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Summary  

This MAGIC wheat population is a novel mapping population constructed in the National Institute of 

Agricultural Botany (NIAB) and some genetic researched have been done in this population, but not 

for leaf rust resistant. The objectives of this project are:   

(1) Demonstrate the application of the MAGIC wheat population by mapping genes and QTLs for 

qualitative resistance and quantitative resistance to wheat leaf rust.  

(2) Compare different approaches of association analysis in the MAGIC wheat population for 

validating or developing efficient analysis tool.   

Phenotypic data for resistance (infection type and latency period) were collected as the example traits 

to validate the exploitation of MAGIC wheat population. Two ideal pathogen isolates were selected to 

screen the whole MAGIC population for collecting phenotypic data. The results of association analysis 

shows that two R genes for qualitative resistance were mapped and two putative QTLs for quantitative 

resistance were also detected. The discovered R genes and QTLs were traced back to the genome 

location of the eight founders to reveal the donors. At the end, literature study was done to compare 

previously reported genes with the discovered genes. All the results indicate that MAGIC wheat 

population can be a good resource for gene discovery. Different approaches have been tried in the 

association analysis. Statistical models designed for bi-parental population also worked well to 

detected R genes for qualitative resistance but can be improved. For quantitative resistance, the 

mapping approach using the previously estimated founder probabilities as input can detect the QTLs 

with small effects, while the models for bi-parental system are not very feasible.  
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1 Introduction and background 

1.1 Mapping population 

Plant breeding has been playing an important role in genetic improvement of the plant performance. 

Two main activities are involved in plant breeding: (1) exploring new variation in the germplasm and 

(2) assembling desirable phenotypes in the offspring (Koh et al, 2015). Various strategies and bio-

technologies have been developed on these two aspects (Lusser et al, 2011). The idea of plant 

breeding is to expand and create valuable variation that satisfies breeder’s demands, and select 

progeny or offspring with the positive traits. Traditional breeding strategies based on morphological 

traits are time-consuming and cumbersome. In order to speed up the whole breeding process, marker 

technologies have been developed. Instead of phenotypic selection, marker technologies provide a way 

to indirectly select superior plant. Particularly, molecular markers make it possible to map desirable 

alleles of a gene or quantitative trait loci (QTL). The selection on the basis of such markers is known 

as marker-assisted breeding (MAB), which can accelerate the breeding progress (Bernardo, 2008). 

However, without the appropriate strategies to identify the tightly trait-linked markers for MAB, it is 

difficult to fix the desirable genes in the progeny. The markers development requires an appropriate 

marker system, a suitable segregation population, an efficient data analysis tool, and the reliable 

phenotyping method.  

Bi-parental population and natural germplasm are widely used for genetic study. Most of the 

segregation or mapping populations are derived from two parents. They are not difficult to construct 

and analysis tools are well established for them. Such populations, like recombinant inbred lines 

(RILs), near-isolated lines (NILs) and doubled haploids (DH), are widely used for QTL identification. 

However, there are some limitations of the bi-parental system. First of all, only two parents capture a 

small range of genetic diversity, and the segregation population is developed from the parents with the 

only one contrasting trait. Studying multiple traits is difficult in the same population. Secondly, the 

resolution of bi-parental population may not keep up with the high-resolution of genotyping. The 

limitation of recombination probability leads to the low mapping resolution. To circumvent the above 

limitations, linkage disequilibrium (LD) mapping or association mapping (AM) based on natural 

germplasm have been applied. Although AM captures greater genetic diversity than that of a bi-

parental population, the power to detect the genomics region of interest cannot be guaranteed due to 

some limitations like population structure and the lack of a reliable high-density consensus Map. (Kim 

et al, 2007; Laurie et al, 2004; Yu et al, 2006) 

Breeders and researchers came up with an intermediate method that can overcome the disadvantages 

of AM and bi-parental designs and combine their advantages. One of the approaches is to construct 

multi-parental advanced generation inter-cross (MAGIC) population. MAGIC is an extension of the 

advanced inter-cross method in which an inter-mated mapping population is created from multiple 

founder lines. The large number of parental founders increases the allelic and phenotypic diversity 

over traditional RILs (Kover et al, 2009; Mackay et al, 2014). The successive rounds of recombination 

cause LD to decay thereby increase the precision of QTL location (Mackay and Powell, 2007; Mackay 

et al, 2014). A MAGIC population of size 500 above is believed to detect single QTL explaining 5% 

of the phenotypic variation (Klasen et al, 2012; Valdar et al, 2006). 
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1.2 The construction of wheat MAGIC population 

An eight-parent MAGIC wheat population has been constructed in NIAB through a controlled and 

balanced crossing scheme of eight parental wheat cultivars. In order to validate the utilization of this 

population for genetic map construction and QTL detection, the population has been genotyped by the 

Illumina Infinium iSlect 90K wheat assay and some traits have been evaluated and analyzed. The 

genetic diversity of this population has also been benchmarked to a bi-parental population and 64 

wheat varieties. It is reported that this population is preferable for genetic study (Mackay et al, 2014; 

Verbyla et al, 2014). The construction of this MAGIC wheat population is comprised of founder 

selection, mixing and inbreeding.  

The MAGIC wheat population is expected to cover wide genetic range by selecting founder lines that 

show wide phenotypic and geographic diversity. The eight modern cultivars (Table 1) were selected as 

founder lines to construct MAGIC wheat population (Mackay et al, 2014).  

Table 1 Founder lines of the wheat MAGIC population.  

Variety Listing 

Year 

Seed 

Yield(t/ha)a 

NABIM 

Quality Group 

Trait Attributes 

Alchemy 2006 9.163 4 Yield, disease resistance, breeding 

use, soft 

Brompton 2005 9.151 4 Hard feed, 1BL/1RS, OWBM-

resistant 

Claire 1999 8.654 3 Soft biscuit/distilling, slow apical 

development 

Hereward 1991 7.683 1 High-quality benchmark 1 bread-

making 

Rialto 1994 8.377 2 Moderate bread-making, 1BL/1RS 

Robigus 2003 9.053 3 Exotic introgression, disease 

resistance, breeding use, OWBM-

resistant, Rht-B1 

Soissons 1995 7.553 2 Bread-making quality, early 

flowering, Rht-B1 

Xi19 2002 8.975 1 Bread-making quality, facultative 

type, breeding use 

a.Yield adjusted for site and year effects as estimated by Mackay et al. (2011). (Mackay et al, 

2011) 

b.NABIM quality groups (http://www.nabim.com/):  

1 (high bread-making); 2 (good bread-making); 3 (biscuit/cake); 4 (other). 

cOWBM, orange wheat blossom midge. 

 

 

 

 

http://www.nabim.com/
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After the founders were determined, they were crossed in a way shown in Figure 1A. All founders 

were combined in a prescribed pattern, which is called a funnel. The individuals generated from eight-

way crosses were processed to obtain homozygous stage by single seed descent (SSD). Theoretically, 

315 unique funnels can be generated by considering all possible combinations through 2-way 

intercross to the final 8-way intercross (Figure 1B). 

 

Figure 1 (A) The 8-way intercross of MAGIC as one funnel (Cavanagh et al, 2008); (B) the theoretical number 

of funnels generated from 8 founders (T.Boersma). 

 

1.3 Wheat leaf rust resistance  

In this project, gene and QTL mapping for leaf rust resistance was performed to validate the efficiency 

of this MAGIC wheat population for gene discovery. This trait is chosen for the following reasons: (1) 

leaf rust resistance is economically important for wheat yield and it has been widely studied; (2) leaf 

rust resistance can be assessed in both qualitative and quantitative aspects. With the help of 

appropriate methodological strategies, evaluating leaf rust resistance is expected to be relatively easy 

and precise compared to that of other quantitative traits such as plant height, yield and flowering time.  

Wheat leaf rust, caused by Puccinia triticina (Pt), is one of the most widely distributed wheat diseases 

resulting in loss of grain production (Khan et al, 2013; Knott, 2012). Creating genetic resistance 

variety is one of the ways to control leaf rust. When it comes to genetic resistance, two classes of 

genes have been widely used in breeding program. The first class is called R gene or Lr gene in wheat. 

An effective R gene confers qualitative resistance that can extend form seedling stage to adult stage of 

the plant. The second class of genes, instead of giving complete resistance, can reduce the epidemic 

development of the pathogen and thus decrease infection severity in field trials compared to the 

severity on more susceptible wheat accessions. This is known as partial resistance (PR) or quantitative 

resistance. Qualitative resistance and quantitative resistance differ in genetic and biological aspects. 

Qualitative resistance requires R (Lr) gene in wheat and the corresponding avirulence (Avr) gene in Pt. 

It is also known as gene-for-gene hypothesis (Flor, 1956). R gene can encode R-protein, which is able 

A                                                                         B
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to recognize the modification of virulence targets caused by Avr-encoded effector. The battle between 

R gene and Avr gene leads to hypersensitive reaction (HR) that can stop the further development of the 

pathogen (Van der Hoorn et al, 2002), leaving behind some necrosis or chlorotic flecks on leaves. 

Quantitative resistance or PR, mainly based on multiple minor genes, is quantitatively inherited and 

not race-specific to Pt. The mechanisms behind quantitative resistance are diverse and multilayer. 

Most quantitative effect is due to variation in defence genes (Jones and Dangl, 2006; Vergne et al, 

2010). The allelic variants show different levels of defence, thus, leading to different degree of PR 

between accessions. Some quantitative resistance is contributed by effector targets. The specific 

recognition between effector and their targets in plant can alter the expression of defence (Niks and 

Marcel, 2009). Therefore, the variation of effector targets among host accessions may result in 

different degree to which the pathogen can suppress PAMP-triggered immunity (PTI) and show 

difference in PR. R gene and PR gene can also work together. It is reported that effect of some Lr 

genes can be enhanced by the presence of some PR genes, and the stack of PR minor genes can result 

in “near immunity” (Singh et al, 2011).  

 

 

 

 

 

 

 

 

 

 

 

 



6 
 

2 Gene mapping for qualitative resistance 

2.1 Materials and methods 

2.1.1 Genotyping 

DNA was extracted from F5 generation during SSD procedure using the modified Tanksley extraction 

protocol (Fulton et al, 1995). The genomic DNA samples were then sent for genotyping using the 

wheat 90k iselect array (http://www.illumina.com/) from the Illumina platform. The arrays yielded 

18606 raw SNPs data for 720 MLs, which are available on the website of NIAB 

(http://www.niab.com/MAGIC/). The quality control was performed to eliminate SNPs and samples of 

bad quality before processing. The filtering criteria are mainly based on genotyping quality scores (GC 

score), and SNPs with extremely low allele frequency (<1%) were also discarded. Other criteria were 

considered to refine SNPs or samples quality on the basis of the degree of missing value and deviation 

form Hardy–Weinberg equilibrium(HWE). For example, the large departure from HWE may indicate 

potential genotyping errors (Anderson et al, 2010; Turner et al, 2011). At the end, we got refined 

17291 SNPs and 643 lines with high quality, which were used for phenotyping and association 

analysis. 

2.1.2 Isolate selection 

Infection type (IT) and latency period (LP) are two parameters for the assessment of resistance. IT 

scores indicate the intensity of the HR (McNeal et al, 1971). Based on the IT scores, MAGIC lines 

(MLs) can be determined to be resistant or susceptible as the phenotype of qualitative resistance. 

Among susceptible lines, different levels of resistance can be indicated by LP. As one of the 

prominent components of quantitative resistance, LP is defined as “the period elapsing from the 

moment of inoculation to the moment of becoming infectious” (Parlevliet, 1979; Shaner and Finney, 

1980) that can be measured in monocyclic test. A precise inoculation method is also required. Settling 

tower, as a standardized method for the quantitative analysis of resistance, was used to guarantee 

homogeneous administration of inoculation (Eyal et al, 1968; Miclot et al, 2012).  

The first step was to select the ideal isolate by testing different pathogen isolates on eight founders. 

The ideal isolate is expected to (1) have the wide virulence spectrum with at least one resistant founder 

and (2) if possible, give large variation of LP values among susceptible founder lines. The reason is 

that quantitative resistance can be masked by qualitative R-gene resistance, so an isolate that is 

avirulent to only one or two founders leaves enough susceptible MLs to map quantitative resistance. 

Virulence spectrum was determined by the IT scores that indicate the intensity of the HR on the scale 

of 0~9 (Table2) where rating 0~7 are considered as resistant type and 8~9 are considered as 

susceptible type (McNeal et al, 1971) 

 

 

http://www.illumina.com/)
http://www.niab.com/MAGIC/


7 
 

Table 2 Infection types in wheat infected by rust species. 

Infection type Description 

0 No symptoms 

1 Small necrotic or chlorotic flecks 

2 Flecks somewhat larger 

3 Minute uredosori surrounded by necrotic or chlorotic tissue 

4 Between 3 and 4  

5 Small uredosori surrounded by some necrotic or chlorotic tissue 

6 Between 5 and 7 

7 larger uredosori surrounded by some necrotic or chlorotic tissue 

8 Uredosori surrounded by very faint chlorosis 

9 Well-developed uredosori, no chlorosis or necrosis. There is often a pale 

halo around the uredosori 

x Various infection types on one and same leaf 

 

LP of each pathogen isolate was determined in a monocyclic test by calculating at what time when 50% 

of eventual number of pustules became matured (LP50) during the disease development. The formula 

is described as: 

LP50 = a + (
b

c
) ∗ d 

a= time from inoculation until last counting before 50% pustules were mature 

b= time between the counting before and after 50% of pustules were mature 

c= increase in number of pustules during period b 

d= 50% counting minus number of pustules at the start of period b 

 

The disease test started with evaluating eight founders with six isolates (Durum, Felix, Flamingo, 

INRA, Swiss and Ventus) provided by Dr. Rients Niks (Wageningen UR, plant breeding chair group). 

Disease test experiments were conducted in Unifarm. For each isolate, we prepared one tray, so we 

had six trays in total for all six isolates. The eight founders were sowed with 6 replicates in each tray. 

When the first leaves of seedlings were unfolded after around two weeks of growing in a pathogen-

free compartment, those leaves were fixed by pins to stretch out and then the whole tray was put into 

settling tower. In settling tower, seedlings were inoculated by spraying rust urediniospores at a dosage 

from 2.5 mg to 7mg depending on the degree of freshness and storage time. After five minutes, the 

tray was placed in a dark dew chamber overnight (16h) at 18 degree centigrade with 100% humidity to 

promote the spore germination. The next morning, spore germination was checked under microscope. 

Next, the seedlings were moved into a greenhouse for infection development. About 5 days after the 

inoculation, the mature pustules were counted on the marked segment of each leaf. The number of 

matured pustules was checked once or twice a day until it stoped increasing. IT score was rated at the 

last round of pustule counting when a seedling showed unambiguous infectious pattern.  
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2.1.3 Screening MAGIC population with ideal isolate 

After the ideal isolate had been selected, the MAGIC population was screened by the selected isolate 

to collect phenotypic data. In each tray, we prepared 24 MLs with 2 replications for each line. After 

two weeks, the first leave per ML was fixed and then inoculated using fresh rust spore at a dosage of 

1mg per tray. Resistance evaluation was conducted during the development of disease similar to 

isolate selection on the eight founders. In this chapter, we focus on IT scores in the population as 

phenotypic data for qualitative resistance. 

2.1.4 Genetic analysis 

The consensus linkage map for gene mapping was constructed by Gardner (unpublished). The gene 

mapping approaches were based on single marker analysis (SMA) and simple interval mapping (SIM) 

that are described in Appendix A. The association analysis using SIM was performed with the help of 

some relevant packages like R/qtl (Broman et al, 2003). The scripts are provided in Appendix B. In 

order to cross-compare the results from two different mapping approaches, the generated test statistic 

p-values from SMA and LOD scores form SIM were extracted and normalized to the same scale for 

plotting in one figure. At the end, the identity-by-state (IBS) of founder alleles, which refer to the 

same alleles (Powell et al, 2010),  was checked against the LOD profile to confirm the donors of 

detected genes. 

2.2 Results 

2.2.1 Isolate selection  

All eight founders were inoculated by each rust isolate, and the IT and LP were evaluated. Table 3 

presents the overview of virulence profile of the six isolates on eight founders. Isolate INRA and 

Ventus had the widest virulence spectrum. Robigus was evaluated as resistant to INRA and Ventus, 

for the necrosis and chlorotic flecks (IT=1) appeared on the inoculated leaves. For the other 7 founders, 

the rust uredosori were well developed on the inoculated leaves with a pale halo around it (IT=9), 

which was considered as susceptible. Another rust isolate, Flamingo, has the second widest virulence 

spectrum, which was virulent to five founders (IT score= 8 or 9). Swiss and Durum were virulent to 

one and three founders, respectively. All founders were resistant to Felix (IT score = 1 ~ 5). 

Table 3 Compatible (+) and incompatible (-) interactions of eight wheat founders and six 

isolates of wheat leaf rust (Puccinia triticina) with IT scores. 

Founder Isolate (IT score)     

 Durum Felix Flamingo INRA Swiss Ventus 

Alchemy - (6) - (3) + (8) + (9) - (4) + (9) 

Brompton - (7) - (1) - (1) + (8) - (1) + (9) 

Claire - (4) - (3) + (8) + (9) - (3) + (9) 

Hereward - (3) - (5) + (9) + (9) - (6) + (9) 

Rialto + (8) - (1) - (1) + (8) - (2) + (9) 

Robigus - (3) - (3) - (1) - (1) + (9) - (1) 

Soissons - (4) - (4) + (9) + (9) + (9) + (9) 

Xi19 - (4) - (4) + (8) + (8) + (8) + (9) 
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Both INRA and Ventus can be considered as the ideal isolates to screen the whole population given 

the widest virulence spectrum. As for LP, the LP50 values within eight founders to INRA seem more 

stable than that to Ventus (Figure 2). Inoculated with INRA, Claire showed the shortest LP50 around 

144.2h, while Brompton showed the relatively high LP50.  

To sum up, INRA was chosen to screen the whole population due to the wide virulence spectrum as 

well as the relatively stable LP values within founders. The other isolate, Flamingo, was also selected 

to check whether there is any shared R gene with INRA, because Robigus was resistant to both INRA 

and Flamingo.  

 

Figure 2 Latency period of six isolates on eight founders. The absolute LP value (LP50) against each founder 

lines to different isolate is presented in boxplot. The colour of box indicates the intensity of qualitative resistance 

(IT score). Relatively light blue indicates high IT score like 8 or 9, while the darker blue represent resistant lines 

with IT scores below 7.   

2.2.1 Assessment of infection type 

631 and 636 out 643 MLs of were successfully assessed to INRA and Flamingo, respectively. Missing 

values occurred due to some practical reasons, for example the seeds of some lines were not supplied 

and a few seeds were geminated poorly. After 2 weeks of pathogen development, IT scores were rated 

and the results are showed in table 4. Interestingly, for those resistant MLs to INRA except for one 

line, they were also resistant to Flamingo. 

Table 4 The number of resistance and susceptible lines as response to two isolates of 

wheat leaf rust (Puccinia triticina). 

Infection type Isolate 

 INRA Flamingo 

Resistant lines (IT = 1)  48 116 

Susceptible lines (IT = 8 or 9) 583 520 
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2.2.2 Association analysis results 

The association between qualitative resistance and 17291 SNPs markers was analyzed using SMA and 

SIM mapping approaches (see Appendix A and Appendix B). The p-values (SMA) and LOD scores 

(SIM) were extracted and plotted together (Figure 3). The results form SMA and SIM both suggest 

that one resistance gene was detected to INRA and two detected to Flamingo.  

An interval from 180.8cM to 181.8cM on chromosome 4A contains the resistance gene to INRA. This 

interval is defined by the large decline of adjusted p-values from the highest SNP at 180.9cM to its 

flanking SNPs. As response to Flamingo, the gene on chromosome 4A was mapped between 180.8cM 

and 182.9cM (peak SNP at 180.9cM), and the other gene was detected on chromosome 1B between 

109.4cM and 119.0cM (peak SNP at 115.5cM). Some significantly associated SNPs identified to 

INRA and Flamingo on chromosome 4A are overlapped in the region around 180.9cM, which indicate 

that resistant MLs may share the same resistance gene. In this report, we denote the shared resistance 

gene on chromosome 4A as R1 and the other one detected on chromosome 1B as R2. Next, we move 

on to confirm the donors of R1 and R2. 
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Figure 3 Gene mapping for qualitative resistance as response to isolate INRA (upper) and Flamingo (lower). Normalized –log10(p-values) and LOD scores was plotted on the y-axis against the 

position of SNPs on x-axis. Those red and blue dots represent the results from SIM and SMA, respective.
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Figure 4 Confirmation of donors of R1 and R2 from IBS founder alleles. (A) IBS founder alleles on chromosome 4A against LOD score to INRA. (B) IBS founder 

alleles on chromosome 1B against LOD score to Flamingo. The linkage maps are placed with short arms on top. At any given (SNP) position on the linkage maps, the 

founders with the same colour share the same IBS allele. The founder Alchemy in red was used as reference and the same alleles on other founders are in red too. 

Likewise, any same IBS allele shared with Brompton but different from Alchemy is in green. The lines are jittered for better visualization of the tightly positioned 

SNPs.  
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2.2.3 The donors of R genes 

Checking the IBS of founder alleles at the position of peak SNP provided a method to trace R genes 

back to donors. The IBS of the founder genotypes on chromosome 4A and 1B, where R1 and R2 were 

detected, was plotted against the LOD profile under INRA and Flamingo using SIM (Figure 6). 

On chromosome 4A (Figure 4A), Robigus has a unique IBS founder allele (in yellow) at the place of 

the peak SNP (180.9cM), while other seven founders share the same IBS founder allele with Alchemy. 

It is confirmed that Robigus, as the only resistant founder to INRA, delivered the R1 gene to the 

MAGIC wheat population. On chromosome 1B (Figure 4B), the founders with unique allele (in green) 

at the position of peak SNP (116.4cM) are the founders (Brompton and Rialto) that were resistant to 

Flamingo, so Brompton and Rialto are believed to be the donors of R2.  

In summary, two R genes were detected and their donors were revealed. R1 gene, located on 

chromosome 4AL and inherited from Robigus, conferred resistance to INRA and Flamingo; R2 gene, 

located on chromosome 1BS and inherited from Brompton and Rialto, gave resistance to Flamingo. 

 

2.3 Discussion and conclusion 

2.3.1 Gene-for-gene model in qualitative resistance 

In this chapter, the results are consistent with our assumption that multiple disease tests can be 

performed on the same wheat MAGIC population and multiple race-specific resistance genes can be 

identified. By executing two rounds of disease tests with different isolates INRA and Flamingo, we 

detected two corresponding resistance genes R1 and R2 and successfully traced them back to their 

donors. All findings in this chapter are also in agreement with the theories that qualitative resistance is 

monogenetic inheritance and can be explained by gene-for-gene model. 

The differential interaction can be observed in the virulence profile of six isolates on eight founders. 

For instance, isolate INRA was virulent to Rialto but avirulent to Robigus, while Swiss was inversely 

avirulent to Rialto but virulent to Robigus. This race-specific interaction is believed to be the results of 

interaction of the R gene in the plant and corresponding Avr gene in the pathogen, also known as gene-

for-gene hypothesis (Flor, 1956).   

In this study, the resistance gene R1 was detected on chromosome 4AL to both INRA and Flamingo. 

The donor of R1 is the shared resistant founder Robigus. Based on gene-for-gene model, these 

findings can be explained by assuming that pathogen isolate INRA and Flamingo carry the 

corresponding Avr1 gene which made them avirulent to founder Robigus as well as the 48 MLs that 

have inherited R1 from Robigus through eight-way cross. Flamingo was avirulent to Brompton and 

Rialto, which indicate that a different avirulent gene Avr2 was recognized by corresponding resistance 

genes R2 from Brompton and Rialto (Table 5). The possible loss-of-function mutation from Avr2 to 

avr2 in INRA impaired gene-for-gene interaction between INRA with Brompton and Rialto, and 

hence, these two founders were unlucky infected by INRA. 
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Table 5 Gene-for-gene model for qualitative resistance between 3 founders and 2 isolates. 

Founder (R gene) Isolate (Avr gene) 

 INRA (Avr1, avr2) Flamingo (Avr1, Avr2) 

Brompton (R2) + - 

Rialto (R2) + - 

Robigus (R1) - - 

R1- Avr1 interaction gives the resistance of Robigus (R1) to pathogen isolate INRA (Avr1) 

and Flamingo (Avr1); R2-Avr2 interaction gives the resistance of Brompton (R2) and Rialto 

(R2) to Flamingo (Avr2); no interaction between R2 and avr2 explains the susceptibility of 

Brompton (R2) and Rialto (R2) to INRA (avr2). 

 

Literature study was done to compare reported Lr genes with the detected R1 and R2 genes in this 

study (Table 6). Among previously reported 46 race-specific (qualitative) leaf rust resistance genes (Li 

et al, 2014), only Lr28 (McIntosh et al, 1982) is reported to locate on chromosome 4AL. Lr28, derived 

from Aegilops speltoides, is an effective gene for resistance through the whole lifespan of the plant in 

many region of the word (Naik et al, 1998). Lr28 was identified with flanked RAPD marker by a 

distance of 2.4± 0.016 cM (Cherukuri et al, 2005) and linked to SSR marker Xwmc497 at a distance of 

2.9cM (Pallavi et al, 2015). In this report we mapped R1 to around 1cM. On chromosome 1BS, no Lr 

genes have been reported (McIntosh et al). The most likely Lr gene that denoted as R2 in this study is 

Lr71. Lr71 is flanked by marker Xgwm18 and Xbarc187 crossing the centromere and possibly locates 

on the short arm of chromosome 1B, given the unsolved centromere region (Singh et al, 2013). 

Table 6 Comparison with previously reported race-specific genes. 

Denotation Gene symbol Synonyms Chromosome Markers 

R1 Lr28  4AL Xwmc497 

(~2.9 cM) 

R2 Lr71 LrAK12c 1B centromere region 

not resolved 

Xgwm18 and 

Xbarc187  

 

2.3.2 Mapping approaches for qualitative resistance in wheat MAGIC population  

In this chapter, the mapping approaches we used for association study were SMA and SIM with 

refined genotypic data as input. SMA and SIM have been widely applied to bi-parental system, and 

they also worked well in MAGIC for mapping R genes. The benefit of using biallelic SNPs in 

regression model is that the process is computationally simple and straightforward and thereby 

provides a chance to quickly screen the whole genome. Such approaches based on regression method 

was firstly applied to a four-way cross system (Xu, 1996). In Mackay’s (2014) research, the marker 

scores were also used as input for mapping awning gene using mixed model accounting for stratum 

generated from different funnels, and the B1 awning locus was successfully mapped to a 7.5 cM 

interval on chromosome 5AL. Qualitative trait like awning and race-specific resistance are conferred 

by a major locus that strongly influence the trait, so that the major locus can be mapped by simply 

using marker scores as input, while the estimation of founder probabilities seems not very necessaryin 

this case. Huang (2015) also used simulation method to prove that the result of interval mapping using 

biallelic SNPs is consistent with that based on founder probabilities when the trait is contributed by 

major locus. 

However, in this study, there is a limitation of gene mapping for qualitative resistance against 

Flamingo using SMA and SIM in linear regression model. For resistance to INRA, only one resistance 
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gene is involved, similar to the scenario in Mackay’s study that awning is conferred by only one B1 

gene. Since all the resistance MLs can be explained by R1, the statistic model accounting for the 

allele’s effect of only R1 worked well, so that R1 can be mapped in a relative precise region. On the 

contrary, resistance to Flamingo is not as straightforward as that to INRA. The resistant MLs under 

Flamingo can be divided into three groups which were inherited with R1, R2 and R1+R2, respectively. 

While we performed association mapping to Flamingo, all the resistance MLs were pooled, so the 

genetic effects of R1 and R2 were not statistically distinguished. Therefore, the detection power of R 

gene to Flaming was decreased. That is why, as response to Flamingo, R1 was mapped at the interval 

2 times larger than that to INRA; the interval region of R2 against Flamingo is 10 times larger than 

that of R1 detected against INRA. Therefore, the statistic model should be improved in this scenario. 

R1 was the shared resistance gene to isolate INRA and Flamingo, which is responsible for 47 

resistance MLs to Flamingo. When we want to map R2, we can treat R1 as cofactor to account for 

some part of the resistant MLs and thus the effect of the R2 can be separated. In this model, R1 serves 

as the proxy to increase the gene mapping precision of R2.  
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3 QTL mapping for quantitative resistance 

3.2 Materials and methods 

3.2.1 Genotyping and phenotyping 

The phenotyping method for collecting LP data is descried in the previous chapter, and we also use the 

same genotypic data for association analysis. LP was evaluated among the 583 susceptible lines which 

are R1-free to INRA. In order to account for the possible nonuniformity and fluctuation of 

environmental conditions or manual evaluation error in different batches, the average LP50 values of 

Brompton per batch was used as reference to calculate the relative latency period (RLP) for MLs in the 

same batch. In order to validate the reliability of phenotyping, 12 MLs with long LP and 12 MLs with 

relative short LP among 583 MLs were re-evaluate in one tray with 2 replicates for each line. 

RLP = LP50 ∗
100

LP50 of the refrence line
 

 

3.2.2 Genetic analysis 

The same linkage map and refined genetic data as described in chapter 2 were used to map QTLs for 

quantitative resistance. In MAGIC population, the inputs of association analysis for quantitative 

resistance were marker scores and founder probabilities. The founder probabilities of each MLs were 

estimated by a hidden Markov model (HMM) based-framework called reconstructing ancestry blocks 

bit by bit (RABBIT) (Zheng et al, 2015). The results of SMA and composite interval mapping (CIM) 

were benchmarked to the results using founder probabilities as input. The involved models are 

described in Appendix A. 

The association analysis of phenotypic data (RLP) and genotypic data (SNPs) or founder probabilities 

was performed using R program based on some packages such as HAPPY (Mott et al, 2000), R/qtl 

(Broman et al, 2003) and ASReml (Gilmour et al, 2009) etc. The threshold of significant level in CIM 

and SMA models was determined by permutation test, during which the phenotype data was randomly 

sampled 1000 times while genotype data remained intact. A set of maximum LOD scores or –log10 

(P-value) were collected and the 95
th
 percentile was set as threshold. Some part of the script is 

provided in Appendix B.  
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3.3 Results  

3.3.1 Assessment of latency period 

RLP of the 583 susceptible MLs under INRA was evaluated and the frequency distribution is plotted 

(Figure 5). The overall mean of RLP is 98.36 with variance of 19.36. We used LP values of the seven 

susceptible founders to INRA from isolate selection (section 2.2.1) to calculate their RLP with 

Brompton as reference line. In the MAGIC population, around 44.5% of the MLs had RLP values 

lower than Claire, and around 29.2% of the MLs had RLP values higher than Brompton. 

 

Figure 5 Frequency distribution of relative latency period (RLP) in the MAGIC wheat population. 

 

From each tray, the MLs with the highest LP value and the lowest LP value were selected to repeat the 

LP evaluation under INRA. There is a significant deference (P-value < 0.01) between long-LP MLs 

and short-LP MLs, but some MLs were cross-confounding and not quite distinct from each other 

(Figure 6). 

 

 

Figure 6 Re-evaluated LP values form long-LP and short-LP MLs 
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3.3.2 QTL mapping  

Based on the founder probabilities, QTLs for quantitative resistance were identified on 

chromosome 1BS and chromosome 6BL (Figure 7). Brompton and Rialto contributed the 

long LP gene on chromosome 1BS and Robigus contributed to long LP on chromosome 6BL. 

Their QTL effects are around 0.1𝜎 to the whole population.  

 
Figure 7 QTLs profile based on founder probabilities (upper) and the parental haplotype effect (lower) of LP. Significant 

QTLs are determined by exceeding the threshold of 3 and the haplotype effect sizes are indicated in different colors.  

 

 

To compare the QTL detection power of different mapping methods, the QTL profiles form CIM and 

SMA were extracted from Appendix B and benchmarked to the mapping approach based on founder 

probabilities (Figure 8). The threshold was set at 3.9 by permutation test. There are some differences 

of QTLs detection among different mapping approaches. QTLs detected on chromosome 1B and 6B 

are also detected by CIM and SMA. However, the QTLs detected on chromosome 3B and 4A were 

unexpected, given the fact that they were not detected by the approach using founder probabilities as 

input.  

 

 
Figure 8 QTLs profile based on composite interval mapping (red) and single marker analysis (blue) against the model with 

founder profanities as input (green). 
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3.4 Discussion 

3.4.1 Polygenetic inheritance in quantitative resistance   

In this study, the results of QTLs mapping indicates that two QTLs coffering the quantitative 

resistance on chromosome 1BS and 6BL. That is why those susceptible MLs under INRA showed 

quantitative differences in degree of infection with meticulous observation and showed the 

transgressive inheritance compared to eight founders. It might be explained that abundant QTLs 

existing in eight founders contribute to different levels of resistance to INRA. Each QTL may have a 

small effect to LP level, and the by-chance accumulation of them through eight-way inter-cross leaded 

to the transgressive segregation.  

The wheat chromosome 1BS is functionally active in multiple disease resistance. Several QTLs for 

quantitative resistance and some Lr genes have been mapped on this region (Li et al, 2014; McIntosh 

et al). Chromosome 1BS is like the battlefield for the plant-pathosystems gene competence. In this 

study, we detected a qualitative resistance gene R2 on chromosome 1BS as response to Flamingo. The 

other isolate, INRA, break down R2 by altering Avr2, and thus become virulent to the donors of R2 

(Brompton and Rialto). However, the suppression may not be complete, given the fact that a QTL for 

quantitative resistance was detected on chromosome 1BS and the long LP was donated by Brompton 

and Rialto, but the QTL need to be mapped more precisely to confirm that in future work. The other 

QTL detected on chromosome 6BL was conferred by Robigus. The quantitative resistance also 

occurred on Robigus when inoculated with INRA, but the effect was not observed because it had been 

masked by the completely expressed resistance conferred by R1. The quantitative resistance might be 

observed on Robigus only when a new virulent isolate appears to break down R1, which is refer to 

residual resistance. 

In previous study, five QTLs for quantitative resistance to leaf rust have been reported on chromosome 

1BS (Messmer et al, 2000; Rosewarne et al, 2012; Schnurbusch et al, 2004; Singh et al, 2009; 

William et al, 1997) and three QTLs on 6BL (Chu et al, 2009; Rosewarne et al, 2012; William et al, 

2006) (Table 7).  
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Table 7 Comparison with previously reported QTLs partial resistance. 

QTL Chr. Donor Marker Interval Reference 

QLr.sfrs-1BS 1BS Forno Xpsr949–

Xgwm18 

Messmer et al., 2000 

QLr.sfr-1BS 1BS Forno Xgwm604– 

OA93 

Schnurbusch et al., 2004 

QLr.cimmyt-1BS.1 1BS Parula Xcmtr03– 

500 

William et al., 1997 

QLr.cimmyt-1BS.2 1BS Pastor wPT5580–

wPT3179 

Rosewarne et al., 2012 

QLr.pbi-1BS 1BS Beaver 1BL/1RS Singh et al., 2009 

QLr.fcu-6BL 6BL TA4152–

60 

Xbarc5–

Xgwm469.2 

Chu et al., 2009 

QLr.cimmyt-6BL.1 6BL Pastor wPT6329–

wPT5176 

Rosewarne et al., 2012 

QLr.cimmyt-6BL.2 6BL Pavon 76 XpAGGmCGA1 William et al., 2006 

 

Because these QTLs have been detected from different marker panels and mapping populations, their 

positions may differ due to different population sample size, recombination rate and accuracy of 

genotyping or phenotyping methods. Therefore, it is a challenge to precisely cross-compare the 

positions of putative QTLs. With increasing QTLs detected for more traits in this wheat MAGIC 

population, it is valuable to integrate results from different studies by QTL meta-analysis in future 

study (Lillemo and Lu, 2015; Maccaferri et al, 2015).    

3.4.2 Mapping approaches for quantitative resistance in wheat MAGIC population 

Implementing mixed model and inputting founder probabilities are the effective approaches for QTLs 

mapping in this wheat MAGIC population, and this approach was also tried to map QTLs for height 

and yield (see Appendix C), while the general QTLs mapping approaches in bi-parental population are 

not effective in MAGIC. By the method of SMA and CIM, ghost QTLs were detected on chromosome 

3B and 4A. The allele frequency for the peak SNP (Tdurum_contig39549_245) on chromosome 4A is 

as low as 8% which is believed to generate the false positive. Since only Robigus conferred the long 

LP on chromosome 6B, the effect of genetic factor was not strong enough to be detected by 

approaches based on bi-parental system. In MAGIC population, the genome segment of progenies is 

the mosaic of eight founders. In order to increase the power and precision of QTL detection, it is wise 

to use founder probabilities to account for each founder’s effect instead of simply using bi-allelic 

information without knowing the haplotype effect. 
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Mapping for quantitative resistance in wheat magic population successfully reveals the genetic 

architecture for long LP values, but the resolution is not as high as we expected, given the high-

resolution mapping population, high-density linkage map and advance mapping algorithm. We 

assessed latency period in monocyclic test as the component of quantitative resistance. It is convenient 

and not very time-consuming. However, the latency period might be temperature-sensitive and easily 

influenced by other conditions and thereby LP was subject to experimental error. Consequently, the 

large variance of LP is due to non-genetic factor, while the effect of genetic factor was relatively 

neglected and thus the true QTLs could not identified in a promisingly precise position. In future study, 

other important components for quantitative resistance, such as infection frequency and spore 

production, along with latency period, can be re-assessed in the population to cross-confirm or refine 

the position of detected QTLs. 

4 General Discussion and Future Prospects 

4.1 General discussion  

The wheat MAGIC population is a promising resource for gene isolation and QTL mapping. Previous 

study by Mackay (2014) has shown that this population has captured 74% of genetic diversity of 64 

wheat varieties and genomes of MLs are highly recombined. With the help of high-throughput marker 

system (wheat 90k SNP array) and advanced statistical tools accounting for haplotype effect, this 

population is believed to be a potential platform for genetic dissection of complex trait. It was the first 

time to implement MAGIC population in studying wheat leaf rust resistance in this project. We have 

executed several rounds of disease test with multiple Pt isolates on this population along with the 

founders. As results, two race-specific resistance genes and two QTLs for quantitative resistance have 

been detected and founder contribution has been revealed.  

MAGIC population has its unique strength in genetic study over bi-parent system and natural 

germplasm. Firstly, it can be served as a permanent resource for gene or QTL mapping for multiple 

traits, while most of bi-parental population are constructed for the only one contrasting trait between 

them and thus are not suitable to study other traits. Compared to a set natural germplasm, MAGIC is 

more related to breeding germplasm because the eight founders are modern cultivars. Therefore the 

wheat population can also be utilized in breeding program. However, the issue of MAGIC might be 

the difficulty of testing epistasis. Due to the diversity of founder alleles and large number of markers, 

testing for pairwise interactions requires exhaustive analysis approach and much larger sample size of 

the population. 

Various mapping approaches used in this study have shown their strengths and limitations. The 

statistical model using marker scores is straightforward and computationally easy, which is perforable 

to fast scan the genome for locating the trait-associated markers. Since the linkage map is high-

throughput, approaches based on interval mapping like SIM and CIM that can estimate the genotype 

of missing SNPs, are not very necessary. Instead, SMA is more efficient in the association study for 

qualitative resistance. However, the limitations of using marker scores are as follows: first, the founder 

contribution is unknown. We have to check the IBS founder allele to identify the donors of putative 

genes or QTLs. Second, it tends to generate false positive and biased statistic test if the allele 
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frequency is too low. At the last, only the major gene with large effect can be mapped, while minor 

QTLs cannot be detected effectively. Given the above limitations, we recommend to the use founder 

probability in QTL mapping for some quantitative traits with low heritability, which can detect the 

minor QTLs and reveal haplotype effects. If there is any limitation with this approach in this study, it 

might be that we did not account for the genetic background of funnels and environmental effect. 

4.2 Future prospective 

Wheat MAGIC population has shown its magic in gene discovery and genetic study. We can image 

more and more agronomic traits will be assessed and genetic research will continue in this population. 

Future studies may focus on more complex traits. For instance, resistance to abiotic stress like salt 

tolerance and drought tolerance can be evaluated on various conditions, providing insight to the gene-

by-environment interaction and mechanism of abiotic stress tolerance. With increasing association 

analysis carrying on, it is possible to identify more pleiotropic genes, which makes the population 

valuable in breeding program.  

MAGIC population can also serve as breeding population. In future, Muti-parent advanced generation 

recurrent selection (MAGReS) can be applied in breeding program (Huang et al, 2015). The identified 

favourable alleles from association study are in turn applied to select superior MLs. The MAGIC 

population can be used as training population for constructing genomics selection (GS) model. Those 

positive alleles can be pyramid with the help of GS. 
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Appendix A. Statistic models in association analysis 

 Single marker analysis 
The simplest mapping method is based on single marker analysis (SMA), also known as point analysis 

(Soller et al, 1976). Each individual is assigned to groups based on the single marker genotype. By 

testing the significance of difference between phenotypic means in the marker genotype, the trait-

associated markers can be detected. The genetic model of SMA can be described as follows: 

𝑦𝑖 = 𝜇 + 𝑥𝑖𝛼 + 𝑒𝑖 

Where 𝑦𝑖 is the adjusted phenotypic value of i-th individual; 𝜇 is the grand phenotypic mean for each 

individual; 𝛼 represents the genotype effect given the single marker alleles 𝑥𝑖 of i-th individual, and 𝑒𝑖 

is the random error term assumed to be 𝑒𝑖 ~ 𝑁(0, 𝜎𝑒
2). For each SNP marker, the null hypothesis 

(𝐻0: 𝛼 = 0) assuming there is no genotype effect will be tested. The p-values form the multiple testing 

of each SNP is converted to -log10 scale as the indication of significant level. The most likely trait-

associated SNPs are indicated by the peak p-value on the profile plot. The association analysis of 

SMA is independently perform based on the single markers, thus, linkage map is not necessarily 

required.  

 Simple Interval mapping  
The simple interval mapping (SIM) was first discussed in 1989 (Lander and Botstein, 1989), which 

become a standard QTL mapping procedure and then it has been further extended to many other 

mapping procedures. The genetic model of SIM is as flowering: 

𝑦𝑖 = 𝜇 + 𝑥𝑗|𝑖𝛼 + 𝑒𝑖 

The terms of 𝑦𝑖, 𝜇, 𝛼 and 𝑒𝑖  in SIM are the same as in SMA. The biggest difference is that the single 

marker alleles 𝑥𝑖 is replaced by 𝑥𝑗|𝑖, estimated by the conditional genotypes. The maximum likelihood 

estimation (MLE) can be used to obtain the unknown parameters of 𝑢, 𝛼 and 𝜎𝑒
2 given the observed 

phenotypic value 𝑦𝑖 and estimated genotypic data 𝑐𝑖. The MLE for those parameters is also estimated 

assumed there is no QTL anywhere in the marker interval. The likelihood of a putative QTL 

presenting in the marker interval is indicted by the LOD scores, which are generated from above two 

MLEs.  

 Composite interval mapping 
The composite interval mapping (CIM) uses the identified QTLs in SIM as cofactors to search for 

other marker intervals on the same chromosomes. The peak markers is first selected and then 

revaluated together with the second peak marker. If both of them are significant, they are treated as 

cofactors to search for the third highest marker until the whole genome is scanned. The cofactors serve 

as proxies accounting for genetic background, thus this approach is believed to decrease the chance of 

detecting ghost QTLs and increases the precision of QTLs position (Jansen 1994; Zeng 1994). We 

supposed there are m+1 ordered marker, the statistical model of CIM is expressed as: 

𝑦𝑖 = 𝜇 + 𝛼𝑞𝑥𝑖
𝑞

+ ∑ 𝛼𝑐𝑥𝑖
𝑐

𝑚+1

𝑐=1

+ 𝑒𝑖 



24 
 

where 𝑦𝑖 , 𝜇  and ei , as described in previous models, represent the adjusted phenotype of i-th 

individual, ground mean of all individuals and random error term; αq denotes the effect of QTL q, and 

αc  denotes the effect of cofactor c; xi
q

 and xi
c  are genetic predictors estimated form conditional 

genotypes at QTL q and cofactor c. 

 Use founder probabilities as input for QTL mapping 
The inputting of the genome for QTL mapping can base on marker score and founder probabilities. 

Because eight founders are involved in the mapping population design, the genomic segment of each 

MLs is the made up of the eight founders. SMA, SIM and CIM with markers scores as input for QTLs 

mapping, which provides rare information about the haplotype mosaics construction of each MLs. 

Therefore, the donor of a certain trait might be difficult to identify even though the QTLs are detected. 

The founder probability 𝑝𝑖𝑓
𝑙  indicate the likelihood that the i-th ML is derived founder f at the locus L, 

which can be estimated by hidden Markov model (HMM) (Zheng et al, 2015). The common model 

used in MAGIC population is fixed-effects linear model based on the calculated 𝑝𝑖𝑓
𝑙  (Kover et al, 

2009). The phenotype 𝑦𝑖 in ML i can be modelled given a QTL segregate at locus L in which the 

phenotypic effect due to founder haplotype is𝛼𝑓. 

𝑦𝑖 = ∑ 𝑝𝑖𝑓
𝑙

𝑓

𝛼𝑓 + 𝑒𝑖 
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Appendix B. The R script for association mapping using SMA, 

SIM and CIM 

 SMA 
Required packages 

library(dplyr) 
library(ggplot2) 

The linkage map 

snp_map<-read.csv("arranged_geno.csv")[,1:3] 
load("geno_data.RData") 

The genotypic data 

snp_data<-read.csv("arranged_geno.csv")[,-c(2,3)] 

The phenotypic data 

phenoall<-read.csv("phenoall.csv") 

The function of SMA 

SMA.mapping<-function(trait) { 
    index<-grep(trait, colnames(phenoall)) 
    if (class(phenoall[,index]) == "factor") {           
        sigCal<-function(snp){ 
            chi<-chisq.test(snp,phenoall[,index]) 
            p_value<-chi$p.value 
            return(p_value)}     
    } else if (class(phenoall[,index]) == "numeric" || class(phenoall[,inde
x])=="integer") {      
        sigCal<-function(snp){ 
            mod<-summary(lm(phenoall[,index]~snp)) 
            p_value<-mod$coefficients[2,4] 
            return(p_value)} 
    }  
    all_pvalue<-apply(genoall[,-1],2 , sigCal) 
    all_pvalue<-data.frame(SNPs=colnames(genoall[,-1]), pvalue=unlist(all_p
value)) 
    merged<-merge(all_pvalue,snp_map, by="SNPs") 
    merged<-arrange(merged, Chrom., Position) 
    merged$indice<-1:length(snp_data$SNPs) 
    merged$pvalue<- -log10(merged$pvalue) 
    filename<-paste(trait,"_SMA_mod.csv",sep = "") 
    write.csv(merged,filename) 
    figure<-ggplot(merged,aes(Position, pvalue))+geom_point(col="blue")+the
me_bw()+theme(axis.text.x=element_text(angle = 90))+facet_grid(.~Chrom.)+yl
ab("-log10(pvalue)") 
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    return(figure) 
} 

Qualitative resistance under INRA, Flamingo and quantitative resistance 

par(mfrow=c(3,1)) 
SMA.mapping("IT_INRA") 
SMA.mapping("IT_Flamingo") 
SMA.mapping("RLP") 

 

 

 

 

 

 Accounting for funnels using mixed linear model 
Required packages and function 

library(lme4) 
library(lmerTest) 
SMA.mapping.funnel<-function(trait) { 
    index<-grep(trait, colnames(phenoall)) 
    sigCal<-function(snp){ 
        mod<-anova(lmer(phenoall[,index]~(1|funnel)+(1|funnel:plant)+ snp, 
data=phenoall)) 
        p_value<-mod[6] 
        return(p_value)} 
    all_pvalue<-apply(genoall[,-1],2 , sigCal) 
    all_pvalue<-data.frame(SNPs=colnames(genoall[,-1]), pvalue=unlist(all_p
value)) 
    merged<-merge(all_pvalue,snp_map, by="SNPs") 
    merged<-arrange(merged, Chrom., Position) 
    merged$indice<-1:length(snp_data$SNPs) 
    merged$pvalue<- -log10(merged$pvalue) 
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    filename<-paste(trait,"_funnel_mod.csv",sep = "") 
    write.csv(merged,filename) 
    figure<-ggplot(merged,aes(Position, pvalue))+geom_point(col="blue")+the
me_bw()+theme(axis.text.x=element_text(angle = 90))+facet_grid(.~Chrom.)+yl
ab("-log10(pvalue)") 
    return(figure) 
} 

 SIM 
Required packages 

library(qtl) 

The linkage map, genotypic data and phenotypic data, the format was prepared according to the 

r/qtl package’s requirements and saved as Rdata.  

load("IM.RData") 

The function of SIM, the threshold (h=3.9) was determined by permutation  

SIM.mapping<-function(trait){ 
    index<-grep(trait, colnames(magic$pheno)) 
    if (class(magic$pheno[,index])=="numeric") { 
        magic<-calc.genoprob(magic) 
        magic<-jittermap(magic) 
        magic<-sim.geno(magic) 
        out<-scanone(magic,pheno.col = index,method = "imp") 
        write.csv(out, "IM_mod.csv") 
        figure<-plot(out, ylab = "LOD score",col="blue")+abline(h=3.9,col="
red") 
        return (figure) 
         
    } else { 
        if(index==3) { 
            magic$pheno$IT_INRA<-as.character(magic$pheno$IT_INRA) 
            magic$pheno$IT_INRA[!is.na(magic$pheno$IT_INRA)& magic$pheno$IT
_INRA=="R"]<-0 
            magic$pheno$IT_INRA[!is.na(magic$pheno$IT_INRA)& magic$pheno$IT
_INRA=="S"]<-1 
            magic$pheno$IT_INRA<-as.numeric(magic$pheno$IT_INRA) 
            out<-scanone(magic, pheno.col = 3, model = "binary") 
            filename<-paste(trait,"_SIM_mod.csv",sep = "") 
            write.csv(out,filename) 
            figure<-plot(out,ylab = "LOD score",col="blue") 
            return (figure) 
        } 
        else if (index==4) { 
            magic$pheno$IT_Flamingo<-as.character(magic$pheno$IT_Flamingo) 
            magic$pheno$IT_Flamingo[!is.na(magic$pheno$IT_Flamingo)& magic
$pheno$IT_Flamingo=="R"]<-0 
            magic$pheno$IT_Flamingo[!is.na(magic$pheno$IT_Flamingo)& magic
$pheno$IT_Flamingo=="S"]<-1 
            magic$pheno$IT_Flamingo<-as.numeric(magic$pheno$IT_Flamingo) 
            out<-scanone(magic, pheno.col = 4, model = "binary") 



28 
 

            filename<-paste(trait,"_SIM_mod.csv",sep = "") 
            write.csv(out,filename) 
            figure<-plot(out,ylab = "LOD score",col="blue") 
            return (figure) 
        } 
        else{ 
            magic$pheno$Awns<-as.character(magic$pheno$Awns) 
            magic$pheno$Awns[!is.na(magic$pheno$Awns)& magic$pheno$Awns=="N
"]<-0 
            magic$pheno$Awns[!is.na(magic$pheno$Awns)& magic$pheno$Awns=="Y
"]<-1 
            magic$pheno$Awns<-as.numeric(magic$pheno$Awns) 
            out<-scanone(magic, pheno.col = 13, model = "binary") 
            filename<-paste(trait,"_SIM_mod.csv",sep = "") 
            filename<-paste(trait,"_SIM_mod.csv",sep = "") 
            write.csv(out,filename) 
            figure<-plot(out,ylab = "LOD score",col="blue") 
            return (figure) 
        } 
         
    } 
     
} 

Qualitative resistance under INRA, Flamingo and qauntitative resistance 

par(mfrow=c(3,1)) 
SIM.mapping("IT_INRA") 
SIM.mapping("IT_Flamingo") 
SIM.mapping("RLP") 

 

 CIM  
The function of CIM 

CIM.mapping<-function(trait){ 
    index<-grep(trait, colnames(magic$pheno)) 
    magic<-jittermap(magic) 
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    magic<-sim.geno(magic) 
    out<-cim(magic,pheno.col = index,method = "imp") 
    filename<-paste(trait,"_CIM_mod.csv",sep = "") 
    write.csv(out, filename) 
    figure<-plot(out, ylab = "LOD score", col="blue") 
    return (figure) 
} 

Qunatitative resistance RLP 

CIM.mapping("RLP") 
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Appendix C. Association mapping for awning, yield and height   
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