
Mining microbiota signatures
in human intestinal tract

metagenomes

Sebastian Tims





Mining microbiota signatures in human intestinal tract metagenomes

Sebastian Tims



Thesis committee

Promotors
Prof. Dr M. Kleerebezem
Personal chair at the Host Microbe Interactomics Group
Wageningen University

Prof. Dr W.M. de Vos
Professor of Microbiology
Wageningen University

Co-promotor
Dr E.G. Zoetendal
Assistant professor, Laboratory of Microbiology
Wageningen University

Other members
Prof. Dr D. de Ridder, Wageningen University
Prof. J. Raes, University of Leuven, Leuven, Belgium
Prof. H.B. Nielsen, Technical University of Denmark, Lyngby, Denmark
Dr E.E. Vaughan, Sensus, Roosendaal

This research was conducted under the auspices of the Graduate School VLAG 
(Advanced studies in Food Technology, Agrobiotechnology, Nutrition and Health Sciences).



Mining microbiota signatures in human intestinal tract metagenomes

Sebastian Tims

Thesis
submitted in fulfillment of the requirements for the degree of doctor

at Wageningen University
by the authority of the Rector Magnificus

Prof. Dr A.P.J. Mol,
in the presence of the

Thesis Committee appointed by the Academic Board
to be defended in public
on Monday 2 May 2016

at 4 p.m. in the Aula.



Sebastian Tims
Mining microbiota signatures in human intestinal tract metagenomes 
264 pages.
PhD thesis, Wageningen University, Wageningen, NL (2016)
With references, with summaries in Dutch and English  
ISBN 978-94-6257-693-3



“Nothing exists for itself alone, but only in relation to other forms of life.”
-- Charles Darwin

“The greatest single achievement of nature to date was surely the invention of the molecule DNA.” 
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Introduction
Microbial organisms have been functional external partners for thousands of years, aiding us 
humans with fermentation processes needed to produce various foods and beverages. Production 
of the long-time popular fermented beverages was already documented 7,000 BC in ancient 
Mesopotamia [1]. Although this allows us to date the first application of microbial organisms, 
the realization that microbial cultures can be actively utilized is only a century old. Alexander 
Fleming’s discovery in the 1920s that a compound produced by a mold, i.e. Penicillium notatum, 
was capable of killing the bacteria Staphylococcus aureus [2], roused the interest in using microbes 
beyond food and beverage production processes. 

Even though in 1885 Teodor Escherich already isolated the first gastrointestinal microbe [3] 
and in 1907 Elie Metchnikoff postulated the first links between microbial processes in the gut and 
human health [4], the microbes inside our own body remained fairly unexplored until the 1970s. 
This exploration began after the improvement of anaerobic cultivation methods and scientists 
quickly started to realize that the collective of microbes residing inside our own gastrointestinal 
tract is actually a complex community. Moreover, the composition of this community was found 
to be host-specific and even distinctive for the various regions in the GI tract [5-7]. Currently no 
consensus on the exact composition of the normal gut microbiota has been identified, although it 
becomes evident from literature that the most dominant bacterial phyla in the human gut are the 
Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria and Verrucomicrobia [8]. Next to these 
main phyla the Deinococcus-Thermus group, Lentisphaerae, Planctomycetes, Synergistetes, and 
the Tenericutes are detected in more intermittent occurrences among studied populations [8]. At 
deeper phylogenetic levels large variations in abundances are generally observed [7, 9]. Microbial 
organisms from the two other kingdoms of life, Archaea and Eukarya, are found in fecal material 
as well, though usually several orders of magnitude lower in abundance compared to the bacterial 
inhabitants [8] and therefore have received less attention.

Although in a prenatal stage we might already encounter microbes or their metabolites [10], 
our birth marks the first drastic impact concerning the gut microbiota due to a swift colonization 
of maternal and environmental microbes (for a review see [11]). Currently, the knowledge on 
the mechanisms controlling this colonization and the subsequent successions within the gut 
community are incomplete. Dietary nutrients supplied by the host are an obvious and longtime 
recognized factor for impacting the microbiota [12]. Recently different types of human breast-
milk, categorized by maternal secretor status due to FUT2 gene alleles, have shown a “dietary” 
impact on the microbial colonization succession in the early life microbiota [13]. In adults changes 
in the daily dietary regime allows for the fastest noticeable response in the community profile 
of the gut microbiota, disregarding the use of devastating drugs like antibiotics. Vegetarian 
and vegan individuals display a rather distinct microbiota profile, i.e. reduced 16S rRNA gene 
counts of species belonging to Bacteroides, Bifidobacterium, and Enterobacteriaceae, as compared 
to omnivorous controls [14, 15]. Moreover, switching from a diet rich in animal products to a 
diet rich in plant products, either artificial or natural [16, 17], as well as (weight loss) diets with 
different carbohydrate amounts and polysaccharide types [18] have shown rapid adjustment of 
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the gut microbiota. Long-term dietary induced changes have been described as well and have a 
distinct impact on the microbiota [19].

With the gut microbiota acting like a virtual organ, an extensive cross-talk with the host 
is basically ensured from the moment of colonization and involves several aspects of the host 
physiology including (hyper)immune status. Therefore, besides diet, antibiotics, and external 
factors that influence host physiology, such as lifestyle or hygiene, host genotype provides 
another important factor for shaping the gut microbiota. Several lines of evidence indeed support 
the influence of host genetics on the microbiota: studies contrasting related and unrelated 
individuals have shown more similar microbiota community profiles for genetically related 
individuals [20-22], and studies focusing on specific host genotypes have shown the association of 
microbiota composition with single host genes such as APOA1 and NOD2 in mice [23, 24] and 
FUT2, MEditerranean FeVer, and NOD2 in humans [25-27]. A more detailed discussion on the 
association of the gut microbiota and the host genotype is provided in Chapter 2.

The ever increasingly spectrum of methodologies to study the gut microbes at various 
levels, e.g. DNA, RNA, proteins, or metabolites, and their continuously improving (technical) 
throughputs is drastically changing the scientific field of microbial community analysis. This has 
caused an exponential increase of studies that report on the structure and composition of the 
microbial community residing in the human gut, especially with DNA-based approaches. Before 
moving on to the next section, which deals with the methodological “how” to study complex 
microbial communities, it is worthwhile to mention that current literature can be confusing with 
respect to the vocabulary used to describe the gut community [28]. This thesis will incorporate the 
definitions as proposed by Marchesi and coworkers [28], especially regarding the following terms: 
a microbiota is the full assembly of microbes present in a defined environment such as the gut or 
fecal sample (in many studies only the bacterial part of a microbiota is measured or considered); 
a metagenome is the collective genetic content belonging to the members of a microbiota; a 
microbiome encompasses the entire habitat with all its biotic (Bacteria, Archaea, lower and higher 
Eukarya, and viruses) and their genetic content as well as abiotic factors. The term microbiome 
actually describes all life forms (biome) of microorganisms but often is limited to the bacterial 
metagenome, i.e. only the genetic content of the bacterial part of the system, which is an area 
of confusion in the field. “Microflora” is another confusing (and outdated) term that has a 
longstanding history in medical and scientific literature. As microflora either means “microscopic 
plants” or “all plant life in a microhabitat”, this term conflicts with the knowledge of the actual 
organisms in microbial communities, gut or otherwise. Although the term “microflora” is familiar 
for the general public and therefore still has commercial and educational value, medical experts 
and scientists should refrain from using it and make use of the more accurate term “microbiota”.

Studying the gut microbiota
In the adult intestine the bacterial cell mass can reach values up to 1.5-2.0 kg, but this mass is 
comprised of 1014 bacterial cells and therefore outnumbers the human cells by a factor of ten [29]. 
Even more impressive is the millions of genes these microbes bring along [30], which outnumber 
the human gene pool by at least two orders of magnitude. Since these genes are brought in by at 
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least 2,500 species [31], most of which are strict anaerobes, it is obvious that advanced methods 
and approaches are needed to completely cover and describe this microbial community. 

Cultivation-dependent methods
For a long time in the lively history of gut microbiology research, isolation and subsequent 
cultivation and characterization of the microbial strains was the only option. These traditional 
methods were estimated to cover about 10-30% of the total microbial population present in 
the gut [32-34]. Hence, as the cultivation captured mainly the “easily cultivable isolates”, these 
methods were deemed unsuitable to provide the complete overview of the gut microbiota. 
It should be mentioned that recent years have seen advances in cultivation based studies due 
to high-throughput micro-scale cultivation strategies that may include steps to diminish the 
amount of “easily cultivable isolates” such as the use of antibiotics or phage cocktail treatments 
[35]. In general, the recent strategies for high throughput miniaturized culturing of previously 
uncultured isolates rely on improved mimicking of the natural habitat, which often requires co-
culture strategies for multiple isolates from the same habitat (for a review see [36]). Nevertheless, 
cultivation-independent approaches are currently still the most employed methods and are 
generally considered to give the most rapid and complete overview of the gut microbiota. 

Cultivation independent methods
By the end of the previous century, visualizing the extent and complexity of the remaining 
majority of the microbiota was made possible due to the rapid development of approaches 
targeting the 16S ribosomal RNA (rRNA) molecule or its encoding gene [37]. Analogously to 
other complex microbial ecosystems [38], the majority of the human gut microbiota has only been 
detected as a (partial) 16S rRNA gene sequence [39]. Hence 16S rRNA gene-based technologies 
are extremely useful to characterize the gut microbiota composition and its dynamics. For 
instance both denaturing gel gradient electrophoresis (DGGE) and temperature gradient gel 
electrophoresis (TGGE) are methods that start with the amplification of (a part of ) the 16S 
rRNA gene, both resulting in a banding pattern on a gel-electrophoresis system that represents 
the compositional profile of the community from the tested sample. Beyond these initial profiles, 
however, identification of the organisms corresponding to the visualized bands is rather laborious 
as all bands must be separately excised, further amplified, and sequenced.

 Cloning of 16S rRNA gene amplicons in clone libraries and subsequently sequencing 
of the (16S rRNA gene) insert is an alternative, yet also very laborious and low throughput, 
community profiling method. Moreover, it suffers from cloning bias depending on the host used. 
However, in the beginning of the 21st century phylogenetic, microarrays provided a much more 
comprehensive and high throughput analysis method for characterizing microbial communities, 
offering a higher resolution and diagnostic power as compared to the previous profiling methods 
such as DGGE, TGGE, or clone library sequencing [40]. Most developed phylogenetic microarrays 
target the 16S rRNA gene [41] and allow diversity assessment and taxonomic profiling, sometimes 
even allowing discrimination at the strain level [40, 42-44]. Currently, there are several phylogenetic 
microarrays available, ranging from universal (“all prokaryotes”) arrays, such as the PhyloChip 
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[45], to gut ecosystem-specific arrays such as the Microbiota Array [46], the Human Gut Chip 
(HuGChip) [47], and the Human Intestinal Tract Chip (HITChip) [48] (Table 1.1). From these 
gut ecosystem arrays the HITChip is able to detect the largest amount of phylotypes, i.e. more 
than 1,000. 

In the last ten years actual sequencing of (parts of ) the 16S rRNA gene-pool has become 
a popular approach to investigate the gut microbiota composition. Even more can be done 
at the DNA level, such as the metagenomics approach in which a maximally representative 
DNA sample from an entire community present in an environmental sample is isolated and 
subsequently, often in a random fashion, sequenced. Both targeted 16S rRNA gene sequencing 
and random metagenomic sequencing have been made possible due to the onset of the next 
generation sequencing (NGS) techniques, discussed below. Although such DNA-based methods 
have greatly expanded our current knowledge regarding the biotic part of the gut microbiome, 
other methods are required to better understand the actual functioning and activity in the gut. 
In order to fully appreciate microbial activity, bacterial gene expression (metatranscriptomics), 
protein and enzyme production (metaproteomics), as well as the consequential metabolite 
abundance profiles (metabolomics) should be determined. However, these techniques can be more 
challenging to perform and are, compared to the DNA-based methodologies, still in their early 
stages. Hence, the remainder of this chapter primarily focuses on DNA-based methodologies.

Table 1.1 Comparison of four available phylogenetic microarrays.

All prokaryotes Gut ecosystem-specific bacteria
PhyloChip Microbiota Array HuGChip HITChip

Platform Affymetrix Affymetrix Agilent Agilent
Target region Design not restricted 

to specific V-regions
Design not restricted 
to specific V-regions

Design not restricted 
to specific V-regions

V1, V6

Nr. of probes 1,016,064 16,223 4,441 4,809
Probe design 
database size

59,959 representative 
sequences *

852 representative 
sequences †

1,052 sequences 1,140 sequences

Probe length 25-mers  
(overlapping)

25-mers 25-mers 24-mers  
(overlapping)

Output range 1,464 families  
(10,993 sub-families)

775 species-like 
groups

66 families 1,041 species-like 
groups

Reference [45] [46] [47] [48]
Year of publication 2010 2009 2013 2009
Citations ‡ 369 53 14 226
*) Operational Taxonomic Units with an average sequence divergence of 0.5%
†) Operational Taxonomic Units with an average sequence divergence of 2.0%
‡) As of January 2016, Scopus [http://www.scopus.com/]
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Next generation sequencing technologies
The NGS based community profiling technologies have been quickly adopted and integrated 
in the majority of gut microbiota studies world-wide, especially due to the various possibilities 
to outsource sequencing, the ever increasing throughput, and the cost reduction [49]. For 
community-wide composition profiling, via partial 16S rRNA gene sequencing, the first NGS 
technology that rapidly became very popular was the 454 pyrosequencing platform (Roche), 
but in recent years the Illumina based sequencing technologies (Illumina, USA) have taken over 
[50]. Besides 454 pyrosequecing and Illumina based technologies three more technologies can be 
considered to be from the, at the time of writing, same line of NGS technologies: the SOLid 
system (Applied Biosystems), the Ion platforms (Life Technologies), and SMRT system (Pacific 
Biosystems). The principles as well as the advantages and disadvantages, with respect to gut 
microbiota research, of these five NGS technologies are briefly described below (for a more 
extensive review see [51]). To multiplex samples, most NGS technologies support the so-called 
“barcoding” in which a barcode sequence, unique for every sample, can be placed in front of the 
(primer) sequence via PCR or ligation. 

454 pyrosequencing
In 2005, 454 pyrosequencing was the first NGS technology that became available [52] and was for 
several years the preferred NGS approach in microbiota research due to its relatively long reads, 
eventually up to 1,000 bases, allowing a more phylogenetic discrimination and identification 
with each 16S rRNA gene sequence read generated. This technology starts with preprocessing the 
target DNA by attaching adapter sequences to it, either via PCR primers that contain the adapter 
sequence or via ligation. These adapters are used to bind the preprocessed target DNA to beads, 
i.e. one DNA molecule per bead, which are subsequently subjected to emulsion PCR to populate 
the bead with a multitude of copies of the initial DNA molecule. After the emulsion PCR, the 
beads are spread over a so-called PicoTiterPlate, which is a chip with micro-wells that can each 
hold a single bead. Each of the micro-wells also contains the required enzymes for a sequencing-
by-synthesis reaction: a DNA-polymerase, an ATP sulfurase, and a luciferase. Next, the actual 
pyrosequencing is initiated by controlled additions of each nucleotide (A, C, G, T), which trigger 
pyrophosphate release and a subsequent light pulse due to the luciferase activity. Through optic 
fibers connected to each micro-well the light pulses are recorded and the corresponding sequence 
can be inferred from this information. When the target sequence contains stretches of the same 
nucleotide in a row (homopolymers), they will all be added in the same step and this process will 
generate more intense light pulse. Although in theory such homopolymer detection is feasible, 
it turns out in practice that the detection of larger homopolymers are frequently incorrect and 
present one of the largest drawbacks of 454 pyrosequencing. 

Another disadvantage of 454 pyrosequencing is the relatively high costs per base read, 
which is substantially higher as compared to other NGS technologies of the same generation, i.e. 
Illumina, SOLiD, or Ion Torrent, although these generate shorter read-lengths (Table 1.2). The 
incredible rate of innovative improvements in the available sequencing technologies is illustrated 
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by the notion that approximately 10 years after its introduction, the 454 pyrosequencing platform 
will not be supported anymore in 2016.

Illumina
The first NGS platform competing with 454 pyrosequencing came in 2006 with the Illumina 
Genome Analyser (GA) [www.illumina.com/technology/solexa_technology.ilmn]. Currently, Illumina 
technologies have expanded GA with HiSeq, MiSeq and most recently with NextSeq chemistries. 
The general method of the Illumina technologies is sequencing-by-synthesis. Similar to 454 
pyrosequencing, Illumina technologies starts with preprocessing the target DNA by attaching 
adapter sequences to it, either by PCR or by ligation. Subsequently, the pool of adapter-labeled 
target DNA is immediately washed over a flow cell containing a field of oligos complementary 
to the adapter sequence, enabling binding of the target DNA. After binding each target DNA 
molecule is replicated, generating clusters of identical copies of the original molecule. Next 
the sequencing-by-synthesis starts with a process remotely similar to “old-fashioned” Sanger 
sequencing [53], except that the dye terminators on the free nucleotides are reversible and thus 
allow repetitive dye-terminator incorporation combined with imaging and subsequent terminator 
removal to proceed to the next step [54]. Multiplexing can be achieved via two strategies: 1) adding 
a barcode sequence similar as in 454 sequencing, 2) through one or two separate indexing reads 
which are located outside the primer region, requiring separate sequencing runs (that read “away” 
from the target DNA molecule). For throughput details of each of the Illumina chemistries, at 
the time of writing, see Table 1.2. In general the Illumina chemistries are more cost effective per 
generated base, have a lower error rate and do not suffer from homopolymer detecton issues, but 
runs may take somewhat longer (depending on the desired depth) and produce shorter reads as 
compared to 454 pyrosequencing.

SOLiD
The third NGS technology that came to market was SOLiD [55]. For SOLiD the library 
preparation is similar to 454 pyrosequencing and the Illumina technologies, i.e. adapter sequences 
are added to the target DNA molecules, which are subsequently captured on beads (with the 
same one DNA molecule per bead standard) and amplified via emulsion PCR. These beads 
are, via the adapter on the 3’ end of the DNA molecules, covalently attached to a glass slide. 
In contrast to 454 pyrosequencing and the Illumina technologies this method is a “sequencing-
by-ligation” approach. SOLiD uses a mixture of labeled oligonucleotides, accounting for all 
possible di-nucleotides, which are used to “query” the target DNA molecule with a ligase after 
the initial addition of a random primer. In order to completely comprehend SOLiD technology 
one must understand the labeled oligonucleotide mixture, the use of random primers, as well 
as the rinse-and-repeat approach (for a more extensive review see [56]). In short, via addition of 
a random primer, nucleotide readings at regular spaced intervals are possible with the labeled 
oligonucleotides. After this first round, the random primer and added oligonucleotides are 
removed from the target DNA molecule and the “query” is repeated with a random n-1 primer 
allowing further bases to be identified. With the readings of all ligation rounds the actual target 
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DNA molecule sequence can be deduced of the fragmented DNA. Due to the short read-
length inherent to this NGS technology multiplexing of samples through barcode sequences 
attached to the actual target sequence is ill-advised, instead multiplexing through a separate 
indexing run, similar to Illumina technologies, is available. SOLiD has the lowest error-rate of 
the NGS technologies and typically generates a larger numbers of sequences per run compared 
to 454 pyrosequencing but less than Illumina, while the read length is the shortest of the NGS 
technologies and this has been the biggest drawback of SOLiD. The costs of SOLiD sequencing 
per base generated is relatively low, although Illimuna has the lowest cost per base.

Ion Torrent
Chronologically the last NGS technology introduced is Ion torrent, which became available 
in 2010 with the personal genome machine (PGM) and was aimed to bring NGS to smaller 
laboratories as it brought the highest throughput for the lowest price. Ion Torrent-based 
sequencing shares a great deal of overlap with 454 pyrosequencing: target DNA is captured on 
beads, the beads undergo an emulsion PCR procedure and are subsequently distributed over a 
micro-well plate where a sequencing-synthesis-approach is initiated that records the addition 
of every nucleotide. Multiplexing of samples is achieved via the same barcoding principle as 
well. However, the actual recording system is unique for Ion Torrent as the micro-well plate 
is a semiconductor chip which contains pH sensitive micro-detectors in the wells. Whenever 
a free A, C, G, or T base is incorporated in the growing DNA strand a proton is released that 
causes a slight pH decrease. Hence for every controlled nucleotide addition on the plate the 
wells in which the nucleotide is incorporated can be detected and the target DNA molecule 
sequence can readily be inferred. Despite the different detection method, Ion Torrent has a 
similar homopolymer detection problem as 454 pyrosequencing since the accuracy of measuring 
multiple proton releases is not quantitatively reliable enough. Interestingly, Ion Torrent 
systems principally can generate sequence reads much longer DNA lengths compared to 454 
pyrosequencing; however the practical operating procedure imposes a strict size selection limiting 
the longest read at approximately 400 bases (in the PGM system). Bidirectional sequencing of 
the target DNA molecule is possible with the Ion Torrent system, though currently this appears 
to be relatively unreliable [57], which in combination with the target sequence length restriction 
prevented the Ion Torrent systems to take a larger position in microbiome research, despite the 
high throughput and relative low sequence costs.

SMRT
Ultimately, researches would like sequencing directly from the target DNA molecule as they 
appear in in situ or in vivo, without the potential biases introduced by PCR amplification 
preprocessing steps. Such single-molecule sequencing platforms are currently available with the 
SMRT technology (Pacific Biosciences) currently being the most successful on the market. Due 
to the use of DNA polymerases that are directly linked to zero-mode waveguide detectors on a 
chip, SMRT sequencing is able to image in real time the incorporation of phosphor-linked dye-
labeled nucleotides during DNA synthesis. Hence no PCR amplification step is required and this 
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feature discriminates SMRT sequencing from the other NGS technologies. Single sequencing 
reads on the SMRT sequencing (PacBio system) are plagued by a 15% error rate in base calling 
that is currently negated by the system by the addition of a circular consensus sequencing (CCS), 
which repeatedly sequences the circularized DNA target molecule providing a high fold coverage 
of the target molecule that enables the correction of erroneous base calls. Multiplexing with the 
PacBio system could theoretically be achieved by ligation of a barcode sequence, but this is not 
frequently employed.

Table 1.2 Comparison of typical high throughput sequencing systems from the five major platforms of the current 
generation. Adapted from [56-59].

Technology/
Platform

Amplification 
type

Chemistry Error
rate 

System Seq per run Run
time

454 Emulsion PCR Pyrosequencing 
(seq-by-synthesis) 1% GS-FLX + 1 M

(2 x 600 bp) 20 h

Illumina Bridge 
Amplification

Reversible dye terminator 
(seq-by-synthesis) ~0.1%

Miseq 25 M 
(2 × 300 bp) 5-55 h

NextSeq 130–400 M
(2 × 150 bp) 12-30 h

HiSeq 2,500 M 
(2 × 150 bp) 24-48 h

SOLiD Emulsion PCR
Oligonucleotide 8-mer  
chained ligation 
(seq-by-ligation)

≤0.1% 5500  
SOLiD™

60-120 M
(2 x 35 bp) 24 h

Ion Torrent Emulsion PCR Proton detection 
(seq-by-synthesis) 2% PGM 1.5-3 M

(1 x 400 bp) * 2–3 h

SMRT 
sequencing

N/A 
(single molecule)

Phospho-linked fluorescent 
nucleotides 
(seq-by-synthesis)

10-15% PacBio
35 M
(1 x 8,500 bp) 1.5 h

* paired-end sequencing available but not advisable due to low quality reverse read

Community-wide profiling strategies
As mentioned above, the two most used ecosystem-wide sequencing strategies currently are 
targeted 16S rRNA gene sequencing and random metagenomic shotgun sequencing. With 
targeted 16S rRNA gene sequencing approaches, which utilize the conserved and variable 
regions within the 16S rRNA gene that is present in all microbes [60], the ultimate question to be 
answered is “who is present?”. Once it is established “who is there” often a potential functional 
profile is inferred from this. With random metagenomics, which is performed on a maximally 
representative DNA sample extracted from an environmental sample, the ultimate question to 
be answered is “what can they do?” or perhaps more accurate, as DNA reflects the potential 
capacity, “what could they do?”. After assembly of metagenomic sequence data, genes are assigned 
in the resulting contigs, and are annotated by computational intense algorithms [61], which 
enable a more complete understanding of the genetic potential within the gut microbiota than 
any preceding technology. Processing of the enormous amounts of data generated by NGS is 
more and more dependent on the available bioinformatics capacities (for a review see [58]), not 
only related to the hardware of the computational platforms, but in particularly related to the 
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limited number of experts. Therefore, the computational biology aspects of microbiota research 
pose an increasing barrier for effective and successful analysis, particularly because the resources 
needed for the data generation of either targeted 16S rRNA gene sequencing or the random 
metagenomic shotgun sequencing are continuously declining.
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Figure 1.1 Schematic representation of the flow of sequence generation and analysis is in microbiota composition 
analysis at the level of the phylogenetic composition or the function gene repertoire composition.
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The two ecosystem-wide sequencing strategies target different aspects of a microbial 
ecosystem, each with its own advantages and disadvantages. Targeted 16S rRNA gene-based 
approaches that yield high dimensional data, such as phylogenetic microarrays and 16S rRNA 
gene amplicon sequencing, visualize the compositional profile and thus provide insight on the 
identity of the micro-organisms present. Basically, metagenomic shotgun sequencing sacrifices 
such compositional resolution but provides a direct view of the functional potential of the 
studied microbial ecosystem. Both approaches should not be regarded as competing strategies 
as they both can yield complementary information. Figure 1.1 provides a schematic overview, 
generalizing the various alternative routes, of typical analysis paths for both strategy types and 
shows potential cross-over steps. Both analysis paths start with suitable quality checks on the 
generated data. For microarray analysis sample are usually analyzed in duplo, which allows an 
assessment of the technical reproducibility, e.g. the HITChip samples are loaded with different 
dyes on independent arrays and only samples with a >0.98 reproducibility are further processed 
[62]. In targeted 16S rRNA gene amplicon sequencing the quality filtered reads are usually 
subjected to further denoising and are subsequently clustered into operational taxonomic units 
(OTUs). Both the probe sequences of microarrays and the representative sequences of the OTUs 
are aligned to a 16S rRNA gene reference database to assess phylogeny and taxonomic identity 
is inferred, resulting in bacterial group profiles. Optionally bioinformatics tool such as PICRUSt 
[63] can be used to infer a functional pathway prediction. 

Quality filtered reads of random shotgun metagenomic sequencing studies can be mapped 
to an annotated reference gene/genome databases, assembled into contiguous sequences (contigs), 
or both depending on the read lengths and quality. Through the mapping procedure the 
functional potential of the samples is captured and important metabolic pathways can be distilled 
from these profiles. Several options for the mapping procedure as well as the reference gene/
genome databases exist. Taxonomic identity of the reads can be inferred from the mapping to the 
annotated reference gene/genome databases, although most genes offer much less phylogenetic 
resolution as compared to phylogenetic marker genes such as the 16S rRNA gene. Finally, for 
both gut community profiling methodologies the data can be treated individually or combined 
with data from other relevant studies. The abundances from both the taxonomic or functional 
profiles are subjected to various multivariate analyses and visualization. At this stage, it is possible 
to incorporate sequence data from other relevant studies, or the data can be treated individually. 
The abundance of the various OTUs is then subjected to elaborate (multivariate) statistics and 
the resulting patterns are visualized. Table 1.3 compares the technical aspects of the two afore 
mentioned targeted 16S rRNA gene based approaches and random shotgun metagenomics.

Noteworthy is that the first mentioning of metagenomics in literature was by Handelsman 
and coworkers [63], which was an application that used the genetic content of environmental 
samples for functional screening after expression in a cloning host and this can be regarded as 
functional metagenomics. Functional metagenomics provides a bridge between predictions based 
on DNA sequences and actual functional characterization of these DNA sequences. Currently, 
there are two options for functional characterization of metagenomic libraries available: 1) 
Random cloning of small DNA fragments (<3-15 kb) or large DNA fragments (25+ kb) into 



1

 Chapter 1 

20

a suitable cloning host that allows (inducible) expression to generate an expression library for 
enzyme or pathway screening; 2) Random cloning of either small or large DNA fragment into a 
cloning host that allows (inducible) expression in conjunction with an enrichment strategy. Next, 
both options will be briefly decribed.

Table 1.3 Pros and cons of approaches targeting genomes and microbes.

Targeted 16S rRNA gene-based approaches

Microarray Amplicon sequencing Random shotgun 
metagenomics

Phylogenetic resolution Known & related phylotypes New & known phylotypes Depending on read N & read 
length (& assembly ability)

Reproducibility High reproducibility Depending on read N (and 
filtering settings)

Depending on read N (and 
filtering settings)

Community depth Fixed depth (0.1 – 0.01%) Read N determines depth Read N determines depth 
Relatively lowest depth

Relative costs  
(at comparable depth) Low Low High

Relative computational 
requirements Low (Simple pipeline) Medium ‡ High (mapping) - very high 

(de novo analysis)
Community target 
complexity

16S rRNA gene  
(± 3 copies / genome)

16S rRNA gene  
(± 3 copies / genome)

Microbial genes  
(± 3,000 gens / genome)

Functional (potential) 
analysis Deductive † Deductive † SNP analysis Metabolic 

pathway identification
‡) OTU clustering is the most computational intensive step
†) Automated functional prediction tools available, e.g. PICRUSt [62]

Functional mining by screening a metagenomic expression library containing either small or 
large inserts (option 1) could be employed to screen for different types of functional capabilities. 
Depending on the screening strategy and quality of the (sheared) metagenomic DNA different 
cloning vectors can be used, each with its own advantages and limitations. For instance “normal” 
plasmids can generally not harbor inserts larger than 10-15 kb, but can achieve higher expression 
levels due to higher copy numbers, whereas the low- to single-copy cosmids and fosmids (25-40 
kb), or BACs (100-200 kb) cloning systems can potentially retain entire pathways [64]. Function-
based screening has the obvious advantage that the identified clones are selected on basis of the 
function they encode, and allow identification of completely novel genes or pathways.

The potential of metagenomic expression libraries still faces constraints both at DNA 
sequence level as well as on the expression level. From the DNA sequence perspective the 
limitations are straightforward and DNA sequences need to be intact, i.e. containing the 
beginning and end of the entire sequence needed to express a gene or pathway, need to be in 
the right orientation if a small cloning vector (plasmid) is used, and translation signals and 
codon usage must be compliant with the translation machinery of the cloning host. Although, 
theoretically, these limitations can be overcome provided that enough DNA can be isolated 
and, in order to capture all DNA fragments from a community, only the amount of clones that 
can be obtained would be the real constraint. Indeed there have been various reports describing 
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successful functional screening studies of metagenomic expression libraries (for a review see [65]). 
Although incubations of an environmental sample with a stable isotope labeled substrate [66] can 
reduce the amount of clones needed to detect a given function by physically isolating the DNA 
of metabolically active bacteria prior to the cloning step, such methodologies are inherently 
challenging to perform correctly with fecal samples containing a large proportion of strictly 
anaerobic bacteria. 

Various difficulties at the protein expression level will pose further practical limitations 
which are often directly related to the cloning host used and its translation machinery’s constraints 
[67]. Even when translated successfully, the host employed for heterologous expression will have 
to provide appropriate conditions for the protein to achieve its proper folding and also should 
provide potential essential cofactors to allow the protein to display its function. At the same 
time, the expressed protein should not be detrimental to the cloning host, and in many cases 
may need to reach its proper subcellular localization in order to function. Presently, there are 
three types functional selection or enrichment approaches reported for metagenomic expression 
libraries (option 2): selection based on measurable, phenotypic, changes caused by the functional 
activity of interest; selection based on heterologous acquisition of functions complementary for 
the utilized cloning host; selection based on induced gene expression. Each of these section 
approaches have their own advantages and disadvantage and are nicely reviewed elsewhere [64].

Host health & the gut microbiota
Since the anaerobic cultivation advances in the 1970s and especially due to employment of the 
(high-throughput) cultivation independent methodologies described in the previous sections, 
the gut microbiota has increasingly been recognized for being a functional counterpart to its host 
genome [29, 68, 69]. With a metabolic activity status that is postulated to equal that of the liver 
[70], the gut microbiota can be considered to be a virtual organ that complements host-function 
by conversion and fermentation of indigested food components [71], production of specific 
essential nutrients [72-74], conversion of bile and certain steroid hormones [75, 76], maturation 
and modulation of the immune system [77, 78], and colonization resistance to pathogens [79]. 
Aberrant microbiota compositions or decreased stability have been linked to various diseases 
and syndromes, ranging from the more obvious GI disorders such as Crohn’s disease [80] to, on 
first sight, less direct ailments such as autism [81] and Parkinson’s disease [82]. Given the role for 
the microbiota in nutrition, particularly the conversion of nutrients, it is not surprising that the 
microbiota is also associated to host energy homeostasis [83-87]. Interestingly, the various possible 
mechanisms explaining the host-microbe association in energy homeostasis expand far beyond the 
microbiota “just” modulating the direct energy supply to its host, such as microbial modulation 
of host satiety and low-grade chronic inflammation (for a review see [88, 89]). Considering the 
vast amount of processes to which the gut microbiota is linked, it is not surprising that a lot of 
effort has been put into mapping the factors that influence the microbiota and establishing how 
the microbiota can be modulated. In the next sections, some highlights are provided on the 
associations of the gut microbiota and several disorders that have received the main focus in the 
field in the last years: the metabolic syndrome components obesity and type 2 diabetes (T2D), 
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inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), and colorectal cancer (CRC) 
(Table 1.4).

Table 1.4 Examples of documents microbial associations with human diseases and disorders. Table adapted from [90].

Disorder or 
condition

Microbial group or microbiota characteristic association Reference
Increase Decrease

Obesity

• Firmicutes:Bacteroidetes ratio †

• Bacteroides † [22, 91, 92]

• Bacterial diversity  
   & bacterial (gene) richness

[22, 91-94]• Actinobacteria 
• Prevotellaceae 

• C. leptum group (Ruminococcus 
flavefaciens)
• Bifidobacterium 
• Methanobrevibacter

T2D

• Bacteroidetes 
• Bacteroides spp.
• Clostridium spp.
• Desulvovibrio spp. 
• Eggerthella lenta
• Escherichia coli 
• Beta-proteobacteria class

• Firmicutes:
   - Clostridia class
   - Butyrate-producing organisms 
     (Roseburia spp., Faecalibacterium spp., 
     Eubacterium spp.)

[95, 96]

IBD

• Bacterial diversity

[97-105]

• Clostridium
• EnterobacteraceaeUC

• Gamma–proteobacteria:CD

   - adherent  invasive Escherichia coliCD

• Firmicutes:
   - Clostridium leptum & coccoides group
   - Faecalibacterium prausnitzii
   - Roseburia
   - Phascolarctobacterium
• Bacteroidetes 

IBS

• Firmicutes:Bacteroidetes ratioA

[106-108]
• AlistipesP

• ClostridiumA 

• DoreaAP

• Haemophilus influenzaP

• RuminococcusAP

• BacteroidesP 

• BifidobacteriumA

• FaecalibacteriumA 

CRC • Fusobacterium spp.
• E. coli (pks+) [109-112]

IBS, irritable bowel syndrome; A, found in adults with IBS; P, found in pediatric patients with IBS; IBD, inflammatory bowel disease; CD, 
only found in Crohn’s disease patients; UC, only found in ulcerative colitis patients; CRC, colorectal cancer; pks+, polyketide synthase 
positive; T2D, type 2 diabetes. † Varying results, both in line and in opposition against the initial lower Firmicutes:Bacteroidetes ratio 
(mainly driven by the lower levels of Bacteroides) found in mice [113].

Metabolic syndrome: obesity and type 2 diabetes
A little over ten years ago, the research on the gut microbiota and its relationship with obesity 
was brought to a next level by studies in germ-free mice. The original finding was that at 
phylum level the Bacteroidetes to Firmicutes (B:F) abundance ratio was lower in obese mice 
[113] and this phenotype could be transferred by fecal transplantation to lean germ-free mice. 
The microbiota relationship with obesity was subsequently confirmed in a small cohort of 
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obese human individuals (body mass index, BMI>30) that during a dietary intervention trial 
indeed lost weight and concomitantly gained elevated relative abundance of Bacteroidetes [85]. 
However, various studies have followed and contradicting findings were reported for this B:F 
ratio [22, 91, 92]. The latter does not come as a surprise as beyond BMI differences human study 
populations are quite heterogeneous in terms of exposed to various other influences such as 
lifestyle and diet [114], host genotype, and hormonal factors [115], all of which can influence the 
gut microbiota. Moreover, BMI itself is a rather inaccurate indicator of health status, as 25% of 
obese subjects are in fact considered to be metabolically healthy [116]. The remaining 75% is often 
not only challenged by their overweight but also one or several other metabolic conditions such 
as glucose intolerance or diabetes, hyperlipidaemia, hypertension, and low grade inflammation 
[117]. Hence obesity is a complex and heterogeneous condition, which encompasses much more 
than only weight or BMI.

The shortcomings of BMI as a marker for unhealthy obesity was further underlined 
by a metagenomic study where bacterial richness, as measured in normalized gene counts, in 
obese subject displayed a bimodal pattern which correlated to metabolic syndrome marker 
measurements that were associated with obesity-status but not with weight or BMI [94]. 
Interestingly, obese individuals with a high gene count were marked by a higher prevalence of 
alleged anti-inflammatory species, more genes potentially involved in organic acid production 
(among which butyrate pathways), reduced prevalence of alleged pro-inflammatory species, and 
metagenomes with reduced gene frequencies of genes potentially involved in oxidative stress 
response as compared to the obese individuals with low gene counts. In a separate study, diet-
induced weight-loss was shown to be increased in individuals with high gene richness as compared 
to those with low gene richness, which was accompanied with an enhanced improvement of 
the corresponding metabolic health status in the high gene richness individuals [118]. Moreover, 
two independent metagenomic studies in T2D cohorts [95, 119] resulted in the identification of 
metagenomic co-abundant gene clusters that in terms of predictor quality for T2D outperformed 
classical T2D markers such as those identified in the human genome through genome wide 
association studies (GWAS) and BMI. Analogous to the findings of the metagenomic studies 
related to obesity the abundance of genes predicted to be involved in oxidative stress responses 
appeared to be increased in T2D patients [119], whereas genes predicted to be involved in butyrate 
biosynthesis were decreased [95]. Interestingly, at a phylogenetic level both metagenomic studies 
in T2D cohorts resulted in different marker species [95, 119], which suggests that such biomarkers 
are population dependent. 

Despite the contradicting findings that have been published, together these studies on 
obesity and the associated metabolic diseases testify for the significance of the gut microbiota 
in host energy homeostasis. While the exact mechanisms remain unclear, in general the gut 
microbiota in these metabolic conditions are less diverse and/or rich, have a more inflammatory 
prone composition profile, and often appear to have less butyrate production potential. 
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Inflammatory bowel diseases
In the early days, research on IBD was focused on finding a single perpetrator but in the 
last decade it has become evident that the entire gut microbiota is affected in IBD patients. 
Conflicting results have been reported regarding the level of the Bacteroidetes phylum [102, 120] 
though it appears that there may be a shift within this phylum in IBD patients where Bacteroides 
fragilis comes out as the most dominant species [121]. While two main types of IBD, i.e. Crohn’s 
disease (CD) and ulcerative colitis (UC), have some distinct microbiota characteristics, in both 
groups of patients a consistent reduction in clostridia members was observed [122]. In addition, 
in UC patients a marked decrease in Akkermansia muciniphila was detected, both in mucosal 
and fecal samples [123, 124]. Next to the alterations of the Firmicutes and Bacteroidetes, often 
various members from the Proteobacteria phylum increase with the chronic inflammation status 
[125, 126].

The Firmicutes reduction has also been shown to be accompanied with a decrease in 
diversity within this phylum [99] as well as an overall reduction in metagenomic gene counts. 
A recent extensive study analyzed the 16S rRNA gene sequences of 231 IBD patients and 
healthy controls as well as 11 metagenomes from a sub-selection of this cohort [105]. From the 
extensive data set the relation between disease status and Firmicutes and Enterobacteriaceae, a 
family of Proteobacteria, levels was in line with prior publications. However, a striking amount 
of (inferred) microbial pathways were associated with heightened disease status [105], such as 
increase in oxidative stress pathways (presumably to counter host oxidative bursts that are used 
by innate defense), a decrease in the normal pathways for carbohydrate metabolism, amino acid 
and SCFA biosynthesis. Considering the similar microbial pathway shifts detected in T2D [95], 
there appears to be a general response of the gut microbiota when it resides in environment 
marked by chronic inflammation and heightened immune activity.

Irritable bowel syndrome
IBS is a so-called functional bowel disorder, which means it is diagnosed solely on symptom-
criteria, after ruling out signs of other diseases or disorder. Although the IBS etiology is still 
largely unknown, it is regarded as a multi-factorial disease and several lines of evidences indicate 
that (alterations of ) the gut microbiota play a role, potentially through low-grade intestinal 
inflammation [127-130]. The main indication lies in the fact that IBS symptoms can be alleviated 
by the use of antibiotics, prebiotics, and probiotics [131, 132]. Unfortunately, most of the early 
microbiota studies were limited in analysis depth and numbers of subjects included [133]. For 
post-infectious IBS (PI-IBS) a causal relationship between the gut microbiota and PI-IBS has 
been proposed in literature [134] and the microbiota profile appears to be different form healthy 
controls and more similar to diarrhea predominant IBS [135]. Notably, the latter results may 
indicate in general that infectious organisms, which are not part of the normal microbiota, can 
have pronounced effects even after they have supposedly been eliminated from the gut ecosystem.  
Combination of the microbiota data of different PI-IBS cohorts confirmed the robustness of the 
observations and provided suggestions for patient stratification and treatment [136].
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An altered gut microbiota composition in IBS patients as compared to healthy controls has 
recently been established with high throughput DNA technologies, both in adult [106, 137-139] 
and pediatric populations [108, 140]. Nevertheless, a typical IBS microbiota composition or 
specific traits thereof has not been established, mainly due to the heterogeneity of IBS itself but 
also due to the miscellaneous approaches that have been employed [141]. However, common 
observation have been reported and often bacteria related to the Firmicutes species Ruminococcus 
gnavus are found in high levels [139, 142, 143], whereas some Bacteroides groups are found in low 
levels amongst IBS patients [106, 139, 144]. Interestingly, high-throughput sequencing studies 
have identified subgroups of IBS patient based on their microbiota composition, which was in 
dependent from the more traditional symptom based subtypes [106]. Taken together, the more 
in-depth and high-powered studies from the last 5 - 10 years indeed strongly suggest that IBS 
patients harbor an altered gut microbiota and encourage future therapeutic avenues to take the 
microbiota into account. 

Colorectal cancer
Current literature indicates that the gut microbiota plays an important role in (the onset of ) CRC, 
both for colitis-associated [112] or sporadic CRC [145]. Similar to the other diseases described in 
the sections above, no single causative micro-organism has been found although several studies 
have incriminated Fusobacterium members [109-112]. Metagenomic and metatranscriptomic 
analysis revealed a highly variable and subject specific microbiome, yet specific bacteria were 
found to colonize the actual tumor tissue or the surrounding healthy tissue [146]. Intriguingly 
the tumor tissue was suggested to be selective for commensal species and even bacteria related 
to probiotic strains, while potential pathogens such as Enterobacteria were hardly present [146].

Global studies comparing African Americans with Africans have further implicated the 
gut microbiota in the onset of CRC. Africans have a Prevotella-dominated microbiota whereas 
African Americans, who have a much higher risk of CRC development which, have a Bacteroides 
dominated microbiota [19]. Since the genetic predisposition of African Americans is unlikely to 
be drastically different from that of Africans, factors such as diet, lifestyle and environmental 
exposures are more likely to have modulated the microbiota to a more CRC prone composition. 
Indeed, African Americans subjected to a 2-week high fiber (>50 g/day) diet decreased the levels 
of mucosal biomarkers of cancer risk, whereas Africans subjected to a high fat, high protein, low 
fiber Western diet in the same time-span increased the levels of mucosal biomarkers of cancer risk 
[17]. These changes were accompanied by vast changes in fecal microbiota co-occurrence network 
structures and fecal metabolome [17], strongly suggesting that the gut microbiota plays an 
important role in CRC, although changes in the intake of red-meat and the associated chemical 
routes cannot be excluded (see below). 

In line with the global microbiota studies, others have reported on the metabolic functioning 
of the gut microbiota in relation to CRC etiology and most often fiber metabolism is mentioned 
as a key activity [147]. Reduction of butyrate-producing bacteria is frequently identified in CRC 
patients [148] and this has been reproduced in animal models [149]. Furthermore, bacterial sulfate 
metabolism is implicated in CRC development as hydrogen sulfide, a bacterial end product, 
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stimulates mucosal hyper-proliferation and is hardly detoxified in the colon of CRC patients 
[150]. This mucosal hyperproliferation is due breaking of the disulfide bonds in polymeric mucin 
by (bacterial) hydrogen sulfide, which increases the mucus layer permeability and exposes 
the epithelial surface cells to cytotoxins (heme derived and other) and subsequently initiates 
hyperproliferation to compensate the cell loss [151]. Interestingly, it has been hypothesized 
that genetic predisposition for CRC may also act via the carbohydrate landscape in the distal 
gut, which is depends on host genotype [152], to ultimately recruit a (metabolically) modified 
microbiota that contributes to CRC development. 

Modulating the gut microbiota for health benefits
Diet has received increasing attention as a modulation tool for the gut microbiota composition 
and function. After all, short-term diet-induced changes can already be detected after 24 hours 
[18]. Having carbohydrate fermentation processes as a core activity, the gut microbiota is the 
primary driver of energy and carbon fluxes in the colon. Often these saccharolytic fermentation 
processes consist of four stages performed by different members of the microbial community: 
First, the (usually) most prevalent bacterial species that perform the initial steps in the breakdown 
of complex plant polysaccharides into oligosaccharides [153]; next, specialized oligosaccharide 
degraders, such as bifidobacteria, provide the final breakdown steps of these carbohydrate 
chains generating short chain fatty acids (SCFAs) and gases; secondary fermentation takes place 
by “scavenging” microbes that utilize the final breakdown products of the previous step and 
convert these into SCFAs and gasses as well; finally, the specialized “keystone” species, such as 
methanogens, reductive acetogens, and sulfate-reducing bacteria, use these SCFAs and gases as 
energy sources and substrates [154]. The main SCFAs resulting from the fermentation processes 
have been shown to affect intestinal physiology (butyrate and propionate), or play a role in 
lipogenesis and gluconeogenesis [155]. Moreover, these bacterial metabolites have been shown to 
be a means to communicate with the host immune system, influencing the regulation of pro- and 
anti-inflammatory response mechanisms [156]. For most people consuming a Western style diet 
the carbohydrate fermentation is considered to mainly take place in the first, proximal, part of 
the colon, where most of the carbohydrates are depleted. Consequently, in the distal part of the 
colon, proteins and amino acids become the primary substrate for growth for the microbiota.  
Although the beneficial SCFAs can, to a certain extent, also be formed from amino acids and 
derivatives [157], such proteolytic fermentation processes tend to produce more (potentially) 
harmful metabolites such as amines, ammonia, p-cresol, phenols, and hydrogen sulfide. These 
proteolytic fermentation metabolites have indeed been shown to induce or enhance DNA damage, 
inflammation, leaky gut, and even cancer development in animal models [158]. Interestingly, 
an increased fiber or plant-based proportion in the diet can prevent such detrimental effects 
[158]. Therefore, the scientific basis for functional foods often aims to maintain or improve the 
saccharolytic fermentation profile throughout the length of the colon.
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Currently dietary strategies to modulate the composition or the activity of the human gut 
microbiota, among which prebiotics and probiotics are probably the most well-established dietary 
compounds [159], are becoming increasingly popular. Prebiotics, which usually are non-digestible 
oligosaccharides (NDOs), are defined as “selectively fermented ingredients that result in specific 
changes in the composition and/or activity of the gastrointestinal microbiota, thus conferring 
benefit(s) upon host health” [160]. Examples of non-digestible oligosaccharides that are currently 
used in a wide range of food products are: inulin, resistant starch, galacto-oligosaccharides and 
fructo-oligosaccharides (FOS). Next to a direct impact on the microbial community, prebiotics 
and fibres have an impact on availability of other nutrients, water content, and viscosity, which 
have various physiological consequences within and beyond the GI tract (for a review see [161]). 
Even though such physiological factors in the host GI tract are often ignored in study designs, 
they can have a vast impact on the microbiota as was found for gut transit time which was 
strongly associated to various frequently used phylogenetic markers of the gut microbiota status 
[162]. Prebiotics have been shown to have pronounced and reproducible health effects in various 
animal models for colon cancer, cardiovascular disease, IBD, IBS, obesity, type 2 diabetes (T2D) 
and more [159]. However, data in human studies has not yet produced definitive results, which 
is partly due to scarce amount of (well-powered) clinical trials. Moreover, the effective doses in 
animal models, usually about 10% w/w of the diet, would translate to about 50 g of fiber in 
the human situation which a rather challenging dose to reach in Western countries [159]. On 
the other hand, the utilization of prebiotics targets the saccharolytic fermentation profile in 
the colon and gives us further clues of the complex ecological interactions within the complex 
gut ecosystem. Such insights help defining what a healthy microbiota profile should consist of, 
although with current knowledge this definition is far from complete.

Probiotics are the second type of influential dietary components and are actual microbial 
organisms themselves, which can be either part of normal food products such as yoghurts or 
fermented milk-drinks, or can be supplemented in capsules or powders. The FAO/WHO 
definition of a probiotic is “live microorganisms which when administered in adequate amounts 
confer a health benefit on the host” [163]. Probiotics present perhaps a more well-known and, 
with the general population, a more popular method to modulate the gut microbiota. On the 
market the main probiotics available are members of the lactic acid bacteria (e.g. Lactobacillus, 
Streptococcus, and Bifidobacterium spp.) but other microbes, such as Bacillus clausii, Bacillus 
oligonitrophilis, Enterococcus faecium, Escherichia coli, Lactococcus lactis, Propionibacterium 
freudenreichii, and the yeasts Saccharomyces cerevisiae and Saccharomyces boulardii, are employed as 
well [164]. Probiotics are hypothesized to have antibacterial effects, anti-inflammatory effects and/
or the ability to alter the microbiota composition [165]. Moreover, probiotic bacteria have been 
shown to inhibit pathogen adhesion, probably due to competitive binding and stimulation of 
mucin production [166]. Many of the used probiotic strains produce antimicrobial substances like 
organic acids, bacteriocins, and diacetyl, however none of these substances have been reported to 
play key functions in vivo [167]. Despite this variety of molecular characteristics and mechanisms 
that have been postulated for the beneficial effects of probiotics [164], the exact mode of action 
remains to be determined as often in-depth characterization of the health promoting properties 
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of utilized probiotic strains is not performed [168]. The effectiveness of a priori characterization 
is shown by Lactobacillus reuteri NCIMB 30242, which was chosen for its bile salt-hydrolysing 
activity and indeed presented a reduction of the total and low density lipoprotein cholesterol 
in hypercholesterolaemic individuals upon ingestion [169]. It appears that consumption of 
probiotics does not show a tremendous (consistent) impact on the fecal microbiota composition 
in most studies [129, 170], although probiotic consumption has shown drastic impact on the small 
intestinal microbiota [171]. Moreover, a multi-species probiotic has shown that the community-
wide functionality, measured by gene expression and metabolite profile, was affected in mice 
[172]. This change in functionality provides some insight on what the functioning of a healthy 
gut microbiota entails.

Another more radical gut microbiota modulation procedure, both in terms of scope and 
acceptance, is fecal microbiome transplantation (FMT). Until now this procedure, which replaces 
the whole gut microbiota of a patient by the fecal microbiota of a healthy donor, has mainly been 
used as a last resort in patients suffering from recurring otherwise unmanageable Clostridium 
difficile infections [173, 174]. Here it has been shown unequivocally that FMT outperformes 
conventional (antibiotic) therapy in the treatment of this disease [175]. Due to the extremely high 
success rate of this treatment that went up to approximately 90%, interest has been generated to 
include FMT in treatment of other chronic disease states such as inflammatory bowel diseases 
(first UC studies, see [176]), irritable bowel syndrome, and even metabolic syndrome conditions. 
Interestingly, while most gut microbiota studies are mainly correlative with respect to host health 
status, FMT has shown a causal relationship between glucose homeostasis and the microbiota 
composition as volunteers with metabolic syndrome that received a FMT experienced an 
improvement of their insulin sensitivity [177]. This improvement was accompanied by an overall 
microbiota diversity increase, a rise in the levels of bacteria related to Roseburia intestinalis (a 
butyrate producer), and an increase in fecal butyrate content [177], which is in line with the 
emerging picture regarding the gut microbiota and obesity associated metabolic diseases discussed 
above. Though the recipient’s gut microbiota changes upon FMT, it usually does not completely 
reach the exact composition of the donor yet the recipient’s health is impacted [173, 177]. Hence 
the question remains what microbes or microbial functions are exactly required for an individual 
to end up with a “healthy gut microbiome”.

Healthy gut microbiome
Initial and successful pioneering studies on the human intestinal metagenome [99, 178, 179] 
were quickly followed by large-scale research initiatives, such as the European Metagenomics 
of the Human Intestinal Tract (MetaHIT) [9] and the Human Microbiome Project (HMP) 
[180], that have provided enormous amounts of metagenomic sequence data. Scientific efforts 
in the MetaHIT project concentrated on the gut microbiome and its associations with health, 
obesity and IBD states. Qin and coworkers published the first extensive fecal microbial gene 
set of 3.3 million non-redundant genes in 2010 [9], providing an unprecedented depth of 
functional insight in this microbial community. Mapping sequence reads per subject showed 
that the majority of the subjects shared approximately 40% of the genes of this catalogue, which 
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suggested the existence of a core metagenome [9]. Currently, the 3.3 million gene catalogue has 
received two substantial updates [30, 181] of which the last has increased the size to 9.8 million 
genes [30]. The HMP has generated an overview of the microbiota composition across 15 body 
sites, including the gut, from 242 healthy adults [182], as well as a set of approximately 800 
partial reference genomes from human associated microbes [180]. Both large-scale initiatives have 
generated vast and complementary resources which pave the way for understanding the “healthy 
gut microbiome”.

With the ever increasing awareness on the vast functional capacity residing within the 
microbiota and its possible roles in orchestrating human physiology through molecular and/
or metabolic host microbiota interactions (for a review see [183]), interest in the gut microbiota 
is currently stretching across a variety of scientific fields. From every angle a basic question is 
continuously inquired: “What is the core of a healthy gut microbiome?”. Moreover, can such 
a core microbiome be represented by one or more key bacterial members within our gut 
communities, or, in other words, does a core microbiota (composition) exist? Older, cultivation-
dependent study results do in general suggest that the majority of healthy adults have several 
bacterial isolates in common. However, cultivation-independent studies have, as of yet, failed to 
find a consensus on a human gut microbiota core. The latter is partly due to different definitions 
of such a core microbiota and the phylogenetic level at which the core is defined, but also due to 
variations in both the study populations investigated (in terms of health status, age, geography, 
and diet) and the techniques employed to study the microbiota composition, and their substantial 
differences in depth of analysis [7, 22, 182, 184-187]. 

Besides variations in study design and methodologies, the extremely high subject specific 
community composition profiles at species level complicates the identification of a common 
core microbiota even further [188]. Hence, there appears to be only a small overlap in the gut 
microbiota composition between human adults but the often observed high temporal stability 
within individuals [7, 189, 190] does suggest that the gut microbiota forms core bacterial populations 
that exist at a subject specific level. However, even subject specific core microbiota compositions 
are susceptible to age, diet, and environmental factors such as antibiotic usage. Nevertheless, 
the existence of a subject-specific microbiota core could explain why human individuals display 
highly variable metabolic and gut microbiota composition responses to dietary interventions 
[18, 191, 192]. Although these responses appear poorly predictable, some consequences are known. 
For instance, the generally accepted bifidogenic effect of dietary FOS supplementation appears 
to be inversely correlated to the Bifidobacterium levels prior to the supplementation period, i.e. 
the lowest baseline Bifidobacterium levels having the highest increase upon FOS consumption 
[193, 194]. Furthermore, from a meta-analysis of three dietary interventions the baseline levels of 
several bacterial groups could predict the responsiveness of the gut microbiota [195]. Notably, 
these predictive bacteria mostly belonged to the Firmicutes phylum and their response was 
non-linear but showed a high association with the serum cholesterol read-outs [195]. Therefore, 
information of an individual’s baseline gut microbiota could be key for successful nutritional and 
pharmaceutical treatments of metabolic disorders [191, 195, 196]. 
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When the first 3.3 million non-redundant gut microbial gene catalogue was published 
by Qin and coworkers [9], the existence of a general core was also addressed. The metagenomic 
analysis compared data against 675 complete genomes of Bacteria and Archaea that were known 
at that time, of which 194 genomes were of microorganisms originating from the intestinal tract. 
Depending on bacterial core prevalence definitions (percentage of subjects in which bacteria 
were detected) 24 to 51 species were found to represent a common core using this metagenomic 
approach (Table 1.5) in combination with 100 and 90% prevalence in the study-population, 
respectively. The same samples used in that study were also subjected to microbiota composition 
analysis by the HITChip [6] and this resulted in the detection of 83 and 135 common core 
species (only analyzing signals from representatives of cultivated bacterial isolates), with 100 
and 90% prevalence in the study-population, respectively (Table 1.5). Because many of the 
genomes of these cultured isolates are not yet complete or not determined to date, they are 
absent from the 650 complete genomes used in the metagenomic analysis. The latter discrepancy 
explains why the HITChip analysis identifies a larger common core microbiota compared to 
the metagenomic genome mapping approach (Table 1.5). The 135 species detected in more 
than 90% of the subjects, cover 49 genus-like groups (Figure 1.2) and displayed a large overlap 
with the species that were detected by metagenomic mapping, i.e. >86% of the species detected 
through metagenomic mapping that are also represented by specific probes on the HITChip 
were indeed detected by the latter platform (Table 1.5). Additionally, in the subjects used for 
the 3.3 million gene catalogue 197 uncultured species-like groups can be detected by HITChip 
analysis in more than 90% of the subjects, next to the 135 common species-like groups that are 
cultured (Figure 1.2). 

Table 1.5 Core bacterial species as found with metagenomic mapping (with a genome coverage of >1%) and HITChip 
analysis in the samples that were used for the construction of the 3.3 million gut gene catalogue [9]. In this comparison 
only the HITChip data representing the 329 cultured isolates that can be detected by the array were evaluated.

 Core bacterial species All subjects >90% of subjects
Core species detected by metagenomic-mapping of the 3.3 M gene catalogue

Core species detected by HITChip

24

83

51

135
Core species detected by both metagenomic-mapping and HITChip 

(Number of core species detected by metagenomic mapping that are represented 
by the HITChip probe sets)

14 (87.5 %)

(16)

33 (86.8%)

(38)

Previous studies underpin that although microbiota compositional profiles may be highly 
diverse among individuals, the corresponding functional gene repertoire of these communities 
is quite similar [22]. Such a microbial gene repertoire conservation evaluated at the level of COG 
categories, is essentially a reflection of functional redundancy within different bacteria, which is 
commonly observed in various habitats [197]. The latter is not surprising considering the fact that 
all essential household genes, such as DNA replication and repair, should be present in every 
living organism. Additionally in different subjects one can expect that despite the phylogenetic 
differences of their microbiota composition, the microbial community will still exert largely the 
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same functionality within the large intestinal niche. These observations question the biological 
importance of a common microbial core at a phylogenetic level (a microbiota core) and argue 
that a common microbial core exists at the gene repertoire level (a metagenomic core). After 

Nr.* Genus-like group Average relative abundance (%)
Akkermansia
Allistipes et rel.
Anaerostipes caccae et rel.
Bacteroides fragilis et rel.
Bacteroides intestinalis et rel.
Bacteroides ovatus et rel.
Bacteroides plebeius et rel.
Bacteroides splachnicus et rel.
Bacteroides stercoris et rel.
Bacteroides uniformis et rel.
Bacteroides vulgatus et rel.
Bifidobacterium
Bryantella formatexigens et rel.
Butyrivibrio crossotus et rel.
Clostridium cellulosi et rel.
Clostridium leptum et rel.
Clostridium nexile et rel.
Clostridium orbiscindens et rel.
Clostridium sphenoides et rel.
Clostridium stercorarium et rel.
Clostridium symbiosum et rel.
Coprococcus eutactus et rel.
Dorea formicigenerans et rel.
Eubacterium hallii et rel.
Eubacterium rectale et rel.
Eubacterium ventriosum et rel.
Faecalibacterium prausnitzii et rel.
Lachnobacterium bovis et rel.
Lachnospira pectinoschiza et rel.
Oscillospira guillermondii et rel.
Outgrouping clostridium cluster XIVa
Oxalobacter formigenes et rel.
Papillibacter cinnamivorans et rel.
Parabacteroides distasonis et rel.
Prevotella melaninogenica et rel.
Prevotella oralis et rel.
Prevotella tannerae et rel.
Roseburia intestinalis et rel.
Ruminococcus bromii et rel.
Ruminococcus callidus et rel.
Ruminococcus gnavus et rel.
Ruminococcus lactaris et rel.
Ruminococcus obeum et rel.
Sporobacter termitidis et rel.
Streptococcus mitis et rel.
Subdoligranulum variable et rel.
Sutterella wadsworthia et rel.
Tannerella et rel.
Uncultured Bacteroidetes

Relative abundance (%)

1
12
8
8
2
6
5
3
2
3
13
1
9
4
4
4
4
12
7
1
21
7
14
5
6
5
31
6
10
20
4
2
4
9
3
4
2
5
2
2
5
1
24
9
2
13
2
3
2

10 110 010 -1

Uncultured

Cultured

Figure 1.2 Number of core species-like groups and the average relative abundance (in %) of their corresponding 49 
genus-like groups that are > 90% prevalent in the study-population (as deduced from HITChip profiling) used for the 
construction of the 3.3M bacterial gene catalogue. Bar colors represent the ratio of the core species-like groups that have 
been cultured (green) versus uncultured isolates (brown) within each of their corresponding genus-like groups. *) Number of 
species-like groups for each genus-like group.
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the establishment of metagenomics, which captures DNA of both cultured and uncultured 
isolates, some have argued that microbial ecology no longer needed the traditional laboratory 
approaches like cultivation to complete our knowledge of the gut microbiota [198]. Nonetheless, 
metagenomics has its pitfalls and limitations which can actually only be solved or complemented 
with traditional, and cultivation based approaches. Moreover, our current understanding of 
the microbiome functionality is far from complete, which is largely due to the fact that the 
most prevalent functionalities that are specific to the gut environment are unknown, and the 
biggest limitation is that significant amounts of metagenomic sequence data (approximately 60% 
[9]) have no close match in reference databases, which are predominantly filled by sequences 
from cultured isolates, leaving these metagenomics sequences without (functional) annotation. 
Therefore, it may be too early to draw conclusions from metagenomics derived functional profiles 
due to the incompleteness in functional knowledge of the genes encoded by the microbiota. 
Besides being incomplete due to the lack of genetic information from uncultured isolates, this 
information gap is also a reflection of the limited understanding and characterization of the 
(anaerobic) metabolic processes and pathways executed by the microbial community members. 
The latter is particularly relevant considering the fact that while trying to assess a phylogenetic 
core, as discussed above, the numbers of uncultured species-like groups outnumber the cultured 
representatives by at least 2-3 fold (Figure 1.2). Furthermore, various bacteria-bacteria or 
bacteria-host interactions can still only be discovered in laboratory setting [199, 200], as they could 
not (yet) be predicted with the current algorithms or systems biology approaches. Nevertheless, 
metagenomics has significantly improved our knowledge of the gut microbiota [201] and various 
connections have been made with factors shaping the microbiota, such as diet, health status of 
the host, and age. Yet the fundamental basis of these advancement stems from the knowledge 
gained from reference databases containing cultivation and characterization studies. Hence, it 
would be recommendable that (ideal) future studies employ both sequence-based technologies 
and cultivation methodologies to complement each other and further advance our insight into 
the gut eco-system [202].
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Thesis outline
From the various factors that can shape the intimate cross-talk between the host and its gut 
microbiota, the host genotype is probably the most stable factor. Chapter 2 aims to describe 
the influence of the host genotype and shows why the genotype should still be taken into 
consideration even though environmental factors, like diet, may have a more noticeable effect on 
the microbial gut community. Next, Chapter 3 both illustrates the power of the host genotype 
as well as addressing the link between the host energy homeostasis and the gut microbiota in a 
cohort of monozygotic twins, among which half of the twin pairs are discordant for their Body 
Mass Index (BMI). The global microbiota composition was studied by using a phylogenetic 
microarray and the results of this approach in the twin cohort has led to the hypothesis that 
several bacterial groups may vary in abundance along with the host BMI. Nevertheless, the 
profiles of the members within these taxonomic groups were surprisingly conserved, likely due 
to the host genotype.

The second part of this thesis aims to map the modulation of the gut microbiota that 
can be brought about by different types of dietary intervention. Treatment of Irritable Bowel 
Syndrome (IBS), a globally prevalent and chronic disorder, is shifting its focus to modulation of 
the gut microbiota. Although several trials with probiotic treatment have not shown a consistent 
success rate, a multi-species probiotic consisting of Lactobacillus rhamnosus GG, Lactobacillus 
rhamnosus Lc705, Propionibacterium freudenreichi PAJ, and Bifidobacterium animalis BB12 was 
successful in reducing IBS symptoms. In Chapter 4 phylogenetic microarray analysis of the gut 
microbiota of the participants of this multi-species probiotic trial is reported. No consistent 
drastic shifts in the bacterial composition were observed, yet subtle changes measurable in the 
co-occurrences between bacterial taxa, were exclusively identified in the treatment group, which 
suggests the treatment induced a re-alignment or re-structuring of the microbiota. Modulation of 
the gut microbiota with the prebiotic FOS showed both drastic shift in microbiota composition 
as well as structural changes in the bacterial co-occurrence networks as studied by phylogenetic 
microarray analysis, which is described in Chapter 5. Interestingly, knowledge on cultured 
representatives of the taxa involved in the co-occurrence changes due to FOS consumption raises 
a new hypothesis regarding butyrate, an important short chain fatty acid for host physiology, 
production routes in the gut.

The third part of this thesis combines molecular or sequence-based technologies with 
cultivation and characterization approaches in a laboratory setting. Chapter 6 shows how 
combining two complementary metagenomic approaches, i.e. phylogenetic microarray analysis 
and untargeted shotgun metagenomics, could guide development of media for future isolation and 
cultivation attempts, as well as targeting various uncultured organisms based on their remarkable 
genetic potential. Chapter 7 provides a novel targeted approach to mine metagenomic gene 
catalogues and harvest genes of interest (or domains of genes) to characterize their predicted 
functionality as well. This targeted approach was validated with fibronectin binding domains.

Finally, Chapter 8 summarizes the research described in this work and its contribution 
to current knowledge and understanding of gut microbiota. Further integration and future 
improvement of the approaches presented here is provided as well. 
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Abstract
The human gastrointestinal tract (GI) microbiota acts like a virtual organ and is suggested 
to be of great importance in human energy balance and weight control. This study included 
40 monozygotic (MZ) twin pairs to investigate the influence of the human genotype on GI 
microbiota structure as well as microbial signatures for differences in body mass index (BMI). 
Phylogenetic microarraying based on 16S rRNA genes demonstrated that monozygotic twins 
have more similar microbiota compared to unrelated subjects (p < 0.001), which allowed the 
identification of 35 genus-like microbial groups that are more conserved between MZ twins. 
Half of the twin pairs were selected on discordance in terms of BMI, which revealed an inverse 
correlation between Clostridium cluster IV diversity and BMI. Furthermore, relatives of 
Eubacterium ventriosum, Roseburia intestinalis were positively correlated to BMI differences, and 
relatives of Oscillospira guillermondii were negatively correlated to BMI differences. Lower BMI 
was associated with a more abundant network of primary fiber degraders, while a network of 
butyrate producers was more prominent in subjects with higher BMI. Combined with higher 
butyrate and valerate contents in the fecal matter of higher BMI subjects, the difference in 
microbial networks suggests a shift in fermentation patterns at the end of the colon, which could 
affect human energy homeostasis. 
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Introduction
The microbial cells inside the human gastrointestinal (GI) tract are collectively called the GI 
microbiota and provide an extensive genetic function counterpart to the host genome [1-12]. 
Previous studies have shown that GI microbiota is host-specific and GI tract region-specific 
[13-15], aberrant in composition and stability in patients suffering from GI disorders such as 
Crohn’s disease [16], and associated to host energy homeostasis [17-21]. Analysis of global fecal 
microbiota introduced the concept that human GI microbiota appeared to have three distinct 
structural biome-types called enterotypes [22]. Although the enterotype distinction did not appear 
to be correlated to health status or host demography, recent 16S rRNA based studies by Wu and 
co-workers [23] and by Huse and co-workers [24] suggest that the distinctive biomes among the 
human GI microbiota appear to be more like a continuum with gradients of the main enterotype 
driving taxa, which could be driven by long-term dietary habits. 

Human energy homeostasis varies greatly between persons but monozygotic (MZ) twins 
show more resemblance in the variations of their energy balance [25]. Furthermore, current 
literature putatively links a large number of human genes to variations in body mass index (BMI). 
Recruitment of MZ twins discordant for BMI in studies exploring human transcript profiles has 
revealed several potential obesity marker-genes [26] and potential (mitochondrial) pathways that 
are associated with major BMI increases [27]. However, the identified human genes account for 
a relatively small amount of the observed variance in energy homeostasis [28, 29]. Recent findings 
suggest that the GI microbiota is important for the energy and metabolic homeostasis of its 
host. In mice clear links have been observed between energy homeostasis and GI microbiota, 
for instance: the resistance to obesity development of Germ-free mice [18], stimulation of weight 
gain by GI tract colonization [20], interaction between GI microbiota and fatty acid storage 
mechanisms [17, 18], variations between genetic obese (ob/ob) and lean mice in the relative 
abundances of the bacterial phyla Bacteroidetes, Firmicutes and Actinobacteria [21, 30]. 

In contrast to the associations found in mice, studies on the relation between human 
energy homeostasis and GI microbiota have generated conflicting results. Analogous to results 
obtained in mice, Ley and co-workers detected fewer Bacteroidetes and more Firmicutes in 
obese subjects compared to lean controls [19]. Moreover, this study also revealed that the relative 
abundances of Bacteroidetes increased while Firmicutes decreased when the subjects decreased 
their BMI by following either a fat restricted or carbohydrate restricted diet [19]. Although 
Duncan and co-workers confirmed a significant decrease in Firmicutes when subjects followed 
a low-carbohydrate weight-loss diet [31], several other human studies did not confirm these 
differences in Bacteroidetes to Firmicutes (B:F) ratio [31-33]. Schwiertz and co-workers even 
concluded that relative abundance of Firmicutes was reduced in obese subjects [33], but they also 
reported that higher levels of short chain fatty acids (SCFAs) were present in fecal material of 
obese subjects compared to lean controls, possibly suggesting that the amount SCFAs produced 
is a more prominent determinant of the BMI status than the phylogenic distributions of the 
microbiota [33]. The conflicting results in these studies may be explained by the heterogeneity 
among human subjects, with respect to their genotype and lifestyle as well as specificity of an 
individual’s microbiota. Furthermore, these studies have compared subjects on the opposite 
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extremes of the BMI scale (lean and obese), while the microbiota is exposed to fundamentally 
different “environmental” factors in both states that go beyond BMI alone, such as diet, host 
metabolic and hormonal factors [34, 35], and low-grade systemic inflammation [36]. 

Results of mice studies often lead to the hypothesis that the mammalian host-genotype, 
in particular factors for the immune system phenotype, has a huge impact on the GI microbiota 
characteristics [37]. Genotype, however, is not determined so far for human subjects participating 
in microbiota studies. Consequently, these human studies do not take the host-genotype into 
account as a determinant of the phenotype, while the genotype is known to be heterogeneous 
amongst modern human populations. 

Genotypic influences could be minimized by evaluating phenotypic variations in MZ twins 
allowing pair-wise comparisons within a fixed genotype. An early study of separately living MZ 
twins and their marital partners revealed that for co-twins the within-pair microbiota similarity 
is significantly higher compared to unrelated individuals, while the microbiota similarity for 
married couples is not significantly higher compared to unrelated individuals [38]. Similar 
observations were reported in later studies [39, 40]. Furthermore, differences in GI microbiota 
could be related to disease phenotype by comparing MZ twin pairs concordant and discordant 
for inflammatory bowel diseases [41-43]. A study by Turnbaugh and co-workers [40] on a cohort 
of obese and lean adult females, monozygotic and dizygotic twin pairs, demonstrated that the 
microbiota in obese pairs was reduced in bacterial diversity and contains an altered representation 
of bacterial genes and metabolic pathways compared with lean pairs [40]. This study, however, 
only included twins with concordant phenotypes in terms of BMI, again making both host 
genetics and absolute BMI values confounding variables between the groups of subjects. To 
identify specifically microbiota signatures of BMI, we compared the microbiota composition in 
MZ twin pairs that are concordant and discordant in BMI. This enabled us to achieve our main 
objective, which was to define microbiota signatures that correlate directly with BMI differences 
independent of the host genotype and absolute BMI values.

Materials & methods

Subjects, sample size and sampling
This study was approved by the METC of Wageningen University. A selection of MZ twin pairs 
was contacted from the East Flanders Prospective Twin Study, which presently has over 7.000 
twins. Subjects who used medication that may affect the GI microbiota, prebiotics, or probiotics 
within one month before sampling were excluded. Subjects with pre-existing bowel diseases and 
subjects that were pregnant or breast feeding were excluded as well. Since there are no previous 
HITChip studies on MZ twins, the power calculation was based on intra-individual microbiota 
variation observed in healthy subjects [15] which we expect to be close to that within paired MZ 
twin microbiotas. Based on the expectation that we will have at least a proportional difference 
of 0.18 (SD 0.04), we calculated that 19 pairs per group would suffice to address our objective 
(assuming α = 0.05 and power 1- β = 0.20). Therefore, our cohort consisted of 20 twin pairs of 
varying genders and ages (> 18 years) that were previously recorded to have a BMI difference 
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of more than 5, and 20 age- and gender-matched control MZ twin pairs with no significant 
difference in BMI. Subjects were able to understand the written study information and signed an 
informed consent. Fecal samplings, bodyweight and length measurements were collected from 
these volunteers (Table S3.1). Furthermore, the volunteers filled in a questionnaire concerning 
changes in their dietary habits, medication, and gastrointestinal symptoms of the last 4 weeks 
prior to sampling (Table S3.1). Fecal samples were collected at the volunteers home, frozen 
immediately, and transported on dry ice to the laboratory where they were kept at -80 °C until 
further analysis. 

Twin pair classification into BMI phenotypes
No subjects were underweight (BMI < 18.5). Only two twin pairs and one sibling of a third 
pair were obese (BMI > 30). To define which twin pairs were discordant in terms of weight 
maintenance the recommendation by Stevens and co-workers was used [44] (details see SI 
Materials and Methods), which in a maximum BMI difference for within-pair concordance of 
1.35 kg/m2 and a minimum BMI difference for within-pair discordance of 2.7 kg/m2. This 
definition ensures that twins classified as discordant truly have different phenotypes. Discordant 
twins were subdivided into two groups based on their relative weight compared to their own 
sibling. This resulted in a “lower BMI” group for the leaner siblings and a “higher BMI” group for 
the heavier siblings. At the moments of sampling 18 pairs were discordant, 16 were concordant, 
and 6 occupied the grey area between our definitions of concordance and discordance (indistinct 
twins). 

Microbial DNA extraction, microarray hybridization and data extraction
Microbial DNA was extracted utilizing the repeated bead beating protocol [45]. Fecal microbial 
diversity and composition was studied in detail using the Human Intestinal Tract chip (HITChip) 
as described previously [14] (further details see SI Materials and Methods). This phylogenetic 
microarray has been shown to be a powerful tool for deep GI tract microbiota composition analysis 
and has been benchmarked against several classical 16S rRNA gene-based methodologies, such as  
qPCR, FISH, and 454 pyrosequencing [14, 46-48] as well as metagenomics [22]. HITChip probes 
are assigned to three phylogenetic levels: level 1, defined as order-like 16S rRNA gene sequence 
groups; level 2, defined as genus-like 16S rRNA gene sequence groups (sequence similarity > 
90%); and level 3, phylotype-like 16S rRNA gene sequence groups (sequence similarity > 98%) 
[14].

Organic acid and short chain fatty acid concentration  measurement
To determine metabolic profiles, fecal samples were diluted in deionized water to a 10% (w/v) 
concentration and subsequent HPLC analysis was performed as described previously [49] to 
determine citrate, malate, succinate, lacate, fumarate, formate, acetate, propionate, iso-butrate, 
butyrate, and valerate concentrations. The HPLC system was equipped with a Shodex S1821 
column and temperature was set to 70 °C. 
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Data analysis and statistical methods
For the total microbiota normalized signal values of all unique HITChip probes were used to 
calculate Simpson’s Diversity index for each sample and the Spearman’s correlation coefficient 
between different samples. Unique probe signal values per level 1 and per level 2 group (with >20 
probes) group were used to calculate diversity and similarities for the groups of each phylogenetic 
level separately. Spearman’s correlation coefficients between random unrelated subjects within 
this cohort were compared to Spearman’s correlation coefficients within twin pairs by a Student’s 
t-test with unequal groups.

For each sample relative abundances were calculated for the groups of each specificity level 
by summing all signal values of the probes targeting a group and dividing by the total of all probe 
signals for the corresponding sample. All comparisons between the discordant twin groups were 
pair-wise and significance were assessed with dependent 2-group Wilcoxon signed rank tests. 
For all statistical tests that were performed on multiple parameters the obtained p-values were 
adjusted by a Bonferroni correction. All p-values noted in text are adjusted p-values with p<0.05 
being regarded as significant.

Results

Monozygotic twins have highly similar microbiotas.
A host-genotype controlled setup for this study was realized by recruiting MZ twins. Twin pairs 
enrolled in this study were contacted from the East Flanders Prospective Twin Study (Flanders, 
Belgium) [50]. A total of 40 MZ twin pairs volunteered to donate fecal material from which DNA 
was extracted for microbiota composition analysis with phylogenetic microarray the Human 
Intestinal Tract Chip (HITChip [14]). This twin cohort consisted of 11 male pairs (age 19-43 
years, BMI 18.5-34.7 kg/m2, see Table S3.1) and 29 female pairs (age 20-43 years, BMI 20.2-
34.7 kg/m2). This selection consisted of 20 twin pairs of varying genders and ages that were 
previously recorded to have a BMI difference of more than 5 units. In addition 20 age and gender 
matched control twin pairs with no significant difference in BMI were selected from the twin 
cohort (Table S3.1).

Similarity of the HITChip profiles between all subjects was calculated to determine the 
influence of the human genotype influence on the GI microbiota composition. Both, co-twins 
concordant (∆BMI < 1.35, n = 16) and discordant (∆BMI > 2.7, n = 18) for BMI showed a 
significantly higher similarity of their GI microbiota profile compared to random-paired subjects 
(p < 0.001, Figure 3.1A). Similarity coefficients between co-twins did not significantly correlate 
to age or the length of time that the twins had been living separately, corroborating the previously 
reported impact of the host-genotypic factors on the microbiota composition [38-40].
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To determine which microbial groups contributed the most to the high within-pair 
similarity, similarity indices between all subjects were calculated for all microbial subgroups. 
These subgroups can be defined at different phylogenetic levels, such as level 1 which is defined 
as order-like 16S rRNA gene sequence groups, and level 2 which is defined as genus-like 16S 
rRNA gene sequence groups (sequence similarity > 90%), as described previously [14]. Within-
pair microbiota profile similarity of each level 1 and 2 subgroup was higher compared to 
random-paired subjects (Figure S3.1 and S3.2), although this difference was not significant for 
every subgroup. The co-twins showed a significantly higher within-pair similarity compared to 
random-paired subjects for 12 order-like (level 1) and 35 genus-like (level 2) groups (Figure 
3.1B and C). Moreover, for Clostridium clusters XI and XIVa and for 27 genus-like groups the 
within-pair similarities were even significantly higher than the total microbiota similarity (Figure 
3.1B and C, Table S3.2). A high similarity index within a bacterial group means that the probe 
signals occur in (nearly) the same ratios relatively to one another, implying that the presence and 
ratios of specific bacteria belonging to certain groups are highly conserved between the subjects. 
Hence, these structurally conserved bacterial groups within MZ twin pairs acknowledge the 
existence of a structural core in the human GI microbiota, which correlates with host genetics 
and shared (early life) environmental exposures and therefore can be considered as “imprinted 
structural cores”.

Next to an imprinted structural core the existence of a general core based on phylotype 
abundance was investigated. For HITChip data phylotype-like groups are defined as 16S rRNA 
gene groups with a sequence similarity of > 98%. Above the array background specific signals 
of 96 phylotype-like were found in all subjects (100% prevalence). These phylotype-like groups, 
which comprise the general core in this twin cohort, are shown in Table S3.3, and Figure S3.3. 
In this twin cohort the general core accounts on average for 34.7% (SD 12.8%) of the total 
microbiota. However, the abundance of this general core varies greatly between the subjects 
(from 10.6% for twin 10A to 81.5 % for twin 26A),  indicating enormous subject specificity at 
phylotype level in the GI tract.

Clostridium cluster IV is less diverse in higher BMI sibling group.
To evaluate if microbial groups are associated to BMI and host genetic traits, microbiota 
composition was compared between twins that are concordant and discordant for BMI. At the 
moment of sampling the BMI difference for 15 of the selected discordant twins was less than the 
5 units recorded previously. Six twin pairs were between the ∆BMI thresholds used to determine 
concordance and discordance (1.35 > ∆BMI > 2.7) and were not taken into account. Each 
discordant twin pair was split up into two groups: the sibling with the lowest BMI of each pair was 
placed in the “lower BMI siblings” group and the sibling with the highest BMI of each pair was 
placed in the “higher BMI siblings” group. At the highest phylogenetic levels no differences were 
observed between the two discordant twin pair groups. No consistent Bacteroidetes:Firmicutes 
(B:F) ratio differences were observed in pair-wise comparison of lower- and higher-BMI siblings 
(Figure S3.1). Similarly, B:F ratios did not correlate with absolute BMI values. Moreover, these 
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pair-wise comparisons did not reveal consistent differences between the total microbial diversity 
(inverse Simpson’s index of diversity), which appeared to be hugely variable and between pairs 
ranged from 1.8 (twin pair 2; Table S3.1) to 149.0 (twin pair 30; Table S3.1). This variability 
indicates that the total microbiota diversity does not relate to the phenotypic differences in this 
twin cohort.

Figure 3.1 Gastrointestinal microbiota similarity in monozygotic twins. (A) Box-whisker plots of total microbiota profile 
similarity. Spearman’s correlation coefficient was calculated for random unrelated subjects and between monozygotic twins. 
Average microbiota similarity between twins concordant for BMI and twins discordant for BMI are both significantly higher than 
between unrelated subjects (p = 1 e-4, p = 1 e-7, respectively). Dot-plots are shown of the mean order-like (B) similarity abetween 
random-paired subjects and monozygotic twins. Order-like groups that were significantly different in similarity index are 
presented. The similarity indices of all order-like groups are represented in figure S3.1. Mean within-pair Spearman’s correlation 
coefficient values (depicted by black dots) and are relative to the mean Spearman’s correlation coefficient values of random 
unrelated subjects within this cohort (depicted by open squares), for each phylogenetic group. The plot-labels describe the actual 
mean Spearman’s correlation coefficient value (unrelated subjects / monozygotic twins). Error bars represent 95% confidence 
intervals around the respective mean values. Asterisks indicate the level of significance of the corrected p-value: *) p < 0.05, **) 
p < 0.01, ***) p < 0.001.
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However, diversity at order-like (level 1) groups indicated that Clostridium cluster IV was 
significantly lower in diversity in the higher BMI siblings group (p = 0.012), indicating that 
Clostridium cluster IV diversity decreases when BMI increases, independent of the absolute BMI 
value of the lower-BMI-sibling (Figure 3.2A). Overall, the diversity of Clostridium cluster IV in 
the lower BMI siblings group is more comparable to the control group than the diversity in the 
higher BMI group. 

Uncultured Clostridiales I p0.329 / 0.459) *
Fusobacteria p0.075 / 0.195) *

Escherichia coli et rel. p0.272 / 0.415) *

1.5 2.0 2.5 3.0 3.5

Uncultured Clostridiales II p0.481 / 0.581) ***
Tannerella et rel. p0.699 / 0.761) **

Subdoligranulum variable et rel. p0.824 / 0.864) *
Streptococcus mitis et rel. p0.874 / 0.899) ***

Streptococcus intermedius et rel. p0.855 / 0.888) **
Streptococcus bovis et rel. p0.892 / 0.914) ***

Sporobacter termitidis et rel. p0.757 / 0.811) ***
Ruminococcus obeum et rel. p0.840 / 0.875) **
Ruminococcus gnavus et rel. p0.864 / 0.905) ***
Roseburia intestinalis et rel. p0.854 / 0.876) **

Parabacteroides distasonis et rel. p0.852 / 0.873) *
Papillibacter cinnamivorans et rel. p0.872 / 0.896) ***

Outgr. Clostridium cluster XIVa p0.793 / 0.819) *
et rel. p0.782 / 0.810) *

Eggerthella lenta et rel. p0.619 / 0.686) *
Dorea formicigenerans et rel. p0.807 / 0.849) ***
Coprococcus eutactus et rel. p0.808 / 0.857) ***
Clostridium symbiosum et rel. p0.818 / 0.863) ***
Clostridium stercorarium et rel. p0.688 / 0.750) *

Clostridium sphenoides et rel. p0.863 / 0.886) **
Clostridium ramosum et rel. p0.688 / 0.767) **

Clostridium orbiscindens et rel. p0.809 / 0.845) ***
Clostridium nexile et rel. p0.905 / 0.919) ***
Clostridium leptum et rel. p0.800 / 0.837) **
Clostridium difficile et rel. p0.783 / 0.832) *
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Figure 3.1 (continued) Gastrointestinal microbiota similarity in monozygotic twins. Dot-plots are shown of the mean 
genus-like (C) similarity between random-paired subjects and monozygotic twins. Genus-like groups that were significantly 
different in similarity index are presented. The similarity indices of all genus-like groups are represented in figure S3.2. Mean 
within-pair Spearman’s correlation coefficient values (depicted by black dots) and are relative to the mean Spearman’s correlation 
coefficient values of random unrelated subjects within this cohort (depicted by open squares), for each phylogenetic group. The 
plot-labels describe the actual mean Spearman’s correlation coefficient value (unrelated subjects / monozygotic twins). Error 
bars represent 95% confidence intervals around the respective mean values. Asterisks indicate the level of significance of the 
corrected p-value: *) p < 0.05, **) p < 0.01, ***) p < 0.001.
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BMI phenotype correlates with signatures in genus-like microbial groups.
To determine if quantitative differences in microbiota composition were consistently different 
between the higher BMI siblings and the lower BMI siblings groups given an identical genetic 
background, relative abundances of specific microbial groups were compared and contrasted. 
This revealed that the genus-like (level 2) groups Eubacterium ventriosum et rel. and Roseburia 
intestinalis et rel. were significantly more abundant in the higher BMI siblings (p = 0.014 and p 
= 0.003, respectively; Figure 3.2B), while and Oscillospira guillermondii et rel. was significantly 
more abundant different in the lower BMI siblings (p = 0.014; Figure 3.2B). These three genus-
like (level 2) groups seem to co-occur in two distinct ecological networks with several other 
genus-like groups in all subjects when using a Spearman’s correlation coefficient cut-off of > 
0.6 and < -0.6 (Figure 3.2C). Such ecological networks may visualize potential cooperation 
(mutualism or commensalism) and competition between the microbial groups. The first network, 
which is enriched in lower BMI sibling group, is centered around Oscillospira guillermondii et 
rel. and contains three other genus-like (level 2) groups which encompass isolates associated 
with degradation of plant material: Clostridium cellulosi et rel. [51], Ruminococcus bromii et rel. 
[52, 53], and Sporobacter termitidis et rel. [54]. Therefore, this network seems to be specialized in 
degradation of complex fibers, marking this network as a primary degrader network. Degradation 
of complex fibers can yield fermentation products, such as partially degraded oligosaccharides, 
acetate and lactate, which in turn can be used as substrates for those butyrate producers that act 
like scavengers [55]. The second network, which is enriched in the higher BMI sibling group, 
includes Eubacterium ventriosum et rel. and Roseburia intestinalis et rel. which both contain 
known butyrate producing isolates capable of degrading fibers themselves [56, 57]. Furthermore 
this network also includes Eubacterium rectale et rel. which is another group with known butyrate 
producers. Therefore, the second network seems to be a butyrate producing network.

Short chain fatty acid profiles show within-pair differences in discordant 
twins.
Since both discordant siblings were found be enriched in different fermentation networks 
metabolic profiling was performed to confirm if these differences were visible in the fermentation 
products of these sibling groups as well. Although several organic acids were not detected in 
this cohort (i.e. citrate, lactate, fumarate, and formate), acetate, propionate and butyrate were 
the most dominating metabolites in both groups From all detected organic compounds only 
butyrate and valerate were present at significantly higher concentrations in higher BMI siblings 
compared to their lower BMI siblings (Table 3.1), which is in line with the predicted networks  
(Figure 3.2C).
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Table 3.1. Fecal organic acid and short chain fatty acid concentration of twins discordant and concordant for BMI. 
Citrate, lactate, fumarate, and formate were not detected. Statistical testing of between the concentrations of lower BMI sibling 
and higher BMI sibling groups was performed with paired dependent 2-group Wilcoxon signed rank tests and p-values are 
reported (significant p-values are in bold).

Component Lower BMI siblings 
(n = 16)
(mean ± SDE)

Higher BMI siblings 
(n = 16)
(mean ± SDE)

p-value Controls
(n = 32)
(mean ± SDE)

Acetate 56.44 +- 6.38 74.41 ± 9.04 0.252 56.97 ± 6.49
Butyrate 13.76 +- 1.59 25.12 ±  3.51 0.013 16.40 ± 1.90
Iso-butyrate 0.23 +- 0.14 1.15 ±  0.33 0.067 1.09 ± 0.29
Malate 10.56 +- 2.60 25.71 ± 8.3 0.403 11.81 ± 2.84
Propionate 16.82 +- 1.76 25.25 ±  4.04 0.193 15.86 ± 1.42
Succinate 0.64 +- 0.35 0.03 ± 0.03 0.178 1.41 ± 1.21
Valerate 1.47 +- 0.30 3.43 ± 0.62 0.006 2.00 ± 0.30

Discussion 
Human GI microbiota and its relation to differences in BMI was investigated in a host-genotype 
controlled setup by analyzing fecal samples of MZ twins. The cohort comprised of MZ twins 
discordant and concordant for BMI, allowing us to assess the influence of BMI differences 
independent of the absolute BMI value of the twins. With this MZ twin control study we were 
also able to control for gender, age, birth weight and other prenatal and postnatal exposures 
shared by the co-twins. Furthermore, with 80 subjects containing 40 different human genotypes, 
this cohort allowed to assess more generic topics like the human GI microbiota core.

Due to this variety of core definitions and molecular techniques employed in current 
literature no consensus on a general human GI microbial core has emerged [15, 40, 58-62]. In our 
cohort we could define a general core microbiota of 96 phylotype-like groups prevalent in all 
subjects that accounts for 34.7% of the total microbiota (SD 12.8%). However, in line with recent 
observations [62], this general core is very dependent on detection threshold and furthermore 
highly subject specific, as even the most prominent phylotype-like groups comprised only 0.1 
- 0.22% of the total microbiota in some subjects. Our assessment of a general phylogenetic GI 
microbiota core agrees with various previous studies, however Turnbaugh and co-workers and 
Tap and co-workers did not find a common microbial core [40, 59]. Notably Turnbaugh and co-
workers used a higher relative abundance threshold than we used here, i.e. 0.5% [40]. Although 
Tap and co-workers defined a phylogenetic core that accounted for 35.8% of the total sequences 
from their cohort [59], their core definition only accounts for 8.1% of the total signals in our twin 
cohort. Next to methodology and the actual core definitions, the high subject specificity of core 
phylotypes complicates assessment of the general GI microbiota core. 

In contrast to a general genotype independent core based on phylotype abundance, a 
genotype-dependent structural core (at higher phylogenetic levels) was much more pronounced 
in our data set. This study demonstrates that the human genotype and possibly early-life stimuli 
exhibit a strong influence on the GI microbiota structural composition and extends earlier 
findings on twins and their relatively high degree of inter-pair microbiota similarity [38, 63]. 
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Host metadata (Table S3.1) revealed no factors that significantly influenced the microbiota 
profile similarity. Yet MZ twins have GI microbiota profiles that are more similar to each other 
than to random unrelated subjects, despite the fact that half of them is discordant in terms 
of BMI (Figure 3.1A). Within-pair microbiota similarity was not equally represented over the 
phylogenetic subgroups (Figure S3.1 and S3.2). From different phyla several subgroups displayed 
within-pair profiles which where conserved among MZ twin pairs (Figure 3.1B and 1C, Table 
S3.2). Interestingly, most of the conserved phylogenetic subgroups are significantly higher 
compared to the total within-pair microbiota similarity. Several other genus-like groups were 
found to be very dissimilar compared to the total microbiota similarity, which include some 
facultative anaerobes that are known to be fastidious (Figure S3.2). Although this could suggest 
that these groups likely respond quickly to changing conditions, this remains speculative. The 
conserved profiles do not necessarily mean that the corresponding groups are present at similar 
abundance levels, for instance, Roseburia intestinalis et rel. and Eubacterium ventriosum et rel. 
are less abundant in the lower BMI siblings compared to their higher BMI siblings (Figure 
3.2B). Similarities of the conserved genus-like groups were independent of host phenotype (BMI 
related or otherwise). Therefore, the human microbiota appears to have an imprinted structural 
core. Some of the microbial groups of the imprinted structural core are more strongly genotype 
dependent, like Clostridium ramosum et rel., Escherichia coli et rel., Eggerthella lenta et rel., and 
genus-like groups of Fusobacteria and uncultured Clostridiales, as their within-pair similarity is 
at least 10% higher compared to random-paired subjects. From the imprinted structural core 
Clostridium nexile et rel., Ruminococcus gnavus et rel. and Streptococcus bovis et rel. have the 
highest within-pair similarity (>0.9 Spearman’s correlation coefficient) but they are also highly 
similar in random-paired subjects. The existence of an imprinted structural core strengthens 
and extends earlier studies which link human genotype to GI microbiota composition [38, 63]. 
Moreover, scientific findings have not yet established the exact potency of early-life epigenetic 
imprinting on adult human beings. MZ co-twins have likely experienced the same stimuli and 
conditions during early-life. Whether or not early-life dietary influences are important, next to 
the host-genotype, for GI microbiota composition and the imprinted structural core remains an 
outstanding question. By design, this study circumvents early-life influences by pair wise analyses 
between co-twins with an identical genetic background. 

Remarkably, approximately half of the genera that are structurally conserved within 
MZ twin pairs were previously reported to be driving genera for the classification of the three 
enterotypes [22]. Although enterotypes are classifications based on microbial abundance levels 
[22] while the imprinted structural core members are not necessarily highly abundant in every 
subject, it is noteworthy that we observed a significant overlap between bacterial groups that are 
important for enterotype classification and the imprinted structural core. Finding these particular 
members to be part of the imprinted structural core adds to the debate on  the classification of the 
GI microbiota structure, i.e. whether the GI microbiota can truly be classified into distinct types 
(enterotypes) or if the GI microbiota should be regarded as a “state” (a part of a continuum). 
Our data indicate that the imprinted structural core harbors the capacity to form each enterotype 
(Table S3.2), thereby favoring the previous observations that enterotypes can best be seen as 



3

 Chapter 3 

82

distinct states, rather than distinct types. This finding deserves more attention in longitudinal 
dietary studies, especially since drivers from all three enterotypes are found to be structurally 
conserved per genotype and not just the drivers of one of the proposed enterotypes. 

In previously reported studies human genotype and phenotype could not be distinguished 
when reporting on the GI microbiota of lean and obese individuals. High expectations are raised 
in current literature about the role of GI microbiota on host energy homeostasis and weight 
control. This may not be justified given the fact that in this twin population with an identical 
genetic background discordance for BMI do not spectacularly differ in GI microbiota. It appears 
to be unlikely for genetically identical people to diverge in BMI as much as the subjects in 
cross sectional studies on high and low BMI. Moreover, extreme differences in BMI and drastic 
weight-loss regimes are accompanied by many other potential confounding factors, such as 
(extreme) changes in diet, host physiology, host health status, and change of physical activity and 
their consequences on the overall host metabolism. Our study design enabled the elimination of 
genotype influences, by pair-wise comparison of MZ twins with discordant BMIs independent of 
absolute BMI values. This allowed us to strongly corroborate the influence of the host-genotype 
on the GI microbiota structure, but this also unveiled specific microbiota differences associated 
to host phenotype. 

In our twin cohort no trend between BMI differences and total microbiota diversity or 
B:F ratio was detected, which agrees with the findings reported by Duncan and co-workers 
[31]. At lower phylogenetic levels, however, microbial differences related to differences in BMI 
phenotype were detected. A consistent pair wise difference in diversity within the discordant twin 
pairs can be found for Clostridium cluster IV. Our results indicate that this group is associated 
with phenotypic changes in BMI, decreasing in diversity as BMI increases. Furthermore, from 
this Clostridium cluster we found the relatives of the long known, yet uncultivated Oscillospira 
guillermondii to be significantly higher in the lower BMI siblings. Interestingly, previous 
findings link low Clostridium cluster IV diversity to Crohn’s disease [64]. Therefore it appears 
that Clostridium cluster IV diversity can be affected by systemic changes of the host phenotype. 
Moreover, depletion of several members of Clostridium cluster IV, in our case Oscillospira 
guillermondii et rel., is associated with phenotypic changes. 

Members of the morphologically distinct genus Oscillospira are frequently seen in cattle 
and sheep rumen. Several Oscillospira species react to the diets of their host, increasing strongly 
when the hosts are feeding on fresh green fields [65]. It is likely that these organisms are adapted 
to degrade the fibers of young plants. Hence the plant fiber content in human diet might also 
influence the presence and abundance of Oscillospira species. Without further knowledge on the 
metabolism of Oscillospira guillermondii et rel. it is hard to elucidate the extent of their role in 
the host energy homeostasis. Possibly, the presence of Oscillospira species has an impact on the 
metabolism of nutritional fibers. In line with this hypothesis, is the finding of three other genus-
like (level 2) groups that co-occur with Oscillospira guillermondii et rel. (Figure 3.2C) which have 
isolates associated with degradation of plant material: Clostridium cellulosi [51], Ruminococcus 
bromii [52, 53], and Sporobacter termitidis [54]. It seems the co-occurrence network of Oscillospira 
guillermondii et rel. is specialized in fermenting complex (plant) materials. Fermentation products 
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from such a primary degrader network can be used by scavenging butyrate producing bacteria 
[55].

Both the Eubacterium ventriosum et rel. and Roseburia intestinalis et rel. groups were 
significantly higher in the higher BMI siblings compared to their corresponding lower BMI 
siblings. Cultured isolates belonging to these two taxonomic groups are known butyrate producers 
[56, 57]. However, other results from the HITChip data did not reveal additional differences 
in butyrate production (potential), as based on similar levels of other butyrate-producing 
organisms in the discordant twins. Analogously, the co-occurrence network of the Eubacterium 
ventriosum et rel. and Roseburia intestinalis et rel. (Figure 3.2C) did not include other potential 
butyrate producing organisms that are detected by HITChip, such as: Butyrivibrio crossotus et 
rel., Coprococcus eutactus et rel., Eubacterium hallii et rel., Faecalibacterium prausnitzii et rel,. 
Megasphaera elsdenii et rel., or Mitsuokella multiacida et rel. Moreover, Roseburia intestinalis et rel. 
displays anti-occurrence with Anaerovorax odorimutans et rel., which has an representative isolate 
capable of butyrate production as well [66]. 

In contrast to the primary degrader network of Oscillospira guillermondii et rel., the 
network of Eubacterium ventriosum et rel. and Roseburia intestinalis et rel. is composed of 
butyrate producers that are likely able to degrade complex material on their own. We hypothesize 
that host BMI increase is accompanied by GI microbiota changes and therefore a metabolic 
shift in butyrate production structure inside the colon: from mainly scavenging fermentation 
products produced by primary degraders to produce butyrate to mainly fermenting fibers 
directly into butyrate. Such a metabolic shift is likely to alter the net energy production by the 
GI microbiota and subsequently affect host energy harvest. This hypothesis is strengthened by 
finding significantly more butyrate in the fecal content of the higher BMI siblings, which are 
enriched for the butyrate producing network, compared to their lower BMI co-twins. Moreover, 
more valerate is found in the higher BMI siblings as well. Valerate can be formed by fermentation 
of the amino acid proline [67], which could indicate two (not mutually exclusive) possibilities: 
1) no carbohydrates are left for a part of the microbial community, forcing this part to switch 
to amino acid fermentation; 2) the microbial community is more efficient in utilizing different 
types of (polymer) nutrients. Hence, the valerate results are in line with the network predictions 
in both discordant sibling groups and add to our hypothesis on the net energy production by 
the GI microbiota. However, from our data it is not possible to determine causality. If primary 
degraders outcompete the butyrate producers that are capable of degrading fibers, then subjects 
with lower BMI may only have scavenging butyrate producers left due to a diet rich in complex 
fibers. This is in line with the observation that a higher intake of fiber leads to lower levels of 
BMI. On the other hand, subjects with lower BMI could have much less butyrate producers, 
scavenging or otherwise, to begin with and therefore these subjects do not possess a microbiota 
that can harvest all available energy from the diet. Furthermore, the higher BMI siblings could 
also have consumed more protein and therefore show the increase in valerate.  Therefore, more 
information on dietary intake and fermentation products in the GI tract is needed to further 
elucidate the mechanism between GI microbiota and host energy harvest. 
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Overall, this study revealed the existence of an imprinted structural core, to which several 
enterotype drivers belong, in the human GI microbiota and that BMI-phenotypic signatures 
are observed that can be related to energy harvest potential. However, the results are not such 
that a clear weight regulatory effect can be explained. Nonetheless, we have shown that different 
microbial networks are associated to changes in BMI. A network of primary degraders was 
more prominent in subjects with lower BMI, while a network of butyrate fermenters was more 
prominent in subjects with higher BMI. Our data suggest that primary degraders, not capable 
of producing butyrate, could play a more important role in energy homeostasis than initially 
expected. Previous studies on obesity have mostly compared cross-sectional the microbiota of lean 
and obese people and reported contradicting results. Besides the differences in host-genotypes 
in these studies the subject are at different ends of the BMI scale, i.e. the lean and obese “states”. 
Here, we studied genetically identical human hosts and assessed BMI differences independent 
of the lean or obese characteristic of the individuals, enabling the detection of BMI-phenotype 
signatures in the GI microbiota. Known genetic background, or minimizing its influence in 
studies like this, will be pivotal in the deciphering of the effects of GI microbiota on mechanisms 
underlying phenotypic traits of the host, such as changes in BMI as reported here.
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Supplementary information

Supplementary materials & methods

Twin pair classification
To define which twin pairs were discordant in terms weight maintenance the recommendation 
by Stevens and co-workers was used: in adults long-term weight maintenance is considered as a 
weight change of < 3% of body weight [44]. The average weight of the recruited subjects was 68 
kg, therefore the normal variation of 3% would on average correspond to 2,0 kg for one subject. 
Both siblings from one twin pair may vary in weight independently. Therefore twice the normal 
variation, i.e. 4 kg, is used as a maximum allowed weight maintenance variation to consider 
twin siblings concordant in body mass. To apply this weight concordance limit to all subjects 
the 4 kg variation was converted into a BMI difference (using the average subject length of 1.72 
m), which is 1.35 kg/m2. Twice the maximal normal weight variation was taken used to define 
discordance in weight maintenance, which is 2.7 kg/m2.

Microbial DNA extraction, microarray hybridization and data extraction
Fecal microbial diversity and composition was studied in detail using the Human Intestinal 
Tract chip (HITChip) as described previously [14]. The DNA extracts were diluted to 20 ng/
μl. Bacterial 16S rRNA genes were amplified in PCR using primers T7prom-Bact-27-for 
(5’-TGAATTGTAATACGACTCACTATAGGGGTTTGATCC TGGCTCAG–3’) and Uni-
1492-rev (5’-CGGCTACCTTGTTACGAC-3’). In vitro transcription of 500 ng of T7-16S 
rRNA gene amplicons for each sample were performed with the Riboprobe System (Promega, 
Madison, WI, USA). Subsequently, the 16S rRNA gene transcripts were labeled with CyDyes 
using the Post-Labeling Reactive Dye (Amersham Biosciences, Little Chalfont, UK) dissolved 
in 84 μl DMSO. For each sample Cy3-labelled RNA and Cy5-labelled RNA were fragmented 
and hybridized to the HITChip microarrays, which were produced by Agilent technologies 
(Agilent Technologies, Palo Alto, CA., USA). Analysis of the microarray data was performed in a 
custom-designed relational database which runs under the MySQL database management system 
[http://www.mysql.com/; 14]. Data normalization and analysis was performed using a set of R based 
scripts [http://www.r-project.org/] as described before [14]. As a quality threshold only those samples 
were accepted for which the different Cy-dye measurements displayed a Pearson’s correlation 
coefficient of 0.98 or higher at probe signal intensity level. 
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Supplementary Results

Phylogenetic group conservation in twins
Monozygotic twin pairs have a more similar microbiota composition compared to random 
unrelated individuals. At lower phylogenetic levels the similarity compared to random unrelated 
subject is higher for all subgroups as well, although the degree of similarity varies extensively 
(Figure S1 and S2). 

Core phylotypes detection
Phylotype level HITChip data shows a core microbiota can be defined (Figure S3). Different core 
definitions have been used in literature [40, 58, 59]. The studied individuals’ core phylotypes can 
be detected at different minimal relative abundance thresholds. The highest relative abundance 
thresholds that still had at least one core phylotype with in all subjects (n=80) was 0.22%. 
Employing quite different definitions Tap and co-workers do find a phylogenetic core: 66 
operational taxonomic units (OTUs) with a prevalence of >50% (n = 17) account for 35.8% of 
the sequences of their cohort [59]. The HITChip contains probes capable of detecting 62 of the 
66 core OTUs defined by Tap and co-workers [59], which account for 8.1% of the total signals 
in our twin cohort. Although the HITChip does not detect all of the OTUs defined by Tap and 
co-workers, it is unlikely that the 4 missing OTUs would account more than 25% of the bacterial 
population in our cohort. 

Bacteroidetes : Firmicutes ratio
B:F ratios were calculated by dividing the sum of signals of the level 1 Bacteroidetes group 
by the sum of signals of all level 1 groups belonging to the Firmicutes combined (i.e. Bacilli, 
all Clostridium clusters, uncultured Clostridiales, and uncultured Mollicutes). In four discordant 
twin pairs the Bacteroidetes to Firmicutes (B:F) ratio is found to be higher in the high BMI twin, 
while in four other pairs this ratio is higher in the low BMI twin. In six, concordant, control 
pairs one of the twins has a much higher B:F ratio compared to its respective sibling. However 
most twin pairs, discordant or concordant, do not show large differences in B:F ratio (Figure S4).
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Supplementary figures

Relative similarity XSpearmanV

Uncultured Mollicutes X0.472 / 0.584V I

Uncultured Clostridiales X0.403 / 0.527V III

Total Microbiota X0.688 / 0.752V III

Proteobacteria X0.512 / 0.592V II

Fusobacteria X0.075 / 0.195V I

Clostridium cluster XVIII X0.614 / 0.713V III

Clostridium cluster XVI X0.507 / 0.587V

Clostridium cluster XV X0.637 / 0.736V I

Clostridium cluster XIVa X0.784 / 0.83V III

Clostridium cluster XIII X0.145 / 0.193V

Clostridium cluster XI X0.751 / 0.802V II

Clostridium cluster IX X0.39 / 0.491V II

Clostridium cluster IV X0.719 / 0.767V III

Clostridium cluster III X0.677 / 0.736V I

Clostridium cluster I X0.607 / 0.656V

Bacteroidetes X0.69 / 0.742V III

Bacilli X0.666 / 0.73V II

Actinobacteria X0.711 / 0.76V III

1.0 1.1 1.2 1.3

Figure S3.1 Gastrointestinal microbiota similarity in monozygotic twins of order-like (level 1) groups. Dot-plots of the 
mean total microbiota profile similarity and the mean phylogenetic level 1 group similarity between monozygotic twins. Only level 
1 groups with more than 20 probes are shown here. Mean Spearman’s correlation coefficients values for phylogenetic subgroups 
are depicted with black dots. Error bars represent 95% confidence intervals around the respective mean values. Open squares 
indicate average Spearman’s correlation coefficients of random unrelated subjects within this data set. Asterisks indicate the 
level of significance of the corrected p-value: *) p < 0.05, **) p < 0.01 , ***) p < 0.001
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Relative similarity CSpearman)

Uncultured Mollicutes C0.472 / 0.584) *
Uncultured Clostridiales II C0.481 / 0.581) ***
Uncultured Clostridiales I C0.329 / 0.459) *

Tannerella et rel. C0.699 / 0.761) **
Sutterella wadsworthia et rel. C0.518 / 0.579)

Subdoligranulum variable at rel. C0.824 / 0.864) *
Streptococcus mitis et rel. C0.874 / 0.899) ***

Streptococcus intermedius et rel. C0.855 / 0.888) **
Streptococcus bovis et rel. C0.892 / 0.914) ***
Sporobacter termitidis et rel. C0.757 / 0.811) ***
Ruminococcus obeum et rel. C0.84 / 0.875) **
Ruminococcus lactaris et rel. C0.755 / 0.799)
Ruminococcus gnavus et rel. C0.864 / 0.905) ***
Ruminococcus callidus et rel. C0.717 / 0.746)
Ruminococcus bromii et rel. C0.649 / 0.721)
Roseburia intestinalis et rel. C0.854 / 0.876) **
Prevotella tannerae et rel. C0.742 / 0.783)

Prevotella melaninogenica et rel. C0.361 / 0.467)
Phascolarctobacterium faecium et rel. C0.165 / 0.261)

Peptostreptococcus micros et rel. C0.145 / 0.193)
Peptococcus niger et rel. C0.616 / 0.700)

Parabacteroides distasonis et rel. C0.852 / 0.873) *
Papillibacter cinnamivorans et rel. C0.872 / 0.896) ***

Outgrouping clostridium cluster XIVa C0.793 / 0.819) *
Oscillospira guillermondii et rel. C0.737 / 0.784)

Oceanospirillum C0.209 / 0.169)
Lactobacillus plantarum et rel. C0.329 / 0.419)
Lactobacillus gasseri et rel. C0.596 / 0.656)

Lachnospira pectinoschiza et rel. C0.806 / 0.835)
et rel. C0.782 / 0.810) *

Fusobacteria C0.075 / 0.195) *
Faecalibacterium prausnitzii et rel. C0.816 / 0.848)

Eubacterium ventriosum et rel. C0.797 / 0.830)
Eubacterium siraeum et rel. C0.721 / 0.758)
Eubacterium rectale et rel. C0.861 / 0.876)

Eubacterium limosum et rel. C0.604 / 0.706)
Escherichia coli et rel. C0.272 / 0.415) *

Enterococcus C0.573 / 0.682)
Eggerthella lenta et rel. C0.619 / 0.686) *

Dorea formicigenerans et rel. C0.807 / 0.849) ***
Coprococcus eutactus et rel. C0.808 / 0.857) ***

Coprobacillus catenaformis et rel. C0.719 / 0.779)
Collinsella C0.815 / 0.847)

Clostridium symbiosum et rel. C0.818 / 0.863) ***
Clostridium stercorarium et rel. C0.688 / 0.750) *
Clostridium sphenoides et rel. C0.863 / 0.886) **
Clostridium ramosum et rel. C0.688 / 0.767) **

Clostridium orbiscindens et rel. C0.809 / 0.845) ***
Clostridium nexile et rel. C0.905 / 0.919) ***
Clostridium leptum et rel. C0.8 / 0.837) **

Clostridium difficile et rel. C0.783 / 0.832) *
Clostridium colinum et rel. C0.813 / 0.851) **
Clostridium cellulosi et rel. C0.754 / 0.798) **

Clostridia C0.607 / 0.656)
Campylobacter C0.097 / 0.142)

Butyrivibrio crossotus et rel. C0.764 / 0.805) **
Bulleidia moorei et rel. C0.624 / 0.671)

Bryantella formatexigens et rel. C0.808 / 0.839) **
Bifidobacterium C0.768 / 0.795)

Bacteroides stercoris et rel. C0.686 / 0.709)
Bacteroides splachnicus et rel. C0.745 / 0.771)

Bacteroides plebeius et rel. C0.71 / 0.749)
Bacteroides ovatus et rel. C0.701 / 0.765)
Bacteroides fragilis et rel. C0.658 / 0.715)

Anaerovorax odorimutans et rel. C0.763 / 0.817) *
Anaerotruncus colihominis et rel. C0.679 / 0.737)

Anaerostipes caccae et rel. C0.779 / 0.832) **
Allistipes et rel. C0.791 / 0.825) *

1.0 1.1 1.2 1.3 1.4

Lachnobacterium bovis

Figure S3.2  Gastrointestinal microbiota similarity in monozygotic twins of genus-like (level 2) groups. Dot-plots of the 
mean total microbiota profile similarity and the mean phylogenetic level 2 group similarity between monozygotic twins. Only 
level 2 groups with more than 20 probes are shown here. Mean Spearman’s correlation coefficients values,  error bars, level of 
significance as in Figure S3.1.
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Figure S3.3 Number of core phylotypes. Core phylotypes were identified at a step-wise gradient of minimal relative abundances 
levels, in steps of 0.02%. Number of core phylotypes at varying prevalence and minimum phylotype abundance thresholds is 
visualized.
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Discordant Control

Pair 5
Pair 1
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Pair 21 Pair 20
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Pair 17 Pair 14
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Pair 11 Pair 4
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Bacteroidetes / Firmicutes ratio

Figure S3.4 Bacteroidetes to Firmicutes (B:F) relative abundance ratios. The relative abundances of Bacteroidetes and 
Firmicutes were determined by dividing the sum of probe signals targeting these phyla. A. The results from the discordant twin 
pairs are visualized with red and green dots, representing the heavier and leaner sibling respectively. B. The results from the 
concordant control twins pairs are visualized with blue dots.
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Table S3.2 HITChip level 2 taxonomic groups targeted by more than 20 probes which have a significantly higher (p < 
0,05) Spearman’s correlation coefficient pairwise compared to the total microbiota profile similarity. Enterotypes are 
abbreviated as followed: ET1 = Enterotype 1, ET2 = Enterotype 2, and ET3 = Enterotype 3.

Level 1 Level 2 group Nr of 
probes

Enterotype 
driver

Average 
Spearman’s 
correlation 
coefficient

Average 
relative 
abundance 
(%)

Adjusted 
p-value

Actinobacteria Collinsella 24 ET3 0.847 0.465 0.003
Bacilli Streptococcus bovis et rel. 52 ET2 0.914 1.470 <0.001

Streptococcus intermedius 
et rel.

34 ET2 0.888 0.645 <0.001

Streptococcus mitis et rel. 43 ET2 0.899 1.310 <0.001
Bacteroidetes Allistipes et rel. 74 ET3 0.825 1.195 <0.001

Parabacteroides distasonis 
et rel.

45 ET1 0.873 0.763 <0.001

Clostridium 
cluster IV

Clostridium cellulosi et rel. 78 - 0.798 2.365 0.029
Clostridium leptum et rel. 61 - 0.837 1.765 <0.001
Clostridium orbiscindens et rel. 104 - 0.845 2.346 <0.001
Faecalibacterium prausnitzii 
et rel.

81 ET1 0.848 5.395 <0.001

Papillibacter cinnamivorans 
et rel.

36 - 0.896 1.537 <0.001

Sporobacter termitidis et rel. 93 - 0.811 1.753 <0.001
Subdoligranulum variable 
at rel.

51 ET3 0.864 3.656 <0.001

Clostridium 
cluster XI

Anaerovorax odorimutans 
et rel.

35 - 0.817 0.507 0.022

Clostridium difficile et rel. 45 - 0.832 1.240 0.008
Clostridium 
cluster XIVa

Anaerostipes caccae et rel. 33 ET1 0.832 1.249 0.003
Bryantella formatexigens et rel. 110 - 0.839 2.905 <0.001
Butyrivibrio crossotus et rel. 88 - 0.805 1.835 0.001
Clostridium colinum et rel. 33 - 0.851 1.432 <0.001
Clostridium nexile et rel. 24 - 0.919 2.405 <0.001
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Table S3.2 (continued) HITChip level 2 taxonomic groups targeted by more than 20 probes which have a significantly 
higher (p < 0,05) Spearman’s correlation coefficient pairwise compared to the total microbiota profile similarity. 
Enterotypes are abbreviated as followed: ET1 = Enterotype 1, ET2 = Enterotype 2, and ET3 = Enterotype 3.

Level 1 Level 2 group Nr of 
probes

Enterotype 
driver

Average 
Spearman’s 
correlation 
coefficient

Average 
relative 
abundance 
(%)

Adjusted 
p-value

Clostridium 
cluster XIVa

Clostridium sphenoides 
et rel.

68 - 0.886 3.051 <0.001

Clostridium symbiosum 
et rel.

135 - 0.863 4.188 <0.001

Coprococcus eutactus 
et rel.

97 ET3 0.857 3.987 <0.001

Dorea formicigenerans 
et rel.

96 ET3 0.849 4.230 <0.001

Eubacterium rectale 
et rel.

56 ET3 0.876 3.811 <0.001

Clostridium colinum 
et rel.

33 - 0.851 1.432 <0.001

Clostridium nexile et rel. 24 - 0.919 2.405 <0.001
Eubacterium ventriosum 
et rel.

22 ET3 0.830 1.066 0.002

Lachnobacterium bovis 
et rel.

41 - 0.810 1.340 0.03

Lachnospira 
pectinoschiza et rel.

83 ET2 0.835 4.163 0.001

Outgrouping Clostridium 
cluster XIVa

79 - 0.819 1.877 <0.001

Roseburia intestinalis 
et rel.

29 ET1 0.876 1.550 <0.001

Ruminococcus gnavus 
et rel.

43 ET3 0.905 2.991 <0.001

Ruminococcus obeum 
et rel.

158 ET3 0.875 7.019 <0.001
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Table S3.3 Core phylotypes at different minimal relative abundances levels (core phylotypes were identified at a step-
wise relative abundance gradient, in steps of 0,02%).

Relative abundance 
threshold (%)

Number of core 
phylotype-like groups

Anaerofustis stercorihominis 0.02

96

Aneurinibacillus aneurinolyticus 0.02
bacterium A21 0.02
bacterium adhufec13 0.02
bacterium adhufec250 0.02
bacterium adhufec296 0.02
bacterium adhufec68 0.02
Bryantella formatexigens 0.02
butyrate-producing bacterium SR1/1 0.02
Clostridium leptum 0.02
Dorea formicigenerans 0.02
Dorea longicatena 0.02
Eubacterium cellulosolvens 0.02
Eubacterium rectale 0.02
Lachnobacterium sp. wal 14165 0.02
Roseburia intestinalis 0.02
Ruminococcus obeum 0.02
Streptococcus agalactiae 0.02
Streptococcus bovis 0.02
Streptococcus equi subsp. zooepidemicus 0.02
Streptococcus equinus 0.02
Streptococcus infantarius subsp. coli 0.02
Streptococcus intermedius 0.02
Streptococcus mutans 0.02
Streptococcus pyogenes 0.02
Streptococcus uberis 0.02
Streptococcus viridans 0.02
Subdoligranulum variabile 0.02
uncultured bacterium C583 0.02
Uncultured bacterium clone Eldhufec100 0.02
Uncultured bacterium clone Eldhufec157 0.02
Uncultured bacterium clone Eldhufec170 0.02
Uncultured bacterium clone Eldhufec262 0.02
Uncultured bacterium clone Eldhufec268 0.02
Uncultured bacterium clone Eldhufec302 0.02
uncultured bacterium D416 0.02
uncultured bacterium HuCA22 0.02
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Table S3.3 (continued) Core phylotypes at different minimal relative abundances levels (core phylotypes were identified 
at a step-wise relative abundance gradient, in steps of 0,02%).

Relative abundance 
threshold (%)

Number of core 
phylotype-like groups

uncultured bacterium HuCA28 0.02
uncultured bacterium HuCA8 0.02
uncultured bacterium HuCB21 0.02
uncultured bacterium HuCB5 0.02
uncultured bacterium HuCC15 0.02
uncultured bacterium HuCC43 0.02
uncultured bacterium HuRC12 0.02
uncultured bacterium inhufecA-27 0.02
uncultured bacterium K094 0.02
uncultured bacterium LC79 0.02
uncultured bacterium M431 0.02
uncultured bacterium MB66 0.02
uncultured bacterium MD61 0.02
uncultured bacterium MI29 0.02
uncultured bacterium MN45 0.02
uncultured bacterium N322 0.02
uncultured bacterium NL49 0.02
uncultured bacterium NQ96 0.02
Uncultured bacterium UC7-7 0.02
bacterium A57 0.04

40

bacterium adhufec295 0.04
bacterium adhufec57 0.04
butyrate-producing bacterium L2-10 0.04
butyrate-producing bacterium T2-132 0.04
Streptococcus constellatus 0.04
Streptococcus salivarius 0.04
Uncultured bacterium clone Eldhufec185 0.04
uncultured bacterium E177 0.04
uncultured bacterium HuCA17 0.04
uncultured bacterium HuCB12 0.04
uncultured bacterium HuCC34 0.04
uncultured bacterium KS90 0.04
uncultured bacterium KZ22 0.04
uncultured bacterium L068 0.04
uncultured bacterium MO17 0.04
Uncultured bacterium UC7-35 0.04
Uncultured bacterium UC7-36 0.04
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Table S3.3 (continued) Core phylotypes at different minimal relative abundances levels (core phylotypes were identified 
at a step-wise relative abundance gradient, in steps of 0,02%).

Relative abundance 
threshold (%)

Number of core 
phylotype-like groups

bacterium A54 0.06

22

bacterium adhufec25 0.06
Clostridium aminovalericum 0.06
Streptococcus mitis 0.06
Streptococcus parasanguinis 0.06
Streptococcus pneumoniae 0.06
Streptococcus sanguis 0.06
uncultured bacterium A20 0.06
Uncultured bacterium clone Eldhufec267 0.06
uncultured bacterium HuCA2 0.06
uncultured bacterium K375 0.06
uncultured bacterium M510 0.06
uncultured bacterium ME10 0.06
uncultured bacterium NP09 0.06
uncultured bacterium OLDB-D1 0.06
Eubacterium hallii 0.08

7uncultured bacterium HuCB26 0.08
uncultured bacterium K379 0.08
Ruminococcus gnavus 0.1

4uncultured bacterium cadhufec20a04 0.1
uncultured bacterium HuCA15 0.1
Uncultured bacterium UC7-62 0.22 1
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Abstract
The microbial ecosystems found along the body surfaces of mammals have provide a variety of 
complementary metabolic functions to their hosts. It is likely that the mammalian host and its 
microbiota form a coalition of cells, or a so-called “super-organism”, which mutually strives for 
survival. Unfortunately, the exact interactions between host and microbiota are for the most part 
unexplored. Our current understanding of host-microbe interactions mostly comes from studies 
on the gastrointestinal tract microbiota which is the most densely populated microbial ecosystem 
of the mammalian host. Although mammalian host genes are greatly outnumbered by the total 
gene pool of their microbiota, there are several indications that host genotype is an important 
factor affecting the diversity and function of the microbiota. Communication between host cells 
and microbes likely to dependent on host-immune system related genes and can be therefore be 
influenced by polymorphisms in these genes. However, there are probably more genes which are 
important for host-microbe interaction that are not directly related to the immune system. Future 
studies should focus on the hierarchy in importance of host genotypes with relation to host-
microbe interactions. Complicating the studies on host-microbe interactions are environmental 
factors which can, sometimes drastically, influence both the host and its microbiota. Especially 
dietary influences should be taken into account while analyzing the interaction between the 
microbial communities of the gut and the host.
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Introduction
Microbial communities inhabit a variety of body surfaces of mammalian hosts. In the human 
mouth, 102–103 different species from nine bacterial and a single archaeal phyla have been found 
[1]. Teeth, cheek, and tongue all have their own specific communities with anaerobic bacteria 
present at the gum-line and between the teeth. For each of these sites, the selective trait is 
based on the surface adherence capabilities of the microbes, typically resulting in multispecies-
biofilm formation [1]. Microbial diversity and abundance normally decrease further down 
the gastrointestinal (GI) tract until the stomach. In the esophagus approximately 100 species 
from six phyla are found, most of which are similar to the species found in the mouth [2]. The 
stomach is generally regarded derelict for any microbial species except for Helicobacter pylori [3]. 
Nevertheless, 16S rRNA gene surveys have reported up to 128 species from eight phyla in the 
stomach; however, it seems likely that these findings represent remnants from ingested strains 
rather than true residents [4]. After the stomach, bacterial populations increase again in the small 
intestine, ranging from 104–105 g−1 in the duodenum and jejunum to 107 g−1 in the terminal 
ileum. In this region, intestinal transit slows down and the microbiota composition changes, 
favoring the more anaerobic species [3, 5]. Next, along the GI tract is the colon. In the ascending 
colon, polysaccharide hydrolysis and carbohydrate fermentation support rapid microbial growth, 
whereas in the transverse and descending colon, amino acid and host-derived glycans (mucin) 
fermentation occurs, coinciding with a reduction of bacterial growth rate [6]. The fermentations 
along the entire colon cause a microbial population increase up to 1011–1012 cells g−1 in feces 
accompanied by a strong proportional decrease of facultative anaerobes [7]. In the colon, the most 
numerous species are obligate anaerobes belonging to the phyla Bacteroidetes and Firmicutes 
[8, 9]. 

No other body site attains the high bacterial abundance as observed in the colon, although 
the mouth harbors a taxonomic richness approximating that of the colon. Furthermore, the 
recent expansion of the human skin ribosomal operon database indicates a diversity level close 
to that of the GI tract as well [10]. Unfortunately, interactions between host and skin microbiota 
are for the most part unexplored. Next to skin and GI tract, the urinary tract is being studied on 
a microbial level as well. The vaginal microbiota is generally assumed to have low diversity and 
to be dominated by lactobacilli. However, lactobacilli are not dominant vaginal inhabitants in 
all healthy women [11]. One can conclude that the GI microbiota is the most densely populated 
microbial ecosystem of the mammalian host and has been subjected to many studies. Hence the 
remainder of this chapter will mainly focus on the knowledge obtained from GI ecosystems. 
A variety of functional metabolic activities are generally thought to derive from most, if not 
all, of the resident communities. Several general processes necessitate the presence of microbial 
inhabitants in order to function properly, such as the maturation of the immune system, resistance 
to pathogens, digestion of nutritional components, and the production of essential nutrients. 
Especially important to the host are microbiota-derived nutrient conversions and contributions 
that cannot be executed by the host itself, including the degradation of complex polymers in the 
GI tract that cannot be (completely) digested by the host’s enzyme machinery (non-digestible 
carbohydrates, proteins, and lipids) [12]. Besides the improvement of our nutritional access to 
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complex nutrients, microorganisms in the GI tract provide a significant supply of essential 
amino acids [13] and other important compounds such as various vitamins, including vitamin 
K and several B vitamins [14, 15]. Conversion of several bio-active molecules, such as sex steroid 
hormones in order to promote their circulation, is another health-related function humans 
receive from their GI inhabitants [16, 17]. These types of microbial functions complement the 
metabolic potential of the host, as the host itself does not encode for the required proteins. In 
addition to the beneficial contributions, the microbial communities can introduce metabolic 
activities that are detrimental for their host, such as the production of hydrogen sulfide [18, 19] 
and the potentially tumor-promoting secondary bile acids [20].

It is becoming a generally accepted view that multicellular organisms, especially mammals, 
should not be considered as autonomously living entities. “Super-organism” is a popular term 
that better describes mammals for what they really are: a cohort of host cells and microbial cells. 
This coalition of cells from the different domains of life is striving for the common mutual 
cause of survival. The microbiota is a commonly used term for the composition of all microbial 
cells belonging to a super-organism. According to the super-organism concept, metagenomics 
can be defined as the mammalian host genes combined with the genes of the entire microbiota 
[21]. Currently, there are no completed metagenomes available for any super-organism. Hence, 
it remains difficult to establish or estimate the importance of the host genome. It is obvious 
that many organisms, such as humans, contribute far less genes to their metagenome than 
their microbial counterparts. In the human GI tract alone there are already ten times more 
microbial cells present than host cells in the entire human body [22]. Humans are believed to 
contain approximately 23,000 genes in their genomes [23], whereas current estimations for the 
GI microbiota unique gene count are up to 9,000,000 [24]. In other words, our human genes 
are outnumbered by several orders of magnitude by the GI microbiota alone! As more and more 
body sites are being sampled, this difference can only increase in favor of our microbiota. Such 
observations underline the limited human genetic input in the whole “super-organism” and pose 
the question: To what extent our genes matter during our life as a super-organism? Maybe, we 
as hosts have predominantly lost functions during evolution because our microbes provided 
them and could execute the corresponding functions more efficiently? Possibly, our evolutionary 
efficiency is increased by encoding a “limited” gene set, which could be specialized in molecular 
communication with microbes in order to recruit, nourish, and maintain a microbiota that is 
able to complement for the essential functions that are lacking in our own genomes? After all, we 
are still around despite our “limited” genotype.

Interactions in a super-organism
In mammals, a dynamic and complex relationship exists among diet, host phenotype, and the 
associated GI microbiota. All interactions are dependent on the host genotype, which can be 
seen as a matrix on which host phenotype and the resident microbiota are projected (Figure 2.1). 
Diet and transient food organisms are external, yet important, components that complete the 
complex host–microbiota interactions.
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Classical views on many disorder-associated phenotypes do not take into account all 
underlying factors. For example, the main focus usually lies on diet and host genotype in 

disorders such as obesity, diabetes, and many 
cardiovascular diseases. However, the GI 
microbiota should not be excluded in studies 
or treatment of these disorders, since changes in 
the gut communities have been associated with 
some of these disorders [21, 25-28]. Even though 
it is hard to determine the causality of observed 
microbiota deviations with respect to these 
diseases and disorders, several studies do suggest 
causal contributions from the gut communities. 
Microbiota transplants from obese mice to 
germ-free (GF) littermates induce the obese 
fat-storage phenotype [21]. Furthermore, already 
before the onset of type-1 diabetes in genetically 
predisposed rat models, which are on the same 
diet, the gut microbiota was different in the rats 
that eventually developed diabetes compared 
to those that did not [29]. Moreover, antibiotic 
treatment of these rats significantly delayed and 
lowered the incidence of diabetes development 
[29]. These findings suggest a causal role of the 
gut microbiota in the development of diabetes.

Even in the extensively studied GI tract, the interactions between host and microbiota are 
not yet understood. Most studies to date are restricted to composition analyses. However, more 
and more insights are emerging. Especially the use of high-throughput technologies to study the 
diversity and functionality of the GI tract is greatly enhancing the current knowledge level. These 
technologies use a variety of approaches, such as the revival of culturing methods that are high-
throughput [30, 31], metabolite detection [26], phylogenetic microarrays based on 16S rRNA gene 
sequences [32, 33], and sequencing of 16S rRNA genes as well as sequencing of random microbial 
DNA [21, 34]. Sequencing of the GI microorganisms has opened up the possibilities for functional 
metagenomics, which will allow further exploration of the microbial activity patterns.

It is generally accepted that the GI tract is sterile at birth and is swiftly colonized by microbes 
acquired from maternal and environmental sources. Recently, bacteria have been detected in the 
fluid in intact amniotic sacs of women in preterm labor [35]. This finding questions the broadly 
accepted view of postnatal GI tract colonization, since fetuses swallow and “inhale” amniotic 
fluid continuously, hence exposing their respiratory and GI tracts to everything that resides in 
it. However, bacteria were only found in 15% of the subjects (n = 166) [35]. Regardless of the 
precise moment of initial colonization, it remains without doubt that the human GI microbiota 
evolves over time. The development is especially drastic in the first 2 years of life, followed by 

Host genotype

Diet Transient
microbes

Interactome

Host
phenotype

Commensal
microbiota

Figure 2.1 Factors involved in host–microbiota–diet 
interrelations.
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stabilization of the GI community into a microbiota that resembles that of an adult [36]. In 
adults the fecal microbiota is shown to be highly stable over time within one individual, as well 
as specific for its host [37]. Interestingly, despite a high variability in the GI species composition 
between individuals, functional capacity seems to be much more uniform between human adults 
[38]. Moreover, a significant proportion of microbial phylotypes found in the gut are continuously 
present during a 10-year timeframe [39]. Therefore it seems likely that adults have, next to some 
transient guest organisms, a stable individual core of permanent GI tract colonizers [39, 40]. Tap 
and coworkers have reported 66 microbial phylotypes, which are present in more than 50% of 
the samples they investigated (n = 17) [41]. Such findings suggest that besides an individual core, 
a limited number of microbial phylotypes are more prevalently found in people (>50% of the 
individuals) and appear to represent a common core of the human GI tract microbiota.

Host genotype and microbiota selection
As noted before, the mechanism(s) behind GI tract colonization, succession within the 
community, and community structure itself are poorly understood. One hypothesis is that 
colonization at weaning is determined by the primary nutrient foundation supplied by the host 
[42]. This may be true, but there are several indications that colonization is influenced by the host 
genotype as well. Mouse studies have revealed that the composition of fecal microbiota is affected 
by the major histocompatibility complex [43]. Furthermore, different mammalian host species 
develop a different make-up of their GI microbiota.

Additionally, studies with GF hosts that received inter-species GI microbiota transplants 
indicate that the hosts might be able to modulate their received microbial lineages toward a 
composition normally found in their non-GF, conventional status [44]. This can be attributed 
to obvious variables such as the type of food, the environment the host lives in, the nutritional 
requirements of the host, or more physiological aspects like host intestinal tract anatomy, body 
temperature, intestinal peristalsis, and residence time, etc. Intriguing results were obtained from 
the reciprocal GI microbiota-transplantation of zebra fish and mice, raised under GF conditions 
[44]. The GF hosts did not have any community legacy, and appeared to retain all intestinal 
species that were “given” to them during transplantation. Yet they reconstructed, in terms of 
relative abundance, the gut communities normally associated with conventionally raised animals 
[44], indicating that a powerful and poorly understood host-mediated mechanism must be in 
place to coordinate microbial community composition. It seems that zebra fish and mouse host 
genetics play a prominent role in the natural selection of gut inhabitants, although there are 
many confounding factors in the differences between these hosts, such as differences in body and 
environment temperatures, host habitat and activity, bowel anatomy and dimensions, residence 
time, and dietary intake.

Last but not least, in adult humans, the extent of the variation of the dominant bacteria 
is associated with the degrees of relatedness between the subjects [45, 46]. This family relatedness, 
especially with respect to twins, provides perhaps the most profound evidence of host genotypic 
influences on microbial communities, and will be discussed in more detail in the next sections. 
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In conclusion, the GI microbiota composition must be dependent on the host genotype, but the 
exact degree of this dependence remains to be elucidated. 

The effect of host genetics on the gut microbiota is most profoundly observed in studies 
conducted on related individuals. Especially revealing were studies conducted with samples 
obtained from identical (monozygotic) and/or fraternal (dizygotic) twins. Already in 1983, 
indications were found that monozygotic twins have more similar fecal microbiota than dizygotic 
twins [46]. Although these findings were based on cultivation-dependent techniques, which gives 
an incomplete picture of the GI microbiota [40], this study provided a clear indication of host 
genetics and its influence on the fecal communities. Two decades later, Zoetendal and coworkers 

confirmed the significantly higher bacterial 
profile similarity in monozygotic twins with a 
culture-independent technique [45]. This study 
was performed 10 years ago using denaturing 
gradient gel electrophoresis (DGGE) on fecal 
bacterial 16S rRNA gene amplicons to assess 
the bacterial composition similarity. Samples 
in this study originated from human adults 
with varying degrees of genetic relatedness 
(ranging from parents and children, non-twin 
siblings to twin siblings). This study revealed a 
positive relationship between the DGGE profile 
similarity and the genetic relatedness of the 
subjects (Figure 2.2). Marital partners showed 
slightly higher similarities than unrelated 
individuals, but this was not found to be 
significant [45]. The latter is quite remarkable 
as marital partners essentially live in the same 
environment and generally have similar dietary 
habits. Overall, these results indicate that host-
genotype factors indeed have a strong impact on 
the bacterial community in the adult GI tract.

In a later study, a slightly different 
cultivation-independent technique, temporal 
temperature gradient gel electrophoresis 
(TTGE), was used to assess the influence of host 
genetics on the fecal microbiota composition in 
children [47]. TTGE profile similarity was again 
the lowest among unrelated children, higher 
between dizygotic twins, and clearly the highest 
between monozygotic twins [47]. 

Figure 2.2 Plot of the similarity indices (Pearson’s 
product-moment correlation coefficient) from 
unrelated subjects, marital partners, monozygotic 
twins, and temporal variation comparisons. The mean 
(diamonds) and standard deviation (black bars) are plotted. 
DGGE profile of the total bacterial community was used to 
calculate the similarities. Adapted from [45]
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The high-throughput cultivation-independent Human Intestinal Tract Chip (HITChip), a 
phylogenetic microarray developed by Rajilic and coworkers [33], was used to re-analyze the five 
monozygotic twin pair samples from Zoetendal and coworkers [45]. Average similarities between 
the twins was notably higher than the similarity between random unrelated individuals [39]. 
Even though only five twin pairs and five unrelated individuals were compared, the observed 
similarity difference was already borderline significant (p = 0.067) [39]. Thus the previous 

results obtained by DGGE were confirmed by 
phylogenetic microarray analysis. A recently 
conducted study on 40 monozygotic twin pairs 
showed that HITChip profiles were significantly 
(p < 0.001) more similar between the twins than 
between random unrelated subjects within this 
cohort (Figure 2.3, adapted from Chapter 3). 
Palmer and coworkers also used a phylogenetic 
microarray (different from the HITChip) to 
study GI microbiota development in human 
infants [32]. They included one dizygotic 
twin pair and this pair showed a more similar 
microbiota profile, at any stage of development, 
compared to the other 12 unrelated children [32].

Recent developments in sequencing 
technologies and corresponding reductions of 
sequencing costs have been of great importance 
for GI microbiota research. Turnbaugh and 
coworkers performed pyrosequencing on 
variable regions of the 16S rDNA on fecal 
microbial DNA extracts in a cohort of 154 
subjects [34]. On average, nearly 4,000 16S V2 
region sequences were obtained for all subjects 
and additionally nearly 25,000 sequences per 
sample were acquired for 33 subjects. The 
studied group was composed of 31 monozygotic 
twin pairs, 23 dizygotic twin pairs, and the 
mothers of 46 of the twins, and included two 
samples per individual collected with a 57-day 
interval. Subjects included in this cohort were 
differentiated based on concordant leanness 
or obesity among the twin pairs. Most of the 
twins (71%) did not live together anymore. 
Pyrosequencing confirmed the previous 
observation that each individual has a unique 
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Figure 2.3 Box-whisker plots of the similarity between 
the total microbiota profiles expressed as Spearman’s 
correlation coefficient. Purple box represents similarities 
between random unrelated subjects and the blue box 
represents similarities between monozygotic twins. 
Similarities were calculated with total microbiota HITChip 
profiles (adapted from Chapter 3).
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GI microbiota composition and short-term changes are inferior to the inter-subject variations 
[34, 37]. Among all of the 154 individuals, no shared 16S rRNA gene-based phylotypes could be 
identified with an abundance of 0.5% or more. These results are in apparent contradiction with 
previous suggestions concerning the existence of a shared common core between humans, but 
different criteria were employed to define such a core community (>50% phylotype prevalence 
[41] versus 100% prevalence of phylotypes [34]). Nevertheless, subjects from the same family 
had more similar microbial community structures and shared significantly more phylotypes 
[34]. Neither the obesity status per individual nor distance between the family members’ homes 
confounded the observed higher similarities for the families [34]. In contrast to earlier findings 
[47], the similarity between dizygotic twins were not lower than the similarities between the 
monozygotic twins [34]. Noteworthy is the fact that pyrosequencing still suffers from artifacts 
such as the formation of chimeric sequences during amplification and/or sequencing errors 
that are interpreted as distinct phylotypes. When such errors are not effectively removed 
they obviously influence the results obtained from sequencing-based studies. Perhaps future 
improvement of sequencing technology (in terms of reduced sequence error rates, advanced data 
analysis software suites, and/or extended sequence length) combined with increased sequencing 
depths may resolve the apparent contradictions in the current conclusions. Recently, Claesson 
and coworkers showed that pyrosequencing at the deepest sequencing-depth currently feasible, 
i.e., at approximately 400,000 sequences per sample, still does not capture the full microbial 
richness of GI tract samples [48]. 

A common approach in the GI tract studies is inferring the possible microbiota 
functionalities from the microbial lineages present as detected by 16S rRNA gene sequences. 
Current functional metagenomic study designs are moving toward random sequencing of as 
much microbial DNA as possible [40]. Through these random sequences, a more direct view on 
the functional repertoire of the microbiota can be obtained. Therefore, in addition to the 16S 
rRNA gene sequencing, Turnbaugh and coworkers also analyzed the samples of six families (n = 
18) by random shotgun pyrosequencing [34]. In line with the 16S rRNA-based study, the profiles 
of the functional categories present in the gut communities were more similar between relatives. 
Interestingly, GI microbiota seemed to have even more similar functional profiles among all 
subjects despite their sometimes highly distinct microbiota composition profiles [34]. This raises 
the hypothesis that a core microbiota exists at a functional (and metabolic) level rather than at 
the level of microbial composition. In line with this hypothesis are results of earlier studies that 
determined in situ concentrations of short-chain fatty acids (SCFAs) in fecal material of different 
individuals. Different population survey data show the same fecal composition with respect to the 
ratios of the three main SCFAs acetate, propionate, and butyrate [49]. Dietary changes have been 
shown to modulate SCFA production and absorption somewhat, but the SCFA ratios are not 
drastically altered [50]. As an individual has its own unique GI microbiota composition, the fairly 
constant SCFA ratios are quite remarkable and indicate that the gut microbes perform similar 
overall functions. Even though a core GI microbiota is likely to exist more on a functional level it 
must be noted that the species composition, although hypervariable and seemingly chaotic, is not 
random. Grouping of mammals based on their gut community composition is associated with 
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their dietary needs, i.e., whether a mammal is a herbivore, carnivore, or omnivore [51]. This could 
indicate that when roughly similar digestive tasks are required, the GI community tends to be 
more similar at higher taxonomic levels [51]. However, the latter statement needs to be verified as 
the GI tract anatomy differs between individual mammalian species belonging to the carnivores, 
herbivores, and omnivores. 

More comprehensive studies following both monozygotic and dizygotic twins from birth 
to adulthood can provide valuable information on interactions between host genotype and its 
inhabiting microbiota. In such studies diet should be taken into account, due to its drastic 
influences.

Dietary influences
Diet is a strongly confounding factor in the ambition to obtain insight in the exact roles of the 
host genotype and GI microbiota in a super-organism. Not only the GI community is influenced 
by the dietary influx of microbes and nutrients but also the host phenotype itself, mainly through 
regulation of gene expression and physiological adaptation. Several genes from a group of nuclear 
hormone receptors called peroxisome proliferator-activated receptors (PPARs) can be used to 
illustrate host adaptation to its diet on a transcriptional level. Unsaturated fatty acids are, among 
others, activating ligands for PPAR-γ [52], and thereby PPAR-γ activities are directly influenced 
by the diet. PPAR-γ acts as a regulator of a variety of relevant physiological processes, including 
transcription control of many genes involved in fat-cell differentiation, insulin sensitivity, and 
lipid homeostasis [53]. The host genotype, in terms of PPAR-γ gene variants, affects the extent 
to which the host reacts to its diet. For example, a PPAR-γ2 gene polymorphism [54] correlates 
with the inter-individual variability in serum triacyl–glycerol levels after administration of n−3 
fatty acids [55]. This example is just one of the many available in literature, which indicates that 
although the host contributes with a marginal amount of genes to the metagenome, variations in 
the host genotype can still have drastic effects for the super-organism. Furthermore, this example 
indicates the major role of the host’s diet as well. This raises the question of how important the 
diet exactly is.

Obesity in animal models
Obesity has gained popularity with respect to study of the importance of dietary influences 
on the gut microbiota and the host. The prime cause of obesity is an excessive caloric intake. 
Such a surplus intake disturbs the normal balance between the amount of energy harvested 
from the diet and the amount used by the host. This balance, or energy homeostasis, is at least 
partly defined by the GI microbiota. Studies with GF mice clearly show the microbial impact 
on host energy homeostasis. GF mice are resistant to obesity development when fed a “Western” 
(high-fat/high-sugar) diet [56], but GI tract colonization was stimulating weight gain in these 
mice [57]. Colonization of GF mice leads to an increased release of monosaccharides and SCFAs 
from complex dietary polysaccharides, enhanced conversion rates of fatty acids toward complex 
lipids in the liver, and by regulating host genes involved in storage of the converted lipids into 
adipocytes [58].
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However, next to the GI microbiota, host-dependent factors are also required to develop 
obesity. For instance, mice lacking a functional copy of the Gpr41 gene, a G-protein-coupled 
receptor that binds SCFAs, do not readily develop obesity [57]. Without Gpr41, the mice 
displayed an increased intestinal motility and decreased SCFA absorption [57]. On a side note, 
another G-protein-coupled receptor called Gpr43 displays a different role in mice [59]. Mouse 
models of colitis, arthritis, and asthma required stimulation of Gpr43 by SCFAs to counteract 
their inflammation [59]. Thus, besides metabolic regulation, immune and inflammatory responses 
are affected by the bacterial SCFA production as well.

Simply having a gut microbiota is not the only microbial factor affecting the energy balance 
in mice. The composition of the microbial community determines to what extent the microbiota 
improves energy harvest from food. Both GF mice inoculated with distal gut microbiota from 
conventionalized obese and lean animals resulted in an increase of bodyweight and total body 
fat [21]. Yet this increase was found to be significantly larger in the GF mice that had received 
the microbiota from the obese animals [21]. Correlations between phenotypic variations and 
attributes of the microbial gut community were reported after studies conducted with lean and 
genetically obese (ob/ob) mice [21, 60] as well as with lean and genetically obese rats [61]. Variations 
of the members belonging to the bacterial phyla Bacteroidetes, Firmicutes, and Actinobacteria 
appeared to be associated with leanness or obesity [21] [60, 61]. Especially the Bacteroidetes to 
Firmicutes ratio was found to be lower in the obese rodents.

Most animal models used to study obesity consist of specific gene knockout mutants, such 
as those focusing on the role of the ob gene in mice that predisposes them to develop obesity. 
The ob gene encodes for the protein hormone leptin, which regulates body weight, metabolism, 
and reproduction in mammals [62]. Both inactivating mutations in the leptin (ob) gene and in its 
receptor (db) gene lead to genetically obese mice [62]. Therefore, the host genotype is important 
in the development of obesity as well. Another study involving wild-type and Apoa-I knockout 
mice indicates that all three aspects are implicated in the development of obesity and metabolic 
syndrome (MS) [28]. Apoa-I knockout mice have an impaired glucose tolerance and high body-fat 
levels. Groups of wild-type and of Apoa-I knockouts were fed a high-fat diet and normal chow 
diet for 25 weeks. Diet as well as genetic mutation could explain 57 and 12% of the observed 
variation found in the GI microbiota communities, respectively [28]. The results of this study 
indicate a stronger, possibly dominating, role of the diet compared with the genetic variations of 
the host. Nevertheless, the influence of host genotype is not negligible and should therefore be 
taken into account in MS studies.

Obesity in humans
Extrapolation of the relations among diet, host genotype, and GI microbiota discovered in 
animal studies to human obesity seems sensible but has proven to be difficult. Nevertheless, 
deviating leptin concentrations are associated with obesity in humans as well [63]. Leptin normally 
suppresses hunger and increases metabolism, and it has been suggested that obese humans are 
insensitive to leptin. However, although several cases have been described [64], mutations in the 
human db gene are only rarely seen in obese people. However, to accurately assess the importance 
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of db gene variations with respect to obesity development risks, the db mutation frequencies in 
lean individuals should also investigated.

In contrast to mice studies, research with human subjects provide conflicting results regarding 
the association of obesity with relative abundances or abundance ratios of specific bacterial phyla 
[65-67]. However, human studies reported to date employed different molecular techniques and 
targeted populations of different geographic origin. Duncan and coworkers found no differences 
in bacterial phyla abundances or abundance ratios, but identified a significantly higher 
proportion of butyrate producers in the obese subjects [67]. This observation is in agreement with 
the finding of increased butyrate concentrations in the cecum of ob/ob mice as compared to their 
lean littermates [21]. The SCFA butyrate is mainly produced during carbohydrate fermentation 
in the colonic lumen, mainly by members of the Firmicutes phylum, especially those belonging 
to Clostridium cluster IV. Luminal butyrate is quickly absorbed by the colon mucosa where it 
serves as the main energy source for the colonocytes (colonic epithelial cells) [50, 68]. However, 
the exact physiological effects of butyrate are not fully understood. Different, but related cell-
line models can yield direct opposite results regarding the role of butyrate in the modulation 
of cell proliferation, differentiation, and apoptosis [69, 70]. These conflicting results, commonly 
referred to as the “butyrate paradox,” are extensively reviewed elsewhere [71]. In short, in vivo 
human data are insufficient but most studies support beneficial roles for butyrate, including the 
restraining of inflammation and carcinogenesis, reinforcement of various components of the 
mucosal barrier, lowering of colonic oxidative stress, and promotion of satiation [71]. Overall, it 
is obvious that the production of butyrate by the GI microbiota has a major influence on colonic 
mucosa. Thereby the differential abundance levels of butyrate-producing microbes, as reported 
by Duncan and coworkers, seem relevant with respect to human health and may be associated 
with energy homeostasis and obesity risk.

Diet: Transient or permanent effects?
One may conclude from the animal experiments and the observations in human volunteers that 
the interactive factors, constituted by dietary intake and gut microbial ecology, are of major 
importance for the host’s well-being. This raises the question whether dietary effects should be 
seen as transient or can also generate permanent effects. The microbiota transplant approach in 
mice revealed that efficient energy harvesting traits are transferable by the GI microbiota [21]. 
In continuation of this approach, C57BL/6 J mice were conventionalized in such a way that 
all animals inherited similar gut microbiota [72]. Also in these mice, the change from a chow 
diet (low-fat/high-fiber) to the “Western” diet (high-fat/high-sugar) resulted in an increased 
weight gain [72]. In the diet-induced obese mice the relative abundances of the Firmicutes were 
higher, whereas those of the Bacteroidetes were lower compared with their lean status [72]. These 
findings are in agreement with previous results obtained with genetically obese (ob/ob) mice 
[60]. However, the changes in the Firmicutes phylum were not division wide but appeared to be 
mainly restricted to an increased abundance of the Mollicutes class [72]. Apparently, these diet-
induced changes invoked an adaptation of the microbiota to the quality and quantity of the 
available nutrients, and these diet-induced microbiota adaptations are apparently reversible [72]. 
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Follow-up experiments in mice receiving human gut microbiota transplants confirmed that the 
diet-induced changes on the GI communities in these so-called humanized mouse models are 
reversible as well [73]. Interestingly, obese and lean associated microbial communities could be 
maintained by diet alone. Maintenance of community structure and diversity was even achieved 
across several generations of mice following initial transplantation [73]. This again illustrates 
the prominent influence of the diet. Whether the diet is able to overrule the host genotype by 
permanent alterations of the GI community remains to be explored. In rats and humans, dietary 
“metabolic imprinting” through epigenetic modifications on the host genotype seems likely 
[74-76]. However, the reversibility of the gut ecology in the inter-host as well as intra-host species 
microbiota transplants described above seem to rule out the possibility of imprinting through 
the GI community [72, 73]. Although not permanent, it remains a fact that diet has a major and 
rapid impact on the microbiota.

Host–microbiota co-evolution: Selective geographic pressure?
Environment can be easily overlooked while studying GI tract microbiota, but is quite important 
as it determines physiological as well as microbial influences, e.g., through availability of 
food, food consumption habits, temperature, and humidity. Many environmental aspects are 
geographically confined, which raises the question if geography and its associated factors, such 
as climate, availability of food, and composition of the diet, could be an important aspect in 
host–microbe interactions. Several studies indicate an intimate co-evolution of humans and the 
gastric pathogen Helicobacter pylori [77, 78]. Helicobacter pylori appears to have spread from east 
Africa 58,000 years ago along with its human host. This finding implies that geography can also 
influence the microbial community, although modern commuting could blur the extent of such 
geographical impact. Naturally, the exact course and speed of this “blurring” depends on the 
magnitude of the evolutionary developed differences between the ethnic groups involved.

Many studies try to minimize the drastic effects of diet on the microbiota. Dietary habits 
usually depend on the geographical location of the subjects. Hence, not many studies have been 
performed on GI microbiota composition across country boundaries. One of the first studies 
across several countries was performed by Lay and coworkers and conducted on 91 subjects from 
five Northern European countries (France, Denmark, Germany, the Netherlands, and the United 
Kingdom) who consumed a non-restricted Western European diet [79]. However, the identified 
bacterial proportion of the gut microbiota did not significantly differ in composition when 
grouping the samples according origin, gender, or age [79]. Mueller and coworkers conducted a 
study that included as many as 230 healthy subjects from the more distant European countries 
such as France, Germany, Italy, and Sweden [80]. Several differences were found regarding 
country, age, gender, and combinations thereof [80]. Without much effort, dietary justifications 
can be found for most of the observed phylogenetic differences. An interesting example is the 
relative abundance of Faecalibacterium prausnitzii. Strict vegetarians appear to have no detectable 
amounts of F. prausnitzii [81]. The authors suggest that the highest levels of F. prausnitzii and 
related species was in the Swedish subjects and may be related to a high level of fish and meat 
consumption, which is a known dietary tradition of the Swedish population [80]. However, at 
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the time of this study the Swedes, Italians and French consumed the same amount of animal 
products (World Resources Institute - EarthTrends Environmental [http://earthtrends.wri.org/]), 
hence other dietary influences are probably implicated as well. The European studies seem to 
indicate that differences in GI microbiota composition increase with the distance between the 
geographic origins of the subjects. At a larger intercontinental distance, comparable studies 
were performed by American [9, 82] and Chinese [83] research groups. Although at phylum level, 
the Chinese and American subjects exhibited comparable phylogenetic GI tract compositions, 
principal coordinate analysis showed clear differences at species-level composition (Figure 2.4) 
[83]. Importantly, these findings reflect the differences in nuclear magnetic resonance based 
metabolic urine phenotypes found between large groups of Chinese and American subjects. 
Many of the differential urine metabolites do not have a mammalian origin but are derived 
from microbial sources [84]. Thus, it can be hypothesized that there is a co-variation between 
gut microbiota structure and the host metabolic phenotype. Urine metabolite profiles associated 
with microbial products are able to discriminate Japanese living in Japan and Japanese living 
in America [85]. Therefore, the differences found between the Americans and Chinese could be 
more dependent on diet and/or geography than on host genotype. Interestingly, the Chinese 
volunteers (Figure 2.4) all belonged to the same family and had more similar GI communities 
when compared among each other than the unrelated subjects within the American cohort. 
Hence, this observation does associate genetic relationship with GI microbiota composition and 
therefore points at a role for the host genotype in gut community development.

Whether geographic pressure has left its mark on the co-evolution of men and GI microbes 
is impossible to tell from the studies described in the previous paragraphs, without the knowledge 
on the influence of the diet and host genetics. Geography could be important with respect to the 
availability or prevalence of environmental or dietary microbial lineages for host colonization. 
Although the host (genotype) is dependent on the microbes it receives, it might be able to 
put selective pressure on sub-populations [44]. However, currently, no colonization restrictions 
have been observed in people who migrated from their traditional home countries into other 
geographic regions.

Intriguingly, the variation in colon cancer prevalence among Afro-American and native 
African populations appears to be in agreement with co-evolutionary relationships between 
human and GI microbiota caused by geographic and environmental conditions. Americans of 
African origin have the highest risk of all American subpopulations to develop colon cancer, 
whereas native Africans rarely suffer from this type of cancer [86]. The biggest difference between 
these two populations is probably their dietary habits, which prominently influences their GI 
microbiota communities [65, 72, 73]. Initial cultivation-dependent analyses confirmed differences 
in GI communities between native Africans and Afro-Americans [86], although these methods 
provide an incomplete impression of the microbiota. Newborn Afro-Americans are not exposed 
to the (relative) abundant levels of many microorganisms as they would in the native African 
region. Thus, no major colonization occurs of microbes that normally dominantly reside among 
the child’s kin group, which essentially is a settled population established through generations-
long consistent geographic and lifestyle factors. This means that the emigration process that 
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commonly coincides with changes in dietary habits seems to disrupt the co-evolved mutualism 
between the host genotype and its GI microbiota, resulting in the increased colon cancer risk in 
African-Americans. In conclusion, the functioning of the human super-organism appears to be 

affected by currently fading barriers in human and environmental ecology caused by urbanization, 
global traveling, and emigration. These fading barriers probably coincide with a reduction in the 
number of microbe encounters, which could lead in humans to an underdeveloped immune 
system according to the hygiene hypothesis [87]. Such disruptions of long-term co-evolved 
interactions between man and microbe might partially explain the observed increase of chronic 
and degenerative disease frequencies in industrialized countries [86, 87].

Host-genotype polymorphisms
The genetic make-up of humans is very similar, and small genetic polymorphisms form an 
important aspect of genetic variation among human beings. Evidence is accumulating that 
these genetic variations are important determinants for the interactions with host-associated 
microbiota. Intuitively, the highly polymorphic immune-related genes are eminent candidates to 
define the interaction between host and microbe. The mucosal epithelial barrier has traditionally 
been considered to prevent contact between microbiota and underlying cells, including immune 
cells. Any contact was thought to provoke immune reactions that would even eradicate the 
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Figure 2.4 Principal component (PC) analysis on the species-level composition of the gut microbiota of Chinese family 
members (green circles) and American volunteers (blue squares). UniFrac metrics were used to generate the principal 
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still developing gut microbiota. Figure adapted from [83] (American microbiota data from [9, 82]).
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commensal organisms from the host. However, current knowledge clearly establishes frequent 
and essential communications between immune system and microbiota [88, 89]. Immune tolerance 
is promoted by local immune modulations that only inhibit further host tissue penetration of the 
commensal microbes [89-91]. This “peaceful situation” is normally maintained despite the massive 
presence of bacterial molecules that are capable of activating the host’s bacterial molecular pattern 
recognition receptor and their cognate immune regulation cascades [88]. Polymorphisms in any of 
the immune-related genes involved in immune tolerance are prominent candidate determinants 
of the bacterial selection by the host.

Host–microbiota communication: Innate immune system
Important bacterial molecular pattern recognition receptors capable of initiating innate immune 
responses are the toll-like receptors. Toll-like receptor-4 (TLR-4) can recognize lipopolysaccharide 
(LPS), a cell wall component of Gram-negative bacteria [92, 93]. Mutations of the TLR-4 gene 
result in a weakened immune response to LPS in mice [93]. Moreover, TLR-4 sequence variants 
in humans correlated with a reduced response to inhaled endotoxins [94]. For Gram-positive-
produced lipoproteins and lipoteichoic acids TLR-2 seems to be the main mammalian receptor 
[95]. Moreover, TLR-2 either alone or in heterodimer form with other TLRs can recognize more 
than a single ligand [96]. Naturally occurring mutations in the human TLR-2 gene were shown 
to have diminished response to lipoproteins harvested from the Gram-positive bacteria Borrelia 
burdorferi and Treponema pallidum [95]. Although the polymorphisms in TLR-4 and TLR-2 are 
medically relevant, no studies have been reported, which determine their impact on human 
(or other mammalian organisms) associated microbiota. However, it is reasonable to suspect 
gene variants of important components of the innate immune system to be involved in the 
host–microbiota interactions. From mice studies, it is known that a genetically disabled innate 
immune system is associated with a collitogenic murine gut community [97]. Unfortunately, 
in these types of studies it is unclear whether the colitis is caused by a change in community 
structure or by the defective defense system of the murine hosts.

Other immune system components have been shown to be involved with the host–
microbiota crosstalk. Besides TLRs, the innate immune system also depends heavily on 
the nucleotide-binding oligomerization domain (NOD) receptors [98]. An overview on the 
current knowledge of TLRs, NOD receptors, and other innate immune system receptors is 
given elsewhere [96]. NOD2 variants clearly show a relation between host genotype and gut 
microbiota composition, which is associated with increased risk for Crohn’s disease (CD) [99, 100]. 
Normally, NOD2 binds the muramyl dipeptides of bacterial peptidoglycan [101], but certain 
polymorphisms in NOD2 can result in failure of muramyl dipeptide detection. Such a failure 
results in a lack of tolerance development for commensal bacteria and dietary antigens and 
consequently leads to “inappropriate” immune response against them [102]. Considering these 
results, it is not surprising that CD patients were found to have lower diversity and diminished 
levels of normally abundant bacteria [103]. Especially the phylogenetic group Clostridium leptum 
in the Firmicutes phylum seems to be reduced in patients with CD. Several molecular techniques 
have indicated that F. prausnitzii, which is a member of the C. leptum group, is depleted in 
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the mucosa-associated communities [103-105]. Importantly, secreted metabolites of F. prausnitzii 
have been shown to exert anti-inflammatory effects in vitro [106]. In addition, F. prausnitzii is 
associated with an in vivo reduction of pro-inflammatory cytokine synthesis and increase of 
anti-inflammatory cytokine production in the colon. The observations concerning F. prausnitzii 
combined with the association of CD and NOD2 mutations illustrate a potential link among 
host genotype, phenotype, and microbiota composition. NOD2 mutant genotypes are likely 
to promote a negative selection of F. prausnitzii in the colon, which in turn can lead to the 
development of CD. Nevertheless, it is possible that other variations in the host genotype can 
allow the selection of other microbes similar to anti-inflammatory influences as F. prausnitzii.

Host–microbe interactions are not restricted to direct interactions between bacterial 
ligands and receptors of the innate immune system. Other proteins that should be considered 
are, for instance, further down the signaling pathway of TLRs or are involved in other cellular 
processes supporting immune responses, such as cell movement and restructuring. The gene 
MEFV encodes the protein pyrin, which is involved in innate immune response regulation, but 
has currently no definite function assignment [107]. This gene has no direct contact with microbes 
as it has been found in the cytoskeleton, but mutations of MEFV can lead to Mediterranean 
fever, a hereditary auto-inflammatory disorder [108]. In addition, patients with this disease have 
lower bacterial diversity and prominent population shifts in the Bacteroidetes, Firmicutes and 
Proteobacterium phyla during periods of active disease, whereas when the disease is in remission 
the bacterial gut community is more similar to normal microbial composition but still atypical 
[108]. Therefore, even polymorphisms in genes encoding proteins that are not supposed to be 
in direct contact with the gut microbes can influence host–microbe interactions. Recently, in 
healthy human mucosa, gene expression patterns have been found, which correlate with the 
development of immune tolerance for the organism Lactobacillus plantarum [109]. Even for one 
organism, these patterns involve many genes and therefore may be affected by many potential 
polymorphisms, which again exemplifies the complex nature of host–microbe interactions. 

Host–microbiota communication: Non-immune-related mechanisms
Variations in genes not directly involved in immune system pathways can exert influence on the 
microbiota composition and functioning as well. Changing the conditions for the GI microbiota 
through modulation of host-derived resources or available attachment site in the mucosal layer 
seems of considerable importance. A nice illustration can be given by the abundant commensal 
species in the human and murine gut Bacteroides thetaiotaomicron. This organism matches 
its demand for fucose, a growth substrate, by upregulating fucosylated glycan production of 
epithelial cells in mice whenever pentose sugars are scarce [42]. Other bacteria might (ab)use this 
epithelial fucose synthesis regulation of B. thetaiotaomicron, as such this mechanism is important 
for multiple species in the GI microbiota [110]. Extrapolating this finding to the human situation, 
one can imagine the involvement of the fucosyltransferase enzyme polymorphisms, which are 
determinant for human blood types [111]. This type of gene has many variants since human 
glycoproteins are likely to be continuously evolving through natural selection provided by 
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commensal and pathogenic microorganisms [112]. Notably, some correlations between blood type 
and gut community variations indeed have been reported in the past [46, 113]. 

Another example of potential host-genotype-dependent interactions with gut microbes is 
mucin encoding (MUC) genes. These MUC genes encode protein backbones for mature mucin 
molecules, which are heavily glycsylated by O-linked oligosaccharides on the threonine, proline, 
and/or serine repeats [114]. The terminal oligosaccharides of mucin molecules contain sulfate 
and/or O-acetyl-substituted sialic acids. Mucins can both promote and prevent bacterial cell 
adhesion, depending on the exact structures of their O-glycan chains [115]. Changes in mucin 
composition have been associated with inflammatory bowel diseases [116]. Next to microbial 
mucin degradation, these changes could be due to genotype-related issues, such as polymorphisms 
in MUC genes, variations in MUC mRNA or protein levels, and variable posttranslational 
modification changes (i.e., the extent of glycosylation and sulfation) [116].

Many more host genes can be found that are involved in the functioning of the GI tract 
and thereby polymorphisms in such genes could have an impact on the microbial communities. 
Mutants in host enzymes responsible for nutrient breakdown and/or absorption could potentially 
influence the microbiota by altered nutrient composition and availability in the different regions 
of the intestine. For example, enterocytes in the small intestine can absorb glucose through 
active and passive glucose transporters [117]. Variants of these host-encoded transporters could 
cause alterations in the rate of carbohydrate absorption and thereby modulate the carbon source 
availability for the resident microbes, which may favor different microbial communities. More 
complex host–microbiota interactions are mediated by bile acids, which, next to their digestive 
functions (i.e., solubilization of lipids and lipid-soluble vitamins to enhance their absorption), 
have a role in maintaining the intestinal barrier [118]. Mammalian-microbiota co-metabolism 
result in the so-called secondary bile acids, which exert biologically important effects on both 
host and microbiota constituents [118]. Variations in level or composition of bile may have 
prominent effects on microbial communities and may correspond with specific consequences 
in mucosal cell biology. Primary bile acids are synthesized in the liver by a cascade of enzymes, 
providing many possibilities for gene variants that influence bile composition and corresponding 
host–microbe interactions.

Direct interactions of host genome and microbiota
Of all the possible interactions taking place in or around a host (Figure 2.1), modulation of 
the host genotype by the microbiota seems extraordinary. Nevertheless, when 223 genes in the 
rough draft of the human genome were found to potentially have a bacterial origin, horizontal 
gene transfer (HGT) from bacteria to humans has been suggested [119]. This could indicate that 
bacteria can manipulate their host, likely for their own benefit. However, HGT between human 
and bacteria is a difficult process because the genes should be stably integrated into the host 
DNA of germ line cells, to which bacteria normally do not have physical access. Furthermore, 
in 2001, Salzberg and coworkers carefully reexamined protein sequences of human, four other 
eukaryotes, and all completed prokaryote genomes at that time [120]. They only found about 
40 human genes to be possible candidates for HGT from bacteria to humans. Therefore, HGT 
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between bacteria and humans remains doubtful since alternative, more plausible biological and 
technical explanations may be responsible for the few shared genes that are observed. One such 
biological factor is the high probability that the analyzed species had lost several genes from the 
common eukaryotic ancestor gene pool. Furthermore, nucleotide substitution rates can vary 
between genes within one genome as well as between similar genes in different organisms (i.e., 
evolutionary rate variation [121]). Therefore, in HGT analyses, evolutionary relatedness cannot be 
based on sequence similarity alone, indicating an important technical limitation in the currently 
available studies on this topic [122]. Furthermore, only five eukaryotic genomes were available 
at the time of analysis, three of which belong to the animal lineage (Caenorhabditis elegans, 
Drosophila melanogaster, and Homo sapiens) [119, 120]. Hence, the total eukaryotic diversity was 
poorly represented. By contrast, the available prokaryotic genomes at that time embody a much 
broader evolutionary diversity [123]. This limited sample size of eukaryotic genomes is yet another 
technical problem confounding the HGT from bacteria to human. Concluding, it seems unlikely 
that bacteria have permanently manipulated their human hosts through HGT.

It seems more feasible that microbes sometimes pick genes up from their hosts. For example, 
the possible transfer of genes encoding serpins, which are protease inhibitors involved in the 
regulation of many physiological processes [124]. Although serpins are found in all three domains 
of life, which indicate that they could originate from a common ancient, serpins are found in 
relatively few prokaryotes. The latter would imply that serpins are not essential for survival or 
that they may have been acquired by prokaryotes as the result of HGT. Even though the serpin of 
Bifidobacterium longum is distantly related to eukaryotic serpins, Ivanov and coworkers showed 
that it exerts inhibitory functions through an identical mechanism. Another clearer example is 
the presence of nptA gene, a sodium/phosphate co-transporter, in Vibrio cholerae. This gene is 
also present in animals but seems to be absent in any other bacterial species [125]. Furthermore, 
V. cholerae has been shown to exhibit activity similar to that of its animal homologs [125]. It 
is likely that this transporter facilitates V. cholerae in the GI tract and consequently could be 
involved in the pathogenicity of this microbe. However, in both the serpin and the nptA case, it 
remains difficult to prove that the genes are not derived from an ancestral gene instead of being 
transferred from a (mammalian) host species. 

Mitochondria provide off course evidence that indeed bacterial DNA resides in the 
mammalian genotype. Although these eukaryotic organelles originate from the endosymbiosis 
of an α-Proteobacterium ancestor, they show no indications that they were introduced in order 
to manipulate the host for their own benefit. By contrast, recent findings show that it was the 
eukaryotic host that took control and manipulated the bacterial endosymbiont for its own benefit 
[126]. During the transformation of bacterium to organelle, many bacterial genes not involved 
in energy conversion were lost or replaced by genes originating from the eukaryotic host [126].
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Conclusions
Humans and other mammalian hosts provide only a minor quantity of genes to their super-
organism metagenome. Yet these genes are essential and decisive in defining the final host–
microbiota interactions. Disturbances in the host genotype can lead to malfunctioning of the 
super-organism, i.e., all kinds of metabolic disorders, immune diseases, and other disorders. 
Human genotypes consist of a huge amount of variables, many of which could be of importance 
for host–microbiota interactions. Not only genes directly related to the immune system should 
be considered in future studies. For instance, Escherichia coli has been implicated to, via quorum 
sensing, cross-communicate with the host epinephrine signaling pathway [127]. Although this 
is coming from a pathogenic species, one cannot exclude this type of non-immune-system-
related communication between the host and its commensals. Another form of communication 
is through metabolites, such as SCFAs or (secondary) bile acids [59, 118]. Hence, many different 
mechanisms constitute the overall host–microbe interactions pallet. Basically, the hierarchy in 
importance of human genotypes in relation to host–microbe interactions is unknown. Currently, 
the majority of predictions hint at immune-related factors, i.e., gene polymorphisms. However, 
genes involved in metabolic functions and their control or those involved in biosynthetic 
pathways, such as mucus production and modification, or bile metabolism are likely to be 
important modulators as well.

New human genotyping efforts using extensive volunteer cohorts, combined with in-depth 
microbiota profiling, provide a possibility to mine for all factors underlying the relation between 
human host and its microbial communities. Furthermore, comprehensive studies following 
both monozygotic and dizygotic twins from birth to adulthood will provide vital information 
to assess the relative contribution of host genotype to the GI microbiota composition. These 
studies will be most successful when they acquire additional metadata, such as dietary habits, 
and actual short-term nutrient intake, and preferably also include intergenerational analysis of 
the subjects’ families. Such multivariant analyses will be essential to dissect influences of dietary, 
environmental, and host-genotype factors.

Nevertheless, diet will probably always be an obscuring factor due to its dramatic, but 
apparently reversible effects on the microbiota. Future studies could benefit from the consistent 
use of family members, different ethnic groups, or both. Difficult studies, from an ethical point 
of view, in which the subjects are isolated for longer periods of time and under strict dietary 
regimes, might provide better insight in the human–diet–microbiota relationship. Regardless 
of the chosen study types, it will be a “life-changing” experience to finally fully understand 
both dietary and host genotype influences involved in shaping and interacting with the 
intestinal microbiota. Such knowledge may enable the definition of dietary regimes that provide 
prophylactic and therapeutic possibilities for a variety of disorders and/or diseases, provided that a 
causal relationship underlies the observed diet and microbiota correlation with these disorders or 
diseases. Specific dietary design might be attempted to correct deviating microbiota compositions 
and/or activity associated with specific diseases toward a more “healthy microbiota.” The rapidly 
developing field of (functional) metagenomics may allow us in the near future to actually come 
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to the accurate description of what can be considered a “healthy microbiota,” which could then 
be employed as a biomarker in diagnosis and treatment of diseases and/or disorders.

“He who does not know food, how can he understand the diseases of men?” – Hippocrates (460–357 B.C.)
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Abstract
Irritable bowel syndrome (IBS) is a common, usually life-long, intestinal disorder. Although 
IBS etiology is largely unknown, some successes of probiotic interventions have been reported. 
The aim of this study was to decipher the microbiota response to a multi-species probiotic 
treatment that led to the improvement of IBS symptoms. Fecal samples from 62 IBS patients 
were taken before, during, and after a double-blind placebo controlled trial. Microbiota analysis 
was performed by the HITChip phylogenetic microarray. The microbiota dynamics were 
assessed and changes in the microbiota were correlated with IBS symptom scores. Finally, the 
development of the bacterial co-occurrence networks were analyzed in both treatment arms. A 
stability increase of the total microbiota occurred in the probiotic-consuming subjects (p=0.012), 
whereas stability in the placebo-receiving group did not change. No consistent changes in relative 
abundance of the microbial groups were observed other than groups representing the probiotic 
strains. The patients on the probiotic intervention could be divided on responders and non-
responders and, remarkably, the non-responders had almost 2-fold lower levels of bacteria related 
to Faecalibacterium prausnitzii than the responders. Moreover, a restructuring of the microbial 
co-occurrence networks was observed in the responders, which could explain the probiotic-
mediated stabilization of the microbial community. Deep phylogenetic analysis revealed that the 
microbiota composition went through temporal stabilization and shifts in bacterial connectivity 
networks occurred along with IBS symptom improvement during the probiotic intervention. 
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Introduction 
Irritable bowel syndrome (IBS) is a common and chronic intestinal disorder. Worldwide, IBS 
prevalence among the adult and adolescent population is about 10-20% [1]. Patients with IBS 
suffer from abdominal discomfort or pain associated with defecation, bloating, discomfort, 
and disturbed defecation habits [1]. Most IBS patients experience fluctuations in severity of the 
symptoms, sometimes affecting social and personal life to an extent similar to chronic diseases 
like diabetes [2,3]. Although the IBS etiology is still largely unknown, it can be regarded as a 
multi-factorial disease which involves lifestyle [4], psychological stress [5], host genetics [6], but 
also the intestinal microbiota [7-9] and the gut-brain axis [10]. Most of the earlier studies on the 
relationship between IBS and the intestinal microbiota were limited in power and analysis depth 
[11]. More recent studies employing high throughput DNA technologies have revealed an altered 
intestinal microbiota of IBS patients compared to healthy subjects, both in adults [12-15] and 
children [16,17]. Although many studies have revealed specific differences in microbiota from 
(subgroups of ) IBS patients and healthy subjects, general consensus with respect to composition 
is still lacking due to the heterogeneity of IBS and the variation in approaches that were used 
to study the microbiota composition [18]. A common observation is an enrichment of certain 
Firmicutes groups, mainly of species related to Ruminococcus gnavus [15,19,20], in conjunction with 
reduced abundance of some Bacteroides groups in IBS patients [13,15,21]. Therefore, treatments of 
IBS are shifting towards modulation of the intestinal microbiota through dietary therapies with 
FODMAPs [22], prebiotics, administration of probiotics, and even fecal transplantations [23]. 

In this study we investigated the microbiota dynamics in a successful double-blind placebo 
controlled trial that showed IBS symptom score decrease and the microbiota stabilization in 
a subset of analyzed samples upon consuming multi-species probiotic diary drink containing 
Lactobacillus rhamnosus strains GG and Lc705, Bifidobacterium animalis BB12 and 
Propionibacterium freudenreichii subsp. shermanii JS [24]. The participants consisted of a Finnish 
IBS cohort of 62 patients whose microbiota prior to intervention showed distinct composition 
compared to healthy controls [15]. Phylogenetic microarray (HITChip [25]) profiling of the 
fecal microbiota showed a significantly increased microbiota stability after consumption of the 
probiotic, extending earlier observations with a smaller subset of subjects [24]. In addition, several 
microbial groups were found to develop new associations during the trial specifically in the 
probiotic-consuming patients. 

Materials & methods

Participants
The study group consisted of 62 primary care IBS patients recruited from the Helsinki area in 
Finland for a follow-up clinical trial [24]. All IBS patients fulfilled the Rome II criteria [26] and 
were investigated with colonoscopy or barium enema of the colon in the 5 years prior to the start 
of the trial. The average age of the 62 IBS patients (57 females, 5 males) was 49 years (range, 
22−66 years). Detailed subject inclusion criteria were reported earlier [24]. Written informed 
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consent, approved by Ethics Committees of the Pirkanmaa Hospital District (Finland), was 
provided by all participants [24].

Study design
The probiotic intervention study was conducted and described previously [24]. In short, the trial 
was randomized, double-blind, placebo-controlled covering a 5-month period that was preceded 
by a three week run-in period and followed by a three week follow-up period. Fecal samples 
were collected for 62 subjects at baseline (sample A; run-in period), halfway through (sample B; 
variable) and just after the end of the trial (sample C; follow-up period). The probiotic treatment 
arm consumed daily 120 mL of a milk-based drink (80% lactose-free milk and 20% fruit 
juice) containing approximately 1×107 colony-forming units (CFU)/mL of each Lactobacillus 
rhamnosus GG (LGG®), Lactobacillus rhamnosus Lc705, Propionibacterium freudenreichii subsp. 
shermanii JS, and Bifidobacterium animalis subsp. lactis Bb12 (Valio Ltd, Helsinki, Finland) 
while the control arm received a placebo acidified drink lacking these probiotic strains, but 
otherwise similar to the probiotic drink.

IBS diaries
The IBS symptoms and bowel habits were surveyed by means of a patient diary as reported earlier 
[24]. A total IBS score was composed of the scores for the following symptoms: abdominal pain, 
distension, flatulence, and rumbling. Both the total score as well as the individual symptom 
scores were correlated to the microbial data gathered in this study.

Fecal samples collection, DNA extraction and phylogenetic microarray 
analysis
Fecal samples were collected and DNA was isolated as reported previously [24]. Analyses by 
the phylogenetic microarray, the HITChip, were performed as described earlier [15,25]. Total 
microbiota assessments were performed on normalized signal values of the 3,699 unique HITChip 
probes. These probe values were used to calculate Simpson’s Diversity index for each sample 
and Spearman’s correlation coefficient between different samples to assess microbiota similarity. 
Microbiota stability for each subject was analyzed by subtracting the similarity coefficient between 
samples A and B from the similarity coefficient between samples B and C. HITChip probes are 
assigned to different phylogenetic levels: order-like 16S rRNA gene sequence groups; genus-
like 16S rRNA gene sequence groups (sequence similarity >90%); and species-like 16S rRNA 
gene sequence groups (sequence similarity >98%) [25]. For each sample relative abundances were 
calculated for the genus-like groups by summing all signal values of the probes targeting these 
phylogenetic groups and subsequently dividing by the total of all probe signals. All comparisons 
were pair-wise and significance was assessed with dependent 2-group Wilcoxon signed rank tests, 
unless noted otherwise. For all statistical tests that were performed on multiple parameters the 
false discovery rate was estimated by calculating q-values. Results with both p-values <0.05 and 
q-values <0.05 were regarded as significant. In addition, all analyses were repeated on the set of 
samples from the subjects that responded to the treatment. Similar to the definition recently used 
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by Chumpitazi and co-workers [27], we defined subjects that showed >50% reduction in any of 
the symptom scores as responders. 

In order to link microbiota to IBS symptoms, Spearman’s correlation coefficient (ρ) was 
calculated between genus-like group relative abundances and IBS symptom scores. Network 
analysis was performed by calculating ρ between the genus-like groups of all samples per 
treatment arm and per time point separately. In all correlation analyses only the correlations 
with |ρ|>0.5 (and q<0.05) were accepted as “real” correlations. Specific correlations induced 
during the trial (for details see SI) were visualized with the ‘Gephi Graph Visualization and 
Manipulation’ software [28]. 

Results

Composition and stability of the fecal microbiota during the trial
Detailed and reproducible analysis of the fecal microbiota by phylogenetic microarray was 
performed to obtain a high-resolution microbiota profile of each sample of the 62 subjects, 
taken before, during or after the intervention (samples A, B and C, respectively). Unsupervised 
clustering (Figure S4.1) showed that the 186 samples clustered exclusively according to subject, 
confirming the strong individuality of the intestinal microbiota and the limited impact of the 
probiotic intervention [29-31]. Intra-individual similarities (alpha-diversity; ρ=0.851 ± 0.065 SD) 
were significantly higher compared to the inter-individual similarities (beta-diversity; ρ=0.699 
± 0.065 SD; p=1e-97, two-sample Student’s T-test with unequal variance between groups). No 
microbiota differences were detected between the baseline samples of both treatment groups and 

A

Placebo

Probiotic

Entry period Exit period

3 wks 20 wks 3 wks

A B C

-0.01 0.00 0.01 0.02 0.03 0.04

B

Figure 4.1 Trial set-up and microbiota stability. A) Probiotic clinical trial set-up. B) Intestinal microbiota stability of subjects 
consuming the placebo and probiotic drinks. Microbiota stability was visualized by subtracting the similarity (correlation coefficient) 
of the entry period A-B from the similarity of the exit period B-C. The increase in stability occurring within the probiotic treatment 
arm was significant (p=0.012), while the change in stability within the placebo treatment arm was not significant (p=0.612).
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no consistent changes in diversity were observed during the intervention period for either the 
treatment or the placebo group (Figure S4.2). 

The entry (from sample A to B) and exit (from point B to C) periods were used to estimate 
the microbiota stability throughout the intervention. Time between sampling points was not 
related to the similarity between the samples (Figure S4.3) and therefore allowed this microbiota 
stability analysis (Figure 4.1). Subjects from the probiotic group showed significantly higher 
microbiota similarity between the exit period samples compared the entry period samples 
(p=0.012), whereas for the subjects from the placebo group showed no differences between these 
periods (p=0.612), indicating a significantly increased temporal stability of the fecal microbiota 
following the probiotic intervention.

To evaluate whether the increased microbiota stability in the probiotic group could 
be assigned to detectable changes of specific microbial groups, the relative abundance was 
determined for the 129 16S rRNA-based genus-like phylogenetic groups that are targeted by the 
HITChip microarray [25]. However, none of those groups showed any consistent changes during 
the intervention except for those targeting the species in the probiotic product (Table 4.1). Only 
the bifidobacteria did not appear change throughout the intervention, but when zooming-in 
on the species-like level we observed a strong (35-fold) increase of the signals of belonging to 
B.animalis subsp. lactis Bb12 (Table S4.1).

As reported previously, patients treated with the probiotic showed an improved intestinal 
health [20] and the vast majority (30 out of 35) showed a more than 50% reduction in any of 
the symptom scores and these were identified as responders. Only a small group (n=5) were 
found to be non-responders. None of the results described above was influenced by the removal 
of the samples from the non-responders. Diversity, richness and microbiota profiles of the non-
responders were all well within the ranges observed in the responders. However, one noticeable 
difference in microbiota between the non-responders and the responders in the probiotic 
treatment arm was observed. The relative abundance of bacteria related to Faecalibacterium 
prausnitzii at baseline was 1.75-fold lower for the non-responders (p=0.081; Figure S4.4). 
However, when categorizing the first quartile (Q1) of the measured F.prausnitzii abundances 
as “low”, non-responders have a significantly larger proportion of subjects with low levels of 
F.prausnitzii et rel. (Chi-square test p=0.014).

Table 4.1 Genus-like groups with significant changes throughout the trial in the probiotic consuming subjects. 
Significant changes (q < 0.05) are indicated in bold. The Lactobacillus plantarum et rel. group includes the probes for the probiotic 
Lactobacillus rhamnosus strains. strains.

Genus-like group Treatment arm Relative abundance 
at baseline (%)

Median change 
entry period (%)

Median change 
exit period (%)

Lactobacillus plantarum et rel. Placebo 0.136 +2.6 -5.5
Probiotic 0.149 +15.5 -15.9

Propionibacterium Placebo 0.035 +1.7 -5.6
Probiotic 0.037 +12.7 -14.8
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Correlation between changes in IBS symptom scores and changes in 
quantitative microbiota data
We observed previously that the IBS patients receiving the probiotic showed on average an 
improvement in the total IBS score of 11 points compared to that of the placebo group [24]. 
Using sample A as a baseline measurement, the present cohort (i.e. all patients with a complete 
set of samples, n=62) showed the same decrease in total IBS score in the probiotic treatment arm 
(Figure S4.5). Compared to the total IBS score, the symptom scores distension, flatulence, pain, 
and rumbling showed similar trends, i.e. improvements symptom score of 1.5 to 3 points more 
compared to the placebo group (Figure S4.5), similar to the previous observation [24].  

To determine which microbiota fluctuations were associated with IBS symptom changes 
the genus-like group abundances were correlated to the symptom scores. Four genus-like groups 
(with bacteria related to Klebisiella pneumoniae in a positive way and Lachnospira pectinoschiza, 
Clostridium cellulosi and Subdoligranulum variable in a negative way) could be directly correlated 
to IBS symptom scores at different time points for each treatment arm (Table 4.2).

Ecological networks of microbial groups
The effect of the probiotic intervention on the ecological connections within the GI microbiota 
was investigated by calculating the correlations between the microbial groups on all three time 
points for both probiotic and placebo treatment arms separately. These correlations represent 
(positive) co-occurrences and (negative) anti-occurrences between the microbial groups and 
shall, from now on, be referred to as “connections”. A total of 49 genus-like groups showed 
consistent positive connections (ρ>0.5) at all three time points in both placebo and probiotic 
treatment arms. For 38 genus-like groups these consistent connections were captured in four 
separate network modules (I to IV; Figure 4.2). No consistent negative connections were detected 
(ρ< -0.5 in all time points, for both treatment arms). Besides the consistent connections, a large 
amount of variable connections were observed between the different time points and treatment 
arms. Interestingly, no connections appeared to develop during the trial that were unique for the 
placebo-receiving subject group. In contrast, several connections emerged during the trial that 
were unique for the probiotic-receiving subject group (Figure 4.2). These unique connections, 
referred to as “probiotic-induced connections”, encompassed 34 genus-like groups of which half 
belong to the consistent network modules I, II, and III. All three genus-like groups that represent 
the probiotic strains used in this intervention are among the probiotic induced connections.

Table 4.2 Genus-like group significantly correlating to IBS symptom scores.

Genus-like group IBS symptom 
score

Time point Treatment arm Spearman’s 
correlation 
coefficient (ρ)

q-value

Klebisiella pneumoniae et rel. Pain A Placebo 0.534 0.039
Lachnospira pectinoschiza et rel. Pain A Placebo -0.529 0.042
Clostridium cellulosi et rel. Total score B Placebo 0.573 0.020
Subdoligranulum variable at rel. Distension C Probiotic -0.567 0.005
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Careful inspection of the networks revealed that the probiotic treatment appeared to 
elicit four types of microbial network consequences: 1) extension of existing network modules 
to encompass additional genus-like groups; 2) strengthening existing network modules by 
increasing connections of members intrinsic to the network module; 3) connecting existing 
network modules; 4) formation of novel network modules. Network module II extended 
with (negative) connections to bacteria related to Lachnobacterium bovis and Papillibacter 
cinnamivorans, strengthened internal connections between its members, as well as aligning with 
module I (through alignment of Akkermansia and the relatives of Oscillospira guillermondii) 
and III (through the addition of Veillonella to the network). Network module III extended its 
connections with the bacteria related to Anaerostipes caccae, Bifidobacterium, Eubacterium siraeum, 
Lactococcus, Phascolarctobacterium faecium, Prevotella melaninogenica, and Veillonella. New 
network modules emerged in the intervention group as well: the consistent connection between 
the relatives of Clostridium colinum and Eubacterium rectale got extended with Clostridium 
sphenoides and Lachnospira pectinoschiza (Figure 4.2); the relatives of Anaerotruncus colihominis, 
Clostridium nexile, Eubacterium biforme, Ruminococcus gnavus, and Ruminococcus lactaris formed 
a new dynamic network. These results show that the probiotic treatment elicited an extensive 
restructuring of the ecological environment, which included altered connectivity patterns for 
some microbial groups of which the abundance correlated with disease symptom scores.

Discussion
The increasing awareness of the potential role of the intestinal microbiota in the etiology of 
IBS opens avenues for treatments of the disease that focus on modulating the microbiota [7-11]. 
Here we report on the microbial changes observed during the administration of a multi-species 
probiotic. Analysis of the fecal microbiota composition of 62 IBS patients before, during and 
after a randomized double-blind placebo controlled clinical trial provided new insights into the 
mechanisms underlying microbiota modulation, including the rearrangement of ecosystem-
network connectivity of bacterial groups to form a more stable ecological environment, which 
may have contributed to the observed improvements in IBS symptoms.  

While not all probiotic interventions in IBS patients have been equally successful [8], 
two independent double-blind and controlled trials have reported significant improvement 
of symptoms following consumption of the multispecies probiotic mixture consisting of 
L.rhamnosus strains GG and Lc705, P.freudenreichi PAJ and either B.breve Bb99 or B.animalis 
BB12 in capsule or milk-based drink [24,32]. Remarkably, in both studies the placebo group did 
not show a significant change apart from a slight initial decrease in symptoms that was ascribed to 
placebo effects. Therefore it is tempting to speculate that consumption of the probiotic bacteria 
species had an impact on the intestinal microbiota composition and that this impact was relevant 
for the observed symptom improvement. Although the present study could not account for 
direct interactions between the probiotic strains and the host, e.g. mucosal interactions in the 
small intestine, it does give a novel insight into the microbiota changes induced by probiotic 
consumption that were associated with changes in IBS symptoms. Notably, only in the probiotic 
group did the microbiota stability significantly increase, indicating that treatment dependent 
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changes in the microbiota did occur and persisted during the trial, reinforcing the previous report 
on a subset of 20 patients from our cohort [24].

No consistent changes were observed in the relative abundances of microbial groups in 
the feces of the subjects consuming the probiotic other than the species present in the probiotic 
supplement (Table 4.1). In concordance overall richness and diversity were not affected by the 
probiotic treatment either. Given that the intestinal microbiota is extremely complex and stable 
ecosystem, that is able to resist harsh environmental challenges (such as dietary changes or an 
antibiotic treatment course) for periods measured in years [33] this result does not come as a 
surprise. Since other studies have reported similar results in probiotic trials [8,34] we can conclude 
that impact of the multi-species probiotic on the intestinal microbiota is subtle in nature.

Direct correlations between microbial abundances and symptom scores linked several 
microbial groups to the total IBS symptom score, as well as those for the specific distension and 
pain symptoms (Table 4.2). These correlations implicated bacteria related to Klebisiella pneumoniae 
(positive), Lachnospira pectinoschiza, Clostridium cellulosi and Subdoligranulum variable (negative) 
with IBS symptoms, across treatment arms and time points. Hence, the bacteria-symptom 
associations were variable over time, even in the placebo treatment arm. Therefore, the impact 
of the multi-species probiotic is probably dependent on the ecological context (at baseline), 
suggesting that IBS subject stratification could be improved by taking microbiota composition 
into account. Jeffrey and co-workers have already shown a microbiota clustering independent 
of Rome II IBS sub-typing, which was predicted accurately by determining the Firmicutes to 
Bacteroidetes ratio (F:B) [13]. Our cohort was previously reported to be characterized by a higher 
F:B ratio in IBS patient compared to healthy individuals [15], which is a common observation 
in IBS cohorts [18-20]. Nevertheless, we did not observe correlations between F:B ratios and 
symptom scores. Another way to stratify the studied subjects is by classifying their response to the 
treatment. In probiotic trials the comparison of the baseline microbiota of non-responders versus 
responders could reveal factors influencing the effectiveness of the treatment. No significant 
difference in microbiota characteristics between the non-responders and responders were found 
here. Yet, it is interesting that the largest baseline difference between responders and non-
responders was in a specific Firmicutes group: the relatives of F.prausnitzii were present in a 1.75-
fold lower abundance in the non-responders (p=0.081). Moreover, among the non-responders 
the proportion of subjects with low amounts of F.prausnitzii was significantly higher (Chi square 
test, p=0.014). F.prausnitzii is a predominant butyrate producer in the human intestinal tract, 
suggested to have anti-inflammatory properties [35]. Low amounts of F.prausnitzii appear to be 
a common denominator for patients with (active) IBD (as reviewed in [36]), and have a negative 
correlation with symptom score at baseline sample of our IBS cohort [15]. Since both IBS and IBD 
are disorders that can exhibit similar symptoms, we could hypothesize that the non-responders 
are more akin to IBD patients, which appears to render the studied multi-species probiotic less 
effective.

Underlining the impact of the ecological context for IBS symptoms are the observed 
differences between microbial co-occurrence networks and their development throughout that 
were exclusively elicited in the probiotic treatment arm of the trial. This observation strengthens 
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the suggestion that administration of the multi-species probiotic modulates the intestinal 
microbiota, especially while considering that all microbial groups that represent the probiotic 
strains, i.e. Bifidobacterium, L.plantarum and Propionibacterium, are part of the probiotic induced 
connections (Figure 4.2). When elaborating on the potential consequences of the probiotic 
induced connections, we should keep the intrinsic microbial-ecosystem context in mind, i.e. the 
consistent network connections present in the cohort irrespective of time point or treatment. 
Although the consistent network module IV stays rather inert, network modules I, II, and III 
encounter one or more type(s) of consequences elicited by the probiotic treatment. 

The probiotic consumption strengthened the internal connections of module II and aligned 
modules II and I, resulting in a network structure which resembles one previously described in 
a healthy twin cohort [37] (Chapter 3). This network was hypothesized to encompass primary 
fiber degraders whose fermentation products could be used by secondary fermenter butyrate 
producers. Interestingly one member of this network, i.e. the Uncultured Clostridiales I group, 
has recently been identified to occur in a bimodal abundance pattern among 1,000 western 
adults and was related to IBS as well as severe obesity [38]. Bacteria related to Subdoligranulum 
variable account for another consistent member of network module III in this cohort but 
S.variable was not seen in the healthy twin cohort network. However, isolates of S.variable can 
be regarded secondary fermenter butyrate producers [39], which further implicates modules I and 
II in butyrate production potential. Moreover, the extensions of network module III introduced 
new microbial members of which cultured isolates have various short chain fatty acid (SCFA) 
production profiles [40-44], resulting in a network module seemingly without a clear preference 
for any particular SCFA. Previous studies have associated abnormal fecal SCFA content, both 
high and low, with IBS [45], abdominal symptoms [46] or diarrhea [47]. Absorption of SCFAs 
by epithelial cells greatly influences water and electrolyte balance [48], indirectly impacting gut 
transit. Rat and canine models have even shown direct stimulation of colonic transit and motility 
by SCFA mixtures via different signaling pathways [49,50]. Although these previously reported 
results do not provide clear insights for IBS symptom mechanisms, they do underline that the 
quantities and ratios of the different SCFAs can have important consequences for gut functioning. 
Indeed in diarrhea-predominant IBS patients, administration of enteric-coated sodium butyrate 
tablets rapidly reduced fecal water content and furthermore improved abdominal pain, bloating 
and flatulence after 30 days of treatment [51]. Therefore, the observed ecosystem-structure 
rearrangements surrounding network module I, II and III are potentially able to affect the SCFA 
profile in the colon and thereby colon functioning. 

Veillonella, previously described to be a typical small intestinal inhabitant [52,53], connects 
to both network modules II and III. Next to Veillonella, two more microbial groups that may 
originate from the small intestine appear in the probiotic induced connections: Enterococcus 
spp. and, the here sometimes pain-associated, Klebisiella pneumoniae. All three groups have been 
found among the most common isolates from patients with small intestinal bacterial overgrowth 
(SIBO) [54]. Studies addressing the involvement of SIBO in IBS have generated controversial 
result (for a review see [55]). However, a mild increase of bacteria that are among the dominant 
members of the small intestinal microbiota was commonly detected in IBS patients in comparison 
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with healthy individuals [56]. On the host side, in vivo data has shown that microbiota can 
modulate gene expression in the mucosa, most notably in the small intestine [57]. In a small 
human cohort a six week intervention with one of the strains used in this trial, L.rhamnosus GG, 
altered the immune and mucosal related transcriptional networks profiles in the duodenum [58]. 
If we can hypothesize that the multi-species probiotic in this cohort affected the physiological 
conditions in the small intestine similarly, such changes would likely have impacted the flow 
through of small intestinal commensals into the colon. Therefore, our results suggest that typical 
small intestinal inhabitants tie into IBS symptom mechanisms either directly by the restructured 
community or indirectly by reflecting changes in the function of the small intestinal tissue.

The formation of new network modules by the probiotic treatment is an intriguing aspect 
of the present work that may shed light on the mechanisms in IBS. Since the functions of 
many intestinal bacteria are not yet know, an attempt to explain all connections would be highly 
speculative. The largest, most complex new probiotic induced network module were found 
to include two groups of Ruminococcus spp. i.e. R.gnavus and R.lactaris, which are frequently 
identified in relation to health and disease phenotypes and appear to have associations with IBS 
[59]. For example, increased abundance levels of R.gnavus have been associated with IBS [15,19,20] 
and IBD [60,61], which may be related to the mucolytic activity of this species. Mucosal barrier 
integrity might explain the observed negative connection of these bacterial groups and Clostridium 
nexile group to the relatives of Eubacterium biforme and Anaerotruncus colihominis. Relatives 
of both E.biforme and A.colihominis have been shown to be able to produce butyrate [62,63]. 
One of the physiological effects attributed to butyrate is the increase of the intestinal barrier by 
stimulation of mucin glycoprotein production [64] and/or strengthening of tight junctions [65]. In 
a recent study that correlated mucosal gene expression and the intestinal microbiota of IBS and 
healthy subjects [66], it was found that increased cell junction and permeability was associated 
with healthy microbiota that included SCFA producers S.variable and Prevotella melaninogenica, 
both members of the probiotic-induced network (Figure 4.2). 

We can conclude that extensive restructuring of the ecological environment, unique 
to the probiotic treatment arm, was observed. Our data strongly suggest that microbiota 
management influences IBS symptom scores, supporting the role of the microbiota in IBS. 
Dietary modulation, through probiotic consumption, is capable of eliciting seemingly subtle 
changes in microbial abundances and yet extensive ecological context dependent microbiota 
restructuring, of which the exact underlying mechanisms remain to be deciphered. Moreover, we 
could stratify probiotic responders and non-responders based on the abundance of F.prausnitzii. 
Microbiota-based stratification, microbiota stability improvements and probiotic-induced 
microbiota network connectivity changes that may impact SCFA production, are all credible 
targets in dietary strategies aimed to relieve IBS symptoms and provide an improved quality of 
life for IBS patients.
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Supplementary information

Supplementary materials & methods

Co-occurrence network analysis
Spearman’s correlation coefficient (ρ) was calculated between the genus-like groups of all samples 
per treatment arm and per time point separately. In all correlation analyses only the correlations 
with |ρ| > 0.5 (and q < 0.05) were accepted as “real” correlations. To identify which correlations 
were specifically induced in either treatment arm the following rule was applied: the correlation 
must be “real” in sample C (|ρ| > 0.5 and q < 0.05) of the considered treatment arm and |ρ| < 
0.3 in sample A of the same treatment arm and all samples of the other treatment arm. For all 
correlation analysis only the bacterial groups that were present at >0.01% abundance in >50% of 
the subjects in the respective data sets were used. Highly related genus-like groups that share the 
majority of their responsive probes were discarded from the network analysis. A combination of 
the R package ‘network’ [67] and the ‘Gephi Graph Visualisation and Manipulation’ software [28] 
was used to visualize the significant correlations.
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Supplementary figures
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Figure S4.1 unsupervised hierarchical clustering 
(based on Spearman’s correlation coefficient) 
shows the total of 186 samples to cluster 
exclusively according to subject. Only subject 
number is indicated (time points not marked).
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Figure S4.3 Sample microbiota similarity versus sampling time. Regression analysis showed no association between 
Spearman correlation coefficient and time between sampling in the inception period (p = 0.725) or in the settled period (all 
samples p = 0.548, placebo samples p = 0.804; probiotic samples p = 0.499).
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Figure S4.2 Sample total microbiota diversity development in time.
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Figure S4.4 Faecalibacterium prausnitzii genus-like group relative abundance in responders and non-responders.
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Supplementary tables

Table S4.1 Signal intensity changes within genus-like group which harbour probes targeting probiotic strains.

Genus-like group Species-like group Change signal intensity (%) Probiotic strain coverage
Placebo Probiotic

period  
A-B

period  
B-C

period  
A-B

period  
B-C

Lactobacillus 
plantarum et rel.

Lactobacillus antri 4.6 -6.6 0.7 -0.8
Lactobacillus brevis 0.5 -2.4 -0.1 -0.3
Lactobacillus buchneri 1.6 -3.0 0.1 -1.7
Lactobacillus casei 0.0 5.1 47.9 -51.4 Lactobacillus rhamnosus 

GG (LGG®); Lactobacillus 
rhamnosus Lc705

Lactobacillus fermentum 6.0 -7.0 2.0 -3.8
Lactobacillus gastricus 6.8 -8.8 0.7 2.5
Lactobacillus mucosae 7.0 -8.1 2.03 4.1
Lactobacillus oris 5.4 -8.5 1.0 0.5
Lactobacillus paracasei 1.5 -3.8 3.6 -7.7
Lactobacillus plantarum 7.6 -10.4 -3.8 0.01
Lactobacillus reuteri 3.9 -0.8 0.01 -1.9
Lactobacillus rhamnosus -0.1 9.5 85.6 -89.7 Lactobacillus rhamnosus 

GG (LGG®); Lactobacillus 
rhamnosus Lc705

Lactobacillus vaginalis 3.7 -3.9 -0.01 -1.9
Lactobacillus vaginalis 
KC19

4.7 -4.6 -0.02 -1.3

uncultured bacterium 
cadhufec111c10

0.8 -2.3 -0.3 -2.0

uncultured Lactobacillus 
sp. LabB103

-3.0 14.8 136.7 -132.4 Lactobacillus rhamnosus 
GG (LGG®); Lactobacillus 
rhamnosus Lc705

uncultured Pediococcus 
sp. NS1A12

-1.0 -1.2 -3.0 0.3

Propionibacterium

Propionibacterium acnes 1.2 -1.9 -0.1 -1.9
Propionibacterium 
freudenreichii

6.6 -3.5 27.2 -27.6 Propionibacterium 
freudenreichii subsp. 
shermanii JS

Propionibacterium 
granulosum

0.5 -1.4 1.9 -3.8
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Table S4.1 (continued) Signal intensity changes within genus-like group which harbour probes targeting probiotic 
strains.

Genus-like group Species-like group Change signal intensity (%) Probiotic strain coverage
Placebo Probiotic

period  
A-B

period  
B-C

period  
A-B

period  
B-C

Bifidobacterium

Bifidobacterium 
adolescentis

-15.0 -3.1 2.7 11.2

Bifidobacterium 
angulatum

-11.3 -3.0 -4.6 9.8

Bifidobacterium animalis -10.3 18.1 35.4 -39.4 Bifidobacterium animalis 
subsp. lactis Bb12

Bifidobacterium bifidum -29.9 7.7 -2.06 12.0
Bifidobacterium breve -29.3 4.5 6.6 8.9
Bifidobacterium 
catenulatum

-19.5 4.0 3.9 11.9

Bifidobacterium dentium -18.3 2.4 4.5 6.7
Bifidobacterium gallicum -8.7 4.2 6.6 -2.2
Bifidobacterium infantis -25.3 2.6 4.3 6.9
Bifidobacterium longum -32.0 6.0 -0.2 11.0
Bifidobacterium 
pseudocatenulatum

-37.2 9.2 -0.7 13.3

Bifidobacterium 
pseudolongum

-36.1 9.6 -2.3 14.5

Bifidobacterium 
thermophilum

-23.2 2.9 3.8 13.0

uncultured bacterium 
Adhufec069rbh

-13.5 -4.0 4.2 10.4

Uncultured bacterium 
clone Eldhufec085

-34.3 -0.5 9.4 19.2

Uncultured bacterium 
clone Eldhufec088

-15.3 -1.8 4.8 10.1

uncultured 
Bifidobacterium sp. 13D

-15.3 -1.8 4.8 10.1

uncultured 
Bifidobacterium sp. 15D

-22.6 1.6 10.6 7.3
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Abstract
Studies on the microbiota effects of fibers and other non-digestible oligosaccharides have relied 
on methods that often fail to reveal the full extent of their impact on the bacterial community in 
the intestine. The goal of this study was to gain community wide information on the impact on 
the fecal microbiota of healthy human subjects of fructo-oligosaccharides (FOS) that are widely 
used as fibers. Fecal samples from a previously published double-blind, placebo-controlled 
crossover study design with twenty-eight healthy men were used for microbiota analyses. Subjects 
consumed either 20g of FOS or placebo per day for fourteen days. Fecal microbiota diversity, 
dynamics and composition in samples obtained on the last day of both supplement periods 
was determined by phylogenetic microarray analysis and complemented by group-specific 
analysis using pyrosequencing and qPCR analyses. FOS increased the abundance of bacteria 
within the Bifidobacterium genus. This enrichment came at the expense of the bacteria within 
the Bacteroidetes phylum. Although the butyryl-CoA:acetate CoA transferase gene content in 
the fecal material decreased, FOS consumption increased both positive and negative interactions 
between genera representing lactate-utilizing, and butyrate-producing members of the ecosystem, 
indicating a shift in the cooperative butyrate production pathway that is active in the ecosystem.
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Introduction 
It has become increasingly recognized that the gastrointestinal (GI) microbiota plays a critical 
role in human health, affecting nutrient utilization and adsorption by the host, the development 
and maturation of the immune system, and resistance to infections [1]. The best recognized 
strategy by which the composition and metabolic activity of the intestinal microbiota can be 
modulated is via the dietary introduction of fibers and other prebiotics [2]. A prebiotic has been 
defined as selectively fermented ingredients that result in specific changes in the composition 
and/or activity of the gastrointestinal microbiota, thus conferring benefit(s) upon host health 
[3]. To have these functions, the used prebiotic should be resistant to gastric acidity, hydrolysis 
by mammalian enzymes, and to GI absorption. In addition, they should be fermented by the 
intestinal microbiota and selectively stimulate the growth and/or activity of those intestinal 
bacteria that contribute to health [4]. Several non-digestible oligosaccharides, including inulin, 
resistant starch, galacto-oligosaccharides (GOS) and fructo-oligosaccharides (FOS) are added as 
a prebiotic to a variety of food products.

FOS are naturally found in varying concentrations in a variety of foods such as wheat, 
bananas, asparagus, and garlic. Moreover, they are supplemented as prebiotics to several products, 
such as various dairy products and infant formulas. FOS are composed of linear chains of fructose 
moieties, linked by ß(2→1) bonds and often contain a glucose moiety at their reducing end. The 
number of fructose moieties varies in different FOS preparations, and ranges from 3 to 10. FOS 
are not hydrolyzed by human small intestinal glycosidases and hence are considered to reach the 
colon intact, where they are subject to microbial degradation and serve as a carbon source for 
fermentation [5].

Intervention studies have convincingly shown that FOS supplementation can promote 
growth of bifidobacteria in the intestinal tract of infants and adults [6-9]. However, over 1,000 
species have now been described in the human gut [10] and the impact of FOS on other members 
of the intestinal microbiota other than bifidobacteria is generally less well understood, especially 
for those bacteria that cannot be readily cultured in the laboratory. The latter is exemplified by 
the notion that the majority of the studies addressing the modulation of the intestinal microbiota 
by FOS have relied on culture-based enumeration methods [6-9, 11] that failed to detect the 
majority of microbial species present in the human gut. Additionally, the studies that employed 
culture-independent molecular methods to unravel the effects of FOS used quantitative real time 
(qRT)-PCR [12] or fluorescent in situ hybridization [13], which are restricted to selected bacterial 
groups of interest and fail to reveal effects on the microbiota as a whole. More recent studies 
focused on FOS that is present in different prebiotic or fiber mixtures, for example combined 
with inulin [14], or have investigated potential microbial genes involved in the breakdown of 
different prebiotics such as FOS [15]. The aim of this study was to determine the FOS-induced 
shifts on overall microbiota composition by high throughput phylogenetic microarray analysis 
using the Human Intestinal Tract Chip (HITChip) [16]. The microbiota composition information 
was complemented and validated by barcoded-pyrosequencing and qRT-PCR analysis of specific 
groups. Moreover, since the health benefit of FOS has been proposed to be attributable to 
butyrate production we also assessed the butyrate production potential of the microbiota by 
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evaluating the abundances of butyrate producing microbial groups and their ecosystem network 
associations, as well as the abundance of the butyryl-CoA:acetate CoA transferase genes within 
the community.

Materials & methods

Design intervention study 
Fecal samples obtained during a previously published double-blind, placebo-controlled crossover 
FOS supplementation study that encompassed two supplement periods (FOS and placebo) of 
two weeks separated by a washout period of two weeks were used [17]. Participants (n=28) were 
27.7 (±1.7 SEM) years and had a mean BMI of 23.2 (±0.5 SEM) kg/m2. Participants had no 
history of GI disease, surgical operations of either the small or large intestine, and no lactose 
intolerance. Prebiotics, antibiotics, immunosuppressive drugs, anti-diarrhea drugs, laxatives, or 
probiotics were not used in the 3 months prior to the study. 

Throughout the study, participants were instructed to maintain their usual pattern of 
physical activity and maintain their habitual diet but to abstain from all dairy products, foods 
with high calcium content and foods containing prebiotics or large amounts of non-digestible 
fibers and probiotics. Participants consumed either lemonade with 20 g of FOS (purity 93%, 
Raftilose P95, Orafti, Tienen, Belgium) per day in the FOS supplementation period or 6 g of 
sucrose per day in the placebo period. The sucrose in the placebo lemonade ensured equal taste, 
viscosity and color of both lemonades. The daily dose of lemonade was divided into 3 portions, 
which had to be consumed in the morning, afternoon and evening. On the last day in both 
supplement periods, 24 h fecal samples were collected for microbiological analyses. Fecal samples 
were frozen on dry ice immediately after defecation and stored at -40°C. Afterwards, samples 
were weighed, freeze-dried and subsequently ground to obtain homogeneous powdered samples. 

Fecal DNA extraction
Total DNA from fecal material was extracted using a repeated bead beating protocol, as 
reported before [18]. DNA yield was quantified using a NanoDrop ND-1000 spectrophotometer 
(NanoDrop Technologies, Wilmington, DE). DNA concentration was adjusted to 10 ng/μl and 
was used as a template for PCR amplification. Sequence polymorphism analyses of mitochondrial 
DNA were used to verify the origin of the fecal samples [19].

Phylogenetic microarray analysis
DNA amplification, RNA (reverse-)transcription and HITChip microarray hybridization 
were performed as described previously [20]. Bacterial profiles were obtained by extracting the 
normalized signal values of all 3,699 unique HITChip probes. These probes are assigned to 
several phylogenetic levels of which two were used here: the order-like 16S rRNA gene sequence 
group level and genus-like 16S rRNA gene sequence group level (sequence similarity >90%). 
Relative abundances were calculated for the order-like and genus-like groups by summing all 
probe signals targeting a group and dividing this by the sum of all probe signals. The cumulative 
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relative abundance of genus-like groups representing characterized isolates known to be able to 
butyrate production (Table S5.2) in the microbial ecosystem of the intestinal tract was estimated 
by summing the probes signals representing bacterial isolates known to produce butyrate and 
compare this to the total signal of all probes. Normalized signal values of all HITChip probes 
were used to calculate the inverse Simpson’s index of Diversity, richness and evenness (Pielou’s 
evenness index) for each sample and the Spearman’s correlation coefficient between samples. 
Ward’s minimum variance method was used for the construction of hierarchical clusters of 
the total microbiota probe profiles with a distance matrix based on the Spearman’s correlation 
coefficients between the samples (complete observation correlations).

Because of the cross-over design, pair-wise dependent two-group Wilcoxon signed rank 
tests were used, combined with FDR correction [21], to examine whether statistically significant 
differences existed between the placebo and FOS supplementation period (p<0.05 and q<0.05). 
Co-(and anti)occurrence networks were built using Spearman’s correlation coefficient (ρ) calculated 
on the relative abundances of the genus-like groups that were present at >0.1% abundance in 
more than half of the subjects. A permutation test was performed to test whether the observed 
ρ values were significantly different from zero with 10,000 permutations. These ρ values, or 
co-(and anti)occurrences, from the network analysis were regarded as connectivity measures for 
ecosystem interactions. Assessing the connectivity differences between the two treatment period 
networks (i.e. differences between the taxon pair correlations of each treatment period) was used 
to show modulations in ecosystem interactions, which could suggest possible metabolic interplay 
between the involved members. To test the significance of the difference between the taxon pair 
correlations of each treatment period another permutation test was performed in which samples 
were randomly assigned samples to the placebo and FOS periods (with 10,000 permutations), 
and subsequently it was determined how often taxon pairs were formed with larger difference as 
observed in the real data. To exclude significant differences between weak correlations (e.g. with 
ρ=0.3 in one treatment period and ρ=-0.3 in the other treatment period), from the analysis a 
correlation cut-off of ρ>0.5 or ρ<-0.5 (in at least one of the treatment periods) was employed. 
The R package ‘network’ [22] and the ‘Gephi Graph Visualisation and Manipulation’ software [23] 
were used to visualize the co-(and anti)occurrences. 

Pyrosequencing of 16S rRNA amplicons of the Bifidobacterium genus
Bifidobacterium specific primers were used to amplify part of the 16S rRNA gene which was 
subsequently sequenced and phylogenetically reconstructed down to the species level. Phylogenetic 
coverage and entropy of a set of literature derived primers targeting the V2-V5 region of 620 full 
length 16S rRNA sequences from Bifidobacterium spp. was calculated to identify primer pairs 
targeting the majority of gastrointestinal derived bifidobacteria and providing high phylogenetic 
resolution. In addition, primer combinations were tested against a selection of Bifidobacterium 
isolates. Two primers pairs, Bif164f - Bif662r [24] and 338f [25] - Bif662r, were selected and 
validated on two mock communities, consisting of four and ten Bifidobacterium species, 
and eight fecal samples, with and without spiking of the two mock communities, subjected 
to 454 sequencing and analyzed with a workflow based on QIIME v1.2 [26] using settings as 
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recommended in the QIIME 1.2 tutorial, with the following exceptions: reads were filtered for 
chimeric sequences using Chimera Slayer [27] and OTU clustering was performed with settings 
as recommended [28] using an identity threshold of 99%. Taxonomic assignment up to the 
species level and evaluation of ability of the amplicon to differentiate between different species 
of Bifidobacterium was done as described previously [29]. Primer pair 338f and Bif662r was most 
efficient in identification of the different Bifidobacterium species (data not shown) and therefore 
selected for the current cohort. For the preparation of the amplicon pool for pyrosequencing, 
the following primers were applied: forward primer, 5’- CCA TCT CAT CCC TGC GTG TCT 
CCG ACT AG – NNNNNN – ACT CCT ACG GGA GGC AGC AG-3’ (454 Life Sciences 
primer A – sample-specific six-base barcode tag – primer 338F); reverse primer 5’-CCT ATC 
CCC TGT GTG CCT TGG CAG TCT CAG – CCA CCG TTA CAC CGG GAA-3’ (454 Life 
Sciences primer B – primer Bif662). PCR amplification mixture contained: 1 μL faecal DNA, 1 
μL bar-coded forward primer, 15 μL master mix (1 μL KOD Hot Start DNA Polymerase (1 U/
μL; Novagen, Madison, WI, USA), 5 μL KOD-buffer (10×), 3 μL MgSO4 (25 mM), 5 μL dNTP 
mix (2 mM each), 1 μL (10 μM) of reverse primer) and 33 μL sterile water (total volume 50 μL). 
PCR conditions were: 95°C for 2 minutes followed by 35 cycles of 95°C for 20 s, 55°C for 10 s, 
and 70°C for 15 s. The PCR product was subsequently purified using the MSB Spin PCRapace 
kit (Invitek) and the concentration was checked with a Nanodrop ND-1000 spectrophotometer. 
A composite sample for pyrosequencing was prepared by pooling 200 ng of these purified PCR 
products of each sample. The pooled sample was electrophoresed on a 1% agarose gel and the 
approximately 400 bp band was excised and extracted from the agarose gel with the MinElute 
Gel Extraction kit (Qiagen, Venlo, The Netherlands) and submitted for pyrosequencing on the 
454 Life Sciences GS-FLX platform using Titanium sequencing chemistry (GATC-Biotech, 
Germany). The significance of putative differences in relative abundance of specific taxa between 
sample groups was calculated using the Mann-Whitney U test as implemented in SciPy [30]. 
Principal component analysis (PCA) and partial regularized discriminant analysis (RDA) on 
OTU abundance (99% clustering) of the fecal bifidobacterial population was performed using 
CANOCO5.0 (Microcomputer Power, USA) according to the manufacturer’s instructions [31]. 
For the RDA Statistical significance was assessed by MCPP with 499 random permutations 
under the full model. Variance attributable to the variable intervention period (placebo or FOS 
supplementation) was removed by covariate analyses.

Quantitative PCR analysis
Real-time quantitative PCR was used to simultaneously quantify phylogenetically distinct 
butyrate-producing bacteria, by targeting the butyryl-CoA:acetate CoA transferase encoding 
genes, which has previously been described as an approach to quantify the abundance of this 
butyrate production pathway in the intestinal ecosystem [32] (primers and PCR conditions see 
SI materials and methods). Previously, real-time quantitative PCR was used to quantify the 
Bifidobacterium genus within the samples of this cohort [17]. In the present study, we expand 
this with quantitative PCR analyses to simultaneously quantify three genera making up a large 
proportion of the Bacteroidetes phylum: Bacteroides, Prevotella, and Porphyromonas (together 
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called the BPP-group). The PCR was based on the detection of the 16S rRNA genes from 
the BPP-group as was described previously [33] (primers and PCR conditions see SI materials 
& methods). Pair-wise dependent two-group Wilcoxon signed rank tests were performed to 
identify statistically significant differences between the placebo and FOS supplementation period 
(p<0.05).

Results

Microbiota profiles
Phylogenetic profiling of the fecal microbiota by HITChip analysis was performed to obtain a 
high-resolution, high-sensitive, and complete microbiota profile of each individual following 
the FOS and placebo dietary interventions. The most abundant phyla consisted of Firmicutes, 
followed by Bacteroidetes and Actinobacteria. For the total microbiota there was no significant 
difference in diversity, evenness or richness between the FOS and control sample groups. To 
obtain insight in the overall similarity of the microbiota between all the study subjects, HITChip 
profiles were hierarchically clustered (Figure 5.1). This analysis revealed a clear, subject-
based clustering, confirming previous findings that indicate that the largest difference in the 
microbiota profiles is related to inter-individual differences [34-36]. This is clearly illustrated by 
the mean inter-individual Spearman correlation coefficient (ρ) of 0.710 (±0.057 SEM), which 
is substantially lower than the intra-individual ρ of 0.859 (±0.051 SEM). However, the intra-
individual microbiota similarity of subject 22 was strikingly low (ρ=0.721) indicating a profound 
effect of the intervention or another unknown confounding factor, especially since these results 
were consistently obtained in independent repetitions of the analyses, and sample- and subject- 
identities were confirmed by sequence polymorphism analysis of amplified human mitochondrial 
DNA [19] (Table S5.1).

Effect of FOS on fecal microbial communities
Comparison of microbiota profiles from feces obtained after FOS and placebo consumption 
revealed that FOS consumption resulted in a significant increase in Actinobacteria compared 
to the placebo (Figure 5.2A). This change can be exclusively attributed to an increase of the 
Bifidobacterium group (Figure 5.2B and Table 5.1). In addition, the diversity within the 
Actinobacteria group was significantly decreased by FOS consumption, supporting that FOS 
stimulated the growth of Bifidobacterium specifically (Figure 5.2C). No other order-like groups 
showed significant difference in diversity between consumption periods (data not shown). To 
investigate whether the increase in Bifidobacterium was specifically stimulating the expansion of 
certain members of this genus, a group-targeted barcoded pyrosequencing approach was employed. 
The majority of the bifidobacterial OTUs (99% clustering) were closely related to B.longum 
and OTUs related to B.adolescentis, B.bifidum, and B.pseudocatenulatum were also detected. No 
stimulation of specific bifidobacterial OTUs was observed between the sample groups of either 
consumption period (Figure 5.S1). Furthermore, principal component analysis based on OTU 
abundance was performed, where variance attributable to the variable intervention period was 



5

 Chapter 5 

136

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

A
ct
in
ob
ac
te
ria

A
st
er
ol
ep
la
sm
a

B
ac
ill
i

B
ac
te
ro
id
et
es

C
lo
st
rid
iu
m
cl
us
te
rI

C
lo
st
rid
iu
m
cl
us
te
rI
II

C
lo
st
rid
iu
m
cl
us
te
rI
V

C
lo
st
rid
iu
m
cl
us
te
rI
X

C
lo
st
rid
iu
m
cl
us
te
rX
I

C
lo
st
rid
iu
m
cl
us
te
rX
III

C
lo
st
rid
iu
m
cl
us
te
rX
IV
a

C
lo
st
rid
iu
m
cl
us
te
rX
V

C
lo
st
rid
iu
m
cl
us
te
rX
V
I

C
lo
st
rid
iu
m
cl
us
te
rX
V
II

C
lo
st
rid
iu
m
cl
us
te
rX
V
III

C
ya
no
ba
ct
er
ia

Fu
so
ba
ct
er
ia

Le
nt
is
ph
ae
ra
e

P
ro
te
ob
ac
te
ria

S
pi
ro
ch
ae
te
s

U
nc
ul
tu
re
d
C
lo
st
rid
ia
le
s

U
nc
ul
tu
re
d
M
ol
lic
ut
es

V
er
ru
co
m
ic
ro
bi
a

10-ctrl
10-FOS
13-FOS
13-crtl

26-ctrl
26-FOS

32-ctrl
32-FOS

1-ctrl
1-FOS

25-ctrl
25-FOS

5-ctrl
5-FOS
19-ctrl
19-FOS

7-ctrl
7-FOS

20-ctrl
20-FOS

2-ctrl
2-FOS
22-ctrl
22-FOS
11-ctrl
11-FOS
18-ctrl
18-FOS
24-ctrl
24-FOS
3-ctrl
3-FOS

33-ctrl
33-FOS

8-ctrl
8-FOS

31-ctrl
31-FOS

23-ctrl
23-FOS

21-ctrl
21-FOS

9-ctrl
9-FOS

17-ctrl
17-FOS

30-ctrl
30-FOS

34-ctrl
34-FOS

12-ctrl
12-FOS

27-ctrl
27-FOS
14-ctrl
14-FOS

Figure 5.1 Abundance of phylum-like bacterial taxa in fecal samples of 28 healthy subjects determined with the Human 
Intestinal Tract (HIT)Chip. Subject numbers are appended with: “-FOS” for the samples from the FOS consumption period, and 
“-ctrl” for the placebo consumption period.
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Figure 5.3 Principal component analysis based on OTU 
abundance (99% clustering) of the fecal bifidobacterial 
population of healthy individuals fed either placebo or 
inulin in a randomized, crossover study. Variance attributable 
to the variable intervention period was removed by covariate 
analyses. The supplementary variables subject and treatment 
accounted for 55.8% of the observed variance in microbiota 
composition of which individuality accounted for the highest 
percentage (54.4%).
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removed by covariate analyses (Figure 5.3). The supplementary variables subject and treatment 
accounted for 55.8% of the observed variance in microbiota composition of which individuality 
accounted for the highest percentage (54.4%). Centroids for the treatment groups are adjacent, 
suggesting no clear impact of FOS intervention on bifidobacterial OTU distribution. This was 
confirmed by partial RDA (MCPP, p=0.606, after removal variance attributed by intervention 
period and subject). Individuality was the only significant signal (partial RDA: MCPP, p=0.01).
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Figure 5.4 Bacteroidetes differences in feces of 28 healthy subjects determined with the Human Intestinal Tract (HIT)
Chip and real-time quantitative PCR. Samples were taken at the end of the FOS and placebo consumption periods. Relative 
abundance significantly decreased in samples from the FOS consumption period for Bacteroidetes (A; p = 0.005, q = 0.013), 
which is mainly due to Bacteroides and Prevotella genus-like groups (more details see Table 5.1). For Bacteroides the combined 
relative abundances of the relatives of Bacteroides fragilis, B.intestinalis, B.ovatus, B.plebeius, B.splachnicus, B.stercoris, 
B.uniformis, B.vulgatus, and Uncultured Bacteroidetes are shown (B; p = 3.66e-05, q = 0.001). For Prevotella the combined 
relative abundances of the relatives of Prevotella oralis, P. ruminicola, and P. tannerae are shown (B; p = 0.013, q = 0.039). 
Diversity of Bacteroidetes was not significantly different in samples from the FOS consumption period (C; p = 0.920, q = 0.335), 
indicating a nearly equal decrease of all Bacteroidetes members. 16S rRNA gene copies / g of feces significantly decreased in 
samples from the FOS consumption period for the Bacteroides-Prevotella-Porphyromonas (BPP)-group (D; p = 0.029). Asterisk 
marks significantly different results.



5

 FOS induced restructuring of the gut microbiota 

139

The expansion of the Bifidobacterium genus-like group appeared to come at the expense 
of one order-like bacterial group, the Bacteroidetes (Figure 5.4). Contrary to the attribution of 
the expansion of the Actinobacteria group to a single genus-like group (Bifidobacterium), the 
decrease of the Bacteroidetes relative abundance was generally quite evenly distributed over its 
subgroups (Table 5.1).

Table 5.1 Actinobacteria and Bacteroidetes subgroup differences in fecal microbiota composition of 28 healthy subjects 
determined with the Human Intestinal Tract (HIT)Chip. Samples were taken at the end of the FOS and placebo consumption 
periods. Significant changes (p < 0.05, q < 0.05) are indicated in bold.

Genus-like group

Control group 
relative abundances

FOS group relative 
abundances p- q-

Phylum Mean  % (± Std.err) Mean  % (± Std.err) value value

Actinobacteria

Actinomycetaceae 0.004 (±0.000) 0.005 (±0.000) 0.138 0.139
Atopobium 0.017 (±0.001) 0.020 (±0.001) 0.053 0.114
Bifidobacterium 3.810 (±0.757) 10.028 (±1.360) 0.002 0.011
Collinsella 0.449 (±0.062) 0.481 (±0.056) 0.186 0.171
Corynebacterium 0.013 (±0.001) 0.016 (±0.001) 0.050 0.114
Eggerthella lenta et rel. 0.073 (±0.008) 0.080 (±0.008) 0.236 0.197
Micrococcaceae 0.009 (±0.001) 0.011 (±0.001) 0.202 0.183
Propionibacterium 0.026 (±0.002) 0.039 (±0.012) 0.695 0.373

Bacteroidetes

Allistipes et rel. 1.748 (±0.429) 0.919 (±0.164) <0.001 0.002
Bacteroides fragilis et rel. 0.710 (±0.171) 0.342 (±0.062) 0.001 0.010
Bacteroides intestinalis et rel. 0.357 (±0.066) 0.207 (±0.052) 0.007 0.029
Bacteroides ovatus et rel. 0.868 (±0.168) 0.497 (±0.100) 0.001 0.010
Bacteroides plebeius et rel. 1.239 (±0.241) 0.661 (±0.151) <0.001 0.003
Bacteroides splachnicus et rel. 1.102 (±0.239) 0.591 (±0.101) <0.001 0.002
Bacteroides stercoris et rel. 0.689 (±0.152) 0.356 (±0.075) 0.002 0.011
Bacteroides uniformis et rel. 0.722 (±0.140) 0.393 (±0.083) 0.016 0.051
Bacteroides vulgatus et rel. 1.260 (±0.262) 0.573 (±0.139) <0.001 <0.001
Parabacteroides distasonis 
et rel.

1.453 (±0.226) 0.772 (±0.129) <0.001 0.004

Prevotella melaninogenica et rel. 4.628 (±1.020) 4.324 (±1.076) 0.537 0.348
Prevotella oralis et rel. 0.455 (±0.081) 0.313 (±0.060) 0.007 0.029
Prevotella ruminicola et rel. 0.350 (±0.057) 0.235 (±0.049) 0.007 0.029
Prevotella tannerae et rel. 0.905 (±0.130) 0.632 (±0.136) 0.009 0.034
Tannerella et rel. 0.714 (±0.154) 0.436 (±0.073) <0.001 0.002
Uncultured Bacteroidetes 0.118 (±0.050) 0.053 (±0.019) 0.002 0.013
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Effect of FOS consumption on fecal microbial interactions
Co-occurrence analysis was performed to determine the effect of FOS consumption on the 
ecological connections within the fecal microbiota. Consistent connectivity was detected among 
the members of the Bacteroidetes phylum as well as among a group of Clostridium cluster IV 
members (together with uncultured Clostridiales taxa) that resembles a network module seen 
before in a healthy twin cohort ([37]; Chapter 3; Figure 5.5). However, the fecal microbiota 
obtained from subjects in the control period showed more connections with and among this 
previously identified Clostridium cluster IV module, than that derived from subjects consuming 
FOS (Figure 5.5A). A higher connectivity can be an indication for a more extensive metabolic 
relationship between these bacterial groups within the ecosystem, revealing an alignment of the 
functional capacities of these bacterial groups under the conditions tested.

Outside the Clostridium cluster IV module the connectivity differences between the 
samples from placebo and FOS consumption periods were reversed. Relative to the microbiota 
obtained from subjects on the placebo diet, those obtained from the FOS consumption period 
showed more, and significantly stronger connections, both positive and negative, mainly among 
the Clostridium cluster XIVa members or linking the cluster XIVa members to other Clostridium 
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Figure 5.6 Differences in fecal microbiota composition of 28 healthy subjects determined with Human Intestinal Tract 
(HIT)Chip and real-time quantitative PCR. Samples were taken at the end of the FOS and placebo consumption periods. 
Relative abundance of the combined signal of all HITChip probes targeting known butyrate producing isolates did not significantly 
change (A; p = 0.630). Butyryl-CoA:acetate CoA transferase gene copies / g of feces significantly decreased in samples from the 
FOS consumption period (B; p = 0.022). Asterisk marks significantly different results.
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clusters and members of the Bacteroidetes phylum (Figure 5.5B). The broad phylogenetic 
distribution of co- and anti-occurrence connections in the microbiota from the FOS period, 
included an increase in connections with genus-like groups that are among the known butyrate-
producing members of the intestinal community (12 predicted butyrate-producing groups gained 
additional connections), as compared to the networks identified in the microbiota from the 
placebo period (no butyrate-producing groups gained additional connections). This observation 
could imply that FOS consumption elicits changes in the butyrate production capacity of the 
microbiota community.

Effect of FOS on microbiota butyryl-coenzyme A (CoA) CoA transferase 
abundance 
To assess whether the butyrate production potential of the microbiota was affected by FOS 
consumption, all bacterial groups with known butyrate-producing representatives on the 
HITChip were further analyzed. The cumulative relative abundance of bacterial groups harboring 
known butyrate-producing isolates showed no consistent change between the samples from the 
placebo and FOS consumption periods (p=0.630; Figure 5.6A). To verify more directly whether 
FOS consumption affected the butyrate production potential of the microbiota, a previously 
described degenerate qPCR approach was employed that generically quantifies the abundance of 
butyryl-coenzyme A (CoA) CoA transferase encoding (EC2.8.3.8) genes within the microbiota, 
irrespective of their phylogenetic origin, thereby providing an estimate of the butyrate-producing 
capacity of the system [32]. FOS consumption led to a 1.4 fold decrease in the presence of the 
butyrate-producing enzyme butyryl-CoA transferase (p=0.022; Figure 5.6B). However, since the 
butyryl-CoA transferase reflects only one of several known pathways for butyrate production, 
this gene quantification may not fully reflect the total butyrate production capacity (see also 
discussion). 

Discussion 
In this study we describe the impact of FOS consumption on the total fecal microbiota community 
composition using culture-independent technologies. Our cohort, which is comprised of healthy 
young males, displays typical GI microbiota community compositions found human volunteers, 
which are dominated by Bacteroidetes, Firmicutes, and Actinobacteria [38-40]. Furthermore, 
hierarchical clustering of the microbiota profiles shows that the GI microbiota is host-specific as 
expected from earlier studies [37, 41-44] (Figure 5.1), and that the impact of the dietary intervention 
is substantially smaller than the intrinsic difference between the individuals. Nevertheless, some 
subjects’ microbiota responded much stronger to FOS consumption (e.g. subject 22) compared 
to the average response determined in the group. Intriguingly, none of the available metadata 
of subject 22 appeared to explain the enhanced response to the FOS diet [17], which could 
imply the FOS effect-size may to a certain extent depend on the ‘baseline’ composition of the 
subject’s microbiota. Importantly, besides the exception of subject 22, we concluded that FOS 
supplementation elicits no drastic microbiota-wide modulations and generally induces specific 
changes. 
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The definition of prebiotics defines these compounds to be ‘selectively fermented’ and able 
to induce changes in the GI microbiota that are ‘specific’ [3]. Previous studies employing classical 
cultivation enumerations and/or 16S rRNA gene-targeted FISH indeed found a specific increase 
in Bifidobacterium species upon consumption of inulin and FOS (as reviewed by Kolida and 
Gibson [45]). The present study employs a phylogenetic microarray, which provides a cultivation-
independent, high resolution, and deep analysis of the overall GI microbiota, which is congruent 
with pyrosequencing analyses [46, 47] and next-generation metagenome sequencing [48]. Even 
with the broad phylogenetic spectrum analyzed by the HITChip, this study underpins that the 
microbiota changes elicited during FOS consumption are remarkably restricted to a small number 
of bacterial groups and most prominently affect the members of the Bifidobacterium genus. These 
findings verify previously reported qPCR analyses performed within the same cohort study [17] 
and provides clear support for the ‘specificity’ of FOS as a prebiotic. Moreover, these findings 
confirm a previous study [45] that also reported that the only bacteria consistently increased in 
abundance in response to FOS consumption were members of the Bifidobacterium genus (Figure 
5.1; Table 5.1). This response to FOS consumption was dependent on Bifidobacterium abundance 
at baseline, with higher fold increase of abundance in subjects with lower baseline abundance 
levels of this bacterial group (ρ=-0.57, p=7.33e-5 ANOVA; Figure S5.2), which corroborates 
previously reported findings [7, 49]. The qPCR determinations of specific microbial groups that 
were reported on this cohort previously [17], not only highlighted an increase in Bifidobacterium 
abundance, but also a significant increase in the bacteria associated with the genus Lactobacillus. 
The results presented here tend to confirm this slight increase in the Lactobacillus groups 
represented in the HITChip probe sets, which include bacteria related to Lactobacillus gasseri, 
Lactobacillus plantarum, and Lactobacillus salivarius, although the increase of these Lactobacillus 
groups as detected by the HITChip was not significant (Table S5.2).

While a significant abundance expansion of the members of the genus Bifidobacterium 
was observed, the majority of the Bacteroidetes phylum members significantly decreased in 
abundance. Previously reported factors that were associated with FOS consumption could 
potentially contribute to the reduced abundance of Bacteroidetes: pH decrease, likely caused 
by the bifidobacteria increase, combined with increased lactate concentrations and/or the 
reported mucin production increase [17]. Although the previously reported pH decrease was not 
significant, it has been shown that Bacteroidetes are sensitive to lowering of pH [50], especially 
in combination with the presence of substantial amounts of organic acids like lactate, implying 
that local accumulation of lactate and pH lowering may contribute to the Bacteroidetes decline. 
An overall Bifidobacterium increase combined with a general Bacteroidetes decrease has also 
been reported in recent studies on the impact of the consumption of different prebiotics on 
the GI microbiota that employed different analytical technologies. For example, the impact 
of GOS consumption was explored with barcoded pyrosequencing [51], whereas a panel of 
qPCR approaches and FISH were employed to determine the (long-term) impact of inulin 
consumption [52, 53]. The congruency of the results presented in these studies implies that 
these microbiota changes represent a quite consistent effect of non-digestible oligosaccharides. 
Nevertheless, individual studies also generated some variable results. Firstly, a long-chain inulin 



5

 FOS induced restructuring of the gut microbiota 

145

(degree of polymerization: 50 – 103) intervention reported on a significant increase in the levels 
of Atopobium [53], which is not observed in the present study and may relate to the substantial 
difference in chain length of the prebiotic used, but may also relate to differences in the dietary 
regime employed during the study, such as calcium content which was restricted in the present 
study. Secondly, some previous studies have reported increases of the relative abundance of 
Faecalibacterium prausnitzii using oligosaccharide intakes regimes of 5.0 gram GOS [51] or 10.0 
inulin [52]. The present study employed a substantially higher daily dose of oligosaccharides (20 
gram) and failed to detect an increase in the population abundance of F. prausnitzii, which is in 
agreement with results reported for a inulin supplementation study employing daily dosages of 
7.7 and 15.4 gram [54]. Hence, the commonly observed increase of Bifidobacterium and decline 
of Bacteroidetes phylum members appears to be the most robust finding of these studies. 

Some studies indicated that specific lineages or species of Bifidobacterium, especially 
B.adolescentis, are responding to the consumption of GOS and very-long-chain inulin [51]. The 
present study did not reveal such specific increase in any of the members of the Bifidobacterium 
genus-like group (Figure S5.1), which could imply that FOS degradation is a more general 
characteristic of Bifidobacterium members compared to the ability to degrade other (fructo-)
oligosaccharides like inulin. This is in agreement with in vitro studies that reported that all 55 
Bifidobacterium strains tested could degrade FOS, whereas only eight could degrade inulin [55]. 

FOS consumption has previously been reported to affect physicochemical properties of 
the GI tract [17]. FOS degradation by Bifidobacterium takes place by the characteristic fructose-
6-phosphate shunt (or bifidus pathway) that produces acetate and lactate as the major end-
metabolites [56]. Previous measurements in the cohort used here indeed established increased 
fecal lactate concentrations upon FOS consumption [17]. Although lactate is poorly absorbed 
by the epithelial cells in the colon [57], it is normally either absent or found at very low levels 
(<5mM) in feces from healthy subjects [58-60]. This is due to the fact that lactate is considered 
as a fermentation intermediate that serves as a substrate for further metabolism to SCFAs by 
various intestinal bacteria [58, 61]. For example, lactate can be used as substrate for the production 
of propionate and acetate by members of the genera Veillonella [62] and Propionibacterium [63], 
or for the production of butyrate by some of the Clostridium cluster XIVa members, such as 
Anaerostipes spp or Eubacterium hallii. Notably, the latter cross-feeding interaction could also be 
verified in in vitro co-cultures of Bifidobacterium strains and fecal slurries using FOS (or inulin) 
as substrate [55]. This notion raises the question whether SCFA fluxes within the microbiota 
were altered or not upon FOS consumption. In this cohort the actual lactate levels after FOS 
consumption were significantly higher compared to the control diet, but remained far below the 
lactate concentrations typically seen in patients with functional bowel disorders [60, 64, 65], i.e. 
on average lower than 2mM [17]. This proposed cross-feeding is in agreement with the observed 
co-occurrence network modulations elicited by FOS, involving several butyrate producers and 
implying that butyrate production is enhanced upon FOS consumption (Figure 5.5). Remarkably, 
the butyryl-CoA transferase gene abundance is reduced in the FOS diet induced microbiota 
community as compared to the control diet (Figure 5.6B). However, although quantification of 
this gene has previously been reported to provide gene-specific approach to estimate the butyrate-
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production capacity of bacteria in the colon [32], it targets only one of the several pathways for 
the production of this metabolite. The alternative butyrate production pathway is independent 
of the butyryl-CoA:acetate CoA transferase and involves phosphotransbutyrylase and butyrate 
kinase, and for example is found in Clostridium acetobutylicum [66]. Moreover, a recent study 
detected the lysine pathway in the human gut [67], which employs a different terminal enzyme, 
i.e. butyryl-CoA:acetoacetate CoA transferase, providing another butyrate producing pathway. 
Consequently, quantification of the butyryl-CoA:acetate CoA transferase encoding gene may 
underestimate the overall butyrate producing capacity within the community. 

Most of the butyrate production capacity in the colon (more than 90%) is commonly 
assigned to the bacterial groups related to Eubacterium rectale, Roseburia intestinalis and 
Faecalibacterium prausnitzii of the Firmicutes phylum, none of which have been reported to have 
the ability to utilize lactate as a substrate [32, 68]. These non-lactate utilizing butyrate producers 
displayed a decrease upon FOS consumption, with the strongest reduction observed for the 
abundance of bacteria belonging to Roseburia intestinalis (p=0.025; Table S5.2). Conversely, the 
bacterial groups known to be able to convert lactate into butyrate, such as bacteria related to 
Anaerostipes caccae [58], Eubacterium hallii [58], and Megasphaera elsdenii [61], displayed an increase 
upon FOS consumption, with the strongest increase observed for the abundance of those related 
to Anaerostipes caccae (p=0.040; Table S5.2). Moreover, when analyzing the cumulative relative 
abundance of lactate-utilizing butyrate producers a significant increase of the group of bacteria 
was observed (p=0.048). Taken together these results support the modulation of butyrate 
metabolism by FOS consumption, in particular the abundance of community members that can 
convert lactate to butyrate appears to increase, possibly at the expense of members that produce 
butyrate from other substrates. Previous measurements on the samples of this cohort did not 
include butyrate or other any short-chain fatty acids (SCFA) content but did include lactate, 
which was increased upon FOS consumption [17].

The restructuring of the co-abundance networks upon FOS consumption is not restricted 
to the microbial groups that are known to produce butyrate (Figure 5.5). The Bacteroidetes 
members of the community display a higher degree of connectivity to other Clostridium cluster IV 
and XIVa members during the FOS intervention. The connectivity changes of the Bacteroidetes 
members upon FOS consumption could be the result of their general decrease in abundance. 
One of the factors that may suppress the Bacteroidetes members is the proposed reduced pH [17], 
and/or the increased removal of these bacteria by the elevated level of mucin production [17]. The 
Clostridium cluster IV members appear to have decreased connectivity within the co-abundance 
network during the FOS consumption period compared to the control period, whereas the 
abundance of the Clostridium cluster IV members was not affected by the dietary treatment. 
Notably, the Clostridium cluster IV connection network in the placebo samples resembles a 
network module in a healthy twin cohort that we studied previously [37] (Chapter 3). This 
module was hypothesized to be composed of primary fiber degraders, of which the fermentation 
products could be utilized by the so-called secondary fermenters that include several butyrate 
producers. When we interpret the higher connectivity as an indication of enhanced integration 
in the cooperative metabolism of the bacteria included in these ecosystem connections, the 
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hypothesized shift towards lactate driven butyrate production could explain the loss of ecosystem 
connectivity of the Clostridium cluster IV members. The metabolic capacity of these bacterial 
groups is commonly associated with primary fiber degradation, which may be relatively less 
demanded within the overall ecosystem when an alternative substrate for butyrate production 
(lactate) is becoming available at higher levels, e.g. upon FOS consumption. 

Overall, our results indicate that FOS induces changes within the microbiota community 
by increasing the members Bifidobacterium genus universally, and decreasing the members 
belonging to the Bacteroidetes phylum. In addition, FOS consumption elicited a restructuring 
of co-abundance based connectivity within the ecosystem, which might reflect changes of the 
metabolic interplay of bacterial groups within the ecosystem’s cooperative metabolic network, 
leading to an enhanced activity of the lactate to butyrate conversion pathway. 

Supplementary information

Supplementary material and methods

Real-time quantitative PCR: Butyryl-CoA:acetate CoA transferase gene
Assay performed as described previously with minor modifications. Primers: BCoATscrF (5’-
GCI GAI CAT TTC ACI TGG AAY WSI TGG CAY ATG-3’) and BCoATscrR (5’-CCT 
GCC TTT GCA ATR TCI ACR AAN GC-3’). Amplification program included an initial 
denaturation step at 95°C for 3 min; followed by 40 cycles of denaturation at 95°C for 30s, 
primer annealing at 51°C for 30s, and primer extension at 72°C for 30s with data acquisition at 
72°C; 1 final extension step at 72°C for 5 min. The butyryl-CoA CoA transferase template from 
Faecalibacterium prausnitzii strain M21/2 was used to generate standard curves.

Real-time quantitative PCR: Bacteroides-Prevotella-Porphyromonas group
Assay performed as described previously. Primers: BPP-F (5’-GGT GTC GGC TTA AGT GCC 
AT-3’) and BPP-R (5’-CGG A(C/T)G TAA GGG CCG TGC-3’). Amplification program 
included an initial denaturation step at 95°C for 5 min; followed by 30 cycles of denaturation 
at 95°C for 15s, primer annealing at 68°C for 20s and primer extension at 72°C for 45s with 
data acquisition at 72°C; 1 final extension step at 72°C for 5 min. The 16S rRNA gene from 
Bacteroides fragilis strain ATCC 25285 was used to generate standard curves.
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Supplementary figures and tables
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Figure S5.2 Correlation of the control period relative abundance of Bifidobacterium (%) in the control period samples 
and the difference in relative abundance of Bifidobacterium (%) between samples from the FOS and control period (ρ 
= -0.57, p = 7.33e-5).

Table S5.1 Mitochondrial DNA sequencing of six subjects.

Subject 
ID

D i e t 
period

HV1 mtDNA variations 
(starting from 16090)

HV2 mtDNA variations 
(starting from 75)

2 I 16094C; 16130A; 16224T; 16264C; 16275A; 16312C; 16344G 77 -; 152C; 263G; 316C
II 16094C; 16130A; 16224T; 16264C; 16275A; 16312C; 16344G 77 -; 152C; 263G; 316C

3 I 16105T; 16127C; 16295T; 16305C 106A; 152C; 194  ; 263G; 310CTC*
II 16105T; 16127C; 16295T; 16305C 106  ; 152C; 194A; 263G; 310CTC*

5 I None 196C; 263G; 310CTC
II None 196C; 263G; 310CTC

8 I 16097G; 16362C 239C; 263G; 310CTC
II 16097G; 16362C 239C; 263G; 310CTC

11 I 16298C 263G; 310CTC
II 16298C 263G; 310CTC

22 I 16264C; 16299C 263G; 310CTC
II 16264C; 16299C 263G; 310CTC

*) Low sequencing quality
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Table S5.2 Differences in fecal microbiota composition of 28 healthy subjects determined with the Human Intestinal 
Tract (HIT)Chip. Samples were taken at the end of the FOS and placebo consumption periods. Significant differences between 
control and FOS samples (p < 0.05; q < 0.05) are indicated in bold. Genus-like groups with significant differences between control 
and FOS samples, but with low relative abundance (< 0.05%) are considered as background variation and marked by a dagger 
(†). Genus-like groups (level 2) which harbor isolates with known butyrate producers are marked by an asterisk (*).

Genus-like group

Control group 
relative abundances

FOS group relative 
abundances p- q-

Phylum Mean  % (± Std.err) Mean  % (± Std.err) value value

Actinobacteria

Actinomycetaceae 0.004 0.000 0.005 0.000 0.138 0.139
Atopobium 0.017 0.001 0.020 0.001 0.053 0.114
Bifidobacterium 3.810 0.757 10.028 1.360 0.002 0.011
Collinsella 0.449 0.062 0.481 0.056 0.186 0.171
Corynebacterium 0.013 0.001 0.016 0.001 0.050 0.114
Eggerthella lenta et rel. 0.073 0.008 0.080 0.008 0.236 0.197
Micrococcaceae 0.009 0.001 0.011 0.001 0.202 0.183
Propionibacterium 0.026 0.002 0.039 0.012 0.695 0.373

Asteroleplasma Asteroleplasma et rel. 0.010 0.001 0.011 0.001 0.109 0.130

Bacilli

Aerococcus 0.011 0.001 0.013 0.002 0.552 0.348
Aneurinibacillus 0.016 0.001 0.018 0.001 0.157 0.151
Bacillus 0.026 0.002 0.035 0.006 0.210 0.185
Enterococcus 0.053 0.006 0.057 0.007 0.711 0.379
Gemella 0.013 0.001 0.015 0.001 0.126 0.134
Granulicatella 0.009 0.001 0.010 0.002 0.831 0.426
Lactobacillus gasseri et rel. 0.459 0.240 0.362 0.141 0.036 0.096
Lactobacillus plantarum et rel. 0.172 0.040 0.398 0.202 0.399 0.297
Lactobacillus salivarius et rel. 0.037 0.005 0.271 0.215 0.274 0.220
Lactococcus 0.023 0.002 0.027 0.002 0.144 0.143
Staphylococcus 0.019 0.002 0.022 0.003 0.438 0.318
Streptococcus bovis et rel. 0.737 0.128 0.613 0.063 0.646 0.365
Streptococcus intermedius 
et rel.

0.125 0.020 0.197 0.072 0.374 0.282

Streptococcus mitis et rel. 0.351 0.066 0.457 0.152 0.552 0.348
Weissella et rel. 0.018 0.002 0.021 0.002 0.479 0.329
Wissella et rel. 0.003 0.000 0.003 0.000 0.138 0.139

Bacteroidetes

Allistipes et rel. 1.748 (±0.429) 0.919 (±0.164) <0.001 0.002

Bacteroides fragilis et rel. 0.710 (±0.171) 0.342 (±0.062) 0.001 0.010
Bacteroides intestinalis et rel. 0.357 (±0.066) 0.207 (±0.052) 0.007 0.029
Bacteroides ovatus et rel. 0.868 (±0.168) 0.497 (±0.100) 0.001 0.010
Bacteroides plebeius et rel. 1.239 (±0.241) 0.661 (±0.151) <0.001 0.003
Bacteroides splachnicus 
et rel.

1.102 (±0.239) 0.591 (±0.101) <0.001 0.002

Bacteroides stercoris et rel. 0.689 (±0.152) 0.356 (±0.075) 0.002 0.011
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Table S5.2 (continued) Differences in fecal microbiota composition of 28 healthy subjects determined with the Human 
Intestinal Tract (HIT)Chip. Samples were taken at the end of the FOS and placebo consumption periods. Significant differences 
between control and FOS samples (p < 0.05; q < 0.05) are indicated in bold. Genus-like groups with significant differences 
between control and FOS samples, but with low relative abundance (< 0.05%) are considered as background variation and 
marked by a dagger (†). Genus-like groups (level 2) which harbor isolates with known butyrate producers are marked by an 
asterisk (*).

Genus-like group

Control group 
relative abundances

FOS group relative 
abundances p- q-

Phylum Mean  % (± Std.err) Mean  % (± Std.err) value value

Bacteroidetes

Bacteroides uniformis et rel. 0.722 (±0.140) 0.393 (±0.083) 0.016 0.051
Bacteroides vulgatus et rel. 1.260 (±0.262) 0.573 (±0.139) <0.001 <0.001
Parabacteroides distasonis 
et rel.

1.453 (±0.226) 0.772 (±0.129) <0.001 0.004

Prevotella melaninogenica 
et rel.

4.628 (±1.020) 4.324 (±1.076) 0.537 0.348

Prevotella oralis et rel. 0.455 (±0.081) 0.313 (±0.060) 0.007 0.029
Prevotella ruminicola et rel. 0.350 (±0.057) 0.235 (±0.049) 0.007 0.029
Prevotella tannerae et rel. 0.905 (±0.130) 0.632 (±0.136) 0.009 0.034
Tannerella et rel. 0.714 (±0.154) 0.436 (±0.073) <0.001 0.002
Uncultured Bacteroidetes 0.118 (±0.050) 0.053 (±0.019) 0.002 0.013

Clostridium 
cluster I

Clostridia * 6.511 2.062 7.842 2.136 0.582 0.353

Clostridium 
cluster III

Clostridium stercorarium et rel. 0.393 0.073 0.500 0.111 0.508 0.337
Clostridium thermocellum et rel. 0.010 0.001 0.011 0.001 0.095 0.130

Clostridium 
cluster IV

Anaerotruncus colihominis et 
rel. *

0.273 0.041 0.281 0.062 0.662 0.365

Clostridium cellulosi et rel. 0.512 0.072 0.632 0.124 0.678 0.367
Clostridium leptum et rel. * 0.272 0.051 0.331 0.081 0.814 0.423
Clostridium orbiscindens et rel. 0.825 0.095 0.691 0.079 0.099 0.130
Eubacterium siraeum et rel. 0.354 0.097 0.252 0.058 0.849 0.426
Faecalibacterium prausnitzii 
et rel. *

13.005 0.845 11.975 1.371 0.646 0.365

Oscillospira guillermondii et rel. 1.173 0.229 0.851 0.147 0.115 0.130
Papillibacter cinnamivorans 
et rel. *

0.527 0.043 0.405 0.043 0.023 0.068

Ruminococcus bromii et rel. 0.414 0.096 0.588 0.245 0.552 0.348
Ruminococcus callidus et rel. 1.018 0.161 1.205 0.441 0.063 0.121
Sporobacter termitidis et rel. 0.493 0.105 0.541 0.123 1.000 0.472
Subdoligranulum variable et 
rel. *

2.008 0.222 2.220 0.307 1.000 0.472

Clostridium 
cluster XI

Dialister 0.196 0.096 0.088 0.026 0.060 0.119
Megamonas hypermegale 
et rel.

0.032 0.012 0.027 0.008 0.218 0.187

Megasphaera elsdenii et rel. * 0.095 0.047 0.311 0.180 0.350 0.270
Mitsuokella multiacida et rel. 0.341 0.182 0.607 0.298 0.425 0.312
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Table S5.2 (continued) Differences in fecal microbiota composition of 28 healthy subjects determined with the Human 
Intestinal Tract (HIT)Chip. Samples were taken at the end of the FOS and placebo consumption periods. Significant differences 
between control and FOS samples (p < 0.05; q < 0.05) are indicated in bold. Genus-like groups with significant differences 
between control and FOS samples, but with low relative abundance (< 0.05%) are considered as background variation and 
marked by a dagger (†). Genus-like groups (level 2) which harbor isolates with known butyrate producers are marked by an 
asterisk (*).

Genus-like group

Control group 
relative abundances

FOS group relative 
abundances p- q-

Phylum Mean  % (± Std.err) Mean  % (± Std.err) value value

Clostridium 
cluster XI

Peptococcus niger et rel. 0.067 0.006 0.060 0.004 0.316 0.250
Phascolarctobacterium faecium 
et rel.

0.081 0.014 0.097 0.021 0.264 0.215

Uncultured Selenomonadaceae 0.001 0.001 0.001 0.001 0.138 0.139
Veillonella 0.043 0.024 0.019 0.003 0.374 0.282
Anaerovorax odorimutans et 
rel. *

0.096 0.011 0.089 0.007 0.728 0.384

Clostridium difficile et rel. * 14.699 1.946 13.274 2.354 0.567 0.350
Clostridium felsineum et rel. 0.486 0.178 0.601 0.238 0.937 0.460
Peptostreptococcus anaerobius 
et rel.

0.026 0.003 0.031 0.007 0.567 0.350

Clostridium 
cluster XIII

Peptostreptococcus micros 
et rel.

0.037 0.003 0.044 0.004 0.099 0.130

Clostridium 
cluster XIVa

Anaerostipes caccae et rel. * 1.407 0.124 2.079 0.270 0.040 0.104
Bryantella formatexigens et 
rel. *

1.329 0.107 1.527 0.230 0.902 0.446

Butyrivibrio crossotus et rel. * 1.190 0.201 1.169 0.215 0.646 0.365
Clostridium colinum et rel. 0.381 0.045 0.358 0.049 0.646 0.365
Clostridium nexile et rel. 1.328 0.123 1.474 0.239 0.991 0.472
Clostridium sphenoides et rel. 1.340 0.137 1.488 0.194 0.451 0.321
Clostridium symbiosum et rel. * 1.989 0.108 2.017 0.303 0.164 0.156
Coprococcus eutactus et rel. * 1.282 0.149 0.982 0.095 0.081 0.130
Dorea formicigenerans et rel. 2.242 0.210 2.199 0.242 0.662 0.365
Eubacterium hallii et rel. * 0.936 0.087 1.028 0.153 0.973 0.472
Eubacterium rectale et rel. * 2.407 0.210 2.338 0.255 0.849 0.426
Eubacterium ventriosum et 
rel. *

1.009 0.115 0.992 0.181 0.508 0.337

Lachnobacterium bovis et rel. 1.297 0.223 1.094 0.185 0.339 0.265

Lachnospira pectinoschiza et 
rel. *

2.644 0.273 2.382 0.223 0.646 0.365

Outgrouping clostridium cluster 
XIVa

1.190 0.111 1.202 0.102 0.991 0.472

Roseburia intestinalis et rel. * 1.900 0.195 1.298 0.185 0.025 0.069
Ruminococcus gnavus et rel. 0.516 0.068 0.497 0.056 0.646 0.365
Ruminococcus lactaris et rel. 0.247 0.028 0.210 0.025 0.074 0.130
Ruminococcus obeum et rel. 3.848 0.295 3.756 0.414 0.662 0.365
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Table S5.2 (continued) Differences in fecal microbiota composition of 28 healthy subjects determined with the Human 
Intestinal Tract (HIT)Chip. Samples were taken at the end of the FOS and placebo consumption periods. Significant differences 
between control and FOS samples (p < 0.05; q < 0.05) are indicated in bold. Genus-like groups with significant differences 
between control and FOS samples, but with low relative abundance (< 0.05%) are considered as background variation and 
marked by a dagger (†). Genus-like groups (level 2) which harbor isolates with known butyrate producers are marked by an 
asterisk (*).

Genus-like group

Control group 
relative abundances

FOS group relative 
abundances p- q-

Phylum Mean  % (± Std.err) Mean  % (± Std.err) value value

Clostridium 
cluster XV

Anaerofustis 0.014 0.001 0.016 0.001 0.095 0.130
Eubacterium limosum et rel. * 0.035 0.003 0.045 0.006 0.053 0.114

Clostridium 
cluster XVI

Bulleidia moorei et rel. 0.037 0.003 0.040 0.003 0.210 0.185
Eubacterium biforme et rel. * 0.082 0.017 0.079 0.014 0.902 0.446
Eubacterium cylindroides et 
rel. *

0.028 0.002 0.034 0.003 0.109 0.130

Clostridium 
cluster XVII

Catenibacterium mitsuokai et 
rel. †

0.013 0.002 0.021 0.006 0.010 0.035

Lactobacillus catenaformis 
et rel.

0.002 0.000 0.002 0.000 0.050 0.114

Clostridium 
cluster XVIII

Clostridium ramosum et rel. 0.042 0.003 0.044 0.004 0.552 0.348
Coprobacillus catenaformis 
et rel.

0.087 0.009 0.078 0.016 0.017 0.052

Cyanobacteria Uncultured Chroococcales 0.009 0.001 0.010 0.001 0.465 0.323
Fusobacteria Fusobacteria 0.028 0.002 0.034 0.003 0.086 0.130
Spirochaetes Brachyspira 0.014 0.001 0.016 0.001 0.095 0.130

Uncultured 
Clostridiales

Uncultured Clostridiales I 0.913 0.277 0.820 0.198 0.646 0.365
Uncultured Clostridiales II 0.438 0.067 0.476 0.095 0.849 0.426

Uncultured 
Mollicutes

Uncultured Mollicutes 0.190 0.019 0.160 0.017 0.218 0.187

Verrucomicrobia Akkermansia 0.063 0.023 0.062 0.019 0.245 0.202
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Table S5.2 (continued) Differences in fecal microbiota composition of 28 healthy subjects determined with the Human 
Intestinal Tract (HIT)Chip. Samples were taken at the end of the FOS and placebo consumption periods. Significant differences 
between control and FOS samples (p < 0.05; q < 0.05) are indicated in bold. Genus-like groups with significant differences 
between control and FOS samples, but with low relative abundance (< 0.05%) are considered as background variation and 
marked by a dagger (†). Genus-like groups (level 2) which harbor isolates with known butyrate producers are marked by an 
asterisk (*).

Genus-like group

Control group 
relative abundances

FOS group relative 
abundances p- q-

Phylum Mean  % (± Std.err) Mean  % (± Std.err) value value

Proteobacteria

Aeromonas 0.009 0.001 0.011 0.001 0.109 0.130
Alcaligenes faecalis et rel. 0.012 0.002 0.013 0.002 0.120 0.130
Anaerobiospirillum 0.008 0.001 0.009 0.001 0.120 0.130
Aquabacterium † 0.009 0.003 0.012 0.003 <0.001 0.004
Bilophila et rel. 0.017 0.001 0.020 0.002 0.120 0.130
Burkholderia 0.013 0.003 0.014 0.003 0.779 0.408
Campylobacter 0.031 0.003 0.038 0.003 0.109 0.130
Desulfovibrio et rel. 0.027 0.002 0.033 0.003 0.104 0.130
Enterobacter aerogenes et 
rel. †

0.024 0.002 0.032 0.003 0.010 0.035

Escherichia coli et rel. 0.047 0.004 0.059 0.006 0.115 0.130
Haemophilus 0.006 0.001 0.010 0.002 0.115 0.130
Helicobacter 0.021 0.002 0.025 0.002 0.095 0.130
Klebisiella pneumoniae et rel. 0.023 0.002 0.032 0.005 0.050 0.114
Leminorella 0.005 0.000 0.006 0.001 0.150 0.147
Methylobacterium 0.003 0.000 0.004 0.000 0.115 0.130
Moraxellaceae 0.013 0.001 0.015 0.001 0.109 0.130
Novosphingobium 0.007 0.001 0.008 0.001 0.582 0.353
Oceanospirillum 0.042 0.005 0.043 0.003 0.493 0.335
Oxalobacter formigenes et rel. 0.063 0.009 0.062 0.016 0.451 0.321
Proteus et rel. 0.020 0.002 0.025 0.002 0.099 0.130
Pseudomonas 0.008 0.001 0.012 0.003 0.104 0.130
Serratia 0.001 0.000 0.002 0.001 0.060 0.119
Sutterella wadsworthia et rel. 0.464 0.064 0.425 0.061 0.678 0.367
Vibrio 0.024 0.003 0.033 0.005 0.227 0.192
Xanthomonadaceae 0.083 0.019 0.059 0.014 0.186 0.171
Yersinia et rel. 0.019 0.002 0.023 0.002 0.086 0.130
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Abstract
Improved understanding of the functioning of the gut microbiota in relation to human health is 
essential for successful new strategies to modulate the microbiota with the ambition to improve 
human and animal health. Current knowledge is limited in the functional reconstruction of 
the gut microbial ecosystem due to the fact that the majority of the gut microbiota consists of 
uncultured microbes. Standard metagenome analysis strategies, which compare the metagenomic 
content to reference genomes of organisms that have been cultured in the laboratory, therefore, 
cannot annotate a large portion of the data obtained. Furthermore, uncultured bacteria are 
frequently found among the microbial groups that have been identified as biomarkers for disease 
or health states of their host. 

Here we show how the integration of two cultivation independent community-profiling 
approaches, i.e. 16S rRNA gene profiling and untargeted shotgun metagenomics data (after co-
abundance gene clustering), can link functional properties to uncultured microbes from which 
only a 16S rRNA gene sequence is known. This combinatory assessment could provide insight into 
the functionality of the not yet cultured microbes as well as guide laboratory-media development 
for future isolation and cultivation attempts. For 13 exemplary uncultured organisms that on 
basis of their occurrence pattern among studied subjects that are of potential relevance in the 
context of host-health or –disease, we extracted functional clues which can potentially facilitate 
the design of advanced isolation strategies or provide genome-based functional information, 
such as the capacity to synthesize B-vitamins or amino acids, the presence of specific butyrate 
production pathways, or the manifestation of a homoacetogenic lifestyle. 
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Introduction
In the last decades the gut microbiome has increasingly been recognized as a functional 
counterpart of its host genome [1-3]. A great number of associations between the gut microbiota 
and disease have been described but, besides for specific infectious gut pathogens such as Listeria 
monocytogenes [4], Vibrio cholerae [5], or Salmonella typhimurium [6, 7], only limited causality has 
been demonstrated [8]. For a long time, isolation and subsequent cultivation and characterization 
of microbial strains in the laboratory was the only option to decipher functional properties of gut 
bacteria, and presently over 1,000 species of human intestine derived bacteria, archaea and fungi 
have been described [9]. The past decade has brought several new and next generation sequencing 
technologies that enabled the inventory of the microbial and metagenomic composition in 
complex ecosystems, such as the intestinal tract. The results of these approaches strengthened the 
view that the  microbiota is a vast functional reservoir with the potential to orchestrate human 
physiology through various molecular and/or metabolic interactions, which include shaping the 
immune system, impacting metabolic functions, and protection against pathogens (for a review 
see [10]). 

Improved understanding of the functioning of the gut microbiota in relation to human 
health and well-being can pave the way for innovative strategies to utilize or manage the microbiota 
with the intention to modulate and improve human and animal health by targeting homeostasis-
maintenance or treating (intestinal) diseases. A healthy human adult gut is colonized by more 
than 1,000 bacterial species, that predominantly belong to the Actinobacteria, Bacteroidetes 
and Firmicutes phyla, and of which the majority has not yet been cultured in the laboratory [9]. 
The majority of studies addressing the gut community structure have focused on identifying its 
members based on the 16S rRNA gene sequence, which relies on sequence databases of known, 
though not necessarily cultured, bacteria. This approach does not measure the genetic potential 
of a given community, which can be assessed by shotgun metagenomic approaches that aim to 
determine the genetic potential of the microbiota by shotgun sequence analysis of total DNA 
extracted from the ecosystem. However, metagenomic analysis usually cannot provide high-
confidence phylogenetic assignment for all sequenced genes that are detected [11]. This limitation 
can partly be attributed to the lack of genetic information from uncultured members of the 
community, since most metagenome analysis strategies depend on the comparison to reference 
genomes of organisms that have been cultured in the laboratory and these only account for a 
fraction of all microorganisms in the gut. Hence, this prevents accurate phylogeny-based analysis 
and subsequent predictions of the microbial ecosystem [12]. The metagenomic approaches 
are further complicated by the considerable genetic heterogeneity that is frequently observed 
between genomes of different isolates of the same bacterial species [13, 14]. As a consequence, the 
use of current reference genomes for metagenome mapping provides only a poor coverage of the 
actual biological diversity, and greatly limits the functional reconstruction of the gut microbial 
ecosystem. Not only do uncultured bacteria account for the majority of the gut microbiota, they 
also are frequently found among the microbial groups that have been reported as biomarkers 
for various physiological aspects of their host, such as BMI or metabolic health status [15]. 
Moreover, a recent large scale HITChip meta-analysis [16] of the fecal microbiota composition 
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of more than 1,000 healthy western subjects identified five bacterial groups that were proposed 
to act as ecosystem tipping-point species. In the vast majority of the samples, these bacterial 
groups were either present in relatively high or in very low (nearly absent) abundance levels: 
Dialister spp., relatives of Bacteroides fragilis, a Prevotella subgroup, and two groups of uncultured 
Clostridiales (UCI and UCII) [16]. The  observed bimodal distribution pattern of these microbial 
groups could be associated to several host characteristics, such as age and health-related aspects, 
including BMI [16]. Interestingly, even for Dialister spp., relatives of Bacteroides fragilis, and the 
Prevotella subgroup, the 16S rRNA gene groups with the most prominent bimodal distribution 
were associated to uncultured isolates [16]. Hence, characterization of multiple representatives 
of the currently uncultured bacterial genera and species that inhabit the gut is needed to assign 
comprehensive functional and physiological information to these biomarker microbes.

Here we show how 16S rRNA gene profiling and shotgun-metagenomic data generated 
for intestinal samples studied within the MetaHIT consortium [17] can be combined to deduce 
the genetic potential harboured by uncultured bacteria that have so far only be identified based 
on their 16S rRNA gene sequence. To this end, 16S rRNA gene profiling data was generated 
for a large number of fecal samples for which the MetaHIT consortium had already generated 
metagenomic data and had recognized co-abundant gene groups that were labelled as metagenomic-
species (MGS) [17]. An alternative approach for metagenomic species profiling using universal 
phylogenetic marker genes rather than 16S rRNA, has also been reported [18]. From the genetic 
potential of 13 MGS, with high correlations to 16S rRNA genes from uncultured bacteria that 
displayed intriguing occurrence patterns among the studied subjects, clues were extracted that 
could facilitate the design of laboratory media for their cultivation with respect to amino acid, 
folate (vitamin B9) and cobalamin (vitamin B12) requirements. Additionally, six out of the 13 
MGS were found to encode one or more enzymes involved in butyrate production, and two of 
these MGS appear to harbour the uncommon combination of a butyryl-CoA transferase and a 
butyrate kinase. Moreover, three out of the 13 MGS appear to be homoacetogens, capable of 
reductive acetogenesis, which is a relevant way to produce acetate in the gut and may have eco-
system wide consequence for other fermentation processes. Overall, the combinatory approach 
presented here could guide the development of isolation strategies, target and set-up screening 
tools for specific uncultured organism on basis of their interesting genetic potential, and provide 
genome-based functional information that can be linked to health or disease states

Materials and methods

Metagenomic data set
The metagenome data set used here is an extension of the 124 subjects previously sequenced 
by Qin and co-workers, which originally resulted in a 3.3 million gene catalogue [11], and was 
generated from a total of 177 Danish and 141 Spanish subjects of which 78 were sampled twice, 
as described by Nielsen and co-workers in 2014 [17]. The combination of the new Illumnia GA 
reads with the ones from the 3.3 million gene catalogue resulted in an updated non-redundant 
3.9 million gene catalogue [17]. 
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HITChip analysis
The samples used for the construction of the 3.9M gene catalogue were also used for 16S rRNA 
gene amplification, RNA (reverse-)transcription and Human Intestinal Tract Chip (HITChip) 
microarray hybridization according to previously described methods [19]. When available, 
aliquots of the same DNA samples that were used for shotgun metagenomic sequencing were 
used (n=117), while for the remaining samples DNA was extracted from different aliquots of the 
same fecal samples (n=279) using the same procedure. The HITChip platform, which is based on 
a phylogenetic microarray with 3,699 unique probes that target over 1,000 intestinal phylotypes 
[19], was used for 16S rRNA gene-based microbiota profiling. Specific probe hybridization signals 
were assigned to different phylogenetic levels: order-like, genus-like (sequence similarity >90%), 
and species-like (sequence similarity >98%) 16S rRNA gene sequence groups [19]. 

Co-abundance gene clustering and paralleled co-abundance taxonomic 
mapping (3.9 M gene catalogue set)
Co-abundant gene groups (CAGs) were previously defined on the 396 samples from the 3.9M 
gene catalogue set, using a canopy-based clustering approach of the mapping results of all 
samples using the 3.9M gene catalogue [17]. CAG abundance profiles (median gene depth signal 
per sample) were correlated to HITChip relative abundance profiles (at all phylogenetic levels 
and at probe signal level) by calculating Spearman’s correlation coefficient (ρ). The bidirectional 
and parallel co-abundance taxonomic mapping of HITChip and gene group data resulted in 
predicted taxonomic assignments of the detected CAGs at the different phylogenetic levels. For 
consistency with the canopy-based clustering approach, only correlations with ρ > 0.6 were 
used to assign HITChip taxonomy to the CAGs. Furthermore, CAGs were only assigned to 
HITChip phylogenetic groups when this assignment was “uniform”, meaning that at any given 
phylogenetic level only a single taxonomic group is allowed with a ρ > 0.6. The CAGs with the 
highest correlations (ρ > 0.8) to uncultured isolates were selected for further investigation of their 
functional gene composition. 

Functional annotation
The 3.9M gene catalogue was functionally annotated by BLASTP against the UniProt database 
(http://www.uniprot.org/) and the proteins from the eggNOG (v3) database [20], as described 
previously [17]. Gene sets and their functional annotation have been deposited at the European 
Nucleotide Archive (ENA) for the CAGs with >700 genes that passed the six high-quality 
draft assembly criteria from the Human Microbiome Project (HMP)[21]. Via the UniProt 
Knowledgebase (UniProtKB), UniprotIDs corresponding to enzymes from butyrate production 
pathways, as indicated by Vital and co-workers [22], were retrieved to identify potential 
butyrate producing organisms among CAGs of interest. Similarly, UniprotIDs corresponding 
to enzymes from the various amino acid biosynthetic pathways were retrieved. Furthermore, 
CAGs of interest were analysed with the online Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway database [23, 24], employing the KEGG Automatic Annotation Server (KAAS; 
[http://www.genome.jp/kegg/kaas/, 25]). KEGG Orthology (KO) assignment was obtained using the 
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recommended settings for metagenomes, which is the single-directional best hit (SBH) method 
combined with a representative gene data set for Prokaryotes. Annotations by KAAS yielded KO 
assignments per gene and KEGG pathway maps, in which these assignments were represented.

Results and discussion

Co-abundance clustering of metagenomic genes
Most metagenome annotation methods rely on the alignment with currently available reference 
genomes, which are strongly predominated by cultured isolates and represent only a small 
portion of the diversity within a gut microbiota metagenome. Thereby, our capacity to extract 
coherent biological information and genomic entities from metagenomic data is quite limited. 
Ideally, one would strive for de novo assembly of all biological entities present in a metagenome 
dataset. However, sequence ambiguities and limitations in sequencing depth render de novo 
assembly impossible [26]. Consequently, current assembly methods produce large sets of small 
and apparently independent contigs that do not allow biological entity reconstruction [27]. To 
overcome the difficulties in metagenomic data analysis a method was developed to segregate 
biological entities within large amounts of metagenomic data, utilizing co-abundance profiling 
of genes in multiple samples [17]. A similar method had already been applied before to cluster 
120,723 metagenomic genes that were associated to bacterial richness [15], but computational 
constraints limited the mapping of the entire gene catalogue in a distance matrix that encompasses 
millions of genes. This computational constraint was overcome by extracting groups of genes 
based on their abundance correlation relative to a randomly picked set of seed genes [17]. 

The co-abundance method defines biological entities as co-abundant gene groups (CAGs), 
allowing a first evaluation of their genetic potential. Out of the 7,381 CAGs identified within 
the gut metagenome, 741 encompassed more than 700 genes, which was taken as a minimal 
number of genes to assign the term “metagenomic species” (MGS) to this CAG. A high level of 
consistency of nucleotide base composition and congruent taxonomic classification of the genes 
captured within a MGS supported the proposition that these MGS represent biological entities 
[17]. It should be noted that the MGS gene sets are not equivalent to complete genomes, but 
most likely are a reflection of the core genome of a particular species that is subject to clonal 
variations in different representatives of such species. The smaller CAGs may constitute specific 
sets of gene that are relatively frequently present within a species and as a consequence may 
display dependency associations with specific MGS [17]. Hence, these could be part of the so-
called accessory genome of a species. Correspondingly, several of the smaller CAGs (< 700 genes) 
represent phages or antibiotic resistance cassettes that are among the typical clonal diversity 
within species. These accessory sets of genes of a species are part of its pan-genome [28] and not 
consistently present in each representative of such species, implying that these accessory sets of 
genes are unlikely to display consistent co-abundance with their corresponding core genome 
or MGS in different intestinal samples. Notably, the abundance of several smaller CAGs that 
displayed a strong dependency association to specific MGS clusters were explored for their 
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predictive value for persistence capacity of microbes in the gut environment in longitudinal 
samples [17].

 The genes encompassed within the 741 MGS were taxonomically classified by sequence 
similarity to reference genomes using BLASTN, allowing the mapping of the annotated genes 
for 115 MGS at species level [17]. Importantly, for 56 of these 115 MGS the taxonomy could 
be confirmed by paralleled co-abundance taxonomic mapping using the HITChip analyses of 
the same samples (Table S6.1). The fact that the remainder of the MGS could not be assigned 
may be due to the limitations of the HITChip platform (such as absence of the species-specific 
probes or probe cross-hybridization), technical issues (such as low MGS abundance, resulting in 
unfavourable signal to noise ratios), or computational limitations (such as miss-assembly of the 
MGS). Remarkably, the HITChip co-abundance mapping could assign another 113 MGS to 
uncultured isolates that remained phylogenetically unassigned on basis of the BLASTN approach 
(accession numbers in Table S6.1). Hence, in this way a total of 169 MGS could be associated 
with cultured and uncultured taxa detected by the phylogenetic HITChip microarray.

Combining co-abundance clustering with 16S rRNA gene profiling
The above results indicate that combining co-
abundance gene-set clustering methods and 
MGS identification with 16S rRNA gene 
profiling results of the HITChip can connect 
MGS and the associated smaller CAG gene-
sets to uncultured bacterial species. We 
dedicated our primary attention to those 
MGS that have the highest correlating co-
abundance with the so far uncultured genus-
like groups determined by the HITChip (ρ > 
0.8; Table 6.1). This led to the identification 
of 15 MGS with high correlation to 
uncultured taxa, encompassing seven genus-
like groups. Remarkably, eight of these 
taxa belong to three genus-like groups that 
have previously been identified as being 
prevalent in >90% of the subjects analysed by Qin and co-workers [11], i.e., bacteria related to 
Clostridium cellulosi, Oscillospira guillermondii, and Sporobacter termitidis. Both O. guillermondii, 
and S. termitidis have shown interesting associations to host BMI and are often co-occurring in 
fecal samples (Box 1). Moreover, five of the highly correlating MGS belonged to two genus-like 
groups that were defined as bimodal distributed groups [16], i.e., the uncultured Clostridiales I 
and II. This subgroup of 13 MGS was selected for further gene-function investigation, aiming to 
illustrate the potential of combining gene co-abundance clustering and 16S rRNA gene profiling 
by the exemplary analyses presented below.

Box 1. Human Oscillospira guillermondii & Sporobacter 

termitidis isolates: important members of the microbiota?

•More abundant in the leaner sibling of monozygotic 

twins discordant for BMI (Chapter 3)

•Part of the “core gut microbiota” ([11] & Chapter 3)

•High co-occurrence (ρ > 0.7) among MetaHIT subjects 

(HITChip data subjects from: [11, 15, 17])

•Bacteria related to O.guillermondii and S.termitidis 

showed higher (2 and 2.5-fold, respectively) relative 

abundance in subjects with high bacterial gene richness  

(p = 3.24E-12 and p = 9.60E-15, respectively; [15])
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Example 1: essential nutrients for microbes
The simplest explanation for the lack of successful culturing and isolation of microorganisms to 
date is likely the lack of adequate in vitro reproduction of the environmental conditions that allow 
them to grow. A multitude of variables in culture medium composition and physicochemical 
conditions during in vitro growth (e.g. pH, oxygenation, temperature, osmolarity, and micro-
and macro-nutrient availability) can be essential for any given organism. The possibilities in 
classical culturing approaches are virtually endless and systematic evaluation of all possibilities 

Table 6.1 Metagenomic species (MGS) and co-abundant gene clusters (CAGs) based on high correlation to bacterial 
taxa from uncultured genus-like groups (ρ > 0.8). The number of genes, average gene length, and total genetic information 
size are provided for each of the MGS. Grey shading indicates the MGS that were selected for further analysis (see main text 
for rationale).

Genus-like group represented by 
relatives of the indicated species 
[17]

MGS Correlation 
(ρ)

Nr of 
genes

Average 
gene length 
(bp)

Total genetic 
information size 
(bp)

Clostridium cellulosi  *
MGS.177 0.823 1,197 1,060.0 1,268,877
MGS.180 0.817 1,298 1,064.0 1,381,104
CAG.355 0.803 475 1,168.2 554,892

Clostridium colinum 
MGS.102 0.849 1,419 1,046.4 1,484,874
CAG.2283 0.804 22 953.9 20,985

Oscillospira guillermondii *

CAG.1235 0.842 95 816.2 77,538
CAG.1284 0.805 30 1,114.9 33,447
MGS.176 0.814 1,003 997.7 1,000,722
CAG.3291 0.850 77 799.1 61,527

Sporobacter termitidis  *

MGS.110 0.869 1,448 1,058.1 1,532,133
MGS.124 0.841 1,144 1,077.9 1,233,066
CAG.1667 0.819 495 1,030.3 510,015
MGS.204 0.822 1,713 779.5 1,335,369
MGS.240 0.869 1,348 1,046.3 1,410,381
CAG.3371 0.8181 308 819.4 252,387
CAG.3522 0.831 6 1,175.0 7,050
MGS.49 0.828 1,682 980.4 1,649,100
CAG.934 0.819 69 1,080.4 74,547

Tannerella MGS.20 0.848 1,810 1,199.7 2,171,382

Uncultured Clostridiales I  ‡
CAG.1839 0.800 49 1,136.3 55,680
MGS.245 0.819 797 1,062.5 846,798

Uncultured Clostridiales II  ‡

MGS.111 0.806 2,132 952.9 2,031,483
MGS.138 0.805 1,155 1,134.0 1,309,806
MGS.159 0.859 1,286 1,015.4 1,305,825
CAG.1722 0.818 88 521.5 45,888
CAG.4622 0.805 14 502.7 7,038
MGS.74 0.901 1,671 1,161.7 1,941,240

* prevalence of >1% in 90% of subjects
‡ bimodal
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can only be achieved with highly significant resources and dedicated approaches, such as the 
culturomics approach [29]. Moreover, mutualistic metabolic dependencies between microbes or 
between microbes and host are not readily mimicked in classical in vitro culturing approaches.  
Nevertheless, recent advances in high throughput, miniaturized culturing strategies may enable 
improved mimicking of the natural habitat, and could include co-culture strategies for two or 
more bacterial species or strains from the same habitat, and could thereby allow the cultivation 
of previously uncultured bacteria (for a review see [30]). 

The elucidation of genomic information of the uncultured bacterial species through co-
abundance mapping of MGS and smaller CAGs can accelerate the design of culture conditions 
that may facilitate the growth of particular species or strains, or that may enhance the production 
of a particular metabolite required for the co-culturing or co-occurring inhabitants of the same 
ecological niche. Despite the intrinsic incompleteness of MGS and CAG information, it may 
still provide essential information for the rational design of culturing approaches for particular 
intestinal bacteria that have not been cultured to date. 

Among the universal requirements for growth is the availability of all amino acids, either 
from environmental sources or by endogenous production. The functional annotations provided 
by KAAS allowed the estimation of the capacity of the 13 selected MGS to synthetize amino 
acids, revealing that most of these MGS are predicted to be able to synthesize 10 or more amino 
acids endogenously (Table 6.2), although MGS:49 (Sporobacter termitidis  relative), MGS:138 
(uncultured Clostridiales II), and MGS:159 (uncultured Clostridiales II) were predicted to 
encode biosynthetic pathways for 9 amino acids only, and MGS:245 (uncultured Clostridiales 
I) appeared to encode only 2 amino acid synthesis pathways. Notably, none of the 13 MGS 
appeared to encode the enzymes involved in the last steps of the biosynthesis of phenylalanine 
or tyrosine (Table 6.2). These findings imply that the species represented by the MGS may 
have multiple auxotrophies for amino acids and thus are predicted to require relatively rich 
environmental conditions for their growth. However, it cannot be excluded that the missing 
genes are not encompassed within the MGS due to gene sequence variability among the different 
representatives of the corresponding species, eliminating their inclusion in the corresponding 
MGS. Therefore, the relative autotrophy among the deposited MGS species (in ENA) was 
estimated (Figure 6.1) and no single MGS was predicted to be autotrophic for all amino acids. 
One would expect that at least some MGS would encompass the gene repertoire for the synthesis 
of all amino acids. However, the gastrointestinal tract contains the highest levels of proteases 
of any organ in the human body [31], encompassing both host and microbial proteases [32, 33]. 
Although ileum effluent shows higher protease activity compared to the feces, previous studies 
that specifically inhibited bacterial proteases suggest that a substantial part of the  proteolytic 
activity in feces is of bacterial origin whereas in the ileum proteolytic activity originates primarily 
from the host itself [32, 33]. However, a recent study in diarrhoea predominant irritable bowel 
syndrome patients show that the most abundant fecal proteases are of pancreatic origin [34]. 
Not surprisingly, a recent study reported that certain microbiota members are more associated 
to the fecal proteolytic activity than others [35]. Taken together, the colon microbiota may favor 
proteolytic activity and/or harvesting proteolytic break-down products resulting from proteolysis, 
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initiated by themselves, other members in their vicinity, or by host enzymes, instead of investing 
in anabolic pathways to accommodate their amino acid requirement. Moreover, obligate 
metabolic cross-feeding has been proposed to be an ecological advantageous trait that stabilizes 
community structures [36], which could imply that microbes autotrophic for all amino acids are 
less likely to be encountered in this complex microbial system. Therefore, even though MGS 
may not represent complete genomes, and could miss specific genes or pathways, the analyses 
presented here suggests that specific amino acid-dependencies for growth can be assigned to each 
of the 13 MGS.

Table 6.2 Genes encoding for final enzymatic conversions involved in amino acid production pathways, and their 
representation in the selected 13 metagenomic species (MGS). – for further information see Table 6.1.
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Glutamic acid √ √ √ √ √ √ √ √ √ √ √ √ √
Glutamine √ √ √ √ √ √ √ √ - √ √ √ √
Glycine √ √ √ √ √ √ √ √ - √ √ √ √
Histidine - √ - - - - - - - √ √ - -
Isoleucine √ √ - - √ √ √ - - √ √ √ -
Leucine √ √ - - √ √ √ - - √ √ √ -
Lysine - √ √ √ √ √ √ - - √ √ - -
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Phenylalanine - - - - - - - - - - - - -
Proline √ √ √ - - - - √ - √ √ - √
Serine √ √ √ √ - √ √ √ - √ √ √ √
Threonine √ √ √ √ √ √ √ √ - √ √ √ √
Tryptophan - - √ - - - √ - - - √ - -
Tyrosine - - - - - - - - - - - - -
Valine √ √ - - √ √ √ - - √ √ √ -
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Example 2: essential B-vitamins for host and microbe
The gut microbiota provides essential nutrients such as various B-vitamins to the human host 
[37, 38]. Human cells cannot synthesize various B-vitamins and rely on dietary sources, and/or 
their production and release by the gut microbiota. The selected MGS were evaluated for their 
predicted capacity to synthesize two of these B-vitamins, i.e., folate (vitamin B9) and cobalamin 
(vitamin B12). Interestingly, a previous study [39] analysed the presence of genes belonging 
to B-vitamin production pathways in 256 publicly available bacterial genomes, which were 
selected on basis of their prevalence  and relative high abundance in many of the fecal sample 
metagenomic data that was employed to construct the 3.3M gene catalogue published by Qin 
and co-workers [11]. The results indicated that an apparently complete biosynthesis pathway for 
folate was present in 43% of the selected genomes, whereas cobalamin synthesis pathways were 
predicted to be encoded by 42% of these genomes [39].  The biosynthetic pathways for these 
two B-vitamins appeared to be present in most, if not all, Fusobacteria, and were concluded to 
be rare in Actinobacteria. In contrast, the distribution of these pathways among other phyla 
was more diverse, although most Bacteroidetes and Proteobacteria representatives encode the 
entire folate synthesis pathways, less than 14% of the Firmicutes encode for the complete folate 
synthesis pathway (although approximately 38% of the selected Firmicutes genomes encode for 
all enzymes except for those leading to 4-amino-benzoate formation). The cobalamin synthesis 
pathway distribution appeared to be even more scattered and was estimated to be present in half 
of the Bacteroidetes, in one out of four Proteobacteria genomes, and in 40% of the Firmicutes 
genomes [39]. Bacteria that do not synthesize these B-vitamins themselves are thought to express 
import systems and/or have effective retention systems (e.g., formation of polyglutamate 
tetrahydrofolate [40]) to enable the import and/or accumulation of folate and/or cobalamin (or 
one of its precursors) from the environment [41, 42].
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Figure 6.1 Histogram of the amount of amino acid biosynthesis pathways detected in the 373 deposited MGS assemblies 
that were deposited at the European Nucleotide Archive. These MGS passed the six high-quality draft assembly criteria 
from the Human Microbiome Project (HMP) [21]. The UniProt Knowledgebase (UniProtKB) was used to assess the amino acid 
biosynthetic pathway presence in the MGS.
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Among the 13 selected MGS no complete pathways could be detected for either B-vitamin 
(Figure 6.2 and Figure 6.3), which could mean that this biosynthesis capacity is absent from these 
species or that it is not a part of their core genome. This analysis tends to imply that representative 
strains of the 13 selected MGS would require folate and cobalamin supplementation for growth. 
Considering that all 13 MGS are predicted to be Firmicutes species this is below the reported 
averages (see above; [39]) which may be related to their status of uncultured organism. However, 
import functions for these B-vitamins were also not detected in the selected MGS, which appears 
to be in apparent contradiction with the absence of the biosynthetic pathway, but may be due 
to the lack of an accurate prediction of substrate specificities of transport functions encoded by 

Figure 6.2 Subset of the folate biosynthesis pathway (KEGG map00790) on which the predicted enzymes are indicated 
from the selected metagenomic species (MGS). The table indicates which genes were predicted in each MGS. Predicted 
enzymes: 1 = EC 4.1.2.25; 2 = EC 2.7.6.3; 3 = EC 2.5.1.15; 4 = EC 6.3.2.12/17; 5 = EC 1.5.1.3. Abbreviations: Cl.c.; Clostridium 
cellulosi; Sp.t.: Sporobacter termitidis; Os.g.: Oscillospira guillermondii; Un.: Uncultured.
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bacteria [41-43]. Conversely, most of the genes encoding enzymes involved in folate co-factor 
recycling were present in MGS:180 (C. cellulosi), and roughly half of the enzymes required 
for cobalamin biosynthesis appeared to be encoded within MGS:124 (S. termitidis). These 
observations suggest that representatives of these MGS could encode a complete cobalamin and/
or folate synthesis pathway, particularly when taking into account the intrinsic incompleteness 
of MGS.

Figure 6.3 Cobalamin (vitamin B12) synthesis (anaerobic subset of KEGG map00860) on which the predicted enzymes 
are indicated from the selected metagenomic species (MGS). Cobalamin biosynthesis is one of the multi-enzyme B-vitamin 
production pathways, starting with adenosylcobalamin synthesis from precorrin-2. The table indicates which genes were 
predicted in each MGS. Predicted enzymes: 1 = EC 4.99.1.3; 2 = EC 2.1.1.131; 3 = EC 2.1.1.271; 4 = EC 3.7.1.12; 5 = EC 
2.1.1.195; 6 = EC 1.3.1.106; 7 = EC 5.4.99.60; 8 = EC 6.3.5.11; 9 = EC 2.5.1.17; 10 = EC 6.3.5.10; 11 = EC 6.3.1.10; 12 = EC 
2.7.1.156; 13 = EC 2.7.7.62; 14 = EC 2.7.8.26. Abbreviations see Fig 6.2.
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Example 3: SCFA production
The short chain fatty acids (SCFA) acetate, butyrate and propionate are the three main end 
products of anaerobic fermentation that occur in the human colon [44]. These SCFAs are readily 
absorbed by the host epithelial cells and have been proposed to play important and diverse roles 
in gut health (for a review see [45]). Especially butyrate has received a lot of attention since it is 
the preferential energy source of colonocytes, was shown to have anti-inflammatory properties 
by suppressing NK-κB activation [46], and has been implicated in modulation of genome wide 
gene expression in host cells through its inhibition of histone deacetylase [47, 48].  Moreover, in 
relation to its suggested key role in epithelial integrity and gut homeostasis, it has been shown 
that low levels of luminal butyrate or low abundance of butyrate producing microbial groups in 
the microbiota are frequently associated to different disease states, including inflammatory bowel 
diseases [49], diabetes [50, 51], and colon cancer [52-54]. Diet constituents, in particular dietary 
fibres or specific dietary polysaccharides such as resistant starch and xylans, have been shown to 
impact on luminal butyrate levels by affecting the growth and/or activity of butyrate producing 
bacteria in the gut either directly by polysaccharide substrate digestion, or indirectly through so-
called cross-feeding mechanisms via the stimulation of other bacteria that produce lactate and/
or acetate, which may subsequently serve as a substrate for secondary fermentation, and lead to 
enhanced butyrate production by co-occurring bacterial groups [55, 56]. 

Figure 6.4 Schematic representation of butyrate production pathway indicating the involved enzymes and their 
presence in the metagenomic species (MGS) that were selected for analysis. Enzymes in grey boxes were not detected in 
any of the selected MGS. The table indicates which and how many different genes were predicted in each MGS. Abbreviations: 
Bcd) butyryl-CoA dehydrogenase (including electron transfer protein α, β subunits); 4Hbt) butyryl-CoA:4-hydroxybutyrate CoA 
transferase; But) butyryl-CoA:acetate CoA transferase; Ato) butyryl-CoA:acetoacetate CoA transferase (α, β subunits); Ptb) 
phosphate butyryltransferase; Buk) butyrate kinase. Other abbreviations as in Fig 6.2.
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Most studies addressing the butyrate production by the microbiota have evaluated the 
metabolism of the more abundant and cultured faecal isolates of the Lachnospiraceae and 
Ruminococcaceae groups and focussed on butyrate production via the acetyl-CoA pathway. 
However, investigating the butyrate production potential of the microbiota is far from trivial, 
as the “butyrate producers” are a heterogeneous, polyphyletic group of bacterial species, 
encompassing a diverse group of bacteria rather than few, well defined bacterial taxa. Moreover, 
from literature it is known that at least four pathways exist for butyrate production, i.e. the 
acetyl-CoA pathway and three amino acid dependent pathways:  the 4-aminobutyrate, the 
glutarate, and the lysine pathways [22]. These pathways share one enzymatic step that involves 
crotonyl-CoA to butyryl-CoA conversion and is executed by the butyryl-CoA dehydrogenase 
electron-transferring flavoprotein complex (Bcd-Etfαβ). For each of the four main pathways the 
butyryl-CoA is transformed to butyrate either directly via butyryl-CoA transferase, or following 
phosphorylation and conversion via butyrate kinase (BuK). Recent fecal metagenomic analysis 
revealed that the most predominant butyrate production pathway in the gut microbiota of 
healthy individuals is the acetyl-CoA pathway [22], which is in agreement with observations 
made on the impact of dietary polysaccharides on butyrate production [55]. However, also the 
genes encoding the enzymes involved in amino acid-dependent pathways are detected in the gut 
metagenome, suggesting that the gut microbiota has more flexibility with respect to butyrate 

Figure 6.5 Wood-Ljungdahl pathway (subset of KEGG map00720) on which the predicted enzymes are indicated from 
the selected metagenomic species (MGS). The table indicates which genes were predicted in each MGS. Predicted enzymes: 
1 = EC 1.2.99.2; 2 = EC 1.2.7.4; 3 = EC 2.3.1.169; 4 = EC 1.5.1.20; 5 = EC 1.5.1.5; 6 = EC 3.5.4.9; 7 = EC 6.3.4.3. Other 
abbreviations as in Fig 6.2.
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production than initially assumed [22]. One of these, the butyrogenic lysine pathway, has recently 
been discovered in an intestinal isolate of the new intestinal genus Intestinimonas that is also 
capable of converting the Amadori product fructoselysine [57]. The butyrate production potential 
of the 13 selected MGS was investigated by determining whether they encompassed genes 
encoding the common butyryl-CoA dehydrogenase as well as genes involved in one or more of 
the four butyrate pathways (butyryl-CoA transferases or butyrate kinase). Six out of the 13 MGS 
encoded at least one enzyme involved in a butyrate production pathway, whereas three MGS 
encoded both the butyryl-CoA dehydrogenase and at least one of the terminal enzymes involved 
in the different pathways (Figure 6.4). Interestingly, MGS:176 (O. guillermondii) and MGS:138 
(Uncultured Clostridiales II) encode both a butyryl-CoA transferase and a butyrate kinase, which 
has been reported before but is rather uncommon [22]. These indications should be interpreted 
with caution, as the enzyme function and substrate specificity prediction on basis of homology 
analysis can be hampered by the presence of conserved protein-sequences in enzymes with quite 
distinct metabolic functions [58]. Moreover, the existence of alternative and distinct butyryl-CoA 
transferase enzyme families has been proposed [59], but were not yet taken into consideration 
here. Consequently, the current prediction may underestimate the true amount of uncultured 
MGS that encompass butyrate production encoding genes and in vitro growth combined with 
biochemical tests would be required to reliably assess the butyrate production capacity of these 
organisms. Nevertheless, this analysis predicts that at least three of the uncultured intestinal 
MGS/taxa we analyse here, could produce butyrate, which reflects metabolic information of 
these bacteria that was unavailable a priori. 

Interestingly, the relatively rare Wood-Ljundahl pathway for acetate production appeared 
to be present in at least three of the selected MGS, which enables bacteria to capture CO2 
and H2, and leads to the production of acetyl-CoA (Figure 6.5)[60]. This pathway has been 
specifically described for homoacetogenic bacteria, such as Blautia hydrogenotrophica. Although 
acetate production in itself is not a remarkable capacity in fermentative bacteria, and is present in 
many gut-associated species, the homoacetogenic bacteria are not dominantly present among gut 
microbiota and are outnumbered by the fermentative (non-acetogenic) actetate producers [61]. It 
was estimated that approximately one third of the acetate pool is produced by homoacetogenic 
bacteria [60]. Nevertheless, the capacity of the homoacetogenic bacteria to remove H2 from the 
gut-lumen may be of importance in the overall functioning of the gut ecosystem. While H2

production is a common way for strict anaerobes to dispose of the reducing equivalents that are 
formed during fermentation [62], H2 accumulation can have ecosystem-wide effects since primary 
fermenters are forced to hoard their reduced compounds, such as butyrate and ethanol, while 
re-oxidation of pyridine nucleotides is inhibited [63].

Conclusion
Various roles in orchestrating human physiology have been ascribed to the gut microbiota and 
the research involved in deciphering this role of the microbiota has expanded drastically over 
the past years. However, our current knowledge is not sufficient to fully grasp the vast function 
potential residing within the microbiota, which constrains our options to modulate the host-



6

 Combining data sets for functional capacity prediction of uncultured isolates 

175

microbiota interactions for the better of human health. Uncultured bacteria account for the 
largest knowledge gap, not only because they account for the majority of the gut eco-system 
but also because various important characteristics of the microbiota involve a dominant role of 
uncultured bacteria, such as the common core [11], bacterial richness [15], and bimodal taxa [16]. 
Currently, reference genomes cannot cover actual biological diversity of the gut microbiota to 
a satisfactory degree, which hampers attempts to functionally reconstruct the gut ecosystem. 
Therefore, characterization of the uncultured bacterial gut inhabitants will be crucial to fully 
comprehend gut functions as a composite of mammalian and microbial functions. As a first 
step in the characterization of the uncultured microbes, we have shown several examples 
where 16S rRNA gene profiling and shotgun-metagenomic analysis were combined to extract 
knowledge of the genetic potential harboured by the uncultured bacteria. Knowledge about the 
genetic potential of uncultured bacteria can further our insight in the driving forces within 
this complex ecological system, and can provide information that can potentially be exploited 
to obtain cultured representatives of so far uncultured representatives of the gut microbiota. 
Eventually, such an expanded gut-microbiota knowledgebase can support the rational design 
of interventions aiming to improve or sustain human health via modulation of the intestinal 
microbiota composition and/or activity.

The exemplary analyses that combine MGS and 16S rRNA gene abundance profiling 
presented here address several interesting aspects of the metabolic capacities of the microbiota 
that are considered of relevance for the functioning of the gut ecosystem. The results of the 
analyses of amino acid and vitamin production capacity illustrate how the integration of MGS 
and 16S rRNA composition data could tentatively predict essential nutrients that are required for 
the cultivation of gut bacteria that have not been cultured to date. Although these predictions are 
only tentative and may underestimate the metabolic capacity of individual isolates corresponding 
to a certain MGS, they do exclude the requirement for nutrients for which the MGS encodes 
the entire biosynthetic pathway. Moreover, these analyses underpin that MGS and 16S rRNA 
gene correlation analysis can predict specific metabolic capacities within the central carbon 
metabolism that MGS of interest are able to execute (e.g., butyrate production and acetogenic 
metabolism). With such knowledge growth media and conditions, for instance by introducing 
H2 as electron donor for the homoacetogenic bacteria, as well as functional activity screening 
tools can be more specifically designed and employed to guide isolation and cultivation scenarios 
for representatives of these uncultured bacterial species.

The basis for the analyses described here is the correlation between MGS abundance 
patterns in individuals and the corresponding 16S rRNA gene abundance, which provides 
associations between the MGS and the species it represents and thereby can define the core 
genome of uncultured microorganisms from the intestinal niche. Analogously, this approach 
can be employed to investigate uncultured microorganisms in any other niche, provided that 
the appropriate combination of information (deep shotgun sequencing metagenomes and 
16S rRNA gene composition profiles) is available in sufficient numbers of samples to allow 
co-abundance and correlation analyses. Improvement of the statistical algorithms for MGS 
detection may further improve their reliability, and functional predictions can be more accurately 
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assessed by analysing metabolic pathways rather than inferring their presence from taxonomy, 
as for instance can be done with PICRUSt [12]. However, the intrinsic incompleteness of the 
MGS gene-sets due to genomic diversity of the species they represent hampers the complete 
assessment of pathway presence and absence in members of a species. Moreover, incompleteness 
of a pathway may also not necessarily mean that the corresponding microorganism is unable to 
produce particular metabolic end-products, because especially in complex microbial consortia, 
pathway intermediates may be available in the environment because they are produced by other 
members of the community. 

An important goal in the area of gut microbiota and cooperative metabolism of the 
ecosystem is the ability to predict and visualize the metabolic performance of the microbial 
community in metabolic network analyses that include nutrient flux across different members 
of the community. This ambition will require the integration of systems biology combined with 
metabolic modelling [64] and could potentially enable the prediction of the metabolic handling of 
dietary ingredients by the microbial community, allowing the rational design of dietary strategies 
intending to modulate the ecosystem’s metabolic performance. Achieving such goals depends on 
improved characterization of the uncultured proportion of the microbiota that can be initiated 
using the culture independent approaches illustrated here, which may support the subsequent 
and crucial step of in vitro cultivation and characterization of representative isolates of the gut 
microbiota. 
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Supplementary information

Supplementary tables

Table S6.1 MGS with taxonomic identification by BLASTn and/or HITChip association.

MGS ID Species (primary 
taxonomy)

MGS genes that match the 
primary taxonomy Number 

of genes 
in the 
MGS

HITChip 
confirmation 
(Spearman 
correlation 
coefficient)

Accession 
nr% of 

total 
genes

nr. of 
genes

% of 
annotated 
genes

MGS:1 Subdoligranulum sp. 
4_3_54A2FAA

95.4 2782 100 2915 0.800750581

MGS:2 Parabacteroides distasonis 97.8 2550 100 2608 0.789958547
MGS:3 Bacteroides uniformis 88.2 2160 99.4 2450 0.878694791
MGS:4 Escherichia coli 96.1 3385 99.1 3523
MGS:5 Flavonifractor plautii 97.8 2914 100 2981 0.853129993
MGS:6 Bacteroides vulgatus 79.4 1803 85.7 2271 0.763021226
MGS:7 - - 0 - 2447 0.854735154 AF499907
MGS:8 - - 1 - 2248 0.705235724 AB064762
MGS:9 Blautia wexlerae 

(Ruminococcus sp. 
5_1_39BFAA)

85.4 1701 99.8 1992 0.857621093

MGS:10 Bilophila wadsworthia 92.6 3606 93.2 3896
MGS:12 Eubacterium hallii 92.9 1952 100 2101 0.725750825
MGS:13 Roseburia intestinalis 91.2 2293 100 2513 0.701942406
MGS:14 Odoribacter splanchnicus 96.6 2443 100 2530 0.76749819
MGS:15 Roseburia inulinivorans 85.3 1810 100 2123 0.800780468
MGS:16 Roseburia hominis 92.7 2164 100 2334 0.800832354
MGS:18 - - 2 - 1949 0.754364903 AJ408979
MGS:19 Coprococcus comes 93.1 1789 100 1922 0.710622466
MGS:20 - - 1 - 2119 0.847189783 AY916176
MGS:21 Bacteroides caccae 96.6 2047 100 2119 0.823914125
MGS:22 Bacteroides ovatus 52.4 1377 66.6 2630 0.696670046
MGS:24 - - 0 - 1959 0.911908345 AF132253
MGS:25 Eubacterium hadrum 96.7 1629 100 1684 0.838773536
MGS:27 Clostridium leptum 98.7 2254 100 2283 0.778172788
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Table S6.1 (continued) MGS with taxonomic identification by BLASTn and/or HITChip association.

MGS ID Species (primary 
taxonomy)

MGS genes that match the 
primary taxonomy Number 

of genes 
in the 
MGS

HITChip 
confirmation 
(Spearman 
correlation 
coefficient)

Accession 
nr% of 

total 
genes

nr. of 
genes

% of 
annotated 
genes

MGS:28 Dorea formicigenerans 98.3 1774 100 1805 0.603034984
MGS:30 Lachnospiraceae bacterium 

3_1_57FAA_CT1
91 5309 100 5836

MGS:31 - - 0 - 2884 0.625966951 AF132268
MGS:32 Bacteroides faecis 94.1 1985 99.9 2110 0.696484633
MGS:34 - - 11 - 1799 0.865178704 AB099720
MGS:35 Haemophilus parainfluenzae 37.2 1431 93 3843
MGS:36 Eubacterium rectale 94.5 1464 100 1550 0.871710506
MGS:37 - - 0 - 1919 0.756576771 AJ408969
MGS:39 Ruminococcus obeum 92.7 1614 100 1741 0.73590172
MGS:40 Bacteroides thetaiotaomicron 94.1 1798 100 1910
MGS:41 - - 0 - 1763 0.859549422 AJ608246
MGS:42 Dorea longicatena 85.9 1708 100 1988 0.757108974
MGS:43 - - 0 - 1928 0.797246631 AB064711
MGS:44 - - 0 - 2284 0.641552774 AF132242
MGS:45 - - 0 - 2019 0.647801468 AY684388
MGS:46 - - 1 - 1817 0.704097802 AF132258
MGS:47 Bacteroides fragilis 96.8 2831 100 2926 0.780466164
MGS:48 Parabacteroides merdae 88.3 2007 97.4 2273 0.774121177
MGS:49 - - 0 - 1942 0.828067192 AY916335
MGS:50 - - 0 - 1900 0.661875247 L34623
MGS:51 Tannerella sp. 6_1_58FAA_

CT1
92.9 2218 100 2387

MGS:52 - - 1 - 2045 0.806138613 AF132274
MGS:54 - - 1 - 2684 0.646489719 AB099796
MGS:55 - - 2 - 1599 0.733158041 AY920004
MGS:56 - - 1 - 1952 0.857241378 AY920027
MGS:57 - - 16 - 1835 0.611610553 X85097
MGS:58 - - 0 - 2386 0.864916876 AY916157
MGS:59 Clostridium bolteae 88.2 2319 99.7 2628
MGS:60 - - 1 - 2511 0.665787303 AY916245
MGS:61 Ruminococcus torques 94 1651 100 1756 0.84373442
MGS:62 - - 1 - 1868 0.675568843 AJ409006
MGS:64 Clostridium innocuum 99.8 3390 100 3397
MGS:65 - - 1 - 1879 0.880814958 AF153851
MGS:67 Alistipes putredinis 93.6 1381 99.8 1476 0.874399678
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Table S6.1 (continued) MGS with taxonomic identification by BLASTn and/or HITChip association.

MGS ID Species (primary 
taxonomy)

MGS genes that match the 
primary taxonomy Number 

of genes 
in the 
MGS

HITChip 
confirmation 
(Spearman 
correlation 
coefficient)

Accession 
nr% of 

total 
genes

nr. of 
genes

% of 
annotated 
genes

MGS:68 Alistipes finegoldii 60.2 1066 61.7 1770
MGS:69 Bifidobacterium longum 95.4 1275 96.5 1337
MGS:70 - - 2 - 1578 0.632620344 AJ408989
MGS:72 Eubacterium eligens 63.7 1171 99.9 1837 0.738074987
MGS:74 - - 0 - 2085 0.900765499 AY920203
MGS:75 - - 0 - 2059 0.907713564 AY920012
MGS:76 - - 1 - 1716 0.631253075 AY916189
MGS:78 - - 0 - 1516 0.725588634 AY916166
MGS:79 Streptococcus salivarius 74.1 1026 87.8 1385 0.770695476
MGS:80 Eubacterium siraeum 85.2 1515 99.9 1779 0.711974788
MGS:82 - - 2 - 1297 0.788641875 AY916290
MGS:84 - - 1 - 2327 0.730802573 AB080886
MGS:86 - - 1 - 1858 0.628211201 AJ608250
MGS:87 - - 0 - 1877 0.644177063 AY920092
MGS:88 Alistipes indistinctus 98.3 2215 100 2254
MGS:89 Eubacterium ventriosum 98.2 1510 100 1537 0.849673098
MGS:90 - - 0 - 1172 0.73170705 AB064755
MGS:91 - - 1 - 1100 0.601466751 AY920013
MGS:92 - - 0 - 2772 0.601297203 AY916203
MGS:93 - - 1 - 1809 0.683960071 AJ608220
MGS:95 - - 0 - 2120 0.654530033 AY916383
MGS:96 - - 0 - 2877 0.785437169 AY916380
MGS:98 - - 1 - 2183 0.682909589 AY920210
MGS:101 - - 0 - 2685 0.769451944 AB099779
MGS:102 - - 0 - 1745 0.848679929 AY684406
MGS:103 - - 0 - 1526 0.814126544 AY916281
MGS:104 Ruminococcus lactaris 95.2 1720 100 1807 0.832677958
MGS:106 - - 1 - 1006 0.84993019 AJ408966
MGS:108 - - 1 - 1445 0.862600278 L76600
MGS:109 Bacteroides eggerthii 94.2 1896 99.8 2013
MGS:110 - - 0 - 1843 0.868686789 AB099729
MGS:111 - - 0 - 2632 0.806259532 AB080881
MGS:112 Veillonella parvula 87.4 1872 98.4 2141 0.707328454
MGS:115 - - 0 - 2058 0.776524147 AJ608247
MGS:116 Paraprevotella clara 84.6 1854 93.2 2191 0.651714168
MGS:119 Bifidobacterium adolescentis 95.5 1065 99.8 1115
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Table S6.1 (continued) MGS with taxonomic identification by BLASTn and/or HITChip association.

MGS ID Species (primary 
taxonomy)

MGS genes that match the 
primary taxonomy Number 

of genes 
in the 
MGS

HITChip 
confirmation 
(Spearman 
correlation 
coefficient)

Accession 
nr% of 

total 
genes

nr. of 
genes

% of 
annotated 
genes

MGS:120 Bacteroides stercoris 91 1450 99.9 1594
MGS:121 - - 1 - 1396 0.742432527 AF132255
MGS:124 - - 0 - 1442 0.840611076 AJ608220
MGS:125 Faecalibacterium prausnitzii 93.4 960 100 1028 0.615437206
MGS:126 Ruminococcus gnavus 86.5 1957 99.9 2263 0.602614754
MGS:127 - - 0 - 1921 0.771561067 AF132276
MGS:128 Faecalibacterium prausnitzii 87.5 852 100 974 0.799197062
MGS:129 - - 0 - 1447 0.703131914 AY916357
MGS:131 Coprococcus eutactus 22.2 449 100 2024 0.839887665
MGS:132 Clostridium clostridioforme 86.2 2548 93.6 2955 0.613844233
MGS:134 Clostridium symbiosum 99.8 4166 100 4173
MGS:135 Sutterella wadsworthensis 93.7 1988 100 2121 0.601941048
MGS:138 - - 0 - 1627 0.804518065 AY916346
MGS:139 Parasutterella 

excrementihominis
15.2 270 100 1777 0.781581752

MGS:140 - - 0 - 2391 0.758260725 AJ270485
MGS:147 Blautia hydrogenotrophica 97.9 2839 100 2899
MGS:148 Streptococcus parasanguinis 84.3 1448 99 1718 0.677453688
MGS:149 Clostridium sp. M62/1 97.5 2439 100 2502
MGS:151 - - 1 - 1706 0.842928562 AB099737
MGS:154 Akkermansia muciniphila 88.4 1499 100 1696
MGS:156 - - 0 - 1742 0.626700077 AY916360
MGS:157 - - 1 - 1764 0.659368192 AF153864
MGS:158 Bacteroides cellulosilyticus 83.7 2715 92.1 3242 0.733702906
MGS:159 - - 0 - 1568 0.859235715 AY920207
MGS:160 Bacteroides clarus 97.2 1390 100 1430
MGS:162 Bacteroides coprocola 89.9 1864 99.9 2073
MGS:163 - - 0 - 1690 0.864696412 AY916263
MGS:164 Prevotella copri 77.4 1276 99.9 1648 0.772046182
MGS:165 - - 0 - 1556 0.743687078 AB064903
MGS:166 Collinsella aerofaciens 39.8 511 99.4 1283
MGS:169 - - 0 - 2053 0.727916088 AJ408957
MGS:170 - - 0 - 2055 0.634510951 AB099728
MGS:171 - - 1 - 2260 0.667662236 AB064712
MGS:172 - - 0 - 1415 0.604219366 AF052411
MGS:173 - - 0 - 2346 0.658881928 AY916376
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Table S6.1 (continued) MGS with taxonomic identification by BLASTn and/or HITChip association.

MGS ID Species (primary 
taxonomy)

MGS genes that match the 
primary taxonomy Number 

of genes 
in the 
MGS

HITChip 
confirmation 
(Spearman 
correlation 
coefficient)

Accession 
nr% of 

total 
genes

nr. of 
genes

% of 
annotated 
genes

MGS:176 - - 1 - 1209 0.814344539 AY916203
MGS:177 - - 0 - 1506 0.823468102 AB099734
MGS:178 - - 0 - 2065 0.756774277 AY920195
MGS:180 - - 1 - 1580 0.816957589 AB099730
MGS:183 Clostridium ramosum 99.4 2943 100 2961
MGS:186 Methanobrevibacter smithii 94.4 1438 100 1523
MGS:188 - - 0 - 1364 0.741863125 AJ608220
MGS:193 - - 1 - 1735 0.604614395 AY916263
MGS:195 Faecalibacterium prausnitzii 67 650 100 970 0.600218324
MGS:196 - - 1 - 1661 0.696494022 AY916143
MGS:198 - - 1 - 1116 0.622574494 AJ408991
MGS:199 - - 0 - 1358 0.667295035 AB099721
MGS:201 - - 0 - 2523 0.717076784 AY916333
MGS:202 - - 0 - 1504 0.603306693 AJ408987
MGS:203 Bacteroides finegoldii 94.3 1377 100 1460
MGS:204 - - 0 - 1883 0.822788632 AB099728
MGS:206 - - 0 - 782 0.683997125 AF052411
MGS:207 - - 0 - 1942 0.637055835 AB099771
MGS:210 - - 2 - 1922 0.657651625 AY916147
MGS:211 Bacteroides plebeius 61 1012 100 1660 0.633731965
MGS:215 Clostridium 

glycyrrhizinilyticum
89.7 2179 100 2429

MGS:216 Coprobacillus sp. 29_1 91.6 3189 100 3481
MGS:217 - - 0 - 1473 0.792762524 AY916292
MGS:218 Dialister invisus 87.6 1245 100 1422 0.678120844
MGS:220 - - 0 - 989 0.641884158 AF132255
MGS:222 Bacteroides dorei 70.9 568 99 801 0.88736384
MGS:223 - - 0 - 2194 0.6910974 AB099793
MGS:224 Clostridium hathewayi 97.7 3251 100 3327
MGS:225 - - 0 - 1429 0.631745505 AY919923
MGS:226 - - 0 - 1687 0.75655982 AY916160
MGS:227 - - 0 - 2152 0.674938428 AB064749
MGS:228 - - 0 - 2919 0.744722695 AY920204
MGS:232 Eubacterium biforme 15.2 210 100 1386 0.726386301
MGS:233 Parasutterella 

excrementihominis
89.9 1045 100 1162 0.722278933
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Table S6.1 (continued) MGS with taxonomic identification by BLASTn and/or HITChip association.

MGS ID Species (primary 
taxonomy)

MGS genes that match the 
primary taxonomy Number 

of genes 
in the 
MGS

HITChip 
confirmation 
(Spearman 
correlation 
coefficient)

Accession 
nr% of 

total 
genes

nr. of 
genes

% of 
annotated 
genes

MGS:234 Bifidobacterium bifidum 98.4 1431 99.9 1455
MGS:235 - - 2 - 1641 0.779056605 AY920075
MGS:236 Streptococcus thermophilus 93 959 98.2 1031
MGS:237 - - 0 - 1596 0.673160028 AY916255
MGS:240 - - 0 - 1715 0.869494096 AY916387
MGS:241 - - 0 - 821 0.651748757 AJ408991
MGS:244 - - 0 - 2004 0.609030396 AF153860
MGS:245 - - 0 - 1074 0.819153578 AY920189
MGS:246 Parabacteroides johnsonii 89.3 820 96.8 918 0.664988761
MGS:247 Veillonella atypica 90.2 1347 99.9 1494 0.610745939
MGS:249 - - 0 - 1173 0.68853907 AY916203
MGS:254 - - 0 - 1752 0.678765749 AB064810
MGS:256 - - 0 - 999 0.676705275 AY916227
MGS:258 Ruminococcaceae bacterium 

D16
83 1446 100 1743

MGS:259 Butyrivibrio crossotus 97.1 1649 100 1699 0.667831334
MGS:263 Bifidobacterium 

pseudocatenulatum
75.9 870 87.6 1147

MGS:264 Clostridium sp. L2-50 87.5 1111 100 1270 0.754232497
MGS:266 - - 1 - 1440 0.65587255 AF132234
MGS:269 - - 0 - 1153 0.686100342 AY916150
MGS:273 - - 0 - 1040 0.661449841 AY916291
MGS:276 Anaerostipes caccae 99.8 2823 100 2830
MGS:280 Eggerthella lenta 77.4 1180 78.7 1525
MGS:287 Phascolarctobacterium 

succinatutens
55.4 917 100 1656 0.61482286

MGS:290 Catenibacterium mitsuokai 48 776 100 1615 0.612950974
MGS:295 Clostridium aldenense 6.6 173 98.3 2602
MGS:301 - - 0 - 1751 0.667040118 AY916148
MGS:302 - - 0 - 1134 0.614424208 AY916348
MGS:309 - - 0 - 2046 0.630613637 AY916382
MGS:310 Clostridium spiroforme 91.4 1630 100 1784
MGS:315 Bacteroides intestinalis 90.2 1069 100 1185
MGS:321 - - 0 - 865 0.662151962 AY920083
MGS:322 Bacteroides thetaiotaomicron 67.5 495 74.8 733 0.658772034
MGS:323 Erysipelotrichaceae 

bacterium
99 2995 100 3025



6

 Chapter 6 

184

Table S6.1 (continued) MGS with taxonomic identification by BLASTn and/or HITChip association.

MGS ID Species (primary 
taxonomy)

MGS genes that match the 
primary taxonomy Number 

of genes 
in the 
MGS

HITChip 
confirmation 
(Spearman 
correlation 
coefficient)

Accession 
nr% of 

total 
genes

nr. of 
genes

% of 
annotated 
genes

MGS:325 Acidaminococcus intestini 94.5 1739 96.4 1841
MGS:329 - - 0 - 1121 0.681050991 AJ408971
MGS:331 - - 0 - 813 0.648405543 AY916179
MGS:333 Bacteroides coprophilus 96.1 1957 100 2036
MGS:335 Desulfovibrio piger 77.7 1128 99.9 1452
MGS:337 Bifidobacterium animalis 98.6 1738 100 1763
MGS:339 Veillonella sp. oral taxon 158 79.6 868 98.3 1091
MGS:347 - - 0 - 1260 0.690033686 AB064863
MGS:348 Clostridium nexile 92 1701 99.8 1848
MGS:350 - - 0 - 1000 0.62198715 AY919923
MGS:354 - - 0 - 1059 0.601126792 AY916165
MGS:364 Blautia hansenii 92.4 1783 100 1929
MGS:367 Lactobacillus ruminis 98.6 1651 100 1675
MGS:373 [Lachnospiraceae bacterium] 94.3 1973 100 2093
MGS:375 Eubacterium dolichum 93.9 1755 100 1870
MGS:377 Megamonas funiformis 95 1680 100 1768
MGS:387 Mitsuokella multacida 7.5 167 98.8 2238
MGS:401 - - 0 - 1595 0.809113016 AB064779
MGS:405 Enterobacter hormaechei 40.5 1051 94.8 2592
MGS:407 - - 0 - 864 0.80554459 AY916263
MGS:418 - - 0 - 1326 0.75222403 AY982155
MGS:453 Enterococcus faecium 99.5 2053 100 2064
MGS:480 - - 0 - 703 0.631452041 AY916269
MGS:507 - - 0 - 904 0.65242484 AB080873
MGS:511 Clostridium clostridioforme 93.3 706 100 757
MGS:512 Dialister succinatiphilus 87.4 1449 100 1658
MGS:544 Mitsuokella multacida 85.4 857 100 1003
MGS:546 Acidaminococcus fermentans 93.7 1603 100 1711
MGS:558 Bacteroides fragilis 94.4 1492 99.9 1580
MGS:561 Odoribacter laneus 93.5 2541 100 2717
MGS:564 Bacteroides intestinalis 85.3 632 100 741
MGS:570 Megasphaera elsdenii 90.3 1300 100 1440
MGS:621 Peptostreptococcus 

anaerobius
94.4 1432 99.6 1517

MGS:629 Prevotella stercorea 86.1 876 100 1017
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Table S6.1 (continued) MGS with taxonomic identification by BLASTn and/or HITChip association.

MGS ID Species (primary 
taxonomy)

MGS genes that match the 
primary taxonomy Number 

of genes 
in the 
MGS

HITChip 
confirmation 
(Spearman 
correlation 
coefficient)

Accession 
nr% of 

total 
genes

nr. of 
genes

% of 
annotated 
genes

MGS:630 Lactobacillus salivarius 93.4 1955 99.8 2094
MGS:634 Klebsiella variicola 96.3 1276 99.5 1325
MGS:640 Collinsella intestinalis 90.9 966 99.9 1063
MGS:649 Fusobacterium nucleatum 95.7 1346 98.9 1407
MGS:665 Coprococcus eutactus 97.2 1072 100 1103
MGS:679 Fusobacterium 

gonidiaformans
93.4 2205 99.4 2362

MGS:692 Parvimonas micra 79.4 620 86.6 781
MGS:702 Bacteroides salanitronis 18.6 320 100 1721
MGS:719 Lactobacillus amylovorus 96.8 1557 99.4 1609
MGS:1329 Clostridium bartlettii 94.3 2303 100 2442 0.658218395
MGS:1353 Collinsella stercoris 62.5 815 99.1 1304
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Abstract
For a long time the gut microbiota has been recognized for functionally complementing the 
human host. However, for the majority of the genes in the gut metagenome no function can be 
predicted to date, and due to the inability to culture all gut microbes the understanding of the 
functional properties of the microbiota remains incomplete. A powerful approach to improve 
functional prediction of complete protein sequence is to perform domain searches to identify 
functional domains within a protein sequence. This study assesses the predictive value of mining 
assembled metagenomic sequences using a supervised Hidden Markov Model (HMM) mining-
method to guide the selection process towards specific domains of functional interest. Physical 
adherence of microbes to host tissue, as for instance due to the binding of fibronectin by bacteria, 
establishes first contact in host-microbe interactions. Therefore, fibronectin-binding domains 
were used as a proof of principal for mining metagenomic gene catalogues and extracting 
candidate domain sequences that were subjected to functional characterization using an assay 
based on fibronectin coupled to magnetic beads. Six fibronectin-binding protein families were 
used as seed for the HMMER mining procedure on the MetaHIT 3.9M gene catalog and this 
resulted in the identification of 2 – 1,085 metagenomic domains per protein family. For two 
protein families, PF08533 and PF11966, four domain sequences were selected, cloned, and 
expressed in Escherichia coli BL21-AI. While employing the fibronectin-beads it was shown that 
all four sequences of the larger PF05833 indeed were positive for fibronectin-binding capacity, 
but the four sequences of the smaller PF11966 were either unsuccessfully expressed or negative 
in the binding characterization. This approach, coupled to functional characterization in the 
laboratory, can specify and expand the function-domain sequence-space and corresponding 
HMMs to more accurately assign function to genes encoding unknown (or poorly predicted) 
functions.
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Introduction
Already for nearly four decades the gastrointestinal microbiota has been a “prime suspect” in 
several beneficial and detrimental modulations of host health, by providing important nutritional 
complements, but also providing a port of entree for pathogens [1]. The inability to culture all 
microbes from the intestinal tract limits the complete understanding of the functional properties 
of the microbiota. By the end of the 20th century it was estimated that less than 1% of the 
bacteria cells in various ecosystems could be cultured [2]. Despite the fact that the relative fraction 
of the intestinal microbiota that can be cultured is substantially higher (estimated around 10-
30%; [3-5]), the largest fraction of the overall population remained uncultured in the laboratory, 
even after introduction of high throughput and other novel cultivation methods [6]. Hence, 
cultivation-independent approaches, mostly rooted on DNA based techniques, have been 
introduced to study the overall microbial community as they capture the composition and genetic 
repertoire of both “cultured and uncultured” microbes by 16S ribosomal RNA gene profiling and 
random shotgun metagenomic sequencing of total DNA extracts from a sample, respectively. 
The latter approach could theoretically provide the complete genetic repertoire of a community, 
and large scale projects like MetaHIT [7] and the Human Microbiome Project (HMP) [8] have 
generated large amounts of metagenome sequence data of the human gut microbiota. Following 
metagenomic sequencing and assembly, the next step is usually functional annotation of the 
assembled (gene) sequences using sequence identity based approaches and databases with genes of 
known or predicted function. However, these analyses employ alignment with reference genomes 
from cultivated microbes, which represent only a fraction of the gastrointestinal inhabitants. As a 
consequence a substantial fraction of the metagenomic sequences remains unaccounted for, and 
is assigned to encode proteins of (currently) unknown function [7]. Therefore, next to cataloguing 
all genes present in a certain ecosystem, the functional characterization of genes and encoded 
proteins is a requirement for better understanding of microbial ecosystems, and presents an 
important and challenging task to the scientific community. 

To improve the function prediction for metagenomic sequences, more advanced methods 
such as PSI-BLAST [9] or HMMER (analysis tool using profile hidden Markov models) based 
domain searches [10] can be employed. Particularly domain searches, that recognize functional 
domains in partial protein sequences rather than the complete protein sequence provides a 
powerful approach to achieve function prediction. Based on the functional domains of known 
enzymes iterative procedures, such as JackHMMer [11], can identify novel homologs and align 
these to the existing hidden Markov model (HMM) and rebuilt this at each iteration until no more 
homologs can be found (or a maximum number of iterations is reached). Such procedures enable 
the recognition of sets of candidate proteins that contain domains with functional properties 
that are assumed to be similar to the query domain. However these iterative procedures often 
suffer from false-positive hits, capturing distant proteins that due to sequence divergence do 
not necessarily encode the predicted functional property. Here we present a supervised method 
(HMMER based) that builds cluster and domain specific HMMs that can be iterated to identify 
protein domain families of similar predicted function. This study assesses the predictive value of 
mining assembled metagenomic sequences using this supervised HMMER method and guiding 
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the selection process towards specific domains of functional interest, which may expand the 
function-domain sequence-space and the accuracy of the corresponding HMMs.

One of the most direct forms of host-microbe interactions is achieved by the microbe 
physically adhering to a variety of membrane-bound and secreted host cell components, such 
as extracellular matrix (ECM) or mucins [12, 13]. Among the ECM the glycoprotein fibronectin 
has been identified as the main binding target to host tissue for several bacteria [13-20]. Therefore, 
we chose the fibronectin-binding domain to assess the predictive qualities of domain targeted 
mining of metagenomes using the supervised HMMER method. 

Materials and methods

Experimental set-up
One of the most direct forms of host-microbe interactions is achieved by the microbe physically 
adhering to host cells. Successful adherence to host tissue can be achieved by different mechanisms, 
and can prelude to commensal or pathogenic interactions [21, 22]. Fibronectin is a glycoprotein of 
approximately 440kD and is a major part of the ECM present in various tissues [23], including the 
gut where it is vital for tissue repair and survival after intestinal damage [24]. For several bacteria, 
including both pathogens and probiotic strains, fibronectin has been identified as a main ECM-
associated binding target [13-20]. Therefore, fibronectin-binding by bacteria can be regarded as an 
important potential mechanism of adherence, involved in establishing first contact host-microbe 
interactions. 

Bio-informatics
Amino acid (AA) sequences of characterized fibronectin-binding proteins or domains (see Table 7.2) 
were obtained from the PFAM database (PFAM26.0; October 2012; [http://PFAM.sanger.ac.uk/, 25]). 
In order to retrieve genes of interest with similarity to the selected PFAMs, HMM were used as 
seed for mining the metagenomic DNA sequences from the MetaHIT 3.9M gene catalog [26]. 
This mining procedure employed HMMER and the complete overall approach is depicted in 
Figure 7.1 (see SI figure 7.1 for more details on the bio-informatics part).

Quality filtering of the retrieved gut metagenome DNA sequences was performed according 
the recommendation of the HMMER documentation [27, 28]: the full retrieved sequence should 
have an E-value < 1 and a full sequence score five-fold higher than the bias (correction term that 
HMMER applies to the full sequence bit score [28]), while the domain sequence should have 
an E-value < 1 and a domain score three-fold higher than the domain bias (correction term 
that HMMER applies to the best-scoring domain sequence bit score [28]). From the retrieved 
domain sequences, from one of shortest and one of the longest domains, randomly selected 
domain sequences were further characterized for their fibronectin-binding potential. The 
taxonomic origin of these selected domain sequences was assessed independently by searching 
the non-redundant protein sequences (nr) database using BLASTP (protein-protein BLAST [9]). 
Similarity was assessed by multiple sequence alignment using Clustal Omega [29] (available from 
the EMBL-EBI bioinformatics analysis tools framework [30]). 
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Cloning of the selected domains
After in silico introduction of restriction sites for further downstream processing (BamHI 
restriction site at 5’ domain end and HindIII restriction site at the 3’ end), the selected domain-
encoding sequences (Table S7.1) were codon-optimized for E.coli (Table S7.2), synthetized and 
cloned into pMA or pMK-RQ plasmids by GeneArt (GeneArt®, Life Technologies). The plasmids 
containing the synthetic gene were transformed into E.coli strain MC1061 [31] for plasmid 
propagation (for a list of plasmids see Table 7.6). The synthetic domains were obtained from 
these plasmids by BamHI-HindIII digestion, purified from gel with the Zymoclean™ Gel DNA 
Recovery Kit (Zymo Research), and cloned in the BamHI-HindIII digested expression vector 
pET24d-AviHisC (Novagen, Darmstadt, Germany), yielding domain expression derivatives 
designated pET24d-domain-AviHisC (Table 7.6). Subsequently, these domain expression 
vectors were transformed to E.coli strain BL21-AI (Invitrogen) that contains the pBirA plasmid, 
encoding the BirA biotin ligase [32, 33]. 

Preparation fibronectin-beads
Fibronectin from human plasma (Sigma) was dissolved in PBS (pH 7.4) to a final concentration 
of 0.5 mg/mL and subsequently biotinylated with the EZ-link Sulfo-NHS-LC Biotinylation 
kit (Thermo Scientific), according to the manufacturer’s protocol. In short, fibronectin was 
incubated with a 20-fold molar excess of Sulfo-NHS-LC-Biotin and incubated on ice for 2 
hours. The biotinylation mixture was applied three times to a Zebra Spin Desalting Column 
(Thermo Sciences) to remove excess Sulfo-NHS-LC-Biotin. Biotin binding assay employing the 
4’-hydroxyazobenzene-2-carboxylic acid (HABA) reagent was performed to measure the level of 
biotin incorporation, which was >20 moles of biotin per mole of fibronectin. Fibronectin-beads 
were produced by activating and coupling Dynabeads® M-280 Streptavidin beads (Invitrogen) 

(Improved)
HMM

HMM
module
search

Filter hit ID’s

Candidate
sequences

Domain hits
from the DB

Functional
characterization

Obtain
corresponding
(synthetic ) DNA

sequences

Clone target
sequences into
suitable cloning

host

Express
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3.9 M
Gut gene
catalogue
(AA)

Figure 7.1 Schematic flow-chart of the mining to laboratory characterization procedure. More details on the white boxes, 
which comprise the developed bioinformatics tool, could be found in SI figure 7.1.
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to the biotinylated fibronectin, according to the manufacturer’s protocol, resulting in a 1x107 
beads/μl PBS solution. A Nanodrop 1000 spectrophotometer (Thermo Scientific, Wilmington, 
DE, USA) was used to assess the success of the coupling by measuring the protein concentration 
of the fibronectin solution before and after coupling to the M-280 beads. Bovine serum albumin 
(BSA)-beads were made by activating and blocking M-280 beads with BSA and these beads were 
utilized as controls for non-specific binding.

Table 7.1 Strains and plasmids used for cloning in this study.

Strain Description Source
E.coli MC1061 F– λ– Δ(ara-leu)7697 [araD139]B/r Δ(codB-lacI)3 galK16 galE15 e14– mcrA0 relA1 

rpsL150(StrR) spoT1 mcrB1 hsdR2(r–m+)
[31]

E.coli BL21-AI F– ompT gal dcm lon hsdSB(rB- mB-) araB::T7RNAP-tetA Invitrogen
Plasmid Description and order of genes (5’-3’) ** Source
pBirA Biotin ligase containing helper plasmid [32, 33]

pMA plasmids Propagation plasmids of the synthetic domain sequences Invitrogen
pMA-Fib1MG1 Fib1MG1, AmpR, Col E1 origin this study
pMA-Fib1MG2 Fib1MG2, AmpR, Col E1 origin this study
pMA-Fib1MG3 Fib1MG3, AmpR, Col E1 origin this study
pMA-Fib1MG4 Fib1MG4, AmpR, Col E1 origin this study
pMA-Fib1Pos1 Fib1Pos1, AmpR, Col E1 origin this study
pMA-Fib1Pos2 Fib1Pos1, AmpR, Col E1 origin this study
pMA-Fib2MG1 Fib2MG1, AmpR, Col E1 origin this study
pMK-RQ plasmids Propagation plasmids of the synthetic domain sequences Invitrogen
pMK-RQ-Fib2MG2 Fib2MG2, KanR, Col E1 origin this study
pMK-RQ-Fib2MG3 Fib2MG3, KanR, Col E1 origin this study
pMK-RQ-Fib2MG4 Fib2MG4, KanR, Col E1 origin this study
pMK-RQ-Fib2Pos1 Fib2Pos1, KanR, Col E1 origin this study
pMK-RQ-Fib2Pos2 Fib2Pos2, KanR, Col E1 origin this study
pET24d-AviHisC T7 RNA polymerase based expression vector, KanR Novagen
pFib1MG1 Fib1MG1 in pET24d-AviHisC, with Avi-tag and His-tag (C-terminal) * this study
pFib1MG2 Fib1MG2 in pET24d-AviHisC, with Avi-tag and His-tag (C-terminal) * this study
pFib1MG3 Fib1MG3 in pET24d-AviHisC, with Avi-tag and His-tag (C-terminal) * this study
pFib1MG4 Fib1MG4 in pET24d-AviHisC, with Avi-tag and His-tag (C-terminal) * this study
pFib1Pos1 Fib1Pos1 in pET24d-AviHisC, with Avi-tag and His-tag (C-terminal) * this study
pFib1Pos2 Fib1Pos2 in pET24d-AviHisC, with Avi-tag and His-tag (C-terminal) * this study
pFib2MG1 Fib2MG1 in pET24d-AviHisC, with Avi-tag and His-tag (C-terminal) * this study
pFib2MG2 Fib2MG2 in pET24d-AviHisC, with Avi-tag and His-tag (C-terminal) * this study
pFib2MG3 Fib2MG3 in pET24d-AviHisC, with Avi-tag and His-tag (C-terminal) * this study
pFib2MG4 Fib2MG4 in pET24d-AviHisC, with Avi-tag and His-tag (C-terminal) * this study
pFib2Pos1 Fib2Pos1 in pET24d-AviHisC, with Avi-tag and His-tag (C-terminal) * this study
pFib2Pos2 Fib2Pos2 in pET24d-AviHisC, with Avi-tag and His-tag (C-terminal) * this study
Fib1 = PF05833-like domain sequence; Fib2 = PF11966-like domain sequence
* for detailed graphical summary,  see Figure 7.3



7

 Mining fibronectin-binding domains from metagenomes 

197

Expression and processing of selected domains
Overnight cultures of the domain expression transformants of BL21-AI (harboring the expression 
vectors listed in Table 7.6) were inoculated 1/100 into fresh 2xYT medium with 50 μg/ml 
kanamycin and 10 μg/ml chloramphenicol and were incubated at 37°C while gently shaking. 
Following three hour incubation, when the cultures had reached an OD600 value of 0.2-0.3, 
protein expression was induced by isopropyl-β-D-thiogalactopyranoside (IPTG) addition, to a 
final concentration of 1 mM, L-arabinose to a final concentration of 0.02%, and biotin (from a 
10mM tricin buffer pH 8.3) to a final concentration of 50 μM. For each clone a non-induced, 
negative control culture was taken along to which no IPTG, L-arabinose and biotin were 
added. After three hour induction, at an OD600 value of 0.8-1.2, the cells were harvested by 
centrifugation at 4,800 x g, 4°C, for 30 min and pellets were either immediately lysed, or stored 
at -20°C until further processing. Cell pellets were resuspended in Bacterial Protein Extraction 
Reagents (B-PER; Thermo Scientific) and the cell suspension was lysed by passing it three times 
through a French pressure cell (SLM, Aminco, USA) at 110 MPa. Lysates were centrifuged at 
4,700 rpm, 4°C, for 30 min and the cleared cell free extract (CFE) was either used directly or 
stored at 4°C for a maximum of 72 hours prior to their use in fibronectin-binding assays. 

Fibronectin binding assay
To 50 μl of CFE, 1 μl of fibronectin-coupled magnetic beads was added and incubated for 
10 min at 37°C while gently shaking. Afterwards the fibronectin-beads were separated from 
the CFE by applying a magnet for 2 min and removing the supernatant, which was discarded. 
Next, the beads were washed three times for 5 min with 1 volume of PBS (pH 7.4) while gently 
rotating, each time using a magnet for 2 min to separate the beads from the supernatant. Finally, 
the fibronectin beads were resuspended in 25  μl of PBS of which 10 μl was mixed with loading 
buffer (0.1 M sodium phosphate buffer, 10% 2-mercaptoethanol, 4% SDS, 20% glycerol, pH 
6.8) and prepared for SDS-PAGE analysis by heating for 10 min at 98°C. SDS-PAGE was 
performed with 15% or 18% acrylamide gels in a MiniProean III system (BioRad, Hercules, 
CA, USA). Coomassie brilliant blue staining was applied to visualize the protein bands. As a 
non-specific binding control, the CFEs of the induced cultures were incubated with BSA-beads. 
The insoluble fractions of the CFEs were analyzed by SDS-PAGE gels by directly boiling the 
cell-debris pellets in SDS-PAGE loading buffer and loading on gels.

Results

PFAM selection and metagenomic mining
The PFAM26.0 database [25] contains six protein families with reported fibronectin-binding 
capacity (Table 7.2). These six PFAMs were used as seed for the HMMER mining procedure 
on the MetaHIT 3.9M gene catalog [26], which identified a remarkably variable number of 
metagenome sequences that matched above the quality thresholds depending on the PFAM 
family (ranging from 2 to 1085 domains; Table 7.2). The number of retrieved metagenomic 
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sequences did not seem to be related to the size of the original PFAM query sequence employed, 
e.g. the second largest PFAM (PF07174) identified only 3 metagenomic genes.

Metagenomic sequence selection and in silico characterization
Out of the three PFAMs that yielded more than five metagenomic domain sequences (Table 
7.2) the longest and shortest domains, i.e. PF05833 (Fib1) and PF11966 (Fib2), were chosen 
to validate their fibronectin-binding capacity. For both Fib1 and Fib2 two randomly chosen 
domain sequences from the original PFAM alignment, as well as four randomly chosen domain 
sequences from the candidate metagenomic sequences, were selected for cloning, expression, and 
characterization of the fibronectin-binding capacity of the protein domains (Table 7.3; full DNA 
sequences used for DNA synthesis and subsequent cloning, see Table S7.1). The similarity of the 
selected domain sequences was explored by aligning the amino acid sequences of the domains 
(Figure 7.2; full amino acid alignment, see Table S7.3), and BLASTP was employed to predict 
the most likely taxonomic origin of the Fib1 and Fib2 domain sequences, revealing that from 
the retrieved Fib1 associated domain sequences Fib1MG1 and Fib1MG3 are most similar to 
the sequences employed to determine the original PFAM (PF05833) (Table 7.3; Figure 7.2A). 
Conversely, the Fib1-like metagenomic sequences Fib1MG2 and Fib1MG4 were not related to 
the taxa that are reported to contain the original PFAM (PF05833) (Table 7.3; Figure 7.2B). 

A

B
Fib2MG4 0.5021
Fib2MG1 0.2024
Fib2Pos1 0.1786
Fib2Pos2 0.0841
Fib2MG2 0.0884
Fib2MG3 0.0772

Fib1MG4 0.3485
Fib1Pos1 0.1179
Fib1MG1 0.1227
Fib1MG3 0.3146
Fib1Pos2 0.1424
Fib1MG2 0.1581

Figure 7.2 Neighbor-joining tree (without distance corrections) of the domain sequences selected for fibronectin-
binding assay. A) domain sequences retrieved with PF05833. B) domain sequences retrieved with PF11966.

Table 7.2 Results of mining a gut microbiota metagenomic dataset with known fibronectin-binding PFAMs.

PFAM 
accession

Description PFAM ID PFAM domain 
length (AA)

Mining result 
(domains / gene entries*)

PF02986 Fibronectin binding repeat Fn_bind 38 2 / 2
PF05833 Fibronectin-binding protein A N-terminus FbpA 455 1085 / 1063
PF07174 Fibronectin-attachment protein FAP 298 3 / 3
PF07299 Fibronectin-binding protein FBP 208 18 / 16
PF08341 Fibronectin-binding signal sequence Fb_signal 72 4 / 4
PF11966 Fibronectin-binding repeat SSURE 81 10 / 8
* Metagenomic DNA sequences from the MetaHIT 3.9M gene catalog [26]; the majority of which are predicted to be complete genes.
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Similar analysis of the Fib2 domain sequences selected indicated that the most retrieved Fib2 
associated sequences were most similar to proteins found in streptococci.  Only Fib2MG4 (Table 
7.3) could not be reliably assigned to any currently known taxonomic origin (Table 7.3; Figure 
7.2B). 

Cloning and functional characterization of selected metagenomic domain 
sequences
The synthetic domains, codon optimized for E.coli, were successfully cloned into a pET24d-
AviHisC expression vector, where the domain sequence was C-terminally fused to an Avi- and 
His-tag tandem, under control of the T7 promoter which contains a lac-repressor binding 
site (the 7-promoter operator sequence lacO). Additionally, this expression vector contains a 
constitutively expressed lacI gene, encoding the lac-repressor that binds the lacO site in the T7 
promoter and thereby represses transcription. Addition of lactose or similar molecule (e.g. IPTG, 
as used here) can be used to prevent the lac-repressor from binding to the T7 promoter, thereby 
barring the repression of the T7 promoter and subsequently exposing the cloned recombinant 
sequence to T7-polymerase driven expression. The utilized expression host, E.coli BL21-AI, has 
a chromosomal insertion of the T7 RNA polymerase gene under control of an araB promoter, 

Table 7.3 Domain sequences selected for fibronectin-binding assay. Entries shaded in gray are control sequences (from 
PFAM with known fibronectin-binding activity), other entries are candidate sequences of metagenomic origin.

PFAM Sequence origin (UniProt 
entry or MetaHIT 3.9M 
gene catalog entry)

Position 
(from .. to)

Length 
(AA)

Name Top BLASTP taxonomy (% identity; 
matches)

Fib
1 (

PF
05

83
3)

P95752_STRGN 4 .. 427 423 Fib1Pos1 Streptococcus gordonii (100%; 423/423)
Q8KWV4_CLODI 4 .. 460 456 Fib1Pos2 Clostridium difficile (100%; 456/456)
MC3.MG3.AS1.GP1.
C11318.G1

4 .. 326 323 Fib1MG1 Streptococcus 
parasanguinis 

(100%; 322/322)

MC3.MG288.AS1.GP1.
C14423.G2

4 .. 461 457 Fib1MG2 Peptostreptococcaceae 
bacterium VA2 

(78%; 403/446)

MC3.MG290.AS1.GP1.
C5166.G2 

4 .. 456 452 Fib1MG3 Clostridium sp. CAG:7 (93%; 439/452)

MC3.MG182.AS1.GP1.
C1515.G2 

4 .. 447 443 Fib1MG4 Firmicutes bacterium 
CAG:176 

(68%; 346/444)

Fib
2 (

PF
11

96
6)

Q97T70_STRPN 667 .. 749 82 Fib2Pos1 Streptococcus 
pneumoniae 

(100%; 82/82)

Q97T70_STRPN 213 .. 293 80 Fib2Pos2 Streptococcus 
pneumoniae 

(100%; 80/80)

MC3.MG353.AS1.GP1.
C31364.G4 

27 ..  106 79 Fib2MG1 Streptococcus sp. SR4 (100%; 79/79)

MC3.MG353.AS1.GP1.
C31364.G4

176 ..  235 60 Fib2MG2 Streptococcus salivarius 
Streptococcus sp. SR4 

(100%; 60/60) 
(100%; 60/60)

MC3.MG3.AS1.GP1.
C17136.G1

203  .. 124 79 Fib2MG3 Streptococcus 
vestibularis 

(99%; 79/79)

MC3.MG361.AS1.GP1.
C2304.G9

619 ..  665 46 Fib2MG4 Coprococcus comes (44%; 30/45)
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addition of L-arabinose induces the expression of the T7 polymerase from the genome. To 
achieve expression of the recombinant, domain sequence containing protein both L-arabinose 
and lactose (or IPTG) are required. For a complete overview of the non-induced and induced 
states of the expression clones see Figure 7.3.

Genome

T7 genearaB

Recombinant
domain

lacI

pET24d-domain-AviHisC

lacO

1

2

3

Domain sequence Avi - tag His - 6- tag- linker sequence -A

B

C

Genome

T7 genearaB

Recombinant
domain

lacI

pET24d-domain-AviHisC

lacO

NH2-

-Avi-His6-COO -

1

2

3

IPTG

T7 leader

Figure 7.3 Schematic representation of the domain expression system employed. A) General organization of the recombinant 
domain-sequence to be expressed. B) The BL21-AI host-cell without induction with the cocktail of IPTG, L-arabinose, and 
exogenously provided biotin. C) The BL21-AI host-cell after induction with IPTG and L-arabinose, in a medium containing biotin.
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After a three hour induction (with 1 mM IPTG, 0.02% L-arabinose, and 10 mM biotin), 
successful expression of the Fib1-type domains was achieved for both positive-control sequences 
and all four of the metagenomic derived domains as judged by visual inspection of coomassie 
brilliant blue stained SDS-PAGE gels for the presence of the expected protein bands in the 
CFEs following IPTG induction, as compared to non-induced conditions (Figure 7.4; SI figure 
7.2), indicating that all Fib1-type domains were successfully expressed in E.coli. The CFEs were 
incubated with the fibronectin-beads for 10 min at 37 °C under neutral conditions (PBS, pH 
7.4), without the addition of any co-factors. Following standardized washing procedures (PBS 
washing steps) the expected protein band could be detected in all of the CFEs, revealing that all 
of the Fib1-type domains can effectively bind to the bead-bound fibronectin (SI figure 7.2). The 
fibronectin-binding could be shown to be specific by the addition of free fibronectin, indicating 
that free unbound fibronectin could compete for binding of the Fib1-type domain products 
(Figure 7.4; SI figure 7.2). Furthermore, none of the Fib1-type domains bound to the control 
BSA-beads, further supporting the specificity of these domains for fibronectin-binding (Figure 
7.4; SI figure 7.2). Taken together these observations indicate that all Fib1-type domains could 
be expressed in E. coli, were shown to specifically and reversibly bind to fibronectin, and therefore 
confirm and expand this family of fibronectin domains. These results illustrate the potential of 
the combination of in silico and experimental domain-function mining in assembled shotgun 
metagenomic data to establish and expand domain function predictions.

The IPTG-induced expression of the clones containing the Fib2-type domain expression 
constructs yielded successful expression for Fib2Pos2, Fib2MG1 and Fib2MG4 as judged by visual 
inspection of coomassie brilliant blue stained SDS-PAGE gels for the presence of the expected 
protein bands in the CFEs following IPTG induction compared to non-induced conditions 
(Figure 7.4; SI figure 7.3). In contrast, induction of Fib2Pos1, Fib2MG2 and Fib2MG3 
expression did not yield an additional protein band of the anticipated molecular weight in 
comparison with the non-induced negative control strain (SI figure 7.3). For the unsuccessfully 
induced constructs also the insoluble cell-fractions of the induced and non-induced cultures 
were analyzed by SDS-PAGE, but in these fractions no additional protein bands were detected 
upon induction either (data not shown). All CFEs of the induced cultures containing the Fib2-
expression constructs (irrespective of the detection of a visible protein product migrating at the 
apparent molecular weight that corresponds to the anticipated Fib2 domain-product) were used 
in the fibronectin-bead binding assay. The CFEs containing the induced Fib2-type domains were 
analyzed using the same fibronectin-binding protocol, but no protein could be detected in any 
of the CFEs (expected molecular weight (MW) of approximately 12 kDa; Figure 7.4; SI figure 
7.3). Therefore, for none of the Fib2-like domains it could be shown that they could specifically 
bind to the bead-associated fibronectin, including those Fib2-like domain-proteins for which a 
substantial protein band was detected by SDS-PAGE in the CFE (Figure 7.4). 
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Discussion 
In the gut fibronectin-binding is a mechanism to adhere and persist in this host environment 
employed by pathogenic strains and likely by probiotic strains as well [13-20]. Since microbial 
adherence to host cells is a direct form of host-microbe interactions that can either result in 
beneficial or detrimental consequences for the host cells [21, 22], it is relevant to obtain insight in 

– + Fb fF BB

Fib1 MG4
M

A

Fib2 Pos2

†

M – + Fb fF M – + Fb fF BB

Fib2 MG1B

Figure 7.4 A) Example of expression of domain sequences retrieved with PF05833 (A) and PF11966 (B) and the 
characterization of their fibronectin-binding capability as visualized by SDS-PAGE gels. For PF05833 (A) the domain 
sequence is one of the randomly chosen metagenomic sequences (Fib1MG4). For PF11966 (B) the domain sequences 
originate from a random domain sequences from the original PFAM alignment (Fib2Pos2) and a randomly chosen metagenomic 
sequences (Fib2MG1). White arrows indicate the anticipated apparent molecular weight of the domain-containing recombinant 
protein constructs (54 kDa for Fib1MG4, and 12 kDa for the Fib2 domains). Lane labels: “–”, cell free extract (CFE) of non-
induced cultures; “+”, CFE of induced cultures; “Fb”, fibronectin-bead bound fraction after 10 min incubation of the beads with 
induced CFE at 37 °C; “fF”, fibronectin-bead bound fraction after 10 min incubation at 37 °C with free fibronectin of the Fb-
fraction beads; “BB” BSA-bead bound fraction after 10 min incubation of the beads with of induced CFE at 37 °C; “M”, Precision 
Plus Protein Standards (Bio-Rad) displaying bands sizes of 250, 150, 100, 75, 50, 25, and 10 kDa (marker is loaded in the third 
and sixth lane in panel A, and in the third lane in panel B).
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protein-domain sequences that enable bacteria to bind to fibronectin. We employed HMM-mining 
to search the available metagenomic gene catalogue of the human intestinal tract microbiota to 
identify candidate fibronectin domains within the intestinal microbiota metagenome [26]. The 
PFAM database specified six fibronectin-binding domain families, which displayed a remarkably 
variation in frequency of detection within the available metagenome database, and allowed the 
detection of novel candidate fibronectin-binding domain sequences from the metagenomic 
gene catalogue (Table 7.2). The number of retrieved metagenomic sequences did not seem to 
be related to the average length of the ‘seed’ sequences in the original query PFAM, suggesting 
that the results may reflect actual biodiversity of these PFAM domains within the intestinal gene 
catalogue. Notably, the second largest PFAM (PF07174) was deduced from the alignment of 
fibronectin-binding proteins from mycobacteria [34] and still appears to be restricted to this group 
of organisms. This likely explains the lack of homologous domains in the intestinal metagenome 
catalogue, since mycobacteria normally do not reside in the human gastrointestinal tract and have 
only been detected in the gut of severely immune-compromised individuals [35]. The candidate 
fibronectin-binding domain sequences detected within the metagenomic gene catalogue included 
sequences that were identical to the query sequences employed to construct the PFAM sequence 
matrix, but also included nearly unrecognizable sequences that have less than 50% sequence 
identity with any of the sequences that determine the PFAM. Particularly, this latter group of 
more distant domain sequences are of interest since these can be employed to (iteratively) expand 
the sequence matrix for fibronectin-binding domain recognition, provided that one can show 
that the identified candidate fibronectin-binding domains can specifically recognize and bind 
to fibronectin. Moreover, this finding illustrates the potential of the HMMER-based approach, 
since methods to identify such metagenomic genes based on sequence alignment alone (e.g., 
BLASTP  [9]) did not identify these candidate fibronectin-binding proteins (see also below). 

Functional analysis was pursued for randomly selected candidate sequences of two 
fibronectin-binding domains of different sizes, i.e. PF05833 (average length of 455 residues; 
Fib1) and PF11966 (average length 81 residues; Fib2). Although randomly selected from the 
mining result, the selected candidate domains were chosen in such a way that they spanned the 
sequence variability encompassed within the overall mining result, and included very distantly 
related protein sequences (Table 7.3). Although the protein sequences from which the Fib1 
domains were derived did align these proteins to proteins that are annotated as fibronectin-
binding proteins, the best hits in these analyses were classified as putative or hypothetical proteins 
except for the original sequence from which Fib1MG1 originated (Table S7.4). In contrast, 
the protein sequences from which the Fib2 domains were derived could not be assigned to any 
function using BLASTP sequence alignment, indicating that sequence alignment approaches fail 
to recognize the candidate Fib2 domain sequences (best hits in Table S7.4). The capacity of the 
selected candidate domains to bind to fibronectin was evaluated using a qualitative fibronectin-
binding assay that does not provide information concerning binding affinity, but illustrates the 
“mining-to-binding” approach. This procedure allows the expansion of the sequence diversity 
matrix of legitimate binding domains and could eventually enable the determination of the 
sequence-boundaries of the specific domain family. However, with the limited number of candidate 



7

 Chapter 7 

204

domain-sequence examples studied here, uniform results per domain-type were obtained; (I) all 
of the larger Fib1-type domains displayed specific and reversible binding to fibronectin, (II) 
and none of the smaller-sized Fib2-type domains displayed fibronectin-binding, including the 
positive control domains from established fibronectin-binding proteins [36]. Consequently, our 
study did not yet reach the boundaries of the sequence flexibility of the Fib1-type domains, and 
iterative rounds of HMMER mining would be required to identify those sequence boundaries 
and thereby specify a definite functional Fib1-HMM.

Besides the domain sequence itself, the approach employed also depends on the ability of 
the cloning host to express the domain, its intrinsic capacity to achieve appropriate folding to 
display its function, and its capacity to display target binding under the conditions employed in 
the binding assay. Nonetheless, all Fib1-type domains were successfully expressed and in all cases 
displayed specific and reversible fibronectin-binding. Our approach in these constructs did not 
include N-terminal or C-terminal extensions. Especially the lack of N-terminal extensions for 
this domain family are not expected to interfere with its function, since most of the PF05833 
(Fib1) containing proteins (> 99%) have the domain positioned at their N-terminus (Table 
S7.5; [http://pfam.xfam.org/]). Moreover, our results show that the intrinsic folding of the candidate 
sequences identified by PFAM-PF05833 is sufficient for functional display of the fibronectin-
binding pocket, thereby, clearly contrasting the substantially shorter candidate Fib2-type 
sequences (see below). The function of the PF08533-domain containing proteins in fibronectin-
binding and adhesion to the ECM of in vitro cell cultures has been determined for various 
bacteria, including Streptococcus pyogenes, FBP54 [37], S. gordonii, FbpA [38], Clostridium difficile, 
Fbp68 [39], and S. pneumoniae, PavA [40]. Notably, the N-terminal positioning of PF05833 
implies that no signal sequence is present in these proteins, and indeed none of these proteins is 
predicted to be transported to the bacterial cell envelope on basis of their sequence (Table S7.5). 
However, most of the functionally confirmed fibronectin-binding proteins of this family were 
shown to be cell-surface localized, i.e. PavA [40], Fbp68 [39], the N-terminal part of FBP54 [41]. 
The mechanism by which these bacteria succeed to expose these fibronectin domains (PF05833) 
to their cell surface remains unknown.

Although fibronectin-binding capacity of genes harboring PF05833 have only been 
characterized for more pathogen-like species [37-40], this does not exclude commensal or even 
probiotic strains from exerting this binding strategy. Successful probiotic bacterial strains are 
thought to encompass the ability to (temporarily) bind the intestinal lining, in order to prevent 
the attachment of intestinal or food-borne pathogens ([42-44] by competing over the same binding 
sites [45]. Fibronectin located among the shed ECM has been proposed to be such a binding site 
where the probiotic bacteria, or other beneficial commensal bacteria, compete with the pathogens 
[17]. The suspected taxonomic origin of Fib1MG2 and Fib1MG3 are the Peptostreptococcaceae 
family and the Clostridium sensu stricto (real clostridia), respectively. With Clostridium difficile 
as the most notorious member, the Peptostreptococcaceae family members are often negatively 
associated with host health [6], suggesting Fib1MG2 comes from a more pathogenic source. 
Isolates belonging to Clostridium sensu stricto are often perceived as pathogens as well, yet real 
clostridia have been found in considerable amounts in both healthy adults [46] and healthy infants 
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[47], which does not allow further speculation on the nature of Fib1MG3’s species of origin. 
Interestingly, Fib1MG4 is most closely related to the metagenomic gene group cluster CAG:176, 
which is suspected to represent (part of a) species [26] and appears to be a relative of Oscillospira 
guillermondii (Chapter 6), an uncultured bacteria which appears to be more pronounced in 
leaner siblings of monozygotic twins discordant for BMI (Chapter 3) and in individuals with 
high bacterial gene richness ([48]; Chapter 6). The latter suggests that Fib1MG4 originates from 
a beneficial commensal and, moreover, gives another clue about the large and morphologically 
unique O. guillermondii which has already been described over a century ago by Chatton and 
Perard (according to Bergey’s Manual of Systematic Bacteriology [49]) but still has not been grown 
in pure culture. 

The limitations of heterologous expression of selected domains is particularly obvious with 
the Fib2-type constructs, where half of the selected domains appeared not expressed or expressed 
below detection by SDS-PAGE. There may be a variety of explanations for this observation. 
Nevertheless, neither of the three successfully expressed Fib2-type domains could be shown to 
bind to fibronectin, including the positive control domain that is derived from the adherence and 
virulence factor B (PavB) from S. pneumoniae TIGR4 [36, 50], which to the best of our knowledge 
is the only experimentally verified fibronectin-binding protein with the Fib2-type domain. PavB 
binds fibronectin in the extracellular matrix (ECM) of the human host cells and contains four 
Fib2-type repeats [36, 50]. We expressed the Fib2-type domain as a single copy, whereas most 
(72%) are present in multi-copy tandem-repeats in fibronectin-binding proteins (Table S7.6; 
[http://pfam.xfam.org/]). The presence of multiple copies of the Fib2-type domain might imply 
that appropriate folding of the domain depends on its protein context, which could explain 
why the single copies of this domain that we expressed lacked fibronectin-binding function due 
to inappropriate folding. However, it has been reported that both multiple and single Fib2-like 
domains of PavB could be expressed in E. coli and could bind fibronectin [36, 50], but the Fib2-
domains expressed in these studies included a 70 residue N-terminal extension relative to the 
minimal domain region. This extension may be critical for its fibronectin-binding capacity and/
or the appropriate folding of the domain region [36, 50]. Taken together these results may suggest 
that the current definition of the PF11966 domain lacks additional, less conserved, N-terminal 
residues that are required for appropriate domain folding and/or function. 

The approach presented here demonstrates that from shotgun metagenomic sequences 
novel functions can be pinpointed for assembled metagenomic genes. Although, this approach 
is still targeted towards a recognizable domain sequence within a protein, and will not enable 
direct detection of completely unknown functions, it allows to verify the current domain 
families and to expand their sequence biodiversity. Moreover, it may enable the detection and 
recognition of subfamilies within a domain-family. To this end, iteration of the sequence-mining 
and function-validation approach that initiates on basis of existing PFAM HMMs, can drive 
the expansion of functionally validated domain-HMMs. Full analysis of the complete genes 
in which the domains reside may further refine our understanding of the role of the different 
types of fibronectin-binding domains in the intestinal tract. The successful implementation of 
the approach presented here depends on the accuracy of the original PFAM domain definition, 
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which may explain the lack of success in verification of the fibronectin-binding capacity of Fib2-
type domains when expressed out of their native protein context. The approach precisely targets 
predicted domain functions that are identified by a generic sequence-mining module, while 
the use of synthetic genes avoids the requirement for appropriate PCR templates, and at the 
same time allows for codon optimization to facilitate expression in the chosen expression host. 
The approach is principally driven by sequence-mining, which is fundamentally different from 
the function-driven random cloning strategies that have been applied before, for example for 
the identification of screening of novel bile salt hydrolase encoding genes [51] and carbohydrate 
hydrolases that enable hydrolysis of a specific prebiotic molecule [52]. These random cloning 
approaches are strongly constrained by the expression of the heterologous genes in the chosen 
expression host, and require high-throughput functional-screening capacity to identify positive 
clones. Thereby the function-target oriented approach has specific advantages over the random 
cloning and function-screening scenario, and the combination or sequential application of 
random-clone high-throughput screening, with function-driven domain mining could most 
adequately decipher the functional repertoire encoded within the microbiota of the intestinal 
tract.
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Figure S7.2 Expression of domain sequences retrieved with PF05833 and characterization of their fibronectin binding 
capability visualized on a 12% SDS-PAGE gel. The domain sequences originate from two random domain sequences from the 
original PFAM alignment (Fib1Pos1, Fib1Pos2) as well as four randomly chosen metagenomic sequences (Fib1MG1 – Fib1MG4). 
White arrows indicate the anticipated apparent molecular weight of the domain-containing recombinant protein constructs (40 
kDa for the Fib1MG1, and 54 kDa for the other Fib1 domains. Lane labels: “–”, cell free extract (CFE) of non-induced cultures; 
“+”, CFE of induced cultures; “Fb”, fibronectin-bead bound fraction after 10 min incubation of the beads with induced CFE at 37 
°C; “fF”, fibronectin-bead bound fraction after 10 min incubation at 37 °C with free fibronectin of the Fb-fraction beads; “BB” BSA-
bead bound fraction after 10 min incubation of the beads with of induced CFE at 37 °C; “M”, Precision Plus Protein Standards 
(Bio-Rad) displaying bands sizes of 250, 150, 100, 75, 50, 25, and 10 kDa.
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– + Fb fF
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– + Fb fFM – + Fb fFBB

Fib2 MG4

Figure S7.3 Expression of domain sequences retrieved with PF11966 and characterization of their fibronectin binding 
capability visualized on an 18% SDS-PAGE gel. The domain sequences originate from two random domain sequences from 
the original PFAM alignment (Fib2Pos1, Fib2Pos2) as well as four randomly chosen metagenomic sequences (Fib2MG1 – 
Fib2MG4). White arrows indicate the anticipated apparent molecular weight of the domain-containing recombinant protein 
constructs (11-12 kDa for the Fib2 domains). Asterisk marks positions were the domain protein band was expected but were 
not detected, indicating either very low level or failed protein expression. Lane labels: “–”, cell free extract (CFE) of non-induced 
cultures; “+”, CFE of induced cultures; “Fb”, fibronectin-bead bound fraction after 10 min incubation of the beads with induced 
CFE at 37 °C; “fF”, fibronectin-bead bound fraction after 10 min incubation at 37 °C with free fibronectin of the Fb-fraction beads; 
“BB” BSA-bead bound fraction after 10 min incubation of the beads with of induced CFE at 37 °C; “M”, Precision Plus Protein 
Standards (Bio-Rad) displaying bands sizes of 250, 150, 100, 75, 50, 25, and 10 kDa.
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Table S7.1 Selected sequences selected for fibronectin binding assay.

PFAM Name Type DNA sequence
PF05833 Fib1Pos1 Control TTTGGATCCCT 

ggcttttttctgcatcatatgaccgaagaactgcgccatgaactggtgggcggccgcatt
cagaaaattaaccagccgtttgaacaggaactggtgctgcagattcgcagcaaccgcaaa
agcctgaaactgctgctgagcgcgcatagcgtgtttggccgcgtgcagctgaccgatacc
acctttgaaaacccggcggtgccgaacacctttattatggtgatgcgcaaatatctgcag
ggcgcggtgattgaagcgattcagcaggtggaaaacgatcgcattctggaaattagcgtg
agcaacaaaaacgaaattggcgatagcgtggcggtgaccctggtgattgaaattatgggc
aaacatagcaacattattctgctggataaagcgagcggcaaaattattgaagcgattaaa
catgtgggctttagccagaacagctatcgcaccattctgccgggcagcacctatgtggcg
ccgccgcagaccggcagcctgaacccgtttaccgtgggcgatgaaaaactgtttgaaatt
ctgcagaccgaagaaattgaaccgaaacgcctgctgcagatttttcagggcctgggccgc
gataccgcgaccgaactgagcggccgcctgaccaccgatcgcctgaaaacctttcgcgcg
ttttttgcgagcccgacccagccgagcctgaccgaaaaaagctttagcgcgctgctgttt
agcgatagcaaaacccagatgagcaccctgagcgaactgctggataccttttataaagat
aaagcggaacgctatcgcgtgaaccagcaggcgagcgaactgattcgccgcgtggaaaac
gaactggaaaaaaaccgcaaaaaactgggcaaacaggaagatgaactgctggcgaccgaa
aaagcggaagaatttcgccagaaaggcgaactgctgaccacctttctgcatcaggtgccg
aacgatcaggatcaggtggaactggataactattataccggcgaaaaaattctgattacc
ctggataaagcgctgaccccgaaccagaacgcgcagcgctattttaaacgctatcagaaa
ctgaaagaagcggtgaaacatctgaccagcctgattgaagaaacccgcaccaccattctg
tatctggaaagcgtggaaaccgcgctggcgcaggcgagcctgaccgaaattgcggaaatt
cgcgaagaactgattcagaccggctttattcgccgccgccagcgcgaaaaaattcagaaa
cgcaaaaaa AAGCTTGTG

PF05833 Fib1Pos2 Control TTTGGATCCCT 
ggcctggtgattcatagcattgtggatgaactgagcagcaaactgaccggcggcaaaatt
gataaaattcatcagccggaagatgatgaagtgatttttaacattcgcaacaacaaagaa
aactttcgcctggtgctgagcgcgagcgcgagcaacccgcgcgtgtatctgaccagcaac
tatcagaaagaaaacccgctgaaagcgccgatgttttgcatgctgctgcgcaaatatatt
cagggcggcaacattgtggaaattagccagattggctttgaacgcattattaaaattagc
gtggaaagcctggatgaactgaaagaaaaaaccgtgaaaaacattatgattgaaattatg
ggccgccatagcaacattattattacccatggcgaagaaaacaaaattattgatagcatt
aaacgcgtgccgtttagcattagccgcgtgcgccaggtgctgccgggccatgattatagc
ctgccgccggaacagaacaaactgaacccgctggatgatattagcaaagatctgtttatt
aaaaacctggaagaactggaaggcccgatttttaaaagcatttatagccgctttctgggc
attagcccgattattgcgaaagaaatttgctatcgcgcgggcgtgaaccagaacgcgatt
attaaagatattagcgatgaacagtttgatagcctgcataaagtgttttgcaacctgttt
aacgatattaacagcaacaaatatagcccgtgcattattattgataaaaaagtggataaa
gtggtggattttagctgcattaacctgaccctgtttagcgatctgagctatattaacaaa
gatagcatgagccgcattctggaagatttttatcgcaccaaagatattaaagatcgcatt
aaccagcgcagcagcgatctgaaaaaaagcattagcgtgaaactggatcgcctgtataac
aaactgaaaaaacaggaagaagaactgagcgaaagcgaaaacgcggatatttataaaatt
aaaggcgaactgattaccagctatatttatatggtggaaaaaggcatggaaagcattgaa
gtggcgaacttttatgatgaaaactgcaacgatgtgaccattgaactgaacaaaaacctg
accccgagcgaaaacgcgcagaaatattttaaaaaatataacaaaatgaaacatgcgaaa
gtggaaattagccatcagattagcctgaacaaagaagaaattgattatctggaaaacatt
attctgagcattgaaaactgcgaaaacctggcggaactgcaggatattaaagaagaactg
gcgaaagtgggctatattaaaacccagaaaaaaaacagcaaaaaagat AAGCTTGTG

PF05833 Fib1MG1 Metagenomic TTTGGATCCCT 
ggcttttttctgcatcatatggtgcaggaactgaaagcggaactgctgagcggccgcatt
cagaaaattaaccagccgtttgaacaggaactggtgctgcagattcgcggcaaccgcaaa
aaccagaaactgctgctgagcgcgcatagcgtgtttggccgcattcagcgcacccagacc
aactttgaaaacccggcgtttccgaacacctttattatggtgatgcgcaaatatctgcag
ggcgcggtgattgaaggcattgaacagatggaaaacgatcgcattctggaaattcgcgtg
agcaacaaaaacgaaattggcgatgcgattagcgtgagcctgatgattgaaattatgggc
aaacatagcaacattattctgctggatcgcaccagcaacaaaattattgaagcgattaaa
catgtgggctttagccagaacagctatcgcaccattctgccgggcagcacctatattgcg
ccgccgaaaaccgatgcggtgaacccgtttaccattggcgatgaagcgctgtttgcgctg
ctgcataaagaagaactgagcccgaaaaacctgcagaaatgctttcagggcctgggccgc
gataccgcgcaggaactggcgaaacgcctggaaaccgatgaaaaactgaaaacctttcgc
gcgttttttgaagcgccgagcgatccgcatctgaccaccaaaagctttagcgcgattccg
tttgcggatgcgaccagccagacctttgaaaccctgagcgatctgctggatgattattat
cgcgataaagcggaacgcgatcgcgtgcagcagcaggcgagcgaactgattcgcaaagtg
gaaaacgatctggaaaaaaaccgcaaaaaactggcgaaacaggaagcggaactggcggcg
accgataacgcggaagaatttcgccagaaaggcgaactgctgaccacctttctgcatcag
gtgccg AAGCTTGTG
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Table S7.1 (continued) Selected sequences selected for fibronectin binding assay.

PFAM Name Type DNA sequence
PF05833 Fib1MG2 Metagenomic TTTGGATCCCT 

ggcctggtgattcatagcattgtggatgaactgcataaaaaactgctgggcggcaaaatt
gataaagtgtatcagccggaaaacgatgaagtggtgctgcatattcgcaacaacaaagaa
aactttaaactggtgctgagctgcagcgcgagcaacccgcgcgtgtatctggcgagcgat
tataaaaaagaaaacccgattaacgcgccgatgttttgcatgctgtttcgcaaatatatt
cagggcggcaacattgtgaacgtgagccaggtggattttgaacgcattattaaaattagc
gtggaaagctttgatgaactgaaagaaaaaaccaccaaagatattattattgaaattatg
ggccgccatagcaacattattctgacccatagcagcaacaacaaaattattgatagcgcg
aaacgcattccgccgagcgtgagccgcgtgcgccagattctgccgggccagacctatgtg
ctgccgccgaaacaggataaactgaacccgattaccgatattagcctgaacagctttgtg
gataccctgagcagctttaacggcccgatttttaaagcgatttatagcaaatttctgggc
attagcccggtgattgcgaaagaaatttgctttcgcgcgaacattgatgaaaacctgctg
gtgagcgaaattagcagcgatgatattagcaaaatttatcgcgaatttcataacctgttt
aaatatattaaagataacatttataacccgtgcatggtgattgataccagcattgataaa
gtgctggattttagctgcattaacctgagcctgtttagcaacctgagcattattaacgat
gatagcattagcaaaattctggaaaactattatgcgaccaaagatattaaagatcgcatt
catcagcgcagcagcgatctgcgcaaaagcattagcattaaactggatcgcctgtataac
aaactgaacaaacaggaaaaagaactgattgaaagcgaaaacgcggatatttataaaatt
aaaggcgaactgattaccagctatatttatatgattgaaaaaggcatggaaagcgtggaa
gtggcgaacttttatgatccggaatataaaaacattaaaattagcctgaacaccaacttt
accccgagcgaaaacgcgcagaaatattttaaaaaatataacaaactgaaaaccgcgaaa
aaagaaattaccagccagatggaaattaccaaagaagaaattgattatctggaaaacatt
atgctgagcattgaaaactgcgaaaacctggcggaactgatggatattcgcgaagaactg
ggcaaagtgggctatctgcgcagcaaaaacaacagcaaaaaagaaaccaaa 
AAGCTTGTG

PF05833 Fib1MG3 Metagenomic TTTGGATCCCT 
ggcattaccattgcgaacctggtgtgggaatttaaacataccctggaaggcggcaaaatt
gcgaaaattgcgcagccggaaaaagatgaactgctgattaccattaaaaacaacaaagaa
aactatcgcctgcagattagcgcgagcgcgagcctgccgctgatttatctgaccgcgaac
aacaaaaccagcccgctgaccgcgccgaacttttgcatgctgctgcgcaaacatattggc
agcgcgcgcattattagcgtgaaacagccgggcctggaacgcattctggaatttgaactg
gaacatctggatgaactgggcgatctgtgccgcaaacgcctgattgtggaaattatgggc
aaacatagcaacattattttttgcaaagaagatggcaccattattgatagcattaaacat
gtgagcgcgagcatgagcagcgtgcgcgaagtgctgccgggccgcgaatattttattccg
cagaccattgcgaaagaaaacccgctggaagtgaccgaagatgtgtttaaaaactgcatt
agcaccagcccgaccagcgtgcagaaagcgctgtatggccatctgaccggcattagcccg
attattgcggaagaactgtgccatctggcgagcattgatagcgatcgcagcgcgaccgaa
ctgaccgaaccggaactgattcatctgtatcatacctttcgcctgatgatggaagatgtg
aaagatggccattttagcccgagcgtgatttatgatggcgataccccgattgaatatgcg
agcgtgccgctgagctgctatgatagcaaaggctattgccgcaaagcgtatgatagcatt
agcgcgctgctggaaaactattatgcgagccgcgataccattacccgcattcgccagaaa
agcagcgatctgcgccgcattgtgcagaccgcgctggaacgcagctgcaaaaaatatgat
ctgcagctgaaacagctgaaagataccgaaaaacgcgaaaaatatcgcatttatggcgaa
ctgctgaacacctatggctatgaactgaaaggcggcgaaaaaagctttaaatgcattaac
tattatgataacaaagaaattaccattccgctggatccgcagctgaccgcgcgcgaaaac
gcgcagaaacattttgataaatataacaaactgaaacgcacctatgaagcgctgagccag
ctgaccaaagaaaccaaagcggaagtggatcatctggaaagcgtgagcagcgcgctggat
attgcgctggaagaaaacgatctggtgcagattaaagaagaactgatggaatttggctat
gtgaaaaaacgccgcgcgaacgaaaaacgcccgaaa AAGCTTGTG

PF05833 Fib1MG4 Metagenomic TTTGGATCCCT 
gcgatttgcctgcagggcgtggtgggcgaactggcgccgcagctgaccggcagccgcatt
gaaaaaattcagcagccggcgcgcgatcagattattctgctgctgcgcggcagccgccgc
ctgtttctgaacgcgggcgcgaaccagccgcgcattcatctgaccgaacagctgcgcgat
aacccgagccagccgccgatgttttgcatgctgctgcgcaaacatctgagcggcggcatt
attgaaagcgtgcgccaggaaccgctggaacgcgtggtgaccctgaccgtgctggcgagc
gatgaaatgggcgaacgcagccgctttaccctggtgtgggaaggcatgccgcgccgcgcg
aacctgattctgtgcgatcgcgatggccgcattattgattgcctgcgccgcgtggatctg
gaagcggaacaggatcgccaggtgctgccgggcctgttttatcgcctgccgacccgccag
gataaacgcagcccgctgagcgtgaccgaagaagaatttgcggcgctgctgggccgcgcg
gcgccggatgcgccgctggatgattggctgctggatacctttaccgcgattagcccgctg
gtggcgcgcgaactgaccgtgcgcgcgtgcggcagcaccgatgcgccggcgagccagggc
aacgcgctgtgggatgtgtttagccgctggcagaaagatgtgaacgaaaacacctttacc
ccgaccctgattaaacgcaacggcagcctggcggattttacctatggcctggtgacccag
tatggcacctatgcggaaaccgaagtgtatgatagctttagccatctgctggatgatttt
tatgaaaaacgcgaacaggcggaacgcgtgaaacagaaaggccgcgatctgctgaaaacc
gcgaccaccgcgcgcgatcgcgtgcgccgcaaactggcggcgcaggaaaaagaactggcg
gcgtgcctggatcgcgatcatctgcgcatttgcggcgaactgattaccgcgaacctgtat
cgcatggaacgcggccagagccgcctgaccgcgcagaactattatgatgaaaactgcgcg
gatgtggatattccgctggatgtgcgcctgagcccgcaggaaaacgcggcgcgctatttt
aaacagtatgcgaaagcgaaaaccgcggaaaaatatctgaccgcgcagctgcagcgcggc
cgcgaagaactgcagtatctggaaagcgtgctgcaggaactggcgcaggcggaaagcgaa
caggattttaacgatattcgcaccgaactgaccgatggcggctatctgcgcggccgcggc
aaaaaacag AAGCTTGTG
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Table S7.1 (continued) Selected sequences selected for fibronectin binding assay.

PFAM Name Type DNA sequence
PF11966 Fib2Pos1 Control TTTGGATCCCT 

aacggcgatgcgaaaaacccggcgctgagcccgctgggcgaaaacgtgaaaaccaaaggc
cagtatttttatcaggtggcgctggatggcaacgtggcgggcaaagaaaaacaggcgctg
attgatcagtttcgcgcgaacggcacccagacctatagcgcgaccgtgaacgtgtatggc
aacaaagatggcaaaccggatctggataacattgtggcgaccaaaaaagtgaccattaaa
attaac AAGCTTGTG

PF11966 Fib2Pos2 Control TTTGGATCCCT 
aacggcaccgcgaaaaacccggcgctgccgccgctggaaggcctgaccaaaggcaaatat
ttttatgaagtggatctgaacggcaacaccgtgggcaaacagggccaggcgctgattgat
cagctgcgcgcgaacggcacccagacctataaagcgaccgtgaaagtgtatggcaacaaa
gatggcaaagcggatctgaccaacctggtggcgaccaaaaacgtggatattaacattaac 
AAGCTTGTG

PF11966 Fib2MG1 Metagenomic TTTGGATCCCT 
aacggcagcgcgaaaaacccggtgctgccgccggtggaaaaactgggcaaaggcctgtat
ttttatgaagtggatctggcggatacccagggcaaaagcgataaagaactgctggatctg
ctgaaacagaacggcacccagagctataaagcgaccattaaagtgtatggcgcgaaagat
ggcaaaccggatctgaccaacctggtggcgaccaaagatctgaccgtgaacctgaac 
AAGCTTGTG

PF11966 Fib2MG2 Metagenomic TTTGGATCCCT 
aacggcatggataaaaacccggcgctgctgccgctggaaggcctggcgaaaggccagtat
ttttatgaagtggatctgaacggcaacaccgtgggcaaagatggccaggcgctgctggaa
caggtgcgcgcgaacggcacccatacctatctggcgaccgtgaaagtgtatggcgcgaaa 
AAGCTTGTG

PF11966 Fib2MG3 Metagenomic TTTGGATCCCT 
gatagcggcgcgtattttgtggaactgaaactgagcggcaacgatatgggcaaaaaagtg
caggtgattgtgaacggcaaaaaatttaaccagagcaacgcgtatagcgtggcggaaatt
agcaactatggcgtggaa AAGCTTGTG

PF11966 Fib2MG4 Metagenomic TTTGGATCCCT 
aacggcaccgcgaacaacccggcgctgctgccggtggaaggcctggcgaaaggccagtat
ttttatgaagtggatctgaacggcaacaccaccggcaaagaaggccaggcgctgctggat
cagctgcgcgcgaacggcacccatacctatcaggcgaccgtgaaagtgtatggcagcaaa
gatggcaaaccggatctgagcaacctggtggcgacccgccaggtgaccattcgcctg 
AAGCTTGTG
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Table S7.2 For E.coli optimized selected fibronectin binding domain sequences.

Domain name For E.coli optimized domain DNA sequence
Fib1MG1 GGTTTTTTTCTGCATCATATGGTGCAAGAACTGAAAGCAGAACTGCTGAG

CGGTCGTATTCAGAAAATTAACCAGCCGTTTGAACAAGAACTGGTTCTGC
AGATTCGTGGCAATCGTAAAAATCAGAAACTGCTGCTGAGTGCCCATAGC
GTTTTTGGTCGCATTCAGCGTACCCAGACCAATTTTGAAAATCCGGCATT
TCCGAACACCTTCATTATGGTGATGCGTAAATATCTGCAGGGTGCAGTTA
TTGAAGGTATTGAGCAGATGGAAAATGATCGCATTCTGGAAATTCGTGTG
AGCAACAAAAACGAAATTGGTGATGCAATTAGCGTGAGCCTGATGATTGA
AATTATGGGCAAACATAGCAACATCATTCTGCTGGATCGTACCAGCAATA
AAATCATCGAAGCCATTAAACATGTGGGCTTTAGCCAGAATAGCTATCGT
ACCATTCTGCCTGGTAGCACCTATATTGCACCGCCTAAAACCGATGCAGT
TAATCCGTTTACCATCGGTGATGAAGCACTGTTTGCACTGCTGCATAAAG
AAGAACTGAGCCCGAAAAACCTGCAGAAATGTTTTCAGGGTCTGGGTCGT
GATACAGCACAAGAGCTGGCAAAACGTCTGGAAACCGATGAAAAACTGAA
AACCTTTCGTGCCTTTTTTGAAGCACCGAGCGATCCGCATCTGACCACCA
AAAGTTTTAGCGCAATTCCGTTTGCAGATGCAACCAGCCAGACCTTTGAA
ACCCTGAGCGATCTGCTGGACGATTATTATCGTGATAAAGCCGAACGTGA
TCGTGTGCAGCAGCAGGCAAGCGAACTGATTCGTAAAGTTGAGAATGACC
TGGAAAAAAATCGCAAAAAACTGGCCAAACAAGAAGCCGAACTGGCAGCA
ACCGATAATGCAGAAGAATTTCGTCAGAAAGGTGAGCTGCTGACAACCTT
TCTGCACCAGGTTCCG

Fib1MG2 GGTCTGGTTATTCATAGCATTGTTGATGAGCTGCACAAAAAACTGCTGGG
TGGCAAAATTGATAAAGTGTATCAGCCGGAAAATGATGAAGTGGTTCTGC
ATATTCGCAACAACAAAGAGAACTTCAAACTGGTTCTGAGCTGTAGCGCA
AGCAATCCGCGTGTTTATCTGGCAAGCGATTACAAAAAAGAAAACCCGAT
TAACGCACCGATGTTTTGTATGCTGTTTCGCAAATACATTCAGGGTGGCA
ATATCGTTAATGTTAGCCAGGTTGATTTTGAGCGCATCATTAAAATCAGC
GTCGAGAGCTTTGATGAACTGAAAGAAAAAACCACCAAAGACATCATCAT
CGAAATTATGGGTCGCCATAGCAACATTATTCTGACCCATAGCAGCAATA
ACAAAATCATCGATAGCGCCAAACGTATTCCGCCTAGCGTTAGCCGTGTT
CGTCAGATTCTGCCTGGTCAGACCTATGTTCTGCCTCCGAAACAGGATAA
ACTGAATCCGATTACCGATATTAGCCTGAACAGCTTTGTTGATACCCTGA
GCAGCTTTAATGGTCCGATCTTTAAAGCCATCTATAGCAAATTTCTGGGC
ATTAGTCCGGTGATCGCAAAAGAAATTTGTTTTCGTGCCAACATCGATGA
AAATCTGCTGGTTAGCGAAATCAGCAGTGATGATATCAGCAAAATCTATC
GCGAATTCCATAACCTGTTCAAATACATCAAAGACAACATCTACAATCCG
TGCATGGTTATTGATACCAGCATCGATAAAGTGCTGGATTTTAGCTGTAT
TAACCTGAGCCTGTTTAGCAACCTGAGCATTATTAACGATGACAGCATTA
GCAAAATCCTGGAAAACTATTATGCGACCAAAGATATCAAAGACCGTATT
CATCAGCGTAGCAGCGATCTGCGTAAATCCATTAGCATTAAACTGGATCG
CCTGTATAACAAACTGAACAAACAAGAGAAAGAGCTGATCGAAAGCGAAA
ACGCCGATATCTATAAAATCAAAGGCGAACTGATCACCAGCTATATCTAC
ATGATTGAGAAAGGTATGGAAAGCGTTGAAGTGGCCAACTTTTATGATCC
GGAATACAAAAACATCAAAATCTCCCTGAACACCAATTTTACCCCGAGCG
AAAATGCGCAGAAATACTTCAAAAAATACAATAAACTGAAAACCGCGAAA
AAAGAAATCACCAGCCAGATGGAAATCACGAAAGAAGAGATTGACTATCT
GGAAAACATCATGCTGAGCATCGAAAATTGCGAAAATCTGGCAGAACTGA
TGGATATTCGTGAAGAACTGGGTAAAGTTGGTTATCTGCGTAGCAAAAAC
AACAGCAAAAAAGAGACAAA

Fib1MG3 GGTATTACCATTGCAAATCTGGTGTGGGAATTCAAACATACCCTGGAAGG
TGGTAAAATTGCAAAAATTGCCCAGCCGGAAAAAGATGAACTGCTGATTA
CCATCAAAAACAACAAAGAGAATTACCGCCTGCAGATTAGCGCAAGCGCA
AGCCTGCCGCTGATTTATCTGACCGCAAATAACAAAACCAGTCCGCTGAC
CGCACCGAATTTTTGTATGCTGCTGCGTAAACATATTGGTAGCGCACGTA
TTATTAGCGTTAAACAGCCTGGTCTGGAACGCATTCTGGAATTTGAACTG
GAACATCTGGATGAACTGGGTGATCTGTGTCGTAAACGTCTGATTGTTGA
AATCATGGGCAAACACAGCAACATCATCTTTTGTAAAGAAGATGGCACCA
TCATCGACAGCATTAAACATGTTAGCGCCAGCATGAGCAGCGTTCGTGAA
GTTCTGCCTGGTCGTGAATATTTCATTCCGCAGACCATTGCCAAAGAAAA
TCCGCTGGAAGTTACCGAAGATGTGTTTAAAAACTGTATTAGCACCAGCC
CGACCAGCGTTCAGAAAGCACTGTATGGTCATCTGACCGGTATTAGCCCG
ATTATTGCCGAAGAACTGTGTCATCTGGCAAGCATTGATAGCGATCGTAG
CGCAACCGAACTGACCGAACCGGAACTGATTCATCTGTATCATACCTTTC
GTCTGATGATGGAAGATGTGAAAGATGGTCATTTTAGCCCGAGCGTTATT
TATGATGGTGATACCCCGATTGAATATGCAAGCGTTCCGCTGAGCTGTTA
TGATAGCAAAGGTTATTGTCGCAAAGCCTACGATAGCATTAGCGCACTGC
TGGAAAACTATTATGCAAGCCGTGATACCATTACCCGTATTCGTCAGAAA
AGCAGCGATCTGCGTCGTATTGTTCAGACCGCACTGGAACGTAGCTGCAA
AAAATACGATCTGCAGCTGAAACAACTGAAAGATACCGAAAAACGCGAGA
AATATCGCATTTATGGTGAGCTGCTGAATACCTATGGTTATGAACTGAAA
GGTGGCGAAAAATCCTTCAAATGCATCAACTACTATGATAACAAAGAAAT
CACCATTCCGCTGGACCCGCAGCTGACAGCACGTGAAAATGCACAGAAAC
ACTTCGATAAATACAACAAACTGAAACGCACCTATGAAGCACTGAGCCAG
CTGACCAAAGAAACCAAAGCAGAAGTTGATCATCTGGAAAGCGTTAGCAG
CGCACTGGATATTGCACTGGAAGAAAATGATCTGGTGCAGATCAAAGAAG
AACTGATGGAATTTGGCTACGTGAAAAAACGTCGTGCCAATGAAAAACGT
CCGAAA
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Table S7.2 (continued) For E.coli optimized selected fibronectin binding domain sequences.

Domain name For E.coli optimized domain DNA sequence
Fib1MG4 GCAATTTGTCTGCAGGGTGTTGTTGGTGAACTGGCACCGCAGCTGACCGG

TAGCCGTATTGAAAAAATTCAGCAGCCTGCACGTGATCAGATTATTCTGC
TGCTGCGTGGTAGCCGTCGTCTGTTTCTGAATGCCGGTGCAAATCAGCCT
CGTATTCATCTGACCGAACAGCTGCGTGATAATCCGAGCCAGCCTCCGAT
GTTTTGTATGCTGCTGCGCAAACATCTGAGCGGTGGTATTATTGAAAGCG
TTCGTCAAGAACCGCTGGAACGTGTTGTTACCCTGACCGTTCTGGCAAGT
GATGAAATGGGTGAACGTAGCCGTTTTACCCTGGTTTGGGAAGGTATGCC
TCGTCGTGCAAATCTGATTCTGTGTGATCGTGATGGTCGCATTATTGATT
GTCTGCGTCGTGTTGATCTGGAAGCAGAACAGGATCGTCAGGTTCTGCCT
GGTCTGTTTTATCGTCTGCCGACCCGTCAGGATAAACGTAGTCCGCTGAG
CGTTACCGAAGAAGAATTTGCAGCACTGCTGGGTCGTGCAGCACCGGATG
CACCGCTGGATGATTGGCTGCTGGATACCTTTACCGCAATTTCACCGCTG
GTTGCACGTGAACTGACCGTGCGTGCATGTGGTAGTACCGATGCTCCGGC
AAGCCAGGGTAATGCACTGTGGGATGTTTTTAGCCGTTGGCAGAAAGATG
TGAACGAAAATACATTTACCCCGACCCTGATTAAACGTAATGGTAGCCTG
GCAGATTTTACCTATGGTCTGGTTACCCAGTATGGCACCTATGCAGAAAC
CGAAGTTTATGATAGCTTTAGCCATCTGCTGGATGACTTTTATGAAAAAC
GTGAACAGGCCGAACGTGTGAAACAGAAAGGTCGTGATCTGCTGAAAACC
GCAACCACCGCACGCGATCGTGTTCGTCGTAAACTGGCAGCACAAGAAAA
AGAGCTGGCAGCCTGTCTGGATCGTGATCATCTGCGTATTTGCGGTGAAC
TGATTACCGCAAATCTGTATCGTATGGAACGTGGTCAGAGCCGTCTGACC
GCACAGAACTATTATGATGAAAATTGTGCCGATGTGGATATTCCTCTGGA
TGTTCGTCTGAGTCCGCAAGAAAATGCAGCACGTTATTTCAAACAGTACG
CAAAAGCAAAAACCGCAGAGAAATATCTGACAGCCCAGCTGCAGCGTGGT
CGTGAAGAACTGCAGTATCTGGAAAGCGTGCTGCAAGAACTGGCGCAGGC
AGAAAGTGAACAGGATTTTAATGATATTCGTACCGAACTGACGGATGGTG
GTTATCTGCGTGGTCGCGGTAAAAAACAG

Fib1Pos1 GGTTTTTTTCTGCATCACATGACCGAAGAACTGCGTCATGAACTGGTTGG
TGGTCGTATTCAGAAAATTAACCAGCCGTTTGAACAAGAACTGGTTCTGC
AGATTCGTAGCAATCGTAAAAGCCTGAAACTGCTGCTGAGCGCACATAGC
GTTTTTGGTCGTGTTCAGCTGACCGATACCACCTTTGAAAATCCGGCAGT
TCCGAATACCTTTATTATGGTGATGCGTAAATATCTGCAGGGTGCAGTTA
TTGAAGCAATTCAGCAGGTTGAAAATGATCGCATTCTGGAAATTAGCGTG
AGCAACAAAAATGAAATTGGTGATAGCGTTGCAGTGACCCTGGTTATTGA
AATTATGGGTAAACACAGCAACATCATCCTGCTGGATAAAGCAAGCGGTA
AAATCATTGAAGCCATTAAACATGTGGGCTTTAGCCAGAATAGCTATCGT
ACCATTCTGCCTGGTAGCACCTATGTTGCACCGCCTCAGACCGGTAGCCT
GAATCCGTTTACCGTTGGTGATGAAAAACTGTTTGAAATCCTGCAGACCG
AAGAGATTGAACCGAAACGTCTGCTGCAGATTTTTCAGGGTCTGGGTCGT
GATACCGCAACCGAACTGAGCGGTCGTCTGACCACCGATCGTCTGAAAAC
CTTTCGTGCATTTTTTGCAAGCCCGACCCAGCCGAGCCTGACCGAAAAAA
GTTTTAGCGCACTGCTGTTTAGCGATAGCAAAACCCAGATGAGCACCCTG
AGCGAACTGCTGGACACCTTCTATAAAGATAAAGCAGAACGTTATCGCGT
TAATCAGCAGGCAAGCGAACTGATTCGTCGTGTGGAAAATGAACTGGAAA
AAAATCGCAAAAAACTGGGCAAACAAGAAGATGAGCTGCTGGCAACCGAA
AAAGCAGAAGAATTTCGTCAGAAAGGTGAACTGCTGACCACATTTCTGCA
CCAGGTTCCGAATGATCAGGATCAGGTTGAACTGGATAACTATTATACCG
GTGAGAAAATTCTGATCACCCTGGACAAAGCACTGACCCCGAATCAGAAT
GCACAGCGTTATTTCAAACGTTATCAGAAACTGAAAGAAGCCGTGAAACA
TCTGACCAGCCTGATTGAAGAAACCCGTACCACCATTCTGTATCTGGAAA
GCGTTGAAACCGCACTGGCACAGGCAAGCCTGACAGAAATTGCAGAAATT
CGTGAAGAACTGATCCAGACCGGTTTTATTCGTCGTCGTCAGCGTGAAAA
AATTCAGAAACGCAAAAAA

Fib1Pos2 GGTCTGGTTATTCATAGCATTGTTGATGAACTGAGCAGCAAACTGACCGG
TGGTAAAATTGACAAAATTCATCAGCCGGAAGATGACGAAGTGATTTTTA
ACATTCGCAACAACAAAGAGAACTTCCGTCTGGTTCTGAGCGCAAGCGCA
AGCAATCCGCGTGTTTATCTGACCAGCAATTATCAGAAAGAAAACCCGCT
GAAAGCACCGATGTTTTGTATGCTGCTGCGCAAATATATCCAGGGTGGTA
ATATTGTTGAAATCAGCCAGATTGGCTTTGAACGCATTATCAAAATTAGC
GTGGAAAGCCTGGATGAGCTGAAAGAAAAAACCGTGAAAAACATCATGAT
CGAGATTATGGGTCGCCATAGCAACATTATTATCACCCATGGTGAAGAGA
ACAAAATCATCGATAGCATTAAACGTGTGCCGTTTAGCATTAGCCGTGTT
CGTCAGGTTCTGCCTGGTCATGATTATAGCCTGCCTCCGGAACAGAATAA
ACTGAATCCGCTGGATGATATTAGCAAAGACCTGTTCATTAAAAACCTGG
AAGAACTGGAAGGTCCGATCTTCAAAAGCATTTATAGCCGTTTTCTGGGC
ATTAGCCCGATTATTGCAAAAGAAATTTGTTATCGTGCCGGTGTGAATCA
GAACGCCATCATTAAAGATATCAGCGACGAACAGTTTGACAGCCTGCATA
AAGTTTTTTGCAACCTGTTCAACGACATCAACAGCAACAAATATAGCCCG
TGCATTATCATTGATAAAAAAGTGGATAAAGTGGTGGATTTCAGCTGCAT
TAATCTGACCCTGTTTAGCGATCTGAGCTACATTAACAAAGATAGCATGA
GCCGTATCCTGGAAGATTTTTATCGCACCAAAGATATTAAAGATCGCATT
AATCAGCGTAGCAGCGACCTGAAAAAAAGCATTAGCGTTAAACTGGATCG
CCTGTATAACAAACTGAAAAAACAAGAAGAAGAACTGAGCGAAAGCGAAA
ACGCCGATATCTATAAAATCAAAGGCGAACTGATCACCAGCTACATCTAT
ATGGTTGAAAAAGGCATGGAAAGCATTGAAGTGGCCAACTTTTATGATGA
GAATTGCAACGATGTGACCATCGAGCTGAACAAAAATCTGACACCGAGCG
AAAATGCGCAGAAATACTTCAAAAAATACAACAAAATGAAACACGCCAAA
GTGGAAATTAGCCATCAGATTAGCCTGAACAAAGAAGAGATCGATTACCT
GGAAAACATTATCCTGAGCATCGAAAATTGTGAAAATCTGGCAGAACTGC
AGGACATTAAAGAGGAACTGGCAAAAGTCGGTTATATCAAAACCCAGAAA
AAAAACAGCAAAAAAGAT
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Table S7.2 (continued) For E.coli optimized selected fibronectin binding domain sequences.

Domain name For E.coli optimized domain DNA sequence
Fib2MG1 AATGGTAGCGCAAAAAATCCGGTTCTGCCTCCGGTTGAAAAACTGGGTAA

AGGTCTGTATTTCTATGAAGTTGATCTGGCAGATACCCAGGGTAAAAGCG
ATAAAGAACTGCTGGATCTGCTGAAACAGAATGGCACCCAGAGCTATAAA
GCAACCATTAAAGTTTATGGTGCCAAAGATGGTAAACCGGATCTGACCAA
TCTGGTTGCCACCAAAGATCTGACCGTTAATCTGAAT

Fib2MG2 AATGGCATGGATAAAAATCCGGCACTGCTGCCGCTGGAAGGTCTGGCAAA
AGGTCAGTATTTCTATGAAGTTGATCTGAATGGTAACACCGTGGGTAAAG
ATGGTCAGGCCCTGCTGGAACAGGTTCGTGCAAATGGCACCCATACCTAT
CTGGCAACCGTTAAAGTTTATGGTGCCAAA

Fib2MG3 GATAGCGGTGCATATTTTGTTGAACTGAAACTGAGCGGTAACGATATGGG
TAAAAAAGTTCAGGTGATTGTGAACGGCAAAAAATTCAATCAGAGCAATG
CATATAGCGTGGCCGAAATTAGCAATTATGGTGTTGAA

Fib2MG4 AATGGCACCGCAAATAATCCGGCACTGCTGCCGGTTGAAGGTCTGGCAAA
AGGTCAGTATTTCTATGAAGTTGATCTGAATGGTAACACCACCGGTAAAG
AAGGTCAGGCCCTGCTGGATCAGCTGCGTGCAAATGGCACCCATACCTAT
CAGGCAACCGTTAAAGTTTATGGTAGCAAAGATGGTAAACCGGATCTGAG
CAATCTGGTTGCCACCCGTCAGGTGACCATTCGTCTG

Fib2Pos1 AATGGTGATGCAAAAAATCCGGCACTGAGTCCGCTGGGTGAAAATGTTAA
AACCAAAGGCCAGTATTTCTATCAGGTTGCACTGGATGGTAATGTTGCCG
GTAAAGAAAAACAGGCACTGATTGATCAGTTTCGTGCAAATGGCACCCAG
ACCTATAGCGCAACCGTTAATGTTTATGGTAACAAAGATGGTAAACCGGA
CCTGGATAACATTGTTGCAACCAAAAAAGTGACCATCAAAATCAAT

Fib2Pos2 AATGGCACCGCAAAAAATCCGGCACTGCCTCCGCTGGAAGGTCTGACCAA
AGGTAAATACTTTTATGAGGTGGATCTGAATGGTAACACCGTTGGTAAAC
AGGGTCAGGCACTGATTGATCAGCTGCGTGCAAATGGCACCCAGACCTAT
AAAGCAACCGTTAAAGTGTATGGCAACAAAGATGGTAAAGCCGATCTGAC
CAATCTGGTTGCCACCAAAAATGTGGATATCAACATCAAT
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Table S7.3 Clustal Omega (v 1.2.1) multiple sequence alignments of selected domain sequences that were retrieved 
from a 3.9 M gut gene catalogue [26] with HMMer search employing known fibronectin binding PFAMs.

Multiple sequence alignment of Fib1-type domains (retrieved with PF05833)

FIB1MG4      AICLQGVVGELAPQLTGSRIEKIQQPARDQIILLLRGSR---RLFLNAGANQPRIHLTEQ
FIB1POS1     GFFLHHMTEELRHELVGGRIQKINQPFEQELVLQIRSNRKSLKLLLSAHSVFGRVQLTDT
FIB1MG1      GFFLHHMVQELKAELLSGRIQKINQPFEQELVLQIRGNRKNQKLLLSAHSVFGRIQRTQT
FIB1MG3      GITIANLVWEFKHTLEGGKIAKIAQPEKDELLITIKNNKENYRLQISASASLPLIYLTAN
FIB1POS2     GLVIHSIVDELSSKLTGGKIDKIHQPEDDEVIFNIRNNKENFRLVLSASASNPRVYLTSN
FIB1MG2      GLVIHSIVDELHKKLLGGKIDKVYQPENDEVVLHIRNNKENFKLVLSCSASNPRVYLASD
             .: :  :. *:   * ..:* *: **  ::::: :: .:   :* :.. :    :  :  

FIB1MG4      L-RDNPSQPPMFCMLLRKHLSGGIIESVRQEPLERVVTLTVLASDEMGERSRFTLVWEGM
FIB1POS1     T-FENPAVPNTFIMVMRKYLQGAVIEAIQQVENDRILEISVSNKNEIGDSVAVTLVIEIM
FIB1MG1      N-FENPAFPNTFIMVMRKYLQGAVIEGIEQMENDRILEIRVSNKNEIGDAISVSLMIEIM
FIB1MG3      N-KTSPLTAPNFCMLLRKHIGSARIISVKQPGLERILEFELEHLDELGDLCRKRLIVEIM
FIB1POS2     YQKENPLKAPMFCMLLRKYIQGGNIVEISQIGFERIIKISVESLDELKEKTVKNIMIEIM
FIB1MG2      YKKENPINAPMFCMLFRKYIQGGNIVNVSQVDFERIIKISVESFDELKEKTTKDIIIEIM
                 .*     * *::**:: .. *  : *   :*:: : :   :*: :     :: * *

FIB1MG4      PRRANLILCD-RDGRIIDCLRRVDLEAEQDRQVLPGLFYRLPTRQDKRSPLSVTEEEFAA
FIB1POS1     GKHSNIILLDKASGKIIEAIKHVGFSQNSYRTILPGSTYVAPPQTGSLNPFTVGDEKLFE
FIB1MG1      GKHSNIILLDRTSNKIIEAIKHVGFSQNSYRTILPGSTYIAPPKTDAVNPFTIGDEALFA
FIB1MG3      GKHSNIIFCK-EDGTIIDSIKHVSASMSSVREVLPGREYFIPQTIAKENPLE-VTEDVFK
FIB1POS2     GRHSNIIITHGEENKIIDSIKRVPFSISRVRQVLPGHDYSLPPEQNKLNPLDDISKDLFI
FIB1MG2      GRHSNIILTHSSNNKIIDSAKRIPPSVSRVRQILPGQTYVLPPKQDKLNPITDISLNSFV
              :::*:*: .  .  **:. :::  . .  * :***  *  *      .*:         

FIB1MG4      LLGRAAPDAPLDDWLLDTFTAISPLVARELTVRACGSTDAP-----ASQGNALWDVFSRW
FIB1POS1     ILQTE---EIEPKRLLQIFQGLGRDTATELSGRLTT---------------DRLKTFRAF
FIB1MG1      LLHKE---ELSPKNLQKCFQGLGRDTAQELAKRLETD--------------EKLKTFRAF
FIB1MG3      NCIST-SPTSVQKALYGHLTGISPIIAEELCHLASIDSDRSATELTEPELIHLYHTFRLM
FIB1POS2     KNLEE-LEGPIFKSIYSRFLGISPIIAKEICYRAGVNQNAIIKDISDEQFDSLHKVFCNL
FIB1MG2      DTLSS-FNGPIFKAIYSKFLGISPVIAKEICFRANIDENLLVSEISSDDISKIYREFHNL
                         . :   : .:.   * *:                          *   

FIB1MG4      QKDVNENTFTPTLIKRNGS--LADFTYGLVTQYGTYA-ETEVYDSFSHLLDDFYEKREQA
FIB1POS1     FASPTQPSLT-----------EKSFSALLF---SDSK--T-QMSTLSELLDTFYKDKAER
FIB1MG1      FEAPSDPHLT-----------TKSFSAIPF---ADAT--SQTFETLSDLLDDYYRDKAER
FIB1MG3      MEDVKDGHFSPSVIYDGDT--PIEYASVPLSCYDSKGYCRKAYDSISALLENYYASRDTI
FIB1POS2     FNDINSNKYSPCIIIDKKVDKVVDFSCINLTLFSDLSYI--NKDSMSRILEDFYRTKDIK
FIB1MG2      FKYIKDNIYNPCMVIDTSIDKVLDFSCINLSLFSNLSII--NDDSISKILENYYATKDIK
                 ..   .             .::   .             .::* :*: :*  :   

FIB1MG4      ERVKQKGRDLLKTATTARDRVRRKLAAQEKELAACLDRDHLRICGELITANLYRMERGQS
FIB1POS1     YRVNQQASELIRRVENELEKNRKKLGKQEDELLATEKAEEFRQKGELLTTFLHQVPNDQD
FIB1MG1      DRVQQQASELIRKVENDLEKNRKKLAKQEAELAATDNAEEFRQKGELLTTFLHQVP----
FIB1MG3      TRIRQKSSDLRRIVQTALERSCKKYDLQLKQLKDTEKREKYRIYGELLNTYGYELKGGEK
FIB1POS2     DRINQRSSDLKKSISVKLDRLYNKLKKQEEELSESENADIYKIKGELITSYIYMVEKGME
FIB1MG2      DRIHQRSSDLRKSISIKLDRLYNKLNKQEKELIESENADIYKIKGELITSYIYMIEKGME
              *:.*:. :* :      ::  .*   *  :*    . :  :  ***:.:  : :     

FIB1MG4      RLTAQNYYDENCADVDIPLDVRLSPQENAARYFKQYAKAKTAEKYLTAQLQRGREELQYL
FIB1POS1     QVELDNYYTG--EKILITLDKALTPNQNAQRYFKRYQKLKEAVKHLTSLIEETRTTILYL
FIB1MG1      ------------------------------------------------------------
FIB1MG3      SFKCINYYDN--KEITIPLDPQLTARENAQKHFDKYNKLKRTYEALSQLTKETKAEVDHL
FIB1POS2     SIEVANFYDENCNDVTIELNKNLTPSENAQKYFKKYNKMKHAKVEISHQISLNKEEIDYL
FIB1MG2      SVEVANFYDPEYKNIKISLNTNFTPSENAQKYFKKYNKLKTAKKEITSQMEITKEEIDYL
                                                                      

FIB1MG4      ESVLQELAQAESEQDFNDIRTELTDGGYLRGRGKKQ------
FIB1POS1     ESVETALAQA-SLTEIAEIREELIQTGFIRRRQREKIQKRKK
FIB1MG1      ------------------------------------------
FIB1MG3      ESVSSALDIALEENDLVQIKEELMEFGYVKKRRANEKRPK--
FIB1POS2     ENIILSIENCENLAELQDIKEELAKVGYIKTQKKNSKKD---
FIB1MG2      ENIMLSIENCENLAELMDIREELGKVGYLRSKNNSKKETK--

Multiple sequence alignment of Fib1-type domains (retrieved with PF11966)

FIB2MG4      -----------------DSGAYFVELKLSGNDMGKKVQVIVNGKKFNQSNAYSVAEISNY
FIB2MG1      NGSAKNPVLPPVEK--LGKGLYFYEVDLAD-TQGKSDKELLDLLKQNGTQSYKA-TIKVY
FIB2POS1     NGDAKNPALSPLGENVKTKGQYFYQVALDGNVAGKEKQALIDQFRANGTQTYSA-TVNVY
FIB2POS2     NGTAKNPALPPLEG--LTKGKYFYEVDLNGNTVGKQGQALIDQLRANGTQTYKA-TVKVY
FIB2MG2      NGMDKNPALLPLEG--LAKGQYFYEVDLNGNTVGKDGQALLEQVRANGTHTYLA-TVKVY
FIB2MG3      NGTANNPALLPVEG--LAKGQYFYEVDLNGNTTGKEGQALLDQLRANGTHTYQA-TVKVY
                               .* ** :: *     **. : :::  : * :.:* .  :. *

FIB2MG4      GVE--------------------
FIB2MG1      GAKDGKPDLTNLVATKDLTVNLN
FIB2POS1     GNKDGKPDLDNIVATKKVTIKIN
FIB2POS2     GNKDGKADLTNLVATKNVDININ
FIB2MG2      GAK--------------------
FIB2MG3      GSKDGKPDLSNLVATRQVTIRL-
             * :
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Table S7.4 Genes sequences of which the selected metagenomic domain sequences for fibronectin binding assay.

Description Max 
score

Query 
coverage (%)

E-value Identity 
(%)

Accession

Fib1MG1 dihydroorotate dehydrogenase 
[Streptococcus parasanguinis]

674 100 0 100 WP_041818310.1

Fib1MG1 fibronectin-binding domain 
protein [Streptococcus 
parasanguinis ATCC 15912]

674 100 0 100 AEH55860.1

Fib1MG2 hypothetical protein [Clostridium 
dakarense]

942 99 0 79 WP_042271714.1

Fib1MG3 putative uncharacterized protein 
[Clostridium sp. CAG:7]

1138 100 0 93 CCY41046.1

Fib1MG3 hypothetical protein [[Clostridium] 
clostridioforme]

1006 99 0 81 WP_027643980.1

Fib1MG4 MULTISPECIES: hypothetical 
protein [Oscillibacter]

679 99 0 59 WP_036630417.1

Fib2MG1 & 
Fib2MG2

cell wall anchor protein 
[Streptococcus sp. SR4] 

719 100 0 100 WP_037611629.1

Fib2MG3 YSIRK signal domain/LPXTG 
anchor domain surface protein 
[Streptococcus vestibularis]

522 100 6E-179 95 WP_003096693.1

Fib2MG4 hypothetical protein 
[Coprococcus comes]

496 94 9E-163 43 WP_008375477.1
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Table S7.5 Protein coding sequences with (mainly predicted) FbpA domains (PF05833). Adapted from [http://pfam.xfam.
org/].

FbpA copies Total sequences Architecture sequences per 
architecture

1 1495 FbpA, DUF814 836
FbpA, DUF814, DUF3441 374
FbpA 246
FbpA, DUF3441 12
FbpA, DUF814, zf-CCHC, DUF3441 12
HATPase_c, FbpA, Topo-VIb_trans 11
FbpA, DUF814, DUF3441, RRM_1, RRM_5 x 2 2
FF x 3, FbpA, DUF814, DUF3441 1
FbpA, DUF814, DUF3441, Sua5_yciO_yrdC, SUA5 1

2 332 FbpA x 2, DUF814 266
FbpA x 2, DUF814, zf-CCHC, DUF3441 28
FbpA x 2, DUF814, DUF3441 23
FbpA x 2 8
FbpA x 2, DUF3441 3
FbpA x 2, DUF814 x 2, zf-CCHC, DUF3441 2
Clat_adaptor_s, FbpA x 2, DUF814, DUF3441 1
FbpA x 2, DUF814, DUF3441, Sua5_yciO_yrdC, SUA5 1
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Table S7.6 Protein coding sequences with (mainly predicted) SSURE domains (PF11966). Most architectures contain 
predicted trans-membrane and/or cell wall anchoring domains, indicating that their subcellular localization is likely on the cell-
surface. Architectures shaded in grey are currently without solid trans-membrane or cell wall anchoring domain predictions. 
Adapted from [http://pfam.xfam.org/].

SSURE 
copies

Total sequences Architecture sequences per 
architecture

1 213 SSURE 111
YSIRK_signal, SSURE 96
SSURE, Gram_pos_anchor 5
YSIRK_signal, SSURE, Gram_pos_anchor 1

2 360 YSIRK_signal, SSURE x 2 296
SSURE x 2 56
YSIRK_signal, SSURE x 2, Gram_pos_anchor 5
SSURE x 2, Gram_pos_anchor 3

3 112 YSIRK_signal, SSURE x 3 104
SSURE x 3 7
YSIRK_signal, SSURE x 3, Gram_pos_anchor 1

4 44 YSIRK_signal, SSURE x 4 27
YSIRK_signal, SSURE x 4, Gram_pos_anchor 15
SSURE x 4 2

5 18 YSIRK_signal, SSURE x 5 16
SSURE x 5 2

6 7 YSIRK_signal, SSURE x 6 6
SSURE x 6 1
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General discussion
Healthy human adults differ in their microbiota composition as they all have a personalized 
microbiome. This variability combined with the sheer amount of bacterial species present in 
healthy humans make the gut microbiota a complex multidimensional entity. Microbiota 
characterization and biomarker discovery requires high-resolution multidimensional and 
quantitative analyses, such as phylogenetic microarrays or community-wide DNA sequencing 
approaches, while as a consequence of the individual diversity large sample sets are commonly 
required to allow statistically significant observations for hypothesis construction and testing. 
Different approaches have been explored to address the huge subject-specific variability by 
stratifying microbial communities based on different types of stable patterns within the 
microbiota community structures, such as enterotypes as described below [1-3]. Stratification 
based on these structures could allow for a simplification of the resolution and depth required 
to determine the microbiota composition, and thereby lower the barriers encountered in 
development of personalized diets, medication and treatments for every (health related) area 
where the microbiota plays a role. 

This thesis aimed to describe the several factors that are known to shape or modulate 
the gut microbiota in composition and functioning: host genotype (and early life imprinting) 
and specific dietary components, such as prebiotics and probiotics. For this purpose, a high-
throughput phylogenetic microarray platform (HITChip) was utilized in various trials and 
cohorts. Additionally, the metagenome data sets and expansion thereof that were generated 
by the MetaHIT (Metagenomics of the Human Intestinal Tract) project during the course of 
this thesis were investigated in more detail to gain more insight into the association between 
the gut microbiota and host energy homeostasis. For clarification of the content of the next 
sections, these metagenomic data sets are shortly described above (Table 8.1). DNA extracts from 
independent aliquots of the same fecal samples used in the 3.3M catalogue, GS metagenome 
(only for the European samples), the Inter99 metagenome, and the 3.9M catalogue, were 

Table 8.1 Metagenome data sets generated by the MetaHIT project.

Data set name Subjects Comments Ref.
3.3M catalogue*,I - 85 Danish subjects (Inter99 cohort [5])  

- 39 Spanish subjects adults with IBD
Illumina GA sequences were assembled 
and 3.3 million unique genes were predicted

2010 
[6]

Global Sanger (GS) 
metagenome S

- 17 publicly available non-European data sets 
- 22 newly sequenced European subjects 

2 of the publicly available sets were 
performed with pyrosequencing

2011 
[1]

Inter99 
metagenome I

- 292 Danish subjects New Illumina GA reads mapping on the 
3.3M gene catalogue without de novo 
assembly at the time of publication.

2013 
[2]

3.9M catalogue I - 177 Danish subjects 
- 141 Spanish subjects

Expansion of  3.3 million gene catalogue 
with new Illumnia GA reads from additional 
samples to generate a new non-redundant 
3.9 million gene catalogue

2014 
[7]

*) first milestone from the MetaHIT project; IBD) inflammatory bowel disease; I) Illumina Genome Analyser (GA) technology used as sequencing 
method; S) Sanger-sequencing technology (although two of the publicly available sets were performed with pyrosequencing)
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gathered and analyzed using the Human Intestinal Tract Chip (HITChip) microarray platform 
[4]. To complement these studies that addressed the associations between the gut microbiota, host 
genotype and host energy homeostasis, the development of functional predictions based on data 
generated from DNA-based profiling approaches was another focal point for this thesis. 

Impact of the host genotype
The importance of the host genotype, which is known for about twenty years (reviewed in Chapter 
2), was further illustrated in Chapter 3 with a cohort of monozygotic twins were several bacterial 
groups appear to be consistently related to (structurally conserved) the host genotype. In a recent 
16S rRNA gene amplicon sequencing study, which investigated the microbiota of 416 twin pairs 
from the TwinUK cohort showed that for the majority (63%) of the Operational Taxonomic 
Units (OTUs) the variation could best be explained by genetics [8]. Especially the members of the 
Ruminococcaceae and Lachnospiraceae families showed a high degree of hereditability, whereas the 
Bacteroidetes members were more associated to environmental factors. These findings match very 
well with the list of structurally conserved genus-like groups reported in Chapter 3. Alongside the 
influence of the host genotype twin siblings discordant for BMI allows the association between 
the gut microbiota and host energy homeostasis to be addressed as well. Both the work presented 
here and the later TwinUK cohort study assessed this association and both studies, although 
only the latter showed that the members of the novel Christensenellaceae family had the highest 
association to the BMI measurements, reported enrichment of the members of the Oscillospira 
taxon in lean(er) individuals. 

Ecosystem structure recognition 
The first community-wide stratification method originated from the analysis of global fecal 
metagenomes by Sanger sequencing and suggested that the human gut microbiota could be 
categorized in three more prevalent community structure types, designated enterotypes, which 
appeared to be unrelated to health status, body mass index, age, gender or demography [1]. 
Multidimensional cluster analysis followed by a between-class analysis had identified the first 
two enterotypes by a clear enrichment of Bacteroides and Prevotella, while the third enterotype 
remained less clearly defined but was mostly characterized by a relative increase in members of 
the Ruminococcus genus. This finding was based on 39 fecal samples from individuals from six 
different countries, including 22 samples that were newly sequenced and of European origin. 
Based on this sample set, it could be shown that the driving genera for the discrimination of the 
three enterotypes also discriminated the phylogenetic microarray (HITChip) datasets [1](Figure 
8.1 - inset). 

After the introduction of the enterotype concept, popular press and numerous subsequent 
publications jumped on the idea of distinct microbiota types. It is good to keep in mind that 
the original publication defined enterotypes as “densely populated areas in a multidimensional 
space of community composition” which are “not as sharply delimited as, for example, human 
blood groups”. Indeed most investigators currently favor the concept that the microbiota 
composition distribution among individuals resembles more a continuum, with a pronounced 



8

 Chapter 8 

226

polarity along Bacteroides and Prevotella gradients [9-12], potentially driven by long-term dietary 
habits [13]. However, the putative Ruminococcus-dominated enterotype, which from the start 
appeared to have the least clear boundaries, seems much less pronounced [9-11, 13]. Enterotype 
determination on a more extensive sample set, which included the 396 Danish and Spanish 
subjects of the 3.9M catalogue [7], did not succeed to clearly discriminate distinct microbiota 
types. Similarly, an independent HITChip analysis of the same 396 European subjects, following 
the same approach as in the original publication, did not display clearly distinct microbiota types 
either although some clustering was observed (Figure 8.1). Moreover, based on the HITChip 
data of the monozygotic (MZ) twin study (Chapter 3) the concept of an imprinted structural 
core was introduced, which proposes that for several genera in our gut microbiota the ratios 
of the signals within these genera are conserved by host genotype and/or early life imprinting 

3
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1

3

1

1

2

3

Figure 8.1 Between class analysis, a supervised method which incorporates the outcome of the enterotype clustering 
of the sequencing data, on HITChip data from 396 European individuals that were analyzed for the 3,9 million gene 
catalogue by Nielsen and co-workers [7]. Box inset figure top right displays the between class analysis on the HITChip data 
of 22 European individuals as reported by Arumugam and co-workers [1].
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[14]. This structural conservation does not necessarily imply that the genera are present at equal 
relative abundances in each MZ twin pair, since for example the abundance of bacteria related 
to Oscillospira guillermondii is significantly different between twin siblings that have discordant 
BMIs [14]. Notably, most bacterial groups that were identified as enterotype-drivers are among 
this imprinted structural core [14], implying that the driving genera for each of the enterotype are 
conserved and that their abundances may move along a gradient as well. Indeed, in a small scale 
(n=5) longitudinal study the subjects appeared to switch from one enterotype to another over 
within a decade [15]. 

The ability of the gut microbiota to switch between states was investigated in more detail 
by Lahti and co-workers in a recent large scale HITChip meta-analysis [3]. In this meta-analysis 
the microbiota composition in samples of more than 1,000 healthy western subjects was 
assessed and five distinct bacterial groups that display a robust and independent bimodal relative 
abundance distribution were identified: Dialister spp., relatives of Bacteroides fragilis, a Prevotella 
subgroup (consisting of the relatives of Prevotella melaninogenica and P. oralis), and two groups 
of uncultured Clostridiales (UCI and UCII) [3]. The bimodality of these groups implies that 
they are either present in relatively high abundance levels or in very low abundance, or nearly 
absent, in the vast majority of samples. Bimodality of these five microbial groups appeared to 
be independent of (short-term) dietary interventions, but their alternating abundance-scores 
were associated to several host characteristics such as age and health-related aspects like BMI [3]. 
Intriguingly, the bimodal groups UCI and UCII were also identified to be part of the bacterial 
co-occurrence network that was present at lower levels in the heavier sibling of the monozygotic 
twins discordant for BMI (Chapter 3). It was proposed that bi-stable bacterial groups can act 
like “tipping elements” that have significant diagnostic potential, and may even be considered as 
“bacterial dipswitches” that could be targeted in future therapeutic approaches [3].

As a side note, analogous to most investigations into robust microbiota markers for host 
health status, the work by Arumugam and co-workers that resulted in the recognition of the 
enterotypes did not take into account the possible variations in macro-physiological diversity of 
human gut functions among individuals [1]. Macro-physiological factors, and in particular gut-
transit time, could substantially impact on the microbiota composition and is in most studies 
either ignored or not assessed due to practical limitations. Recent work by Vandeputte and 
co-workers used self-reported Bristol Stool Scale classification as a proxy for gut transit time 
[16], and showed that stool consistency was found to be strongly associated to all frequently 
used microbiota markers, including species richness, Bacteroidetes to Firmicutes ratios, and 
enterotypes, emphasizing the importance of gut-transit time as a determinant of microbiota 
composition. A later independent study in a larger cohort, covering a wide age range, reported 
strong associations between gut microbiota composition and stool consistency [17]. Even though 
no relation between bacterial gene richness and stool consistency was observed in this study [17], 
the results further emphasize the importance of gut-transit with respect to the gut microbiota 
profile.
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Ecosystem richness and diversity
A quantitative metagenomics study by Le Chatelier and co-workers [2] presented another 
approach for stratification, or ecosystem structure recognition, by utilizing the bacterial richness 
that seems to be much more accepted as compared to the enterotype concept, probably due to its 
more obvious relevance in a microbial ecosystem context [18]. Bacterial richness of the human gut 
microbiome has already been proposed to be an important characteristic in health and disease, 
and low richness has been associated with inflammatory bowel disorder (IBD) [6, 19, 20], with 
elevated inflammatory status in elderly individuals [11] and reduced body weight control in obese 
individuals [21]. 

It was shown that the bacterial gene numbers in 292 Danish individuals displayed a 
bimodal distribution, which was confirmed with bacterial probe counts on the HITChip (Figure 
8.2). Both methodologies showed a high level of agreement as shown by the high correlation 
between the logarithm of the gene counts and logarithm of the probe counts (Pearson’s r=0.8; 
Figure 8.2), as well as by the high concordance of 88% that was observed for the classification 
to high or low richness of the samples [2]. While the abundance of 120,723 bacterial genes 
significantly differed when subjects were separated on basis of bacterial richness, only 15,894 
genes differed when subjects were separated on their BMI. This remarkable result indicates 
that the gut microbiota of high- and low-gene count individuals is more distant than the gut 
microbiota of lean and obese individuals. Importantly, obese individuals with a low microbiota 
gene richness, irrespective of their precise BMI, also had an altered serum composition, including 
elevated levels of leptin, decreased levels of adiponectin, and displayed decreased insulin 
resistance, hyperinsulinaemia, increased blood-levels of both free fatty acids and triglycerides, 
decreased HDL-cholesterol and a more pronounced inflammatory phenotype (as determined 
by elevated C-reactive protein and higher white blood cell counts), in comparison with obese 
individuals with high bacterial gene richness [2]. Taken together, this implies that subjects low 
in bacterial richness are prone to encounter metabolic disturbances that increase their risk for 
the development of pre-diabetes, type-2-diabetes and ischemic cardiovascular disorders [22, 23]. 
Consequently, such gut metagenome alterations could be employed to recognize subsets of adults 
with different metabolic risk profiles, which may contribute to the stratification and resolution 
of some of the heterogeneity associated with adiposity-related phenotypes. Not included in the 
published study [2] is the observation that the low gene count subjects were found to be enriched 
in the Bacteroides enterotype, which is in line with the observation that a high animal fat intake 
is correlating with this enterotype in an US cohort [13].  

Earlier studies like the one reporting the first relation between obesity and microbiome 
[24] did not focus on richness in relation to obesity or host energy homeostasis. However, obesity 
and high fat high sugar diets have been linked to a low diversity of the gut microbiota [25, 26]. 
In these studies diversity did not show a strong bimodal distribution like the bacterial gene 
richness and definitely not as many and strong correlations to the various metabolic markers. In 
the monozygotic twin cohort discordant for BMI overall microbiota richness could also not be 
linked to host energy homeostasis either, although the diversity of the members of Clostridium 
cluster IV was found to be lower in the heavier twin siblings (Chapter 3). Stratification methods 
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within obese individuals make sense, since despite their shared excessive body weight they are 
very different in terms of health status assessment and risk for co-morbidities. Correspondingly, 
the pathophysiology and therapeutic responsiveness in human individuals suffering from obesity 
is highly heterogeneous. Interestingly, an almost perfect stratification of subjects with high and 
low gene-richness can be achieved on basis of only very few bacterial species [2], most of which 
are detectable on the HITChip and their microarray signals show a high level of correlation to 
the sequence-based composition profiling. The latter implies that simpler molecular diagnostics 
targeting these bacterial species may provide a scenario for rapid identification of individuals 
that are at risk to develop common morbidities. Furthermore, the significance of the observed 
gene richness variation among individuals is supported by the notion that the gut microbiota 
appears rather stable over time during adulthood [27], indicating that microbiota richness may 
very well be an individual-associated characteristic with limited dynamics. Moreover, a dietary 
intervention resulted in an increased bacterial gene richness and an improved clinical phenotype 
overall, but was less effective, at least for inflammatory parameters, in subjects classified with low 
richness prior to the intervention [28]. Notably, the subjects with a low bacterial gene richness did 
report to consume a diet low in fruits, vegetables, and fish compared to the subjects with a high 
bacterial gene richness [28], which suggests that richness is affected by long-term dietary habits. 
Nevertheless, bacterial richness seems to provide some insight into the highly heterogeneous 
responsiveness of obese individuals with respect to treatment programs.
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Figure 8.2 Correlation of (logarithmic) metagenomic gene counts and (logarithmic) HITChip probe counts in 292 
Danish individuals, Pearson’s r=0,8. DNA samples for HITChip and metagenomic analysis came from different aliquots of the 
same sample. The “low probe count” (blue) and “high probe count” (red) assignment has high concordance of 88.0% with the 
independent gene count assignment to the low and high bacterial richness groups. Inset: HITChip probe count distribution over 
292 Danish individuals.
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Subject-specific responses and bacterial co-occurrence networks
The subject specific responsiveness observed in obese individuals, both in terms of metabolic 
parameters and gut microbiota composition, is not a unique observation in the field. Most 
studies tend to indicate that there is only a small overlap in the gut microbiota composition 
between human adults [27, 29, 30]. Hence it is not surprising that human individuals display highly 
variable metabolic and gut microbiota composition responses to dietary interventions [31-33]. 
Although most dietary responses appear to be unpredictable, at least with current knowledge, 
some examples of predictable outcomes are known. For instance, it has been reported, and 
confirmed in this thesis in Chapter 5, that the effect of dietary FOS supplementation in adults 
is inversely correlated to the Bifidobacterium levels at baseline, i.e. individuals with low levels of 
Bifidobacterium show an high increase whereas individuals with high levels of Bifidobacterium 
show an decrease upon FOS consumption [34, 35]. A meta-analysis of three dietary interventions 
identified several bacterial taxa, mostly Firmicutes, of which the baseline levels could predict 
the responsiveness of the gut microbiota as well as serum cholesterol measurement following 
the interventions [36]. Since the gut microbiota composition is often described as stable in time 
[27, 29, 30], the baseline gut microbiota may be an essential criterion to achieve more successful 
nutritional and pharmaceutical treatments of metabolic disorders [31, 36, 37].

This thesis described two different dietary interventions, one of which was a supplemented 
multi-species probiotic in a clinical trial with IBS patients and showed no consistent drastic 
shifts in the bacterial composition yet showed an altered bacterial co-occurrence network that 
was unique for the probiotic consuming patients (Chapter 4). The other dietary intervention 
was the above mentioned FOS supplementation in healthy individuals and the consumption 
of this prebiotic did cause consistent shifts in the bacterial composition but also a strong re-
orientation of the bacterial co-occurrence networks in the participants (Chapter 5). Moreover, in 
a recently published study where the diets of African Americans and African were “swapped” for 
(a mere) 2-weeks and it was shown that the microbiota in both groups displayed vast changes in 
their co-occurrence network structures and fecal metabolomes [38]. Additionally, these network 
changes were accompanied by significantly altered levels of mucosal biomarkers of colon cancer 
risk [38]. These three dietary intervention studies all strongly suggest an individual specific re-
alignment of the microbiota was caused by the intervention, i.e. the microbiota composition 
changes appear minimal when assessed over all participants yet co-occurrence networks display 
a restructuring which is likely to have consequences for the activity and interactions between 
microbial groups. In case of the “diet swap study”, the actual metabolome was shown to change 
drastically [38], supporting the host-organismal consequences of microbiota changes elicited by 
dietary interventions. For the prebiotic FOS consumption study the co-occurrence networks 
suggest that upon FOS consumption alternative butyrate production pathways becomes 
more dominant in the gut (Chapter 5). The benefit of such a co-occurrence network derived 
hypothesis was shown in Chapter 3 where the sample group enriched for a “butyrate producing” 
network showed higher butyrate levels as compared to the sample group that was enriched for a 
“primary fiber degrading” network. Both co-occurrence network derived hypotheses (Chapter 
3 and Chapter 5) were based on knowledge of cultured representatives of the taxa involved in 
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the co-occurrence changes, illustrating the potential of extrapolated function approaches for 
generating new and testable hypotheses. 

From structure to function
Extrapolating function based on microbiota composition is often employed in the field. Although 
such exercises currently yield enough testable hypotheses, there is much more to gain as the 
majority of the gut metagenome still encodes for unknown genes or represents uncultured and 
thus functionally non-characterized isolates [6]. The sections above already give two examples 
with remarkable findings that could still benefit from more knowledge of the unknown genes and 
genomes. In the study by Le Chatelier and co-workers 120,723 bacterial genes were significantly 
different in abundance between the subjects with a high and low bacterial richness [2]. Even with 
the very high resolution provided by this metagenome approach, the vast majority (>90%) of these 
differentially abundant genes could not be assigned to a known bacterial species with sequenced 
genomes. Similarly in the large meta-analysis by Lahti and co-workers the species-like groups 
corresponding to the genus-like groups displaying the most prominent bimodal distribution 
represented uncultured bacteria [3]. The potential use of these “tipping element” bacterial groups 
in diagnostics and therapy underpins the importance of their functional characterization to 
further our understanding of the possible causal relationship between the bimodal, alternate 
abundance states and host physiology. Moreover, the functional characterization of these 
(uncultured) species-like groups may also unravel the mechanism involved in their tipping-point 
status, and their conditional persistence and abundance in the gut system. A logical starting 
point for the genetic characterization of these groups may be found in mining gut metagenome 
datasets, which also contains genetic information of the uncultured isolates. 

Two different strategies to improve the knowledge gain from uncultured microbes and/or 
uncharacterized genes were presented in Chapter 6 and Chapter 7. Combining metagenomic-
species (MGS), which are defined as co-abundance gene groups with more than 700 genes, from 
metagenomic data with 16S rRNA gene abundance profiling as presented in Chapter 6 allowed 
assignment of 16S rRNA gene IDs on MGS and subsequently investigate the genetic potential of 
the genes within the MGS that correspond to 16S rRNA gene sequences of uncultured bacteria. 
The 13 most highly correlated MGS with an occurrence pattern among studied subjects that 
suggests their potential relevance in the context of host-health status, were further analyzed in 
Chapter 6. Interestingly these 13 MGS, assigned to uncultured isolates, are related to seven 
genus-like groups, five of which are part of the “primary fiber degrading” co-occurrence network 
identified in Chapter 3. The latter is perfectly in line with the general view that saccharolytic 
fermentation processes are an important core activity of a normally functioning gut microbiota. 
Despite these cultivation independent insgihts, in vitro culturing of representative isolates of 
the gut microbiota still remains a crucial step for functional characterization. However, the 
combinatory approach presented in Chapter 6 could eventually increase the success rate of 
culturing approaches by predicting, or excluding, nutritional and environmental requirements 
of yet uncultured gut bacteria. Besides the large number of uncultured microbes that are present 
in any ecosystem, another lack in our current understanding of ecosystems derives from the 
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fact that the vast majority of identified genes have predicted functions based on comparative 
sequence analyses with genes encoding validated functions. When the cultured isolates are not 
available functional metagenomics provides currently the only cultivation circumvention that 
allows the functional characterization of the protein encoded by an unknown DNA sequence. 
The approach presented in Chapter 7 provides a more direct functional characterization method 
for gene or domain sequences from (meta)genomic gene sets, making it a variation of the 
classic functional metagenomics approaches in which huge libraries are screened for functional 
properties of interest. 

Functional metagenomics
Currently there are two options for functional characterization of metagenomes available, i.e. 
functional screening of all clones from metagenomic expression libraries or employing (DNA) 
enrichment strategies before or during the expression library (for more detail see Chapter 1). 
The work presented in this thesis offers a third option: targeted cloning on basis of metagenome 
sequence mining in conjunction with an analytical characterization protocol (Chapter 7). This 
new approach appears to be a valid approach for selection and characterization of metagenomic 
sequences without functional annotation, with an added advantage of being precisely targeted 
towards specific domains of interest. In three of the four metagenomic Fib1-type domains (i.e. the 
fibronectin-binding domain PF08533, FbpA) the best hits from a BLASTP [39] analysis may only 
yield putative proteins and automated prediction methods may fail, but the fibronectin binding 
would still be a possible prediction when (manually) taking more hits into account. Although 
completely novel functional genes or domains are unlikely to be uncovered by this approach, it 
can still be expected to allow the expansion of the sequence space associated with current domain 
families and could fuel the characterization of subfamilies within current domains. What remains 
unanswered is where the limit of this approach is: “how distant from the known sequences can 
this approach go?”. Answers to this question are currently strictly speculative, and are probably 
varying per protein domain. 

A variation of the approach presented in Chapter 7 could be applied to focus on specific 
functionality, independent of an a priori domain selection, and potentially unique for an ecologic 
nice of interest. To mine for functions specific for the gut ecosystem, a metagenomic gene 
catalogue can first be filtered for genes that are unique or at least overrepresented in the gut 
ecosystem as compared to other ecosystems. Such a filtering was done on the first MetaHIT gene 
catalogue of 3.3 M genes by Qin and co-workers and yielded 150,475 rare core gut genes [6]. 
From this gene set approximately 67% were of unknown function as assessed with an orthologous 
group analysis performed with the eggNOG system [40]. These gut specific genes with unknown 
functionality were subsequently subjected to a LocateP [41] and an InterProScan analysis [42]. 
This resulted in a set of 1,925 genes encoding potentially surface expressed or secreted proteins 
that, due to one or more sequence signatures, were assigned to the following predicted functional 
classes: carbohydrate binding and/or breakdown (220 genes), protein binding and/or breakdown 
(266 genes), antibiotic/toxin resistance or production (202 genes), host-interaction (73 genes), 
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transporters (66 genes), lipid metabolism (94 genes), other (1,004 genes; oxi-reductases/
sporulation/transformation/signaling). 

In contrast to the approach presented in Chapter 7 the functionality of the obtained 
sequences per predicted functional class are likely much broader in scope, e.g. the carbohydrate 
binding genes are likely to bind various different type of carbohydrates. The carbohydrate 
binding and/or breakdown class was chosen to further investigate the use of the functional 
metagenome mining approach. From a carbohydrate perspective, diet-derived substrates 
contain complex carbohydrates and are depleted of simple sugars in the colon. In addition, 
the mucus barrier consisting of complex carbohydrate chains substituted on protein backbones 
is continuously produced by the host and after microbial degradation can serve as a source of 
carbohydrate substrates for growth for the gut microbiota. Consequently, carbohydrate binding 
and degradation is commonly considered to be a crucial capacity for microbes that persist 
and function in the colon. Whole-cell binding assays could allow identification, sorting and 
subsequent characterization of metagenomic clones containing bacterial genes encoding proteins 
which are involved in attachment to carbohydrates specific for the gastrointestinal tract. 

Analogously to the approach presented in Chapter 7 the genes encoding potential 
carbohydrate binding domains were synthetized with codon optimization for E.coli, and cloned 
in the pET24d-domain-AviHisC expression system. Following recombinant protein expression, 
cell-free extracts (CFE) were prepared as described in Chapter 7, and analysed by SDS-PAGE, 
revealing that four of the eight domains that were cloned were successfully produced to a 
detectable level. The recombinant protein containing CFEs of these clones were passed through 
a 0.45 μm filter and subsequently, utilizing the introduced His-tag, were purified with using 
immobilized metal-ion affinity chromatography (HIS-Select® Nickel affinity gel, Sigma-Aldrich). 
To identify the carbohydrate that could potentially be recognized by the expressed domains, the 
purified recombinant proteins were hybridized to the neoglycoconjugate (NGC) microarrays 
A and B, using standard conditions for binding and washing of the array (collaboration with 
the Glycoscience Group from the National University of Ireland in Galway). Fluorescently-
labeled anti-HisTAG antibodies (monoclonal anti-6X His IgG-CF640R; Sigma SAB4600167) 
were employed to detect binding of the recombinant protein to specific carbohydrates displayed 
on the NGC microarrays, revealing that only at very high concentrations of the recombinant 
protein, low-intensity binding to Gal-b-BSA could be detected for three of the recombinant 
proteins, which was likely non-specific, reflecting an artifact of array overloading. Moreover, 
the non-specific binding to linker controls (4AP-BSA and 4AP-HSA) for all samples tested 
indicated that non-specific binding for these samples was a significant consideration in these 
experiments. The lack of significant and specific binding to the saccharides displayed by the 
array may also indicate that the appropriate ligand is not represented in the saccharide panel 
on the NGC arrays. Nevertheless, the low intensity binding to Gal-b-BSA observed for one of 
the recombinant proteins (SG2-4) could be effectively inhibited by the addition of 100 mM 
Galactose to the hybridization buffer, suggesting that the observed Gal-b-BSA binding of this 
recombinant protein could be specific (data not shown). Similarly, concentration-dependent 
binding to Gal-b-BSA was observed with one of the other recombinant proteins (SG3-4), which 
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also gave the highest binding intensity among the proteins tested, although this was still quite 
low intensity (see above; Figure 8.3). These most promising recombinant proteins deserve further 
testing of their carbohydrate-binding capacity to draw more definite conclusions. Analogous to 
the Fib2-type domain, the carbohydrate binding sequences may be too narrowly defined and 
could require more of the neighboring protein sequence they derive from, to achieve appropriate 
folding and function, or may require tandem repeated domain elements to allow a multi-domain 
binding pocket domain to be displayed. Further expansion of the domain-groups to be targeted 
and their corresponding functional assays is needed to determine the potential of the approach 
applied in this thesis to evaluate the functional properties of gut-enriched domains.

Additionally, by adapting the magnetic bead based “fishing” protocol for binding 
functionality (Chapter 7), another enrichment strategy for expression libraries, by whole cell 
binding of the expression clones that gained a specific binding functionality, could be realized. 
Such an enrichment strategy that takes place after generating a metagenomic expression library 
has not yet been reported. This procedure would both reduce the number of clones that need to 
be characterized and it would simplify the initial setup and storage as the cloning host cells do 
not need to be plated immediately after transformation with the cloning vector, i.e. the initial 
clone library could be directly used. Proof of principle for such an enrichment assay was obtained 
utilizing a known protein which confers a whole-cell binding function to its natural host, i.e. the 
mannose binding protein, encoded by msa, of Lactobacillus plantarum WCFS1 [43]. Wild-type 
(wt) L. plantarum WCFS1 adheres to mannose due to the protein encoded by msa, while the msa 
mutant derivative (msa::cat) has lost this adherence capacity [43]. Mixtures of overnight cultures 
of WCFS1 and its msa::cat derivative, in starting ratios of 1:9 and 1:99, were subjected to several 
rounds of an enrichment procedure. In each round of this procedure the culture mixtures were 
incubated with biotinylated oligo-6-mannose, according to the method of Grun and co-workers 
[44], coupled to Streptavidin coated magnetic beads (M280, Invitrogen, same procedure as for the 
coupling of biotinylated fibronectin in Chapter 7). Half of the magnetic beads were separated 
from the culture mixtures and were inoculated into fresh MRS medium and grown overnight. 
To assess if enrichment for the wild-type (mannose adhering) strain occurred, the other half of 
the magnetic bead associated culture fraction obtained in each enrichment round was plated on 
MRS agar plates (allowing growth of both the wild type and its msa::cat derivative). Per MRS 
plate 100 colonies were transferred to MRS plates supplemented with chloramphenicol on which 
only the mutant strain can grow, to assess the relative abundances within the population of the 
wild-type and the msa mutant. The percentage of wild-type colonies obtained after each round of 
enrichment is shown in Figure 8.4, and these data indicate that after 3 to 4 rounds approximately 
90% enrichment was achieved. In this proof of principle experiment, the wild-type (WCFS1) 
cells could represent expression clones containing an insert that does encode for the function of 
interest, while the msa::cat mutant cells could represent the remaining metagenomic expression 
clones that exist within the complete library. Hence, such an enrichment strategy seems feasible 
for binding functions of proteins that are expressed at cell surface.
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The three approaches for functional characterization of metagenomes (discussed above 
and in Chapter 1) can be applied in complementary setups, and have a different potential for 
novel function discovery versus sequence assignment to function or domain definition. With the 
targeted mining as is presented in Chapter 7, the use of synthetic genes avoids the requirement 
for specific PCR templates to obtain the desired sequences, which intrinsically also allows codon 
optimization to facilitate expression in the chosen expression host. Moreover, the tags that can be 
introduced via the cloning vector facilitate downstream characterization of the expressed protein 
or domain. For instance the C-terminal Avi-tag introduced to the fibronectin binding domains 
(Chapter 7) allows the recombinant protein to be biotinylated, which facilitates its fixation on 
Surface Plasmon Resonance based sensors that allow quantitative determination of its binding 
capacity. A drawback of the approach presented in Chapter 7 may be that it is quite laborious 
and time consuming, and requires multiple controls in each subsequent step of the procedure, 
which makes the approach not readily compatible with high-throughput analyses. However, the 
alternative strategy that employs random cloning and functional screening of expression libraries 
requires high-throughput screening capacity to identify positive clones, which is in many cases 
not trivial to set-up. Still these random approaches have the potential to identify novel enzymes 
[45, 46], which is another aspect that is not achievable with the sequence mining-driven approach 
presented in this thesis. In conclusion, a combination, or sequential application, of random 
cloning combined with high-throughput screening, and a domain-function mining approach 
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Figure 8.4 The percentage WCFS1 wildtype (wt) after several rounds of  magnetic bead based enrichment on mixtures of 
overnight cultures of wt and msa::cat mutant. Starting ratios of wt to msa::cat were 1:9 and 1:99. In each round the mixtures 
were incubation with biotinylated oligo-6-mannose coupled to Streptavidin coated magnetic beads. The magnetic bead fraction 
was inoculated into fresh medium and grown overnight. Part of the magnetic bead fraction of each round was plated on MRS 
agar plates and per MRS plate 100 colonies were transferred to MRS plates supplemented with chloramphenicol on which only 
the msa::cat mutant can grow.
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could be a powerful scenario for the deciphering of relevant functional repertoires encoded 
within the microbiota of the intestinal tract.

Future perspectives
The ever-increasing association of the human gut microbiota and various aspects of human 
health and disease demands intelligent approaches to ultimately proof the biological causality 
of the reported associations. To be more precise in this “question on causality” framework it 
is crucial that this field proceeds towards understanding of particular bacterial functions in 
relation to aberrations of health and homeostasis. Microbiome derived molecular therapeutics 
is of interest for an ever-growing community of researchers spread over the globe. The latter can 
be questioned, or labeled as a “hype”, but current literature is amassing quite some examples 
that encourage molecular therapeutics based on knowledge of the microbiome. For example, the 
bacterial metabolite trimethylamine N-oxide (TMAO), which has gained a bad reputation as 
TMAO blood plasma levels are associated with cardiovascular disease [47]. Both the dietary lipid 
phosphatidylcholine and the red meat component l-carnitine were shown, in mice models, to be 
converted by the gut microbiota into TMAO [47, 48]. Hence it makes sense to assess and manage 
the microbiota in patients with cardiovascular disease that have high levels of TMAO. The 
observation that in the previously discussed diet swap of Native Africans and African Americans, 
a high urine TMAO level is negatively correlated to the abundance of Akkermansia muciniphila 
is for instance a relavant observation providing new directions for follow up studies [38]. Another 
example, from the pharmaceutical area, is the inactivation of a drug for cardiac arrhythmia 
treatment, digotoxin, by some Eggerthella lenta strains which encode for the so-called cardiac 
glycoside reductase enzymes [49]. Interestingly, these enzymes can be inhibited by dietary arginine 
supplementation. Therefore, for the patients that rely on digotoxin, it would be of interest to 
determine whether they harbor these Eggerthella lenta strains, or other microbes that have genes 
encoding for cardiac glycoside reductase enzymes in their genomes, with the intention to adapt 
their diet to suppress the presence or drug-inactivation activity of these microbes, or place these 
patients on an alternative therapeutic regime. Such examples nicely illustrate that compounds 
ingested by humans, dietary or pharmaceutical, can be converted by the gut microbiota into 
metabolites which can exert different biological effects compared to the original compound and 
suggests that (personalized) microbiome derived molecular therapeutics indeed are a sensible 
avenue to pursue and expand in the (near) future. To progress our understanding of the gut 
microbiota community that can facilitate microbiome derived molecular therapeutics, several 
adaptations to frequently used research strategies and techniques would be very beneficial to this 
research field. Some recommendations are discussed in the following sections.

Other gut inhabitants
This thesis as well as the main bulk of the published studies has focused on the bacteria and their 
genetic content. While clearly being the most abundant cellular organisms in the gut, bacteria are 
not the only micro-organisms and representatives from the other kingdoms of life, i.e. Eukarya 
and Archaea, have also been detected in the gut [50]. To date, detection of archaeal species from 
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two different phyla have been reported. Members of the archaeal phylum Crenarchaeota have 
only been reported in one study, but members from the archaeal phylum Euryarchaeota are 
frequently encountered [50]. From the Euryarchaeota, the methanogenic archaea are most 
abundantly present in the human gut [51-53]. While not as abundant as various bacterial species 
the methanogenic archaea may still play a key role in the gut as their conversion of carbon 
dioxide and hydrogen into methane impacts on the thermodynamics of the system and leads to a 
net reduction of gas volume. This may be important in the context of gastrointestinal complaints 
such as distension, which is a symptom of IBS. In line with this reasoning, the IBS cohort studied 
in Chapter 4 appeared to have four times less methanogens in their intestinal microbiota as 
compared to the healthy controls [54].

Compared to the Archaea, a more diverse set of organisms from the Eukarya kingdom have 
been reported to reside in the intestinal tract. Some of these eukaryote species, in particular 
Candida spp. [50], are well adapted to the conditions in the gut. Most eukaryote species in the 
gut, such as various yeast species [55] or filamentous fungi [56], are commonly only detected 
at low abundance levels and considering their most probable origin and/or instable temporal 
presence patterns, it is often assumed they are transient gut inhabitants that derive from normal 
or contaminated dietary constituents. However, for some individuals certain eukaryal intestinal 
parasites are suspected to be part of the normal gut microbiota repertoire [56]. Since infectious 
organisms may have pronounced and possibly long-term effects on the gut microbiota [57], future 
studies should not neglect eukaryal organisms with pathogenic potential even if they are not 
among the normal gut inhabitants.

Besides the cellular organisms in the intestinal tract, there seems to be another important 
biological entity which is frequently not investigated but likely the most abundant among 
the “micro-organisms”, i.e., the viruses. The collection of all viral (derived) entities has been 
designated the “virome” and consists of both host viruses and viruses that predate on cellular 
gut micro-organisms, including bacteriophages. It has become evident that the full scope of viral 
entities has not yet been determined. Remote homology detection a human gut metagenome 
has shown an enrichment of viral sequences among the genes that have no homologues in the 
database [58], which indicates that not all viral DNA has been detected with standard data mining 
methods, but also implies that there is significant proportion of viral DNA with unknown 
functionality. However, it appears from sequencing studies that bacteriophages represent the most 
dominant viral particles in the human gut [59] and it is suggested that they may even outnumber 
the bacterial cell population by one order of magnitude [60]. Moreover, due to technological 
improvements a rising number of new eukaryotic RNA viruses are being detected, suggesting that 
the knowledge on this part of the human virome is currently still underrepresented [61]. This huge 
amount of viral particles in the gut is very likely to have a potent influence on the community 
structure of the gut microbiota with respect to predator-prey interactions and horizontal gene 
transfer [62]. In fact, it is therefore well possible that the virome plays an important role in host-
microbe interactions. For instance, several lines of evidence have shown that the virome affects 
the microbiota composition and/or functioning that translates into an altered immune system 
status (for a review see [63]). Recently, an increase of the Caudovirales bacteriophage abundance 
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has been shown in IBD patients, further supporting a potentially important role of the virome in 
inflammatory disease states [64]. Additionally, evidence is increasing for viral presence in healthy 
subjects, which expands the conventional concept that the host merely responds to “fight the 
disease” [65, 66]. Hence, complete understanding of the gut microbiota in the context of human 
health cannot be completed without further exploring and understanding the role of the human 
virome.

Technological advances
Current community analyses could greatly benefit from a deeper taxonomic resolution, e.g. 
instead of only being able to detect E.coli it can of great importance to know if only the commensal 
strains [67] or also the Shiga toxin harboring strains [68] are detected. Both computational 
advances such as “oligotyping” [69] which identifies the most informative site in the 16S rRNA 
gene sequences to maximizes the resolution of the generated data, as well as methodological or 
technological advances that improve the quality and resolution of every sequence read obtained, 
like low-error amplicon sequencing [70], will improve 16S rRNA gene amplicon sequencing 
and allow discrimination of closely related taxa that ultimately could achieve single nucleotide 
resolution. However, random shotgun metagenomics is more preferable to investigate the gut 
community members as it could even allow the capture microbial evolution. In this community 
sequencing approach both computational approaches, such as co-abundance gene group analysis 
[7], and technological advancements, such as the newer generation of sequence technologies 
discussed below, will continue to improve microbiota profiling as well. Increasing sequence depth 
with the current generation of sequencing technologies may already improve single-nucleotide 
polymorphism detection and de novo assembly of contigs, but is costly and requires alternative 
sequencing strategies like the in depth sequencing of a subset of samples.

It should be emphasized that even if all microbial DNA can be sequenced confidently, now 
or in the near future, analysis of metagenomic gene sets has been frustrated by large amounts of 
genes that lack an annotation. The latter especially holds true for genes that have no homologues 
in the database, the so-called ORFans. These ORFans have been around since the first genomes 
were published and annotated [71] and do not seem to reduce by the exponential sequence 
increase of genomes and metagenomes [72]. Computational solutions are being developed and to 
date have provided two novel options: non-homology based or “guilty by association” methods 
and remote-homology detection. Various non-homology based functional annotation methods 
exist and some have already been applied to metagenomes [73, 74], although these methods work 
best on larger scaffolds or contigs (i.e., where more than one gene is present to allow genetic 
context associations), which is generally not achievable in metagenomic analysis of complex 
microbial communities when applying the current high-throughput, short-read sequencing 
methods. Remote-homology, often Hidden Markov Model (HMM) based, detection methods 
determine conservation profiles between families, rather than between single sequences [75, 76] 
and may boost automatic function prediction methods, but are computationally demanding. 
Nevertheless, one study analyzed over 35 million genes from three metagenomic data sets with 
remote homology detection and could infer functions onto approximately 15% of the ORFans 
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[58]. This is an impressive improvement, although it should be kept in mind that the predicted 
functionalities still require functional confirmation. Provided that such predicted functions can 
be experimentally tested, the approach presented in Chapter 7 could be adapted to serve as 
a predicted-function confirmation approach. For the remaining unknown ORFans functional 
metagenomic laboratory screening methods or direct cloning of the sequence into an expression 
host, both in combination with various functional screening assays, may be the only options 
for characterization. However, the throughput of functional screening assays will need to be 
increased in order to make this a feasible methodology to pursue in the future.

To date the commonly used sequence technologies, such as 454 pyrosequencing, SOLiD, 
or Illumina sequencing, are from so-called second generation high-throughput sequencing (SG-
HTS) methodologies. These SG-HTS technologies produce relatively short reads and are based 
on PCR amplification. Direct sequencing of the DNA molecule as they are isolated from in 
situ or in vivo samples, without PCR amplification and the corresponding bias risks, would 
greatly enhance the field of metagenomic research. With this in mind, the newest generation of 
sequencing technologies, the so-called third generation high-throughput sequencing (TG-HTS) 
technologies, focus on sequencing-by-synthesis [77], e.g., Helioscope Single Molecule Sequencer,  
Single Molecule Real-Time Sequencer, Single Molecule Real-Time (RNA Polymerase) Sequencer, 
Nanopore DNA Sequencer, and Multiplex Polony Technology, and do not require the initial 
PCR amplification step (for details see reviews: [77-79]). These technologies offer besides “low 
costs per base and increased sequence output” also significant conceptual advantages over the 
current generation sequencing technologies, including longer read lengths (1,000 bp and more), 
and do not require PCR amplification and can work with small amounts of starting material. 
The release of the PacBio RS II Single Molecule, Real-Time (SMRT®) DNA Sequencing System 
(Pacific Biosciences) enables long and high accuracy circular consensus sequencing (CCS), which 
has been compared with Illumina HiSeq with respect to random shotgun metagenomic analysis 
of a commercial biogas reactor community [80]. This comparison illustrates the potential of CSS 
by the genome assembly of two dominant phylotypes from the investigated community, which 
could not be achieved by HiSeq [80]. However, further improvements of the PacBio-like systems 
are needed to improve relative amount of high-quality reads over the currently large amount 
of poor-quality reads (“waste”), to ensure reliable application of the PacBio RS II system in 
metagenomic analyses. It is very likely that TG-HTS technologies will emerge that can improve 
contig assembly in metagenomic analysis, which will not only improve taxonomic resolution, but 
could also improve functional prediction due to its compatibility with the non-homology based, 
“guilty by association”, annotation approaches.

Towards microbiome-derived molecular therapeutics
Although there is a clear need to characterize the gut microbiota at (metagenomic) DNA level 
even further, DNA itself is not representative for actual functioning. A more direct assessment of 
functionality can be achieved with community wide transcriptomics, proteomics or metabolomics. 
Moreover, metatranscriptomics is the only methodology by which the “genetic” content of free 
RNA viruses can be assessed [81]. Combinations of meta-omics approaches with physiological 



8

 General discussion 

241

host (cell) parameters can unveil novel mechanisms behind host-microbe interactions. As, for 
instance, was shown for the microbial metabolite TMAO where: TMAO production from dietary 
components was measured by metabolomics; TMAO modulation of gene expression in liver cells 
was detected by qRT-PCR [47]. Interesting dynamics relevant for the gut microbiota functioning 
can be identified by combinations of metagenomics with an additional omics approach. A 
study that combined metaproteomics and metagenomics provided more insight into Crohn’s 
disease (CD), by not only confirming prior findings but also expanding towards new leads in 
the form of highly expressed, CD-specific, unknown proteins, that contribute to the further 
unraveling of the complex etiology in CD [82]. Proteomics allowed the identification of these 
CD-specific proteins, encoded by metagenomic genes of unknown function, and established 
their expression in situ and the potential importance in CD of these metagenomic genes that 
were previously annotated as “hypothetical proteins”. These findings underpin the imporatnce 
of protein characterization efforts to clarify the specific role of such proteins in the CD patient’s 
intestinal microbiota. Another study that combined metagenome and of the metatranscriptome 
analyses showed that biosynthesis of small molecules, such as tryptophan, was underrepresented 
among the transcribed genes relative to the encoded repertoire of genes, whereas methanogenesis 
genes of the archaea Methanobrevibacter smithii were highly enriched in the transcribed functions 
as compared to the metagenome [83]. Obviously, such selective expression of encoded functions 
would have been overlooked when only the metagenome would have been determined. Moreover, 
this combination of analyses provides insight in the specific activity profile of particular members 
of the microbiota, which for example, can confirm the microbe-microbe interaction hypotheses 
that come forward from co-occurrence network mining during dietary interventions (Chapter 4; 
Chapter 5; [38]). Further testing of such microbe-microbe interactions could then be performed 
in in vitro co-cultures, or employing in vitro synthetic communities. This kind of in vitro 
evaluation of bacterial interactions has already contributed to the understanding of the ecology 
within the gut, as for instance co-culturing of Eubacterium hallii and Bifidobacterium adolescentis 
in starch-containing media confirmed bacterial cross-feeding that allowed the conversion of 
the B. adolescentis metabolite lactate, into butyrate by the secondary fermentation by E. hallii 
[84]. A similar interaction is hypothesized to occur due to the re-arrangement of the microbiota 
structure in individuals consuming FOS (Chapter 5). Another example is the co-culturing of 
Roseburia spp. and Bifidobacterium species, which allows the Roseburia spp. to grow on FOS due 
to Bifidobacterium liberating a suitable growth substrate, i.e. fructose, during the breakdown of 
FOS and also results in butyrate formation [84, 85].

Finally, the ultimate way forward would be to have an integrative “ecosystems biology” 
approach that combines several omics technologies supplemented with physiological host 
parameters, such as the ecological model of small intestine proposed by Zoetendal and co-
workers [86]. The previously mentioned example of Eggerthella lenta strains and their possible 
metabolism of the drug digoxin nicely illustrates the potential of a multi-omics approach [49]. In 
that study, the realization that cardiac glycoside reductase enzymes can inactivate digoxin, that the 
corresponding genes were only present in certain Eggerthella lenta strains and show an expression 
pattern that can be inhibited by arginine, could only come from the applied combination of 
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metabolomics, strain level profiling, and metatranscriptomics [49]. By adding gut macro-
physiological parameters, such as gut transit time [15], and host cell responses in combination 
with a multi-omics approach will likely provide mechanisms for the majority of currently unclear 
associations of the host and its microbiota. Subsequently, well-defined interventions, taking into 
account the parameters mentioned above, may then allow scientists to address the causal relations 
between microbes and their host. It should be noted though, that our knowledge and insight in 
host-microbe interactions and our ability to modulate these interaction for the benefit of human 
health does require continuous improvement and development of computational tools in order 
to effectively mine the ever expanding data-sets that are generated in this field.  
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Summary
The gut microbiota is shaped by host genotype, early life imprinting, lifestyle and diet. Moreover, 
specific dietary components, such as prebiotics and probiotics, can have pronounced effects on 
the microbiota composition and functioning. The work presented in this thesis focused on 
studying the human gut microbiota, its association with host genotype (and early life imprinting) 
and host energy homeostasis, and how it is affected by prebiotic and probiotic consumption 
using 16S rRNA gene and metagenomics-based approaches.

Starting from the host, Chapter 2 aimed to describe the influence of our own human 
genotype. The importance of the host genotype was illustrated in Chapter 3 with a cohort of 
monozygotic twins, including a group of twins, the siblings of which were discordant for their 
Body Mass Index (BMI). An ever-increasing body of evidence that associates the gut microbiota 
with the energy homeostasis of its host has been reported. Results obtained from mice studies 
are clear though not massively reproduced, whereas in human studies the relation between the 
gut microbiota composition and energy homeostasis are contradictory, which is likely due to 
the heterogeneous study populations. In this work, the relation of the gut microbiota and host 
energy homeostasis was addressed with this setup that eliminated the confounding factors host 
genotype and early life imprinting, i.e. with the monozygotic twin siblings discordant for BMI. 
Relative abundances of genus-like groups could vary between co-twins but the signals within 
no less than 27 taxonomic groups, were significantly more similar between co-twin siblings 
compared to random unrelated subjects within this cohort. These results led to the hypothesis 
that several bacterial groups are structurally conserved by the host genotype, although the impact 
of early life (dietary) influences cannot be excluded as these twins were not separated at birth. 

Different types of dietary intervention can be used to modulate the gut microbiota. 
Treatment of Irritable Bowel Syndrome (IBS) with a multi-species probiotic consisting of 
Lactobacillus rhamnosus GG, Lactobacillus rhamnosus Lc705, Propionibacterium freudenreichi 
PAJ, and Bifidobacterium animalis BB12, was successful in reducing IBS symptoms. Chapter 4 
described how the multispecies probiotic did not induce consistent drastic shifts in the bacterial 
composition, but altered the co-occurrences between bacterial taxa, suggesting an individual-
specific re-alignment of the microbiota. Consumption of the prebiotic FOS did cause consistent 
shifts in the bacterial composition, described in Chapter 5. Moreover, also re-orientation of the 
bacterial co-occurrence networks was detected in FOS-consuming participants, which suggested 
that an alternative butyrate production pathway becomes more prominent in the colonic 
microbiota upon the consumption of FOS. The latter interpretation was based on knowledge 
obtained from cultured representatives of the taxa involved in the co-occurrence changes, 
illustrating the potential of extrapolated function approaches for generating new and testable 
hypotheses.

The importance of the knowledge gained with cultivation and characterization of isolates 
in laboratory settings, better known as “wet-lab” approaches, has always been important to 
understand the biology of those specific microbes and will likely remain so. However, most 
microbial groups in any ecosystem, including the gut, have only been identified based on a 
(partial) 16S rRNA gene sequence and are not represented by a cultured representative, which 
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hampers interpreting their role in the ecosystem. Chapter 6 and Chapter 7 aimed to provide 
starting points for combining molecular or sequence-based technologies with cultivation and 
characterization by wet-lab approaches. By combining 16S rRNA gene profiling and untargeted 
shotgun metagenomics Chapter 6 highlighted various uncultured organisms with an interesting 
occurrence pattern among studied subjects and provided several leads for media development 
that could enable future isolation and cultivation attempts, as well as targeting various uncultured 
organisms due to their interesting genetic potential. Using fibronectin-binding domains as a 
proof of principle, Chapter 7 illustrated a novel targeted approach to mine metagenomic gene 
catalogues and extract target genes of interest as well as a way to validate genes encoding proteins 
with predicted binding functions in vitro.
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Nederlandse samenvatting
Binnenin ons lichaam, in onze darmen, zit een enorme hoeveelheid aan eencellige organismen 
die bij elkaar een complex ecosysteem vormen. Dit ecosysteem wordt een “microbiota” genoemd 
en de laatste jaren is er veel wetenschappelijk onderzoek geweest dat de samenstelling en het 
functioneren van de microbiota in de darm veelvuldig linkt aan onze gezondheid. Hoewel de 
wetenschap de microbiota nog lang niet geheel in kaart heeft, is het duidelijk dat de microbiota 
word gevormd door verscheidene factoren zoals het genotype van de gastheer (oftewel onze eigen 
humane set van DNA en de daarin ge-encodeerde genen), maar ook door de dagelijkse levensstijl 
en dieet gewoontes. Een kort overzicht van deze factoren is te vinden in hoofdstuk 1. 

Het eerste deel van dit proefschrift richt zich dan ook op het bestuderen van een aantal 
van deze factoren die de samenstelling van de darm microbiota beïnvloeden. Hiervoor word 
voornamelijk gebruikt gemaakt van een universeel onderdeel van levende cellen, namelijk het 
“ribosoom”. Elke cel heeft zijn eigen eiwitten en enzymen nodig om te kunnen (over)leven en deze 
worden via ribosomen in elkaar gezet. Bij bacteriën is één van de onderdelen van zo’n ribosoom 
vastgelegd in het 16S rRNA gen. Dit gen hebben ze dus allemaal en dit gen bestaat uit stukken 
die sterk geconserveerd zijn (de zogenaamde “conserved regions”), maar ook uit delen waarin 
veel variatie mogelijk is (de zogenaamde “variable regions”). Deze combinatie van “conserved” 
en “variable regions” in dit 16S rRNA gen kunnen we dan gebruiken om verschillende bacterie 
soorten uit elkaar te houden. 

In hoofdstuk 2 worden de verschillende bevindingen uit de wetenschappelijke literatuur 
op een rijtje gezet over de invloed van ons eigen genotype op de microbiota. Daarna wordt in 
hoofdstuk 3 door middel van een cohort van eeneiige tweelingen de invloed van het genotype 
van de gastheer verder geïllustreerd. In dit tweelingen cohort had de helft van de tweeling paren 
een aanzienlijk verschil in Body Mass Index (BMI) tussen de broers of zussen. Deze zogenaamde 
discordante tweelingen stelde ons in staat om ook naar de relatie tussen de energie huishouding 
(homeostase) van de gastheer en de microbiota te kijken. De laatste 10 jaar is er namelijk ook 
steeds meer bewijsmateriaal verzameld die een belangrijke rol toeschrijft aan de microbiota in 
relatie tot onze energie homestase. Vooral in muizen studies zijn duidelijke, hoewel niet veelvuldig 
gereproduceerde, resultaten gevonden met betrekking tot specifieke bacteriële families. Menselijke 
studies laten echter nogal tegenstrijdige resultaten zien, wat waarschijnlijk te wijten is aan de 
heterogene, qua dieet en genotype betreft, studie populaties. De rekrutering van de discordante 
tweelingen in het cohort van hoofdstuk 3 brengt een studie opzet met zich mee die het toelaat 
de impact van het genotype van de gastheer en tot zekere hoogte ook de “inprenting” uit de 
eerste levensjaren (zoals bijvoorbeeld geboorte middels een keizersnede of antibiotica gebruik) te 
scheiden van de relatie tussen gastheer energie homeostase en de microbiota. Naast een drietal 
bacteriële groepen die significant verschillen tussen de discordante tweelingen, zijn ook maar 
liefst 27 bacterie groepen die een aanzienlijk meer verglijkbaar profiel hebben tussen tweelingen 
dan tussen willekeurig niet-verwante personen. Deze resultaten suggereren dat, hoewel de totale 
hoeveelheid van deze bacteriën dus zelfs tussen tweelingen kunnen verschillen (en mogelijk in 
relatie staat met de gastheer energie homeostase), de verhoudingen van de onderlinge groepsleden 
vastgelegd word door het genotype van de gastheer.
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Van de factoren die de microbiota beïnvloeden bied het dieet een interessante en relatief 
makkelijk te gebruiken methode om onze microbiota te manipuleren. Er zijn specifieke 
bestanddelen die aan onze voeding toegevoegd kunnen worden waarvan het bekend is dat ze 
de samenstelling en/of het functioneren van de microbiota drastisch kunnen veranderen, zoals 
bijvoorbeeld probiotica (levende bacteriën) en prebiotica (voedsel voor bacteriën; vaak zijn dit 
vezels). In dit proefschrift komen ook de effecten van dieet interventies op de microbiota aan bod 
in zowel een probiotische trial en een prebiotische trial.

In de probiotische trial (hoofdstuk 4) is een zogenaamd multi-species probiotica succesvol 
ingezet voor het verminderen van de symptomen van prikkelbare darm syndroom (IBS). Dit 
multi-species probiotica bestaat uit de vier bacterie stammen Lactobacillus rhamnosus GG, 
Lactobacillus rhamnosus LC705, Propionibacterium freudenreichi PAJ en Bifidobacterium animalis 
BB12. In hoofdstuk 4 word de microbiota van de fecale monsters van de personen uit deze trial 
geanalyseerd en lijkt de inname van de multi-species probiotica geen drastische verschuivingen 
in de bacteriële samenstelling ten gevolge te hebben. Wel waren er per patiënt op het eerste 
gezicht willekeurige veranderingen terug te vinden in bacteriële populaties. Echter als we een 
coïncidentie analyse uitvoeren, waarbij we kijken of de bacterie groepen samen voorkomen 
of gelijke patronen hebben, blijken er in de loop van de trial een uitvoerige herstructurering 
van de bacteriële patronen plaats te vinden. Dit kan gezien worden als een verandering in de 
bacteriële netwerken. Deze netwerken omvatten bacteriële groepen waartoe soorten behoren 
waarvan bekent is dat ze specifieke rollen vervullen in de voornaamste fermentaties die plaats 
vinden in de dikke darm en lijken er soorten een rol te spelen die eigenlijk voornamelijk in 
de dunne darm actief zijn. Bovendien gebeurt dit alleen in de IBS patiënten die de probiotica 
gebruiken. Dit lijkt er dus op te wijzen dat de individu-specifieke wijzigingen van de microbiota 
niet zo willekeurig zijn en inderdaad een gevolg van de interventie zijn (en dus gepaard met de 
verbetering in symptomen). 

In de prebiotische trial (hoofdstuk 5) kregen gezonde volwassen mannen middels een 
drankje extra FOS (wat voor menselijke enzymen onverteerbaar is) aan het dieet toegevoegd. 
Hier waren wel een aantal consistente veranderingen in de bacteriële samenstelling te zien in 
de fecale monsters van de meeste deelnemers: voornamelijk een toename van bifidobacteriën 
en een algemene afname van Bacteroidetes groepen. Echter, ook hier was een re-oriëntatie 
van de (andere) bacteriële groepen te vinden. De bacteriële groepen die betrokken zijn in deze 
netwerk verschuivingen suggereren dat er alternatieve routes voor butyraat productie in gang 
worden gezet. Butyraat is zogenaamd kortketig vetzuur dat wij zelf niet aan kunnen maken en 
wat een primaire energie bron is voor onze lichaamseigen darmwandcellen. Bovendien hebben 
vele voorgaande studies butyraat ook nog eens gelinkt aan darmweefsel fysiologie, ontstekings 
mechanismen en de opslag van vetten en suiker moleculen.

Dit soort analyses op het niveau van de microbiota samenstelling kan dus nieuwe 
en toetsbare hypothesen genereren. Het is echter goed om te beseffen dat deze biologische 
interpretaties alleen mogelijk zijn door eerdere studies die representatieve soorten uit de darm 
hebben geïsoleerd en deze “isolaten” functioneel hebben gekarakteriseerd. Uiteraard maken de 
bacteriën gebruik van vele andere genen die niet zo algemeen aanwezig en geconserveerd zijn als 
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het 16S rRNA gen. Deze genen bepalen uiteindelijk wel waartoe de bacterie functioneel toe in 
staat is. Als we bacterieel DNA isoleren uit een fecaal monster dan maken we in eerste instantie 
alle bacterie cellen kapot en krijgen we dus één grote poel van genen, ook wel een metagenoom 
genoemd. In de laatste fase van dit proefschrift verschuift de focus van 16S rRNA gen werk (“wie 
zijn er aanwezig?”) naar metagenoom (“waartoe zijn ze in staat?”) georiënteerd onderzoek.

De analyses van microbiële ecosystemen hebben in ieder geval nog te kampen met twee 
obstakels die het complete begrip van zo’n ecosysteem in de weg staan. Het eerste obstakel wordt 
veroorzaakt door het feit dat de meeste microbiële groepen in een ecosysteem, zo ook in de 
darm, slechts zijn “waargenomen” op basis van een (gedeeltelijke) 16S rRNA gen sequentie. Deze 
isolaten hebben dus geen gekweekte vertegenwoordigers, wat ons belemmert bij het interpreteren 
van hun rol in het ecosysteem. Dit zorgt er namelijk onder andere voor dat we niet precies 
weten welk genetisch materiaal deze isolaten inbrengen. Het gebruik van technieken die een 
metagenoom van een ecosysteem in kaart brengen zou een oplossing kunnen bieden. Immers 
pikken dit soort technieken in theorie alle bacteriële genen op. Echter, behalve dat we in de 
praktijk waarschijnlijk niet alles te pakken krijgen, blijkt ook dat voor het merendeel van de 
genen in de huidige metagenomen geen goede functionele voorspellingen mogelijk zijn en dit 
vormt dan ook het tweede obstakel. Het belang van het kweken en volledig karakteriseren van 
isolaten uit de darm middels de zogenaamde “natte laboratoriumtechnieken” is dus essentieel 
voor de biologische interpretatie van ecosystemen en dit zal voorlopig nog wel zo blijven. 

In hoofdstuk 6 en hoofdstuk 7 hebben we gekeken naar oplossingen die mogelijk bij 
kunnen dragen bij het oplossen van de hiervoor genoemde obstakels. Door 16S rRNA gen 
gebaseerde analyse resultaten, die antwoord geven op “wie zijn er aanwezig?”, te combineren met 
groepen genen die samen voorkomen in metagenomische datasets is het mogelijk deze genen 
toe te wijzen aan een aantal tot nu toe ongekweekte organismen (hoofdstuk 6). Dit stelt ons in 
staat gerichter te kunnen zoeken en betere isolatie en kweek methoden te ontwerpen. Maar ook 
door te kijken naar wat we kunnen afleiden uit het potentiaal van de gen sets kan er prioriteit 
worden gegeven aan welke organismen het interessants zijn om als eerste te isoleren, te kweken 
en te karakteriseren. Met de voorgestelde methode in hoofdstuk 7 proberen we uiteindelijk 
dieper in te gaan op de genen met onbekende functies. Soms zijn kleinere stukken binnenin 
een gen, ook wel domeinen genoemd, nog wel te herkennen middels voorspellende modellen 
uit geavanceerdere bio-informatica tools. Aan de hand van fibronectin (een onderdeel van de 
buitenste laag om onze weefsels waar bacteriën als eerst mee in contact kunnen komen) bindende 
domeinen illustreert hoofdstuk 7 een proof-of-principle voor een nieuwe gerichte aanpak om 
aan meer genen toch een functionele voorspelling te hangen en daarna deze gen sequenties ook 
in een laboratorium setting te testen.
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Vincent, kerel, wij kennen elkaar al sinds 2003, sinds de start van de BSc Biotechnology. 
Hoe mooi kan het zijn we via ietwat verschillende paden tijdens de MSc elkaar gewoon weer 
tegen kwamen bij Microbiology om een PhD te doen. Jouw relativerende humor en uiterst 
pragmatische manier van handelen kan ik zeer waarderen! Daar waar ik moeilijk kon stoppen 
totdat alle details boven water waren, kon jij me afremmen zodra de hoofdzaak duidelijk was. 
Ook dank dat jij en Marieke die oudste van mij af en toe een dagje wilde vermaken zodat ik toch 
nog iets kon doen aan dit boekje tijdens de drukke begin periode bij Danone. 
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aan het begin heel wat zelf moeten uitvogelen. Ik heb groot respect voor de ontwikkeling (ook 
op persoonlijk vlak!) die jij hebt laten zien tijdens jouw PhD traject. Je creativiteit (figuren en 
animaties in presentaties) en doortastendheid (doorgaan tot in de late avonduren en het oefenen 
en timen van je presentaties) zijn bewonderenswaardig. We hebben ook met een klein groepje 
een aantal diner + film combinaties gedaan en dat was altijd gezellig. Ik denk dat je goede stap 
hebt gedaan in je carrière en wens je nog veel succes toe. Tom en Vincent, dank dat jullie mijn 
paranimfen willen zijn, erg leuk en een mooie afsluiting van het geheel.

Voordat ik verdere microbiologen en aanverwanten ga bedanken wil ik graag als eerst een speciaal 
bedankje uitbrengen naar de mensen die de boel op de achtergrond laten draaien: de “supporting 
staff” - oftewel de mensen van het secretariaat, de technicians en de research assistenten). Anja, 
Carolien, Gosse, Hans H, Ineke, Jannie, Jorn, Nees, Philippe, Sjon, Steven, Ton, Tom S, Tom 
vd W, Wilma, Wim, bedankt! Anja en Carolien, dank voor alle hulp bij het aanhouden van mijn 
account. Hans H., dank voor het bijbrengen van de praktische kneepjes in het lab (al tijdens 
mijn MSc tijd), voor het verzorgen van de eindeloze lijst van bestellingen en voor je vriendschap, 
zelfs nu je in Singapore zit. Ton, dank voor je kalme maar daadkrachtige organisatie van alles wat 
met BHV te maken heeft, je uitleg en begeleiding op de HPLC apparatuur. Maar ook voor het 
bestellen van een set synthetische genen, wat lastiger was dan we dachten (vlak na het vertrek van 
Nees...), waarmee uiteindelijk hoofdstuk 7 mogelijk werd. 

Thanks to my (other) office mates for the first half of my time at Microbiobiolgy: Milkha and 
Tian. Milkha, I sure do miss your humor and your cooking! In the second phase I shared an 
office with Coline, Noora and Kyle. The latter two had to face the cynical attitude of the former 
and myself, so thanks for enduring this. Coline, dank voor de “muzikale” input en het blijven 
herhalen van jouw mantra: “Alles komt goed”. 

Mirjana, thanks for getting me started in the analyses of the fascinating world of gut 
ecology and for linking me to Willem and Michiel. Furthermore I’d like to thank all other 
MolEco’s, especially Carien, Carmen, Clara, Corina, Dennis, Detmer, Farai, Floor, Gerben, 
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“There is nothing 
outside of yourself 

that can ever enable you 
to get better, stronger, richer, 

quicker, or smarter. 
Everything is within. 

Everything exists. 
Seek nothing outside of yourself.”

-- Miyamoto Musashi, 
The Book of Five Rings 



&

 About the author 

259

About the author
Sebastian Tims was born on the 22nd of July 
1985 in Goes, The Netherlands. After completing 
his secondary education at Buys Ballot College 
in Goes in 2003, he continued his education 
with the multidisciplinary Biotechnology study-
program at the Wageningen University and 
Research Centre. In the BSc phase he specialized 
in Cellular and Molecular Biotechnology, which 
led to an extensive training on “Putative protein 
interactors with Like Heterochromatin protein 
1 in Arabidopsis” at the Laboratory of Molecular 
Biology. Sebastian obtained his BSc degree, 
cum laude, in August 2006. In the MSc phase 
he developed an interest in the application of 
molecular technologies for human wellbeing and 
specialized in Medical Biotechnology. His MSc 
thesis focused on the “Phylogenetic microarray 
analysis of the faecal microbiota of irritable bowel syndrome patients during a probiotic trial” and 
was performed at Laboratory of Microbiology. He continued to work on microbial communities 
in or on the human body at the Erasmus MC, Rotterdam, in a collaboration between the 
Forensic Molecular Biology and the Clinical Microbiology departments during his internship. 
From this internship the work on the fingertip microbiota, titled “Dynamic colonization of 
fingertip microbiota for forensic purposes”, became his first first-author publication. Sebastian 
obtained his MSc degree, cum laude, in August 2008 after which he returned to the Laboratory 
of Microbiology to continue working on the gut microbiota and the associated large data sets, 
which became his prime interest. This research was part of the European Community’s 7th 
Framework Program “Metagenomics of the human intestinal tract” (MetaHIT). His project 
aimed to uncover links between phylogenetic composition in the human intestinal microbiota 
and host health states, as well as developing novel methodologies for mining the genetic potential 
of uncultured microbes. In November 2013 he started at Danone Nutricia Research as a scientist 
to work on the gut microbiota of infants and patients with inherited metabolic disorders.



&

 List of publications 

260

List of publications

Fructo-oligosaccharides induce a shift from Bacteroidetes to Bifidobacterium and restructure 
gut microbiota in healthy subjects. Tims S, Snel J, Bruggencate SJM ten, Schalkwijk S van, 
Timmerman H, Boekhorst J, Zoetendal EG, Vos WM de, Kleerebezem M. Submitted

Multispecies probiotic intervention induces microbial network changes in line with symptom 
reduction in patients with irritable bowel syndrome. Tims S, Rajilić–Stojanović M, Kajander 
K, Kekkonen RA, Zoetendal EG, Kleerebezem M, Vos WM de. Submitted

Partly fermented infant formulae with specific oligosaccharides support adequate infant 
growth and are well-tolerated. Huet F, Abrahamse-Berkeveld M, Tims S, Simeoni U, Beley 
G, Savagner C, Vandenplas Y, Hourihane J O’B Submitted

Application of the Human Intestinal Tract Chip to the non-human primate gut microbiota. 
Bello Gonzalez TDG, Passel MWJ van, Tims, S, Fuentes S, Vos WM de, Smidt H, Belzer C 
(2015). Beneficial Microbes 6:271-276.

Fat, fibre and cancer risk in African Americans and rural Africans. O’Keefe SJ, Li JV, Lahti 
LM, Ou J, Carbonero F, Mohammed K, Posma JM, Kinross J, Wahl E, Ruder E, Vipperla 
K, Naidoo V, Mtshali L, Tims S, Puylaert PGB, DeLany J, Krasinskas A, Benefiel AC, Kaseb 
HO, Newton K, Nicholson JK, Vos WM de, Gaskins HR, Zoetendal EG (2015). Nature 
Communications 6:6342.

Reset of a critically disturbed microbial ecosystem: faecal transplant in recurrent Clostridium 
difficile infection. Fuentes Enriquez de Salamanca S, Nood E. van, Tims S, Heikamp-de Jong 
I, Braak C.J.F. ter, Keller J.J, Zoetendal E.G, Vos W.M. de (2014). ISME Journal 8:1621-
1633.

Identification and assembly of genomes and genetic elements in complex metagenomic 
samples without using reference genomes. Nielsen HB, Almeida M, Juncker AS, Rasmussen 
S, Li J, Sunagawa S, Plichta DR, Gautier L, Pedersen AG, Le Chatelier E; Pelletier E, Bonde 
I, Nielsen T, Manichanh C, Arumugam M, Batto JM, Quintanilha Dos Santos MB, Blom 
N, Borruel N, Burgdorf KS, Boumezbeur F, Casellas F, Doré J, Dworzynski P, Guarner F, 
Hansen T, Hildebrand F, Kaas RS, Kennedy S, Kristiansen K, Kultima JR, Léonard P, Levenez 
F, Lund O, Moumen B, Le Paslier D, Pons N, Pedersen O, Prifti E, Qin J, Raes J, Sørensen S, 
Tap J, Tims S, Ussery DW, Yamada T, MetaHIT Consortium, Renault P, Sicheritz-Ponten T, 
Bork P, Wang J, Brunak S, Ehrlich SD (2014). Nature Biotechnology 32:822-828.



&

 List of publications 

261

Faecal Microbiota Composition in Adults Is Associated with the FUT2 Gene Determining 
the Secretor Status. Wacklin P, Tuimala J, Nikkilä J, Tims S, Mäkivuokko H, Alakulppi N, 
Laine P, Rajilic-Stojanovic M, Paulin L, Vos WM de, Mättö J (2014). PLoS One 9:4.

Richness of human gut microbiome correlates with metabolic markers. Le Chatelier E, 
Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, Almeida M, Arumugam M, Batto JM, 
Kennedy S, Leonard P, Li J, Burgdorf K, Grarup N, Jørgensen T, Brandslund I, Nielsen 
HB, Juncker AS, Bertalan M, Levenez F, Pons N, Rasmussen S, Sunagawa S, Tap J, Tims 
S, Zoetendal EG, Brunak S, Clément K, Doré J, Kleerebezem M, Kristiansen K, Renault P, 
Sicheritz-Ponten T, de Vos WM, Zucker JD, Raes J, Hansen T, MetaHIT consortium, Bork 
P, Wang J, Ehrlich SD, Pedersen O (2013). Nature 500:541-546.

Long-term monitoring of the human intestinal microbiota composition. Rajilic-Stojanovic 
M, Heilig GHJ, Tims S, Zoetendal EG, Vos WM de (2013). Environmental Microbiology 
15:1146-1159.

Microbiota conservation and BMI signatures in adult monozygotic twins. Tims S, Derom C, 
Jonkers DMAE, Vlietinck R, Saris WH, Kleerebezem M, Vos WM de, Zoetendal EG (2013).
ISME Journal 7:707-717.

Enterotypes of the human gut microbiome. Arumugam M, Raes J, Pelletier E, Le Paslier 
D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto JM, Bertalan M, Borruel 
N, Casellas F, Fernandez L, Gautier L, Hansen T, Hattori M, Hayashi T, Kleerebezem M, 
Kurokawa K, Leclerc M, Levenez F, Manichanh C, Nielsen HB, Nielsen T, Pons N, Poulain J, 
Qin J, Sicheritz-Ponten T, Tims S, Torrents D, Ugarte E, Zoetendal EG, Wang J, Guarner F, 
Pedersen O, de Vos WM, Brunak S, Doré J, MetaHIT Consortium, Weissenbach J, Ehrlich 
SD, Bork P (2011). Nature 473:174-180.

Global and deep molecular analysis of microbiota signatures in fecal samples from patients 
with irritable bowel syndrome. Rajilic-Stojanovic M, Heilig GHJ, Kajander K, Kekkonen 
RA, Tims S, Vos WM de (2011). Gastroenterology 141:1792-1801.

Microbial DNA fingerprinting of human fingerprints: dynamic colonization of fingertip 
microflora challenges human host inferences for forensic purposes. Tims S, Wamel W van, 
Endtz HP, Belkum A van, Kayser M (2010). International Journal of Legal Medicine 124:477-
481.



&

 List of publications 

262

As a member of the MetaHIT consortium

Disentangling type 2 diabetes and metformin treatment signatures in the human gut 
microbiota. Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S, 
Prifti E, Vieira-Silva S, Gudmundsdottir V, Krogh Pedersen H, Arumugam M, Kristiansen 
K, Voigt AY, Vestergaard H, Hercog R, Igor Costea P, Kultima JR, Li J, Jørgensen T, Levenez 
F, Dore J, MetaHIT Consortium, Nielsen HB, Brunak S, Raes J, Hansen T, Wang J, Ehrlich 
SD, Bork P, Pedersen O (2015). Nature 528:262-266.

An integrated catalog of reference genes in the human gut microbiome. Li J, Jia H, Cai X, 
Zhong H, Feng Q, Sunagawa S, Arumugam M, Kultima JR, Prifti E, Nielsen T, Juncker AS, 
Manichanh C, Chen B, Zhang W, Levenez F, Wang J, Xu X, Xiao L, Liang S, Zhang D, Zhang 
Z, Chen W, Zhao H, Al-Aama JY, Edris S, Yang H, Wang J, Hansen T, Nielsen HB, Brunak 
S, Kristiansen K, Guarner F, Pedersen O, Doré J, Ehrlich SD, MetaHIT Consortium, Bork 
P, Wang J (2014). Nature Biotechnology 32:834-841.

A human gut microbial gene catalogue established by metagenomic sequencing. Qin J, Li R, 
Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, 
Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage 
P, Bertalan M, Batto JM, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, 
Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang 
X, Li S, Qin N, Yang H, Wang J, Brunak S, Doré J, Guarner F, Kristiansen K, Pedersen O, 
Parkhill J, Weissenbach J, MetaHIT Consortium, Bork P, Ehrlich SD, Wang J (2010). 
Nature 464:59-65.



&

 Completed training activities 

263

Overview of completed training activities

Discipline specific activities
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† Poster; ‡ Presentation
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