi-cellulose did not increase protein yield. 

When microalgae were used as feedstock, more than 70% protein could be extracted by 

Ca(OH)2 , which is lower compared to using NaOH (90%), but nevertheless better than 

many other methods for algal protein extraction. The still relatively high protein yield 

obtained by Ca(OH)2 may be due to the absence of lignin, which indicates that lignin 

might be a hindrance to Ca(OH)2 extraction for most other lignin-containing materials. 
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This was further confirmed for other non-lignin containing biomass. When using 

Ca(OH)2, high protein yields can be obtained from plant seeds with no lignin content, 

such as dehulled soy bean (Cogan et al., 1967; Smith and Circle, 1938) . 

The mechanism behind lignin hindrance on Ca(OH)2 aided protein extraction is not 

elucidated yet. The interference of lignin with protein extraction may result from the 

formation of lignin-protein complexes during alkaline protein extraction (Whitmore, 

1982). However, in our research this possibility was excluded as the potential 

lignin-protein complex could be solubilized in Ca(OH)2 solution (see 6.3.2.2). Another 

explanation for low protein yield can be densification of the secondary plant cell wall, 

where most of the lignin is located. In the presence of calcium ions, lignin can be 

coagulated and condensed (Zahrim et al., 2015), thereby increasing the rigidity of 

secondary plant cell wall, reducing its permeability (Dashek and Harrison, 2006b) for 

protein.  

6.3.2.4 Economic analysis for calcium scenario  

Based upon obtained experimental results a protein extraction process with Ca(OH)2 was 

proposed and is presented in Fig. 6.5. Weak alkaline pectin extraction by calcium 

hydroxide is not feasible as pectin can be precipitated by calcium ions at a pH close to 

neutral conditions (Zhang et al., 2016a). Instead, Viscozyme
®
 L aided pectin extraction 

was chosen for integration with Ca(OH)2 alkaline protein extraction. Viscozyme
®
 L with 

12 million U activity and 10 m
3
 water is added to one ton GTR, and incubated at 30 °C 

for 3 h. After filtration, 60 kg GA, 110 kg glucose, 50 kg other sugars, and 40 kg 

polyphenols can be obtained with 9 m
3
 water in the supernatant, while about 680 kg 

GTR press cake is ready for protein extraction. GA and sugar can be directly used for 

production of alcohols or organic acids by fermentation (Grohmann et al., 1994), but 

further purification is needed when polyphenol will be used as anti-oxidant in food. Thus, 

only the values of GA and glucose are included in the revenue. A system as described in 

the introduction was applied to recycle calcium hydroxide. Production cost, revenue, and 

profit of the Viscozyme
®
 L aided pectin extraction integrated process with alkaline 

protein extraction using Ca(OH)2 were estimated and listed in Table 6.2. Further 
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specifications can be found in the Appendix (Table A3 and A4). 

As most calcium ions and water can be recycled and reused, this process has relatively 

low costs and can be environmentally friendly (Fig.6.5). The price of Ca(OH)2 is only 70 

$ ton
-1

, and with a recycling recovery of about 85%, the estimated chemical cost for 

Ca(OH)2 protein extraction is only 2 $ ton
-1

 GTR (Table 6.2). After CO2 treatment, the 

supernatant of the protein extract can be further treated by ultrafiltration to obtain protein 

product and about 8 m
3
 water. Approximately 7 m

3
 water can be reused in the protein 

extraction step while 1 m
3
 water can be reused in ultrafiltration. Because of the recycle, 

costs of water and waste water management fees are both reduced to 1 $ ton
-1

. For the 

reuse of Ca(OH)2, 178 kJ of energy is required to convert 1 mol CaCO3 into CaO and 

CO2 (Lin et al., 2011). A biomass boiler is needed and therefore expenses for heating, 

capital, and labor increased. Generally, the total cost for processing one ton GTR using 

calcium hydroxide is 19 $ ton
-1

 less than the scenario using NaOH. 

 95°C, 

24h, 

mixing

7m3H2O
50 mol Ca(OH)2*

Permeate

CO2
*Sun-dried 

residual fraction

(Ligninocellulose)

 4°C, 

stirring

Combustion

CaCO3

Energy & 700mol CaO

30°C, 4h, 

mixing
1000kg GTR

60kgGA

10kg GTR protein

110kg Glucose

51kg other sugars

40kg polyphenol

30 kg other GTR components

9m3 water with viscozyme

Viscozyme® L 

(1.2 107U)
10m3 water

Solid

GA and Glucose

Protein
115kg 

Protein,
0.5m3H2O

7m3H2O

UFP PP

1.5m3 H2O*

1m3H2O

 

Fig. 6.5 Process of Ca(OH)2 protein extraction using a water and Ca recycle system with a Viscozyme® L 

pre-treatment. P: press; UF: ultrafiltration; *: 750 mol Ca(OH)2 and 2.5 m3 water are needed in the first round. 

As the pretreatment steps suggested for the Ca(OH)2 process and for the NaOH process 

are the same, the profit of the total Ca(OH)2 protein extraction process highly depends 

on the revenue of extracted protein. The revenue on a protein extraction process is 

mainly determined by the total yield of protein because protein prices for feed are almost 

linearly related to the protein content, regardless of its original sources (Teekens et al., 

2016). Processing 1 ton GTR with NaOH, 400 kg protein product with protein content of 

55% was produced, whereas 190 kg protein product with protein content of 60% was 
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produced using Ca(OH)2. The lower protein yield when applying Ca(OH)2 protein 

extraction results in a lower total profit (80 $ ton
-1

 GTR) compared to the process with 

NaOH as reagent (128 $ ton
-1

 GTR). Using microalgae instead of GTR, 500kg protein 

product with protein content of 60% was produced when NaOH was used, whereas 400 kg 

protein product with protein content of 65% was produced using Ca(OH)2. For microalgae, 

the protein revenue in the Ca(OH)2 scenario is only about 11 $ lower compared to NaOH 

protein extraction. However, due to the low production cost, the profit of processing 

microalgae using Ca(OH)2 can be slightly higher than that using NaOH. These results 

suggest that only when protein yields are higher than approximately 70%, Ca(OH)2 

based protein extraction can have a higher profit compared to the process using NaOH.   

Table 6.2 Cost, revenue, and profit of Ca(OH)2 protein extraction using a recycle system 

with a Viscozyme® L pre-treatmenta (based on $ ton-1 feedstock). 

Input (cost) NaOH Ca(OH)2  
Output 

(Revenue) 
NaOH Ca(OH)2  

GTR 16 16 GA 48 48 
Viscozyme Pectin 

extraction 
80 80 Protein 171 (233*)  94 (222*) 

Chemical 24 2 Glucose 55 55 
Water 8 1 Energy 8 8 

Heating 4 13    

Waste waterb 8 1    
Press Filtration 1 1    

Ultra-filtration 2 2    

Capital 7 13    
Labor 4 6    

Subtotal 154 135 Subtotal 282 215  

   Profit 128 80 

 a, Calculation based on data presented in Fig. 6.5. 

b, Waste water management fee was estimated based on American standard (Waterworld, 2014). 

*, Protein revenue was calculated as 570 kg protein products with 53% protein content in NaOH 
protein extraction or 390 kg protein products with 65% protein content in Ca(OH)2 protein 

extraction from microalgae. 

6.4 Conclusion 

Waste salts generated from alkaline protein extraction can be either reused or recycled if 

KOH or Ca(OH)2 is used. KOH has similar functions as NaOH, yielding more than 90% 

protein from GTR. When NaOH is replaced by KOH, the increased costs for chemicals 

and ultra-filtration can be covered by the added value of applying residual potassium 

ions as fertilizer and by the reduction of waste water management fees. The profit of the 

KOH aided protein extraction process is similar or can be 2 $ ton
-1

 GTR higher 

compared to using NaOH. The other scenario uses Ca(OH)2,  resulting in an extraction 
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efficiency of less than 50% protein from GTR. The low yield might be due to the 

hindrance of lignin. More than 70% protein can be extracted with Ca(OH)2 from 

microalgae which naturally have no lignin content. The economic advantage of the 

Ca(OH)2 scenario highly depends on the protein yield. Only when protein yield was 

higher than 70%, Ca(OH)2 aided protein extraction showed higher profit compared to 

using NaOH. Application of KOH protein extraction and Ca(OH)2 protein extraction on 

different types of biomass enables commercialization of yet untapped protein resources, 

which can be beneficial for the environment and economically attractive. 
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7.1 Introduction 

Biorefinery of leafy biomass could be the key to “Twice the food production at half the 

ecological footprint by 2050”. However, 

the challenges of leaf biorefinery 

mentioned in Chapter 1 were not 

completely solved by the research that is 

described in this thesis. More effort should 

be made in all aspects of leaf biorefinery 

development, within the domains of 

research, transition development, industry, 

and society. As shown in Fig. 7.1, each of 

these domains includes several subjects, 

and the development of these subjects is 

critical to the success of leaf biorefinery.  

The main challenge in leaf biorefinery is to improve its cost-effectiveness, which can 

either be done by improving the efficiency of production or by increasing the value of 

products (Chapter 1). The current focus of leaf biorefinery development is in the 

research domain, including the subjects of mechanism study, technology development, 

and product development (Fig. 7.1). These three subjects are mutually influenced, 

constituting a circle in the scientific research domain. This circle often begins with a 

breakthrough in technology, followed by progress in product quantity and quality. 

During development of new technologies, product quality or cost-price is often too low 

to immediately meet market demands. This is why an improvement of the product or 

further investigation into the mechanism of the new technology is necessary. When the 

mechanism is fully understood, the technology can be developed further or replaced by 

another new technology, starting a new circle. The main focus of previous chapters was 

on the development of technologies and on protein quality accompanied by a discussion 

on mechanisms. To start a new research circle, this chapter will begin with an overview 

of the mechanism of alkaline protein extraction (Section 2), and then propose possible 

Adaptability

Mechanism

Products

Technology

Scaling and 
implementationOptimization

Application

Equipment

Research

Industry

① 

Policy
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⑤
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⑦ 
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②  
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Fig. 7.1 Aspects of leaf biorefinery development. 
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improvements to upgrade technologies (Section 3). 

To practically apply new technologies to leaf biorefinery, a transition from research to 

industrial production is critical. This transition includes issues concerning improvements 

for product application, process optimization, and equipment selection. Development of 

process optimization and equipment selection is the key to lowering production cost, 

which was discussed in Chapters 5 and 6. Development of product applications is key to 

upgrading product value. Although upgrading product was rarely mentioned in previous 

chapters, it could be even more important than the other two subjects. For instance, 

upgrading the application of protein from inclusion in animal feed to inclusion in human 

food, increases the market value of the protein product from roughly 360 $ ton
-1

 

(WorldBank, 2012) to 2000 $ ton
-1

 (Barb, 2011); upgrading application of pectin from 

bulk chemicals to use as food fibre or even in food jelly increases the market value of 

leaf pectin from 800 $ ton
-1

 to 4000 -10000 $ ton
-1

 (Chang, 2008). The possibilities for 

upgrading products obtained from leaf biorefinery are presented as the main focus of this 

chapter in Section 4. 

Development of the industry and society domains is not the focus of this thesis, but they 

are essential to production of commercial products. Scaling and implementation of leaf 

biorefinery should be conducted with regard to the local situation, including the 

production chain and logistics, for which both large-scale production and small-scale 

production should be considered (Bruins and Sanders, 2012). “To double the amount of 

food production”, leaf biorefinery technologies should furthermore be applicable to 

many species other than GTR. For a factory, the applicability of technologies for 

different types of leaves reduce the risk of raw material dependence. In addition, 

although few investigations were made in this thesis, impacts from society, which 

includes issues on the environment and governmental policy, could be the most 

important factor to halve “the ecological footprint”. In this chapter, information on 

industrial scaling and implementation, adaptability of technologies and processes, and 

impact of society is discussed in Section 5.  
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7.2 Mechanism of alkaline protein extraction 

To clarify the mechanism of alkaline protein extraction from leafy biomass, the structure 

and composition of leaf tissues, and the location of organelles with high protein content 

should be better understood. Based on our previous studies, the mechanism of alkaline 

protein extraction was hypothesised by simplified models of leaf tissues, cell structure, 

primary cell wall, and secondary cell wall. This hypothesized mechanism may be further 

used for the evaluation of other extraction technologies and offers a basis to improve the 

efficiency of protein extraction. 

7.2.1 Structure of leaf tissues and their compositions  

As mentioned in Chapter 1, most proteins are located in organelles in mesophyll tissues 

protected by the epidermis. Mesophyll tissues and the epidermis are adhered by the 

lamella layer that includes a large quantity of pectin (Dashek and Harrison, 2006b) (see 

Fig. 7.2a (Zephyris, 2011)). The epidermis, consisting of 95% keratinocytes (McGrath, 

2004), protects cells from mechanical damage from the environment. It is the first shield 

against protein extraction. A close-up view of mesophyll tissues, as shown in Fig. 7.2b 

(Stern, 1997), illustrates how protein-containing organelles, such as chloroplasts and the 

plasma membrane, are restricted inside the cell by cell walls. For most leaves, a 

secondary cell wall between the primary cell wall and plasma membrane is present. It is 

produced after the primary cell wall is complete (Buchanan et al., 2000). To extract 

protein from the inside of cells, cell walls must be opened, and therefore, the 

composition and structure of cell walls should be investigated. 

Although cell wall composition and structure may differ according to the plant species, 

the functions of leaf cell walls are similar, and therefore, a general model of cell walls 

was proposed, as shown in Fig. 7.2c and Fig. 7.2d. The primary cell wall is freely 

permeable and permits the passage of small molecules depending on pH. A model 

structure of the primary plant cell wall was presented by Somerville (see Fig. 7.2c) 

(Somerville et al., 2004), in which the location of all types of pectin can be seen. 

Xyloglucan (XG), RGI pectin, and glucuronoarabinoxylan (GAX) form cross-linked nets 

and stretch to all spaces within the plant cell wall. The secondary plant cell wall mainly 

https://en.wikipedia.org/w/index.php?title=Freely_permeable_membrane&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Freely_permeable_membrane&action=edit&redlink=1
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consists of lignin and (hemi-) cellulose that increases the rigidity of the cell and stops 

cell expansion (Dahl, 30 April 2011) (Fig.7.2d). Compounds in the secondary cell wall 

are rigid and waterproof, making them stiff and the toughest shield of cell organelles. 

a.                                     b. 

 

 

 

 

c.                                     d. 

 

 

 

 

  

 

7.2.2 What are the limiting factors for leaf protein extraction  

In Chapter 2, leaf proteins were fractionated into easy and difficult to extract groups by 

alkaline extraction. In green tea residue (GTR), approximately 35% was easy extractable 

protein, in which only 50% of were “true proteins” (consisting of amino acids) (Zhang et 

al., 2014). These true proteins may consist of glycoprotein from the lamella layer 

(Dashek and Harrison, 2006a) and proteins released from inside cells caused by cell wall 

damage from mechanical disruption. The difficult to extract proteins were mainly 

located inside cells, such as membrane protein and RuBisCO (Feller et al., 2008). 

Fig.7.2a, Morphology model of leaf tissues (Zephyris, 2011); b, Morphology model of plant cell (Stern, 

1997); c, Scale model of the polysaccharides in the primary cell wall of an Arabidopsis leaf (Somerville et 
al., 2004). XG, xyloglucan; GAX, glucuronoarabinoxylan; RGI, rhamnogalacturonan I; GRII, 

rhamnogalacturonan II; HG, homogalacturonan; d, Plant cell showing primary and secondary wall (Dahl, 

30 April 2011).  

 

https://en.wikipedia.org/wiki/Structural_rigidity
https://en.wikipedia.org/wiki/Waterproof
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Protein solubility and the barriers of the epidermis and cell wall were the main 

hindrances to extracting proteins located inside cells.  

The low solubility of proteins might have resulted from their location, or/and 

composition and structure during metabolism, or the extraction process. For instance, 

membrane proteins have a very low solubility in aqueous buffers (Vertommen et al., 

2010). They are more hydrophobic than other proteins and deeply embedded in the 

membrane lipid core (Feller et al., 2008; Seigneurin-Berny et al., 1999; von Heijne, 

1992). Lignin can bind with cell-wall glycoprotein forming a lignin-protein complex 

(Whitmore, 1982), which is insoluble in water. This complex can both be generated 

during metabolism via peroxidase catalysis (Whitmore, 1982) and during alkaline 

protein extraction (tannin-protein) (Van Soest, 1994; Vertommen et al., 2010).  

To obtain high protein yields, barriers of the epidermis, primary cell wall, and secondary 

cell wall must be overcome (Zhang et al., 2015). The leaf epidermis contains cutin and is 

covered with a cuticle, which is occasionally also covered with wax. The cuticle reduces 

water loss to the atmosphere, whereas the surface wax acts as a moisture barrier and 

protects the plant from intense sunlight and wind (Raven et al., 1999). In general, the 

plant epidermis layer blocks access of chemicals and enzymes to mesophyll tissues, and 

therefore reduce the efficiency of protein extraction. Primary and secondary cell walls 

function as sieves with different pore sizes, which are covered by a semi-fluid 

component. In the primary cell wall, the semi-fluid components may mainly contain HG 

pectin, whereas in the secondary cell wall, the main semi-fluid component may be RG I 

pectin. Proteins with large molecular weight located inside cells could not be extracted 

without the degradation of these cell walls.  

7.2.3 Possible mechanism for alkaline protein extraction 

Previous research focused on the search for limiting components of alkaline protein 

extraction. These studies used various types of biomass, for which oil, cellulose, 

hemi-cellulose, and lignin were estimated as limiting components based on a fixed 

alkaline extraction protocol using statistical correlations (Sari et al., 2015b). In Chapter 3, 

the possible limiting components for alkaline protein extraction were determined to be 

https://en.wikipedia.org/wiki/Cutin
https://en.wikipedia.org/wiki/Plant_cuticle
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RG I pectin and/or lignin, for which temperatures higher than 60 °C are needed. In 

Chapter 5, RG I pectin was hydrolysed by Viscozyme with no protein release, 

eliminating RG I pectin as the sole limiting component. The other component — lignin 

was consequently expected to be the key limiting component for alkaline protein 

extraction.  

 

 

 

 

 

 

    

 

  

    

   

 

To describe the mechanism of alkaline protein extraction, simplified models of leaf 

tissues, cell structure, primary cell wall, and secondary cell wall are presented in Fig. 

7.3a according to previous studies by others (Dashek and Harrison, 2006b; Somerville et 

al., 2004). Based on these models, the mechanism of alkaline protein extraction is 

hypothesized to have three phases, as illustrated in Fig. 7.3b, c, and d. The first phase is 

solubilisation of HG pectin in the lamella layer (Fig. 7.3b). In this phase, alkali accesses 

the lamella layer and solubilizes HG pectin. The most critical factor for solubilizing all 

pectin is the amount of alkali. With a sufficient amount of epidermis peeled off, the 

mesophyll tissues will be disintegrated to cell clusters. This phase can obtain easy 

extractable protein, which constitutes approximately 32% of N-containing components 

Cell clusters

Epidermis

Leaf tissues

b.

Plant cell

Skeletal of 
primary cell wall

Membrane protein

Degraded Secondary 
cell wall

Protein inside cell

Cell walls

Lignin fraction

d.

Plant cell

Epidermis

Lamella layer

Mesophyll cells

Epidermis
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a. Primary cell wall

Membrane protein

Secondary cell wall

Protein inside cell

Cell walls

Cell membrane

Plant cell Cell walls

c.
Skeletal of 

primary cell wall

Membrane protein

Skeletal of 
Secondary cell wall

Protein inside cell

Fig. 7.3 Hypothesized mechanism of alkaline protein extraction from leafy biomass on tissue, cell, and cell 

wall level. a, simplified models of leaf tissues, cell structure, primary cell wall, and secondary cell wall; b, 

first phase: solubilisation of lamella layer; c, second phase: solubilisation of lamella components in cell 

wall and cell membrane; d, third phase: disruption of secondary cell wall. 
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(22% are true proteins (Zhang et al., 2014)). The second phase is the solubilisation of 

semi-liquid components that cover the primary and secondary cell wall, for which 

elevated temperatures (>60 °C) are needed. In this phase, the cellulose structure and 

lignin structure in the primary cell wall are intact, but the RGI pectin that functions as a 

scaffold in both two cell walls was degraded (Somerville et al., 2004). With the removal 

of the outer components, the pores of these two walls are exposed, and proteins with a 

particle size smaller than the pores can diffuse into the alkaline solution. Noticeably, 

protein-containing organelles inside the cell may also be disrupted in this phase, whereas 

before the removal of the cell wall covering components, no alkali could access the 

inside of cells. The third phase is the disruption of lignin structure (Fig. 7.3d). In this 

phase, some part of the lignin structure can be hydrolysed and then solubilized in 

alkaline solution. In addition to relatively high temperature, a solution with a pH higher 

than 12 is essential for lignin solubilisation (Carvalheiro et al., 2008; Sambusiti et al., 

2012). It is not necessary to solubilize all lignin for all proteins to be extracted; only a 

hole of a sufficient size is needed. During alkaline protein extraction, the second and 

third phases happen simultaneously, and RGI pectin was extracted in combination with 

lignin. Not all lignin was extracted when proteins were fully extracted, suggesting most 

proteins did not bind to lignin before extraction. The lignin-protein complex is only 

formed after the diffusion of protein and lignin fractions. Developing a method that can 

hydrolyse lignin structure may obtain high-yield protein in its native form.  

7.3 Technology development 

Technological developments in all production steps, including extraction, separation, and 

their related machinery, are critical to improve the cost-efficiency and sustainability of 

leaf biorefinery. In addition to the presented extraction technologies, other leaf protein 

extraction technologies can be considered for leaf biorefinery. In this section, some 

examples on improvement of the protein extraction process, separation technology, and 

their related machinery are presented. 

7.3.1 Evaluation of current leaf protein extraction technologies 

Current protein extraction technologies can be roughly divided into two categories: 
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physical and chemical. Mechanical milling, ultra-sonic, steam explosion, and similar 

techniques are mainly considered to be methods of physical protein extraction; whereas 

the use of alkali, acid, enzymes, and similar substances are considered to be methods of 

chemical protein extraction. Some methods, such as ammonia fibre explosion are 

considered combined treatments. Fig. 7.4, Fig. 7.5, and Fig. 7.6 illustrate how these 

methods to extract leaf protein can be analysed using simplified models. The results are 

summarized in Table. 7.1.  

Table 7.1 Mechanism and protein yield of current protein extraction technologies for leaf protein 

Protein extraction technology 
Select

ivity 

Influence on three barriers Current 

protein 

yield (%) 

Potential 

protein yield 

(%) 
Epidermis Primary cell wall 

Secondary 

cell wall 

Mechanical grinding/press 

(Baraniak and Baraniak, 

1987; González et al., 1988; 

Telek, 1983) 

No 
Disrupted and 

fractionated 

Some lamella and 

cellulose structure 

Almost not 

influence 
20-50 40-60 

Steam fiber explosion No 
Disrupted and 

fractionated 

Lamella and some 

cellulose structure 

Lamella and 

some lignin 

structure 

- 50 

Ammonia fibre explosion 

(Bals et al., 2007a) 
No 

Disrupted and 

fractionated 

Lamella and some 

cellulose structure 

Lamella and 

lignin 

structure 

70-95 >90 

Acid (Sari et al., 2014) No Peel off 
Lamella and 

cellulose structure 
Lamella 30-50 >90 

Carbohydrase (Rosset et al., 

2014; Shen et al., 2008) 
Yes Peel off 

Lamella and 

cellulose structure 
Lamella 10-30 30-50 

Proteinase (Sari et al., 

2015a) 
Yes No influence No influence No influence 50 50 

Mechanical protein extraction is a traditional method that breaks solid materials into 

smaller pieces by grinding, crushing, or cutting, and has been studied for protein 

extraction (Baraniak and Baraniak, 1987; González et al., 1988; Telek, 1983). In the 

example shown in Fig. 7.4, leaf tissues were sheared into small pieces by mechanical 

devices, which disintegrate the epidermis, lamella, and mesophyll tissues. However, the 

smallest pieces obtained by most milling machines are only about 0.05 mm (diameter) or 

20 times larger than the particle size of a plant cell, which means most plant cells still 

remain intact. About 30% of total protein can be obtained by milling, which is primarily 

derived from cells accidentally cut by the mechanical devices. To improve protein 

extraction efficiency of mechanical milling, the capacity of producing finer particles, 

smaller than a cell, is critical. However, as finer particles are produced the energy input 

will be increased exponentially, leading to higher production cost. 

https://en.wikipedia.org/wiki/Solid
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Steam explosion is a thermo-mechanic-chemical pre-treatment, which allows for the 

breakdown of lignocellulosic structural components by the combined action of heating, 

formation of organic acids during the process, and shearing forces resulting from the 

expansion of the moisture (Jacquet et al., 2015). Steam explosion can break down 

cellulose structure for ethanol production, but it has no influence on lignin structure (Li 

et al., 2009). One possible mechanism for protein extraction using steam explosion is 

illustrated in Fig. 7.5. The epidermis, pectin matrix, and cellulose structure can be 

degraded because of the steam pressure and the high temperature. The pore size of the 

“lignin sieve” may instantly increase when the explosion is conducted, which may aid in 

the release of protein. However, the lignin structure can recover, which will retain most 

proteins inside the cells. To improve protein-extraction yield, ammonia is recommended 

as a replacement for steam. As lignin structure can be degraded under alkaline conditions; 

an ammonia fibre explosion (Bals et al., 2007a) will have a better protein extraction 

yield than steam explosion.  

 

 

 

 

 

 

Fig. 7.4 How does milling work on leaf protein extraction on tissue, cell, and cell wall level.  
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Fig. 7.5 How steam explosion works for leaf protein extraction on tissue, cell, and cell wall level.  
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Leaf protein can also be extracted by acid, but its mechanism is different from that of 

alkaline protein extraction. One possible mechanism for acid protein extraction is 

presented in Fig. 7.6a. Under mild acidic conditions, pectin in the lamella layer can be 

hydrolysed and solubilised (Ele-Ekouna et al., 2010; Westereng et al., 2008), leading to a 

detachment of the epidermis and mesophyll tissues. Proteins located inside cells can also 

coagulate at mild acidic condition, thus increasing their particle sizes and causing 

deposition inside cells. Using highly acidic conditions, such as 6 M HCl at 110 °C, 

cellulose structure, as well as proteins will be hydrolysed (Garna et al., 2006; Meussen et 

al., 2014), and the hydrolysis efficiency will depend on acid concentration, temperature, 

and time (Sari et al., 2014). After hydrolysis, proteins will be degraded into small 

peptides or often even amino acids (Dewanji, 1993; Sari et al., 2014). The protein 

fractions with particle sizes smaller than the pore size of the lignin structure can be 

extracted. Under acidic conditions however, the lignin fabric coagulates rather than 

degrades (Horst et al., 2014), and therefore, condenses the secondary cell wall. This 

coagulation may reduce the pore size of the “lignin sieve”, hindering protein extraction.  

 

 

 

 

 

This hypothesis was experimentally verified by soaking GTR in 0.1 M HCl with 40 v/w 

at 40 °C or 95 °C over time. The yields of extracted protein are plotted against extraction 

time in Fig. 7.6b. The highest protein yield obtained using 0.1 M HCl was around 60%, 

which is lower than the protein yield obtained using the same amount of alkali. All 

proteins are expected to extract using HCl when more intense conditions were applied 

(Dewanji, 1993; Meussen et al., 2014). Similar to alkaline protein extraction, acid 

Fig. 7.6a How acid aids leaf protein extraction on tissue, cell, and cell wall level. 
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protein extraction can serve as a core process in an integrated biorefinery process. 

Because of the hydrolysis effect of acid, the focus of the acid extracted protein 

applications will be in animal feed and/or bulk chemicals rather than in human food. 

Enzymes, such as protease and carbohydrase, are also used for protein extraction. With 

the addition of protease and/or carbohydrase, high-yield protein was obtained from rice 

bran, lupin, and rapeseed, but enzymes did 

not perform well in leaf-protein extraction 

(Sari et al., 2015a; Shen et al., 2008). As 

protease cannot cross the barriers of 

secondary cell walls, proteinase is not 

effective for the extraction of proteins 

located inside leaf cells (Shen et al., 2008). 

Carbohydrases cannot degrade the lignin 

structure in secondary plant cell walls, and 

therefore, lead to low leaf-protein yields 

(Rosset et al., 2014; Zhang et al., 2016a; 

Zhang et al., 2016b). If enzymes targeting the degradation of lignin can be developed, 

full protein extraction is expected with the least influence on the structure of native 

proteins. 

Based on above analysis, ammonia fibre explosion, acid protein extraction, and lignin 

degrading enzymes may have potential to extract more than 90% protein from leafy 

biomass.  

7.3.2 Separation technologies: ultrafiltration 

In leaf biorefinery, the solid-liquid separation technologies, such as press filtration and 

centrifugation, are commonly used in product recovery (Huang et al., 2008). To increase 

protein or pectin purity, pectin or protein extracts were first precipitated by ethanol 

(Wang et al., 2014) or acid (Chiesa and Gnansounou, 2011), and then the pectin or 

protein precipitations were collected by centrifugation. After product recovery, the 

supernatants that contain added chemicals, such as ethanol, should be recycled. 

Fig. 7.6b Extracted protein (WProtein,%) with 0.1M 

solution and v/w of 40 mL g-1 at different 
temperatures. ▬▬: NaOH; ▬ ▬: HCl; :95 °C; 

:40 °C. 
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Otherwise the excess chemicals will lead to high production cost and also generates 

environmental problems. A liquid-liquid membrane separation system for ultrafiltration 

was therefore recommended. Using ultrafiltration, protein or pectin products can be 

purified and concentrated excluding the addition of flocculants (ethanol or acid), which 

may be the key technology for future biorefinery.  

Ultrafiltration membranes are usually made from polymers, such as polysulfone 

(Binabaji et al., 2015). Target components can either be retained or passed through the 

membrane with the solvent, whereas impurities are in the other fraction. The separation 

is based on the pore size of the membrane, by which components can be separated 

depending on their molecular weight (Calvo et al., 2015). New membranes, which can 

separate components by their characteristics, such as polar or anti-polar, have also been 

developed (Huang et al., 2008).  

In our study, the efficacy of ultrafiltration for desalting 

protein extracts was tested. The practical isolation 

efficiency of GTR protein extracts (0.1 M NaOH, 40 v/w, 

95 °C, 4 h) was determined using membranes with pore 

sizes of 1k MWCO in a Laboratory Cell CF-1 system 

(KOCH, USA, See Fig. 7.7). After separation for 4 h, 99% 

of the proteins with 50% salts were retained in the tank, 

meaning 50% of salts was removed and protein content 

was concentrated 2 times. After processing for 4 h, the 

permeate volume was only half of the initial sample volume, suggesting the capacity of 

separation is rather low. As most GTR protein molecular weights are higher than 10k Da, 

a membrane with pore size between slightly higher pore sizes; 1–10k MWCO should be 

further tested for high separation efficiency with a better processing capacity.  

7.3.3 Protein extraction: a continuous reactor  

In Chapter 5, it was suggested to integrate weak alkaline pectin extraction with protein 

extraction. However, as large amounts of water are critical for pectin extraction, many 

reactors with large volumes are needed. The capital and labour costs are therefore high 

Fig.7.7 Ultrafiltration system, 
LABCELL CF-1. 
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for both purchasing and operating these reactors. Continuous counter-current extractors 

were suggested as a replacement for conventional reactors (Davison et al., 2001). Using 

a continuous extractor, the waste product lignocellulose that is produced after protein 

extraction, can be removed, combining extraction and separation. Washing and reloading 

time between batches can be saved in the continuous extraction system. It was reported 

that the recoveries of soluble components can be higher than 90% with less water usage 

when a continuous counter-current extractor was applied (Davison et al., 2001). The 

capacity of a continuous counter-current extractor can be 500-1000 kg raw material per 

hour using e.g. a CONTEX™ Extractor (Group, 2015), which is 2 times higher than the 

processing capacity of the reactor stated in Chapters 5.  

 

 

 

 

 

 

 

Continuous separation technologies are not new in industrial-scale production, but 

application of separation technologies, such as chromatography systems, in the design of 

continuous reactors for extraction are not yet fully developed. To maximize the 

efficiency of an extractive process for protein separation, counter current motion of solid 

and liquid with minimal axial mixing is required (Gordon et al., 1990). Machineries of 

fixed bed chromatography, rotating column chromatography, and simulated moving bed 

chromatography systems are already designed (Gordon et al., 1990). These machineries 

can be also applied to design a continuous counter-current extractor, in which the 

chromatographic material used for separation can be replaced by raw material for 

extraction. To verify this possibility, a lab scale counter-current chromatography system, 

containing a pump, column, and fraction collector was established as presented in 

Fig.7.8 Chromatography counter-current extraction system for leaf protein. Left: Status of column 

when the extraction was running. Right: All units of extraction system. 
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Fig.7.8. The pump was used to control the flow rate of elution, and the fraction collector 

was used to collect fractions in time. Using the principle of counter-current extraction 

(Davison et al., 2001; Lestari et al., 2010), the solution used for extraction was pumped 

into the column from the bottom to the top When the elution went through the sample, 

two interfaces (between sample and extract, and between extract and water) could be 

seen in the column as presented in Fig. 7.8. This system was tested using NaOH 

solutions with concentrations of 0.1 M at 60 °C. Using a flow rate of 0.067 mL min
-1

, 

more than 90% of the protein could be extracted with 4 g L
-1

 as the highest protein 

concentration. The protein content could be improved to 15 g L
-1

 using a lower flow rate 

or higher temperature.  

This system could be further upgraded. Using a jacketed column, temperature of this 

system can be controlled using a water bath. Two pumps and a solution mixer can be 

used to create a solvent gradient, enabling leaf protein to be extracted at its highest 

protein content (Lestari et al., 2010). When several columns using different solutions or 

extraction conditions are connected, a continuous integrated process for multiple 

products, as presented in Chapters 4 and 5, can be made. In addition, this designed 

system can also be applied for analysis when it is connected to a UV detector, pH meter, 

HPLC, infrared Detector, or mass spectrometry. 

7.4 Products 

Other than the improvement of production efficiency, upgrading product value is an 

alternative way to improve the cost-effective of leaf biorefinery. Product value is 

determined by its applications, which are related to composition, nutritional value, and 

functionalities. In Chapters 2, 3, and 4, leaf protein was considered for animal feed and 

leaf pectin for its chemical uses. To improve product value, application of leaf extracts in 

food or medicine should be considered.  

7.4.1 Protein 

Two possibilities can be considered to upgrade the value of leaf protein: 1, increase the 

nutritional value; 2, use leaf protein for its functionalities. 
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When applying leaf protein in feed, the protein pricing is mainly determined by its 

nutritional value. The nutritional value of proteins for monogastric animals and humans 

is often limited to the amount of essential amino acids, being arginine, histidine, leucine, 

isoleucine, lysine, methionine, phenylalanine, threonine, tryptophan, and valine (Dale et 

al., 2009b). Among these essential amino acids, lysine, threonine, and tryptophan, are 

limiting amino acids for growing pig, whereas methionine, lysine, and threonine are 

limiting amino acids for broiler (Teekens et al., 2015; Toride, 2004). This demonstrates 

that not all amino acids contribute to the value of animal feed, and therefore isolation of 

non-essential amino acids does not improve protein nutritional value (Sanders et al., 

2007). These non-essential amino acids can possibly be better applied in other 

applications like for chemicals, such as glutamic acid for synthesis of succinonitrile 

(Lammens et al., 2011), which can possibly increase the total GTR protein revenue from 

170 $ ton
-1

 GTR to 510 $ ton
-1

 GTR (Sanders et al., 2007; Zhang et al., 2016a).  

Protein products can have higher market values when used for their functionalities, as 

e.g. gelatine has a market price of 6600 $ ton
-1

 (Chang, 2008). Alkaline extracted protein 

is expected to have lower value because it is denatured, modified, and/or degraded (Bals 

and Dale, 2011) during extraction. However, during processing and storage of GTR 

protein extracts, the foaming and gelling properties of extracts were described, which 

indicated the protein product obtained by alkaline extraction could still be used in food. 

Also, only very limited protein hydrolysis occurred during alkaline protein extraction of 

GTR (Chapter 3). Processing at 95 °C reduced the free -NH2 content of protein, which 

may have been caused by the reaction of -NH2 with other components, such as 

polyphenol (Ozdal et al., 2013). To clarify alkaline protein extraction, SDS-PAGE was 

used to analyse GTR protein extracts obtained by sequential alkaline treatments as 

shown in Fig. 7.9a, with results presented in Fig. 7.9b.  

The smear in all lanes of the SDS-PAGE suggested that proteins had been modified. At 

pH 9.2, some clear bands could be seen with molecular weights that ranged between 

38–98k Da. This fraction was previously described as easy to extract protein. When 

more severe conditions were applied (Lanes 3 and 4), more protein could be extracted 

(mainly difficultly extracted protein) with no clear bands presented, but the proteins were 
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primarily in two molecular weight ranges: 62–98k Da and 6–17k Da. Using NaOH with 

pH 13 at 95 °C, almost all protein could be extracted. Although the whole lane was 

covered by blue, proteins were still mainly concentrated in the areas of the two 

molecular weight ranges mentioned above. This phenomenon demonstrates that 

molecular weight distribution of proteins extracted at pH 13 and 95 °C is similar to those 

at pH 11.5 at 60 °C, which may be considered mild conditions. In addition, no band 

could be seen at the bottom of the gel in Lane 2 compared to those in other lanes, 

suggesting it is not necessary to hydrolyse leaf proteins when server conditions were 

applied. Compared to previous SDS-PAGE results (Shen et al., 2008) of GTR protein 

extracts, our alkaline protein extracts were definitely modified. These modifications may 

be from the reaction between pectin or polyphonic compounds with protein (Ahmed et 

al., 1995; Ishii et al., 2008). Nevertheless, the question remains if the modified protein 

always has worse functionalities than the native protein? 

a.  

b. 

 

 

 

Protein samples can have better functionalities when mixed with other components or 

are modified. Protein-pectin complexes were found to have better emulsifying and 

gelling properties than the single components (Bueno et al., 2009; Neirynck et al., 2007; 

Zhang and Vardhanabhuti, 2014). Although protein-phenolic complexes have lower 

solubility and digestibility, they might have better thermal stability and antioxidant 

capacities (Ozdal et al., 2013). In addition, proteins may have better functionalities when 

they were modified by chemical, enzymatic, or physical techniques (Kester and 

Fig. 7.9a: Protein extracts obtained sequentially by different 

alkaline conditions from GTR; b: SDS-PAGE results of protein 

extracts obtained from Fig. 7.9a. 1, SupernatantpH13(95); 2, 

SupernatantpH13(60); 3, Supernatant pH11.5; 4, SupernatantpH9.2 

with 2 dilution.  

 pH 9.2, 

25 °C, 1h
 pH 11.5, 
60 °C, 1h

Residue
pH 13, 

60 °C, 1h
Residue

SupernatantpH9.2 SupernatantpH11.5 SupernatantpH13(95)
GTR

Final 

residue
Residue

SupernatantpH13(60)

pH 13, 
95 °C, 1h
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Richardson, 1984). Generally, it is possible to apply modified protein in food for their 

functionalities, which could be an important topic for leaf biorefinery research. 

7.4.2 Pectin  

In Chapter 5, the possibility of using pectin for its galacturonic acid as a secondary 

product from GTR was discussed. It was suggested that the application of pectin in food 

was the key for enhanced economics of the weak alkaline pectin extraction integrated 

process. Leaf pectin can be applied in food for its gelling properties (Chen et al., 2014; 

Singthong et al., 2005). It was however expected that the degree of esterification of leaf 

pectin would be reduced in alkaline conditions (Jiang et al., 2005), which influences 

pectin functionality (Assoi et al., 2014).  

However, it was also found in Chapter 5 that pectin can be extracted in water, as long as 

the pH of the extract is higher than 5, where pectin can be degraded as a the result of a 

β-elimination cleavage of the glycosidic linkage (Stephen and Phillips, 2006). This 

reaction only occurs at glycosidic bonds adjacent to an esterified carboxyl group 

(Stephen and Phillips, 2006; Thakur et al., 1997), and thus the backbone of pectin was 

retained. The weak alkali was adding to neutralize the extract, which pH was reduced 

because of the extraction of acidic components, such as organic acid and pectin. With 

proper control, it is possible to obtain food-grade pectin from GTR. If the pectin 

extracted by weak alkali can be applied in food, revenue from the weak alkaline pectin 

extraction integrated process will increase with 550 $ ton
-1

 GTR, leading to a profit of 

more than 600 $ ton
-1

 GTR.  

The gelling properties of leaf pectin were not 

determined, but from the appearance of pectin gel 

obtained from GTR, its potential could be 

estimated. When pure ethanol was added to GTR 

alkaline protein extract (Fig. 7.10 right) until a 

final ethanol concentration of 40%, GTR pectin 

gelled and precipitated. GTR pectin gel could be 

re-dissolved by adding water, and the gel was 

Fig. 7.10 Pectin gel (left) obtained from 
alkaline protein extract (right) by adding 

ethanol to 40% (v/v). 

Pectin Protein



Chapter 7: General discussion 

 

Page | 137 

 

7 

colourless after several cycles of precipitation and dissolving (Fig. 7.10 left).   

7.4.3 Other products 

Protein, pectin, (hemi-) cellulose, and lignin are the four major components in leaves 

(Chapter 1). In this thesis, protein and pectin are proposed as the main products while 

(hemi-) cellulose and lignin were suggested to be combusted for energy. However, 

(hemi-) cellulose and lignin may have better applications, such as making paper or board 

(Anwar et al., 2014; Pothiraj et al., 2006). Adding alkali treated grass residue at 15% in 

the feedstock while making board, improved both the strength and cracking resistance of 

the product. These improvements may have resulted from the smaller particle size of the 

fibers in alkali treated grass, due to the hydrolysis of lignocellulose at alkaline conditions. 

In addition, alkali treated leaf residues can be used as substrate for producing second 

generation ethanol. Due to the degradation of cellulose and hemi-cellulose, the 

efficiencies of enzymatic hydrolysis of xylan to xylose and glucan to glucose can be 

improved from 20% to 80% and from 37% to 92%, leading to an improvement of total 

conversion from 30% to 55% (Maas, 2008).   

Some plants contain special components, such as polyphenols, which may have even 

higher value than protein and pectin. The values and contents of leaf polyphenols highly 

depend on the leaf specie and the growth period of leaf. For example, only the young 

shoots of tea trees can be used to produce green tea, mainly containing catechins and 

flavonols (Harbowy; and Balentine, 1997), while the old tea leaves are usually 

abandoned. Other leaf species, such as olive leaf (Lalas et al., 2011) and Hibiscus 

sabdariffa leaf (Zhen et al., 2016), also contain large quantities of polyphenols with high 

anti-oxidizing activity. These polyphenol may also be applied in food or medicine. 

7.5 Outlook 

7.5.1  Economic feasible and scaling of leaf biorefinery 

Chapters 2-5 discussed the economic feasibility of leaf biorefinery based on lab-scale 

research. To transfer lab research to practical production, the production process should 

be optimized according to the local situation, suitable equipment should be found and the 
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product should meet the market requirements. For years, large-scale production was 

considered as cost-effective owing to relatively low capital, labour, and production cost 

for per unit product (Alchian and Demsetz, 1972). However, it was recently found that 

small-scale production may have specific advantages in the biorefinery of many biomass 

types. Small-scale production can be beneficial not only socially and ecologically, but 

also economically, due to its high efficiency in the local re-use of materials, including 

water, minerals, organic matter, CO2, and heat (Bruins and Sanders, 2012).  

Biorefinery of leafy biomass may be more suitable to implement as a small-scale 

production because the benefits of large-scale production may not compensate cost for 

transportation. Assuming that fresh leafy biomass (FLB) contains 80% water, 6% 

carbohydrates, and 3% protein, and travels an average distance of 100 km from the field 

to the factory, the transportation cost can be estimated as 12.7 $ ton
-1

 FLB by truck or 2.8 

$ ton
-1

 FLB by rail in 2015 according to U.S. National Transportation Statistics (Nguyen 

et al., 2015). The waste water produced by the factory will be about 12 times the dried 

biomass (0.2 ton).  To send back the salts as fertilizers to the field, the transportation 

costs can be 29.5 $ ton
-1

, 6.6 $ ton
-1

 FLB by rail, or 3.3 $ ton
-1

 FLB by pipeline when 

water is not removed. These costs are higher than the value salts used as fertilizer (about 

6 $ ton
-1

 FLB according to Chapter 6). This is why, on a large scale, water is removed 

prior to transportation of the salt by-product. Using small-scale production in a mobile 

system (Bruins and Sanders, 2012), production could be done next to the field where the 

biomass grows. According to the fertilizer requirement of the fields, the potassium 

scenario (Chapter 6) or ammonia fibre explosion (Bals et al., 2007a) could be selected. 

Waste water containing potassium or ammonium salts could be send back to the field as 

fertilizer immediately, whereas only the dry or concentrated products will be transported. 

The total transportation fee is then only on products, which is approximately 10% of 

1ton FLB that the costs would be reduced to 1.3 $ ton
-1

 FLB by truck and 0.3 $ ton
-1

 by 

train.  

With proper design, the cost reduction in transportation could be higher than the 

production increment at small scale compare to that at large scale. Small scale 

production may have higher efficiency in the usage of water, minerals, organic matter, 
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CO2, and heat. The more efficient use of these materials can lead to a lower “life cycle 

cost” (Hasler et al., 2015; Huppes et al., 2004), which is normally unseen when 

environmental cost is not included in the cost estimation (Huppes et al., 2004). 

7.5.2 Twice the food production  

In this thesis, we developed biorefinery technologies using GTR as starting material. 

However, the annual world tea production is only about 4 million tons of which only 

25% can be recycled. Even through turning all tea residues to food production, it is not 

possible to meet the target “twice the food production”. The developed technologies are 

however expected to be applicable to other raw materials, specifically other leaf species. 

The suggested protocols in this thesis are universally applicable in raw materials other 

than GTR. An example was shown in Chapter 2, where alkaline protein extraction could 

be universally applied on oolong tea leaf residue, barley straw, jatropha leaf and grass. 

Furthermore, its application to sugarcane leaf, mango leaf, duckweed, and microalgae 

was verified. The applicability of extracted protein may be better than for the leaf protein 

inside leaves.  

Table 7.2  Degradation of plant toxins in 0.1M NaOH as function of temperature and time 

 25 °C 60 °C 95 °C 

 15min 2h 6h 15min 2h 6h 15min 2h 6h 

Atropine ★★ ★★★★ ★★★★ ★★★★ ★★★★ ★★★★ ★★★★ ★★★★ ★★★★ 

Scopolamine ★★★ ★★★★ ★★★★ ★★★★ ★★★★ ★★★★ ★★★★ ★★★★ ★★★★ 

Aconitine ★★★★ ★★★★ ★★★★ ★★★★ ★★★★ ★★★★ ★★★★ ★★★★ ★★★★ 

Ergotamine ☆ ☆ ★ ★ ★★★★ ★★★★ ★★★★ ★★★★ ★★★★ 

Anagyrine ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ 

Coniine ☆ ☆ ☆ ☆ ☆ ☆ ★ ★★ ★★ 

Sparteine ☆ ☆ ☆ ☆ ★ ★ ★ ★ ★ 

Colchiceine ☆ ☆ ☆ ☆ ★ ★ ☆ ★ ★ 

Digoxin ☆ ☆ ☆ ☆ ★★ ★★★★ ★★★★ ★★★★ ★★★★ 

Digitoxin ☆ ☆ ☆ ☆ ★★ ★★★ ★★★ ★★★★ ★★★★ 

Convallotoxin ★ ★ ★ ★ ★★ ★★★ ★★★★ ★★★★ ★★★★ 

Alpha-solanine ★ ★ ★ ★ ★★ ★★★ ★ ★★ ★★★ 

☆: Stable; ★:some degradation (5-25%); ★★:moderate degradation (30-50%); ★★★:strong degradation 

(55-80%);★★★★:complete degradation. 

Some leafy biomasses are not suitable to be used for animal feed or human food due to 
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contamination with weed plants containing toxins (De Nicola et al., 2011; Jakabová et al., 

2012). This is especially true for leaves harvested close to the ground, like e.g. grass and 

sugar beet leaves. Fortunately, some toxins can be degraded when the optimal alkaline 

conditions for leaf protein extraction are applied. The effect of alkaline conditions, 

applied during leaf protein extraction, on the degradation of several toxins in solution 

was tested, and the results are listed in Table 7.2. 

Under alkaline conditions (Czauderna and Kowalczyk, 2007; Theodorou et al., 2007), 

ester-type alkaloids toxins, such as atropine, scopolamine, aconitine, ergotamine, can be 

completely degraded by saponification of the ester groups. Using 0.1M alkaline at 95 °C, 

these toxins were destroyed within 15mins. The effect of alkali on the degradation of 

cardiac glycosides, including digoxin, digitoxin, convallotoxin, and alpha-solanine was 

temperature and time dependent. This was related to the presence of the glycosidic 

linkage at the terminal reducing unit, which requested more severe alkaline conditions 

for its degradation (Ballou and Melville, 1954). Alkaline conditions had minor effect on 

the degradation of non-ester type alkaloids, including anagyrine, coniine, sparteine, and 

colchiceine, even at 95 °C. To use biomass that contains these components in animal 

feed, pre-treatments, such as ethanol extraction (Couch, 1939; Cromwell, 1956), that 

may be used for the removal of these components should be developed. Removal of 

plant toxins requires further investigation to verify the applicability of proteinous leaf 

extracts for animal feed and food, which is critical for upgrading the value of leaf 

products. When all available leafy biomass is used, it can be foreseen that the food 

production can be doubled with no extra farming. 

7.5.3 Half at the ecological footprint  

In addition to economic drivers, environmental issues could be a reason for the 

development of leaf biorefinery, which is critical to halve the ecological footprint. When 

potassium hydroxide or calcium hydroxide is used in protein extraction, almost no waste 

is generated (Chapter 6). Using small scale production, leaf biorefinery can have the 

least influence on environment due to its high efficiency of materials usage. In addition, 

leaf biorefinery can be conducted on local crops. With proper integration, the total waste 



Chapter 7: General discussion 

 

Page | 141 

 

7 

can be minimized, which also minimizes the “ecological footprint”.  

Development of leaf biorefinery technology can reduce the influence of human farming 

on the environment. For undeveloped countries that required a food production boost, 

food production can be doubled with no extra farming. Obtaining products from unused 

biomass and using them in food or animal feed can reduce the demand for crop 

production, and therefore, reduce the requirements of farmland, alleviating the stress of 

land degradation. For developed countries that have enough food supply, agricultural 

fields can be halved and therefore halve the “ecological footprint”. 

As a new technology, leaf biorefinery not yet be attractive economically, but it reduces 

environmental cost. However, the benefit of environmental cost is often unseen until it is 

paid for by nature. Development of leaf biorefinery requests support from government in 

early stage. Research can be accelerated when the government is willing to issue 

research projects to develop biorefinery technology. The US and EU have invested much 

money in biorefinery research, with a lot of success. The Brazilian government-based 

policies on biofuel research and provision of subsidies for biofuel production led to a 

boost of biofuel production in Brazil. Brazil is now one of the largest biofuel producing 

countries in the world. With the depletion of fossil fuel resources and the increasing 

demand for food, biorefinery technologies have been gaining increasing attention all 

over the world, indicating a brilliant future.    

7.6 Concluding remark 

The aim of this study was to develop new processes and applications to optimally utilize 

all components, particularly protein, of leafy biomass in the feed and/or food industry. In 

this thesis, we developed a cost-effective alkaline protein extraction process and its 

related integration process for GTR. To improve sustainability, process potassium 

hydroxide and calcium hydroxide scenarios were suggested to replace sodium hydroxide, 

by which all waste salts can be either applied as fertilizer or recycled. Lignin and its 

structure in the secondary cell wall are the primary limiting factors in leaf protein 

extraction, and development of more mild methods for lignin degradation may further 

improve extraction efficiency with higher product quality. The future focus on leaf 
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biorefinery should be on food application of plant products, including protein and pectin, 

which may further improve its economics. Leaf biorefinery produces food with no extra 

farming and less environmental cost, which can be the answer to “Twice the food 

production at half the ecological footprint by 2050”. 
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APPENDIX 

Table A1. Statistics of regression coefficients for protein yield approximation model. 

 
Coefficients 

Normalised 

Coefficients 

Standard 

Error 
t Stat P-value 

Intercept -31.2 59.7 11.7 -2.669 0.015 

V/W 2.35 36.5 0.764 3.069 0.006 

[Buffer] 168 3.5 73.1 2.291 0.034 

T∙V/W 0.015 -24.3 0.004 4.169 0.001 

(V/W)2 -0.026 21.3 0.010 -2.644 0.016 

 

Table A2. Statistics of regression coefficients for GA/protein approximation model. 

 
Coefficients 

Normalised 

Coefficients 

Standard 

Error 
t Stat P-value 

Intercept -0.42 1.46 0.17 -2.5 0.021 

C 5.9 0.19 1.8 3.3 0.0032 

V/W 0.029 0.13 0.006 4.8 0.00011 

T∙V/W 0.00025 0.31 8.4E-05 2.9 0.0082 

 

Table A3. Specifics and prices of chemicals and energy.  

Chemicals 

/enzyme 

Price 

($ ton-1) 
specific Ref. 

GTR 16 250g protein kg-1 GTR (Yu, 2010) 

Coal 54.9 30 MJ kg-1 (Ulrich and Vasudevan, 2006) (Stevens, 2015) 

Glucose 500  (Mudi, 2015b) 

Pectin 11000 Use average price of 5$ Ib-1 (ICIS, 2008) 

Galacturonic 

acid 
800 

Use for fermentation, similar as the price of 

Gluconic acid 
(ICIS, 2008) 

Protein 350 45% purity (Mudi, 2015a) 

Water 0.95 
  1080 $ for the first 300,000 gallons, and then 

3.57 $ for each additional 1,000 gallons 
(Food & Water Watch, 

2010) 

Waste water 

management fee 
0.53 $2.06 (ranging from $1.23 to $3.42 per 1000gallon) (water, 2011) 

KOH 1000 Flake, 88-92% 400-lb. dms., c.l., works (ICIS, 2008) 

Ca(OH)2 70 
Chemical pebble (quicklime), hydrated bulk, c.l., 

f.o.b. works 
(ICIS, 2008) 

NaOH 400 Caustic soda (ICIS, 2008) 

Viscozyme 
15000 / 

5000 

1000 UFBG g-1 product (Equivalent to industrial 

cellulase) 
(Alibaba, 2015; Liu et 

al., 2015) 

To process 5,000 ton GTR within 300 days per year, processing capacity should be 

higher than 17 ton GTR per day. The processing capacity of the reactor for protein 
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extraction is about 2 ton GTR per batch, leading to a necessity of 3 reactors with 3 

batches per day. The number of reactors required for pectin extraction would be the same 

as that for protein extraction. In Viscozyme treatment, the V/W is 10 with a processing 

time of 3 h, which is similar as that of protein extraction with 8 V/W and 4 h. In weak 

alkaline pectin extraction, although the volume of reactor is much larger when V/W of 

60 is used, its processing time is only 0.5 h. It means that within the processing time of 

protein extraction, 6 batches of pectin extraction can be done. Therefore, in both two 

integrated processes, processing capacity of pectin extraction and protein extraction are 

similar. 

Table A4 Specifics of utilities and labor cost 

Utilities  Price ($) specific Ref. 

Reactors 
113300  

piece-1 

Volume of 30 m3 (80000 gallon), jacketed and 

agitated.  
(Matches, 2014) 

Solution 

heater 
9200 piece-1 

Capacity of 1M BTU hr-1 (1055 MJ hr-1). Each 
reactor will install with one solution heater 

(Matches, 2014) 

Biomass 

boiler 

5749100 

piece-1 
100000 Ib hr-1, stoker coal fired, 150 psi Sat. (Matches, 2014) 

Ultra- 

filtration 

0.25 ton-1 

liquid 

Including capital and production cost. Cost based 

on the volume of solution 

(Drouiche et al., 

2001) 

Press  4 ton-1 Solid 
Capital and production costs are calculated based 
on the weight of dried matter with the use of only 

press utility as shown in the reference.  

(Tripathi et al., 

1998) 

Labor 
9000 year-1 

person-1 
8 hour day-1, 270 day year-1. Each person 
supervised one production line per day. 

According to 
Chinese labor cost 
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SUMMARY  

With the rapidly growing world population and improving living standards, food demand 

is increased with a simultaneous desire for less human impact on the environment, such 

that “Twice the food production at half the ecological footprint” could be the EU goal for 

2050. In fact, a boost in food demand is mainly required in developing countries, where 

the farmlands are limited and/or they are of poor quality. Rather than improving 

crop-production yield, developing biorefinery technology with unused biomass, such as 

leaves, in developing countries may be the key to fulfil the food demand.  

Four major components, protein, pectin, lignin, and (hemi-) cellulose, account for more 

than 70% of the materials in leaves in almost all species. Among these components, 

protein and pectin can be used in food and animal feed, and they are key components for 

supplementing food production. However, the production and application of leaf 

products is limited for four reasons: unstable raw materials, complex components, rigid 

plant cell walls, and underdeveloped leaf logistics and economics. The limitations cause 

low pectin and protein yields, and low cost-efficiency in current extraction technologies, 

including mechanical milling, chemical extraction (acid and alkaline), solvent extraction, 

and ammonia protein extraction. Development of an integrated process for multiple 

products might be a good option for leaf biorefinery, but the compatibilities of these 

processes were unknown.  

The aim of this study was to develop new processes and applications that optimally 

utilize all components, particularly protein, of leafy biomass in the feed and or food 

industry using green tea residues as a starting material. The method should also be 

applicable to other leafy biomass. The research started from the development of alkaline 

protein extraction technology as presented in Chapter 2. We found that in alkaline 

protein extraction, temperature, NaOH amount, and extraction time are the parameters 

determining protein yield, while pH and volume of extraction liquid are critical 

parameters for production cost. After optimization, more than 90% of leaf protein could 

be extracted at a cost of 102 € ton
-1

 protein by single step alkaline extraction. The 
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extracted protein nutritional value was comparable to soybean meal and this technique 

can be adapted to various tapes of leafy biomass. Main drawback of this technique is the 

overuse of alkali, generation of salts, and the destruction of key amino acids, such as 

lysine, during the extraction. We tried to overcome its drawbacks by developing 

integrated process with a recycle for chemicals. 

Chapter 3, 4, 5, and 6 refer to the integrated biorefinery. For a better design, we 

investigated how the alkali aided protein extraction (Chapter 3), and proved that alkaline 

protein extraction was not facilitated by increased solubility or hydrolysis of protein, but 

positively correlated to leaf tissue disruption. HG pectin, RGII pectin, polyphenols, and 

organic acids can be extracted before protein. Protein extraction can then be followed by 

the extraction of cellulose and hemi-cellulose. RGI pectin and lignin yield were both 

linearly correlated to protein yield, which indicated that they are likely to be the key 

limitation to leaf protein extraction. Based on the above findings, an integrated 

biorefinery that combined protein extraction with a pre-treatment was proposed. In 

Chapter 4, ethanol, viscozyme, and H2O2 were selected for pre-treatments targeting on 

the removal of polyphenols and pigments, carbohydrates, and lignin accordingly. 

Ethanol and viscozyme could extract their targeting components efficiently while H2O2 

could bleach GTR with no lignin extracted. The best pre-treatment was the combination 

of viscozyme and 50% ethanol extraction, which not only reduced the use of alkali by 

50%, but also improved protein content and its nutritional value. As pectin can be 

applied for food or chemicals, enzyme and PBS buffer were investigated for pectin 

extraction (Chapter 5). Both enzyme and PBS buffer extraction could not only extract 

high yield HG pectin (predominated by galacturonic acid) with no protein extraction, but 

also reduced alkali usage in subsequent protein extraction. Pectin obtained using PBS 

buffer could be present in its native form, which can be precipitated by 40% ethanol. 

Buffer is suggested to extract pectin when pectin is to be used in food. Otherwise, 

hydrolyzed pectin that mainly contains galacturonic acid can be converted to other useful 

chemicals. For this the enzymatic methods, such as using Viscozyme
®

 L, are 

recommended.  

Alkali usage was further optimized. It was found that by using potassium hydroxide, the 
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protein extraction efficiency was similar to that using sodium hydroxide. The waste 

water, mainly containing potassium salts, can then be used as fertilizer. This technique is 

highly depending on the location of factories, which should be built close to the field. 

Alternatively, calcium hydroxide can be used. As calcium salts can be precipitated by 

CO2 and calcium hydroxide can be regenerated through burning of the precipitate, this 

scheme is sustainable and adaptable to most situations. However, as calcium also 

precipitated pectin, ployphenols, and even proteins, the protein yield is relatively low. 

Although a pre-treatment can improve extraction efficiency of calcium hydroxide, 

economic results suggested that a pre-treatment is not necessary unless the products 

obtained by pre-treatment have an attractive market value. 

In Chapter 7, we extend our knowledge on leaf biorefinery with some additional 

experiments and literature. Simplified models of leaf tissues and cell walls were 

proposed and used to explain the mechanism of alkaline protein extraction. The models 

were also used to explain other mechanisms for protein extraction; mechanical milling, 

steam explosion, acid, and enzyme aided extraction. The possible improvements of leaf 

biorefinery economics were illustrated either by reducing production cost, by e.g. using 

counter current extraction or ultrafiltration, or by upgrading product value by applying 

protein and pectin in food. The processes recommended in this thesis show an excellent 

prospective, in which they are applicable to other leaf biomass and suitable for 

small-scale production.   
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