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Abstract
Westerhuis, W. (2016) Hemp for textiles: plant size matters, PhD thesis. Wageningen 

University, Wageningen, The Netherlands, 234 pp. With English and Dutch summaries.

Fibre hemp (Cannabis sativa L.) may be an alternative to cotton and synthetic fibres as a raw 

material for textile yarn production in the European Union. The agronomic options to 

manipulate plant development and crop growth with the aim to optimise hemp long fibre 

production were investigated. Field trials with factors sowing density, sowing date, harvest 

time and variety were conducted. Stems were traditionally processed by retting, drying, 

breaking, and scutching. Following standard protocols, almost 1500 hemp stem samples were 

analysed. Varieties differ widely in their fibre content, but this thesis shows that when variety 

and plant size are known, the amounts of fibres, wood, and retting losses are known. The dry 

weight of the stems at harvest, not the factors underlying this weight, are determinant. In 

retted stems the dry matter is split–up into fibres and wood in a fixed way. The options to 

manipulate this ratio by crop management, given variety, are very small and for practical 

reasons they can be neglected. In fibre hemp two bast fibre types occur. Primary or long fibres 

are valuable for yarn spinning. Secondary fibres are too short and their presence hampers the 

production of fine yarns. This thesis shows that the secondary fibre front height increases with 

plant weight. Although a causal relationship between secondary fibre formation and flowering 

does not exist, the secondary fibre front is found higher in flowering plants when compared to 

non–flowering plants of the same height. This is likely to be caused by the higher weight or 

momentum of flowering plants as compared with non–flowering plants of the same height. 

Consequently, a harvest before flowering is preferable. This was shown in a greenhouse 

experiment, in which the short–day response of hemp was used to create size ranges of 

flowering and non–flowering plants. To produce high–quality raw materials for textile 

production, short crops should be grown. The options to produce plants with the desired size 

are manifold. Since sowing density, sowing date, and harvest time do not have an additional 

effect on the primary fibre content besides the indirect effect through stem weight, any 

combination of these factors could be chosen to optimize plant size.

Key words: Cannabis sativa L., day length sensitivity, fibre hemp, genotype, harvest time, 

plant density, plant weight, primary fibres, secondary fibres, sowing date, textiles.
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1

Chapter 1

General introduction

1 Hemp for textile applications

The world market demand for bast fibres for high–value textile applications is 

increasing. Part of this demand could be provided by fibre hemp (Cannabis sativa L.).

At present however, there is no large–scale production of high–quality hemp yarns and 

fabrics in the European Union. First because primary producers cannot supply the 

homogeneous, high–quality long–fibre raw materials the yarn spinners require, and 

second because fibre processing is still suboptimal (Nebel, 1995; Keller, 1997; Ranalli, 

1999; Cappelletto, 2001; Amaducci, 2003, 2006; Liberalato, 2003; Ranalli and 

Venturi, 2004; Esposito and Rondi, 2006; Traina and Rondi, 2006).

Little seems to be known about the causal relationships between the primary 

production process, the visible or easily measurable characteristics of harvested hemp 

stems, and the amount and characteristics of the fibres that can be extracted (Ranalli 

and Venturi, 2004).

The absence of a reliable high–quality hemp fibre supply holds back textile 

industries to invest in new processing technologies, and European farmers have little 

incentive to grow fibre hemp, and to improve the raw materials, unless there is a 

market willing to pay a higher price for high quality. A break–through in this status 

quo is needed to establish a competitive, innovative, and sustainable hemp fibre textile 

industry in the European Union (Van der Schaaf, 1966; Anonymous, 1994b; Bócsa 

and Karus, 1998; Van Dam, 1999; Amaducci, 2003, 2005, 2006).

The renewed interest in high–quality hemp fibres calls for an agronomic study 

based on in–depth knowledge of the botany and physiology of the plant. Yarn spinners 

have high demands with respect to fibre characteristics such as fineness, refinability,

strength, fibre length distribution, cohesiveness, homogeneity, and cleanliness (low 

shiv content); hence, it should be known how the amount of fibres with the desired 

qualities can be maximised within a single plant and within a crop (Sultana, 1992; 
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Anonymous, 1994b; Nebel, 1995; Van Dam, 1999; Wulijarni–Soetjipto et al., 1999; 

Liberalato, 2003; Allam, 2004; Hann, 2005; Sponner et al., 2005).

The main objective of this thesis is to outline the agronomic options for 

manipulating plant development and crop growth of fibre hemp, in order to optimise 

high–quality long textile fibre production. In this first chapter, the crop, the plant, and 

its fibres are introduced, the state of knowledge prior to this research is described, and

an outline of each of the chapters of this thesis is presented. 

2 History of hemp

2.1 An old and important crop

Hemp is one of the first plants cultivated and one of the oldest non–food crops. It is a 

multi–purpose crop, grown for its bast and wood fibres, its seeds, its oil, and its 

cannabinoids. The historical evidence for medicinal and narcotic use of Cannabis

sativa L. dates back at least 5000 years, and the use of the seed oil for at least 3000 

years. As a textile fibre, however, its history is probably longer; the oldest remains of 

hemp cloth are estimated to be about 6000 years old (Schultes, 1970; Clarke, 1999; 

Wulijarni–Soetjipto et al., 1999).

Hemp bast fibres are among the strongest and most durable of all vegetable 

fibres, and particularly in Asia, Central Europe, and North America, fibre hemp has 

widely been used as a textile fibre for hundreds of years. Cultivation in Europe became 

widespread from 500 AD onwards, and reached its maximum between the sixteenth 

and eighteenth century. Hemp, flax (Linum usitatissimum L.), stinging nettle (Urtica

dioica L.), and wool were the most important raw materials for the European textile 

industries by that time (Dewey, 1913; Schultes, 1970; Pounds, 1979; Dempsey, 1975; 

Wulijarni–Soetjipto et al., 1999; Herer, 2000).

In the Netherlands, fibre hemp production peaked in the seventeenth and 

eighteenth century, because the basic equipment of sailing ships was largely dependent 

upon the cultivation and processing of hemp. Canvas sails, rigging, ropes, fishing nets, 

but also uniforms were made of the weather–proof fibres. Moreover, hemp farmers 

processed their own twine for binding and yarns for weaving household textiles and 
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clothing (Hoogendoorn, 1993; Bócsa and Karus, 1998; Herer, 2000).

2.2 Decline 

The decline of the sailing industry, the large–scale development of tropical fibre 

production, e.g., cotton (Gossypium ssp.), jute (Corchorus ssp.), and sisal (Agave 

sisalana Perrine), the competition with other profitable crops or livestock, the absence 

of labour–saving machinery, and the difficulties in securing sufficient skilled labour 

caused the decline of the crop in North America and Western Europe. Markets 

disappeared and hemp was replaced by cheaper alternatives, which in general were 

less durable (Dewey, 1913; Garland, 1946; Dempsey, 1975; Brink et al., 2003).

The prospects of hemp as a textile fibre went down quickly with two labour–

saving inventions that made cotton textiles a lot cheaper. In 1768, a series of aligned 

spinning wheels, the ‘spinning Jenny’, was developed by Hargreaves and improved by 

Arkwright. Cotton and wool were more easily spun by such machinery than hemp. In 

1793, Whitney invented the cotton gin, a machine for removing the seeds from 

harvested cotton bolls. Handicraft was replaced by cotton industries. Hemp fibre 

production, however, remained labour–intensive, the yarns became too expensive, and 

hemp lost its position as a widely used textile fibre crop (Dewey, 1913; Garland, 1946; 

Bócsa and Karus, 1998; Herer, 2000; Brink et al., 2003).

The availability of cheap cotton and the large scale production of cheap 

synthetic textile fibres in the twentieth century made a return of hemp as a textile fibre 

crop improbable. Moreover, cultivation of hemp was prohibited in many countries due 

to the association of the crop with the production of illegal narcotics (Hoffmann, 1957; 

Bócsa and Karus, 1998; Wulijarni–Soetjipto et al., 1999; Herer, 2000; Ranalli and 

Venturi, 2004; Amaducci, 2005).

When supplies of tropical fibres were interrupted by World War II, however, a

fibre hemp industry was quickly re–established in among others the United States of 

America (‘Hemp for Victory’) and Germany to produce raw materials for, e.g., tents, 

parachutes, and uniforms. Also in the Netherlands the interest in de crop revived for a 

short time. However, when tropical fibre imports re–established, the ban on hemp was 



Chapter 1

4

re–imposed (Anonymous, 1942; Anonymous, 1943; De Jonge, 1944; Bócsa and 

Karus, 1998; Herer, 2000).

Cannabis sativa L. as a fibre crop fell into oblivion in North America and 

Western Europe, with the exception of France, where the production of fibre hemp for 

a niche market, specialty papers, survived after the textile industries withdrew from 

hemp in the 1960s. Also in Eastern Europe only a small hemp industry survived 

(Anonymous, 1994a; Bócsa and Karus, 1998).

As a consequence of the diminished importance, important knowledge and 

varieties went lost, research withdrew from hemp, and the development of new 

machinery for cultivation, harvesting, and processing almost came to a standstill 

(Bócsa and Karus, 1998; Cappelletto, 2001; Liberalato, 2003). Nowadays hemp fibres 

are mainly produced for low and medium–value applications, with China, North Korea

and India as the largest producers (Wulijarni–Soetjipto et al., 1999; Liberalato, 2003;

Van Dam, 2014).

3 The comeback of hemp

3.1 Sustainability

Reintroduction of fibre hemp as a rotation crop has been advocated and researched 

occasionally in the past century in among others the Netherlands (De Jonge, 1944; Van 

der Schaaf, 1963; Friederich, 1964; Du Bois, 1982), but the efforts remained without 

success until the last decade of the twentieth century when hemp made a remarkable 

worldwide comeback.

This global rediscovery of hemp was among others catalysed by the publication 

in 1985 of Jack Herer’s ‘The emperor wears no clothes’ (Herer, 2000). In this 

provocative book, Herer advocates the use of Cannabis sativa L. for social as well as 

economic purposes, outlines the history of the crop and its uses, and crusades the 

‘conspiracy’ against hemp. For the rest, in the last decades of the twentieth century the 

demand of fashion designers and consumers for linen, a natural fibre from flax and in 

many aspects comparable with hemp fibre, also increased (Hann, 2005).  
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In the Netherlands (e.g., Van Berlo, 1993; De Meijer, 1993; Van der Werf, 

1994), in other European countries (e.g., Höppner and Menge–Hartmann, 1994;

Cromack, 1998; Sankari and Mela, 1998; Struik et al., 2000; Cappelletto, 2001), but 

also elsewhere in the world (e.g., Lisson, 1998; Ehrensing, 1998), research 

programmes were initiated to investigate the feasibility of resumed domestic fibre 

hemp production.

Most EU member states released the ban on industrial hemp between 1993 and 

1996. Even in the United States of America, a number of States allow the cultivation

of fibre hemp nowadays. In 2013, the first legal industrial hemp crop in 56 years was 

harvested in de U.S.A. (Carus et al., 2013; Raabe, 2013; Anonymous, 2014).

The world–wide cultivation area of industrial hemp reached about 85,000 ha in

2011, with approximately 60,000 ha for fibres (mainly grown in China and Europe),

and 25,000 ha for seeds (mainly grown in Canada, China, and Europe). It is currently 

(2014) cultivated on 17,000 ha in the European Union, which is the largest area since 

10 years. France is the main producer in the EU (Carus et al., 2013; Anonymous, 

2014; Van Dam, 2014).

Most of the experiments described in this thesis, were conducted within the 

framework of the EU–funded HEMP–SYS project, which aimed to promote the 

development of a competitive, innovative, and sustainable hemp fibre textile industry 

in the European Union. Universities, research centres, agricultural societies, private 

businesses, and industries collaborated in designing and developing an integrated 

processing chain for hemp textile fibres (Amaducci, 2003, 2006). Commercial 

enterprises also rediscovered the crop and its wide range of marketable bio–based end 

products. Most of the recent developments are related to the public concern for the 

environment and the endeavour towards sustainability: 

• The Common Agricultural Policy of the European Union underwent a major 

reorientation. To combat agricultural surpluses, low prices, and budgetary expenditure,

and to support the world trade relations and the environment, the subsidies for food 

production were gradually reduced, and diversification and developments in non–food 
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crops were supported. Fibre hemp fits well in this European policy (Rexen, 1993; 

Thomas, 1993; Liberalato, 2003; Amaducci, 2003, 2006; Ranalli and Venturi, 2004).

• The narrow crop rotation in the intensive agriculture in, e.g., the Netherlands 

increased the incidence of plant diseases, lowered the yields, and enhanced the use of 

biocides. To stop these trends, ‘new’ crops were identified to widen conventional crop 

rotations. These new crops should reduce the incidence of pathogens, require less 

biocides, and besides be profitable in the non–food market. Fibre hemp could be such 

a crop (Van der Schaaf, 1966; Du Bois, 1982; Van der Werf, 1994; Crowley, 2001; 

Von Francken–Welz and Léon, 2003).

• Fibre hemp was also advocated to relieve the pressure of the paper industry on 

remaining natural forests, as an alternative textile fibre to a high–input crop such as 

cotton, and to replace glass fibres, rock wool, synthetic fibres or asbestos in a wide 

range of applications. The technical natural fibre market is growing, and fibre hemp 

could take its share (Dewey and Merrill, 1916; Du Bois, 1982; Van Berlo, 1993; Van 

der Werf, 1994; Bócsa and Karus, 1998; Lisson and Mendham, 2000; Scheer–Triebel 

and Léon, 2000; Leupin, 2001; Ebskamp, 2002; Kamat et al., 2002; Liberalato, 2003; 

Von Francken–Welz and Léon, 2003; Blackburn et al., 2004; Ranalli and Venturi, 

2004; Anonymous, 2010, 2014; Van Dam, 2014).

• Finally, the ecology–conscious consumer’s demand for healthy, environmental–

friendly, and preferably visibly ‘natural’ products supported the rediscovery of hemp. 

Trends in fashion and taste, however, might change. Possibly this is not a growing 

market, but only a cyclical niche market in which the fickleness of the public taste 

plays an important role (Bócsa and Karus, 1998; Van Dam, 1999; Anonymous, 2000; 

Ranalli and Venturi, 2004; Burczyk et al., 2005; Sponner et al., 2005; De Boo, 2006; 

Esposito and Rondi, 2006).
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The background of the recent interest in fibre hemp shows that 

environmentally–friendly production chains are preferable, if not a prerequisite, to be 

successful. Certified organic production should be aimed at, to obtain a higher market 

price. Within the framework of the HEMP–SYS project (Amaducci, 2003, 2006) 

therefore the major environmental impacts associated with the production of hemp 

yarns were quantified. A Life Cycle Analysis (LCA) by Van der Werf and Turunen 

(2008) showed that the ecological footprint of hemp yarn production can be reduced 

by reducing the relatively high energy use in the processing and yarn production 

stages, and by reducing eutrophication during crop growth. Further, the use of 

biocides, chemical defoliants, and retting agents should be avoided (Keller, 1997; 

Ranalli and Venturi, 2004; Amaducci et al., 2008a).

3.2 Added value

History has shown that there should be solid economic prospects as well, which means 

that on the longer term, new crops should be able to survive in the market without 

subsidies (Thomas, 1993). For this reason, new hemp projects are often focused on 

regional development and cooperative local production chains in order to secure a 

larger share of the added value for the primary producers (Beerepoot, 2003; Blackburn 

et al., 2004; De Boo, 2006; Janszen et al., 2007). A market price comparable with

linen seems necessary to escape from the niche market (Van Dam, 1999; Esposito and 

Rondi, 2006).

After the reintroduction of hemp as a field crop in Europe in the 1990s, research 

aimed particularly at a high dry matter production for paper and composites. Hemp 

was sown as soon as the risk of frost damage was acceptably low, and late flowering 

varieties with a long vegetative growing stage were selected to make optimal use of

the length of the growing season (Dempsey, 1975; Van der Werf et al., 1994a; Meijer 

et al., 1995; Sankari and Mela, 1998; Ranalli, 1999; Lisson and Mendham, 2000; 

Struik et al., 2000).

Bulk products with low added value still account for the vast majority of 

Europe’s hemp fibre market, and without any significant technical progress or new 
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fields of application, little economic growth of the sector is to be expected (Liberalato, 

2003; Karus and Vogt, 2004; Carus et al., 2013).

To be competitive in the world market, farmers in the European Union have to 

provide quality instead of quantity: tailor–made raw materials with high added value. 

The costs of labour and land are too high for bulk production. With technically 

superior raw materials, luxury markets have to be explored where the price of the end 

products depends only for a small part upon the costs of the raw materials (Van Dam,

1999; Liberalato, 2003; Ranalli and Venturi, 2004; Janszen et al., 2007). 

3.3 End products 

Fibre hemp can be grown for a multitude of end products and semi–manufactures in 

non–food, food, feed, and pharmaceuticals. Seeds, oil, wood, and bast fibres can be 

cashed. Waste streams of production processes can be converted into, e.g., bio fuels 

(Hoffmann, 1957; Bócsa and Karus, 1998; Van Dam, 1999; Herer, 2000; Wulijarni–

Soetjipto et al., 1999).

The highly nutritious hemp seeds can be used for bird, fish, and cattle feed as 

well as for human consumption (bakery products, vegetable oil). The food and feed  

market is growing fast nowadays, especially in Canada and the U.S.A. Chopped whole 

plants are fit as provender for cattle. The seed oil, like linseed oil, can also be used as 

lighting oil or as a basis for, e.g., paint, lubricants, wood preservatives, and body care 

products (e.g., Pate, 1999; Karus and Vogt, 2004; Debergh, 2009; Anonymous, 2014).

The woody parts of the stem, the ‘shives’ or ‘shiv’ (Dutch: ‘scheven’) that 

remain after fibre extraction, are mainly (≈ 95% in 2004) applied as livestock bedding 

in stables (animal litter), but they are also increasingly converted into, e.g., medium 

density fibre board (MDF) or other building (e.g., Hempcrete, Isochanvre) and 

woodworking applications (e.g., Dewey, 1913; Dewey and Merrill, 1916; Friederich, 

1964; Du Bois, 1982; Anonymous, 2000; Crowley, 2001; Beerepoot, 2003).

Bast fibre applications are numerous. Combined with the woody fibres they are 

used in pulp for paper and carton, but the fibres can also be used for the production of 

specialty papers, ropes, twines, canvas, geotextiles, filters, and building and insulation 
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materials. A growing market, aimed at fuel savings, is the use of natural fibre 

composites for lightweight interior parts in the automotive industry. Weight reduction 

as compared to glass fibre enforced composites is around 30% (Dewey and Merrill, 

1916; Haepp, 1996; Keller, 1997; Karus, 2005; Anonymous, 2000, 2007, 2010, 2014).

Economically the most interesting prospects for hemp bast fibres, however, 

seem to be in the apparel (clothing) sector (Van Dam, 1999; Cappelletto et al., 2001; 

Amaducci, 2003; Liberalato 2003; Ranalli and Venturi, 2004; Esposito and Rondi, 

2006; Janszen et al., 2007).

3.4 Textiles

The bulk of our demands for textile fibres is currently met by synthetic fibres and 

cotton (Gossypium sp.). Together they account for more than 90% of the world’s 

textile fibre market, with about equal shares. Both however, are associated with 

environmental problems. Synthetic fibre production depletes fossil energy resources,

and for the production of cotton alarming amounts of biocides are used. Cotton is 

cultivated on approximately 2.4% of the world’s arable land. Nevertheless about 25% 

of the global use of insecticides is applied in cotton. Moreover, around 50% of the 

total amount of pesticides used in developing countries, and even in the United States 

of America, is applied in this crop. Besides, cotton needs large amounts of fertiliser 

and water, and causes depletion of the natural water resources, as well as salinization. 

Unless produced organically (≈ 0.04% of the global production in 2006, ≈ 0.7% in 

2011), cotton is not an environmentally friendly crop (Anonymous, 1999; Kalliala and 

Nousiainen, 1999; Kerkhoven and Mutsears, 2003; Kooistra et al., 2006; Truscott et 

al., 2013; Van Dam, 2014).

Fibre hemp could be an excellent substitute for cotton and different processing 

techniques can be used to convert hemp fibres into textiles. ‘Cottonized’ hemp fibres, 

refined by chemical–physical methods (e.g., STEX or steam–explosion, ultrasound) 

can be processed on cotton spinning machines, and hemp–cotton blended fabrics can 

be used for the production of, e.g., jeans. Already in the 1920s, 1930s, and 1940s 

Germany considered this ‘cottonized hemp’ (German: ‘Flockenbast’) as a serious 
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alternative for all imported cotton and in recent years Chinese textile industries started 

to replace cotton by hemp fibres (Dempsey, 1975; Nebel, 1995; Keller, 1997; Bócsa 

and Karus, 1998; Van Dam, 1999; Keller et al., 2001; Leupin, 2001; Ebskamp, 2002;

Beerepoot, 2003; Blackburn et al., 2004; De Boo, 2006; Anonymous, 2007, 2010).

The highest added value in fibre hemp production, however, can be obtained by 

producing high–quality long fibres for the finest yarns for fashion textiles, a luxury 

niche market (Van Dam, 1999; Cappelletto et al., 2001; Amaducci, 2003; Ranalli and 

Venturi, 2004). The flax fibre production chain for high–quality linen in Western 

Europe has shown that with high–quality standards it is possible to compete with 

imported raw materials from outside the European Union (Van Dam, 1999; Liberalato, 

2003). To introduce hemp into the fashion textile sector, however, serious 

improvements should be made with respect to fibre quality, especially fineness (Nebel, 

1995; Ranalli and Venturi, 2004).

The tensile strength and durability of hemp fibres, the resistance to wear and 

tear, are superior to cotton fibres, and the hemicellulose content contributes to the 

highly valued textile features breathability and thermal insulation. Hemp long fibres 

are in many aspects comparable with the yarns spun from the bast fibres of flax. The 

fabrics woven from hemp yarns wrinkle and breathe like linen, and have the same 

‘natural’ irregular structure (Robinson, 1996; Ebskamp, 2002; Anonymous, 1994b; 

Preti, 2006). New applications of fibre hemp for textiles, however, are surely not 

restricted to the apparel section. Because the absorbency is superior to cotton, hemp 

fibre is an excellent material for, e.g., bedcovers, table–linens, bath towels, padded 

seats, baby clothing, and diapers (Robinson, 1996; Preti, 2006). 

Although high–quality yarn production economically seems to have the most 

interesting prospects, even here valorisation of waste streams (cascade principle) 

might be necessary to establish a competitive hemp fibre textile industry in Europe 

(Van Dam, 1999; Liberalato, 2003; Karus, 2005).
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4 Plant and crop

4.1 Biology

Hemp belongs to the Cannabaceae family, which includes only one genus, Cannabis,

and one species, Cannabis sativa L. It originates from the temperate parts of Asia; 

probably the centre of origin is China. Both botanical classification and the exact 

geographical origin, however, are subject to on–going debates. These disputes are 

among others complicated by the early and widespread cultivation of hemp (Dewey, 

1913; Hoffmann, 1957; Schultes, 1970; Dempsey, 1975; Vavilov, 1992; Raman, 1998; 

Wulijarni–Soetjipto et al., 1999).

Fibre hemp is a vigorous annual crop, propagated by seed. The seed is an 

achene: a dry, hard–shelled, one seeded fruit, formed from a single carpel. The

thousand seed weight of the oval, grey to brown mottled nuts is around 16–22 g. There 

is no vernalisation response. Germination is epigeal, and seeds usually germinate and 

emerge within a week (Dewey, 1913; Hoffmann, 1957; Heslop–Harrison and Heslop–

Harrison, 1969; Dempsey, 1975; Höppner and Menge–Hartmann, 1994; Wulijarni–

Soetjipto et al., 1999; Höppner et al., 2004).

After a period of relatively slow growth in the first weeks after germination, a 

fast growth period starts, in which the requirements for water and nutrients are high; 

more than 50% of the final plant height usually is produced in about a month (Höppner 

and Menge–Hartmann, 1994; Bócsa and Karus, 1998; Sankari and Mela, 1998). 

During this period the plants are very susceptible to lodging (knock–down)(author’s 

personal experience…).    

Stem length at maturity is very variable, and is strongly affected by 

environmental factors. A height up to six meters can be reached in a four months 

growing season, and under favourable growing conditions length increases of up to 10 

cm in one day were recorded (Hoffmann, 1957; Friederich, 1964; Höppner and 

Menge–Hartmann, 1994; Bócsa and Karus, 1998; Clarke, 1999; Höppner et al., 2004).

In hemp grown for textiles the seeding rates are high. Consequently,  branching 

is suppressed, and leaves are only present on the hollow main stem. The two 

cotyledons are sessile, but all true leaves have a long petiole. The characteristic hemp 
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leaves are palmately compound and composed of 3–11 lanceolate serrate leaflets with

a length of 5–15 cm and a width of 1–2 cm. The number of leaflets and their size 

increase progressively from node to node until the start of flowering, when this trend is 

reversed (Hoffmann, 1957; Heslop–Harrison and Heslop–Harrison, 1969; Wulijarni–

Soetjipto et al., 1999). The fibres and their development during the growing season 

will be discussed in Section 6 of this chapter.

4.2 Dioecious and monoecious varieties

In its origin the species is dioecious, meaning that male and female flowers develop on 

separate plants (Picture 1A). The two sexes are morphologically indistinguishable 

before the development of inflorescences, but in the generative phase sexual 

dimorphism is extremely pronounced. Male hemp has a branched inflorescence in the 

top of the plant, with few or no leaves. The many easily recognisable flowers have five 

white to yellowish–green petals of about 5 mm long, and five stamens which at 

maturity discharge abundant yellow pollen for wind–pollination. The much smaller 

female flowers are tightly clustered in unbranched, leafy, resinous, sticky 

inflorescences. Although the female plants at flowering are easily distinguishable from 

the male plants, the individual female flowers are inconspicuous because green bracts 

surround the ovary. At flowering two protruding pistils, only a few millimetres long, 

are visible (Kundu, 1942; Hoffmann, 1957; Heslop–Harrison and Heslop–Harrison, 

1969; Raman, 1998; Clarke, 1999; Wulijarni–Soetjipto et al., 1999).

A variable fraction of monoecious plants, with male and female flowers on the 

same plant, is usually present in natural populations and crops (Hoffmann, 1957; 

Dempsey, 1975; Clarke, 1999). Such plants resemble the more robust female habitus 

(Horkay and Bócsa, 1996), which makes sense because these plants should be strong

enough to bear the relatively heavy tops of the plants with the seeds. Stems of female 

plants on average are a little shorter and thicker (Schumann et al., 1999), and the tap 

root system of the female plant is also more developed (Kundu, 1942; Bócsa and 

Karus, 1998), presumably for the same reason.
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Picture 1. Cannabis sativa L. 
A) In its origin the species is dioecious. In the generative phase sexual dimorphism is 
extremely pronounced. Inflorescences of a male plant (left) and a female plant (right). 
B) In a densely sown crop branching is suppressed and approximately 80% of the above 
ground dry matter is located in the erect main stem.  

Heterogeneity in a dioecious hemp crop is partially an inevitable consequence 

of sexual dimorphism. At harvest two populations with different characteristics (e.g.,

biometry, flowering time, fibre characteristics) are present. In a dioecious crop, male

and female plants are generally present in similar numbers, but depending on growing 

conditions and cultivar, deviations might occur. Male plants die soon after anthesis, 

whereas female plants live three to five weeks longer, until seed ripeness. Therefore,

the ratio might shift in favour of the females at the end of the growing season (Kundu,

1942; Anonymous, 1943; Borthwick and Scully, 1954; Heslop–Harrison and Heslop–

Harrison, 1969; Anonymous, 1994a; Van der Werf and Van der Berg, 1995;

Schumann et al., 1999; Wulijarni–Soetjipto et al., 1999).

Monoecious varieties have been bred for reasons of homogeneity and 

mechanisation  (Dempsey, 1975; Mediavilla et al., 1999). Without continued selection, 

however, such artificial varieties return to the dioecious state in two or three 

1A 1B
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generations (Anonymous, 1994). Monoecious hemp is considered appropriate,

especially when crops are grown for both seed and fibre. Harvest in such a double use 

crop is relatively late, because the seeds have to ripen. In dioecious hemp varieties by 

that time the male plants would be deteriorated, which causes yield losses and hampers 

harvesting (Anonymous, 1994a; Mediavilla et al., 2001a). 

Dioecious varieties historically are considered most fit for textile purposes.  

However, because the fibre quality of male plants is considered superior to the fibre 

quality of female plants, the timing of the harvest of dioecious varieties is complicated 

with respect to fibre quality, quantity, homogeneity, and suitability for harvesting 

(Hoffmann, 1957; Horkay and Bócsa, 1996; Bócsa and Karus, 1998; Anonymous, 

1994a).

Male plants are also reported to have a higher fibre percentage and higher 

quality. In the past, when harvests were carried out manually, male plants were often 

harvested earlier than the female plants, which had to wait until seed ripeness. The 

fibres from male plants were used for finer household purposes, whereas fibres from 

female plants were used for sacking or canvas (Rowlandson, 1849; Hoffmann, 1957; 

Jakobey, 1965; Höppner and Menge–Hartmann, 1994; Horkay and Bócsa, 1996).

In the experiments described in this thesis monoecious as well as dioecious 

varieties were used. Agronomic characteristics and genetic background of fibre hemp 

varieties were summarised by, e.g., De Meijer (1995) and Bócsa and Karus (1998). 

4.3 Short–day response

Hemp is a short–day plant. Tournois (1912) used the species in the first unequivocal 

demonstration of photoperiodic induction of flowering. Photoperiod sensitivity is very 

different for varieties and most varieties have a flowering response that is typical for a 

quantitative short–day plant: short days accelerate flowering. However, there are also 

varieties with an absolute short–day requirement and a true critical day length. Lisson 

et al. (2000) showed for two varieties that in photoperiods less than 14 hours flowering 

occurs in a minimum constant thermal time, while at longer photoperiods flowering is 

progressively delayed. With increasing temperature the time between first primordia to 
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flowering becomes shorter (Borthwick and Scully, 1954; Heslop–Harrison and 

Heslop–Harrison, 1969; Lisson et al., 2000).

The critical day length generally increases with the latitude of adaptation. When 

a certain variety is cultivated at lower latitude it will flower earlier; when it is 

cultivated at higher latitude it will flower later. To avoid a rapid genetic shift towards a 

different phenological pattern, sowing–seed production has to take place at the 

appropriate latitude (Heslop–Harrison and Heslop–Harrison, 1969; Bócsa and Karus, 

1998; De Meijer and Keizer, 1994).

For quality reasons, fibre hemp is harvested around the time of flowering 

(Bócsa and Karus, 1998). To maximise stem dry matter and fibre yield, however, it is 

important not to choose a variety that flowers too early at the chosen site, because 

around flowering the allocation of dry matter to the stem decreases (De Meijer and 

Keizer, 1994; Van der Werf et al., 1994a; Meijer et al., 1995;  Mediavilla, 1999 et al.;

Ranalli, 1999; Struik et al., 2000; Cooper, 2003).

In Chapter 5, we make use of the short–day response of hemp to demonstrate 

that secondary fibre formation depends on plant weight, not on flowering.

4.4 Psychoactive compounds

The major disadvantage of fibre hemp is its association with the production of illegal 

narcotics, like hashish and marijuana (weed). Before seed set it is very difficult to 

discriminate between drug and fibre types of Cannabis sativa L. Consequently, hemp 

was put under a ban in many countries in the twentieth century, regardless of the 

intended use or the concentration of psychoactive compounds (De Meijer et al., 1992; 

Bócsa and Karus, 1998; Herer, 2000; Cappelletto et al., 2001).

Hemp synthesizes about sixty chemicals belonging to the cannabinoids family,

and members of this phytochemical group have never been found in other species. 

Some cannabinoids are psychoactive, and the most important of these intoxicants is 

∆9–tetrathydrocannabinol (THC), which is found in all parts of the plant, with highest 

concentrations in the tops of female plants, especially in the bracts, its glandular hairs,

and their resin around pollination. THC does not contribute to the characteristic smell 
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of hemp; it is odourless. The distinctive smell of hemp plants is among others caused 

by terpenes, which appear in both drug and non–drug types (Turner et al., 1980; Pate, 

1994; Wulijarni–Soetjipto et al., 1999; Niesink et al., 2002).

The THC content of a hemp strain mainly depends on its genetic background,

but is modified by environmental conditions like latitude, elevation, nutrient levels, 

temperature, and moisture (De Meijer et al., 1992; Pate, 1994; Bócsa and Karus, 1998; 

Niesink et al., 2002). Hemp without any THC seems utopian: although the role 

cannabinoids play in plant development is not well understood, they seem to be 

indispensable for the growth of the plant (Bócsa and Karus, 1998). Possibly, 

cannabinoids offer protection against insects or micro–organisms, or play a role in 

suppressing the growth of surrounding vegetation or in the defence against ultraviolet 

radiation, drought, or high temperatures. Evidence for such claims, however, is lacking 

(Schultes, 1970; De Meijer et al., 1992; Pate, 1994; Mediavilla et al., 1999).

Fibre hemp varieties cannot be used as a drug. Low THC content is one of the 

main breeding objectives, because most countries that allow the cultivation of fibre

hemp restricted the THC content to about 0.20–0.35% (De Meijer et al., 1992; 

Höppner and Menge–Hartmann, 1994; Bócsa and Karus, 1998; Lisson and Mendham, 

2000; Cappelletto et al., 2001; Crowley, 2001; Burczyk et al., 2005), which is far 

below the THC content of drug types (Niesink et al., 2002). Nevertheless, the 

association of fibre hemp with its narcotic relatives has hampered the reintroduction of 

the crop, when its economic prospects increased (Anonymous, 1994a; Bócsa and 

Karus, 1998; Herer, 2000; Cappelletto et al., 2001).

4.5 Pests and diseases

Fibre hemp is relatively pest–tolerant (McPartland, 1999) and can be cultivated 

without the use of biocides (Höppner and Menge–Hartmann, 1994; Gutberlet and 

Karus, 1995; Cappelletto et al., 2001; Crowley, 2001; Keller et al., 2001; Mediavilla et 

al., 2001a). Although many pests and diseases have been described, some of which are 

specific for hemp (McPartland, 1996a, 1996b, 1999; Bócsa and Karus, 1998; 

Gottwald, 2002), serious economic losses are rarely reported (Anonymous, 1943; 
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Gutberlet and Karus, 1995; Ranalli, 1999). 

In the field experiments described in this thesis, no biocides were applied, and 

pests and diseases of significance did not occur. Incidentally, seedlings died from 

wilting diseases caused by different oomycetes or fungi (Friederich, 1964; Dempsey, 

1975; Van der Werf et al., 1994a; Meijer et al., 1995; McPartland, 1999). The early 

canopy closure in high density stands for textile applications increases the humidity 

around the stems, hence the risk of fungal attack, especially under unfavourable 

weather conditions (Friederich, 1964; Meijer et al., 1995; Crowley, 2001).

Rabbits, hares and roe deer can be serious threats for an establishing crop as 

well, and to protect seeds and seedlings, care must also be taken to scare away birds 

(author’s personal experience).

4.6 Weed control 

Fibre hemp, unlike flax, suppresses weeds efficiently, especially when it is grown at 

high plant densities. The fast growing crop outcompetes and smothers most weeds 

before they set seed. Consequently, weed seed banks are reduced, which is of benefit 

for the subsequent crops in the rotation. Hemp therefore is recommended to precede 

crops susceptible to weed problems and for organic crop rotations. Herbicides are not 

needed (Rowlandson, 1849; Dewey, 1913; Hoffmann, 1957; Meijer et al., 1995; 

Höppner and Menge–Hartmann, 1994, 1995; Bócsa and Karus, 1998; Crowley, 2001).

A future increase of the fibre hemp acreage might increase the incidence of 

pests and diseases. Also hemp broomrape (Orobanche ramosa L.), a parasitic weed, 

might cause problems, as it does in, e.g., France, Russia, and Italy already. This so–

called ‘hemp killer’ spread from Asia to Europe in the seventeenth century with the 

increasing cultivation of its host. The roots of the broomrape species penetrate hemp 

roots, extract nutrients, and eventually kill the plants. Clean seed, resistant varieties, 

and crop rotation are recommended to avoid these problems (Dewey, 1913; Friederich, 

1964; Dempsey, 1975; Bócsa and Karus, 1998; Wulijarni–Soetjipto et al., 1999; 

Gonsior et al., 2004).
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4.7 Crop management

Fibre hemp is an easy–to–grow, low maintenance crop; it requires no field operations 

between sowing and harvest (Van der Schaaf, 1966; Anonymous, 1994b; Struik et al.,

2000; Anonymous, 2003). The crop can be grown organically, without major problems 

(Menge–Hartmann and Höppner, 1996; Ranalli and Venturi, 2004; Danckaert et al.,

2006). Hemp is known for its ‘plasticity’ or high capacity to adapt to various 

cultivation and environmental factors (Friederich, 1964; Schultes, 1970; Bócsa and 

Karus, 1998; Struik et al., 2000; Amaducci et al., 2002a).

Fibre hemp may yield up to 20 Mg stem dry matter per hectare, depending on 

agronomy and environment. Usually stem dry matter yields between 7–15 Mg ha-1 are 

reported in field experiments (e.g., Bredemann et al., 1961; Van der Werf, 1994; 

Mediavilla et al., 1999; Struik et al., 2000; Scheer–Triebel and Léon, 2000; 

Svennerstedt and Landström, 2000; Crowley, 2001; Amaducci et al., 2002a; Von 

Francken–Welz and Léon, 2003; Höppner et al., 2004; Burczyk et al., 2005, 2009; 

Amaducci, 2006b). Fibre yields are usually between 2 and 4 Mg ha-1 (Dempsey, 1975; 

Svennerstedt and Landström, 2000; Mediavilla et al., 2001; Von Francken–Welz and 

Léon, 2003; Höppner et al., 2004; Deleuran and Flengmark, 2005). A survey in 2010, 

covering 99% of the production area, showed that hemp farmers in the European 

Union on average harvested 7.3 Mg stems ha–1 (Carus et al., 2013).

Van der Werf (1994) extensively described crop physiology, dry matter 

production, and dry matter distribution, and a basic crop growth and development 

model to predict total and stem dry matter yield of fibre hemp was developed by

Lisson et al. (2000b). For textile destinations, however, the focus should not be on 

quantity, but rather on fibre quality and homogeneity (Van der Werf and Van der Berg, 

1995; Ranalli, 1999; Liberalato, 2003).   

Although under favourable conditions a height up to 6 m can be reached, such

tall plants are unfit for textile yarn production, with respect to quality (Jakobey, 1965) 

as well as suitability for harvesting and processing (Friederich, 1964; Van der Werf 

and Van der Berg, 1995; De Maeyer and Huisman, 1995; Schulz, 1998). Usually,

canopy height at harvest is between 1.5 and 3 m (e.g., Höppner and Menge–Hartmann, 
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1994; Cromack, 1998; Mediavilla et al., 1999; Struik et al., 2000; Vetter et al., 2002; 

Amaducci et al., 2002a), but little seems to be known about the causal relationships 

between visible or easily measurable characteristics of the stems (e.g., plant height and 

stem diameter) and the characteristics (quantity and quality) of the fibres that can be 

extracted.

A well–prepared seedbed, ploughed, and subsequently harrowed, is necessary to 

get the top–soil into fine tilth. This supports a rapid and uniform emergence, which is 

important for the establishment of a uniform crop as well as for weed suppression.

Fibre hemp is very sensitive to poor soil structure; water logging and soil compaction 

hamper emergence, and cause irregular crops. The crop needs less water than common 

rotation crops such as wheat, sugar beet or maize (Rowlandson, 1849; Dewey, 1913; 

Friederich, 1964; Sankari and Mela, 1998; Struik et al., 2000; Anonymous, 2003;

Venturi and Ranalli, 2004).

The recommended seeding rates for stem production of fibre hemp vary widely

(50–750 seeds m-2) depending on the production goal, the expected plant density, the 

expected yield, and regional traditions (Dempsey, 1975; Van der Werf et al., 1995a;

Ranalli, 1999; Amaducci et al., 2002ab; Burczyk et al., 2009). For quality reasons, 

hemp for textile destinations traditionally is sown in densities that are higher than the 

lowest plant density that gives maximum stem dry matter yield at the site 

(Rowlandson, 1849; Jakobey, 1965; Van der Werf et al., 1995a; Struik et al., 2000; 

Amaducci et al., 2002a;). With increasing plant density, individual plant size is 

reduced (Kira et al., 1953; De Wit, 1960; Amaducci et al. 2002a), which is reported to 

improve the bast fibre content and the fineness of the fibres (Jakobey, 1965; Van der 

Werf et al., 1995a).

The effect of sowing density on stem yield, however, is limited, because of 

inter–plant competition (Kira et al., 1953) and ‘self–thinning’ or density–induced 

mortality (Van der Werf et al., 1995a). An increase in biomass yield in time is 

accompanied by a reduction of the number of plants. The death rate caused by self–

thinning in hemp is high as compared with other dicotyledons (Van der Werf et al.,

1995a). With increasing amounts of applied nitrogen, self–thinning increases (Van der 
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Werf, 1994; Höppner and Menge–Hartmann, 1994; Menge–Hartmann and Höppner, 

1995; Amaducci et al., 2002a). Such dying plants cause irregularities in the crop which 

might hamper a clean and parallel harvest of the stems.

In a densely sown crop branching is suppressed (Dewey, 1913; Clarke, 1999; 

Amaducci et al., 2002a), and approximately 80% of the above ground dry matter (Van 

der Werf, 1994; Meijer et al., 1995; Struik et al., 2000) is located in the erect main 

stem (Picture 1B), which contains the valuable long fibres (Section 6.1). Smooth 

unbranched stems also facilitate parallel, aligned harvesting and processing, which is 

necessary for long fibre extraction in hemp (Van Dam, 1999; Van Dam and Van den 

Oever, 2006; Venturi et al., 2007), like it is in flax (Hann, 2005). In a maturing crop 

sown at a high density, the leaves from the lower stem part gradually become yellow 

and drop off (Dewey, 1913).

In fibre hemp crops often an understorey of suppressed plants, called 

‘underhemp’ (German: ‘Unterhanf’), exists (Hoffmann, 1957). These very small plants 

under certain circumstances survive relatively well in the low–light environment under 

the canopy. They do not contain any valuable textile fibres, and will completely be lost 

during processing (Van der Schaaf, 1963; Van der Werf and Van den Berg, 1995;

Bócsa and Karus, 1998).

As for flax, a surplus of nitrogen increases the risk of lodging. This should be 

avoided to keep an easy–to–harvest high–quality crop. In the experiments described in 

this thesis, nitrogen fertilisation was limited to avoid this problem, and also to reduce 

size variability and self–thinning (Friederich, 1964; Dempsey, 1975; Van der Werf and 

Van der Berg, 1995; Bócsa and Karus, 1998; Cappelletto et al., 2001; Amaducci, 

2005).

Hemp does not exhaust the soil and can be grown many years in succession 

with low amounts of fertiliser and little reduction in yield (Dewey, 1913). However, 

the advantages of fibre hemp in a crop rotation, e.g., improved soil structure (Bócsa 

and Karus, 1998) and weed eradication (Section 4.6), in this case are not utilized and 

the risk of diseases, pests, and weeds, e.g., hemp broomrape increases.
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The fibre content depends among others on variety, but there are many 

contrasting results presented in the literature about crop management factors that 

would or would not affect the quality of hemp fibres and the productivity of fibre 

hemp. It is one of the objectives of the present thesis to understand the underlying 

principles.

5 Fibre processing 

5.1 Fibre releasing

Before hemp fibres can be used for yarn spinning, the fibre bundles have to be released 

from the surrounding tissues by biological, mechanical or chemical processes. 

Processing of fibre hemp into high–quality yarns in principle is similar to linen 

production from flax (Sponner et al., 2005), for which the industrial production chain 

is accurately described by, e.g., Hann (2005) and Salmon–Minotte and Franck (2005). 

Traditionally, hemp fibre extraction for textile purposes consists of retting, 

breaking and scutching (Ranalli, 1999). Mechanical fibre releasing without retting or

‘green decortication’ seems unfit for fine textile purposes (Dewey and Merrill, 1916;

Keller, 1997; Keller et al., 2001; Hobson et al., 2001; Sponner et al., 2005). Altering 

the sequence of retting (or ‘bio–degumming’) and decortication, however, might be a 

serious alternative to the traditional method (Leupin, 2001; Tofani, 2006; Anonymous, 

2007).

We used a traditional fibre–extraction method (Picture 2) for the experiments 

described in this thesis, because of the small size of the samples as compared to 

industrial processing batches. However, with respect to the procedural steps and the 

final products, the method is comparable to industrial processing. 

5.2 Retting

The main retting techniques are dew retting and (warm–)water retting. When hemp is 

to be dew retted, the stems after mowing with a cutter bar are spread in the field in 

uniform layers (‘swaths’), and turned manually or mechanically once or several times 
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during the 10–40 days retting period to provide a uniform end product. It is a relatively 

cheap method in which the fibres are released by fungi that are excessively present 

under moist field circumstances. However, the quality of dew–retted fibres is difficult 

to control, because of the extreme weather dependency of the process. Especially 

temperature and degree of humidity are important factors in combination with swath 

height. Wet circumstances might hinder a timely gathering of the retted stems, which 

eventually leads to over–retting and loss of fibre quality and quantity. Dew retting 

gives rise to heterogeneous fibres, hence is unfit for the production of high–quality 

yarns. Stand or dry‒line retting, in which the stems are only harvested in spring after

the moist and frosty autumn and winter (Finland, Sweden), also produces fibres with 

too low quality for yarn production (Dempsey, 1975; Anonymous, 1994; Ranalli,

1999; Van Dam, 1999; Hobson et al., 2001; Müssig and Martens, 2003; Allam, 2004;

Pasila, 2004; Hann, 2005; Salmon–Minotte and Franck, 2005; Sponner et al., 2005).

For the production of textile yarns, water retting is recommended. This takes 

place in ponds, ditches, lakes, tanks or basins in which the stems are submerged. Fibre 

releasing is performed by the spontaneous enzymatic action of anaerobic bacteria. The 

method pollutes the water and is accompanied by a characteristic, foul odour (butyric 

acid, hydrogen sulphide, methane) for which reasons retting in open water was 

abandoned in many countries (Ranalli, 1999; Van der Werf and Turunen, 2008).

In our experiments, after harvesting (Picture 2A), groups of 50 stems are cut 

into 50 cm stem parts and bundled (Picture 2B) after which the fibres are extracted 

indoors by a controlled warm–water retting procedure (Pictures 2C and 2D) to avoid 

the extreme weather dependency that comes along with dew retting. It is the most 

suitable method for such fibre extraction experiments (Hoffmann, 1957). The method 

is relatively expensive, but it benefits the final quality of the fibres and the yarns that 

can be spun (Dempsey, 1975; Van Dam, 1999; Tofani, 2006). It also enabled us to 

determine retting losses under controlled conditions. After drying the retted stems on a 

drying floor (e.g., Van der Werf et al., 1994b), the fibres and wood of the stems were

separated from each other in two mechanical steps, breaking and scutching.
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Picture 2 A) Hemp stems were cut at soil level. B) Per plot 50 cm parts of 50 stems were 
bundled. The stems were weighed after conditioning (2 days, 19 °C, 73% humidity). C) The 
bundles were warm water retted in PVC tubes with closed bottoms for 4 days at 34 °C. D)
After retting the stems merely consist of fibres and wood. The stems were washed with tepid 
water and dried on a drying floor for 4 days at 27 °C. The stems were weighed after 
conditioning.

2A 2B

2C 2D
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E and F) To separate fibres and wood the stems were fed into a flax breaker consisting of a 
double series of ribbed breaking rollers. The wood was broken into shives, while the fibres 
passed under the rollers easily. G and H) Scutching was performed on a Flemish mill with 
rotary blades that beat the broken stems in such a way that shives and tow were separated 
from the long fibres. Long fibres and tow were weighed after conditioning.

2E
 

2F
 

2G
 

2H
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5.3 Breaking and scutching

After breaking the stems on a flax breaker (Picture 2E and 2F), scutching is performed 

with a Flemish mill (Van den Oever et al., 2003) with rotary blades that beat the

broken stems in such a way that remaining shives and scutching tow are separated 

from the long fibres (Pictures 2G and 2H). Tow, the fibres that are lost during breaking 

and scutching, in our experiments was collected and manually separated from 

remaining shives. The amounts of scutching tow and scutched long fibres are weighed 

to determine the relative amounts of fibre and wood prior to breaking. The final 

product in the experiments described in this thesis is scutched long fibre. To produce 

hemp yarns the next processing steps would be hackling and spinning.

5.4 Hackling and spinning

Hackling is a combing process with wire pins of increasing fineness and closeness, 

which aligns and refines the long fibres, with the aim to produce a continuous fine 

strand of fibres or ‘sliver’ for spinning. Losses are high; hackling yields are reported to 

be around 40% only (Sponner et al., 2005; Tofani, 2006). 

The slivers undergo a series of doubling and drafting operations with the aim to 

attenuate the fibres and to reduce the yarn count, which means that the fineness is 

enhanced. To produce the finest yarns the spinning technique and the fineness of the 

fibre material are important. Yarns can be spun either on a dry or a wet basis. The first 

procedure is cheaper, the latter, however, produces yarns with higher quality. When 

hemp fibres pass through hot water before spinning, drawing out is greater and a finer 

hence more valuable yarn can be spun (Allam, 2004; Hann, 2005; Salmon–Minotte 

and Franck, 2005; Sponner et al., 2005; Van Dam and Van den Oever, 2006). 

 The final fineness of the fibre material depends on the dimensions of individual 

fibres or ultimates, their grouping into fibre bundles or fibre collectives and the 

refinability of such bundles, which is the division into two or more bundles consisting 

of less ultimates. In flax the fibre strand fineness is affected more by the grouping than 

by the thickness of the ultimates in the stem (Shepherd, 1956; Müssig and Martens, 

2003; Chernova and Gorshkova, 2007).
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Fibre fineness can be improved with chemical retting agents as well, however, 

this does not fit in sustainable textile production chains (Leupin, 2001; Venturi et al.,

2007; Amaducci et al., 2008a; Van der Werf and Turunen, 2008).

6 Fibres and fibre development

6.1 Fibres

Fibres are slender strands of natural or man–made material, usually having a length of 

at least 100 times their diameter, and characterised by flexibility, cohesiveness, and 

strength. These characteristics make a wide range of plant fibres fit to be spun into 

yarns, and then woven or knitted into fabrics. In the European Union, fibre hemp and 

flax, both annuals, and stinging nettle, a perennial crop, are fit to be cultivated for this 

purpose (Lipton, 1995; Scheer–Triebel and Léon, 2000; Brink et al., 2003; Vogl and 

Hartl, 2003).

Botanically, the valuable textile long fibres that can be extracted from these 

crops, are phloem (bast) fibres. They belong to the sclerenchyma, the tissue giving 

mechanical support to plants. Fibre formation in plants is a highly orchestrated, but yet 

poorly understood process, which involves stages of cell initiation, elongation, cell 

wall layer formation, and maturation (Kundu, 1942; McDougall et al., 1993; Van Dam 

and Gorshkova, 2003; Brink et al., 2003; Amaducci et al., 2005).  

6.2 Primary fibres are valuable, secondary fibres are unwanted 

In fibre hemp two types of bast fibres occur, primary and secondary fibres. The 

classification is made according to their origin. The cell walls of both types are 

enforced with layers of cellulose and both types are organised in bundles. In a cross–

section of a hemp stem the outer fibre bundle layer consists of primary fibres, the inner 

layer, if present, of secondary fibres (Picture 3) (Kundu and Preston, 1940; Kundu, 

1942; Van Dam and Gorshkova, 2003, Sponner et al., 2005).

For spinning high–quality textile hemp yarns only the primary or ‘long’ fibres 

(average length 20 mm) are valuable. Secondary or ‘short’ fibres (average length 2
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Xylem

Secondary fibre layer

Primary fibre layer

Picture 3. A cross–section (100 × magnified) of a hemp stem with primary and secondary 
fibres, stained with phloroglucinol (0.1 g in 20 ml 15% HCl), which colours lignin red.

mm) are unwanted (Hoffmann, 1957; Bredemann et al., 1961; Ranalli, 1999; 

Mediavilla, 2001; Brink et al., 2003; Schäfer and Honermeier, 2003). These fibres are 

too short for spinning and contain too much lignin (Kundu and Preston, 1940; 

Hoffmann, 1957; Schäfer and Honermeier, 2003) which is detrimental for the 

production of fine, flexible, and homogeneous yarns (Bócsa and Karus, 1998; 

Cappelletto, 2001).  

Because it is technically difficult to separate the secondary fibres from the 

primary fibres during commercial fibre processing (Kundu and Preston, 1940; Van 

Dam and Gorshkova; 2003), it should be known how the development of secondary 

fibres above stubble height can be avoided in the raw materials aimed at textile yarn 

production.

6.3 Fibre development

Primary fibre bundles are already present in very young hemp stems. They run

longitudinally along the stem from bottom to top and can reach almost the full length 

of the plants (Van Dam and Gorshkova, 2003; Hernandez et al., 2006). The primary 

fibres have to be strong enough before the bundles can be extracted, and their maturity 
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or ‘ripeness’ progresses from bottom to top (Kundu, 1942; Mediavilla et al., 2001;

Schäfer and Honermeier, 2003; Van Dam and Gorshkova, 2003; Amaducci et al.,

2005). Hemp for textiles is usually harvested around the time of flowering, when the 

primary fibres are ‘ripe’ and stem dry matter yield and fibre yield are highest (Bócsa 

and Karus, 1998; Mediavilla et al., 2001; Schäfer and Honermeier, 2003; Amaducci et 

al., 2005; Burczyk et al., 2009).

Secondary fibres might form when a stem part has reached its maximum length 

(Kundu and Preston, 1940; Van Dam and Gorshkova, 2003; Amaducci et al., 2005; 

Chernova and Gorshkova, 2007). They are absent in young hemp plants or only 

present in a thin layer at the stem base (Van Dam and Gorshkova, 2003; Amaducci et

al., 2005, 2008a; Hernandez et al., 2006). Around flowering, however, secondary 

fibres are found higher up along the stem, with a layer thickness that decreases from 

bottom to top (Van der Werf, 1994b; Mediavilla et al., 2001a; Schäfer and 

Honermeier, 2003; Amaducci et al., 2005). Mediavilla et al. (2001a) stated that with 

the induction of the generative phase secondary fibre formation increases quickly. 

Schäfer and Honermeier (2003) also related an increased secondary fibre formation 

and a thicker secondary fibre layer to a phenological stage of the plant, the period 

between flowering and seed.

6.4 Timing of the harvest

The observed coincidence of enhanced secondary fibre formation with the transition 

from the vegetative to the generative growing stage of the plants does not necessarily 

point at a causal relationship between these phenomena. 

Botanically the bast fibres in hemp belong to the sclerenchyma tissue which 

gives mechanical support to the plants (Kundu, 1942; McDougall et al., 1993; Van 

Dam and Gorshkova, 2003; Amaducci et al., 2005) and the need for such support 

increases when plants grow taller and tops become heavier, due to the development of 

inflorescences and filling of the seeds. Therefore it seems likely that the increasing 

size of the plant is involved in secondary fibre formation. 
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Harvest time of fibre hemp should be optimised on the basis of insight into the 

progress of the secondary fibre front from bottom to top, the ripening of the primary 

fibres and the thickness of the layers. The rates of the processes over time are not well 

quantified, nor are the factors determining the onset of changes herein. To avoid the 

presence of the unwanted secondary fibres above stubble height and to optimise the 

production of valuable primary fibres, we need to know whether hemp should be 

harvested before flowering or before the plants become too tall.

7 Objective and structure of the thesis

7.1 Problem definition

The main objective of this thesis is to outline the agronomic options for manipulating 

plant development and crop growth of fibre hemp, in order to produce high‒quality 

long textile fibres. We need to know how the amount of primary fibres with the 

desired quality can be maximised within a plant or crop, while at the same time 

contamination of these valuable fibres with the unwanted secondary fibres must be 

avoided.

At the start of this thesis research many contrasting results were found in the 

literature about factors that would or would not affect the primary fibre content. 

Important factors seemed to be sowing density, sowing date, harvest time, variety, and 

site, but although many experiments had been conducted, literature was still far from 

conclusive.

Increased sowing densities have been reported to increase primary fibre 

percentages (Jakobey, 1965; Dempsey, 1975; Van der Werf et al., 1995a; Cromack, 

1998; Von Francken–Welz and Léon, 2003), but also to have no effect on primary 

fibre percentages at all (Van der Schaaf, 1963; Van der Schaaf, 1966; Höppner and

Menge–Hartmann, 1994; Vetter et al., 2002; Von Francken–Welz and Léon, 2003; 

Burczyk et al., 2009). Delayed harvesting has been reported to increase (Van der 

Schaaf, 1963) and decrease (Schäfer and Honermeier, 2003) primary fibre 

percentages, or to have no effect at all (Burczyk et al., 2009). Moreover, primary fibre 

percentages for a given variety vary widely within (e.g., Vetter et al., 2002) and 
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between (e.g., cf. Cromack, 1998; Mediavilla et al., 1999; Vetter et al., 2002)

experiments.

Little seems to be known about the causal relationships between the primary 

production process, the visible or easily measurable characteristics of harvested hemp 

stems, and the amount and characteristics of the fibres that can be extracted (Ranalli

and Venturi, 2004). Extraction of the fibres is inevitable if one wants to know the fibre 

content, as no correlations are known between the fibre content and the visible 

characteristics of the stems (Hoffmann, 1957).

The options for improvement of fibre yields and fibre quality hence are 

unknown as underlying processes are poorly understood. Therefore, a reliable raw 

material qualification system, on which pricing could be based, has not been 

developed yet (Van Dam, 1999; Amaducci, 2003; Traina and Rondi, 2006; Van Dam 

and Van den Oever, 2006), and agronomic choices largely are made based on practical 

experience, local traditions, hearsay, and unproven rules of thumb. 

7.2 Approach

In Chapters 2, 3, and 4 experiments are described in which we investigated which 

factors or interactions between factors determine the amount of primary fibres in hemp 

stems, using a new approach.

Fibres give mechanical support to the plants hence the amount of fibres present 

is likely to be related to the size of the plant and the forces the plant is subjected to. It 

is questionable therefore, whether the effects of sowing density, sowing date, harvest 

time or any other factor affecting the size of the plants, are essentially different. It 

could also be an indirect effect: these factors all affect stem weight and thereby fibre 

content. To determine whether the factors affect plant characteristics independently, or 

through similar mechanisms based on their effects on biometry, their interactions are 

studied.

Because fibre quantity (Bredemann, 1940; Hoffmann, 1957; Van der Werf et

al., 1994b; Amaducci et al., 2008a) and quality (Cappelletto et al., 2001; Amaducci et 

al., 2008a) show patterns along the stem which possibly interact with the other factors 
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that are investigated, differences between stem parts are also taken into account. It is

necessary anyway to cut the stems, as complete stems cannot be processed with our 

equipment: processed stem parts need to be of equal length.

In contrast to many other fibre hemp experiments, retting losses were 

determined separately. Subsequently, we relate the fibre content to the dry weight of 

the stems after retting. This method avoids differences in retting losses to appear as 

differences in fibre content, and focuses on the ratio in which fibre and wood are 

produced. Possibly this ratio is a variety characteristic, whereas retting losses 

presumably are different for different stem parts and harvest times. Basically, the 

method we have chosen, provides a split up of the hemp stems into fibres, wood, and

retting losses, whereas in other publications the wood and the retting losses are 

considered as a whole.

Quality is of highest importance when hemp fibres are to be used for textile 

purposes. Yarn spinners have high demands with respect to fibre characteristics as 

fineness, refinability, strength, fibre length distribution, homogeneity, and cleanliness 

(low shiv content) (Sultana, 1992; Nebel, 1995; Van Dam, 1999; Wulijarni–Soetjipto 

et al., 1999; Allam, 2004; Anonymous, 1994b; Hann, 2005; Sponner et al., 2005).

To introduce hemp long fibres into the fashion textile sector, fibres should be 

produced allowing the spinning of yarns between Nm 20 and Nm 40 (Nebel, 1995; 

Ranalli and Venturi, 2004). Nm is the metric yarn number: the yarn length in meters 

per 1 gram of mass (m·g-1) . The finer the yarns that can be spun, the higher the value 

of the raw material is (Allam, 2004; Ranalli and Venturi, 2004; Van Dam and Van den 

Oever, 2006).

Along the production chain from harvested hemp stems to such high–quality 

textile yarns, however, most of the fibre material is lost, especially during hackling and 

scutching (Sponner et al., 2005; Tofani, 2006). Although the waste products of the 

different processing steps can be used for lower value applications, with respect to 

high‒quality yarn spinning they should be considered worthless. Therefore, measuring 

fibre characteristics as fineness in scutched hemp, the end product of the experiments 

described in this thesis, is not adequate to describe the fitness of the fibres for high–
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quality yarns. 

The fibre characteristics are only important with respect to the fibres that have 

passed all processing steps before spinning. The first step in which fibres are lost is the 

scutching procedure, hence only the long fibres surviving this step are valuable. Their 

share in the total fibre fraction can be considered a quality parameter of the raw

material (Hoffmann, 1957; Allam, 2004). Therefore this long fibre/total fibre ratio is 

determined. 

Because secondary fibres are detrimental for high–quality yarn spinning, it  

should be known how to produce fibre hemp without these short fibres. In literature 

indications are found that secondary fibre formation depends on flowering (Mediavilla 

et al., 2001a; Schäfer and Honermeier, 2003), but it seems more likely that the 

increasing plant size triggers secondary fibre formation. Therefore the presence or

absence of secondary fibres along the hemp stem in relation to the flowering status and 

plant size will be taken into account as the second quality parameter in this research.

7.3 Outline of the thesis

Chapter 2 – Sowing density and harvest time affect fibre content in hemp 

(Cannabis sativa L.) through their effects on stem weight  

Sowing density and harvest time are considered very important factors affecting the 

quality of hemp fibres and the productivity of fibre hemp, but although many 

experiments have been conducted, the optimal combination is still unknown. To 

determine whether sowing density and harvest time affect plant characteristics 

independently or through similar mechanisms based on their effects on biometry, their 

interactions were studied. 

In Chapter 2, it is demonstrated that the amount of fibre in a hemp stem part is

almost completely determined by the weight and the position of that stem part. When 

the plant grows, the increase in dry matter is split up into fibres and wood in a fixed 

way. Sowing density and harvest time effects on fibre content are indirect: through 

stem weight.
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Chapter 3 – Postponed sowing does not alter the fibre/wood ratio or fibre 

extractability of fibre hemp (Cannabis sativa L.)

For reasons of fibre quality (low secondary fibre content) as well as suitability for 

processing (processing on existing flax scutching and hackling lines), it could be 

interesting to grow shorter hemp crops. Because hemp is a short–day plant, postponing 

the sowing date might be a suitable strategy to obtain smaller plants around flowering, 

when primary fibres are ‘ripe’ enough to be harvested. 

In Chapter 3, it is shown that postponing the sowing date does not alter the ratio 

in which a fibre hemp variety produces fibre and wood and that it technically should 

be possible to grow two successive textile hemp crops to compensate for the lower 

stem yields of shorter crops.

Chapter 4 – Site does not affect the fibre content ranking order among fibre 

hemp (Cannabis sativa L. ) varieties

In growing fibre hemp for textile applications selecting the right fibre hemp variety is 

very important, as it affects fibre content, fibre quality as well as stem dry matter yield. 

Although some varieties consistently show relatively high fibre percentages, whereas 

other varieties are known for their consistently low fibre content, the absolute values 

for a given variety vary widely within and between experiments. 

In Chapter 4, it is shown that previously reported genotype × environment 

interactions with respect to fibre percentages presumably are largely due to the method 

of analysis. When fibre percentages are based on the dry weight of stems after retting 

and retting losses are calculated separately, the effect of the environment on the fibre 

content of varieties, if any, is very small and for practical reasons can be neglected. 

Chapter 5 – Plant size determines secondary fibre development in hemp 

(Cannabis sativa L.)

In literature indications are found that with the induction of the generative phase the 

height up to which secondary fibres are present in hemp stems increases quickly. 

However, the formation of these unwanted fibres could also be related to plant size or 
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weight. A greenhouse experiment was conducted, in which flowering and plant size 

effects on secondary fibre growth were disentangled. The short–day response of the 

plant was used to produce the required range of plant sizes.  

In Chapter 5, it is shown that flowering as such does not induce secondary fibre 

formation in hemp; it is again the size of the plant that matters.

Chapter 6 – Limited options to manipulate fibre content in hemp (General 

discussion)

In the final chapter, the obtained knowledge is condensed and considered in a broader 

perspective.

This thesis shows that given variety and plant size, the amounts of primary 

fibres, wood, and retting losses and the height up to which secondary fibres can be 

found are determined to a high degree. Options to manipulate are very limited. The 

main tasks of the primary producer hence are choosing the right variety and 

performing crop management aimed at controlling plant size in order to avoid the 

presence of secondary fibres above stubble height.
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Abstract

Sowing density and harvest time are considered important crop management factors 

influencing fibre quantity and quality in hemp (Cannabis sativa L.). We investigated whether 

the effects of these factors are essentially different or that both factors affect stem weight and 

thereby total and long fibre content. The effects of all combinations of three sowing densities 

and three harvest times were studied for six different stem parts. Almost 500 samples 

consisting of stem parts from 50 plants and with a length of 50 cm were tested. Fibres were 

extracted by a controlled warm‒water retting procedure, followed by breaking and scutching. 

The initial sample weight was fractionated into retting losses, wood, tow, and long fibres. In 

both Italy and the Netherlands, crops were successfully established, with different stem 

densities (99–283 m-2), plant heights (146–211 cm), and stem diameters (4.5–8.4 mm) at 

harvest. Stem dry matter yields (6.8–11.7 Mg ha-1) increased with a delay in harvest time but 

were not affected by sowing density. Retting loss percentages were lower in lower stem parts 

and decreased with later harvest. Within a certain stem part, however, the absolute retting 

losses were constant with harvest time. Multiple linear regression analyses showed that the 

amount of fibre in a hemp stem part is almost completely determined by the weight and the 

position of that stem part. When the plant grows, the increase in dry matter is split up into 

fibres and wood in a fixed way. This total fibre/wood ratio was highest in the middle part of 

the stem, and lower towards both bottom and top. Sowing density and harvest time effects 

were indirect, through stem weight. The long fibre weight per stem part increased with the 

total fibre weight per stem part and hence with stem part weight. Stem weight increased with 

harvest time and as harvest time did not affect plant density, the highest long fibre yields were 

obtained at the last harvest time. The long fibre/total fibre ratio was lowest in the bottom 5 cm 

of the stems, but similar for all other stem parts that were studied. Sowing density and harvest 

time effects again were indirect. Fibre percentages in retted hemp decreased with increasing 

stem weights, towards a level that is presumably a variety‒characteristic. The dry matter 

increase between harvests, however, is much more important with respect to total and long

fibre yield. 

Key words: Cannabis sativa L., decorticating, fibre hemp, fibre percentage, fibre quality, 

production chain, retting, scutching, textiles, tow. 
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Introduction1

There are many contrasting results presented in the literature about factors that would 

or would not influence the quality of hemp fibres and the productivity of fibre hemp 

(Cannabis sativa L.).

Sowing density and harvest time are considered very important factors 

(Jakobey, 1965; Dempsey, 1975; Bócsa and Karus, 1998; Struik et al., 2000; 

Amaducci et al., 2008a), but although many experiments have been conducted, 

information in the literature is still far from conclusive with respect to the optimal 

sowing density and harvest time, or the optimal combination thereof. 

With a new approach, we investigated whether the effects of sowing density 

and harvest time are essentially different, or that both factors affect stem weight and 

thereby fibre content. To our knowledge, the interaction between factors has never 

been studied in such detail before in hemp, or in other bast fibre crops. A renewed 

interest in high‒quality hemp fibres, however, makes a thorough, botanically sound 

underpinning of production strategies relevant. We need to know how the amount of 

fibres with the desired homogeneity and quality can be maximised within a single 

plant and within a crop. In this paper, we present a conceptual model and field data to 

underpin the proposed model.

A competitive fibre production chain 1.1

To be competitive in the world fibre market, farmers in the European Union have to 

provide tailor‒made raw materials with high added value for specialised niche 

markets. The flax (Linum usitatissimum L.) fibre production chain for high‒quality 

linen in Western Europe has shown that only with high‒quality standards it is possible 

to compete with imported raw materials from outside the European Union (Van Dam, 

1999).

The highest added value in fibre hemp production can be obtained by producing 

high‒quality ‘long’ fibres for the finest yarns for fashion textiles, a luxury niche 

market (Van Dam, 1999; Cappelletto et al., 2001; Amaducci, 2003; Ranalli and 

Venturi, 2004). Although the world market demand for natural bast fibres for high‒
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value textile applications is growing, and the market conditions to relaunch hemp fibre 

in the textile production chain are favourable (Amaducci, 2003; Esposito and Rondi, 

2006), there is at present no large‒scale production of high‒quality hemp yarns and 

fabrics in Western Europe. First because primary producers cannot supply the 

homogeneous high‒quality raw material the processors require, and second because 

fibre processing is suboptimal (Amaducci, 2003; Esposito and Rondi, 2006; Traina 

and Rondi, 2006). 

Quality from crop to fibre1.2

The spinning industries have high demands with respect to the fibre characteristics 

fineness, refinability, strength, and homogeneity, as these determine the quality of the 

yarns that can be spun (Sultana, 1992; Van Dam, 1999; Hann, 2005; Sponner et al.,

2005). However, little is known about the causal relationships between the primary 

production process, the visible or easily measurable characteristics of harvested hemp 

stems, and the characteristics of the fibres that can be extracted. Therefore, a reliable

raw material qualification system, on which pricing could be based, has not been 

developed yet (Van Dam, 1999; Amaducci, 2003; Traina and Rondi, 2006). 

To stimulate the development of a competitive hemp fibre textile production 

chain, and to provide relevant decision support to primary producers, it is necessary to 

identify those plant and crop characteristics that determine hemp fibre quality. Quality 

should be acknowledged as a critical factor through the entire production chain. 

Sowing density and harvest time 1.3

Increased sowing densities have been reported to increase fibre percentages (Jakobey, 

1965; Cromack, 1998), but also to have no effect on fibre percentage at all (Van der 

Schaaf, 1963; Höppner and Menge–Hartmann, 1994; Vetter et al., 2002). Delayed 

harvestings have been reported to increase (Van der Schaaf, 1963) and decrease 

(Schäfer and Honermeier, 2003) primary fibre percentages or to have no effect at all 

(Burczyk et al., 2009).
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The same ambiguity is present for the percentage of bark or bast, the tissue in 

which the fibres are embedded. To increase the fibre percentage, the bast percentage 

should be increased (Hoffmann, 1957), but Lisson and Mendham (2000) showed that 

the bast percentage was not affected by sowing density in a range of 50 – 300 plants

m-2, and based on a regression analysis of the same data they even suggested a small 

linear decline with increasing sowing density. Van der Werf et al. (1994a,b), however, 

concluded that the bast percentage depends on sowing density and harvest time and 

their interaction, and that the bast percentage increases with increasing sowing density, 

earlier harvest, and decreasing stem weight. Interactions in their experiments, 

however, are difficult to interpret, because of limitations to the experimental design, 

the small sample size, and because the fibre/bark ratio is unknown. 

It is questionable whether the effects of sowing density and harvest time are 

essentially different or that both factors affect stem weight and thereby fibre content. 

Sowing density affects interplant competition and thus plant biometry (plant height, 

stem diameter, and plant weight) and population characteristics (size distribution and 

self–thinning). However, plant and crop characteristics also change during the growing

season because of growth and development. Biometry, population characteristics 

(plant density and size distribution), and physiological stage (generative or vegetative,

fibre ‘ripeness’) therefore will be different at different harvest times. To determine 

whether sowing density and harvest time affect plant characteristics independently or 

through similar mechanisms based on their effects on biometry, their interactions 

should be studied. 

Stem part 1.4

Fibre quantity (Bredemann, 1940; Hoffmann, 1957; Van der Werf et al., 1994b; 

Amaducci et al., 2008a) and quality (Cappelletto et al., 2001; Amaducci et al., 2008a) 

show patterns along the stem, and these possibly interact with the effects of both 

sowing density and harvest time. Hence, to determine what the ideal crop looks like, 

when it should be harvested, and which part of the crop should be used to produce 

high‒quality yarns, any patterns along the stem should be taken into account. 
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Sowing density × harvest time × stem part 1.5

In this paper, we therefore analyse the effects of all combinations of three sowing 

densities and three harvest times on the fibre quantity and quality of six different stem 

parts. We chose sowing densities in a range that is considered appropriate for textile 

destinations (Amaducci et al., 2002a). We chose harvest times around flowering, 

because these are generally recommended (e.g., Dempsey, 1975; Bócsa and Karus, 

1998), not only because of the development or ‘ripeness’ of the primary fibres and the 

expected yield, but also because of quality aspects beyond the scope of this paper, for 

instance lignin and secondary fibre content. We chose stem parts with a length of 50 

cm, which is the minimum length our scutching device requires, to describe the 

patterns along the stem in as much detail as possible.     

Sites1.6

The experiments were conducted at two sites with contrasting environmental 

characteristics (Table 1), because in the past differences between sites were reported to 

affect plant biometry, stem yield, and fibre content (Schulz, 1998; Lisson and 

Mendham, 2000; Struik et al., 2000; Vetter et al., 2002).  

Table 1. Site‒specific information for Cadriano (I) and Achterberg (NL).

Cadriano (I) Achterberg (NL)

Latitude, longitude 43°33’ N, 11°21’ E 51° 58’ N, 5°35’ E

Soil Silt‒clay‒loam Sand

Preceding crop Wheat Spring barley

N applied (kg ha–1) 60 40

Organic matter (%) 1.7 4.1

Soil pH in H2O 7.2 5.6

Sowing date 6 April 29 April

Harvested area per plot 5 m2 2 m2

Border 2.5 m 1 m
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Fibre processing1.7

Processing of fibre hemp into high‒quality yarns in principle is similar to linen 

production from flax (Sponner et al., 2005), and production for a niche market implies 

the use of the linen production chain and systems for manufacturing hemp yarns 

(Esposito and Rondi, 2006; Traina and Rondi, 2006). Hann (2005) and Salmon–

Minotte and Franck (2005) accurately described this linen production chain. 

After harvesting, the fibres have to be liberated from the surrounding tissues by 

retting the stems, a process in which moulds (dew retting) or bacteria (water retting) 

degrade pectic substances. In addition, other substances, for example proteins, sugars, 

starch, fats, waxes, tannins, and minerals are removed (Hann, 2005). Cellulose is not 

decomposed easily, and hence, the woody part of the stems and the cellulose‒filled 

fibre bundles survive retting. These two components can be separated from each other 

in two mechanical steps, breaking and scutching (Hann, 2005; Salmon–Minotte and 

Franck, 2005; Sponner et al., 2005). 

Because of the small sample size as compared to industrial processing, we use a 

‘traditional’ way to process hemp or flax stems into hands of long fibre: after breaking 

the stems on a flax breaker, scutching is performed on a Flemish mill (Van den Oever 

et al., 2003). However, with respect to the procedure and its final products our method 

is comparable to modern scutching turbines.

Fibre percentage1.8

Bast fibre yield or fibre quantity in general can be assessed based on the stem dry 

matter yield and the fibre percentage (Sankari, 2000). Several authors (Bredemann, 

1940; Höppner and Menge–Hartmann, 1994; Van der Werf et al., 1994b; Sankari, 

2000; Amaducci et al., 2008a) calculated fibre percentages based on the ‘Reinfaser’

method of Bredemann (1922). However, they did not determine the weight of the 

woody part of the stems for which a method is described in the same paper.

Presumably because the importance was not recognized and the method is rather 

laborious. Consequently, retting losses are unknown, and the weight of the fibres can 

only be related to the total weight of the air‒dried stems prior to fibre extraction. 
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The calculated fibre percentage, to our opinion, is an inadequate variable to 

compare crop management factors or combinations thereof and to understand 

underlying botanical processes, because no distinction is made between the wood and 

the materials that are lost during retting; they are considered as a whole. We want to 

study these amounts independently, because we expect that the amounts of fibre and 

wood are interrelated, whereas retting losses presumably are different for different 

stem parts and harvest times (see below). Therefore, in our analysis, the total weight of 

harvested stems is subdivided into amounts of retting losses, wood, and fibre. 

Fractionation into retting losses, wood, and fibre1.9

During processing from harvested stems to long fibres, three subdivisions are made 

between main product and waste or by‒product. Fibres are extracted by a controlled 

warm‒water retting procedure to avoid the extreme weather dependency that comes 

along with field retting (Dempsey, 1975; Van Dam, 1999; Hann, 2005; Salmon–

Minotte and Franck, 2005; Sponner et al., 2005), and because it enables us to 

determine retting losses per treatment under controlled conditions.

After retting, the stems merely consist of fibres and wood (Hann, 2005). These 

are separated from each other during breaking and subsequent scutching. While 

scutching, another subdivision is made as well; fibres either remain in the valuable 

long fibre bundle or fall away as scutching tow. ‘Tow’, the fibre material beaten out of 

the bundles, can be used for other applications, but not for long fibre spinning. The 

long fibre/total fibre ratio after scutching therefore characterises the quality of the raw 

material (Hoffmann, 1957). When retting losses and the total fibre amounts are known, 

the fractionation of total dry matter into fibres and wood can also be calculated. 

A botanical model 1.10

For different combinations of sowing density, harvest time, and stem part, we expect 

to find differences in the relative and absolute amounts of retting losses, long fibre, 

tow, and total fibre. Figure 1 schematically shows our main expectations. Especially 

between different stem parts, we expect differences in retting loss percentages, 
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Figure 1. A botanical model of a hemp stem.

because the top part is relatively herbaceous, whereas the bottom part is relatively 

woody. Cappelletto et al. (2001) showed the differences in chemical composition. 

The hemp fibres used for spinning yarns are the primary bast or phloem fibres. 

The single fibre cells are organised in bundles, which run longitudinally along the stem

from bottom to top and can reach almost the full length of the plants (Van Dam and 

Gorshkova, 2003). As plants age, these primary fibres are gradually filled with 

cellulose, and their strength depends on the cellulose filling degree or ‘ripeness’ which 

progresses with time from bottom to top (Mediavilla et al., 2001; Schäfer and 

Honermeier, 2003; Amaducci et al., 2005, 2008a). ‘Ripeness’ in this sense is not so 

much a physiological stage, but a threshold value above which the fibres are strong 

enough to allow proper extraction.

We do not expect to find a ‘ripeness front’ below which fibre filling has ceased, 

because Amaducci et al. (2005, 2008a) showed that even in the lowest internode fibre 

filling continues between full flowering and end of flowering. Possibly, the weight 

increase of the primary fibres in a certain stem part keeps pace with the weight 

increase of the wood, in which case the fibre/wood ratio would be constant with 

harvest time. The ratio in which total dry matter is split up into fibres and wood in a 

fixed way might be a variety characteristic. 
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We expect different total fibre/wood ratios along the stem. Bredemann (1940) 

showed that the fibre percentage differed along the stem with highest percentages in 

the middle of the stems and lower percentages towards both bottom and top. A more 

detailed analysis by Van der Werf et al. (1994b) confirms these results but also 

suggests that the fibre percentage is practically stable at a maximum level that is found 

in the range between 10–20% and 50–60% of the total plant height at seed ripeness. 

In the experiments of Bredemann (1940) and Van der Werf et al. (1994b), 

retting losses were not taken into account; therefore, it is questionable whether the 

pattern described is also present in the total fibre/wood ratio along the stem. Although 

sampling on length percentiles has an advantage when studying the patterns along the 

stem into detail, the disadvantages for our purposes are insuperable, since retting 

losses and the weight of the wood are not determined separately and no difference can 

be made between long fibres and tow. Besides the samples cannot be processed any 

further, because fibres are not aligned anymore and their chemical composition has 

been changed. The method we use does not have these disadvantages. However, 

scutching requires stem parts of equal length (see Materials and methods). 

The long fibre/total fibre ratio is expected to be lower in the bottom part of the 

stems, because this part contains more tow (Cappelletto et al., 2001), which is 

presumably related to secondary fibre forming in the basal internodes (Amaducci et

al., 2005, 2008a; Hernandez et al., 2006).    

Hypotheses1.11

We will test the following hypotheses:

1. Retting loss percentages decrease as stem parts mature because maturation is 

associated with increasing amounts of fibres and wood, whereas the amount of 

material that is lost during retting is constant. Retting loss percentages therefore 

are lower in lower stem parts and decrease with a delay in harvest.

2. Sowing density and harvest time affect fibre content through their effect on 

stem weight only.



Sowing density and harvest time affect fibre content through their effects on stem weight

45

3. The total fibre/wood ratio per stem part does not depend on sowing density and 

harvest time.

4. The total fibre/wood ratio is highest in the middle part of the stems and lower 

towards bottom and top.

5. The long fibre/total fibre ratio decreases from the middle part of the stems 

towards the bottom.

Materials and methods2

Experimental design2.1

Field experiments were carried out at Azienda Università Bologna in Cadriano (Italy) 

and Achterberg (the Netherlands) in 2005. The experimental set‒up at both sites was a 

completely randomized four‒replicate split‒plot design, with three plant densities as 

main plots, and three harvest times as sub‒plots. Site‒specific information is given in 

Table 1. Applied nitrogen fertiliser doses on both sites were based on successful hemp 

experiments on the same sites (Struik et al., 2000; Amaducci et al., 2002b). 

Seeds of Cannabis sativa L. cv. Futura 75, a late‒maturing monoecious variety, 

originated from the same batch purchased from La Fédération Nationale des 

Producteurs de Chanvre, Les Mans, France. Seeds were sown with a precision drill at a 

depth of approximately 3–4 cm, at target plant populations of 120, 240, and 360 

plants m-2 (coded D120, D240, and D360). The crop was not thinned when target 

densities were exceeded. Distance between rows was 12.5 cm. No biocides were used. 

The crop was not irrigated.

Harvests2.2

At harvest, stems were cut at soil level. Dead plants and shed leaves were not 

collected. In Italy, harvests took place when 50% of the plants had reached a 

predetermined stage of growth: beginning (H1), full (H2), and end (H3) of flowering 

(Mediavilla et al., 2001b). In the Netherlands, H2 was planned at the time when 50% 

of the plants ≥ 100 cm were flowering, meaning that at least one flower, either male or 
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female, was open. This moment was predicted based upon flowering dates in earlier 

experiments. H1 took place two weeks before this date, and H3 two weeks after this 

date.

Post‒harvest measurements2.3

Per harvested plot, 100 (the Netherlands) or 50 (Italy) plants were randomly taken and 

measured for stem diameter at 10 cm above soil level, and for plant height. In the 

Netherlands, also flowering status per plant was recorded. Per harvested plot, plants 

were divided into two groups: plants with a height ≥ 100 cm and smaller plants. Fresh 

weights of both groups were determined, and the number of plants per group was 

counted. The smaller plants or ‘underhemp’ were discarded (Hoffmann, 1957; Lisson 

and Mendham, 2000; [Chapter 1]).

Plants with a height ≥ 100 cm were further processed. The dry weights of both 

stems and remainder, i.e. leaves and inflorescences, were determined on 20 of these 

plants following drying for 24 hours at 105 °C in an oven. The other plants were dried 

on a drying floor for 4 days at 27 °C, in order to prevent them from decaying during 

storage. After storage, stems were prepared for extracting the fibres. 

Preparation of the stems2.4

Scutching requires stem parts of equal length (see Fibre extraction), and the minimum 

length required for our Flemish mill is about 50 cm. To examine the fibre development 

along the stem, per harvested plot, 200 stems were randomly taken and were 

defoliated. Four comparable groups of 50 stems were composed with about the same 

size distribution and total weight (Figure 2A).

Two of these groups were used to study the bottom part of the stem. Stems were 

laid parallel with the bottom parts at equal height. From the first group, the stems were 

cut into a B0–50 cm part and the subsequent B50–100 part, where B0 is soil level. 

From the second group, the B25–75 cm part was cut. The other two groups were used 

to study the top parts of the stem. Stems were laid parallel with the tops at equal 

height. From one group, the 50 stems were cut into a T0–50 cm part and a T50–100
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Figure 2.
A) Stem partitioning in the main experiment. Plants smaller than 100 cm were discarded (×). 
Per harvested plot, 200 stems were used. Four comparable groups of 50 stems (only 5 per 
group are drawn) were composed. Groups 1 and 2 were used to study the bottom part of the 
stem. Stems were laid parallel with the bottom parts at equal height. From group 1, the stems 
were cut into a B0–50 cm part and a B50–100 part. From group 2 the B25–75 cm part was 
cut. Groups 3 and 4 were used to study the top parts of the stems. Stems were laid parallel 
with the tops (▲) at equal height. From group 3, the stems were cut into a T0–50 cm part and 
a T50–100 cm part. From group 4, the T25–75 cm part was cut. 
B) Stem partitioning in the detailed bottom part experiment. As in the main experiment the 
plants smaller than 100 cm were discarded (not shown). Six comparable groups of 50 stems 
were composed, with about the same size distribution and total weight. Stems were laid 
parallel with the bottom parts at equal height. From the different groups, stems were cut into 
B0–50 (group 5), B5–55 (group 6), B10–60 (group 7), B15–65 (group 8), B25–B75 (group 9), 
and B50–B100 stem parts (group 5). Samples were tied up with tie–ribs and remainders were 
discarded.

2B

2A
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cm part, where T0 is the utmost top of the plant. From the other group, the T25–75 cm 

part was cut. Samples were tied up with tie–ribs and remainders were discarded.

Fibre extraction 2.5

Fibre extraction consisted of four subsequent steps: (A) retting, (B) breaking, (C)

scutching, and (D) cleaning. Before retting, before breaking, and after cleaning, 

weighing took place to determine respectively the initial weight, the retting losses, and 

the amounts of long fibre and tow. The weight of the wood was estimated by 

subtracting retting losses and total fibre weight from the stem part weight before 

retting. To compare the different batches properly, weighing was always preceded by 

conditioning the materials at 19 °C and 73% humidity for at least 48 hours (Van den 

Oever et al., 2003), and machinery was never adjusted during the experiment.

A. Retting

Warm‒water retting took place in cylindrical PVC tubes with open top and closed 

bottom, a height of 120 cm and a diameter of 16 cm. The six bundles originating from 

the same harvest plot were put together in the same cylinder. Prior to retting, the 

cylinders were filled with tepid tap water. This water, used to wash away solubles and 

irregularities such as dust and sand, was drained after 2 hours. The cylinders were then

placed in a retting basin. Basin and cylinders were both filled with tap water of 34 °C 

up to a height of approximately 110 cm. Stems were completely submerged, but water 

exchange between cylinders was avoided. Retting was performed at 34 °C in 96 hours 

by the spontaneous enzymatic action of anaerobic bacteria. After retting, the bundles 

were carefully washed with tepid water. Excess water dripped off by placing the 

bundles vertically on a grating above a drain. Next, the bundles were dried on a drying 

floor for 4 days at 27 °C. 

B. Breaking

To separate fibres and wood, the tie‒ribs were removed and the stems were arranged 

in an even layer, and then fed into a flax breaker consisting of a double series of ribbed 
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breaking rollers. These heavyweight rollers put pressure on the stems by means of a 

spring system. As a result, stems were flattened and the brittle wood was broken into 

shives, most of which fell through the machine, while the flexible fibres passed under 

the rollers easily.  

C. Scutching

Scutching (decorticating) was performed on a Flemish mill with rotary blades that beat 

the broken stems in such a way that shives and tow were separated from the long fibres 

in the sample. Both sides of the samples, the upper and lower part of the stem part, 

were manually fed through the rotary blades eight times; after four times the bundle 

was turned inside out. Because the end of the sample has to be held in the hand while 

scutching the other side of the sample, all stem parts in a sample have to be of uniform

length. If shorter stem parts were accepted, all the fibre material in these shorter parts, 

both long fibre and tow, would end up in the tow section. Our aim, however, was to 

distinguish between long fibre and tow.

D. Cleaning 

After scutching, the long fibres and tow were cleaned by hand to remove any 

remaining shives. After fibre extraction, conditioning, and weighing, the amounts of 

long fibre and tow were determined and the weight of the wood was estimated. T0–50

tow was not cleaned, because tow could not easily be separated from the wood. 

Consequently, total fibre could not be calculated for this stem part.

Detailed bottom part experiment2.6

To study the bottom part in more detail, an extra experiment was carried out in the 

Netherlands on the same field as the main experiment. The experimental set‒up was a 

completely randomized design with four replicates and three plant densities (D120, 

D240, and D360), and one harvest on August 16, which was one day after H2 in the 

main experiment. Fibre extraction was the same as in the main experiment, cutting of 

the stems in 50 cm parts, however, was different (Figure 2B). Six comparable groups 
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of 50 stems were composed with about the same size distribution and total weight. 

Stems were laid parallel with the bottom parts at equal height. From the different 

groups, stems were cut into B0–50, B5–55, B10–60, B15–65, B25–B75, and B50–

B100 stem parts. Samples were tied up with tie‒ribs and remainders were discarded. 

Statistical analysis2.7

Statistical analyses of the data (P < 0.05) were conducted using GENSTAT® release 

9.2. Following tests for normality: 

• Multiple linear regression analyses were performed for total fibre/wood ratio 

and for long fibre/total fibre ratio. Stepwise addition or subtraction of terms was 

carried out to define the most suitable model to use in general linear modelling 

i.e. the model with the minimum residual mean squares. B‒part and T‒parts 

were analysed separately. There were no statistical or biological reasons to test 

non‒linear models.      

• Analyses of variance (ANOVAs) were calculated for all other variables. Means, 

standard errors of differences of means (SEDs), and degrees of freedom were 

reported.

Results3

In both Italy and the Netherlands, crops were successfully established with even stand 

densities. No signs of water or nutrient stresses were visible. Weeds were suppressed

well by the crops, and pests and diseases of significance did not occur.

Plant density3.1

At full emergence, plant densities were close to the target densities in the Netherlands 

(Table 2). Although some plants died because of crowding, differences between

treatments persisted throughout the entire experiment at both sites. Harvest time did 

not affect plant density; density‒related plant death at both sites took place before the 

first harvest. The plant density at harvest was higher in the Netherlands than in Italy;
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the number of plants ≥ 100 cm m-2, however, was not significantly different.

Timing of the harvest3.2

In the Netherlands, the flowering percentage at H2 in plants ≥ 100 cm on average was 

43%, which was close to the targeted 50%. H1 took place at the beginning of 

flowering (22%), and H3 took place at the end of flowering (81%). Flowering 

percentages were similar for sowing densities, with one exception. At H1, the 

flowering percentage in D120 (32%) was higher than in D360 (12%).

In Italy, the hemp was harvested at predetermined stages of growth (see 

Materials and Methods). Therefore, in Italy there were three weeks between H2 and 

H3 instead of two in the Netherlands. Because of this, and because of the larger daily 

temperature sum in Italy, the differences between harvests in terms of temperature 

sums were much larger in Italy than in the Netherlands (Table 3).

Plant biometry3.3

Plant height varied with sowing density and harvest time (Table 4). The lower the 

sowing density and the later the harvest, the taller the plants were. There was no 

interaction with site, while for the processed plants ≥ 100 cm stems from Italy were 

smaller.

The percentage of plants ≥ 100 cm decreased with increasing sowing density 

and was higher in Italy than in the Netherlands. These processed plants account for 

96.7–99.7% of the harvested volume, assuming the stems have a conical shape 

(Amaducci et al., 2002). 

Stem diameter showed an interaction between sowing density and site. The 

lower the sowing density, the thicker the stems were. In D240 and D360 both sites 

showed equal stem diameters, in D120, however, stems were thicker in the 

Netherlands. In Italy, a delay in harvest time resulted in thicker stems, whereas in the 

Netherlands harvest time did not affect stem diameter. 
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Table 2. Plant density at full emergence in the Netherlands, plant density at harvest, and the 
number of plants ≥ 100 cm m-2 at harvest in the Netherlands and Italy.

Plant density (m-2)

Full emergence (NL) Harvest Plants ≥ 100 cm

D120 129 109 103

D240 261 199 183

D360 371 261 226

SED 7.5 6.3 7.0

d.f. 6 12 12

Italy - 181 n.s.

The Netherlands - 198

SED - 7.1

d.f. - 6

SED, standard errors of differences of mean; n.s., not significant; d.f., degrees of freedom. 

Table 3. Harvest dates, Temperature sums (growing degree days (GDD);°C days) at harvest, 
and stem dry matter yield (Mg ha–1), across sowing densities for 3 harvests and 2 sites. 
Temperature sums were calculated using a base temperature of 2 °C (Van der Werf, 1997).

Harvest date Temperature sum
(GDD; °C days )

Stem DM yield
(Mg ha-1)

I NL I NL I NL

H1 10–6 1–8 948 1149 6.8 9.2

H2 24–6 15–8 1182 1303 7.6 10.6

H3 14–7 29–8 1648 1476 10.4 11.7

SED 0.66

d.f. 9

SED, standard errors of differences of mean; d.f., degrees of freedom.
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Table 4. Plant height and stem diameter for harvested and processed plants (≥ 100 cm),
percentage of plants ≥ 100 cm and volume percentage of plants ≥ 100 cm.

Harvested plants Processed plants ( ≥ 100 cm)

Plant 

height 

(cm)

Stem 

diameter 

(mm)

Plant 

height 

(cm)

Stem

diameter 

(mm)

% Volume%

I NL I NL I NL

D120 193 6.9 8.1 199 7.0 8.4 94.9 99.7 99.0

D240 176 5.9 6.1 183 6.0 6.4 93.8 99.7 98.2

D360 159 5.3 5.1 170 5.5 5.4 88.1 98.8 96.7

SED 4.5 0.23 4.06 0.22 0.01 0.00

d.f. 12 17 12 17 12 14

H1 165 5.4 6.4 171 5.5 6.7

H2 177 6.0 6.2 186 6.1 6.6

H3 187 6.8 6.6 194 6.9 6.9

SED 3.2 0.23 2.58 0.22

d.f. 36 24 36 30

I 177 96.1

NL 190 88.3

SED 3.97 0.01

d.f. 6 6

SED, standard errors of differences of mean; d.f.,  degrees of freedom.
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Retting losses3.4

As expected (Hypothesis 1), retting loss percentages decreased as plants matured. 

Retting loss percentages were lower in lower stem parts and decreased with a delay of 

harvest. The effect of harvest time was more pronounced in Italy than in the 

Netherlands (Figure 3A).

3B

3A
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Figure 3.
A) Relative retting losses (%) per stem part across densities for 2 sites × 3 harvests. Bars 
indicate the overall SED and SED within site respectively (n = 4).
B) Absolute retting losses per stem (g) per stem part across densities and sites for 3 harvests. 
Bars indicate the overall SED and SED within harvest respectively (n = 8). 
C) Relative retting losses (%) per stem part across sites and harvests for 3 sowing densities. 
Bars indicate the overall SED and SED within sowing density respectively (n = 8). 
SED, standard errors of differences of mean.

The differences in retting loss percentages between harvests were mainly 

because of the weight increase of the stem parts. The amounts of materials that were 

lost during retting in a certain stem part were in the same order of magnitude (cf. 

Figure 3A and 3B). For these absolute retting losses, no interactions between site and 

harvest time were present. The effect of sowing density on retting loss percentages was 

small, and without a clear pattern (Figure 3C). 

Total fibre/wood ratio3.5

Because we expected that sowing density and harvest time only affect fibre content 

through their effects on stem weight (Hypothesis 2) and that the fractionation into fibre 

and wood per stem part does not depend on these factors (Hypothesis 3), the total fibre 

weight per stem part was plotted against the wood weight per stem part. Strong 

correlations became apparent, for both bottom and top (Figure 4). 

3C
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Figure 4.  Total fibre weight per stem part against wood weight per stem part for all B stem 
parts, T25–75 and T50–100. R2 = 0.898 (B) and 0.879 (T).

To determine whether sowing density and harvest time had an extra effect 

besides their effects through stem weight, multiple linear regression analyses were 

performed for both bottom and top, with factors sowing density, harvest time, stem 

part, and site. Stem part was taken into account because we expected differences 

between different stem parts (Hypothesis 4). Site was taken into account because 

differences in fibre content between sites were reported by several authors (see 

Introduction). 

In Figures 5 and 7, we present both the total fibre/wood ratio and the fibre 

percentage based on the stem part weight after retting. These fibre percentages were 

derived from the linear regression analyses as follows:

Fibre percentage = total fibre/(total fibre + wood ) × 100%

= ((a × wood weight per stem) + b)/((1+ a) × wood weight per stem + b) × 100%

The analyses (Table 5) showed that the factors wood weight per stem (1), stem 

part (2) and site (3), and their interactions together accounted for 95.6% (B) and 95.2% 

(T) of the variance in total fibre weight per stem. Sowing density and harvest time (4), 



Sowing density and harvest time affect fibre content through their effects on stem weight

57

and interactions with these factors together increased the percentage of variance 

accounted for with only 0.5% (B) and 0.9% (T) to 96.1% (B) and 96.0% (T). All these 

factors, however, contributed significantly to the model as tested by the variance ratios 

(P < 0.05). The following patterns occurred: 

1. More wood, more fibre. The wood weight per stem part accounted for 89.8% (B) 

and 87.9% (T) of the variance in the total fibre weight per stem part (Figure 5A and 

Figure 5B), which means that an increased total fibre weight per stem part was mainly 

the result of an increased weight of that stem part (i.e. total fibre + wood). 

2. Highest total fibre/wood ratios in the middle. The total fibre/wood ratio was highest 

in the middle part of the stems, and lower towards both bottom (Figure 5A) and top 

(Figure 5B). This general pattern was not fundamentally changed by effects of site, 

sowing density, and harvest time, because no interactions were present between stem 

part and these factors. As intercepts b were positive, the fibre percentage decreased 

with increasing wood weight per stem part. 

3. Higher total fibre/wood ratios in Italy. For comparable treatments, the intercept b

(B–part) or the slope a (T–part) is slightly higher for the Italian hemp. The total fibre 

percentage is also a little higher in Italy (Figure 6). General patters, however, were the 

same for both sites.

4. Sowing density and harvest time effects were indirect. Besides the effects via stem 

weight, the individual effects of sowing density (Figure 7A) and harvest time (Figure 

7B) were marginal. When wood weight per stem is dropped from the regression 

models, however, sowing density and harvest time become the main factors explaining 

the total amount of fibres in a hemp stem part. Note that in Figures 7A and 7B the 

fibre percentages differed considerably with increasing stem part weight, while the 

ratio in which fibres and wood were produced did not.
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◄ Figure 5.
A) Total fibre weight per stem part (open symbols, left Y-axis) and total fibre percentage 
(closed symbols, right Y-axis) against the wood weight per stem part for I–D120–H3 and 
stem parts B0–50 (a = 0.32), B25–75 (a = 0.37) and B0–50 (a = 0.39), all with intercept b =
0.09. I–D120–H3 is chosen as an example. The differences between stem parts are the same 
for the other treatments, but with a slightly different intercept (NL: –0.03) and/or slope 
(D240: –0.02, D360: –0.03, H1: +0.00, H2: +0.01). The wood weight per stem part range 
shown is the full range for the stem parts, irrespective of treatment. 
B) Total fibre weight per stem part (open symbols, left Y-axis)) and total fibre percentage 
(closed symbols, right Y-axis) against the wood weight per stem part for I–H3, all sowing 
densities and stem parts T25–75 (b = 0.06) and T50–100 (b = 0.11), both with slope a = 0.31. 
The intercept difference between stem parts is significant (P < 0.05). I–H3 is chosen as an 
example. The differences between stem parts are the same for the other treatments, but with a 
slightly different slope (NL: –0.03, H1: –0.03, H2: –0.02). The wood weight per stem part 
range shown is the full range for the stem parts, irrespective of treatment.

Figure 6. Total fibre as a percentage of total stem part weight after retting derived from the 
linear regression models for D120–H3 for 5 stem parts and 2 sites. Bars indicate standard 
error of mean.
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◄ Figure 7. 
A) Total fibre weight per stem part (open symbols, left Y-axis) and total fibre percentage 
(closed symbols, right Y-axis) against the wood weight per stem part for I–H3–B0–50 and 
densities D120 (a = 0.32), D240 (a = 0.30) and D360 (a = 0.29), all with intercept b = 0.09. I–
H3–B0–50 is chosen as an example. The differences between densities are the same for other 
treatments, but with a slightly different intercept (NL: – 0.03) and/or slope (B25–75: + 0.05, 
B50–100: + 0.07, H1: + 0.00, H2: + 0.01). The wood weight per stem part range shown is the 
full range for the densities, irrespective of treatment.
B) Total fibre weight per stem part (open symbols, left Y-axis) and total fibre percentage 
(closed symbols, right Y-axis) against the wood weight per stem part for I–D120–B0–50 and 
harvest H1 (a = 0.32), H2 (a = 0.33) and H3 (a = 0.32), all with intercept b = 0.09. I–D120–
B0–50 is chosen as an example. The differences between densities are the same for other 
treatments, but with a slightly different intercept (NL: – 0.03) and/or slope (B25–75: +0.05, 
B50–100: +0.07, D240: –0.02, D360: –0.03). The wood weight per stem part range shown is 
the full range for the harvests, irrespective of treatment.

Long fibre/total fibre ratio3.6

The long fibre/total fibre ratio after scutching is one of the main quality features of the 

raw material because it shows which share of the harvested fibre becomes available for 

the next processing step in long fibre production: hackling (Hoffmann, 1957). When 

the long fibre weight per stem part was plotted against the total fibre weight per stem 

part, strong correlations became apparent (Figure 8A). To determine which other 

factors affected the long fibre weight, again multiple linear regression analyses were

performed with factors sowing density, harvest time, stem part and site (Table 5). 

The analyses showed that the factors total fibre weight per stem part, stem part,

and site, and their interactions together accounted for 96.4% of the variance in long 

fibre weight per stem for both B– and T–part. Sowing density and harvest time and 

interactions with these factors, together increased the percentage of variance accounted 

for with only 0.4% (B) and 0.5% (T) to 96.7% (B) and 96.8% (T). All these factors,

however, contributed significantly to the model as tested by the variance ratios (P < 

0.05). The following patterns occurred:
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◄ Figure 8.
A) Long fibre weight per stem part against total fibre weight per stem part for all B stem 
parts, T25–75 and T50–100. R2 = 0.922 (B) and 0.964 (T).
B) Long fibre weight per stem part (g) against the total fibre weight per stem part (g). Linear 
regression lines for stem parts B0–50, B25–75, B0–50, and both T–parts. For the T–parts one 
line is drawn, because stem part is not in the linear regression model (Table 5D).
C) Long fibre weight per stem part (g) against the total fibre weight per stem part (g). Linear 
regression lines for the T–part of the stem sowing densities D120, D240, and D360.

1. More fibre, more long fibre. The total fibre weight per stem part accounted for 

92.2% (B) and 96.4% (T) of the variance in the long fibre weight per stem part (Figure 

8A), which means that an increased long fibre weight per stem part was mainly the 

result of an increased total fibre weight (i.e. long fibre + tow) of that stem part.

2. Lowest long fibre/total fibre ratio in B0–50. The long fibre/total fibre ratio was 

lowest in the lowest stem part examined, but similar for all other stem parts. This 

became visible when only total fibre weight and stem part were taken into account in 

the relevant ranges, and the resulting linear regression lines were plotted in Figure 8B. 

For all treatments, except T–D120 (b = –0.02) a small positive intercept b was found, 

which means that the long fibre share decreased a little with increasing total fibre 

weight.

3. Sowing density and harvest time effects were indirect. Besides the interaction 

through stem weight, which determined total fibre weight, the individual effects of 

sowing density and harvest time were marginal in explaining which share of the 

harvested fibres are long fibres. 

Sowing density had no effect in the B‒part and in the T‒part the effects of 

sowing density on slope and intercept (Table 5) practically cancelled each other out in 

the relevant ranges (Figure 8C). 

Harvest did not affect the long fibre/total fibre ratio in the T‒part (Table 5); 

hence, long fibre weight in the T‒part in practice depends on one factor: total fibre 

weight. Harvest time was involved in three regression factors (Table 5C) in the B‒part, 

which together increased the percentage of variance accounted for by only 0.3%. The 
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combined effect of these factors was that in Italy harvest time caused practically no 

differences in the long fibre/total fibre ratio. In the Netherlands H1 and H2 were on a 

lower level, but H3 was on a slightly higher level, comparable to the Italian level. 

At H3 intercepts b in the B (0.016) and T (–0.023) parts were close to zero. 

Consequently, along the H3 regression lines the long fibre shares in the total fibre 

fraction were similar.   

Detailed bottom part experiment3.7

The bottom part of the stem was studied into more detail at H2 on the Dutch site. The 

multiple linear regression models for the total fibre/wood ratio and the long fibre/total 

fibre ratio (Table 6) were very similar to the models in the main experiment (Table 5). 

Because the detailed bottom part study was carried out at one site and for one harvest 

time, these factors were not in the model. The remaining factors were in the same 

order and caused effects in the same order of magnitude as in the main experiment.

Wood weight per stem part and stem part together accounted for 98.0% of the 

variance in total fibre weight per stem part. Sowing density added 0.1%. As in the 

main experiment, the total fibre/wood ratio was slightly higher in D120 as compared to 

both other densities.

The total fibre/wood ratio decreased from B50–100 towards B0–50. Moving 

downwards along the stem, the decrease accelerated. Figure 9A shows the slopes a for 

the different stem parts. Total fibre weight per stem part was equal for B0–50, B5–55, 

B10–60, and B15–65 for all densities (0.84, 0.53, and 0.42 g for D120, D240, and 

D360, respectively).

Total fibre weight per stem part and stem part together accounted for 93.9% of 

the variance in long fibre weight per stem part. Sowing density, as in the main 

experiment, did not affect retting loss percentages or the long fibre/total fibre ratio. 

The bottom 5 cm of the stems is different from all other stem parts. B0–50

showed a lower long fibre/total fibre ratio (Figure 9B) and a lower retting loss

percentage (16.4%) than all other stem parts (17.4–17.6%).
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Figure 9. Detailed bottom part experiment. 
A) Slopes a derived from the total fibre/wood ratio against the lower cut height of the stem 
parts. Error bars indicate SE. 
B) Detailed bottom part experiment. Slopes a derived from the long fibre/total fibre ratio 
against the lower cut height of the stem parts. Error bars indicate SE. 

9B

9A
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Discussion4

Variability in raw materials4.1

The field experiments were successful in establishing hemp crops with different plant 

densities at harvest. Although plant mortality occurred, and was most pronounced in 

the highest sowing density, stand density differences between sowing density 

treatments persisted throughout the entire experiment. Remarkably, plant densities 

were not different for different harvest dates, as on both sites all mortality occurred 

before the first harvest. This is in contrast with Meijer et al. (1995), who concluded 

that stand densities at harvest were practically irrespective of sowing density. 

A broad range of raw materials was created, differing not only in treatment but 

also in related visible or easily measurable characteristics. To illustrate this, the 

average plant weight at harvest varied with a factor 4.3 between treatments, being the 

ratio between NL–120–H3 (11.1 g) and I–360–H1 (2.6 g). These treatments also 

showed the largest differences in stem diameter (8.4 vs. 4.5 mm), and plant height 

(211 vs. 146 cm). The plant density at harvest varied with a factor 2.9, being the ratio 

between NL–360–1 (283 plants m-2) and I–120–H2 (99 plants m-2). Because of these 

differences, we considered the raw material batches to cover the variability that could 

be expected to show any treatment effects. Our observed lack of major sowing density 

and harvest time effects could therefore not be because of a lack of variability in plant 

characteristics at harvest.  

Representative batches4.2

The number of small plants (< 100 cm) or ‘underhemp’, was considerable in some of 

the treatments; their weight, however, was negligible. Although up to 16.8% (NL–

D360) small plants were discarded, the processed plants accounted for 96.7–99.7% of 

the harvested volume (Table 4) and in the Netherlands for 99.0% (D120), 98.0% 

(D240) and 96.4% (D360) of the harvested fresh weight. The processed plants ≥ 

100 cm therefore can be considered representative for the harvested plot. After 

discarding the smaller plants, the majority of the plants that were processed had a plant 
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height close to average canopy height (cf. Figure 2A and Table 4). Nevertheless, 

variability between raw material batches was maintained (Table 4). 

Plant biometry4.3

Stems were thinner and shorter with increasing plant density. Van der Schaaf (1963), 

Jakobey (1965), Höppner and Menge–Hartmann (1994), Van der Werf et al. (1995), 

Schulz (1998), and Amaducci et al. (2002b; 2008a) reported the same. Stem 

elongation in hemp largely depends on competition for light, nutrients and so forth (de 

Meijer and Keizer, 1994; Amaducci et al., 2002b), which is increased at higher 

densities. Furthermore, stem diameter is positively correlated with plant height 

(Hoffmann, 1957). In our experiments, this relationship is also present within all 

harvested plots.

A delay in harvest in general increases plant height (Hoffmann, 1957; De 

Meijer and Keizer, 1994), as well as stem diameter (Amaducci et al., 2002b). This was 

confirmed in our experiments. In the Netherlands, harvest time did not affect stem 

diameter, which was also found by Van der Schaaf (1963), but in Italy stem diameter 

increased with a delay of harvest.     

Remarkably, site did not affect plant height when all harvested plants were 

taken into account, whereas the plants ≥ 100 cm were taller in the Netherlands than in 

Italy. The reason was a much higher percentage of plants < 100 cm in the Netherlands 

(11.7%; cf. Table 4) as compared with Italy (3.9%), which implies a larger variability 

in plant height at harvest in the Netherlands. A higher mortality rate of small plants in 

Italy could be the reason for this difference, which corresponds with the overall lower

plant numbers (Table 2).

Stem yield4.4

Plant density did not affect stem dry matter yield, which confirmed the results obtained 

by Meijer et al. (1995), Struik et al. (2000), Amaducci et al. (2001, 2002ab, 2008a), 

and Vetter et al. (2002) in comparable density ranges. Amaducci et al. (2002a) 

reported that plant density did not affect total dry matter yield at different harvest 
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times. The increase in stem dry matter yield (Table 3) with a delay in harvest, was

caused by an increase in individual plant weight that was inversely proportional to 

plant density.

The stability of the plant density at different levels, while stem yield increases 

with increasing individual plant weight, did not necessarily violate the concept of 

‘self‒thinning’, as described by Van der Werf et al. (1995). The stem yield level, at 

which such self–thinning takes place, presumably was not reached yet. Van der Werf 

et al. (1995) neither observed density effects at stem yields as low as the ones 

presented in Table 3, nor did they observe density effects in such early harvests. 

Apparently, below a certain stem yield level, different stable plant densities can 

produce similar stem yields by distributing the yield increase in time over the available 

stems.

Retting losses4.5

Retting loss percentages decreased as stem parts matured, because maturation was 

associated with increasing amounts of fibre and wood, whereas the amount of material 

that was lost during retting in a certain stem part was constant. Retting loss 

percentages therefore were lower in lower stem parts and decreased with later harvest, 

hence Hypothesis 1 can be maintained. In Italy, this effect is larger because stem dry 

weight increased relatively more with delayed harvest than in the Netherlands, because 

of the larger temperature sum (Table 3) and radiation sum between harvests. 

Reported increasing fibre percentages with delayed harvest time (Van der 

Schaaf, 1963), therefore might be because of relatively lower retting losses. Because 

earlier harvested crops lose relatively more weight during processing than later 

harvested crops, maturity should be taken into account with respect to price fixing of 

unretted hemp stems. 

Sowing density affected retting loss percentages slightly, but a clear pattern was 

not recognized and the differences seemed unimportant. 
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Long fibre yield 4.6

To produce highest quality hemp yarns, only the long fibres are valuable. The 

maximum amount of these long fibres at both sites and for all sowing densities is 

obtained at the last harvest time:   

• Because a delay in harvest time did not affect plant density (Table 2), the 

highest long fibre yield was obtained when long fibre weight per stem was 

highest.

• The long fibre weight per stem part increased with the total fibre weight of that 

stem part (Figure 8B, Table 5).

• The total fibre weight per stem part increased with the wood weight of that stem 

part (Figure 5A, Figure 5B and Table 5), hence with stem part weight (i.e. total

fibre + wood).

• Stem part weight was highest at H3, because stem dry matter yield was highest 

at H3 (Table 3), and the plant density was unaffected by harvest time (Table 2).    

These weight factors in the regression models were by far more important for long 

fibre production than all other sowing density and harvest time effects. Plant weight 

decreased with increasing sowing density, and increased with a delay of harvest (see 

Stem yield), but the effects of sowing density and harvest time were not essentially 

different; both factors affected stem part weight and thereby fibre content, hence 

Hypothesis 2 is maintained. 

Fibre percentage4.7

Another weight effect, of less importance, was caused by the positive intercepts b in

the total fibre/wood ratio. With increasing sowing density, individual plant weight 

decreased. This has a positive effect on the total fibre percentage. Because plant 

density did not affect stem dry matter yield (Table 3) the highest fibre yields should be 

expected in the highest sowing density, D360. The positive effect of intercept b on the 

fibre percentage, however, levels off towards a fibre percentage equivalent to a/(1+a)

× 100% with increasing stem part weight. At H1 therefore, the differences caused by 

sowing density were larger than at H3. In the B–part, where most of the weight is 
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located, no effect was found at H3 and in the T–part, total fibre percentage was 

increased with only 1 – 2 per cent point, showing that this weight effect is of minor 

importance with respect to fibre production. It confirms, however, the findings of 

Hoffmann (1957), who concluded from a literature study that fibre percentages always 

decrease with increasing stem weight. For the differences between sites, we could not 

find a morphological or botanical explanation. 

For long fibre production, also the intercepts of the regression lines for the long 

fibre/total fibre ratio could be important. At H3 however, the intercepts were close to 

zero (-0.02–0.02), hence the long fibre shares in the total fibre fraction were similar 

along the H3 regression lines.

The total fibre percentage based on the weight of the stem parts after retting 

decreased with a delay of harvest, because the positive effect of intercept b on the fibre 

percentages decreased inevitably with increasing stem weight. The fibre percentage as 

such, therefore, is not an adequate indicator for long fibre yield. There is no reason to 

harvest the crop when the fibre percentage is highest (H1); the crop should be 

harvested when the maximum amount of long fibre is produced per unit area (H3), 

unless other quality aspects, beyond the scope of this paper, give rise to other 

decisions.

Fibre percentages based on the stem dry weight before retting are even more 

difficult to interpret because two opposite effects play a role in maturing plants. 

Besides the negative effect of increasing stem weight, the decreasing retting loss 

percentage (Figure 3A) causes a positive effect on the fibre percentage, and these 

processes cannot be disentangled. For future research, we therefore recommend the 

stepwise characterisation of the different stem components as introduced in this paper.

Total fibre/wood ratio4.8

The positive intercept b means that a) there is no linear correlation between fibre and 

wood production in very small plants or b) a hypothetical very small plant starts 

producing fibres before it produces wood. When it grows, beyond a certain minimum 

weight, the increase in dry matter is split up into fibres and wood in a fixed way. 



Chapter 2

74

Sowing density and harvest time effects on the total fibre/wood ratio were 

absent or very small and in practice irrelevant. We therefore surmise that the total 

fibre/wood ratio per stem part is similar for different sowing densities and harvests and 

maintain Hypothesis 3.

It is questionable whether other factors that affect stem weight, for example 

nitrogen fertilisation, can change this total fibre/wood ratio. Vetter et al. (2002)

concluded from an extensive trial (4 years, 4 sites, 4 varieties, 4 nitrogen levels) that 

nitrogen level did not affect the total fibre percentage, although large differences were 

found in plant height and stem diameter. Höppner and Menge–Hartmann (1994) 

neither found differences in fibre percentage. We assume that comparing fibre 

percentages in these experiments was not a problem. In both experiments one harvest 

was carried out, hence differences in retting loss percentages because of differences in 

maturity were unimportant. Besides, the plants were relatively tall as compared to the 

ones in our experiments. Therefore, we assume the effect of intercept b on fibre 

percentages to be low. 

Chemical stem analysis by Cromack (1998) indicated that genetic differences 

have a greater impact on the bast fibre content than plant density. We assume the total 

fibre/wood ratio to be a variety characteristic, with a bow–shaped pattern along the 

stem. To calculate the total fibre production per stem part, this ratio has to be 

multiplied by the stem part weight, which depends on the interaction of sowing 

density, harvest time, fertilisation, and so forth. We plan to test different varieties in 

future studies. 

Patterns along the stem4.9

The total fibre/wood ratio increased towards the middle part of the stem, and decreased 

towards both bottom and top, hence we maintain Hypothesis 4. The results of the 

detailed bottom part study (Figure 9A) suggested a levelling‒off towards the middle 

part of the stem. The bow–shaped patterns that occurred for the fibre percentages 

(Figure 6 and Figure 10) confirmed the laboratory results of Bredemann (1940) and 

Van der Werf et al. (1994b) for the ‘Reinfaser’ percentage. The decrease towards the 
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top was possibly caused by losses of unripe fibres during processing (Figure 1).

The long fibre/total fibre ratio decreased from the middle of the stems towards 

the bottom hence Hypothesis 5 is maintained. The decrease however, is very abrupt in 

the bottom 5 cm (Figure 9B), roughly the length of the epicotyls. The different 

composition of the bottom 5 cm was also observed during scutching. When the lower 

end of a B0–50 stem part was scutched, a net–like fibre structure was scutched off at 

once. The remaining bundles of long fibres therefore were shorter. 

Because of the 90% overlap between subsequent stem parts B0–50, B5–55, 

B10–60, and B15–65, the real difference between B0–50 and the other stem parts is 

much larger than the differences in retting loss percentages and slopes a suggest: the 

bottom 5 cm contained practically no long fibres. This is most likely related to 

secondary fibre forming in the epicotyls and first internodes (Amaducci et al., 2005; 

Hernandez et al., 2006; Amaducci et al., 2008a; Figure 1). In practice, the bottom 5 

cm will be in the stubble and cause no difficulties in fibre processing. 

When hemp was a traditional crop in Italy, only the middle parts of the stems 

were used for textiles. The base of the hemp stem contained too much tow and the top 

was used for paper production (Cappelletto et al., 2001). We also found more tow in 

the bottom part and a lower long fibre/total fibre ratio. Further we did not analyse the 

T0–50 stem part, because fibres and wood could not be separated easily in the top 25 

cm of the stems. The middle part is most fit for textile applications.

Filling degree4.10

The number of primary fibre cells in a cross‒section does not change when fibre 

elongation has ceased and cell wall thickening has started (Gorshkova et al., 2003; 

Amaducci et al., 2005). Between H1 and H3, the average weight increase of retted 

stems was 40%, 46%, and 54% for B0–50, B25–75, and B50–100 respectively. In this 

bottom 1m of the stems, stem elongation has ceased before H1 (data not shown). We 

therefore assume that the average weight increase of the primary fibres, or their filling 

degree, kept pace with the weight increase of the wood. 
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Next step in processing: hackling 4.11

The final product in our experiments is scutched long fibre. To produce high‒quality 

hemp yarns, these long fibres should be hackled in the next processing step. Hackling 

is a combing process with wire pins of increasing fineness and closeness, which aligns 

and refines the long fibre bundles, with the aim to produce a continuous fine strand of 

fibres or ‘sliver’ for spinning. The scutched long fibre is split up into hackled long 

fibre, which can be used for spinning high‒quality yarns, and hackling tow, which can 

only be used for low quality applications. The ratio hackled long fibre/scutched long 

fibre depends on the degree of hackling to which the fibres are subjected (Hann, 2005) 

and the quality of the starting material. Scutching as well as hackling yields are 

indicative for the quality of the crops being processed (Van Dam and Van den Oever, 

2006). The quality of the hackled fibre is decisive for quality of the yarns that can be 

spun.

A standardised objective method to determine hackled long fibre/scutched long 

fibre ratios for small samples has not been developed yet. Fineness and strength of the 

fibres, however, should be determined after hackling, because fibre characteristics will 

change during hackling, the procedure is selective and hackling long fibre yields are 

reported to be around 40% only (Sponner et al., 2005). 

Conclusions5

The separate determination of retting losses, wood, tow, and long fibre at different 

heights along the stem enabled us to verify a botanical model (Figure 1) and 

demonstrated that: 

1. Sowing density and harvest time affect fibre content in hemp through their 

effects on stem weight only. In a stem, beyond a certain minimum weight, the 

increase in dry matter is split up into fibres and wood in a fixed way, which 

varies with height along the stem.

2. This fibre/wood ratio is highest in the middle part of the stem and lower 

towards both bottom and top.



Sowing density and harvest time affect fibre content through their effects on stem weight

77

3. The long fibre share in the total fibre fraction does not depend on sowing 

density and harvest time. 

4. The long fibre/total fibre ratio is lowest in the bottom 5 cm of the stems, but 

similar for all other parts that were measured.

5. Retting loss percentages decrease as stem parts mature, because maturation is 

associated with increasing amounts of fibres and wood, whereas for each stem 

part the amount of material that is lost during retting is constant.
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Abstract

Because hemp is a short–day plant, postponing the sowing date might be a suitable strategy to 

obtain shorter and smaller plants around flowering, when primary fibres are ‘ripe’ enough to 

be harvested. Smaller plants can be processed on existing flax scutching and hackling lines,

and might have fibre characteristics that are desirable for producing high–quality long fibres 

for yarn spinning. It was investigated whether sowing beyond the normal sowing period in the 

Netherlands affects the ratio in which fibres and wood are produced, and what proportion of 

these fibres are long fibres, suitable for long fibre spinning. About 400 stem samples were 

fractioned into retting losses, wood, tow, and long fibres, and the ratios between fractions 

were analysed with multiple linear regression analyses. A normal sowing date at the end of 

April was compared with a postponed sowing date at the end of May. The total fibre/wood 

ratio was not affected. Over 95% of the variance in total fibre per stem part was accounted for 

by the wood weight per stem part (55.5%), the variety (+ 33.3%), and the stem part (+ 6.5%). 

The amount of long fibre per stem part mainly depended on the amount of the total fibre per 

stem part (95.4% variance was accounted for) and the stem part (+ 2.0%). For economic 

reasons, it could be interesting to grow two successive high‒quality hemp crops in one 

growing season. Therefore, in an additional experiment with one variety, the effect of sowing 

fibre hemp up to 12 weeks later than normal on the quantity and quality of the fibres was 

studied. Postponing the sowing date up to 12 weeks had no important effects on retting losses, 

the total fibre/wood ratio, and the long fibre/total fibre ratio. It is therefore technically 

possible to grow two successive hemp crops. Whether this fits well in farming systems 

remains to be studied.

Key words: baby hemp, Cannabis sativa L., fibre hemp, fibre percentage, fibre quality,

harvest time, long fibre, retting, scutching, sowing date, textiles, tow.
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Introduction1

The highest added value in fibre hemp (Cannabis sativa L.) production can be 

obtained by producing high–quality ‘long’ fibres for the finest yarns for fashion 

textiles, a luxury niche market (Van Dam, 1999; Cappelletto et al., 2001; Amaducci, 

2003; Liberalato, 2003). The renewed interest in these high‒quality hemp fibres 

(Amaducci, 2003; Esposito and Rondi, 2006), calls for an agronomic study based on 

knowledge of the botany and physiology of the plant. It should be known how the 

amount of fibres with the desired quality could be maximised within a single plant and 

within a crop. 

Processing on flax lines1.1

The limited market for high‒quality hemp yarns does not justify the development of 

specialised hemp scutching and hackling lines, hence existing flax (Linum 

usitatissimum L.) processing lines should be used. To process hemp on such 

processing lines, the stems have to be cut into two or more parts, or the cultivation 

technique has to be adjusted to grow hemp with the size of flax (Liberalato, 2003; 

Ranalli and Venturi, 2004; Amaducci, 2005; Esposito and Rondi, 2006; Venturi et al.,

2007; Amaducci et al., 2008a). 

Baby hemp1.2

An attempt to produce smaller hemp plants by stopping their growth with glyphosate 

at the desired plant height of 1.2 m failed. The straw yields were low, the cultivation 

costs high and the ‘baby hemp’ fibres were heterogeneous and had a low quality, 

probably because the plants were immature (Liberalato, 2003; Amaducci, 2005). 

Further, the use of a herbicide increased the environmental impact and did not fit in the 

environmentally friendly image of hemp (Venturi et al., 2007; Van der Werf and 

Turunen, 2008).
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Maturity in shorter plants1.3

Because hemp is a short–day plant (Tournois, 1912; Borthwick and Scully, 1954; 

Heslop–Harrison and Heslop–Harrison, 1969), there is a more natural way to reduce 

the plant height. The flowering date, given variety and latitude, can be predicted rather 

precisely (De Meijer and Keizer, 1994; Amaducci et al., 2008a). Hence, the length of 

the vegetative growth phase can be reduced by postponing the sowing date. As soon as 

the transition to the generative phase is achieved, it is likely that stem elongation slows 

down or stops (De Meijer and Keizer, 1994), the primary fibre formation has ceased 

and that these fibres are ripe (Mediavilla et al., 2001a; Amaducci et al., 2005). 

Quality1.4

These smaller plants might have more desirable fibre characteristics than larger plants. 

In hemp two types of bast fibres occur:

Primary fibres run longitudinally along the stem from bottom to top and can 

reach almost the full length of the plants (Van Dam and Gorshkova, 2003). These 

fibres are desired for the production of high‒quality yarns. 

Secondary fibres are unwanted, because they are too short for spinning and 

reduce the fibre quality (Bócsa and Karus, 1998; Schäfer and Honermeier, 2003; 

Amaducci et al., 2005). Secondary fibres derive from tangential division of cambium 

cells when a stem part has reached its maximum length. In young plants, they are 

absent or only present in a thin layer at the stem base (Van Dam and Gorshkova, 2003;

Amaducci et al., 2005, 2008a; Hernandez et al., 2006).

Amaducci et al. (2005) showed that the thickness of the secondary fibre layer 

and the height up to which secondary fibres were present, increased with decreasing 

plant density, and with the time passed since the end of internode elongation. Possibly 

the weight of the stem, which in general increases with decreasing plant density and 

increases with thermal time, is the key factor.
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More stem, more wood, more (long) fibre 1.5

Westerhuis et al. (2009a [Chapter 2]) showed that the total amount of bast fibre in a 

hemp stem part is almost completely determined by the weight and the position of that 

stem part. Multiple linear regression analyses showed that in a growing plant, beyond 

a certain minimum weight, additional dry matter was allocated to phloem (bast) fibres 

and xylem (wood) in fixed fractions. This total fibre/wood ratio was highest in the 

middle part of the stem and lower towards both bottom and top. Sowing density and 

harvest time affected the fibre content in a hemp stem only indirectly, through their

effects on individual stem weight. It is expected, that sowing date has a similar effect. 

To investigate this for the Dutch growing season, a normal sowing at the end of 

April (Van der Schaaf, 1963; Friederich, 1964; Meijer et al., 1995; Van der Werf, 

1994; Van der Werf et al., 1995a; Struik et al., 2000) was compared with a postponed 

sowing at the end of May. Different harvests were carried out to create a larger range 

of stem weights. Different varieties were tested to ensure that observed phenomena 

were independent of variety.

Literature on postponing sowing dates in hemp is scarce. Lisson and Mendham 

(2000) carried out different experiments and observed no effect or a small decline in 

the bark percentage when postponing the sowing date. According to Hoffmann (1957), 

the amounts of fibre and bark are correlated. Friederich (1964) stated that sowing 

hemp in the Netherlands after 1 May results in shorter stems and delayed ripeness, but 

did not present experimental data to support these statements. The shorter stems, 

however, is what is aimed for.  

An additional late hemp crop1.6

Although primarily aiming at quality, for economic reasons the importance of yield 

should not be neglected. The more the sowing date is delayed, the more the potential 

stem yield drops. Kamat et al. (2002) and Liberalato (2003) suggested growing an 

additional fibre hemp crop in the same field after harvesting the first, to make optimal 

use of the length of the growing season. Hemp is, within limits, self–tolerant. It can be 

cultivated three years in succession without significant yield losses (Bócsa and Karus, 
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1998). However, the second crop then should be sown in summer. 

To determine whether a successful crop can be grown that late in the Dutch 

growing season, an additional experiment was carried out to compare crops sown in 

April, May, June, and July.

Fibre extraction1.7

Because of the small sample size as compared with industrial processing, traditional 

methods to extract the fibres are used. However, with respect to the procedure and its 

final products, the methods are comparable (Hann, 2005; Salmon–Minotte and Franck, 

2005; Sponner et al., 2005). The fibres are liberated from the surrounding tissues by a 

controlled warm–water retting procedure hence retting losses can be determined under 

controlled conditions. During retting, bacteria degrade pectic substances, and in 

addition proteins, sugars, starch, fats, waxes, tannins, and minerals are removed (Hann, 

2005). Westerhuis et al. (2009a [Chapter 2]) showed that retting loss percentages 

gradually decreased with increasing stem weight, and this seemed irrespective the 

cause of the higher stem weight. It is therefore expected that the stem weight before 

retting is the only important factor accounting for the variation in stem weight after 

retting. This will be analysed with multiple linear regression. 

Because cellulose is not decomposed as easily, merely wood and fibres survive 

retting. These will be separated by breaking the stems on a flax breaker and scutching 

on a Flemish mill (Van den Oever et al., 2003). While scutching, fibres either remain 

in the valuable long fibre bundle, or fall away as scutching tow. Since only long fibres 

are valuable for high–quality yarn spinning, the long fibre/total fibre ratio is an 

important quality characteristic (Hoffmann, 1957; Allam, 2004), and will be 

determined.

Hypotheses 1.8

The following hypotheses are addressed:

1. Postponing the sowing date affects the biometry of hemp plants. Plants become 

shorter and thinner at harvest, and have a lower individual stem weight.
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2. Retting loss percentages gradually decrease with increasing stem weight,

irrespective the cause of the higher stem weight. There is a linear relationship 

between the stem weight before and after retting. 

3. Sowing date and harvest time affect total fibre content through their effects on 

stem weight only.

4. The total fibre/wood ratio per stem part does not depend on sowing date or 

harvest time.

5. Sowing date and harvest time affect long fibre content through their effects on 

total fibre weight only.

6. With respect to the hypotheses above no effects of or interactions with the 

factor variety are expected.

Materials and methods2

Experimental design2.1

Field experiments were carried out in Achterberg, the Netherlands, latitude 51° 58’ N, 

longitude 5°35’ E, in 2005 and 2007, on adjacent fields with comparable 

characteristics (sandy soil, organic matter 4.1%, pH (H2O) 5.6). 

The experimental set–up in both years was a randomized four–replicate split–

plot design, with sowing date–variety combinations as main plots, and harvest times as 

subplots. Harvest plots were 2 m2, surrounded by 1 m border rows to avoid edge 

effects.

Seeds were sown with a precision drill at a depth of approximately 3–4 cm at 

target plant populations of 240 plants m-2, a density in the range appropriate for textile 

destinations (Amaducci et al., 2002a). Distance between rows was 12.5 cm. 

Experiments were carried out with three varieties. Seeds of variety Fedora were 

purchased from La Fédération Nationale des Producteurs de Chanvre (FNCP), Les 

Mans, France. Seeds of varieties Beniko and Bialobrzeskie were purchased from the 

Institute of Natural Fibres (INF), Poznań, Poland. Fedora and Bialobrzeskie were 

tested in both years, Beniko only in 2007. 

A normal sowing date at the end of April (S1) and a postponed sowing date at 
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the end of May (S2, + 4 weeks) were compared in a 2–year experiment 

(Experiment 1). In 2007, with variety Fedora an additional experiment was carried out 

with sowings in April (S1), May (S2, + 4 weeks), June (S3, + 8 weeks), and July (S4, 

+ 12 weeks).

Nitrogen fertiliser at a rate of 50 kg ha–1 was applied manually per plot, directly 

after sowing. The amount was based on successful hemp experiments at the same site 

(Struik et al., 2000; Westerhuis et al., 2009a [Chapter 2]). 

At full emergence, plant density in Experiment 1 was assessed in two squares of 

1 m2 per plot. No biocides were used. Because of the dry conditions in April 2007, the 

field was irrigated one and two days after the first sowing date that year, on both 

occasions with approximately 15 mm of water, to ensure uniform germination and 

emergence. 

Harvests2.2

At harvest, stems were cut at soil level. Dead plants and shed leaves were not 

collected.

In Experiment 1 (Table 1), three harvests were carried out with 2–week

intervals. The intermediate harvest (H2) was planned at the time when 50% of the 

plants ≥ 100 cm were expected to flower, meaning that at least one flower, either male 

or female, was open. 

In Experiment 2 (Table 2), plants were harvested after 73 field days for all 

sowings and after 87 field days for S1, S2, and S3. Harvest times were not related to 

flowering status, because flowering was expected to occur before the plants were tall 

enough to process.

Postharvest measurements2.3

Per harvested plot, 100 plants were measured for stem diameter at 10 cm above soil 

level and for plant height. Flowering status was recorded per plant. Per harvested plot, 

plants were divided into two groups: plants with a height ≥ 100 cm and shorter plants. 

Fresh weights of both groups were determined and the number of plants per group was 
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counted. As in Westerhuis et al. (2009a [Chapter 2]) the shorter plants, ‘underhemp’, 

were discarded. 

Plants with a height ≥ 100 cm were further processed. The dry weights of both 

stems and remainder, i.e. leaves and inflorescences, were determined on 20 plants, 

following drying for 24 hours at 105 °C in an oven. The other plants were dried on a 

drying floor for 4 days at 27 °C in order to prevent them from decaying during storage.

Table 1. Experiment 1. Sowing dates, harvest times, and temperature sums (Growing Degree 
Days; °C days) in a replicated fibre hemp experiment on postponed sowing in 2005 and 2007. 
T–sums were calculated using a base temperature of 2 °C (Van der Werf, 1997).

2005 2007

Sowing Harvest Date T–sum

(GDD)

Sowing Harvest Date T–sum

(GDD)

S1 29–4 H1 25–7 1045 27–4 H1 9–7 1063

H2 8–8 1219 H2 23–7 1293

H3 22–8 1399 H3 6–8 1509

S2 27–5 H1 25–7 783 25–5 H1 23–7 926

H2 8–8 957 H2 6–8 1142

H3 22–8 1136 H3 20–8 1357

Table 2. Experiment 2. Sowing dates, harvest times, temperature sums (Growing Degree 
Days; °C days), and flowering percentages in a fibre hemp experiment on postponed sowing 
with variety Fedora in 2007. T–sums were calculated using a base temperature of 2 °C (Van 
der Werf, 1997).

Sowing Harvest Date Field days T–sum

(GDD)

Flowering

(%)

S1 27–4 Normal H1 9–7 73 1063 6

H2 23–7 87 1293 42

S2 25–5 + 4 weeks H1 6–8 73 1142 78

H2 20–8 87 1357 94

S3 22–6 + 8 weeks H1 2–9 73 1108 90

H2 17–9 87 1278 96

S4 20–7 + 12 weeks H1 1–10 73 998 99
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Preparation of the stems 2.4

Scutching requires stem parts of equal length. Stem parts with a length of 50 cm, 

which is the minimum length required for the Flemish mill, were processed to study 

the patterns along the stem in as much detail as possible. Per harvested plot, 100 stems 

were defoliated. Two comparable groups of 50 stems were assembled. Stems were laid 

out parallel with the bases level. From the first group, the stems were cut into a B0–50 

cm part and a B50–100 cm part, where B0 is soil level. From the second group the 

B25–75 cm part was cut. Samples were tied up with tie–ribs and remainders were 

discarded.

Fibre extraction2.5

Fibre extraction was identical to fibre extraction in Westerhuis et al. (2009a 

[Chapter 2]). Before retting, before breaking, and after cleaning, weighing took place 

to determine respectively the initial dry weight, the retting losses, and the amounts of 

long fibre and tow. The weight of the wood was estimated by subtracting retting 

losses, and total fibre weight (i.e. long fibre + tow) from the stem dry weight before

retting. To compare the different batches properly, weighing was always preceded by 

conditioning the materials at 19 °C and 73% humidity for at least 48 hours (Van den 

Oever et al., 2003), and the machinery was not adjusted during the experiment.

Retting

Warm–water retting took place in 120 cm high polyvinylchloride (PVC) tubes with a 

16 cm diameter and closed bottom. Prior to retting, the cylinders were filled with tepid 

tap water. This water, used to wash away contaminants, was drained after 2 hours. The 

cylinders were placed in a retting basin and filled with tap water of 34 °C. Stems were 

completely submerged, but water exchange between cylinders was avoided. Retting 

was performed at 34 °C in 96 hours, after which the bundles were carefully washed 

with tepid water. Excess water was drained away by placing the bundles vertically on 

a grating above a drain. Next, the bundles were dried on a drying floor for 4 days at 

27° C.
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Breaking

To separate fibres and wood, the tie–ribs were removed and the stems were arranged 

in an even layer, and then fed into a flax breaker consisting of a double series of ribbed 

breaking rollers. These heavy–weight rollers put pressure on the stems by means of a

spring system. As a result, stems were flattened and the brittle wood was broken into 

shives, most of which fell through the machine, while the flexible fibres passed under 

the rollers easily.  

Scutching

Scutching was performed on a Flemish mill with rotary blades that beat the broken 

stems in such a way that shives and tow were separated from the long fibres in the 

sample. Both sides of the samples, the upper and lower part of the stem part, were 

manually fed through the rotary blades eight times; after four times the bundle was 

turned inside out. Because the end of the sample had to be held in the hand while 

scutching the other side of the sample, all stem parts in a sample had to be of uniform 

length. If shorter stem parts were accepted, all the fibre material in these shorter parts, 

both long fibre and tow, would end up in the tow section. The aim, however, was to 

distinguish between long fibre and tow.

Cleaning

After scutching, the long fibres and tow were cleaned by hand to remove any 

remaining shives. After fibre extraction, conditioning, and weighing, the amounts of 

long fibre and tow were determined, and the weight of the wood was estimated. 

Statistical analysis 2.6

Statistical analyses of the data were conducted using GENSTAT® release 10.2. 

Treatment differences are reported as significant when P < 0.05. Following tests for 

normality: 

• Multiple linear regression analyses were performed to analyse the ratios 

between the stem part weight before and after retting, between the total fibre 
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weight per stem part and the wood weight per stem part, and between the long 

fibre weight per stem part and total fibre weight per stem part. Stepwise 

addition or subtraction of terms was carried out to define the most suitable 

model to use in general linear modelling, i.e. the model with the minimum 

residual mean squares. There were no statistical or biological reasons to test 

non–linear models.

• Analyses of variance were calculated for all other variables. Means, standard 

errors of differences of means (SEDs), F probabilities and degrees of freedom 

are reported. Because variety Beniko was sown in 2007 only, analyses of 

variance were calculated for both years separately to avoid non–orthogonality. 

Unless otherwise stated, the results described refer to the processed plants.

Results3

Crops were successfully established. Although density was below target in some 

treatments, plant stands were even at harvests. No signs of water or nutrient stresses 

were visible, weeds were suppressed well by the crops, and pests and diseases of 

significance did not occur. 

Experiment 1. Postponing the sowing by 4 weeks

Harvests were carried out as planned at approximately beginning (4–36% flowering), 

middle (39–66%), and end (84–93%) of flowering (Table 3).

Plant density (Table 4)

In 2005, for both sowing dates plant density at full emergence in Bialobrzeskie was 

close to the targeted 240 plants per m2, while it was lower in Fedora. At harvests, the 

differences between varieties were still present, and in the postponed sowing date 

treatment (S2) more plants had survived than in the normal sowing date treatment 

(S1). Plant density was equal for the first (H1) and intermediate (H2) harvest, but 

lower at the final harvest (H3). At H2, more plants ≥ 100 cm per unit area could be 

selected.
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In 2007, plant densities at full emergence were far below target for Beniko and 

Bialobrzeskie. For Fedora, however, plant density was above target. Emergence was 

higher in S2 than in S1. Harvest time did not affect plant density, but a variety × 

sowing date interaction was present. Fedora showed the highest densities, and no 

differences between the sowing date treatments. In Beniko and Bialobrzeskie, at 

harvest plant densities were higher in S2 than in S1. Bialobrzeskie showed higher plant 

densities than Beniko in S2, but not in S1.   

Plant biometry (Table 3)3.1

Plant height

In 2005, plant height showed an interaction between sowing date and harvest time. 

Plant height increased with a delay of harvest. The increase between harvests, 

however, was much larger in the postponed sowing date treatment (S2) than in the 

normal sowing date treatment (S1). At the first (H1) and intermediate harvest (H2), 

plants were taller in the normal sowing date treatment (S1), but at the final harvest 

time (H3), plant heights were similar for both sowing date treatments.  

In 2007, plant height also showed an interaction between sowing date and 

harvest time. In the normal sowing date treatment (S1), plants were smaller at H1 than 

at both other harvests, which did not differ. In the postponed sowing date treatment 

(S2), plant height increased with a delay in harvest time. At H1 and H3, plant height 

was not different between the sowing date treatments. At H2, however, plants were 

taller in the normal sowing date treatment (S1). Plant height also showed an interaction 

between sowing date and variety. In the normal sowing date treatment (S1), varieties 

were different in plant height, in the postponed sowing date treatment (S2) they were 

not. Plant heights for Beniko and Fedora were not different between both sowing date 

treatments. Bialobrzeskie was taller in the normal sowing date treatment (S1).         

Stem diameter

In 2005, stem diameters were similar at the first (H1) and intermediate (H2) harvest; at 

the final harvest (H3), however, stems were slightly thicker. Sowing date and variety 
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did not affect stem diameter. 

In 2007, stem diameter was similar for Beniko and Bialobrzeskie, but smaller 

for Fedora. Stem diameter also showed an interaction between sowing date and harvest 

time. In the normal sowing date treatment (S1), stems were slightly thicker at H2 than 

at H1. All other treatments showed similar stem diameters.

Plant weight

In 2005, plant weight showed a harvest time × sowing date × variety interaction. 

However, for each sowing date–variety combination, plant weight increased between 

the first (H1) and the last harvest (H3). This increase was faster in the postponed

sowing date treatment (S2) than in the normal sowing date treatment (S1). In none of 

the comparable H × S treatments, the varieties were different.  

In 2007, plant weight showed a harvest time × sowing date interaction. For both 

sowing dates, plant weight increased with harvest, but at H2 and H3, plants from the 

postponed sowing date treatment (S2) had a lower plant weight than plants from the 

normal sowing date treatment (S1). 

Plant weight also depended on a sowing date × variety interaction. Sowing date 

did not affect the plant weight for Beniko and Fedora, but Bialobrzeskie had a lower 

plant weight in S2 than in S1. For both sowing dates Beniko and Bialobrzeskie had 

similar plant weights; Fedora had much lower individual plant weight than the other 

varieties.

Stem dry matter yield (Table 3)3.2

In 2005, stem dry matter yield showed an interaction between sowing date and harvest 

time. It increased with a delay of harvest time, at the postponed sowing date, however, 

the increase was larger. The last harvest time in the postponed sowing date treatment 

(S2–H3) showed stem dry matter yields similar to all three harvests of the normal 

sowing date (S1).  

In 2007, stem dry matter yield increased with a delay of harvest, and was lower 

for Beniko than for Bialobrzeskie and Fedora. No sowing date effect was observed. 
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Retting losses (Table 5A)3.3

There was a linear relationship between the stem part weights before and after retting, 

and retting loss percentages were higher in stem parts with lower weight (Figure 1). 

Figure 1. The stem part weight after retting plotted against the stem part weight before retting 
for 350 samples (•, left Y-axis) in a replicated fibre hemp experiment on postponed sowing in 
2005 (2 sowing dates × 3 harvest times × 2 varieties × 3 stem parts) and 2007 (2 sowing dates 
× 3 harvest times × 3 varieties × 3 stem parts). The linear regression line for all samples is y = 
0.91x – 0.22 (R2 = 0.984), the line is not drawn. The dotted line (right Y-axis) indicates the 
retting loss percentage derived from the linear regression line.

Multiple linear regression showed that stem part weight before retting accounted for 

98.4% of the variance in stem part weight after retting. A small difference between 

years was present (+1%). Six other terms together increased the percentage of variance 

accounted for by 0.4% to 99.8%. The two sowing date terms in the model (+ 0.2%) 

resulted in regression lines with slightly different slopes and intercepts for the four 

sowing date × year combinations. The lines cross in the valid ranges and the 

differences between the lines are too small to visualise. The effects of variety and 

harvest were even smaller. Stem part terms were not in the model.
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Total fibre/wood ratio (Table 5B)3.4

The weight of the wood per stem part accounted for 55.5% of the variance in total 

fibre weight per stem part. Variety (+33.3%) was the second most important factor. 

The slopes of the regression lines were very different for Beniko (0.55), Bialobrzeskie 

(0.39), and Fedora (0.26). Along the stem, the ratio in which fibres and wood were 

produced was also different (+6.5%) with lowest total fibre/wood ratios in the lowest 

stem part examined. Nine further terms showed significant contributions to the final 

regression model, increasing the percentage of variance accounted for by 1.8% to 

97.1%. Their effects on slopes and intercepts, however, were marginal. 

In three figures (Figures 2A, 2B, and 2C), the improvement of the model is 

shown. Postponing the sowing date did not have a significant effect on the total 

fibre/wood ratio, as there were no sowing date terms in the final regression model.

Long fibre/total fibre ratio (Table 5C)3.5

An increased long fibre weight per stem part was mainly the result of an increased 

total fibre weight of that stem part: 95.4% of the variance was accounted for. A 

difference between stem parts was observed (+2.0%). The long fibre/total fibre ratio in 

all treatments was lowest in B0–B50, but similar for both other stem parts (Figure 3A). 

In stem part B0–50, the variability in the long fibre/total fibre ratio was much larger 

than in both other stem parts. This was caused by a difference between years, 

especially in this stem part (terms 3 and 4). Six further terms showed significant 

contributions to the final regression model, increasing the percentage of variance 

accounted for by 1.0% to 98.4%. Their effects on slopes and intercepts were marginal.

A small sowing date effect increased the percentage of variance accounted for 

by 0.2%. In the postponed sowing date treatment (S2), the long fibre/total fibre ratio 

was slightly lower than in the normal sowing date treatment (S1). Figure 3B shows, as 

an example, the difference between S1 (a = 0.80) and S2 (a = 0.77) for variety Fedora, 

stem part B0–50 at H2 in 2005. Because in the final linear regression model, the factor 

sowing date did not interact with other factors, this 0.03 slope difference between S1 

and S2 was valid for all stem parts, all varieties, all harvests and both years.
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Figure 2. Hemp samples from 2 experiments on postponed sowing in 2005 (2 sowing dates × 
3 harvest times × 2 varieties × 3 stem parts) and 2007 (2 sowing dates × 3 harvest times × 2 
varieties × 3 stem parts) were fractioned into retting losses, wood, tow, and long fibre. A 
multiple linear regression analysis was performed with variable wood weight per stem part 
and factors sowing date, harvest time, variety, stem part, and year, which showed that 55.5% 
of the variance in the total fibre weight (i.e. long fibre + tow) was accounted for by the wood
weight per stem part. Twelve terms (Table 5B) contributed significantly to the model as tested 
by the variance ratios (P < 0.05). In this series of figures, the improvement of the model 
(added terms; accumulated percentage of variance accounted for) is shown.
A) The slopes of the regression lines are different for varieties (2; 88.8%). 
B) The slopes are different for stem parts (3; 95.3%). Variety Fedora is chosen as an example.
C) The slopes are different for both years (4 + 5; 95.9%). Variety Fedora, stem part B50–100 
is chosen as an example.

2C



Chapter 3

104

Figure 3. Long fibre weight per 50 cm stem part plotted against total fibre weight per stem 
part in 2 experiments on postponed sowing in 2005 (2 sowing dates × 3 harvest times × 2 
varieties × 3 stem parts) and 2007 (2 sowing dates × 3 harvest times × 2 varieties × 3 stem 
parts). 
A) In stem part B0–50, the variability in the long fibre/total fibre ratio was much larger than 
in both other stem parts.
B) In the postponed sowing date treatment (S2), the long fibre/total fibre ratio was slightly 
lower than in the normal sowing date treatment (S1). The drawn lines are valid for variety 
Fedora 2005–H2–B0–50. The 0.03 slope differences between the lines, however, are equal for 
all stem parts, all varieties, all harvests, and both years. The total fibre weight per stem ranges 
shown are the full ranges for S1 and S2, irrespective further treatment specifications.

3B

3A



Postponed sowing does not alter the fibre/wood ratio or fibre extractability of fibre hemp

105

Experiment 2. An additional late hemp crop 

For both harvests, the temperature sums for the sowing date treatments were in the 

same order of magnitude (Table 2). 

Plant density, biometry and dry matter yield (Table 6)3.6

Plant densities were lower for S3 and S4 than for S1 and S2, while no thinning 

occurred between harvests. The number of discarded plants (< 100 cm) was similar for 

treatments, and their proportion in the harvested fresh weight was small (2.3–5.7%).

Plant height decreased with later sowing, with the exception of the first harvest in S1,

which did not fit in this pattern. Stem diameters were small, in a narrow range (4.3–

4.8 mm) and similar for treatments. Selecting stems for processing created a small 

difference: for S3, the processed stems were slightly thicker than for S1 and S2. Stem 

diameter, plant height, individual stem weight, and dry matter yield, however, were 

not different for the processed stems of S1, S2, and S3 with a harvest after 87 days. In 

S3 and S4, the stem fraction was low as compared with S1 and S2. 

Retting losses, total and long fibre (Table 7)3.7

Multiple regression analyses were performed with the aim to determine the effect of 

postponing the sowing date on the retting losses, the total fibre/wood ratio, and the 

long fibre/total fibre ratio. In none of these analyses was sowing date an important 

factor. 

Retting losses (Table 7A)

The regression lines for the different sowing dates crossed in the valid range as is 

shown for S1 and S4 (73 field days, stem part B25–75) in Figure 4A. The differences 

between the sowing dates were too small to present all four lines. These differences 

were equal for all stem parts and both harvests.
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Total fibre/wood ratio (Table 7B)

The total fibre/wood ratios were slightly lower in S1 and S3 than in S2 and S4. The

regression lines for S1 and S4, and the resulting fibre percentages based on the dry 

weight after retting are presented in Figure 4B. The differences between the sowing 

dates were equal for all stem parts and both harvests.

Long fibre/total fibre ratio (Table 7C)

The regression lines for the different sowing dates crossed in the valid range as is 

shown in Figure 4C for stem part B25–75. The lines are valid for both harvests, 

because harvest time was not a factor in the final regression model. The total fibre × 

stem part × sowing date term in the regression model was mainly caused by the very 

low long fibre/total fibre ratio in stem part B0–50 for the same S3 plot on both harvest 

times. In this plot, plant density was low and individual plant weight high. 

Consequently, the ranges in Figure 4C are wider for S3.



Postponed sowing does not alter the fibre/wood ratio or fibre extractability of fibre hemp

107

Ta
bl

e 
6.

 E
xp

er
im

en
t 2

.B
io

m
et

ry
 a

nd
 y

ie
ld

 c
ha

ra
ct

er
is

tic
s i

n 
a 

fib
re

 h
em

p 
ex

pe
rim

en
t o

n 
po

st
po

ne
d 

so
w

in
g 

w
ith

 v
ar

ie
ty

 F
ed

or
a 

in
 2

00
7.

 A
 

no
rm

al
 so

w
in

g 
da

te
 a

t t
he

 e
nd

 o
f A

pr
il 

(S
1)

 w
as

 c
om

pa
re

d 
w

ith
 p

os
tp

on
ed

 so
w

in
gs

 in
 M

ay
 (S

2,
 +

 4
 w

ee
ks

), 
Ju

ne
 (S

3,
 +

 8
 w

ee
ks

) a
nd

 Ju
ly

 
(S

4,
 +

 1
2 

w
ee

ks
). 

H
ar

ve
st

s 
w

er
e 

ca
rr

ie
d 

ou
t 

af
te

r 
73

 a
nd

 8
7 

fie
ld

 d
ay

s. 
B

ec
au

se
 S

4–
H

87
 i

s 
m

is
si

ng
, t

w
o 

an
al

ys
es

 o
f 

va
ria

nc
e 

w
er

e 
pe

rf
or

m
ed

: c
om

pa
ris

on
 th

re
e 

so
w

in
gs

 (S
1,

S2
,S

3)
 a

nd
 tw

o 
ha

rv
es

ts
 (H

73
, H

87
) a

nd
 c

om
pa

ris
on

 fo
ur

 s
ow

in
gs

 (S
1,

 S
2,

 S
3,

 S
4)

 a
nd

 o
ne

 
ha

rv
es

t (
H

73
). 

F 
pr

., 
 F

 p
ro

ba
bi

lit
y;

 d
.f.

, d
eg

re
es

 o
f f

re
ed

om
; S

ED
, s

ta
nd

ar
d 

er
ro

r o
f d

iff
er

en
ce

s o
f m

ea
ns

; S
, s

ow
in

g.

H
ar

ve
st

So
w

in
g 

da
te

C
om

pa
ris

on
   

   
   

   
   

   
   

   
   

   
  

3 
so

w
in

gs
 a

nd
 2

 h
ar

ve
st

s 

C
om

pa
ris

on
   

   
   

   
   

   
   

   
   

4 
so

w
in

gs
 a

nd
 1

 h
ar

ve
st

 

S1
S2

S3
S4

F 
pr

.
SE

D
d.

f.
F 

pr
.

SE
D

d.
f.

D
en

si
ty

 
A

ll
H

73
23

5
25

5
19

0
18

6
S

<0
.0

01
10

.5
2

0.
00

4
15

.7
3

(m
–2

)
H

87
24

2
25

2
19

5
–

H
n.

s.
S×

H
n.

s.

D
en

si
ty

 
≥ 

10
0

H
73

19
6

21
5

14
7

14
1

S
<0

.0
01

8.
8

2
<0

.0
01

29
.4

3
(m

–2
)

H
87

20
8

20
5

14
9

–
H

n.
s.

S×
H

n.
s.

Pl
an

t h
ei

gh
t

A
ll

H
73

13
1

14
6

13
4

11
8

S
0.

03
6

3.
5

2
0.

00
1

4.
6

3
(c

m
)

H
87

15
2

14
4

13
6

–
H

0.
02

5
2.

9
1

S×
H

0.
01

3
5.

0
2

Pl
an

t h
ei

gh
t

≥ 
10

0
H

73
14

2
16

0
15

5
13

3
S

n.
s.

0.
00

3
5.

5
3

(c
m

)
H

87
16

3
16

0
15

8
–

H
0.

04
1

3.
5

1
S×

H
n.

s.



Chapter 3

108

Ta
bl

e 
6 

–c
on

tin
ue

d–
.

H
ar

ve
st

So
w

in
g 

da
te

C
om

pa
ris

on
   

   
   

   
   

   
   

   
   

   
  

3 
so

w
in

gs
 a

nd
 2

 h
ar

ve
st

s 

C
om

pa
ris

on
   

   
   

   
   

   
   

   
   

4 
so

w
in

gs
 a

nd
 1

 h
ar

ve
st

 

S1
S2

S3
S4

F 
pr

.
SE

D
d.

f.
F 

pr
.

SE
D

d.
f.

St
em

 d
ia

m
et

er
 

al
l

H
73

4.
3

4.
5

4.
8

4.
5

S
n.

s.
n.

s.
(m

m
)

H
87

4.
6

4.
5

4.
5

–
H

n.
s.

S×
H

n.
s.

St
em

 d
ia

m
et

er
 

≥ 
10

0
H

73
4.

6
4.

8
5.

5
5.

2
S

0.
02

1
0.

20
2

0.
04

7
0.

02
7

3
(m

m
)

H
87

4.
9

4.
9

5.
2

–
H

n.
s.

S×
H

n.
s.

St
em

 w
ei

gh
t

≥ 
10

0
H

73
2.

7
3.

5
4.

6
3.

6
S

0.
01

1
0.

34
2

0.
01

0.
41

3
(g

)
H

87
4.

3
4.

4
4.

8
–

H
0.

00
5

0.
28

1
S×

H
n.

s.

D
ry

 m
at

te
r y

ie
ld

≥ 
10

0
H

73
6.

6
9.

2
8.

8
7.

2
S

0.
00

5
0.

41
2

0.
00

1
0.

50
3

(M
g 

ha
–1

)
H

87
10

.7
11

.3
10

.4
–

H
<0

.0
01

0.
33

1
S×

H
0.

01
5

0.
58

2

St
em

 fr
ac

tio
n

≥ 
10

0
H

73
0.

79
0.

81
0.

71
0.

67
S

<0
.0

01
0.

00
8

2
<0

.0
01

0.
01

3
H

87
0.

80
0.

77
0.

65
–

H
<0

.0
01

0.
00

6
1

S×
H

0.
00

2
0.

01
1

2

St
em

 d
ry

 m
at

te
r y

ie
ld

≥ 
10

0
H

73
5.

2
7.

6
6.

6
5.

1
S

<0
.0

01
0.

34
2

<0
.0

01
0.

43
3

(M
g 

ha
–1

)
H

87
8.

8
9.

1
7.

0
–

H
<0

.0
01

0.
28

1
S×

H
<0

.0
01

0.
48

2



Postponed sowing does not alter the fibre/wood ratio or fibre extractability of fibre hemp

109

Ta
bl

e 
7.

 M
ul

tip
le

 li
ne

ar
 re

gr
es

si
on

 m
od

el
s. 

Fi
tte

d 
te

rm
s (

P
<

0.
05

)
d.

f.
s.s

.
m

.s.
v.

r.
F 

pr
.

%

7A
) R

et
te

d/
U

nr
et

te
d 

st
em

 p
ar

t w
ei

gh
t

1.
 S

te
m

 p
ar

t w
ei

gh
t b

ef
or

e 
re

tti
ng

1
11

.9
61

5
11

.9
61

5
40

75
1.

07
<0

.0
01

99
.4

2.
 S

te
m

 p
ar

t w
ei

gh
t b

ef
or

e 
re

tti
ng

 ×
 S

te
m

 p
ar

t
2

0.
02

16
0.

01
08

36
.8

6
<0

.0
01

99
.6

3.
 S

te
m

 p
ar

t w
ei

gh
t b

ef
or

e 
re

tti
ng

 ×
 H

ar
ve

st
1

0.
00

85
0.

00
85

29
.0

2
<0

.0
01

99
.7

4.
 S

ow
in

g 
da

te
3

0.
01

06
0.

00
35

12
.0

2
<0

.0
01

99
.8

5.
 S

te
m

 p
ar

t w
ei

gh
t b

ef
or

e 
re

tti
ng

 ×
 S

ow
in

g 
da

te
3

0.
00

39
0.

00
13

4.
47

0.
00

69
9.

8

R
es

id
ua

l
73

0.
02

14
0.

00
03

To
ta

l
83

12
.0

27
6

0.
14

49

7B
) T

ot
al

 fi
br

e/
W

oo
d 

1.
 W

oo
d 

w
ei

gh
t p

er
 st

em
 p

ar
t 

1
0.

50
39

0.
50

39
12

56
.6

9
<0

.0
01

74
.1

2.
 W

oo
d 

w
ei

gh
t p

er
 st

em
 p

ar
t ×

 S
te

m
 p

ar
t

2
0.

12
14

0.
06

07
15

1.
34

<0
.0

01
92

.1

3.
 S

ow
in

g 
da

te
3

0.
00

98
0.

00
33

8.
13

<0
.0

01
93

.3

4.
 W

oo
d 

w
ei

gh
t p

er
 st

em
 p

ar
t ×

 H
ar

ve
st

1
0.

00
81

0.
00

81
20

.2
6

<0
.0

01
94

.5

5.
 W

oo
d 

w
ei

gh
t p

er
 st

em
 p

ar
t ×

 S
te

m
 p

ar
t ×

 H
ar

ve
st

2
0.

00
42

0.
00

21
5.

18
0.

00
89

5.
1

R
es

id
ua

l
74

0.
02

97
0.

00
04

To
ta

l
83

0.
67

70
0.

00
82

d.
f.,

 d
eg

re
es

 o
f 

fr
ee

do
m

; 
s.s

., 
su

m
 o

f 
sq

ua
re

s;
 m

.s.
, m

ea
n 

su
m

 o
f 

sq
ua

re
s;

 v
.r.

, v
ar

ia
nc

e 
ra

tio
; 

F 
pr

., 
F 

pr
ob

ab
ili

ty
; 

%
, 

pe
rc

en
ta

ge
 o

f 
va

ria
nc

e 
ac

co
un

te
d 

fo
r.



Chapter 3

110

Ta
bl

e 
7 

–c
on

tin
ue

d–
.

Fi
tte

d 
te

rm
s (

P
<

0.
05

)
d.

f.
s.s

.
m

.s.
v.

r.
F 

pr
.

%

7C
) L

on
g 

fib
re

/T
ot

al
 fi

br
e 

1.
 T

ot
al

 fi
br

e 
w

ei
gh

t p
er

 st
em

 p
ar

t
1

0.
28

56
0.

28
56

12
10

.7
9<

0.
00

17
0.

2

2.
 T

ot
al

 fi
br

e 
w

ei
gh

t p
er

 st
em

 p
ar

t ×
 S

te
m

 p
ar

t
2

0.
05

97
0.

02
99

12
6.

64
<0

.0
01

84
.7

3.
 S

te
m

 p
ar

t
2

0.
02

75
0.

01
37

58
.2

7<
0.

00
19

1.
6

4.
 T

ot
al

 fi
br

e 
w

ei
gh

t p
er

 st
em

 p
ar

t ×
 S

ow
in

g 
da

te
3

0.
00

91
0.

00
30

12
.8

6<
0.

00
19

3.
7

5.
 T

ot
al

 fi
br

e 
w

ei
gh

t p
er

 st
em

 p
ar

t ×
 S

te
m

 p
ar

t ×
 S

ow
in

g 
da

te
6

0.
00

47
0.

00
08

3.
32

0.
00

69
4.

6

6.
 S

ow
in

g 
da

te
3

0.
00

27
0.

00
09

3.
83

0.
01

49
5.

2

R
es

id
ua

l
66

0.
01

56
0.

00
02

To
ta

l
83

0.
40

49
0.

00
49

d.
f.,

 d
eg

re
es

 o
f f

re
ed

om
; s

.s.
, s

um
 o

f s
qu

ar
es

; m
.s.

, m
ea

n 
su

m
 o

f s
qu

ar
es

; v
.r.

, v
ar

ia
nc

e 
ra

tio
; F

 p
r.,

 F
 p

ro
ba

bi
lit

y;
 %

, p
er

ce
nt

ag
e

of
 v

ar
ia

nc
e 

ac
co

un
te

d 
fo

r.



Postponed sowing does not alter the fibre/wood ratio or fibre extractability of fibre hemp

111

4A

4B



Chapter 3

112

Figure 4. An experiment on postponed sowing in 2007 (4 sowing dates × 3 harvest times × 3 
stem parts) with variety Fedora.
A) The stem part weight after retting plotted against the stem part weight before retting for 
sowing dates S1 (27–4–2007) and S4 (20–7–2007). The regression lines for S2 (25–5–2007) 
and S3 (22–6–2007) are not drawn because the differences with S4 and S1 respectively were 
too small to visualise. The drawn lines are valid for stem part B25–75 and a harvest after 73 
field days. The differences between the lines, however, are equal for the other stem parts (B0–
50 and B50–100), and for harvests after 87 field days. The shown range in stem part weight 
before retting is the full range for stem parts, harvests, and sowing dates.
B) Total fibre weight per stem part (open symbols, left Y-axis) and total fibre percentage 
based on the dry weight after retting (closed symbols, right Y-axis) against the wood weight 
per stem for S1 and S4. The regression lines for S2 and S3 are not drawn, because the 
differences with S4 and S1 respectively were too small to visualise. The drawn lines are valid 
for stem part B25–75 and a harvest after 73 field days. The differences between the lines, 
however, are equal for the other stem parts (B0–50 and B50–100), and for harvests after 87 
field days.
C) Long fibre weight per stem part against total fibre weight per stem part for sowing dates 
S1, S2, S3, and S4. The drawn lines are valid for stem part B25–75 and both harvests.

4C
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Discussion4

Raw materials 4.1

The batches of raw materials were considered to be fit for studying the effects of 

postponing the sowing date in hemp and the processed plants to be representative for 

the harvested plots. Although the number of discarded plants (< 100 cm) was 

considerable, their contribution to fresh weight was negligible (Table 3 and 6), which 

corresponds with the conclusions of Lisson and Mendham (2000) and Westerhuis et

al. (2009a [Chapter 2]). Plant densities were always within the same range with no 

significant differences in the studied phenomena as was found previously (Westerhuis 

et al. (2009a [Chapter 2]).

The predictions of flowering time were sufficiently accurate to plan harvests 

around flowering in Experiment 1 (Table 3) and, as Westerhuis et al. (2009a [Chapter 

2]) has shown the effects of harvest time to be unimportant, comparisons between 

sowing date treatments based on field days (Experiment 2) were considered justified.

Biometry and stem yield4.2

It was expected that plant height, stem diameter and stem weight would decrease with 

postponing the sowing date. The current experiments, however, do not support 

hypothesis 1.

In Experiment 1, stem diameter was not affected by sowing date, and the 

differences in plant height and plant weight were, especially at the final harvest, absent 

or small. In Experiment 2, unintentional differences in plant densities between sowing 

date treatments caused differences in biometry, which probably have overruled the 

effects of postponing the sowing date. Plant densities were lower for S3 and S4 than 

for S1 and S2. With decreasing plant density, hemp stems in general are thicker and 

longer (see next paragraph) and these effects are opposite to the effects expected of 

postponed sowing. 

To obtain smaller plants at harvest, besides postponing the sowing date, 

increasing the sowing density is a suitable strategy (e.g., Venturi et al., 2007). Hemp 
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stems are thinner and shorter with increasing plant density (Van der Schaaf, 1963; 

Jakobey, 1965; Höppner and Menge–Hartmann, 1994; Van der Werf et al., 1995a;

Schulz, 1998; Amaducci et al., 2002b, 2008a; Westerhuis et al., 2009a [Chapter 2]).

An advantage of this strategy over postponing the sowing date is that stem dry matter 

yield is not affected (Meijer et al., 1995; Struik et al., 2000; Amaducci et al., 2001, 

2002a,b, 2008a; Vetter et al., 2002; Westerhuis et al., 2009a [Chapter 2]). 

Consequently, lower stem yields caused by postponing the sowing date cannot be 

compensated for by increasing the sowing density (Lisson and Mendham, 2000).

In Experiment 2, the stem fraction in S3 and S4 was low as compared with S1 

and S2 (Table 6). These late sown crops flowered early (Table 2), which presumably 

caused an increased allocation of dry matter to the inflorescences as described by Van 

der Werf et al. (1994). To avoid or delay this effect of postponed sowing a later 

flowering variety could have been chosen. However, this will not only affect stem 

fraction hence stem yield, but also plant biometry and fibre ripeness. Fine–tuning will 

be necessary to find the ideal combination of sowing date, harvest time, and variety at 

any latitude. To study the effect of sowing date per se on the ratios of interest a single 

variety was used. 

Retting losses4.3

There was a strong linear relationship between the stem part weight before and after 

retting, and retting loss percentages gradually decreased with increasing stem part 

weight (Figure 1), practically irrespective the cause of the higher stem part weight 

hence hypothesis 2 is maintained. Postponing the sowing date had no important effects 

on retting losses, besides the indirect effect via stem weight. Sowing date terms in the 

regression models (Tables 5a and 7a) contributed very little to the explained variance 

and there was no consistent trend with sowing date.

Analyses of variance (ANOVAs) on the retting data of Experiment 1 (analysis 

not shown) showed large differences in retting loss percentages between treatments. 

They were lower for lower stem parts, later harvests and earlier sowing, and were 

higher for Fedora in 2007 than for the other varieties. The multiple linear regression 
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analysis revealed that stem part weight was the key factor explaining these differences. 

The differences in retting loss percentages between stem parts as calculated by 

ANOVAs, for example, were only caused by weight differences: there are no stem part 

terms in the regression model (Table 5A). An additional reason for the differences in 

retting loss percentages between treatments in the ANOVAs is that with increasing 

stem part weight the retting loss percentages decrease, because the regression lines 

have an intercept (Figure 1). For the difference between years, no explanation was 

found. 

The different composition of stem parts, with increasing relative amounts of 

materials that are lost during retting towards the top of the plant confirms the findings 

of a chemical analysis by Cappelletto et al. (2001). For price fixing of unretted hemp 

stems, the higher relative retting losses in stems with a lower weight should be taken 

into account.  

Total fibre/wood ratio4.4

The weight of an individual plant, hence the weight of a certain stem part, depended 

on sowing date × harvest time interactions (Table 3). Sowing date and harvest time 

affected total fibre content through their effects on this stem weight only. 

Besides this indirect effect, there are no relevant sowing date effects. In 

Experiment 1 (Table 5B), there were no sowing date terms in the final regression 

model. In Experiment 2 sowing date contributed slightly but significantly to the 

explained variance, but no consistent trend with sowing date was observed (Table 7, 

Figure 4B). Harvest time terms in the final regression models for Experiment 1 and 2 

were statistically significant yet in practice irrelevant (Table 5B, 7B). 

It can be concluded that the total fibre/wood ratio per stem part is similar for 

different sowing dates and harvests hence hypotheses 3 and 4 are maintained.

The total fibre/wood ratios were very different for the different varieties in 

Experiment 1. This was expected, based on the large differences in fibre percentages 

reported by other authors when comparing these varieties (Bócsa and Karus, 1998; 

Cromack, 1998; Mediavilla et al., 1999; Sankari, 2000; Vetter et al., 2002). The aim, 
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however, was not to reveal these differences, but to determine whether the effects of 

sowing date, harvest time and stem part were similar for different varieties. They were, 

because important interactions between variety and these other factors were not 

present in the final regression model (Table 5B).

The main terms in the regression analysis for the total fibre/wood ratio in 

Experiment 1 were in the same order and caused effects in the same order of 

magnitude as in Westerhuis et al. (2009a [Chapter 2]). The weight of the wood per 

stem and the variety together accounted for 88.8% of the variance in total fibre weight 

per stem. In Westerhuis et al. (2009a [Chapter 2]), 89.8% of this variance was 

accounted for by the term wood weight per stem, which makes sense, since in that 

experiment only one variety was tested.

Long fibre/total fibre 4.5

Sowing date and harvest time affected the long fibre content mainly through their 

effects on total fibre weight and the amount of long fibre increased with the total 

amount of fibre (Table 5C).

The extra effects of sowing date, besides the effect via total fibre weight were 

unimportant (Figures 3B, 4C), and no trend with postponed sowing was present: in 

practice, the four regression lines in Figure 4C can be considered one line. For this 

reason hypothesis 5 is maintained.

The long fibre/total fibre ratio was lowest in B0–50. In Westerhuis et al. (2009a

[Chapter 2]), we concluded that this was caused by the different composition of the 

bottom 5 cm of stems. In practice, this part will be in the stubble. The variety effect on 

the long fibre total fibre ratio was negligible and consistent: varieties that produced 

more long fibre also produced more tow. 

In the processing chain, after scutching the fibres are hackled, a combing 

process to align and refine the fibres. A standardised objective method to determine 

hackled long fibre/scutched long fibre ratios for small samples has not been developed 

yet. This however, could be very important, because hackling long fibre yields are 

reported to be around 40% (Sponner et al., 2005; Tofani, 2006) only. Optimising 
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genotype, crop management, and environment might improve this. 

Conclusions5

The results confirmed the main conclusions of Westerhuis et al. (2009a [Chapter 2])

and showed that the same principles were applicable on a wider scale: 

• Besides the relative amounts of wood, tow, and long fibre in a hemp stem, also 

the retting losses could accurately be described with multiple linear regression 

analyses. 

• As sowing density and harvest time, sowing date affected the fibre content in 

hemp only indirectly, via the effect on individual stem weight. 

• The three tested varieties showed large differences in total fibre/wood ratio, but 

were remarkably similar with respect to retting losses, the patterns along the stem 

and the long fibre/total fibre ratio, which confirmed hypothesis 6. Further testing 

of a wider genetic range, however, could be relevant to establish the further 

scope for breeding.     

Technically, it is possible to grow two successive hemp crops; however, it 

cannot be decided whether two successive crops with a short growing season should 

be preferred over one crop with a long growing season. Whether this fits well in 

farming systems remains to be studied. Because the total fibre/wood ratio and the long 

fibre/total fibre ratio do not depend on the sowing date, other conclusive factors should 

be present. The total stem yield, hackling yield, the desired plant height for processing, 

quality aspects beside the scope of this paper (e.g., fibre strength, fineness, refinability, 

secondary fibre content), and the willingness of the industries to pay a higher price for 

tailor made hemp stems will be decisive. 
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Abstract

In growing fibre hemp for textile applications, selecting the variety is very important, as it 

affects fibre content, fibre quality as well as stem dry matter yield. It was investigated 

whether the ranking of varieties with respect to their total and long fibre content was affected 

by the environment. Experiments in Finland (2004) and the Netherlands (2007) were 

compared. Samples of the bottom, middle, and top of stems were fractioned into wood, long 

fibre, and tow. Retting losses were determined separately, and fibre percentages were 

calculated based on the dry weight of stems after retting. This method avoids differences in 

retting losses to appear as differences in fibre percentage and focuses on the ratio in which 

varieties produce fibre and wood. When the five selected varieties were ranked from low to 

high total or long fibre percentage, the order was the same for both sites. Highest fibre 

percentages were found in the middle stem part. The scutched long fibre/total fibre ratio in 

this stem part was around 90%, irrespective of variety or site. It is concluded that the effect of 

the environment on the fibre content of varieties, if any, is small and for practical reasons can 

be neglected.

Key words: Cannabis sativa L., fibre hemp, fibre content, genotype, retting, textiles.
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Introduction1

The highest added value in fibre hemp (Cannabis sativa L.) production can be 

obtained by producing high‒quality long fibres for the finest yarns for fashion textiles, 

a small but growing market (Van Dam, 1999; Cappelletto et al., 2001; Amaducci, 

2003; Liberalato, 2003; Esposito and Rondi, 2006). To provide relevant decision 

support to primary producers, it should be known how the amount of fibres of the 

desired quality can be maximised within a single plant and within a crop. 

Farmers producing hemp for textile applications should aim at the optimal 

combination of stem dry matter yield × fibre content × fibre quality to maximise their 

profits. The choice of the variety is very important, as it affects all three factors (Bócsa 

and Karus, 1998). Many varieties have been described (e.g., De Meijer, 1995; Bócsa 

and Karus, 1998; Mediavilla et al., 1999) and fibre hemp is grown in many different 

environments over a wide range of latitudes. Selecting the most suitable variety for 

any environment, however, seems complex, because of the possible genotype × 

environment interactions. 

The interaction between genotype (variety) and latitude is important with 

respect to stem dry matter yield. Some varieties are suitable at certain latitude while 

others are not. With respect to the effect of the environment on the total and long fibre 

content of varieties, the picture is less clear. The main objective of the experiments 

described in this paper is to investigate whether the ranking of varieties with respect to 

their total and long fibre content is affected by environment. Two contrasting sites at 

different latitudes, one in Finland, the other in the Netherlands, are compared. 

Stem dry matter yield1.1

To maximise stem dry matter production, hemp should be sown as soon as the risk of 

frost damage is acceptably low, and varieties with a long vegetative growing period 

should be selected to make optimal use of the length of the growing season (Dempsey, 

1975; Van der Werf et al., 1994a; Meijer et al., 1995; Ranalli, 1999; Lisson and 

Mendham, 2000). The length of the vegetative growing period, however, depends on 

the interaction between genotype and environment. Hemp is a short‒day plant 
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(Tournois, 1912; Borthwick and Scully, 1954; Heslop–Harrison and Heslop–Harrison, 

1969), varieties show a wide range of critical day lengths (Amaducci et al., 2008b), 

and day length obviously differs for different latitudes. To optimise stem dry matter 

production it is important not to choose a variety that flowers too early at the chosen 

site, because around flowering, the allocation of dry matter to the stem decreases (De 

Meijer and Keizer, 1994; Van der Werf et al., 1994a; Ranalli, 1999; Westerhuis et al.,

2009b [Chapter 3]).

The effect of genotype on stem dry matter yield will not be discussed in this 

paper. Stem dry matter yields for different varieties were published for many different 

sites. A comparison, e.g., between sites in Italy, the Netherlands, and the United 

Kingdom was published by Struik et al. (2000). 

Fibre content 1.2

Although some varieties consistently show relatively high fibre percentages, e.g.,

Beniko and Bialobrzeskie (Mediavilla et al., 1999; Sankari, 2000b; Bennett et al.,

2006), other varieties are known for their consistently low fibre content, e.g., 

Tiborszállási (Amaducci, 2006b; Tofani, 2006). However, the absolute values for a 

given variety vary widely within and between experiments. Vetter et al. (2002), for 

instance, found in an extensive variety trial in Germany (12 varieties, 4 years, 5 sites) 

wide ranges in fibre percentages, e.g., for Fedora (12.7−22.6%) and Futura 

(15.4−22.6%). Presumably, these wide ranges are largely due to differences in dew 

retting losses and the weight of the processed stem parts (Westerhuis et al., 2009 a,b 

[Chapter 2 and 3]).

Retting losses1.3

Hemp retting, which is comparable to flax (Linum usitatissimum L.) retting, is the 

process in which the fibres are liberated from the surrounding tissues. Moulds (dew 

retting) or bacteria (water retting) degrade pectins, and in addition, other substances, 

including proteins, sugars, starch, fats, waxes, tannins, and minerals, are removed from 

the biomass. Cellulose is not readily decomposed, hence merely the woody part of the 



Site does not affect the fibre content ranking order among fibre hemp varieties 

123

stems and the cellulose–filled fibre bundles survive retting (Hann, 2005).

Fibre percentages are usually calculated by dividing the dry weight of the 

extracted fibres by the dry weight of the stems before retting (e.g., Sankari, 2000b; 

Vetter et al., 2002). Consequently, differences in retting losses cause differences in 

fibre percentages. The thus calculated fibre percentage might be suitable to determine 

the fibre yield, but it is an inadequate variable to understand underlying botanical 

processes. Westerhuis et al. (2009a,b [Chapters 2 and 3] therefore proposed to

distinguish between the retting loss percentage (1a) and the fibre percentage after 

retting (1b):

1a. Retting loss percentage = 100 × (1 − dry weight retted stems/dry weight stems) 

1b. Fibre percentage = 100 × dry weight fibres/dry weight retted stems 

This fibre percentage (1b), shows in fact the ratio in which fibres and wood are 

produced and therefore is an important botanical characteristic for fibre hemp. It is 

different for varieties, but for a given variety independent of sowing density, sowing 

date, and harvest time (Westerhuis et al., 2009a,b [Chapter 2 and 3]). In contrast with 

this, Westerhuis et al. (2009b [Chapter 3]) reported large variability in retting loss 

percentages and showed that retting loss percentages gradually decreased with 

increasing stem weight, irrespective of the cause of the higher stem weight, e.g., lower 

plant density, later harvest, or different stem part. 

To compare the samples from both sites properly, a controlled warm–water

retting procedure was used to avoid the extreme weather dependency that comes along 

with field retting (Dempsey, 1975; Van Dam, 1999; Hann, 2005; Salmon–Minotte and 

Franck, 2005; Sponner et al., 2005). Over–retting or under–retting and other possible 

sources of unintended and undesirable differences in fibre content are excluded in this 

way and retting losses can be determined under controlled conditions. 

In earlier investigations retting losses were not reported or not in as much detail 

as needed to calculate the ratio in which fibres and wood were produced. Therefore a 

proper comparison between the results we obtained with the results found in literature 

for the same varieties unfortunately is not possible. (e.g., Cromack, 1998; Mediavilla 
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et al., 1999; Sankari, 2000b; Vetter et al., 2002; Amaducci, 2006b; Bennett et al.,

2006).

Stem part1.4

The total fibre content shows a bow–shaped pattern along the stem, with highest fibre 

percentages in the middle and lower fibre percentages towards both bottom and top 

(Bredemann, 1940; Van der Werf et al., 1994b; Westerhuis et al., 2009a,b [Chapters 2 

and 3]). For this reason, different stem parts should be taken explicitly into account.

Fibre quality1.5

One particularly important aspect of fibre quality must also be taken into account. To 

introduce hemp into the fashion textile sector, fibres should be produced allowing the 

spinning of yarns between Nm 20 and Nm 40. Nm is the metric yarn number: the yarn 

length in meters per 1 gram of mass (m·g-1). The finer the yarn that can be spun, the 

higher the value of the raw material is (Ranalli and Venturi, 2004; Van Dam and Van 

den Oever, 2006). Yarn spinners have high demands with respect to the underlying 

fibre characteristics fineness, refinability, strength, and homogeneity (Sultana, 1992; 

Van Dam, 1999; Allam, 2004; Hann, 2005; Sponner et al., 2005). 

However, these characteristics are only important with respect to the fibres that 

have passed all processing steps before spinning. The first threshold in processing is 

scutching and only the fibres surviving this step (‘scutched long fibres’) are valuable. 

Their share in the total fibre fraction can be considered a quality parameter of the raw 

material (Hoffmann, 1957; Allam, 2004). ‘Scutching tow’, the fibre material beaten 

out of the bundles, can be used for other applications, but not for long fibre spinning.

The total fibre (i.e. ‘scutched long fibres’ + ‘scutching tow’) percentage, the 

scutched long fibre percentage, and the ratio between them will be determined to 

investigate whether genotype × environment interactions for these variables are 

present.
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Materials and methods2

Experimental design2.1

Field experiments were carried out at contrasting sites in Jokioinen 

(60° 49’ N, 23° 28’ E), Finland and in Achterberg (51° 58’ N, 5° 35’ E), the 

Netherlands. In Jokioinen, twelve fibre hemp varieties were sown on 17 May 2004:

Beniko*, Bialobrzeskie*, Chamaeleon, Dioica, Epsylon, Fedora*, Felina, Ferimon, 

Fibranova, Futura*, Lovrin, and Tiborszállási*. Yield data of this experiment were 

reported by Pahkala et al. (2008). On 27 April 2007, five of these varieties (those 

marked with an asterisk), covering the wide range in fibre content that was found in 

the Finnish experiment, were sown in Achterberg. 

The experimental set–up at both sites was a randomized four–replicate split–

plot design with varieties as main plots and harvest dates as sub–plots. The field was 

ploughed the previous autumn. Prior to sowing the field was harrowed. Seeds were 

sown with a precision drill at a depth of approximately 3–4 cm at target plant 

populations of 240 plants m-2, a density within the range appropriate for textile hemp 

(Amaducci et al., 2002a). Distance between rows was 12.5 cm. Harvest plots were 

3 m2 surrounded by at least 1 m border rows to avoid edge effects. No biocides were 

used. At harvests, dead plants and shed leaves were not collected.

In Finland, the experiment was carried out on a silty clay soil with 4.7% organic 

matter and pH (H2O) 6.3. Nitrogen fertiliser was applied at a rate of 120 kg N ha-1.

This amount was based on an experiment in 2003 at the same site (Pahkala et al.,

2008). No irrigation was applied. A single harvest was carried out at the beginning of 

flowering (Mediavilla et al., 1998), as the harvest planned at the end of flowering was 

compromised by a severe frost on 11 October 2004. At harvest, stems were cut close 

to soil level (stubble < 5 cm), using a Honda garden tiller with a saw tool 

(F410/560 S). One replication each of cultivars Beniko and Fedora was discarded, 

because of damage caused by stormy weather. Per harvested plot, 50 plants were 

randomly taken and measured for plant height and stem diameter at 10 cm above cut 

height.
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In the Netherlands, the experiment was carried out on a sandy soil with 4.1% 

organic matter and pH (H2O) 5.6. Nitrogen fertiliser was applied manually per plot at 

a rate of 50 kg N ha-1, directly after sowing. This amount was based on a successful 

hemp experiment at the same site in 2005 (Westerhuis et al., 2009a [Chapter 2]).

Because of the dry conditions in April 2007, the field was irrigated one and two days 

after sowing, on both occasions with approximately 15 mm of water, to ensure 

uniform germination and emergence. Three harvests were planned with two weeks 

between subsequent harvests. The middle harvest was planned at the time when 50% 

of the plants ≥ 100 cm were flowering, meaning that at least one flower, either male or 

female, was open. This moment was predicted based upon flowering data from earlier 

experiments. At harvests, stems were manually cut at soil level with pruning shears 

(no stubble). Per harvested plot, 100 plants were randomly taken, flowering status was 

recorded and plant height and stem diameter at 10 cm above cut height were measured. 

At both sites the dry weights of both stems and remainder, i.e. leaves and 

inflorescences, were determined on 20 plants following drying for 24 hours at 105 °C 

in a stove. The other plants were dried on a drying floor for 4 days at 27 °C in order to 

prevent them from decaying during storage and shipment.  

Stem selection and sample preparation2.2

Stem selection and sample preparation were different for the sites. 

From the Finnish trial, for some of the plots a limited number of plants were 

available. The minimum length for processing on the Flemish mill was 50 cm and all 

stem parts in a sample should have equal length. To study bottom, middle, and top of 

the same plants, only plants with a height ≥ 150 cm could be used. The smaller plants 

were discarded. A variable number of stems (minimal 15) were processed, depending 

on the availability of undamaged stems, their height, and the diameter of the PVC 

tubes that were used for retting. The stems were defoliated and from each individual 

stem the bottom 50 cm, the exact middle 50 cm, and the top 50 cm stem part were cut 

(Figure 1A). Samples were tied up with tie–ribs and remainders were discarded. 
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Figure 1. Stem partitioning before processing. 
A) Finland: plants shorter than 150 cm were discarded (X). A variable number of plants 
(minimal 15) were processed, depending on availability and size. Stem parts originated from 
the bottom (B), middle (M), and top (T) 50 cm of the same stems. 
B) The Netherlands: plants shorter than 100 cm were discarded (X). Two comparable groups 
(1, 2) of 50 stems were assembled. Stem parts originated from the bottom (B), middle (M), 
and top (T) 50 cm of the stems. B and T stem parts were cut from the same stems (group 1); 
M stem parts were cut from group 2.  
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From the Dutch trial, a large share of the plants was shorter than 150 cm hence too 

short to cut into three 50 cm parts. Therefore, it was decided to cut bottom and top part 

from the same plants, but the middle section from a parallel group of plants.

Consequently, as in Westerhuis et al.(2009a,b [Chapters 2 and 3]), plants < 100 

cm were discarded and plants ≥ 100 cm were processed. Per harvested plot, 100 stems 

were randomly taken and were defoliated. Two comparable groups of 50 stems were 

assembled. From the first group the bottom 50 cm and top 50 cm stem part were cut, 

from the second group the exact middle 50 cm stem part was used (Figure 1B). 

Samples were tied up with tie–ribs and remainders were discarded. 

Fibre extraction2.3

Industrial processing of fibre hemp into high–quality yarns in principle is similar to 

linen production from flax. Sponner et al. (2005), Hann (2005), and Salmon–Minotte

and Franck (2005) described this linen production chain accurately and in detail. 

Because of the small sample size as compared to industrial processing, a traditional 

fibre extraction method was used. With respect to the procedural steps and the final 

products, the methods, however, are identical.

The method consisted of four steps: retting, breaking, scutching, and cleaning. 

Before retting, before breaking, and after cleaning, weighing took place to determine 

the initial dry weight, the retting losses, and the amounts of scutched long fibre and 

scutching tow. The weight of the wood was estimated by subtracting retting losses and 

total fibre weight (i.e. scutched long fibre + scutching tow) from the stem dry weight 

before retting. To compare the different batches properly, weighing was always 

preceded by conditioning the materials at 19 °C and 73% humidity for at least 48 h

(Van den Oever et al., 2003) and the machinery was not adjusted during the 

experiment.

Retting

Warm‒water retting took place in 120 cm high PVC tubes with a 16 cm diameter and 

closed bottom. Prior to retting the cylinders were filled with tepid tap water. This 
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water, used to wash away contaminants, was drained after 2 hours. The cylinders were 

placed in a retting basin and filled with tap water of 34 °C. Stems were completely 

submerged, but water exchange between cylinders was avoided. Retting was 

performed at 34 °C in 96 hours after which the bundles were carefully washed with 

tepid water. Excess water was drained away by placing the bundles vertically on a 

grating above a drain. Next, the bundles were dried on a drying floor for 4 days at

27 °C. 

Breaking

To separate fibres and wood the tie‒ribs were removed and the stems were arranged in 

an even layer, and then fed into a flax breaker consisting of a double series of ribbed 

breaking rollers. These heavyweight rollers put pressure on the stems by means of a 

spring system. As a result, stems were flattened, and the brittle wood was broken into 

shives, most of which fell through the machine, while the flexible fibres passed under 

the rollers easily.

Scutching

Scutching was performed on a Flemish mill with rotary blades that beat the broken 

stems in such a way that remaining shives and tow were separated from the long 

fibres. Both sides of the samples, the upper and lower part of the stem parts, were

manually fed through the rotary blades eight times; after four times the bundle was 

turned inside out. Because the end of the sample had to be held in the hand while 

scutching the other side of the sample, all stem parts in a sample had to be of uniform 

length. If shorter stem parts were accepted, all the fibre material in these shorter parts, 

both scutched long fibre and scutching tow, would end up in the tow section. The aim, 

however, was to distinguish between these fractions.

Cleaning

After scutching, the long fibres and tow were cleaned by hand to remove any 

remaining shives and tow. After fibre extraction, conditioning, and weighing, the 
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amounts of scutched long fibre and scutching tow were determined, and the weight of 

the wood was estimated. Top 50 cm was not cleaned, because in this part tow could 

not easily be separated from the wood. Consequently, total fibre weight and hence 

total fibre percentage could not be calculated for this stem part.

Statistical analysis 2.4

Statistical analyses of the data (P < 0.05) were conducted using GENSTAT® release 

11.1. Following tests for normality: 

• Multiple linear regression analyses were performed to analyse the ratios 

between the stem part weight before and after retting and between the total fibre 

and wood fractions for the hemp produced in the Netherlands. Stepwise 

addition or subtraction of terms was carried out to define the most suitable 

model to use in general linear modelling, i.e. the model with the minimum 

residual mean squares. There were no statistical or biological reasons to test 

non–linear models.      

• Analyses of variance (ANOVAs) were calculated for all other variables. Means, 

standard errors of differences of means (SEDs), and degrees of freedom are 

reported.

Results3

First it is explained which method was used to compare the two sites. Next, the results 

of the Finnish trial with twelve varieties are reported to show the large differences in 

long and total fibre content between the varieties and the similarity between them with 

respect to the patterns along the stem. This is followed by a comparison between the 

sites for the five varieties that were grown at both sites. Finally, retting losses are 

presented. Characteristics of the harvested and processed hemp are presented in 

Table 1.
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How to compare the sites: a problem and a solution3.1

In Westerhuis et al. (2009a,b [Chapters 2 and 3]) the ratios between the total fibre 

weight per stem part and the weight of the wood per stem part were analysed with 

multiple linear regression analyses. Based on these papers different total fibre/wood 

ratios were expected for different varieties and stem parts. The aim was to investigate 

and quantify the differences between sites using the same statistical method. In Figures 

2A (middle stem part) and 2B (bottom stem part) therefore, the total fibre weight per 

stem part was plotted against the wood weight per stem part for the five varieties. The 

figures clearly show the large differences between varieties and the absence of an 

important variety × stem part interaction. 

A linear regression analysis (Table 2A) of the Dutch trial revealed that the 

weight of the wood (53.9%), the variety (+ 42.7%) and the stem part (+1.6%) together 

accounted for 98.3% of the variance in total fibre weight.

However, the aim was to investigate whether or not the ratio in which fibres and 

wood were produced was affected by site. Although Figures 2A and 2B indicate that 

the differences between sites are very small, as compared to the differences between 

varieties, they also show that multiple linear regression analysis is not suitable to 

analyse the differences between sites. The stems in the Finnish experiment, on average 

were taller and thicker than the stems in the Dutch experiment (Table 1), hence their 

weight was higher. Consequently, the majority of the data points from the Finnish 

experiment (encircled) are found on the right side of Figures 2A and 2B, which means 

that the distribution is unbalanced with respect to site. Moreover, the small number of 

data points from the Finnish experiment, only one harvest was carried out, did not 

warrant the calculation of regression lines per site. 

This problem was tackled as follows. Westerhuis et al. (2009a [Chapter 2]) 

showed that with increasing stem weight the total fibre percentage decreased. The 

reason is that the linear regression line total fibre weight = a × wood weight+ b, had a 

positive intercept (b), which means that with increasing stem weight the positive effect 

of intercept b on the fibre percentage levels off towards a fibre percentage equivalent 

to a/(1+a) × 100% (Figure 3). 
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Figure 2. The total weight of the fibre per stem part plotted against the weight of the wood per 
stem part. Data obtained from fibre hemp experiments in Achterberg (NL) in 2007 (5 varieties 
× 3 harvests × 4 replicates), and in Jokioinen (F) in 2004 (5 varieties × 4 replicates). The data 
obtained in the Finnish experiment are encircled. 
A) The middle 50 cm of stems.
B) The bottom 50 cm of stems.

2A

2B
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Figure 3. Total fibre weight per stem part (straight line, left Y-axis) and total fibre percentage 
(dotted line, right Y-axis) against the wood weight per stem part (g) for a linear regression 
line y = ax + b, with a = 0.33 and b = 0.1. With increasing stem part weight the fibre 
percentage decreases, although the ratio in which fibres and wood are produced does not 
change.

In the Dutch experiment, the stem weight was highest at the last harvest time 

(H3). Unless a harvest time effect would be present, an extra effect of harvest time 

besides its effect on stem weight, it would be reasonable to compare the H3 samples 

by means of an analysis of variance (ANOVA) with the Finnish samples to investigate 

whether there is a site effect. Because three harvests were carried out in the 

Netherlands, the number of samples per variety was sufficiently high to warrant a 

multiple linear regression analysis to check whether the ratio in which fibres and wood 

were produced depended on harvest time or not. Table 2A shows that there were no 

harvest time terms in the final regression model. This means that for all five varieties 

and all three stem parts the ratio in which fibres and wood were produced was not 

significantly different for different harvest times, confirming the results from 

Westerhuis et al. (2009a,b [Chapters 2 and 3]). Therefore, it was decided to compare 

the samples obtained at H3 in the Netherlands with the samples of the Finnish 

experiment by means of analyses of variance.
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Comparisons between the twelve varieties in Finland3.2

There were large differences in total fibre and scutched long fibre percentage between 

the twelve varieties (Table 3). Differences were also present in the ratio between them. 

For these three characteristics, a variety × stem part interaction was found. 

The twelve varieties showed large differences in total fibre percentage. The 

ranges in bottom (20−39%) and middle (24−42%) stem parts were in the same order of 

magnitude. In both stem parts, Beniko showed the highest total fibre percentage and 

Tiborszállási the lowest. For Chameleon, Dioica, Fibranova, and Futura the total fibre 

percentage was not significantly different in the bottom and middle stem part, whereas 

the other eight varieties showed highest total fibre percentages in the middle stem part. 

The twelve varieties also showed large differences in scutched long fibre 

percentage for bottom (13−32%), middle (22−37%) and top (16−24%) stem parts. In 

all three stem parts, Beniko showed the highest long fibre percentage. Tiborszállási 

showed the lowest long fibre percentage, but the differences with Lovrin (middle and 

top stem part), and Futura and Epsylon (top stem part) were not significant. For all 

varieties, except Dioica, the highest scutched long fibre percentage was found in the 

middle stem part. In Dioica, no significant difference was found between the bottom 

and middle stem part. 

In the bottom stem part, the scutched long fibre/total fibre ratio was different for 

varieties (64−81%). It was highest in, among others, the four varieties with the highest 

total fibre percentages (Beniko, Bialobrzeskie, Dioica, and Chamaeleon) while it was 

lowest in, among others, Tiborszállási, the variety with the lowest total fibre 

percentage. In the middle stem part, the scutched long fibre/total fibre ratio was not 

different for varieties (range 84−91%). It was higher in the middle stem part than in 

the bottom stem part. For Chamaeleon, Dioica, and Beniko, however, this difference 

was not significant.

Comparisons between the two sites3.3

For the five varieties that were selected for sowing at both sites the samples obtained 

at the third harvest time in the Netherlands were compared by means of analyses of 
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variances with the samples obtained at the single harvest time in Finland (Table 4).

Total fibre

There was no main site effect, but the site × variety × stem part interaction was 

significant (P < 0.05). The effects of site and stem part on the total fibre percentage,

however, were small as compared to the effect of variety. When the five varieties per 

stem part were ranked from low to high total fibre percentage, the ranking was the 

same for both sites. Lowest total fibre percentages were found in Tiborszállási and 

highest in Beniko. The differences between Futura and Fedora were small and not 

significant in the bottom stem part.   

The total fibre percentages were higher in the middle stem parts than in the 

bottom stem parts for all varieties at both sites. For Futura in Finland the difference, 

however, was not significant. In Finland, the difference between the bottom and 

middle stem part was small as compared to the Netherlands.

In the bottom stem part, Tiborszállási, Fedora, Futura, and Bialobrzeskie 

showed similar total fibre percentages at both sites, whereas Beniko showed slightly 

higher total fibre percentages at the Finnish site. In the middle stem part, Tiborszállási  

and Beniko showed similar total fibre percentages at both sites, whereas Fedora,

Futura, and Bialobrzeskie showed higher total fibre percentages at the Dutch site.

Scutched long fibre

As for the total fibre percentage, the effects of site and stem part on the scutched long 

fibre percentage were small in comparison with the effect of variety.

For all stem parts, the scutched long fibre percentage was higher at the Dutch 

site than at the Finnish site and the difference between the sites increased from the 

bottom stem part to the top stem part. At both sites and for all varieties, the scutched 

long fibre percentage was highest in the middle stem part. 

For all varieties, the scutched long fibre percentages were higher at the Dutch 

site than at the Finnish site. For Tiborszállási, however, the difference was not 

significant. When the five varieties are ranked from low to high scutched long fibre 
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percentage, at both sites the order was the same as for the total fibre percentage: lowest 

long fibre percentages were found in Tiborszállási and highest in Beniko. At both 

sites, the differences between Futura and Fedora were not significant. In the middle 

stem part, no differences between sites or varieties were present with respect to the 

scutched long fibre/total fibre ratio. In all cases, it was around 90%. In the bottom stem 

parts, the scutched long fibre/total fibre ratio was lower at the Finnish site (74%) than

at the Dutch site (84%), and Tiborszállási (72%) and Fedora (73%) showed a

significantly lower ratio than Futura (82%), Beniko (83%), and Bialobrzeskie (85%).

Retting losses3.4

Retting losses were analysed with multiple linear regression (Table 2B) as in 

Westerhuis et al. (2009b [Chapter 3]). The analysis was only performed for the Dutch 

experiment for reasons mentioned above.

There was a linear relationship between the stem part weights before and after 

retting. Figure 4 shows that with increasing stem part weight the absolute retting losses 

increased. The retting loss percentage, however, decreased with increasing stem part 

weight and levelled off towards about 15%.       

The analysis (Table 2B) showed that stem part weight before retting accounted 

for 99.8% of the variance in stem part weight after retting. A small but significant 

difference between varieties was present (+ 0.1% explained variance). Variability was 

largest in the top part of the stems. 

Discussion4

Raw materials4.1

The Finnish hemp on average was taller and thicker than the hemp produced in the 

Netherlands (Table 1). This was probably mainly due to differences in plant density at 

emergence and to severe thinning (on average 40%) of the crop between full 

emergence and harvest in Finland, whereas in the Netherlands almost no thinning (on

average 4% ) occurred. Hemp stems are thinner and shorter with increasing plant 
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Figure 4. The stem part weight after retting plotted against the stem part weight before retting 
for top, middle, and bottom 50 cm stem parts in a fibre hemp experiment (3 harvest times × 5 
varieties × 3 stem parts × 4 replicates) in the Netherlands in 2007 (symbols, left Y-axis). The 
distances between the symbols and the line x = y indicate the absolute retting losses. With 
increasing stem part weight the retting loss percentage (---, right Y-axis) decreased.

density (Van der Schaaf, 1963; Jakobey, 1965; Höppner and Menge–Hartmann, 1994;

Van der Werf et al., 1995a; Amaducci et al., 2002b, 2008a; Westerhuis et al., 2009a 

[Chapter 2]). 

The severe thinning in Finland was possibly caused by the higher amount of 

nitrogen that was applied, because thinning in hemp increases with increasing N–

fertilisation (Höppner and Menge–Hartmann, 1994; Van der Werf and Van den Berg,

1995; Amaducci et al., 2002a; Vetter et al., 2002).

The processed plants were considered representative for the harvested plots. 

Although the number of discarded plants was considerable, their contribution to the 

harvested volume (Amaducci et al., 2002a) was small. From the Finnish plots on 

average 5% (range 2–9%) of the harvested volume could not be used for processing, 

from the Dutch plots on average 2% (range 1–4%).
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Total fibre percentage4.2

The experiment in Finland showed that varieties were very different with respect to 

their total fibre content (Table 3). Based on that experiment five varieties were 

selected, covering the wide range in fibre content found, for a comparative study on a 

contrasting site in the Netherlands. 

The main objective was to investigate whether the ranking of varieties with 

respect to their total fibre content was affected by site. A main site effect, however, 

was absent, showing that neither of the sites on average showed significantly higher 

fibre percentages. Although total fibre percentage depended on a site × stem part × 

variety interaction (Table 4), the effect of variety was very dominant and not 

compromised by the interaction (cf. Figure 2). Consequently, the ranking of the 

varieties with respect to their total fibre percentage based on the dry weight of the 

stems after retting was not affected by site.

Disentangling the three–way interaction site × stem part × variety, differences 

were encountered, which were possibly due to differences in harvest technique and 

plant size between the sites, rather than to differences in the ratio in which any variety 

produced fibres and wood. 

Harvest technique4.3

Based on the findings of Bredemann (1940), Van der Werf et al. (1994b) and 

Westerhuis et al. (2009a,b [Chapters 2 and 3]) higher total fibre percentages were 

expected in the middle stem part than in the bottom stem part. For all varieties grown 

at the Dutch site this difference was present (4−8 per cent point).

In Finland however, the differences were smaller (1−4 per cent point) and not 

significant for Futura. Also in Chamaeleon, Dioica, and Fibranova, varieties that were 

only grown in Finland, no significant difference between bottom and middle stem part 

was found (Table 3).

Probably this difference between sites was caused by the different harvest 

techniques. Whereas in the Netherlands the stems were cut manually at soil level with 

pruning shears (no stubble), in Finland the hemp was harvested using a garden tiller 
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with a saw tool, which inevitably created a stubble of a few centimetres (< 5 cm). 

Westerhuis et al. (2009a [Chapter 2]) showed that the fibre content of the 

bottom 5 cm of hemp stems is very low and that the fibre content increases towards the 

middle of stems. Consequently, cutting the stems a few centimetres higher increases 

the fibre percentage. This might explain why the differences between bottom and 

middle part were smaller in Finland than in the Netherlands, and why the fibre 

percentage in the bottom part on average was a little higher, but only significantly 

higher in Beniko, in the Finnish hemp. 

Plant size4.4

For reasons explained above the five varieties that were grown at both sites were 

compared with ANOVAs instead of multiple linear regression analyses. It was decided 

to compare the results of the last harvest time (H3) in the Netherlands with the hemp 

grown in Finland, because at H3 the stem weight was highest. However, the average 

stem weight at H3 was still lower than the average stem weight of the Finnish hemp.  

Westerhuis et al. (2009a [Chapter 2]) showed that with increasing stem weight, the 

fibre percentage decreased, although the ratio in which fibres and wood were produced 

did not change (Figure 3). This effect might have caused the slightly lower total fibre 

percentages in the middle stem part in Fedora, Futura, and Bialobrzeskie in Finland as 

compared to the Netherlands. 

Scutched long fibre4.5

The second aim of our experiments was to determine whether genotype × environment 

effects were present for the scutched long fibre percentage. When the five varieties 

were ranked from low to high scutched long fibre percentage, at both sites the ranking 

order was the same as for the total fibre percentage.

For the scutched long fibre/total fibre ratio, differences between sites and 

between varieties were only present in the bottom part of stems. In this bottom part, 

the ratio was lower than in the middle stem part, though differences were not 

significant for Chamaeleon, Dioica, and Beniko in the Finnish experiment. The lower 
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ratio in the bottom part was expected, because in Westerhuis et al. (2009a,b [Chapters

2 and 3]), the bottom 50 cm of stems always showed lower scutched long fibre/total 

fibre ratios than all other stem parts examined, irrespective of sowing density, variety, 

sowing date or harvest time. 

In Westerhuis et al. (2009a [Chapter 2]), this was ascribed to the different 

composition of the bottom 5 cm of the stems. However, this was based on an 

experiment with only one variety at one site. The experiments described in this paper 

showed that the scutched long fibre/total fibre ratio in the bottom part was different for 

varieties and sites. Possibly this was due to differences in plant height (Table 1) and 

differences between varieties with respect to the length of the middle section (see 

below), or the interaction between these factors. The data set obtained in this 

experiment, however, was not suitable to investigate the background of the differences 

between varieties and sites in more detail. 

The scutched long fibre/total fibre ratio in the middle stem part was around 

90%, regardless site or variety. To produce homogeneous, high–quality textile fibres 

preferentially only this middle part of the stems should be used to extract the fibres 

(Cappelletto, 2001; Van Dam and Van den Oever, 2006) hence this is the most 

valuable part. It is therefore very important to know the length of this middle section 

as related to plant height. The relative weight share of this high–quality stem part 

should be maximised in order to maximise profits. Upper and lower limits should be 

known to determine cut heights, and to adjust machinery. In this respect not only the 

relative long–fibre yield should be taken into account, but also all other important 

quality aspects that might show patterns along the stem. 

In addition, the presence or absence of the unwanted secondary fibres, 

especially in the bottom part of stems (Bócsa and Karus, 1998; Schäfer and 

Honermeier, 2003; Amaducci et al., 2005) should be taken into account. Obviously, a 

homogenous crop, in all aspects, is preferable for such optimisations. Future research 

should focus on this, as primary producers need to know the optimal combination of 

plant height and stem diameter, and the optimal heights to cut the stems at harvest in 

order to provide the homogeneous high–quality raw material the processors require. 
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Stubbles that are too short decrease the quality of the raw materials, stubbles that are 

too long lower the profits (Bredemann, 1940). 

Retting losses4.6

Whereas large differences were found in the ratio in which varieties produced fibre 

and wood, variety was an unimportant factor with respect to retting loss percentages. 

Stem part weight before retting accounted for 99.8% of the variance in stem part 

weight after retting (Table 2B), which confirms the conclusions of Westerhuis et al. 

(2009b [Chapter 3]). The differences between varieties, although statistically 

significant, are in practice unimportant. 

Largest variability was found in the top part of the stems (Figure 4), but the 

absolute fibre weight in this part is low, as is the fibre quality. These fibres are not 

suitable for spinning high‒quality yarns (Cappelletto, 2001; Van Dam and Van den 

Oever, 2006). Variability in this stem part might also partly be due to the relative low 

weight of this stem part and structural differences caused by differences in flowering 

stage (e.g., internode length, branching, and the presence of resins).

Crop management strategy4.7

It can be concluded that the effect of the environment on the fibre content of varieties, 

if any, is small and for practical reasons can be neglected. Differences in fibre content 

found in the literature, given variety, were probably mainly due to weight differences 

in the processed stem parts and differences caused by under- or overretting in the field, 

but not to differences in the ratio in which any variety produces fibres and wood. With 

respect to price fixing of unretted hemp stems, it is therefore important to know the 

variety and to determine the retting losses under controlled conditions, for which a 

protocol should be developed that sellers and buyers agree on. 

The experiments described in this paper and those in Westerhuis et al. (2009a,b 

[Chapters 2 and 3]) have shown that the effects of site, sowing density, sowing date,

and harvest time on the ratio in which any variety produces fibre and wood are absent 

or minimal. Improving the total fibre content, given variety, is not a promising 
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strategy. To improve the fibre content of a hemp crop at any site, a variety with higher 

fibre content should be chosen. Crop management, given site, should be focused on 

optimising stem dry matter yield and possible other fibre quality traits not studied here. 

Moreover, the large varietal differences and lack of interactions with the environment 

show good prospects for breeding. As genotype × environment interactions are 

unimportant with respect to fibre content, testing this characteristic on only one site, 

should be conclusive. 
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Plant weight determines secondary fibre development in 
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Abstract

In fibre hemp (Cannabis sativa L.) grown for the production of high‒quality textile yarns the 

presence of secondary fibres is unwanted. These fibres are too short for spinning and their 

presence hampers the production of fine and homogeneous yarns from the primary or long 

fibres. Primary fibres are present along the stem from bottom to top and hemp is traditionally 

harvested around the time of flowering, when the cell walls of these fibres are sufficiently 

thickened with cellulose to be extracted. In literature indications are found that the height up 

to which secondary fibres are present, moves upwards along the stem during the growing 

season, and that this process accelerates around flowering. To optimise the length of the stem 

part with primary fibres, but without secondary fibres, the background of secondary fibre 

development should be elucidated. It can be hypothesised that either flowering or the 

increasing plant size accelerates the formation of secondary fibres. To investigate this, an 

indoor experiment was conducted in greenhouses with mobile covers in which the day–length 

sensitivity of hemp was used to create size ranges of flowering and non–flowering plants for a 

single cultivar, Futura 75. Secondary fibre formation was recorded using microscopic 

techniques. The height up to which secondary fibres were present, depended on plant weight. 

The higher secondary fibre front in flowering plants was most likely caused by the higher 

weight of these plants as compared with non–flowering plants of the same height. Results 

from a field experiment confirmed the correlation between plant size and the height of the 

secondary fibre front. Therefore, to optimise the length of the stem part with primary fibres, 

but without secondary fibres above stubble height, for Futura 75 a relatively short crop of 

around 1.3–1.4 m should be harvested before flowering. This ideal crop height is likely to 

differ between varieties.

Key words: Cannabis sativa L., day length sensitivity, fibre hemp, fibre quality, flowering, 

plant height, plant weight, primary fibres, secondary fibres, textiles.
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Introduction1

Primary fibres are valuable, secondary fibres are unwanted1.1

In fibre hemp (Cannabis sativa L.) two types of bast fibres occur, primary and 

secondary fibres. The classification is made according to their origin. The cell walls of 

both types are enforced with layers of cellulose, and both types are organised in 

bundles. In a cross‒section of a hemp stem, the outer fibre bundle layer consists of 

primary fibres, the inner layer, if present, of secondary fibres (Picture 1) (Kundu and 

Preston, 1940; Kundu, 1942).

For spinning high–quality textile hemp yarns only the primary or ‘long’ fibres

are valuable. Secondary or ‘short’ fibres are unwanted because these fibres are too 

short for spinning and their presence hampers the production of fine and homogeneous 

yarns from the primary or long fibres (Hoffmann, 1957; Bredemann et al., 1961;

Ranalli, 1999; Mediavilla, 2001; Schäfer and Honermeier, 2003).

Kundu (1942) stated that the presence of a few layers of parenchyma cells 

between the primary and secondary fibre bundles enables the isolation of the primary

Xylem

Secondary fibre layer

Primary fibre layer

Picture 1. A cross–section (100 × magnified) of a hemp stem with primary and secondary 

fibres stained with phloroglucinol (0.1 g in 20 ml 15% HCl), which colours lignin red.
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fibre bundles by a retting process, but although secondary fibres can easily be 

distinguished under a microscope, and methods are available to isolate these short 

fibres in the laboratory (Bredemann et al., 1961; Van der Werf et al., 1994b), it is 

technically difficult to separate them from the primary fibres during commercial fibre 

processing (Kundu and Preston, 1940; Van Dam and Gorshkova, 2003). For this 

reason it should be known how the development of secondary fibres above stubble 

height can be avoided in the raw materials aimed at textile yarn production.

Primary fibre development1.2

Primary bast fibre cells develop in the primary phloem that is differentiated from the 

procambium (Kundu, 1942; Aloni, 1987). Cells are initiated before or during stem

elongation and fibre cells mainly grow with the surrounding tissue; they elongate when 

stems elongate (Kundu, 1942; Van Dam and Gorshkova, 2003; Amaducci et al., 2005;

Chernova and Gorshkova, 2007). While the neighbouring cells continue to divide, the 

multinuclear primary fibre cells can reach a length of 5−55 mm (average 20 mm) and a 

width of 10–60 μm before cell division occurs (Kundu, 1942; Brink et al., 2003; Van 

Dam and Gorshkova, 2003).

The individual or elementary primary fibre cells are held together in bundles by 

binding substances that mainly consist of hemicelluloses, lignin, and pectins 

(McDougall et al., 1993; Vincent, 2000; Keller, 2001; Brink et al., 2003; Van Dam 

and Gorshkova, 2003; Sponner et al., 2005). The long fibres of hemp, desired for 

textile processing, are collectives of such primary bast fibre bundles (Müssig and 

Martens, 2003; Chernova and Gorshkova, 2007). The high length–to–diameter ratio of 

the cells, between 250–1000 (Brink et al., 2003), and the cell and bundle architecture 

make these fibres fit to be spun into yarns, and then woven or knitted into fabrics. 

To introduce hemp long fibres into the fashion textile sector, fibres should be 

produced allowing the spinning of yarns between Nm 20 and Nm 40 (Nebel, 1995; 

Ranalli and Venturi, 2004), in which Nm is the Number metric, the yarn length in 

meters per 1 gram of mass (m·g-1). The finer the yarns that can be spun, the higher the 

value of the raw material is (Allam, 2004; Ranalli and Venturi, 2004).
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Primary fibre bundles are already present in very young hemp stems. They run

longitudinally along the stem from bottom to top and can reach almost the full length 

of the plants (Van Dam and Gorshkova, 2003; Hernandez et al., 2006). These fibres 

have to be strong enough before the bundles can be extracted. This so–called

‘ripeness’ or maturity of the primary fibres is closely connected with the cellulose 

filling degree of the cells, which progresses from bottom to top, and from the outer to 

the inner part of the stem. At maturity the lumen of the tapering fibre cells is very 

small and protoplasm is absent (Kundu, 1942; Mediavilla et al., 2001; Schäfer and 

Honermeier, 2003; Van Dam and Gorshkova, 2003; Amaducci et al., 2005).

Hemp is usually harvested around the time of flowering, when the primary 

fibres are filled and stem dry matter yield and fibre yield are highest (Bócsa and Karus, 

1998; Mediavilla et al., 2001; Schäfer and Honermeier, 2003; Amaducci et al., 2005; 

Burczyk et al., 2009).

Secondary fibre development1.3

Secondary fibres might derive from tangential division of vascular cambium cells 

when a stem part has reached its maximum length (Kundu and Preston, 1940; Kundu,

1942; Van Dam and Gorshkova, 2003; Amaducci et al., 2005; Chernova and 

Gorshkova, 2007). These uninucleate fibre cells are no longer than 2 mm (Kundu, 

1942; Hoffmann, 1957), which is too short for spinning. Besides, secondary fibres 

contain too much lignin (Kundu and Preston, 1940; Schäfer and Honermeier, 2003), 

which is detrimental for the production of fine, flexible, and homogeneous yarns 

(Bócsa and Karus, 1998; Cappelletto, 2001).

Secondary fibres are absent in young hemp plants or only present in a thin layer 

at the stem base (Van Dam and Gorshkova, 2003; Amaducci et al., 2005, 2008a;

Hernandez et al., 2006). However, around the usual harvest time, hence around 

flowering, secondary fibres are found higher up along the stems, with a thicker layer 

towards the bottom part of the stem (Van der Werf, 1994b; Mediavilla et al., 2001a; 

Schäfer and Honermeier, 2003, 2006; Amaducci et al., 2005, 2008a).

Mediavilla et al. (2001a) stated that with the induction of the generative phase 
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secondary fibre formation increases quickly, at first in female plants. Schäfer and 

Honermeier (2003, 2006) also related the observed increased secondary fibre 

formation and thicker secondary fibre layers to a phenological stage of the plant: the 

beginning of flowering. However, the observed coincidence of enhanced secondary 

fibre formation with the transition from the vegetative to the generative growing stage 

of the plants does not necessarily point at a causal relationship between the two.

Coincidence or cause?1.4

Although it cannot be excluded yet that flowering accelerates the process of 

secondary fibre formation, it seems more likely that the size of the plant determines 

the amount of secondary fibres. Botanically the bast fibres in hemp belong to the 

sclerenchyma tissue which gives mechanical support to the plants (Kundu, 1942; 

McDougall et al., 1993; Van Dam and Gorshkova, 2003) and the need for such 

support increases when plants grow taller and when tops become heavier, due to the 

development of inflorescences and the filling of the seeds. It could be considered an 

example of ‘mechanoperception’, the perception of mechanical stimuli that keep plants 

in balance with their physical environment (Telewski, 2006).

The findings of Bredemann et al. (1961), Van der Werf et al. (1994b), Höppner

et al. (2004), and Amaducci et al. (2005, 2008a) that increased amounts of secondary 

fibres were present in plants with higher stem dry weight and in lower internodes 

could support our view. However, secondary fibre formation was not related to 

phenological stage in these experiments, hence flowering as an accelerator of 

secondary fibre formation cannot be excluded. Flowering as the exclusive trigger to 

secondary fibre formation must be excluded as secondary fibres are also observed in 

non–flowering hemp (Amaducci et al., 2005; Hernandez et al., 2006).

It can be hypothesised that either the change from the vegetative to the generative 

phase accelerates the formation of secondary fibres higher up along the stems or that the 

increasing height and weight of the plant, which obviously are strongly correlated, cause 

the formation of secondary fibres. To avoid the presence of the unwanted secondary 

fibres above stubble height and to optimise the production of uncontaminated valuable 
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primary fibres, we need to know whether hemp should be harvested before flowering or 

before the plants become too tall. Therefore, the background of the development of 

secondary fibre formation during the growing cycle should be elucidated.

A size range with flowering and non–flowering plants1.5

To discriminate between flowering and plant size as the cause of enhanced secondary 

fibre formation, a broad size range of flowering and non–flowering plants is required. 

Such a test set cannot easily be achieved in a field experiment, as flowering plants 

grown under natural climate and day‒length conditions at higher latitudes in general 

are relatively tall at the end of the growing season. However, in a greenhouse with 

day‒length control it is rather simple to disconnect phenological stage and plant size.

The reason is that hemp is a short‒day plant (Tournois, 1912; Borthwick and 

Scully, 1954; Heslop–Harrison and Heslop–Harrison, 1969) and can be kept vegetative 

and growing for a prolonged period of time under long day conditions, while a 

transition to short‒days triggers the plant to flower within days (Heslop–Harrison and 

Heslop–Harrison, 1969). Around this transition, the longitudinal growth of the plant 

slows down or stops (Hoffmann, 1957; De Meijer and Keizer, 1994; Meijer et al.,

1995; Schäfer and Honermeier, 2003), hence by transferring plants from a long–day 

compartment to a short–day compartment at different moments in time, the desired test 

set with flowering and non‒flowering plants of different sizes can be achieved.

Harvesting plants from different treatments and microscopic analyses from stem 

cross– sections regarding the presence or absence of secondary fibres then provides the 

opportunity to find out whether or not flowering and secondary fibre formation are 

related. The results of an earlier conducted field experiment were analysed for 

comparison.

The aim of the day–length treatments thus is simply and solely to obtain a size‒

range of flowering and non‒flowering plants. Microscopic measurements on plants of 

this test set were not related to the day–length treatments the plants underwent, but 

only to the result of the treatments: the size characteristics of the plants and their 

phenological stage.
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Materials and Methods2

Sites and seeds

Both the field and the greenhouse experiment were carried out in Wageningen 

(51° 58’ N, 5° 4’ E), with a monoecious variety, Futura 75, to reduce plant–to–plant 

variation (Van der Werf and Van der Berg, 1995). Seeds were purchased from La

Fédération Nationale des Producteurs de Chanvre (FNCP), Les Mans, France.

Preparation of cross–sections

Cross–sections of stems were cut by hand with razor blades and then placed on glass 

slides. The cuts were stained with phloroglucinol (0.1 g in 20 ml 15% HCl), which 

colours lignin red, hence facilitating the distinction between different tissues. After 12 

minutes the excess of the solution was removed with filter paper and replaced with a 

droplet of 50% glycerol to prevent the sections from drying (Kundu and Preston, 1940; 

Ko et al., 2004; Hernandez et al., 2006). Light microscopes (Zeiss) with lenses of ×40 

and ×100 magnification were used to study the cross–sections.

Greenhouse experiment2.1

The greenhouse experiment was carried out between 19 May (day 1) and 25 July 2005 

(day 68) in two similar adjacent greenhouses with horizontal airflow, in which the 

period of natural day–light was controlled by means of a mobile cover.

Substrate and sowing

148 plastic containers of 29 cm × 29 cm × 28 cm (l × w × h) were filled with potting 

soil (1.5 mg N·l-1) mixed with 2 g·l-1 Osmocote® (13% N, 13% P2O5, 13% K2O, 2% 

Mg, and 1% Fe). Per container ± 30 seeds were evenly distributed over the surface and 

covered with 3–4 cm of the substrate. At full emergence (day 12), the seedlings were 

manually thinned to 17 per container. The resulting density of approximately 200 

plants m-2 suppresses branching and lies within the density range appropriate for textile 

destinations (Dempsey, 1975; Amaducci et al., 2002a,b). Plants were watered every 

day with a spray nozzle to keep the soil slightly humid. 
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Light regimes

Lisson et al. (2000) showed that for Futura 75 in photoperiods less than 14 hours 

flowering occurs in a minimum constant thermal time, while at longer photoperiods 

flowering is progressively delayed. Therefore two day‒length regimes were 

established:

1. Short day (SD) = 12 hours, to induce flowering:

2. Long day (LD) = 16.5 hours, to prolong vegetative growth.

Plants in both greenhouses were exposed to natural daylight for 12 hours a day 

(8 am –8 pm). To avoid etiolation and excessive elongation, artificial light was 

supplied to reach a photosynthetically active radiation (PAR) of approximately 1500 

µmol·m-2· s-1 at canopy level. To avoid damage of the growing points and in order not 

to hamper the plant’s longitudinal growth, the artificial light had to be removed on day 

41. Day length extension was performed with incandescent light (Heslop–Harrison and 

Heslop–Harrison, 1969) for 4.5 hours with Philips 60W light bulbs (R–FR–ratio = 0.6) 

causing approximately 2 µmol·m-2·s-1 PAR at canopy level. Erroneously, until day 19 

these lights were on for 6 instead of 4.5 hours a day, causing a day−length of 18 hours 

instead of the intended 16.5 hours. However, with respect to the aim of the treatment, 

keeping the plants vegetative for a prolonged period, no damage was caused.

Treatments

Five different day−length treatments were performed in order to create size ranges of 

flowering and non−flowering plants:

1. Continuously LD

2. 2 weeks LD, then SD 

3. 4 weeks LD, then SD

4. 6 weeks LD, then SD 

5. Continuously SD 
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Plants from 60 pots were used for measurements. Of these pots, 20 were placed under 

SD and 40 were initially placed under LD the day after sowing. During the experiment 

the experimental pots were always closely surrounded by border pots to avoid edge 

effects like branching.

Biocides

After 7 weeks a mild aphid infestation was observed after which the plants were 

sprayed with Pirimor. To control spider mites, Spindex, a biological insecticide with 

predatory mite Phytoseiulus persimili, was applied.

Harvests

In the continuous LD (1) and continuous SD (5) treatment, plants were harvested 

seven times on a weekly basis, starting three weeks after sowing. In the transfer 

treatments (2, 3, and 4) weekly harvesting started one week after the transfer. Per 

harvest, per treatment, 5–10 plants were harvested. A total number of 178 plants were 

analysed. Harvested plants were stored in the dark at 4 °C until the measurements were 

performed and cuts were made. Characteristics of plants and cross−sections were 

recorded and the remainders of the plants were dried for at least 24 hours at 105 °C to 

determine plant dry weight (though, without the microscopic sections made).

Temperature and climate control

Set points for automatic temperature control were 20 °C during the 12 hours of natural 

day light and 15 °C for the remaining 12 hours. Realised average day and night 

temperatures were 19.2 ± 0.4 °C and 14.5 ± 0.2 °C respectively for SD and 19.4 ± 1.2 

°C and 14.8 ± 0.2 °C respectively for LD. Relative humidity was 67% ± 4% for both.

Thermal time

Thermal time, measured in °C · day, is the accumulated temperature above a base 

temperature. Below this temperature the process under study, development, stops. A

mean day temperature is used, with a base temperature of 2 °C (Van der Werf, 1997).
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Cross–sections 

Initial cross–sections were made at 10 cm above soil level and at ¾ of the length of the 

first internode. The initial cross–sections were below stubble height which in practice 

is 15–20 cm (personal communication M. Reinders, Hempflax). Further cuts were 

made at approximately 10 cm intervals, until no secondary fibres were visible 

anymore.
 

Statistical analyses

Statistical analyses of the data (P < 0.05) were conducted using GENSTAT® release 

9.2. Following tests for normality multiple linear regression analyses were performed. 

Stepwise addition or subtraction of terms was carried out to define the most suitable 

model to use in general linear modelling, i.e. the model with the minimum residual 

mean squares. There were no statistical or biological reasons to test non‒linear models. 

Only plants in which secondary fibres were observed at 10 cm and higher were taken 

into account. 

Field experiment 2.2

The experiment was carried out between 29 April (day 1) and 6 September 2004 (day 

130). Stems were taken from a three–replicate randomised field experiment with three 

sowing densities. Due to unfavourable weather conditions (heavy winds) prior to the 

intended harvests, part of the crop was damaged. For this reason no yield data on this 

field experiment were collected. The experiment was repeated in 2005 (Westerhuis et

al., 2009a [Chapter 2]). Seeds were sown on 29 April, which is a normal sowing date 

for fibre hemp in the Netherlands (e.g., Van der Werf, 1994; Struik et al., 2000;

Westerhuis et al., 2009b [Chapter 3]), with a precision drill at a depth of 

approximately 3–4 cm at target plant populations of 120, 240, and 360 plants m-2.

Distance between rows was 12.5 cm. No biocides were used. The crop was not 

irrigated. Normal plants of average size were taken regularly from undisturbed parts of 

the plots, with at least 1m border rows to avoid edge effects. 
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Cross–section height

Three cross–sections were made per internode: 2 cm above and 2 cm below the nodes 

and in the middle of the internode. 

Results3

Greenhouse experiment3.1

At the first harvest time, when plant height was about 50 cm, in none of the plants 

secondary fibres were observed (Figure 1). Then, with subsequent harvests or 

increasing thermal time, the plant height range, as intended, became broader. The 

upper and lower limit of the size range is indicated by the lines in Figure 1. The height 

range of heights up to which secondary fibres were present became wider as well, for 

both flowering and non–flowering plants.

Figure 1. The height of the secondary fibre front against thermal time. The open dots 
represent flowering plants, the black squares represent non–flowering plants. Due to the 
experimental design a dot can represent more than one plant. The lines indicate the minimum 
and maximum plant height in the course of thermal time.
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Because of the expected relationship between plant size and the height of the 

secondary fibre front, the 122 plants in which secondary fibres were observed were 

further analysed. A single regression line was adequate (Table 1A) to describe

the relation between the height of the secondary fibre front and plant weight, where y

= –18.3 + 6.1x is valid for both flowering and non–flowering plants (Figure 2). The

outcome indicates that when plant dry weight (x) is above 5.5 grams, plants are likely 

to contain secondary fibres above a 15 cm stubble height.

Regression of the height of the secondary fibre front on plant height showed 

separate lines for vegetative and flowering plants (Figure 3, Table 1B). In flowering 

plants the height of the secondary fibre front initially is higher as compared to non–

flowering plants of the same height. The lines indicate that flowering plants above 114 

cm and non–flowering above 145 cm are likely to contain secondary fibres above a 15 

cm stubble height.

Figure 2. The height of the secondary fibre front plotted against plant dry weight. The open 
dots represent flowering plants, the black squares represent non–flowering plants. The 
regression line y = –18.3 + 6.1x is valid for both flowering and non–flowering plants. R2 =
0.80, n = 122.
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Figure 3. The height of the secondary fibre front plotted against plant height. The open dots 
represent flowering plants, black squares represent non–flowering plants. The regression lines 
are different for flowering (broken line; y = –121.0 + 0.94 x; n = 107) and non–flowering 
plants (drawn line; y = –67.2 + 0.72 x; n = 71). R2 = 0.82 for the total model (Table 2).

Figure 4. Plant dry weight plotted against plant height. The open dots represent flowering 
plants, the black squares represent non–flowering plants.
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While secondary fibre formation was correlated to both plant weight (Figure 2,

Table 1A) and plant height (Figure 3, Table 1B), plant height and weight were 

obviously correlated, though not linearly (Figure 4). Over a large range of plant 

heights and weights, flowering plants were found to have a higher plant weight than 

non–flowering plants of the same height.

Field experiment3.2

In the field experiment primary fibres were present in all stems that were analysed 

(Figure 5). With increasing plant height, the distance between the observed primary 

fibre front and the top of the plants became smaller. In plants above 1.5 m, primary 

fibres were observed up to approximately 10–15 cm below the top. 

Secondary fibres were, with one exception, only observed in plants above 1.3 m 

and were always observed in plants above 1.5 m. Flowering plants in this experiment 

were all above 2.1 m, with secondary fibre front heights above 0.8 m. 

Discussion4

As expected, a size range of flowering and non−flowering plants could be created with 

different day–length treatments and harvest times. Short days triggered flowering, 

while plants remained shorter. Long days kept the plants vegetative and extending in 

height. Successive transfer treatments produced flowering plants of increasing height 

and weight, providing a more–or–less continuous data set for both variables. Almost 

the full plant height and weight ranges were covered by flowering as well as non‒

flowering plants (Figures 1–4). With increasing thermal time, the height of the 

secondary fibre front became increasingly variable for both flowering and non–

flowering plants (Figure 1) hence thermal time as such did not explain the height up to 

which secondary fibres were present in fibre hemp stems.
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Figure 5. The height of the primary (triangles) and secondary fibre front separately for 
flowering plants (open circles) and non–flowering plants (black squares) plotted against plant 
height in 179 plants selected from a field experiment in 2004. The broken line represents the 
1:1 line.

Increasing plant weight causes secondary fibre formation4.1

In the field experiment, flowering plants showed much higher secondary fibre fronts

than non–flowering plants. Flowering plants, however, were consistently taller as well 

(Figure 5). The disentanglement of plant size and phenological stage in the greenhouse 

experiment revealed that the height up to which secondary fibres are present in fibre 

hemp stems increases with increasing plant weight (Figure 2) and height (Figure 3).

During early sampling very often no secondary fibres were observed at 10 cm 

height or higher, comparable to what is shown in Figure 5 for the field experiment. 
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These samples were not included in the regression analyses as they would lead to non–

linearity in the relations (cf. Figures 2 and 3 with Figure 5) .

Although plant weight explains the height of the secondary fibre front in the 

simplest way with a single regression line that is valid for both flowering and non–

flowering plants, providing a biologically nice and simple model, for practical reasons 

the relation with plant height is more important because primary producers need non–

destructive means to know at which height the crop should be harvested to avoid that 

the unwanted secondary fibres contaminate the valuable primary fibres.

This is more complicated as the regression lines for flowering and non–

flowering plants are different. The secondary fibre front is found a little higher in 

flowering plants when compared to non–flowering plants of the same height. This 

must be due to the higher weight or momentum of flowering plants as compared to 

non–flowering plants of the same height (compare Figures 1–4). Consequently, to 

maximise the length of the stem parts fit for the production of high–quality hemp yarns 

the crop should be harvested before flowering and before it becomes too tall. 

Increasing plant weight as a trigger to secondary fibre growth, a form of 

mechanoperception (Telewski, 2006), was also found in Arabidopsis (Ko et al., 2004) 

where auxins were identified as the downstream signal transducer.

A model4.2

Although the change from the vegetative to the generative growing phase as such does 

not enhance secondary fibre formation higher up along the stems, it can be understood 

why these phenomena under field conditions often occur roughly at the same time and 

therefore seemed to be related (Mediavilla et al., 2001a; Schäfer and Honermeier,

2003, 2006). In Figure 6 our conceptual model is drawn. 

During the growing season plant height and stem weight increase and 

consequently the secondary fibre front moves upwards. Possibly the force that is 

exerted by the stem part above the secondary fibre front is rather constant, as it seems 

likely that passing a certain threshold value triggers the development of secondary 

fibres to resist an increased force.
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Figure 6. Conceptual model of the harvestable stem part for quality primary fibres in hemp for 
plants of increasing height, weight, and phenological stage (numbered 1-17 for reference in 
the text). The stem part that is valuable for textile yarn production, the ‘middle’ stem part 
between the dotted lines, moves upwards along the stem. Below the lower line secondary 
fibres contaminate the valuable primary fibres, above the upper line the developing 
inflorescences are detrimental for the quality of the primary fibres. Around flowering (stages 
14-15) length growth slows down but the weight of the top increases (plants 15–17). An 
accelerated development of secondary fibres as compared to the length growth, but keeping 
pace with the increasing weight or momentum could be the result. Consequently, the length of 
the stem part that is valuable for high–quality yarn spinning becomes shorter around 
flowering

At the transition from the vegetative to the generative phase length growth 

slows down (Hoffmann, 1957; De Meijer and Keizer, 1994; Meijer et al., 1995; 

Schäfer and Honermeier, 2003) and the weight of the top of the plant increases due to 

the development of the inflorescence and the subsequent filling of the seeds. An 

accelerated development of secondary fibres as compared to the longitudinal growth, 

but keeping pace with the increasing weight is hypothesized. Consequently, the length 

of the stem part that is valuable for high–quality yarn spinning becomes shorter from 

around flowering onwards.
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Plants of increasing height and weight in Figure 6 could represent the same 

plant at different moments in time, but they can also be considered different plants in a 

crop at the same time, because with respect to primary (Westerhuis et al., 2009a,b

[Chapters 2 and 3]) and secondary fibre development (this chapter), individual plant 

size is the key factor, not the moment a particular height or weight is reached, or the 

phenological stage.

The stem part that is valuable for textiles, the stem part between the dotted lines 

in Figure 6, is located higher up along the stem with increasing plant size. It is 

supported by a stem base of increasing length and weight, which is unfit for yarn 

production due to the presence of secondary fibres.

In short plants (Figure 6, plants 1–3) a share of the primary fibres, though fit for 

yarn spinning, is lost in the stubble, which in practice is 15–20 cm (personal 

communication M. Reinders, Hempflax). Plants with the secondary fibre front just 

reaching stubble height (4 in Figure 6) could be considered ideal. Once the secondary 

fibre front surpasses the stubble height (plants 5–17 in Figure 6) part of the primary 

fibres are contaminated by secondary fibres. The lower in the plant or the heavier the 

part of the stem above, the thicker this unwanted fibre layer is likely to be (Van der 

Werf et al., 1994b; Amaducci et al., 2005, 2008a).

For reasons of simplification, the inflorescences of the plants in Figure 6 have 

equal lengths for all plants, it could however be expected that this part becomes 

gradually longer with increasing plant size. However, no data were recorded.

Mediavilla et al. (2001) showed in a dioecious variety that the accelerated 

development of secondary fibres around flowering first takes place in female plants 

and later in male plants. This makes sense, when the increasing weight is considered 

the cause of secondary fibre formation. Male plants on average are longer (De Meijer 

and Keizer, 1994), but the female inflorescences, where the seeds are gradually filled, 

are likely to have a higher weight. Bócsa and Karus (1998) also state that female plants 

have a relatively higher secondary fibre content than male plants.

The proposed conceptual model (Figure 6) also implies that homogeneity with 

respect to plant height is important when growing hemp for textile uses. In stands with 
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plants of different heights the valuable ‘middle section’ is at variable height, which 

would cause difficulties in harvesting and processing. The tops of the plants are the 

comparable parts, not the bottom parts.

Growing short hemp4.3

According to both Figure 4 (glasshouse) and 5 (field), secondary fibres above 

stubble height in Futura can be avoided when the crop is cut when plants are around 

1.3–1.4 m and not yet flowering. It is likely, however, that this height is different for 

varieties, as secondary fibre development is reported to be different between varieties 

(Hoffmann, 1957; Bredemann et al., 1961; Höppner et al., 2004; Amaducci et al., 

2008a). Reported differences however, could partially be due to size differences as 

well. For this reason true varietal differences and differences caused by size 

differences should be disentangled in future experiments. 

A non–flowering crop with a height of 1.3–1.4 m can be grown in about two 

months when hemp is sown at a normal sowing date in April under Dutch growing 

conditions (Westerhuis et al., 2009b [Chapter 3]). However, a subsequent second fibre 

hemp crop, to compensate for the relatively low stem dry matter yield of the short crop 

(Kamat et al., 2002; Liberalato, 2003; Westerhuis et al., 2009b [Chapter 3]), will be a 

challenge. For the first crop varieties can be chosen based on excellent fibre qualities, 

for the second crop to be grown late flowering and low secondary fibre content are 

prerequisites as well. Further the soil has to be prepared into a homogeneous seedbed 

again and in dry years irrigation might be necessary to achieve even emergence

(Westerhuis et al., 2009b [Chapter 3]). Due to the dryer summers and shorter days a 

second crop seems less realistic in Italy than in The Netherlands. However, even when 

technically possible, it should be economically sound as well, which is doubtful as yet.

An advantage of a short crop is that the stems could be processed on existing 

flax (Linum usitatissimum L.) processing lines as the limited market for high‒quality 

hemp yarns as yet does not justify the development of specialised hemp scutching and 

hackling lines (Liberalato, 2003; Ranalli and Venturi, 2004). Such systems are 

dimensioned for flax ribbons with a length usually between 80 and 120 cm (Vreeke, 
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1991; Ranalli and Venturi, 2004; Venturi et al., 2007), which is about the length of the 

useful middle section of the stems in our experiment. 

Earlier attempts in Italy to produce smaller hemp plants by stopping their 

growth with glyphosate at the desired plant height of 1.2 m (‘baby hemp’) failed due to 

the environmentally unfriendly production methodology, low yields, low quality, and 

high costs (Liberalato, 2003; Amaducci, 2005; Venturi et al., 2007; Van der Werf and 

Turunen, 2008). Westerhuis et al. (2009b [Chapter 3]), however, showed that normal 

amounts of scutched long fibres can be extracted from smaller plants. However, these

fibres were not hackled.

It is likely that the early harvested short crop that we need to avoid secondary 

fibre formation has relatively fine primary fibres as well. Fibres have been reported to 

be finer with decreasing plant size or conditions that in general cause smaller plants,

e.g., earlier harvest or increasing sowing density (Jakobey, 1965; Leupin, 2001; 

Schäfer and Honermeier, 2003, 2006; Amaducci et al., 2005, 2008). Also with respect 

to the unwanted lignification of the fibres an early harvest before flowering seems best 

(Keller et al., 2001).

For future research on this topic it has to be considered that between individual 

plants of the same height or weight relatively large differences exist in the height of 

the secondary fibre front (cf. spread of data in Figures 2 and 3). This was not only 

caused by the fact we measured once every 10 cm stem length; in the field experiment 

where three cuts were made in every internode a comparable spread was observed 

(Figure 5). Differences between plants (e.g., weight distribution along the stem, shape

of leaves and inflorescences) and, e.g., wind would co-determine the actual forces

(momentum) along the stem and thus the mechanoperception (Telewski, 2006) 

inducing fibre formation. Further, we should keep in mind that countering the forces 

the plant is subjected to, means countering the fresh weight, not the dry weight we 

measured hence plant fresh weight should be measured as well. To study the effect of 

weight on secondary fibre formation in more detail, plant weight could be increased

artificially (Ko et al., 2004).
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Chapter 6

General discussion
Limited options to manipulate the fibre content in hemp

1 Plant size matters

In this thesis it is shown that within any tested fibre hemp variety, the dry weight of 

the stems at harvest, and not the factors underlying this dry weight, determine the 

amounts of bast fibres, wood, and retting losses. In the retted stems the dry matter is 

split up into fibres and wood in a fixed way, which depends on variety. The options to 

manipulate this ratio by crop management, if any, are very small and for practical 

reasons they can be neglected (Westerhuis et al., 2009a,b,c [Chapters 2, 3, and 4]).

The thesis also reveals that the height up to which secondary fibres are present 

in fibre hemp stems increases with increasing plant weight. A causal relationship 

between secondary fibre formation and flowering, as suggested in literature, does not 

exist. However, the secondary fibre front is found a little higher in flowering plants,

which must be due to the higher weight or momentum of flowering plants as compared 

to non–flowering plants of the same height (Chapter 5).

The practical consequence of the above is that when a hemp grower has chosen 

to produce raw materials for high–quality textile purposes, and has selected a certain 

variety for reasons beyond the scope of this thesis, his main concern is to avoid that 

secondary fibre formation, which proceeds upwards along the stem during the growing 

season keeping pace with the increasing weight, contaminates and devalues his end 

product. Therefore, crop management should be focused on keeping the plants small 

enough to avoid secondary fibres above stubble height. Further, a harvest just before 

flowering is preferable, because the increasing weight of the inflorescences gradually 

reduces the length of the stem part that is fit for high–quality textile yarn production. 

The options to produce plants with the desired size characteristics are manifold. 

Since sowing density, harvest time, and sowing date do not have an additional effect 

on the primary fibre content besides the above mentioned indirect effect through stem 
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weight (Westerhuis et al., 2009a,b [Chapters 2 and 3]), any combination of these 

factors could be chosen to produce the desired crop.

These are the main conclusions of the research, whose objective was to outline 

the agronomic options for manipulating plant development and crop growth of fibre 

hemp in order to produce high–quality long textile fibres. In this chapter, the obtained 

knowledge is summarised, integrated, and considered in a broader perspective. 

In earlier publications direct effects of sowing density, sowing date, and harvest

time on fibre content or fibre percentage were suggested or claimed. These claims 

however, were contradictory, incomplete, and weakly substantiated. Most likely the 

key factor plant size was missed due to focusing on the intended differences between 

treatments rather than observing and analysing the effects of the treatments: the 

differences in plant size and the consequences thereof with respect to fibre content.

The split–up of many stem samples into basic compounds and the analysis of 

the ratios between them turned out to be crucial in elucidating the principles that were 

not understood before. Instead of looking further forward into the production chain to 

important fibre quality characteristics such as, e.g., fineness, refinability, homogeneity,

and strength, as intended at the very start of the research, a back to basics approach 

had to be chosen to disclose that sowing density, sowing date, and harvest time only 

affect the fibre content of hemp indirectly, through their effect on stem weight.

In the next paragraphs the methodology is explained and accounted for. Main 

lines of the research are summarised and the consequences with respect to growing 

and processing fibre hemp are considered. Some further thoughts on fibre hemp are 

presented and finally some goals for further research are set.

2 A different methodology

The strong linear relationships we found between fibre and wood production, between 

long fibre and total fibre production, and between stem weight before and after retting 

(Westerhuis et al., 2009a,b,c [Chapters 2, 3, and 4]) could be disclosed by the separate 

and independent calculation of retting losses and fibre content (Section 2.1) in a very 

large number of well–defined samples (Sections 2.2 and 2.3) by means of multiple 
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linear regression analyses instead of standard ANOVAs (Section 2.4). In these respects

our experiments differ from earlier research on this topic. The fibre extraction method 

consisting of retting, breaking, and scutching, however, is traditional.

2.1 Disentangling retting losses and fibre percentages 

To determine the value of a hemp crop we need to know the quantity and the quality of 

the fibres. The quantity, the bast fibre yield, can be assessed based on the stem dry 

matter yield and the fibre percentage (Sankari, 2000). Usually such fibre percentages 

(Equation 1a) are calculated by dividing the dry weight of the extracted fibres by the 

dry weight of the stems before retting (e.g., Bredemann, 1922, 1940; Bredemann et al.,

1961; Van der Schaaf, 1963; Höppner and Menge–Hartmann, 1994; Van der Werf et

al., 1994b; Sankari, 2000; Vetter et al., 2002; Amaducci et al., 2008): 

1a. Fibre percentage = 100 × dry weight fibres/dry weight stems before retting

Because merely fibres and wood survive retting (Hann, 2005), all other materials 

present in hemp stems before retting can be considered as (future) retting losses:

1b. Fibre percentage = 100 × dry weight fibres/dry weight (fibres + wood + 

retting losses)

This fibre percentage is an inadequate variable to compare crop management factors or 

combinations thereof and to understand underlying botanical processes, because no 

distinction is made between the amounts of wood and the materials that are lost during 

retting; these are considered as a whole. Because we wanted to study these amounts

independently, we determined retting losses separately: 

1c. Retting loss 

percentage

= 100 × (1 − dry weight retted stems/dry weight stems 

before retting)
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= 100 × (1 − dry weight (fibres + wood/)/dry weight 

(fibres + wood + retting losses)

Next we could calculate fibre percentages based on the dry weight of the stems after 

retting:

1d. Fibre percentage = 100 × dry weight fibres/dry weight retted stems

= 100 × dry weight fibres/dry weight( fibres + wood)

or even simpler, calculate or visualise the ratio in which fibres and wood, the 

remaining components, are produced. The latter has an advantage: interpretation is 

easier with linear relationships (e.g., stem weight before retting vs. stem weight after 

retting, wood vs. fibre, long fibre vs. total fibre) than with the curvilinear graphs that 

result from calculating percentages.

In earlier investigations retting losses were not reported or not in as much detail 

as needed to calculate the ratio in which fibres and wood were produced. Therefore a 

proper comparison between the results found in literature with the results we obtained

unfortunately is not possible. However, the split–up introduced here improved our 

insight into fibre production in hemp. Consequently, the background of some of the 

contrasting results presented in literature so far, at least partially, could be revealed.

2.2 A large number of well–defined samples

Another advantage as compared to earlier publications on this subject is the large 

number of samples that were analysed. Under controlled conditions and following 

standard protocols, approximately 1500 samples were fractionated into long fibres, 

tow, wood, and retting losses.

The use of a Flemish mill for scutching limited the minimum length of the 

samples to approximately 50 cm and the use of a traditional flax breaker required 

samples of a certain minimum size and mass. In general, we used 50–stem samples.
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Although this might seem to be a rather rough approach, the necessary sample size 

also guaranteed that the variation within the raw material batches was covered.

Besides, the traditional extraction method we used was definitively more fit for the 

purpose than the frequently used ‘Reinfaser’ method by Bredemann (1922), which at a 

first glance, however, might seem to be more ‘refined’. As much shorter stem parts 

can be processed using the method of Bredemann, a more detailed view of the pattern 

along the stem can be obtained (Bredemann, 1940; Van der Werf, 1994b). It would 

however not have been possible to distinguish between long fibres and tow, which is 

of highest importance if one wants to determine whether or not the extracted fibres are 

fit for yarn production. Further only small samples, usually 3– or 5–stem samples, can 

be processed (e.g., Bredemann, 1940; Höppner and Menge–Hartmann, 1994; Van der 

Werf, 1994b; Sankari, 2000) for which it is questionable whether they cover the 

variation within the batches. Finally, determining the wood weight and retting losses 

using the methodology of Bredemann (1922) would have been very laborious, taking 

into account the number of samples and their size. The researchers using the method of 

Bredemann (1922), e.g., Bredemann (1940), Höppner and Menge–Hartmann (1994), 

Van der Werf (1994b), and Sankari (2000), did not determine the wood weight of the 

tested stem parts, for which nevertheless a (time consuming) method is described by 

Bredemann in the same paper. Unfortunately this makes re–analysis of their results for 

comparison with our methodology impossible.

2.3 Exclusion of ‘underhemp’

Especially in hemp care should be taken to describe the batches of raw materials 

properly. Very small plants under certain circumstances might survive in the low‒light 

environment under the canopy (Hoffmann, 1957). Their total weight is negligible, long 

fibres cannot be extracted, and these plants will completely be lost during processing 

(Van der Schaaf, 1963; Bócsa and Karus, 1998). However, the effect of this 

‘underhemp’ on average plant density, plant height and stem diameter could be large 

(see, e.g., Westerhuis et al., 2009a [Chapter 2], Table 4). Consequently, reliable 

measurements could lead to weak conclusions.
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For this reason plants shorter than 100 cm were excluded from processing, and 

plant characteristics were always only measured and recorded on the very plants that 

were processed. Lisson and Mendham (2000) also discarded the ‘severely suppressed’

living plants in their hemp trials, however, without reporting the size limit.

2.4 Multiple linear regression analyses instead of standard ANOVAs 

During data processing it became apparent that the total amounts of fibre and wood in 

hemp stems were linearly related (e.g., Westerhuis et al., 2009a [Chapter 2], Figure 4 

and Westerhuis et al., 2009c [Chapter 4], Figure 2) and that, because of the large 

number of samples, multiple linear regression analyses could be used to consider this 

relationship into more detail.

Multiple linear regression with stepwise addition or subtraction of terms was 

carried out in GENSTAT. From all possible changes to the model, by adding or 

dropping an explanatory variable or factor, that one is selected that leads to the largest 

reduction in the residual error. The model is changed until no further reductions in the 

residual error are possible.

Likewise the amounts of long fibre and total fibre were analysed (e.g.,

Westerhuis et al., 2009a [Chapter 2], Figure 8; Westerhuis et al., 2009b [Chapter 3],

Figure 3). The difference is that in the first case fibre and wood are independent 

entities, whereas long fibre and total fibre are not, because the amount of long fibres is

part of the total fibre fraction, which means that the explained variance automatically 

is relatively high. Both applications however, clearly show which factors are important 

and which factors are not. The relation between stem weight before and after retting 

was also successfully analysed this way (e.g., Westerhuis et al., 2009b [Chapter 3],

Figure 1; Westerhuis et al., 2009c [Chapter 4], Figure 4).

The advantage of using multiple linear regression analyses instead of standard 

ANOVAs should be stressed here. Standard ANOVAs would have shown the 

differences in, e.g., fibre percentages between treatments. However, the linear 

relationship between the amounts of fibres and wood, strikingly visible in all figures,

would have been missed, because the weight of the stems had not been taken into 
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account. Multiple linear regression analyses make it possible to distinguish between 

the effects of treatments on overall stem production on one hand and the ratio in 

which, e.g., fibres and wood are produced during crop development on the other. As 

an example: retting losses could be explained much better with multiple linear 

regression (Westerhuis et al., 2009b,c [Chapters 3 and 4]) as compared to ANOVA 

(Westerhuis et al., 2009a [Chapter 2]).

3 Retting losses depend on plant size

Retting losses were determined separately because this is necessary to study the ratio 

in which fibres and wood are produced. The losses as such, however, are interesting as 

well. They show which part of the dry matter yield is lost in the first step of 

processing. 

The absolute retting losses only slightly increased with increasing stem part

weight. Consequently, relative retting losses gradually decrease with increasing weight 

of the stem part (Figure 1). Assuming an increasing plant weight during the growing 

season, the retting loss percentage will decrease during the growing season. The cause 

of the higher weight of a stem part, e.g., lower plant density, earlier sowing date, 

postponed harvest date, lower stem part, or combinations thereof, is unimportant. The 

effect is indirectly: through stem weight. Additional direct effects where of no 

practical significance (Westerhuis et al., 2009b,c [Chapters 3 and 4]).

In Figure 1, the difference between the regression line and the line x = y 

represents the absolute retting losses. The relationship between the stem part weight 

before and after retting can be described by a linear regression line y = ax + b, with 

b < 0. The intercept b explains the decreasing retting loss percentage with increasing 

stem weight: the relative effect of b diminishes and the retting loss percentage levels 

off towards a(1–a) × 100%, the asymptote of the function. 

Lowest relative retting losses thus are found in very tall plants. Such plants 

however, are unfit for textile purposes (Chapter 1, Section 4.1) hence aiming at low 

retting losses as such would be a point–less strategy. In case a certain plant size, for
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Figure 1. Linear regression line for the stem part weight after retting against the stem part 
weight before retting. The line, y = 0.91x –0.22 (▬, left Y-axis), with R2 = 0.98, is derived 
from Westerhuis et al., 2009b [Chapter 3], Figure 1. The difference between the regression 
line and the line x = y (—) represents the absolute retting losses. Because the absolute retting 
losses only slightly increase with increasing stem part weight, the retting loss percentage (---,
right Y-axis) gradually decreases with increasing weight of the stem part.

whatever reason, is preferable for textile fibre production, the retting loss percentage 

must be considered an established fact.

It is questionable whether the intercept in a botanical sense has a meaning. 

Extrapolation of the regression line towards lower stem part weights, however, could 

only lead to the conclusion that very small plants will completely be lost during 

retting, as there are neither fibres nor wood present, which in fact does seem likely.

When stem part weight before retting is allowed as a term in the linear 

regression models, it accounts for more than 98% of the variance in stem weight after 

retting (Westerhuis et al., 2009b [Chapter 3], Table 5A; Westerhuis et al., 2009c 

[Chapter 4], Table 2B), while other factors, though statistically significant, cause 

differences in slopes or intercepts of the regression lines that are too small to visualise 

in graphs. Even differences between varieties are very small. Differences in retting 
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losses therefore should not be decisive at all in choosing a variety for a certain 

purpose, as it only informs us in an indirect way about the size of the plants that were 

retted.

The use of a standard ANOVA instead of a multiple linear regression analysis 

would have led to a different interpretation. Stem part factors are not in the regression 

model in Westerhuis et al. (2009b [Chapter 3], Table 5A). A standard ANOVA, 

however, would have shown differences in retting loss percentages for different stem 

parts, though the location of the stem part as such is not determinant. Any treatment 

that would have increased the stem weight would automatically have decreased the 

relative retting losses.

4 The fibre/wood ratio is in the genes

The ratio in which fibres and wood are produced in fibre hemp is very different for 

varieties (Section 4.1). However, for all varieties tested a comparable pattern along the 

stem exists, with highest total fibre/wood ratios in the middle stem part (Section 4.2). 

Plant size affects the fibre percentage slightly (Section 4.3), but sowing density, 

sowing date, and harvest time turned out to have only indirect and small effects, 

through their effects on plant size (Section 4.4). 

4.1 Large differences between varieties                           

To attain a hemp crop with a high fibre content at any site, a variety with an inherently 

high fibre content should be chosen. Stem dry matter growth is split up into fibres and 

wood in a fixed way (Westerhuis et al., 2009a,b [Chapters 2 and 3]). Focusing on 

improving this ratio by crop management, given variety, is a waste of time: it’s in the 

genes (Figure 2).

The differences between varieties are large. The fibre/wood ratio of Beniko 

approximately doubles the fibre/wood ratio of Tiborszállási. However, this should not 

necessarily be considered a disqualification of Tiborszállási with respect to textile yarn 

production. Fibre quality is of highest importance for yarn spinners and Tiborszállási

is reported to have finer fibres and less secondary fibres than, e.g., Futura (Amaducci
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Figure 2. The total weight of the fibres per stem against the wood weight per stem for five 
varieties. Regression lines for middle stem parts. The figure was derived from Westerhuis et 
al., 2009c [Chapter 4], Figure 2A.

et al., 2008a). Further, hackling yields or other quality aspects beyond the scope of our 

experiments could be in favour of Tiborszállási as well.

Between and within experiments (e.g., Vetter et al., 2002) in some cases large 

differences in fibre percentages are reported within variety. It is likely that these 

differences are mainly related to differences in the weight of the processed stem parts

and would not have been found when our protocol and methodology would have been 

used.

In case of field retting (e.g., Vetter et al., 2002), differences could also be due to 

over– or underretting, which could cause deviations from the ‘normal’ or genetic ratio 

between the amounts of fibres and wood. The weather dependency of dew retting 

makes a proper comparison of the results from different treatments or experiments 

impossible. This is one of the reasons why dew retting is unfit for experiments in

which one wants to compare the effect of the treatments before retting (Hoffmann, 
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1957). Another problem is that retting losses cannot be determined under controlled 

conditions. Results after dew retting tell us more about the weather history than about 

the hemp.

Further, the lack of interactions of the fibre/wood ratio with the environment 

shows good prospects for breeding, as testing this characteristic on only one site can 

be considered conclusive. (Westerhuis et al., 2009c [Chapter 4]).

4.2 Highest total fibre/wood ratios in the middle parts of the stems   

The fibre/wood ratio shows a pattern along the stem, with highest ratios in the 

middle part of the stem and lower ratios towards both bottom and top. The decreasing 

fibre percentages (Equation 1a, Section 2.1) reported by Bredemann (1940) and Van 

der Werf et al. (1994b) using the ‘Reinfaser’ method (Bredemann, 1922), were 

confirmed with our methodology in practically all treatments in Westerhuis et al.,

2009a,b,c [Chapters 2,3, and 4]). Exceptions were three out of twelve varieties from 

Finland in which no significant differences in total fibre/wood ratios between middle 

and bottom parts of stems were found (Westerhuis et al., 2009c [Chapter 4]).

An explanation for the lower ratios towards both bottom and top could be that 

the earliest investments in primary (top) and secondary (bottom) fibre formation are 

not taken into account because unripe, immature fibres or ‘fibre initials’ (Chernova 

and Gorshkova, 2007) are not strong enough yet to survive the chemical (biological) 

and mechanical stress of processing (Van Dam and Van den Oever, 2006). Cells that 

eventually will become primary (top) or secondary (bottom) fibres could be lost during 

retting.

Another reason for the decrease of the fibre/wood ratio towards the stem base 

could be that a part of the primary or secondary fibre material is lost during breaking 

and scutching because of sticking to the shives, the woody fragments of the stem core, 

that remain after fibre extraction. Although at a first glance the shives were practically 

free of non–woody fibres, the presence of a very small amount of especially the short 

secondary fibres might have been overlooked. It is impossible, however, that this 

would fully explain the diminishing fibre/wood ratio towards the stem base.   
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Based on the experience of several authors however, it is likely that at least a 

small share of the secondary fibres sticks to the shives during breaking (Dewey and 

Merrill, 1916; Hoffmann, 1957; Van der Werf et al., 1994; Bócsa and Karus, 1998), 

while another share ends up in the tow section (Hoffmann, 1957; Bredemann, 1961; 

Menge–Hartmann and Höppner, 1995) adhered to primary fibres that are lost during 

scutching. The latter amount however, is not lost in our experiments; it is collected as 

a part of the total fibre fraction. 

Whatever the reason might be, when calculating total fibre/wood ratios, any 

imperfection in separating fibres and wood in our experiments has a twofold effect on 

the total fibre/wood ratio. Because the weight of the wood is estimated by subtracting 

the weight of the fibres from the stem dry weight after retting, both numerator and 

denominator of the fraction are affected by any incomplete separation. The ratio then 

decreases, because the numerator is underestimated and the denominator is 

overestimated.

It is likely that the total fibre/wood ratio is rather stable over a relatively long 

‘middle section’ (Westerhuis et al., 2009a [Chapter 2]). Analyses by Bredemann 

(1940) and Van der Werf et al. (1994b) seem to support this, although the bast fibre 

content in their experiments was calculated on basis of stem dry matter (i.e. unretted 

stems), while we used retted stems for analysis. If one would study the total 

fibre/wood ratio into more detail, e.g., with 10 cm stem parts, our fibre release 

protocol (Westerhuis et al., 2009a,b,c [Chapters 2,3, and 4]) could be used. However, 

the Flemish mill, which requires stem parts with a minimum length of approximately 

50 cm, should be replaced by a another tool, to remove the shives after breaking. It 

should not be very difficult to produce such a ‘mini–scutcher’. Another option is the 

methodology chosen by Westerhuis et al. (2009a [Chapter 2]), for analysing the 

bottom part in detail.
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4.3 Higher fibre percentages in smaller plants 

The relation between the amounts of fibres and wood in hemp stems can be described 

by a linear regression line y = ax + b, with b > 0 (Figure 3). The positive effect of the 

intercept b diminishes with increasing stem part weight hence the fibre percentage 

(Equation 1d) levels off towards a fibre percentage equivalent to a/(1+a) × 100% 

(Figure 3). Consequently smaller plants show higher fibre percentages (Equation 1d). 

A decreasing fibre percentage during the growing season therefore is inevitable, 

assuming that plant weight increases during the growing season. The argumentation 

corresponds with the one presented in Section 2 for the retting loss percentage, as in 

both cases linear regression lines with intercepts are underlying. 

The ratio in which fibres and wood are produced, however, does not change 

when a hemp stem grows hence it is obvious that the (optimum) fibre percentage as

such is not an adequate indicator to determine the timing of the harvest as it would 

lead to a very premature harvest and a very low yield of very small plants.

Whether the intercept b in a botanical sense has a meaning again is

questionable. Extrapolation of the regression line towards lower stem part weights,

however, would lead to the conclusion that a small plant starts producing fibres before 

it produces wood or in general that fibre production precedes wood production along 

the whole stem. As bast fibres develop from phloem and wood from xylem this is in 

agreement with Aloni (1980) who, with reference to Esau (1965), stated that in the 

young organs of intact plants the phloem always differentiates before the xylem. When 

the observed stem grows, beyond a certain minimum weight, when xylem has started 

to differentiate as well, the increase in dry matter is split up into fibres and wood in a 

fixed way. The result is a linear relationship between fibre and wood growth with an 

intercept caused by the earlier start of fibre development as compared to wood 

production.

Whatever the reason may be, for decision support to primary producers of fibre 

hemp this is irrelevant, though it might be of interest for botanists. The crop should be 

harvested when the maximum amount of fibres or long fibres, the choice depends on 

the intended use of the crop, is produced per unit area, unless quality or economic



Chapter 6 

188 

Figure 3. The relation between the amounts of fibres and wood in hemp stem parts can be 
described by a linear regression line y = ax + b. The ratio in which fibres and wood are 
produced (thick line, left Y-axis) does not change when a hemp plant grows. However, the 
fibre percentage (thin line, right Y-axis) decreases with increasing weight of the stem because 
the effect of the intercept b on the fibre percentage diminishes with increasing weight of the 
stem. The figure was derived from Westerhuis et al. (2009b [Chapter 3], Figure 4B). 

aspects beyond the scope of this thesis give rise to other decisions. Important quality 

characteristics like, e.g., fineness, refine ability, strength or lignin content might show 

patterns along the stem and probably seasonal patterns as well, which should be taken 

into account as well when optimising high–quality production.

 The decrease of the fibre percentage with increasing stem weight has 

consequences for breeding experiments aimed at increasing the fibre content. Selecting 

promising individual plants based on their fibre percentage only, is inadequate. The 

size of the plant should be taken into account as well. Feaster (1956), Hoffmann 

(1957), and Bredemann et al. (1961) recognized the phenomenon that fibre 

percentages (Equation 1b) within a variety or breeding line usually decrease with 

increasing stem weight. Hoffmann (1957) therefore suggested to produce correlation 

tables and to select only those individuals for further breeding that showed a fibre 

b 

a 
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percentage at least 10% higher than should be expected based on their stem weight. 

Bredemann et al. (1961) used such tables for breeding purposes. According to 

Hoffmann (1957) such correlation tables should be renewed every year, because 

climate, soil characteristics, photoperiod etc. would affect the fibre percentage. The 

results presented in this thesis, however, imply that in case the fibre/wood ratio is used 

to compare the fibre yield of plants of different sizes for breeding purposes rather than 

the fibre percentage, updates of the correlation tables for different years or sites are not 

needed. The fibre/wood ratios seem to be independent of the environmental factors 

Hoffmann (1957) mentioned.

The slope a or the asymptote a/(1+a) × 100%, might be useful as standards to 

compare varieties or breeding lines. The asymptote in fact shows the minimum or 

basic fibre percentage (Equation 1d) to be expected. 

A relatively small set of samples with a relatively large difference in stem part 

weight would be desirable to derive these characteristics accurately. The required set 

of samples could for instance be based on sequential harvests, different sowing 

densities or a combination of these factors, as our experiments show that only the 

weight of the plant matters, not the factors underlying the weight (Westerhuis et al.,

2009a,b [Chapters 2 and 3]).

4.4 No direct effects of sowing density, sowing date and harvest time

Direct effects of sowing density, sowing date and harvest time on the ratio in which 

any variety produces fibres and wood are absent or minimal. These factors however,

affect stem weight and therewith, in an indirect way, the fibre content. To illustrate 

this: dropping the factor wood weight per stem from the regression models in 

Westerhuis et al. (2009a [Chapter 2], Table 5), makes sowing density and harvest time 

the main factors explaining the total amount of fibre in a hemp stem, whereas these 

factors hardly contribute to the explained variance when wood weight per stem is in 

the model. Sowing density and harvest time determine the weight of the stem part.

Stem part weight determined fibre content (Westerhuis et al., 2009a [Chapter 2],

Table 4 and Figure
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The lack of major sowing density, sowing date, harvest time or site effects 

could not be due to a lack of variability in plant characteristics at harvest, because a 

very broad range of raw materials was tested which were not only different in 

treatment but also in resulting plant size (Westerhuis et al., 2009a,b [Chapters

2 and 3]). Besides the use of a standard ANOVA in this case would have shown 

effects of the factors mentioned, whereas the factors as such are not determinant; their 

combined effect on the stem weight is.

It seems unlikely, that any other environmental or agronomic factor would 

seriously affect the ratio in which any variety produces fibres and wood. Replicates in 

different years or on different sites obviously were very different with respect to 

environmental factors such as climate, soil characteristics, photoperiod etc. However, 

no important year or site effects were found.

Friederich (1964) and Bócsa and Karus (1998) state without experimental 

details that the fibre content is reduced when relatively high amounts of nitrogen 

fertiliser are applied. This indeed is to be expected in case our methodology is used,

because the individual plant weight in general increases with increasing nitrogen level

(Höppner and Menge–Hartmann, 1994; Amaducci et al., 2002; Vetter et al., 2002) and 

taller plants show a lower fibre percentage (Section 4.3).

4.5 More fibres, more long fibres 

The long fibre weight increases linearly with the total fibre weight hence with stem 

weight (Westerhuis et al., 2009a,b [Chapters 2 and 3]). Although significantly 

contributing to the regression models, sowing density, sowing date, and harvest time in 

general were unimportant factors with respect to the long fibre/total fibre ratio. Figures 

were published to show the absence of practically relevant effects rather than to stress 

the very small but statistically significant differences (Westerhuis et al., 2009a 

[Chapter 2], Figure 8C; Westerhuis et al., 2009b [Chapter 3], Figure 4C). The largest 

effect is shown in Westerhuis et al., 2009b [Chapter 3], Figure 3B: in the postponed 

sowing date the long fibre/total fibre ratio is slightly lower.

Towards the top of the plant it becomes more difficult to separate fibres and 
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wood due to the presence of unripe fibres and a branched and sometimes sticky 

inflorescence. Long fibres, often with a greenish colour, were extracted, but 

(manually) separating tow and wood was too laborious. For the textile industries this 

part of the hemp stem is of no value (Cappelletto et al., 2001). It could be used for 

low–value applications, e.g., bio fuels and building and insulation materials (Chapter 

1, Section 3.3) for which separation of tow and wood is neither necessary nor 

economically sound. Besides, with respect to quantity this part contributes very little to 

the total fibre yield (Bredemann, 1940).

In the bottom 25 cm the long fibre/total fibre ratio is relatively low as compared 

to the middle section. A more detailed, though unrepeated study from the bottom parts 

of the stems (Westerhuis et al., 2009a [Chapter 2], Figure 9B) revealed that in plants 

with an average height of approximately 1.5–2 m (Westerhuis et al., 2009a 

[Chapter 2], Table 4) the bottom 5 cm contained practically no long fibres. All fibres 

in this stem part are lost as scutching tow. This can be measured, but it can be seen as 

well during processing. While scutching the lower end of the lowest stem parts, a net–

like fibre structure, approximately 5 cm long, is scutched off at once. The remaining 

bundles of long fibres hence are shorter than in other stem parts (Chapters 2 and 3).

This seems unimportant for high–quality long–fibre production, because the

quality of the fibres that are lost is low and this bottom 5 cm of the stems will be lost 

in the 15–20 cm (personal communication M. Reinders, Hempflax) stubble anyway. 

However, the taller hemp grown in Finland showed a lower long fibre/total fibre ratio 

in the bottom part than the shorter hemp in the Netherlands (Chapter 4). Possibly the 

bottom section in which no useful long fibres are present is longer in taller plants. 

Differences between varieties might exist as well hence further experiments are 

needed.

The highest long fibre/total fibre ratios (Chapters 2 and 3) or fibre percentages 

(Chapter 4) are found in the ‘middle section’ of the stem, where irrespective of variety 

or site around 90% of the extracted fibres are long fibres (Chapter 4, Table 4). The 

approximately 10% of the fibres that are lost in this part during scutching are primary 

fibres as can easily be seen from the length of the fibres in the scutching tow.
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5 Focus on the ‘middle’ section

Cappelletto et al. (2001) stated that during the heydays of hemp in Italy only these

‘middle sections’ of the stems were used for textile purposes. Our experiments 

subscribe this choice, however, growing only middle stem parts, as for now, is not 

possible. For experimental reasons, Cappelletto et al. (2001) defined the top section as 

the upper quarter, the bottom section as the lowest quarter and the middle section as 

the intermediate 50% of the stem length. However, from our point of view quality 

aspects should be decisive. Therefore, we consider the ‘middle section’ as the part 

where primary fibres are ‘ripe’ and extractable and where secondary fibres are absent 

(Figure 4).

Figure 4.  A botanical model of a hemp stem.

5.1 The value of the middle section

A simple, rough assessment of the value of such middle sections can be obtained based 

on the split–up into fractions we introduced: 
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1. Based on the dry weight of the middle stem part, the retting losses can be 

predicted rather precisely as differences between varieties are very small 

(Section 2).  

2. The remaining weight, can be subdivided into primary fibres and wood when 

the variety is known, because the ratio in which fibres and wood are produced 

is genetically determined and there are no important deviations to be expected 

(Section 3.1). 

3. Approximately 90% of these primary fibres can be harvested as scutched long 

fibres, as the subdivision of the total amount of fibres into scutching tow and 

long fibres, is not very different for varieties (Section 3.5). 

The assessment can be performed when the length and weight of the middle section 

are known hence we need to know the ideal crop height and at which height it should 

be cut. 

5.2 A homogeneous crop

In a crop consisting of identical plants, with exactly the same dimensions and growth 

stage it would be relatively easy to decide when to harvest, where to cut and how to 

process. The living nature we work with, however, inevitably shows heterogeneity, 

whereas optimizing technological processes asks to minimise it as much as possible. 

How a hemp crop as homogeneous as possible can be grown is not within the 

scope of this thesis, though it is likely that, e.g., seeds from homogeneous seed batches 

should evenly be spread at equal depth in homogeneous seed beds. Dioecious varieties, 

essentially a mixture of two populations, obviously have an extra complexity with 

respect to homogeneity (Hoffmann, 1957; Van der Werf and Van der Berg, 1995). 

Any deviation from the ideal cut heights is economically unwanted, because it 

results in a lower yield or a lower quality of the raw materials. In case the lowest cut is 

too high or the highest cut is too low, valuable long fibres are lost. In case the lowest 

cut is too low or the highest cut is too high, the raw materials meant for textile fibre 

processing are contaminated with secondary fibres and inflorescences respectively. A
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homogeneous crop thus reduces losses of valuable fibres.

Moreover, choosing the right cut height at the bottom part of the stem is more 

important than at the top because a 1 cm mistake in cut height at the bottom side 

simply carries more weight (Bredemann, 1940; Mediavilla et al., 2001a). Bredemann

(1940) therefore emphasised the importance of choosing the right stubble height in 

relation to yield losses in fibre crops like fibre hemp and nettle.

5.3 Secondary fibre formation: plant size matters  

The right stubble height in hemp depends on secondary fibre development. Bast fibres 

in hemp belong to the sclerenchyma tissue which gives mechanical support to the 

plants (Kundu, 1942; McDougall et al., 1993; Van Dam and Gorshkova, 2003) and the 

need for such support increases when plants grow taller and when tops become 

heavier, due to the development of inflorescences and the filling of the seeds. The

development of secondary fibres with increasing plant weight might be considered an

example of ‘mechanoperception’, the perception of mechanical stimuli that keep plants 

in balance with their physical environment (Ko et al., 2004; Telewski, 2006).

Chapter 5 revealed that the height up to which secondary fibres are present in 

fibre hemp stems increases with increasing plant weight and that a causal relationship 

between secondary fibre formation and flowering as such, as suggested in literature 

(Mediavilla et al., 2001b; Schäfer and Honermeier, 2003, 2006), does not exist. 

However, the secondary fibre front is found higher in flowering plants when compared 

to non–flowering plants of the same height, due to the higher weight of these 

flowering plants. This means that, although flowering as such is not the cause of 

secondary fibre formation, a harvest before flowering is preferable to optimise the 

length of the middle section.

 The experiments led to an elaboration of the temporal dynamics underlying the 

model in Figure 4, in which the length development of the ‘middle section’ is shown 

(Figure 5). 

Plants of increasing height, weight, and phenological stage are drawn. They 

could represent the same plant at different moments in time, but they can also be 



General discussion

195

Figure 5. Conceptual model of the harvestable stem part for quality primary fibres in hemp for 
plants of increasing height, weight, and phenological stage (numbered 1-17 for reference in 
the text). The stem part that is valuable for textile yarn production, the ‘middle’ stem part 
between the dotted lines, moves upwards along the stem. Below the lower line secondary 
fibres contaminate the valuable primary fibres, above the upper line the developing 
inflorescences are detrimental for the quality of the primary fibres. Around flowering (stages 
14-15) length growth slows down but the weight of the top increases (plants 15–17). An 
accelerated development of secondary fibres as compared to the length growth, but keeping 
pace with the increasing weight or momentum could be the result. Consequently, the length of 
the stem part that is valuable for high–quality yarn spinning becomes shorter around 
flowering.

considered different plants in a crop at the same time, because with respect to primary 

and secondary fibre development, the size of the plant is the key factor, not the 

moment a particular size is reached. The stem part that is valuable for textiles, the stem 

part between the dotted lines, is located higher up along the stem with increasing plant 

size. It is supported by a stem base of increasing length and weight, which is unfit for 

yarn production due to the presence of secondary fibres. When the plant becomes 

generative, length growth slows down or stops (De Meijer and Keizer, 1994; Meijer et 

al., 1995; Schäfer and Honermeier, 2003), while the weight of the top of the plant 

increases, due to the development of a, with respect to fibre production, useless 
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inflorescence. An accelerated development of secondary fibres as compared to the 

length growth, but keeping pace with the increasing top weight is likely to happen.

Consequently, the length of the stem part that is valuable for high–quality yarn 

spinning becomes shorter around flowering. 

Figure 5 also demonstrates that homogeneity with respect to plant height at 

harvest is important. The tops of the plants are the comparable parts, not the bottom 

parts. In plants of different heights the valuable ‘middle section’ is on different heights

which inevitably will cause quantitative or qualitative losses (Section 5.2). Figure 5

also shows that dual use (Höppner et al., 2004) for seed and high–quality textile fibres 

is not an option.

In Italy the presence of secondary fibres in hemp grown for textile purposes is 

not a main concern (Stefano Amaducci, personal communication). Italian hemp grown 

for textiles is relatively short at harvest as compared to Dutch fibre hemp which is up 

to now usually grown for low or medium value applications. In Italy the growing 

season is shorter, due to the shorter days i.e. earlier flowering and the dryer climate. 

Length growth is limited under these circumstances. Our experiments show that 

shorter hemp indeed contains less secondary fibres and that the secondary fibre front is 

found lower in the plant; mimicking Italian hemp therefore seems wise.

5.4 Short crops are preferable

When a farmer has chosen a certain variety, based on, e.g., agronomic or quality 

reasons beyond the scope of this thesis, his main concern thus is to avoid that 

secondary fibre formation, which proceeds upwards along the stem during the growing 

season, contaminates the valuable primary fibres aimed for textile yarn production. In 

practice this means that those agronomic choices should be made that keep the stem 

weight low enough to avoid secondary fibre growth above stubble height. Given 

variety and plant size, the amounts of fibres, wood, and retting losses then should be 

considered accomplished facts (Westerhuis et al., 2009a,b,c [Chapters 2, 3, and 4]).

The options to produce plants with the desired size characteristics hence 

without secondary fibres are manifold. Since sowing density, harvest time, and sowing 
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date do not have an additional effect on the primary fibre content besides the above 

mentioned indirect effect through stem weight (Westerhuis et al., 2009a,b 

[Chapters 2, 3]), any combination of these factors, and probably other factors (e.g.,

fertilisation) as well, could be chosen to produce the desired crop with the desired 

height.

Possibly the optimal height is different for varieties as secondary fibre 

development is reported to be different for varieties (Hoffmann, 1957; Bredemann et

al., 1961; Höppner et al., 2004; Amaducci et al., 2008a). This thesis however, shows 

that true varietal differences are likely to be entangled with differences caused by the 

size of plants, and that these effects should be disentangled to see whether true 

differences between varieties exist and if so, how large these differences are.

5.5 Processing flax–sized hemp

For economic reasons, processing fibre hemp on existing processing lines for flax as 

yet seems inevitable. For this reason hemp should be cut in two or more parts before 

processing or the cultivation technique should be adjusted to grow hemp with the size 

of flax (Liberalato, 2003; Ranalli and Venturi, 2004; Amaducci, 2005; Esposito and 

Rondi, 2006; Venturi et al., 2007; Amaducci et al., 2008a).

Despite the negative experience with ‘baby hemp’ (Liberalato, 2003;

Amaducci, 2005; Venturi et al., 2007; Van der Werf and Turunen, 2008) the 

experiments in this thesis support the second option: hemp with the size of flax. Flax 

scutching and hackling systems are dimensioned for fibre ribbons with a length usually 

between 80 and 120 cm (Vreeke, 1991; Ranalli and Venturi, 2004; Venturi et al.,

2007). With the right combination of variety and crop management it should be 

possible to produce hemp with the size of flax or a little longer (Westerhuis et al.,

2009b [Chapter 3]) in which secondary fibres are absent (Chapter 5). It is unlikely 

however, that hemp double the size of flax is free of secondary fibres in the lower of 

the two sections (Amaducci et al., 2008), although differences between varieties might

exist.

The disadvantage of a short crop, however, is the lower yield. To compensate 
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for this two subsequent hemp crops could be grown (Kamat et al., 2002; Liberalato, 

2003; Chapter 3), but whether it is possible to grow two subsequent vegetative hemp 

crops with the desired dimensions (Chapter 5) should be further researched. Whether it 

is economically sound to grow two subsequent hemp crops is doubtful as well, as there 

are double costs for seeds and crop management and in dry years for irrigation 

(Schäfer and Honermeier, 2003; Westerhuis et al., 2009b [Chapter 3]). Another crop 

after hemp (e.g., Amaducci, 2005), a trap crop (e.g., Timmermans, 2005), a feed crop 

(e.g., Rowlandson, 1849) or green manure are other options. 

6 Future research

In this thesis, steps were made to elucidate the causal relationships between easily 

measurable characteristics of harvested hemp stems, and the amount and 

characteristics of the fibres that can be extracted from these stems. Possibilities for 

improvement, but especially impossibilities, to a higher degree are known, as 

underlying processes are better understood. Next steps in research could start from 

here.

6.1 Varietal differences in the length of the middle section

It is likely that the length of the valuable middle section depends on variety for it is 

known that the ratio primary fibres/secondary fibres is different for varieties. 

(Hoffmann, 1957; Bredemann et al., 1961; Van der Werf et al., 1994b; De Meijer,

1995; Amaducci et al., 2008a). Varieties with desirable primary fibre characteristics 

therefore should be compared with respect to secondary fibre formation.

6.2 A fibre production model 

A basic crop growth and development model to predict total and stem dry matter yield 

of fibre hemp as a raw material for the Australian newsprint industry was developed 

by Lisson et al. (2000b). To predict the yield of long fibres fit for textile yarn 

production such a model should be extended with genotypic parameters like critical 
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day length, the ratio in which fibres and wood are produced, and the development of 

secondary fibres in relation to plant size. When variety, plant density, plant size 

distribution, and stem dry matter production are known, it should be possible to predict 

the dry matter distribution over the different components at every height in the crop.

On this basis ideal cut heights or optimal harvest times could be calculated. 

6.3 Other bast fibre crops 

Our analyses showed that in fibre hemp the ratio in which primary fibres and wood are 

produced is determined by variety, stem part, and stem part weight, and that the effect 

of sowing density, sowing date, harvest time, and presumably other factors as well is

indirect via stem weight. It would be interesting to subject other textile bast fibre 

crops, e.g., flax (Linum usitatissimum L.), stinging nettle (Urtica dioica L.) or ramie 

(Boehmeria nivea (L.) Gaudich) to the same methodology and analysis. Possibly 

similar relatively simple botanical rules or ratios can be found with respect to fibre

development.

6.4 Improving hackling yields

The end products of our experiments (Westerhuis et al., 2009a,b,c [Chapter 2,3, 

and 4]) are bundles of scutched long fibres. During the next step in processing, 

hackling, these bundles are split up into hackled long fibres and hackling tow. 

Approximately 60% of the fibre weight is lost during this combing process (Sponner et 

al., 2005; Tofani, 2006), which is meant to refine and align the long fibres to produce a 

continuous sliver for spinning. The potential to improve the ± 40% hackling yields 

seems high. In flax, hackling yields or ‘yields of line fibre’, are usually 55‒65% 

(Kozlowski et al., 2012).  

It could be studied which factors affect the hackled long fibre/scutched long 

fibre ratio in the valuable ‘middle section’ of stems. Varietal differences are likely to 

be present as bundles of scutched long fibres ‘feel’ very different (e.g., soft versus 

stiff, aligned versus entangled). Although scutching losses in the middle sections are 

not very different for varieties (Westerhuis et al., 2009c [Chapter 4]), hackling losses 
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could be.

For further research, a standard protocol should be developed, because it is 

likely that hackling yields, as for flax (Hann, 2005; Kozlowski et al., 2012) depend on 

the degree of hackling to which the fibres are subjected (e.g., machine settings). To 

compare batches properly, processing prior to hackling of course should be 

standardised as well (Westerhuis et al., 2009a,b,c [Chapter 2,3, and 4]) Improvements 

could also be made with hackling needles specifically suited for hemp (Tofani, 2006).

6.5 Fibre quality

After hackling it is to a high degree known which amounts of which materials are lost 

at which stage of processing. However, the quality of the long fibres that will end–up 

in a yarn is still unknown. Quality measurements before hackling do not seem very 

significant as one would mainly measure future waste materials. Due to the extremely 

high losses during hackling (Sponner et al., 2005; Tofani, 2006) it is unlikely that 

measurements earlier in processing would be reliable predictors of final quality. 

After hackling however, quality measurements on especially fibre fineness 

should be performed. Although a trade–off between strength and fineness is likely to 

exist (e.g., Schäfer and Honermeier, 2003) and fibres should be strong enough for yarn 

spinning, it is probably not necessary to improve the strength of the fibres: processing 

as such seems selective.

To introduce hemp long fibres into the fashion textile sector, fibres should be 

produced allowing the spinning of yarns between Nm 20 and Nm 40 (Nebel, 1995; 

Ranalli and Venturi, 2004). Therefore Liberalato (2003) and Ranalli and Venturi 

(2004) stated that it is necessary to develop hemp varieties with a smaller fibre 

diameter. That finer yarns can be spun when fibres are finer seems obvious, but it is 

not only a matter of fibre dimensions. In case a yarn is spun from finer fibres the 

number of fibres in a cross–section of the yarn is higher than when the same yarn 

count is spun from coarser fibre, which means that the yarn will be stronger and more 

even (Allam, 2004). Leupin (2001) showed that differences between varieties exist. It 

is likely however, that part of the solution will be in the size of the plants again. 
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When fibre elongation has ceased and cell wall thickening has started, the 

number of fibre cells in a cross–section of a hemp stem does not change anymore 

(Gorshkova et al., 2003; Amaducci et al., 2005; Chernova and Gorshkova, 2007). 

Consequently, the weight increase of the stem after elongation must be the filling of

the existing number of primary fibres keeping pace with the increasing wood weight 

(Westerhuis et al., 2009a,b,c [Chapters 2, 3, and 4]). Consequently, in hemp, like in 

flax (Hann, 2005), fibres must have a decreasing weight from bottom to top, which 

likely means finer fibres. Experimental results point that way: fibres are reported to be 

finer with earlier harvest, decreasing plant size and with increasing sowing density 

(Jakobey, 1965; Leupin, 2001; Schäfer and Honermeier, 2003, 2006; Amaducci et al., 

2008a).

Concluding, the short crop we recommend to avoid secondary fibres will, given 

variety, contain the finest primary fibres as well.
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Summary

Hemp

Hemp (Cannabis sativa L.) is one of the first plants cultivated. It originates from the 

temperate parts of Asia and it is grown for its bast and wood fibres, its seeds, its oil, 

and its cannabinoids.

The bast fibres have been used for textiles for about 6000 years, but hemp lost 

its position as an important textile fibre crop when cheap cotton became available. 

Consequently, research withdrew from fibre hemp and knowledge and varieties went 

lost. Growing fibre hemp was even prohibited in many countries for decades due to the

association with its narcotic relatives. Nevertheless the crop made a remarkable 

worldwide comeback in the 1990s, which was among others catalysed by the public 

concern for the environment and the endeavour towards sustainability.

Fibre hemp is a fast growing, low maintenance crop, which suppresses weeds 

efficiently and which can be grown organically without major problems. It fits well in 

the policy of the European Union to combat agricultural surpluses and to support 

diversification. Besides, growing hemp could broaden the too narrow crop rotations 

which have increased the incidence of plant diseases, lowered the yields, and enhanced 

the use of agrochemicals.

Although it can be grown for a multitude of end products and semi 

manufactures in non–food, food, and feed, economically the most interesting prospects 

seem to be in the production of long fibres for the finest yarns for fashion textiles. 

However, at present there is no large–scale production of long fibres that meet the 

requirements of the yarn spinners, because too little is known about the causal 

relationships between the primary production process and the quantity and quality of  

stems and fibres that are fit for the production of fine yarns. The main objective of this 

thesis is to improve this knowledge.
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Primary fibres are valuable, secondary fibres are unwanted

In hemp two types of bast fibres occur, primary and secondary fibres. Both are 

organised in bundles and the cell walls of both types are enforced with cellulose. 

Primary fibre bundles are already present in very young hemp stems. They run 

longitudinally along the stem from bottom to top and can reach almost the full length 

of the plants. For spinning high–quality textile hemp yarns only these primary or long 

fibres (average length of the individual fibre ≈ 20 mm) are valuable and a lot of 

research effort has been aimed at improving the long fibre content of fibre hemp by 

optimising crop management. However, many contrasting conclusions were drawn 

about the effects of, e.g., sowing density, sowing date, harvest time, variety, and site.

Secondary fibres might form when a stem part has reached its maximum length. 

They are absent in young hemp plants or only present in a thin layer at the stem base. 

These short fibres (average length of the individual fibre ≈ 2 mm) are too short for 

spinning and contain too much lignin which is detrimental for the production of fine 

yarns. 

Because it is technically difficult to separate the secondary fibres from the 

primary fibres during processing from fibre to yarn it should be known how the 

development of secondary fibres above stubble height (15–20 cm) can be avoided in 

the raw materials aimed at textile yarn production. Therefore it was the aim of our 

experiments to elucidate how the amount of primary fibres can be maximised, while at 

the same time contamination of these valuable fibres with the unwanted secondary 

fibres is avoided.  

Fibre extraction

Before hemp fibres can be used for yarn spinning, the fibre bundles have to be released 

from the surrounding tissues. The process is similar to linen production from flax 

(Linum usitatissimum L.). We used a traditional fibre–extraction method because of 

the small size of the samples as compared to industrial processing batches. However, 

with respect to the procedural steps and the final products, the methods are

comparable. 
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Fibre extraction consisted of warm water retting, drying, breaking and 

scutching. During retting bacteria degrade all stem substances except the bast fibres 

and the woody part of the stem. After drying, fibres and wood can be separated in two 

mechanical steps: breaking and scutching. 

Following standard protocols, almost 1500 well–defined hemp stem samples 

from field experiments in Italy, Finland and the Netherlands were in this way 

fractionated into long fibres, scutching tow (fibre losses during scutching, mainly 

primary fibres), wood and retting losses. The effects of plant density, sowing date, 

harvest time, variety and site were studied. To study the patterns of fibre quantity and 

quality along the stem, which possibly interact with the other factors that are 

investigated, different stem parts were analysed. It was necessary anyway to cut the 

stems, because complete stems cannot be processed with our equipment and processed 

stem parts need to be of equal length.

Plant weight is the dominant factor

In this thesis it is shown that within any tested variety, the dry weight of the stems at 

harvest, and not the factors underlying this dry weight, determines the amounts of bast 

fibres, wood, and retting losses. It is the size of the plant that is important (see 

Chapters 2, 3, and 4). 

Multiple linear regression analyses showed that in the retted stems the dry 

matter is split up into fibres and wood in a fixed way. The relation between the 

amounts of fibres (y) and wood (x) in hemp stems can be described by linear 

regression: y = ax + b, with b > 0. The positive effect of the intercept (b) diminishes 

with increasing stem part weight hence the fibre percentage based on the dry weight

after retting levels off towards a fibre percentage equivalent to a/(1+a) × 100%. 

Consequently smaller plants show higher fibre percentages and a decreasing fibre 

percentage during the growing season is inevitable, assuming that plant weight 

increases with time. There is a pattern along the stem with highest fibre/wood ratio’s 

in the middle part of the stem. 
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The slope a in the equation is very different between varieties but practically 

unaffected by plant density, sowing date, harvest time, and site. It means that in order 

to attain a hemp crop with a high fibre content at any site, a variety with an inherently 

high fibre content should be chosen: it’s in the genes…

The long fibre weight increased linearly with the total fibre weight (long fibres 

+ scutching tow) hence with stem weight. In the middle part of the stem, which is most 

valuable for textile yarn production, about 90% of the extracted fibres are long fibres.

In earlier publications direct effects of sowing density, sowing date, and

harvest time on fibre content or fibre percentage were suggested or claimed. These 

claims however, were contradictory, incomplete, and weakly substantiated. Most 

likely the key factor plant size was missed due to focusing on the intended differences 

between treatments rather than observing and analysing the effects of the treatments: 

the differences in plant size and the consequences thereof with respect to fibre content.

The relationship between the stem part weight before (x) and after (y) retting 

can also be described by linear regression: y = ax + b which results in a decreasing 

retting loss percentage with increasing stem weight. Assuming an increasing plant 

weight during the growing season, the retting loss percentage will decrease during the 

growing season. The cause of the higher weight of a stem part, e.g., lower plant 

density, an earlier sowing date, a later harvest, a lower stem part, or combinations 

thereof, is unimportant. It is again the size of the plant that matters.

Microscopic measurements showed that the height up to which secondary fibres 

are present in the stems also depends on plant weight (Chapter 5). There is no causal 

relationship between secondary fibre formation and flowering as suggested in 

literature. However, secondary fibres are found a little higher in flowering plants, 

which must be due to the higher weight or momentum of flowering plants as compared 

to non–flowering plants of the same height. This was shown in a greenhouse 

experiment carried out to disentangle flowering and plant size effects on secondary 

fibre growth. The short–day response of the plant was used to produce the required 

range of plant sizes for both flowering and vegetative plants.
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Hemp textile crop management

The practical consequence of the above is that when a hemp grower has chosen 

to produce raw materials for high–quality textile purposes, and has selected a certain 

variety, his main concern is to avoid that secondary fibre formation, which proceeds 

upwards along the stem during the growing season keeping pace with the increasing 

weight, contaminates and devalues his end product. Therefore, crop management 

should be focused on keeping the plants small enough to avoid secondary fibre 

formation above stubble height. Further, a harvest just before flowering is preferable, 

because the increasing weight of the inflorescences gradually reduces the length of the 

stem part that is fit for high–quality textile yarn production. The options to produce 

plants with the desired size characteristics are manifold. Since sowing density, harvest 

time, and sowing date do not have an additional effect on the primary fibre content 

besides the above mentioned indirect effect through stem weight (Chapters 2 and 3), 

any combination of these factors could be chosen to produce the desired crop. 





221

Samenvatting

Hennep

Hennep (Cannabis sativa L.) is een van de oudste cultuurplanten. Het gewas is 

afkomstig uit de gematigde streken van Azië en het wordt geteeld voor de bast– en 

houtvezels, het zaad, de olie en de cannabinoïden. 

De bastvezels worden al ongeveer 6000 jaar gebruikt voor het maken van 

textiel, maar deze toepassing raakte in onbruik toen goedkoop katoen beschikbaar 

kwam. Bijgevolg werd het vezelhenneponderzoek gestaakt en gingen kennis en rassen 

verloren. De teelt van vezelhennep werd in vele landen zelfs gedurende tientallen jaren 

verboden vanwege de geestverruimende verwanten. De vezelhennepteelt is echter 

terug sinds de negentiger jaren van de vorige eeuw en dat is onder andere het gevolg 

van het toegenomen milieubewustzijn van de consument en het streven naar 

duurzaamheid.    

Vezelhennep is een snelgroeiend gewas dat gedurende het teeltseizoen weinig 

aandacht vergt, onkruiden onderdrukt en zonder grote problemen biologisch geteeld 

kan worden. De teelt past in het beleid van de Europese Unie om 

landbouwoverschotten te voorkomen en diversificatie te stimuleren. Hennep is 

bovendien geschikt om de te nauwe vruchtwisseling, die gepaard gaat met een 

verhoogde ziektedruk, teruglopende opbrengsten en een toenemend gebruik van 

chemicaliën, te verbreden. 

Hoewel hennep geteeld kan worden voor een veelheid aan eindproducten en 

halffabricaten, lijkt de toepassing van de lange bastvezels in fijne textielgarens 

economisch gezien de meeste perspectieven te bieden. Er is op dit moment echter nog 

onvoldoende aanbod van kwaliteitsvezels voor de garenspinners omdat er te weinig 

bekend is over de relatie tussen de teelt van het gewas enerzijds en de opbrengst en de 

kwaliteit van stengels en vezels die geschikt zijn voor de productie van fijne garens

anderzijds. Het doel van dit proefschrift is de kennis hieromtrent te vergroten.   
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Primaire vezels zijn waardevol, secundaire vezels zijn ongewenst

In vezelhennep komen twee soorten bastvezels voor, primaire en secundaire vezels. 

Beide zijn gegroepeerd in bundels en de celwanden van de vezels zijn verstevigd met 

cellulose.

Primaire vezelbundels zijn al tot vlak onder de top aanwezig in jonge stengels; 

ze zijn dus bijna even lang als de stengel. Voor het spinnen van hoogwaardige 

textielgarens zijn alleen die primaire ‘lange’ vezels geschikt (de gemiddelde lengte van 

de individuele vezel ≈ 20 mm) en er is veel teeltonderzoek gedaan naar de verhogen 

van het primaire vezelgehalte van de stengels. Dat leidde echter tot tegenstrijdige 

conclusies met betrekking tot de effecten van bijvoorbeeld zaaidichtheid, zaaitijdstip, 

oogstmoment, ras en locatie. 

Secundaire vezels kunnen worden gevormd als de lengtegroei van een 

stengeldeel gestopt is. In jonge planten zijn ze nog niet gevormd of alleen aanwezig in 

een dunne laag aan de stengelbasis. Deze ‘korte’ vezels zijn te kort om te spinnen (de 

gemiddelde lengte van de individuele vezel ≈ 2 mm) en ze bevatten teveel lignine 

hetgeen de productie van fijne garens bemoeilijkt. 

Omdat het technisch lastig is om tijdens de productie van vezel tot garen de 

secundaire vezels nog te scheiden van de primaire vezels is het van belang te weten 

hoe de ontwikkeling van secundaire vezels boven stoppelhoogte (15–20 cm) 

voorkomen kan worden in hennep die geteeld wordt voor de productie van fijne 

textielgarens. Onze experimenten waren er daarom op gericht om aan het licht te 

brengen hoe er zoveel mogelijk primaire vezels geproduceerd kunnen worden zonder

dat deze ‘vervuild’ zijn met secundaire vezels. 

Vezelextractie

Voordat hennepvezels tot garens gesponnen kunnen worden, moeten ze worden 

vrijgemaakt uit de omliggende weefsels. Dat gaat op dezelfde wijze als bij de 

productie van garens voor linnen uit vlas (Linum usitatissimum L.). Omdat de 

experimentele monsters klein waren ten opzichte van industriële partijen hebben we 

een traditionele verwerkingsmethode gebruikt. De verwerkingsstappen en 
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eindproducten daarvan zijn echter vergelijkbaar met die in de industrie.  

De vezelextractie bestond uit warmwaterroten, drogen, brakelen en zwingelen. 

Tijdens het warmwaterroten breken bacteriën alle materie af, met uitzondering van de 

bastvezels en het hout. Na het drogen van de stengels kunnen deze in twee 

mechanische stappen, brakelen en zwingelen, van elkaar worden gescheiden.   

De effecten van zaaidichtheid, zaaitijdstip, oogstmoment, ras en locatie werden 

onderzocht aan bijna 1500 goed beschreven hennepmonsters uit Italië, Finland en 

Nederland. Alle monsters werden opgesplitst in lange vezels, werk (vezelverlies 

tijdens het zwingelen, vooral primaire vezels), hout en rootverliezen (zie hoofdstukken

2, 3 en 4).  Er werden verschillende stengeldelen met een lengte van 50 cm verwerkt 

om de eventuele verschillen in kwaliteit en vezelgehalte te kunnen analyseren. Het was 

in elk geval noodzakelijk om de stengel in stukken te knippen, omdat gehele stengels 

te lang zijn om te verwerken en omdat de verwerkingsmethode stengels van gelijke 

lengte vereist.   

Het gewicht van de plant is nagenoeg allesbepalend

In dit proefschrift wordt aangetoond dat voor alle onderzochte vezelhenneprassen het 

drooggewicht van de stengels bij de oogst, en niet de factoren die aan dat gewicht ten 

grondslag liggen, bepalend is voor de hoeveelheden vezels, hout en rootverliezen (zie 

hoofdstukken 2, 3 en 4).

Met behulp van meervoudige lineaire regressie werd aangetoond dat in gerote 

hennepstengels de droge stofverdeling over bastvezels en hout vaststaat. Het verband 

tussen de hoeveelheid bastvezels (y) en hout (x) kan beschreven worden met lineaire 

regressie: y = ax + b, met b > 0. Het positieve effect van b op het vezelpercentage 

neemt af met toenemend stengelgewicht, dus het vezelpercentage gebaseerd op het 

drooggewicht van de stengel na roten neemt af en benadert a/(1+a) × 100%. Bijgevolg 

hebben kleinere planten een hoger vezelpercentage en neemt het vezelgehalte van 

hennepplanten af tijdens het groeiseizoen, aangenomen dat de plant groeit. In het 

middeldeel van de stengel is de vezel/hout verhouding het gunstigst. 
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De richtingscoëfficiënt a in de vergelijking is voor elk ras verschillend, maar is 

praktisch onafhankelijk van de zaaidichtheid, het zaaitijdstip, het oogstmoment of de 

locatie. Dat betekent dat om een hoger vezelgehalte te verkrijgen een ander ras moet 

worden gezaaid, een ras met een gunstiger vezel/hout verhouding: het is genetisch 

bepaald.

Het lange vezelgewicht nam lineair toe met het totale vezelgewicht (lange

vezels + werk) en dus met het stengelgewicht. Het voor textiele toepassingen meest 

waardevolle middendeel van de stengel bevat ongeveer 90% lange vezel.

In eerdere publicaties werd beweerd of gesuggereerd dat zaaidichtheid, 

zaaidatum en oogstmoment een direct effect op het vezelgehalte zouden hebben. De 

beweringen waren echter tegenstijdig en niet goed onderbouwd. Waarschijnlijk is de 

directe relatie met de plantgrootte over het hoofd gezien door vooral te kijken naar de 

verschillen tussen de behandelingen in plaats van naar de gevolgen van die 

behandelingen op de plantgrootte en het effect daarvan op het vezelgehalte. 

Het verband tussen het gewicht van een stengeldeel voor (x) en na (y) roten kan 

ook beschreven worden met lineaire regressie: y = ax + b. Dat resulteert in een dalend 

rootverliespercentage bij toenemend stengelgewicht. Gedurende het groeiseizoen zal 

het rootverlies dus afnemen, aangenomen dat de plant groeit. De reden van het hogere 

stengelgewicht, bijvoorbeeld een lagere plantdichtheid, vroegere zaai of latere oogst of 

een combinatie van factoren doet er niet toe.  

Het plantgewicht bepaalt ook tot op welke hoogte secundaire vezels aanwezig 

zijn in een hennepstengel. Dat blijkt uit microscopische waarnemingen. Er is geen 

causaal verband met de bloei, zoals in de literatuur gesuggereerd wordt. In bloeiende 

planten worden de secundaire vezels wel hoger in de stengel aangetroffen dan in niet-

bloeiende planten, hetgeen te maken moet hebben met het hogere gewicht en het 

grotere momentum van bloeiende planten in vergelijking tot niet–bloeiende planten 

met dezelfde stengelhoogte. Dit werd aangetoond in een kasexperiment waarin bloei 

en plantgrootte werden ontkoppeld door gebruik te maken van de 

daglengtegevoeligheid van vezelhennep (zie hoofdstuk 5).
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Het telen van hennep voor textiel 

In praktische zin betekent het voorafgaande dat een hennepteler die hoogwaardige 

textielvezels wil produceren er vooral voor moet zorgen dat het secundaire vezelfront 

dat bij toenemend gewicht van de plant steeds hoger in de stengel komt te liggen onder 

de stoppelhoogte blijft. De planten mogen niet te groot worden omdat de waardevolle 

textielvezels dan verontreinigd raken met secundaire vezels. 

Een oogst voor de bloei is bovendien aan te bevelen omdat het toenemende 

gewicht en momentum van de bloeiwijze ervoor zorgt dat het deel van de stengel dat 

geschikt is voor hoogwaardige textielvezels geleidelijk korter wordt. 

Aangezien het moment van zaaien, het oogstmoment en de zaaidichtheid geen 

effect op het primaire vezelgehalte hebben, anders dan het effect via stengelgewicht 

(zie hoofdstukken 2 en 3) zijn er mogelijkheden te over om een gewas met de 

gewenste stengellengte te telen.
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Nawoord

Toen mij op bijzondere wijze, ik had op een andere onderzoeksfunctie gesolliciteerd, 

door Paul Struik de mogelijkheid werd geboden promotieonderzoek te gaan doen aan 

vezelhennep, heb ik die kans met beide handen aangegrepen. Daar heb ik geen 

moment spijt van gehad, ook niet toen de eerste veldproeven mislukten door regen,

hagel en wind. En hoewel ik graag met mensen werk, zijn het ook de dagen alleen op 

het proefveld, waar ik nog regelmatig aan denk. De rust, de tijd om na te denken.

De voltooiing van dit proefschrift heeft al met al wat langer geduurd dan 

gepland, maar er zijn ook andere zaken belangrijk en niet alles is te voorzien. Het boek 

ligt nu voor u en u heeft het al bijna uit, neem ik aan. Een ieder die een bijdrage heeft 

geleverd aan de totstandkoming ervan, dank ik. 

Mijn promotor Paul Struik voor de rustige analyse, de sturing op hoofdlijnen en 

de snelheid en de precisie van zijn correcties. Copromotor Tjeerd Jan Stomph voor zijn 

hulp bij het maken van de proefopzetten en zijn statistisch inzicht. Voor zijn vele 

ideeën, die uiteraard niet allemaal tot uitvoering konden worden gebracht en voor de 

uitgebreide discussies die niet allemaal over vezelhennep gingen. Ik heb het zeer 

gewaardeerd. Copromotor Jan van Dam dank ik voor het delen van zijn kennis over 

vezels en de productieketen en voor zijn soms geheel andere kijk op de zaak. Bovenal 

dank ik Paul, Tjeerd Jan en Jan voor de prettige communicatie, voor hun 

beschikbaarheid en voor de mogelijkheid die ik kreeg om een nieuwe basis te leggen 

voor vervolgonderzoek in plaats van vervolgonderzoek uit te voeren op een weinig 

solide basis. Op een doodlopend pad is voortgaan zinloos. Kortom, als ik het 

vezelhenneponderzoek iets verder heb kunnen brengen, komt dat omdat ik, vrij 

langdurig, op de schouders van reuzen heb mogen staan.  

Een goed team op papier is prachtig, een goed team op het veld net zo 

belangrijk. Peter van der Putten dank ik daarom voor zijn deskundige en praktische 

hulp bij het voorbereiden en uitvoeren van de eerste veldproeven. Wim Lieftink, Wim 

van der Slikke, John van der Lippe en Eddy de Boer (Unifarm) dank ik voor het op 
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vakkundige wijze aanleggen en inzaaien van de proefvelden. Ook het oogsten van de 

hennep, de monstername en het vele knip-, meet-, tel- en waarnemingswerk waren bij 

Unifarm in prima handen. Op het veld, in het ruwlab en in de kas is een enorme 

hoeveelheid werk verzet in een prima sfeer. Naast de eerder genoemde heren leverden 

velen, onder wie Johan Derksen, Johan Scheele, Teus Blijenberg, Frans Bakker, Taede

Stoker, Henk Meurs en vele uitzendkrachten nuttige en vermakelijke bijdragen. 

Grote waardering heb ik ook voor de precieze werkwijze en het praktisch 

inzicht van Eddy de Boer en Johan Derksen met wie ik honderden 

vezelhennepmonsters heb mogen verwerken tot vezel en hout. Het roten, brakelen en 

zwingelen leerden we van Richard op den Kamp en Martien van den Oever en ook 

Cees Melis, die jarenlang vlas verwerkte op de door ons gebruikte apparatuur, was 

graag bereid zijn kennis te delen. Mijn dank daarvoor. De vezelverwerkingslocatie op 

de Born Zuid bestaat inmiddels niet meer. De zwingelmolen, brakel en rootbak die in 

het proefschrift op advies van Jan van Dam niet als ‘old–fashioned’ maar als 

‘traditional’ worden aangeduid, zijn inmiddels als oud ijzer en antiek afgevoerd naar 

sloop en museum.

De meeste experimenten die in dit proefschrift staan beschreven, zijn 

uitgevoerd in het kader van het door de Europese Unie gesubsidieerde HEMP-SYS-

project, waarin universiteiten, onderzoekscentra, landbouworganisaties, producenten, 

ontwerpers en industrie onder de prima leiding van Stefano Amaducci samenwerkten 

aan het ontwerpen en ontwikkelen van een textielhennepproductieketen. De vele 

deelnemers, in het bijzonder Katri Pahkala, Marco Errani, Jörg Müssig, Hayo van der 

Werf, Cesare Tofani en Alessandro Zatta, dank ik voor de inspirerende bijeenkomsten, 

de excursies en de gedeelde kennis. Katri en Stefano dank ik ook voor het beschikbaar 

stellen van een deel van de in Finland en Italië voor dit project geteelde vezelhennep.

Een aantal studenten heeft een belangrijke bijdrage geleverd aan dit 

proefschrift. Ik dank Arancha Hernandez, Joana Pereira Marinho, Sander van Delden, 

Jorge Mendes Fereirra, Martin Hajek en Thomas Pacaud voor hun inspanningen op het 

veld, in het ruwlab en in het laboratorium. Ook dank ik Jacques Withagen voor de hulp 
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bij de statistische analyse van de experimenten en Nicole Wolffensperger voor de hulp 

bij de opmaak en het drukklaar maken van dit proefschrift.

Door bijzondere omstandigheden, waaronder de ziekte van onze zoon Willem, 

heeft het uitvoeren van het onderzoek en het schrijven van het proefschrift vertraging 

opgelopen. Ik dank mijn collega’s op de vakgroep en velen daarbuiten voor de steun

die ons gezin kreeg in moeilijke tijden. Ook dank ik de vakgroep en het Departement 

Plantenwetenschappen voor de contractverlenging en de aanvullende financiering die 

het mij mogelijk hebben gemaakt dit proefschrift te voltooien.

Zover is het nu, en ik dank eenieder, vooral mijn familie, schoonfamilie en 

vrienden voor hun jarenlange belangstelling, geduld en steun. Tot slot bedank ik Anja, 

voor alles, en voor Annika, Hidde, Wiebe en Willem.

Het is af,

Het is mooi geweest,

Wim
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