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 The sanitation challenge 1.1

The coming decades will bring profound changes to the size and distribution of the global 

population. The continuing urbanization and overall growth is projected to add 2.5 billion people 

to the urban population by 2050 to become 6.3 billion, with nearly 90 per cent of the increase 

concentrated in Asia and Africa (United Nations, 2014). These developments pose a challenge 

for food security and represent additional pressure on our food supply and on finite natural 

resources, such as phosphorus (Thornton, 2010; Gerbens-Leenes et al., 2010; Cordell et al., 

2011). 

Moreover, worldwide some 2.5 billion people do not have access to an improved sanitation 

facility and some 80 countries were not on track or made insufficient progress to achieve the 

Millennium Development Goals on sanitation (WHO & UNICEF, 2014). The anticipated 

population growth and urbanization will be an additional challenge in sanitation development in 

many countries, such as Indonesia that, despite modest improvement over the past years 

(WHO & UNICEF, 2015) are still in a poor state (ADB, 2013; Kearton et al., 2013).  

 

The absence of well-functioning domestic wastewater and solid waste facilities is associated 

with a number of impacts: 

First, discharge of untreated sewage can lead to adverse health effects in individuals exposed 

through contamination of drinking-water, contamination of irrigated crops or direct contact 

(Shuval, 2003). The World Bank’s Water and Sanitation Program’s (WSP) estimated that poor 

sanitation led to an economic loss of US$ 6 billion annually in Indonesia, equivalent to 2.3% of 

the national GDP (Napitupulu & Hutton, 2008). More than half of these costs were health 

related. Health conditions can be improved by implementing wastewater and solid waste 

interventions (Montgomery & Elimelech, 2007; Waddington & Snilstveit, 2009; Mara et al., 

2010; Malekpour et al., 2013).  

Secondly, discharge of untreated wastewater will increase the load of nutrients (nitrogen (N) 

and phosphorus (P)) and organic components, measured as Chemical Oxygen Demand (COD) 

and Biological Oxygen Demand (BOD), to the environment. This may result in eutrophication 

and low oxygen levels in (coastal) waters, impacting ecosystem functioning, and decrease 

revenues from fisheries and tourism (Hart et al., 2002; Fulazzaky, 2010; Suharyanto & 

Matsushita, 2011; Suwarno et al., 2013). 

Thirdly, absence of wastewater and solid waste facilities may accrue socio-economic impacts, 

such as travel and waiting time for personal hygiene, loss of social capital and equity and 

decreased property values (Tayler et al., 2003; Alam, 2008; Fulazzaky, 2010; Winara et al., 

2011; Hutton, 2013). 

Finally, the value of valuable resources recoverable from wastewater and solid waste, such as 

energy, water, organics, nutrients, plastic and paper is being ignored in the absence of 

sanitation facilities or when applying conventional sanitation systems (e.g. landfilling of solid 
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waste). Therefore, an aspect of sanitation development that receives increasing attention is the 

potential to recover resources from wastewater and solid waste (Lettinga, 2006; Almy, 2008; 

Aprilia et al., 2012; Thibodeau et al., 2014). The abundance of unmanaged solid waste and 

wastewater may result in an abundance of food and economic growth if these resources would 

be managed, recovered and reused in a sustainable way (Mcdonough & Braungart, 2000; 

Braungart et al., 2007; McDonough & Braungart, 2010; Kerstens et al., 2011). Besides the 

needs of households provided with sanitation systems (“front-end” users), also the needs of 

potential users of sanitation by products (“back-end” user) should be considered to foster long-

term operational and financial sustainability (Murray & Ray, 2010a,b). Back-end users comprise 

among others agriculture (Schröder et al., 2011), aquaculture (Mungkung et al., 2013), 

horticulture (Aye & Widjaya, 2006), and plastic and paper processing industries (APKI, 2012; 

GBGIndonesia, 2013). 

 

Therefore, the backlog in development of wastewater and solid waste facilities could be an 

opportunity. Adding the concept of resource recovery in the planning allows for direct 

introduction of a circular resource management, instead of developing a linear management 

system (Agudelo-Vera et al., 2011). Applying this concept on wastewater and solid waste 

management systems, involves a shift in paradigm (Guest et al., 2009; Larsen et al., 2009): 

emphasis is put on improvement of public health and environment as well as on valorization of 

waste, rather than on limitation of damage to public health and the environment applying a 

conventional approach, as is illustrated in Figure 1.1 (modified from Kerstens et al. (2011). In 

case (monetized) benefits of sanitation intervention exceed the implementation and operational 

costs, this may feed into advocacy efforts to raise funding from governments and households 

and may convince the private sector to invest in sanitation (Hutton, 2013). 

 

 

Figure 1.1 Change in perspective of wastewater and solid waste as an isolated problem to an 

integral opportunity by adding value to sanitation planning by resource recovery 
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 State of the art of sanitation planning and resource recovery 1.2

The identified lack in sanitation development in developing countries has been attributed to 

inadequate sanitation regulatory frameworks and cross-sector policy coordination, rapid 

urbanization, low community awareness on the importance of sanitation, land availability, 

limited local capacity and knowledge to assure operation of facilities, and inadequate 

investments in sanitation systems (ADB, 2013; Kearton et al., 2013). In addition, the sanitation 

backlog has been attributed to the absence of a functional sanitation planning framework to 

support planning on spatial scales (village levels to national level) and temporal scales (short-

term and long-term) (Tayler et al., 2003; Baum et al., 2013; WHO & UNICEF, 2014). 

Planning of sustainable wastewater and solid waste interventions is a complex and cross-

sectorial process. It requires integration of a variety of elements, such as (1) health, (2) 

technical, (3) environmental, (4) financial, (5) institutional, (6) socio-demographical aspects, (7) 

demand for sanitation by-products, and (8) socio-economical and welfare aspects (Table 1.1).  

 

Because of the diversity of these elements, planning and evaluation cannot be achieved by one 

single method. A framework that combines several tools, methods and stakeholders to support 

decision or planning tasks is required (Thabrew et al., 2009; Mirakyan & De Guio, 2013).  

The choice of an intervention, such as type of wastewater treatment system, may impact the 

health benefits, the receiving water quality, associated investment and operational cost, 

potential resource recovery and the required institution. Since these factors may mutually 

impact each other, a parallel evaluation provides significant benefits in a dynamic context 

(Pollack, 2009).  
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Table 1.1 Introduction of elements that require integration in sanitation planning 

Elements Example Source 
Health The criteria for comparative evaluation of 

sanitation systems are the characteristics that 
are instrumental for fulfilling the objective of the 
system, such as health improvement.  

Malekpour et al. (2013) 

Technical Appropriate water and wastewater technologies 
mean suitable and reliable technologies and 
depend on timing, the locality and socio-
economic factors. 

Ujang & Buckley (2002); 
Kujawa-Roeleveld & Zeeman 
(2006); Guest et al. (2009); 
Larsen et al. (2009) 

Environmental The impact of treatment system on pollutant 
load to the surface water bodies should be 
taken into consideration in system selection. 

Tsuzuki (2006); Suwarno et al. 
(2013) 

Financial Planning of sanitation system requires insight in 
life cycle costs, Capital Expenditures (CAPEX) 
and operation and maintenance (Operational 
Expenditures (OPEX). 

(Liang & van Dijk (2010); Ward 
(2012); Fonseca et al. (2010) 

Institutional Failure of sanitation systems often have an 
institutional nature, since policies, 
implementation and maintenance in the field of 
urban infrastructure lies on public institutions, 
that may not be capable or willing to come up 
with adequate policies and their enforcement.  

Kvarnström & Mcconville, 
(2007); Van Buuren (2010) 

Socio-
demographical 
aspects 

Relevant demographic and socio-economic 
projections, such as the rate of urbanization, 
and poverty should be considered when 
planning sanitation. 

Loetscher & Keller (2002); 
UNEP (2004) 

Demand for 
sanitation by-
products 

Insight in potential “back-end users,” and 
demand for the products of sanitation (e.g., 
treated wastewater or fertilizer) to motivate 
robust operation and maintenance of complete 
sanitation systems is needed. 

Janssen et al. (2005); Murray & 
Buckley (2009); Murray & Ray 
(2010a); Linderholm et al. 
(2012); Diener et al.(2014) 

Socio-
economical 
and welfare  

Poor sanitation causes significant losses to the 
national economy in terms of health, welfare 
and water quality.  

Napitupulu & Hutton (2008); 
Winters et al. (2014); WSP 
(2014). 

 

Thus, to evaluate the sustainability of a set of alternative sanitation systems, a framework for 

resolving trade-offs across spatial and temporal scales, and sustainability dimensions (social, 

environmental, and economic) is vital (Guest et al., 2009). Following abovementioned essential 

elements, this requires a framework that can combine and quantify: 

1. Technical and financial criteria: Feasibility analysis of wastewater and solid waste systems 

under different residential (urban/rural) conditions; 

2. Nationwide sanitation planning: Interpretation of this feasibility analysis in a (developing 

world’s) nationwide context considering planning targets, spatial and temporal population 

developments, financial, institutional and implementation implication;  

3. Potential demand and supply of sanitation products: Spatial and temporal potential demand 

analysis for recoverable resources from wastewater and solid waste in relation to the 

potential supply; 
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4. Economic costs and benefits of alternative conventional and resource recovery-based 

wastewater and solid waste interventions. 

The relation between these four quantifiable steps is shown in Figure 1.2. Thus, following 

planning targets set by a government as well as envisaged spatial and temporal demographical 

changes, the costs and benefits of sanitation systems are affected by the type of the selected 

system, implementation and planning path and supply and demand of recoverable resources. 

 

 

Figure 1.2 Framework to evaluate costs and benefits of sanitation systems in a nationwide 

planning context 

1.2.1 Status on Sanitation systems and available selection criteria 

1.2.1.1 State of the art of sanitation systems  

A wide range of wastewater and solid waste systems, applicable for countries at different 

stages of their development, is available and has been described in international literature. An 

overview is presented below: 

 

Wastewater treatment systems 

Wastewater treatment systems may be categorized by the number of households served, 

distinguishing on-site systems (single household level), decentralized systems or community 

based systems (typically 50-200 households) and off-site systems (Ulrich et al., 2009; Kearton 

et al., 2013; Tilley et al., 2014).  

The single pit is one of the most widely used on-site sanitation systems worldwide. Urine and 

water percolate into the soil through the bottom of the pit and wall, while microbial action 

degrades part of the organic fraction. To allow for continuous operation safer and easier 
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emptying or enhance production of soil improver, the double ventilated improved (dry) pit latrine 

may be applied (Tilley et al., 2014). Another on-site system is the septic tank that removes 30-

70% of suspended solids, COD and BOD and about 1 log of pathogens (Lettinga et al., 1991; 

Mgana, 2003). Often applied community based systems are anaerobic baffled reactors with an 

anaerobic filter or community bathing washing and toilets centers with a primary treatment 

(Wibisono et al., 2003; Ulrich et al., 2009; Reynaud et al., 2012a; Kearton et al., 2013). Off-site 

technologies comprise anaerobic systems, such as anaerobic filters and the Upflow Anaerobic 

Sludge Blanket (UASB) to remove COD and BOD and (Seghezzo et al., 1998; Said, 2000), 

pond based systems to remove COD, BOD and nutrients (EPA, 2002; Zhai et al., 2011; Mara, 

2013), or activated sludge systems with (enhanced) biological nutrient removal (Brett et al., 

1997; Baetens, 2001). Wastewater treatment technology developments are ongoing to further 

improve the reachable effluent quality and reduce the area footprint, such as membrane 

bioreactors (MBR) (Van Bentem et al., 2006), and, more recently, aerobic granular sludge (De 

Kreuk et al., 2005, 2007; Pronk et al., 2015). 

A range of wastewater technologies have been described that may be used to produce or 

recover valuable resources from wastewater. Anaerobic technologies, like the UASB allow for 

production of energy from organic matter (Lettinga et al., 1993). Duckweed ponds have been 

applied to reduce the nutrient content from (anaerobically pre-treated) wastewater, while 

producing a valuable protein rich product (Van der Steen et al., 1998; Al-Nozaily et al., 2000; El-

Shafai et al., 2007; Kerstens et al., 2009). Anaerobic technologies have also been successfully 

applied to digest the waste activated sludge, thereby reducing the amount of sludge that 

requires final disposal, while producing energy (Mata-Alvares et al., 2000). Valuable nutrients, 

like phosphorus and nitrogen, released during the sludge digestion can be successfully 

recovered using crystallization processes (Battistoni et al., 2002; Shu et al., 2006; Le Corre et 

al., 2009). Moreover, the use of microbial fuel cells may allow for simultaneous energy 

production and ammonia recovery from a nitrogen rich (urine) flow (Kuntke et al., 2012). Waste 

activated sludge as well as septic (fecal) sludge can be composted to produce a stable 

agricultural product (Haug, 1993; Veeken et al., 2003; Koné et al., 2007; Saveyn & Eder, 2014).  

Above described technologies, except for septic tanks, typically treat a combined wastewater, 

comprising both (less polluted) grey water (from bathing, washing activities) and concentrated 

black (feces and urine) water. To enhance resource recovery, source separation has been 

proposed, since this allows for a higher recovery potential (Otterpohl, 2001; Lettinga, 2006; 

Larsen et al., 2009). Separate collection using minimal amount of transport water allows the 

production of a small volume of digested sludge and nutrients that can be used as fertilizer 

directly or after processing. Anaerobic treatment of black water, as a possible core technology 

for energy and nutrient recovery, may provide sufficient energy for the combined anaerobic 

treatment, nitrogen removal and phosphorus recovery (Kujawa-Roeleveld & Zeeman, 2006; 

Abu Ghunmi et al., 2011; De Graaff et al., 2011; Tervahauta et al., 2013). Compared to 
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changes, the costs and benefits of sanitation systems are affected by the type of the selected 

system, implementation and planning path and supply and demand of recoverable resources. 

 

 

Figure 1.2 Framework to evaluate costs and benefits of sanitation systems in a nationwide 

planning context 

1.2.1 Status on Sanitation systems and available selection criteria 

1.2.1.1 State of the art of sanitation systems  

A wide range of wastewater and solid waste systems, applicable for countries at different 

stages of their development, is available and has been described in international literature. An 

overview is presented below: 

 

Wastewater treatment systems 

Wastewater treatment systems may be categorized by the number of households served, 

distinguishing on-site systems (single household level), decentralized systems or community 

based systems (typically 50-200 households) and off-site systems (Ulrich et al., 2009; Kearton 

et al., 2013; Tilley et al., 2014).  

The single pit is one of the most widely used on-site sanitation systems worldwide. Urine and 

water percolate into the soil through the bottom of the pit and wall, while microbial action 

degrades part of the organic fraction. To allow for continuous operation safer and easier 
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emptying or enhance production of soil improver, the double ventilated improved (dry) pit latrine 

may be applied (Tilley et al., 2014). Another on-site system is the septic tank that removes 30-

70% of suspended solids, COD and BOD and about 1 log of pathogens (Lettinga et al., 1991; 

Mgana, 2003). Often applied community based systems are anaerobic baffled reactors with an 

anaerobic filter or community bathing washing and toilets centers with a primary treatment 

(Wibisono et al., 2003; Ulrich et al., 2009; Reynaud et al., 2012a; Kearton et al., 2013). Off-site 

technologies comprise anaerobic systems, such as anaerobic filters and the Upflow Anaerobic 

Sludge Blanket (UASB) to remove COD and BOD and (Seghezzo et al., 1998; Said, 2000), 

pond based systems to remove COD, BOD and nutrients (EPA, 2002; Zhai et al., 2011; Mara, 

2013), or activated sludge systems with (enhanced) biological nutrient removal (Brett et al., 

1997; Baetens, 2001). Wastewater treatment technology developments are ongoing to further 

improve the reachable effluent quality and reduce the area footprint, such as membrane 

bioreactors (MBR) (Van Bentem et al., 2006), and, more recently, aerobic granular sludge (De 

Kreuk et al., 2005, 2007; Pronk et al., 2015). 

A range of wastewater technologies have been described that may be used to produce or 

recover valuable resources from wastewater. Anaerobic technologies, like the UASB allow for 

production of energy from organic matter (Lettinga et al., 1993). Duckweed ponds have been 

applied to reduce the nutrient content from (anaerobically pre-treated) wastewater, while 

producing a valuable protein rich product (Van der Steen et al., 1998; Al-Nozaily et al., 2000; El-

Shafai et al., 2007; Kerstens et al., 2009). Anaerobic technologies have also been successfully 

applied to digest the waste activated sludge, thereby reducing the amount of sludge that 

requires final disposal, while producing energy (Mata-Alvares et al., 2000). Valuable nutrients, 

like phosphorus and nitrogen, released during the sludge digestion can be successfully 

recovered using crystallization processes (Battistoni et al., 2002; Shu et al., 2006; Le Corre et 

al., 2009). Moreover, the use of microbial fuel cells may allow for simultaneous energy 

production and ammonia recovery from a nitrogen rich (urine) flow (Kuntke et al., 2012). Waste 

activated sludge as well as septic (fecal) sludge can be composted to produce a stable 

agricultural product (Haug, 1993; Veeken et al., 2003; Koné et al., 2007; Saveyn & Eder, 2014).  

Above described technologies, except for septic tanks, typically treat a combined wastewater, 

comprising both (less polluted) grey water (from bathing, washing activities) and concentrated 

black (feces and urine) water. To enhance resource recovery, source separation has been 

proposed, since this allows for a higher recovery potential (Otterpohl, 2001; Lettinga, 2006; 

Larsen et al., 2009). Separate collection using minimal amount of transport water allows the 

production of a small volume of digested sludge and nutrients that can be used as fertilizer 

directly or after processing. Anaerobic treatment of black water, as a possible core technology 

for energy and nutrient recovery, may provide sufficient energy for the combined anaerobic 

treatment, nitrogen removal and phosphorus recovery (Kujawa-Roeleveld & Zeeman, 2006; 

Abu Ghunmi et al., 2011; De Graaff et al., 2011; Tervahauta et al., 2013). Compared to 
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conventional treatment methods (e.g. conventional activated sludge systems), black water 

source-separation sanitation system may be significantly superior in terms of climate change, 

resources and human health indicators while having comparable cost, since they (may) 

produce energy and valorize resources (Thibodeau et al., 2014). 

 

Solid waste systems 

Municipal Solid waste management deals with the whole chain of (household) collection, 

transfer, transport and safe disposal or processing of solid waste (Meidiana & Gamse, 2010; 

Achillas et al., 2013). Solid waste comprises a mixture of materials, such as organic waste (e.g. 

vegetable, fruits, garden), paper, plastic, glass, textiles, hazardous components (e.g. batteries) 

(Saeed et al., 2009). In solid waste management, a distinction can be made between minimum 

interventions (all waste is landfilled) and interventions in which the amount of recoverable 

(organic waste, paper and plastic) waste that is disposed is reduced, reused and recycled (3R) 

(Antonopoulos et al., 2014). The application of 3R has been practiced at a decentralized scale 

as well as a centralized (e.g. city or region wide) scale (Pasang et al., 2007; Aprilia et al., 2012).  

The organic solid waste fraction can be treated using composting and/or anaerobic digestion 

(Haug, 1993; Veeken, 2005; Zhu et al., 2010) and may not only result in the production of a 

potential sellable compost and biogas, but also in a reduction on the amount of waste that 

requires landfilling (Norbu et al., 2005). Co-composting or co-digestion of waste activated 

sludge, fecal sludge and organic solid waste fraction can be considered as well and provides 

added value in terms of additional biogas production (Zupan i  et al., 2008; Zitomer et al., 

2008). In addition, household organic (kitchen) solid waste fraction can be directly co-digested 

with black water in a decentralized and source separated sanitation concept (Elmitwalli et al., 

2006). 

As a result of increasing demand for waste plastic, paper and metals, activities to recover these 

materials have been established fairly well in developing countries (including Indonesia), albeit 

typically by the informal sector (Saeed et al., 2009; GBGIndonesia, 2013; Sasaki & Araki, 2013; 

Chaerul et al., 2013). Different plastic solid waste treatment routes can be distinguished 

comprising primary (re-extrusion), secondary (mechanical), tertiary (chemical) and quaternary 

(energy recovery) schemes and technologies (Al-Salem et al., 2009). The recovery of materials 

such as waste paper, not only reduced the amount of waste to be disposed, but is also a 

relatively inexpensive input factor in the production of new paper products and may thus 

contribute to forest conservation (Berglund & Söderholm, 2003). 

 

1.2.1.2 Identified knowledge gaps in system selection criteria 

The selection of wastewater and solid waste systems and their related costs are an important 

element in planning sanitation systems in developing countries (Parkinson et al., 2014). 

Information on pros and cons of systems and technical (e.g. space, ground water table, 
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reliability, energy consumption, resource recovery potential), financial (investment and 

operational costs) and social factors (employment, safety and public health, social acceptance) 

to consider in the selection of systems has been provided by Achillas et al. (2013) and Tilley et 

al. (2014). In addition, a wide range of comparisons and evaluations on wastewater and solid 

waste systems is available (USAID, 2006; WSP, 2011; Aprilia et al., 2012; Eales et al., 2013; 

Kearton et al., 2013). Finally, the causal link between population density and urban functions 

where a lot of people interact (e.g. shopping malls or Commercial Business Districts) and the 

increased occurrence of health issues and environmental problems due to absence of 

sanitation facilities has been well documented (Lasut et al., 2008; Mara et al., 2010; Wright et 

al., 2013; Gondhalekar et al., 2013). However, a combined feasibility analysis of wastewater 

and solid waste systems under different residential conditions and with different degrees of 

resource recovery is lacking in scientific literature (Ersoy et al., 2008). 

There is a trade-off between the technical and financial performance of “high-cost”, better 

performing systems (in terms of pathogens, and organic and nutrients removal and low land 

requirements) on the one hand, and low-cost systems on the other (Rodriguez-Garcia et al., 

2011; Malekpour et al., 2013; Mara, 2013). To link benefits (e.g. public health, the environment, 

resource conservation) of wastewater and solid waste systems to costs (implementation and 

operation and maintenance), the selection of sanitation system should consider both technical 

and financial criteria. 

The technical feasibility analysis requires quantification of system performance, such as 

wastewater pollutant removal efficiencies (COD, BOD, N & P, micro-pollutants and pathogens) 

as well as quantification of consumption and production parameters such as, energy, sludge 

production, land use. This technical feasibility should include a sustainability analysis that 

identifies resource recovery potential from wastewater and solid waste such as energy, 

nutrients, water, organic fertilizer compost, duckweed, plastics, papers, metals (Tervahauta et 

al., 2013).  

In a financial feasibility analysis, life cycle costs should be determined, since these include the 

capital expenditures (CAPEX) and operation expenditures (OPEX) of systems in the short and 

longer term. These take into account hardware (e.g. civil, electrical and mechanical works) and 

software (e.g. studies and design) costs, operation and maintenance, capital maintenance, and 

the need for direct and indirect support, including training, planning and institutional support 

(Fonseca et al., 2010; Starkl et al., 2012). 

  

1.2.2 Sanitation planning  

1.2.2.1 Current types of sanitation planning frameworks 

Several options for sanitation planning support exist, such as frameworks, models, toolkits and 

software programs. These may differ in target group, scales (community to national level), 
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conventional treatment methods (e.g. conventional activated sludge systems), black water 

source-separation sanitation system may be significantly superior in terms of climate change, 

resources and human health indicators while having comparable cost, since they (may) 

produce energy and valorize resources (Thibodeau et al., 2014). 

 

Solid waste systems 

Municipal Solid waste management deals with the whole chain of (household) collection, 

transfer, transport and safe disposal or processing of solid waste (Meidiana & Gamse, 2010; 

Achillas et al., 2013). Solid waste comprises a mixture of materials, such as organic waste (e.g. 

vegetable, fruits, garden), paper, plastic, glass, textiles, hazardous components (e.g. batteries) 

(Saeed et al., 2009). In solid waste management, a distinction can be made between minimum 

interventions (all waste is landfilled) and interventions in which the amount of recoverable 

(organic waste, paper and plastic) waste that is disposed is reduced, reused and recycled (3R) 

(Antonopoulos et al., 2014). The application of 3R has been practiced at a decentralized scale 

as well as a centralized (e.g. city or region wide) scale (Pasang et al., 2007; Aprilia et al., 2012).  

The organic solid waste fraction can be treated using composting and/or anaerobic digestion 

(Haug, 1993; Veeken, 2005; Zhu et al., 2010) and may not only result in the production of a 

potential sellable compost and biogas, but also in a reduction on the amount of waste that 

requires landfilling (Norbu et al., 2005). Co-composting or co-digestion of waste activated 

sludge, fecal sludge and organic solid waste fraction can be considered as well and provides 

added value in terms of additional biogas production (Zupan i  et al., 2008; Zitomer et al., 

2008). In addition, household organic (kitchen) solid waste fraction can be directly co-digested 

with black water in a decentralized and source separated sanitation concept (Elmitwalli et al., 

2006). 

As a result of increasing demand for waste plastic, paper and metals, activities to recover these 

materials have been established fairly well in developing countries (including Indonesia), albeit 

typically by the informal sector (Saeed et al., 2009; GBGIndonesia, 2013; Sasaki & Araki, 2013; 

Chaerul et al., 2013). Different plastic solid waste treatment routes can be distinguished 

comprising primary (re-extrusion), secondary (mechanical), tertiary (chemical) and quaternary 

(energy recovery) schemes and technologies (Al-Salem et al., 2009). The recovery of materials 

such as waste paper, not only reduced the amount of waste to be disposed, but is also a 

relatively inexpensive input factor in the production of new paper products and may thus 

contribute to forest conservation (Berglund & Söderholm, 2003). 

 

1.2.1.2 Identified knowledge gaps in system selection criteria 

The selection of wastewater and solid waste systems and their related costs are an important 

element in planning sanitation systems in developing countries (Parkinson et al., 2014). 

Information on pros and cons of systems and technical (e.g. space, ground water table, 
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reliability, energy consumption, resource recovery potential), financial (investment and 

operational costs) and social factors (employment, safety and public health, social acceptance) 

to consider in the selection of systems has been provided by Achillas et al. (2013) and Tilley et 

al. (2014). In addition, a wide range of comparisons and evaluations on wastewater and solid 

waste systems is available (USAID, 2006; WSP, 2011; Aprilia et al., 2012; Eales et al., 2013; 

Kearton et al., 2013). Finally, the causal link between population density and urban functions 

where a lot of people interact (e.g. shopping malls or Commercial Business Districts) and the 

increased occurrence of health issues and environmental problems due to absence of 

sanitation facilities has been well documented (Lasut et al., 2008; Mara et al., 2010; Wright et 

al., 2013; Gondhalekar et al., 2013). However, a combined feasibility analysis of wastewater 

and solid waste systems under different residential conditions and with different degrees of 

resource recovery is lacking in scientific literature (Ersoy et al., 2008). 

There is a trade-off between the technical and financial performance of “high-cost”, better 

performing systems (in terms of pathogens, and organic and nutrients removal and low land 

requirements) on the one hand, and low-cost systems on the other (Rodriguez-Garcia et al., 

2011; Malekpour et al., 2013; Mara, 2013). To link benefits (e.g. public health, the environment, 

resource conservation) of wastewater and solid waste systems to costs (implementation and 

operation and maintenance), the selection of sanitation system should consider both technical 

and financial criteria. 

The technical feasibility analysis requires quantification of system performance, such as 

wastewater pollutant removal efficiencies (COD, BOD, N & P, micro-pollutants and pathogens) 

as well as quantification of consumption and production parameters such as, energy, sludge 

production, land use. This technical feasibility should include a sustainability analysis that 

identifies resource recovery potential from wastewater and solid waste such as energy, 

nutrients, water, organic fertilizer compost, duckweed, plastics, papers, metals (Tervahauta et 

al., 2013).  

In a financial feasibility analysis, life cycle costs should be determined, since these include the 

capital expenditures (CAPEX) and operation expenditures (OPEX) of systems in the short and 

longer term. These take into account hardware (e.g. civil, electrical and mechanical works) and 

software (e.g. studies and design) costs, operation and maintenance, capital maintenance, and 

the need for direct and indirect support, including training, planning and institutional support 

(Fonseca et al., 2010; Starkl et al., 2012). 

  

1.2.2 Sanitation planning  

1.2.2.1 Current types of sanitation planning frameworks 

Several options for sanitation planning support exist, such as frameworks, models, toolkits and 

software programs. These may differ in target group, scales (community to national level), 
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degree of participation and complexity (Törnqvist et al., 2008). The involvement and 

participation of end-users as decision makers using basic tools (e.g. checklists) is an often 

applied approach for developing countries and allows for location specific selection and 

management of sanitation systems (Ulrich et al., 2009; Van Buuren, 2010; Parkinson et al., 

2014). Other planning support have a high degree of complexity, depend on complex software 

tools, have a low focus on participation, and are resource demanding with regard to time, 

money and competence (Törnqvist et al., 2008). The use of Multi Criteria Decision Tools 

(MCDS) is a common tool for solid waste management strategies. MCDS are mostly dominated 

by cost and environmental impacts of alternative strategies, whereas technical (reliability, 

feasibility, applicability) and social (employment, safety and public health, social acceptance) 

criteria are far less considered (Achillas et al., 2013).  

Planning tools considering the reuse or recovery from sanitation products are scarce (Murray & 

Ray, 2010b). An example is the Design for Service (DFS), comprising a five-step planning 

approach that results in a site-specific, reuse-oriented sanitation scheme. DFS is locally tailored 

to specific users and specific economies and therefore requires local expertise and a significant 

role for user participation and input (Murray & Buckley, 2009; Murray & Ray, 2010a).  

The Service Delivery Assessment (SDA) of the Water and Sanitation Program (WSP, 2014) 

provides a nationwide budget plan and consists of (1) a review of past water and sanitation 

access, (2) a costing model to assess the adequacy of future investments, and (3) a scorecard 

that allows diagnosis of bottlenecks along the service delivery pathways.  

 

1.2.2.2 Identified knowledge gaps in sanitation planning frameworks 

Despite these available sanitation planning support tools, no framework could be identified that 

allow a planner or policy maker to quantify costs and benefits and resolve trade-offs across 

spatial (village to national level) and temporal (short and long-term) scales, and sustainability 

dimensions (social, environmental and economic): 

 

Firstly, existing frameworks typically focus on specific population groups, distinguishing urban, 

rural or poor, non-poor communities (Törnqvist et al., 2008; Mehta & Movik, 2010; Sijbesma, 

2011). However, within a country these population groups (co)exist. Consequently a framework 

should address all groups, while considering that these population groups likely have different 

(i) access to sanitation facilities (WHO & UNICEF, 2014; WSP, 2014), (ii) future access targets 

(e.g. urban and rural) (Bappenas, 2014), (iii) implementing agencies (rural implementation 

typically through the Ministry of health, such as in Indonesia or Lao (Mehta & Movik, 2010; ODI 

(Overseas Development Institute), 2011); urban implementation through the ministry of public 

works or construction, such as in China and Indonesia (Yan et al., 2006; WSP, 2014) and (iv) 

support needs (e.g. financial needs of poor communities) (Sijbesma, 2011).  
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Secondly, existing sanitation frameworks typically focus on one type of sub-sector (e.g. 

wastewater or solid waste intervention) or one type of solution (e.g. decentralized wastewater 

systems) only (Aye & Widjaya, 2006; Pasang et al., 2007; Kraemer, 2010; Henriques & Louis, 

2011). Because both sub-sectors (wastewater and solid waste) aim to improve public health 

and the environment, they should be addressed and solved simultaneously to achieve the 

desired quality of life (Ersoy et al., 2008; ADB, 2013). 

Thirdly, available sanitation planning frameworks may be too complex to apply on a nationwide 

scale or require too many detailed location specific information (e.g. groundwater and soil 

conditions, accessibility, proneness to flooding) such as the Quantitative Microbial Risk 

Assessment (Surinkul & Koottatep, 2009), SANEX decision support system (Loetscher & Keller, 

2002) or the reuse oriented DFS approach (Murray & Buckley, 2009). On the contrary, other 

planning tools, such as WSP’s SDA can provide a sufficient general insight in sanitation 

requirement, but are too general and lack a clear wastewater system selection and 

corresponding basis for costing as well as lack elaboration of the solid waste sector.  

Fourthly, urban infrastructure investments are typically strategic and long-term in nature and 

have important spatial implications. Despite the availability of Geographic Information Systems 

(GIS) that may support regional priority setting and create awareness on the required 

implementation in land use planning activities (Quaye-Ballard & An, 2010; Coutinho-Rodrigues 

et al., 2011; Gondhalekar et al., 2013), this feature is not frequently linked to the output of a 

sanitation planning tool. 

Finally, a planner should be able to define implementation and operational budgets per 

responsible institution (Mara et al., 2010; Winters et al., 2014). To scale up sustainable 

sanitation support it is important that financial support is directly channeled to implementing 

institutions and combined with capacity building and technical assistance (Iyer et al., 2005). 

Louis & Magpili (2007) developed a model that provides a disciplined but simple process for 

reducing persistent deficiencies in sanitation service capacity, but is designed for a community 

level and lacks the possibilities to scale up to a nationwide allocation.  

Thus, a comprehensive framework that (1) directly links a government policy to a nationwide 

long-term planning and budgeting and corresponding allocation to responsible implementation 

institutions, (2) includes all existing population groups, (3) describes both sanitation 

(wastewater and solid waste) sectors and, (4) can visualize the implementation in GIS, is 

missing. 

 

1.2.3 Analysis of potential demand and supply of sanitation products 

To allow for valorization of resources recovered from wastewater and solid waste, it is essential 

to understand the demand for resources that may be recovered from wastewater and solid 

waste.  

 



Chapter 1 

10 
 

degree of participation and complexity (Törnqvist et al., 2008). The involvement and 

participation of end-users as decision makers using basic tools (e.g. checklists) is an often 

applied approach for developing countries and allows for location specific selection and 

management of sanitation systems (Ulrich et al., 2009; Van Buuren, 2010; Parkinson et al., 

2014). Other planning support have a high degree of complexity, depend on complex software 

tools, have a low focus on participation, and are resource demanding with regard to time, 

money and competence (Törnqvist et al., 2008). The use of Multi Criteria Decision Tools 

(MCDS) is a common tool for solid waste management strategies. MCDS are mostly dominated 

by cost and environmental impacts of alternative strategies, whereas technical (reliability, 

feasibility, applicability) and social (employment, safety and public health, social acceptance) 

criteria are far less considered (Achillas et al., 2013).  

Planning tools considering the reuse or recovery from sanitation products are scarce (Murray & 

Ray, 2010b). An example is the Design for Service (DFS), comprising a five-step planning 

approach that results in a site-specific, reuse-oriented sanitation scheme. DFS is locally tailored 

to specific users and specific economies and therefore requires local expertise and a significant 

role for user participation and input (Murray & Buckley, 2009; Murray & Ray, 2010a).  

The Service Delivery Assessment (SDA) of the Water and Sanitation Program (WSP, 2014) 

provides a nationwide budget plan and consists of (1) a review of past water and sanitation 

access, (2) a costing model to assess the adequacy of future investments, and (3) a scorecard 

that allows diagnosis of bottlenecks along the service delivery pathways.  

 

1.2.2.2 Identified knowledge gaps in sanitation planning frameworks 

Despite these available sanitation planning support tools, no framework could be identified that 

allow a planner or policy maker to quantify costs and benefits and resolve trade-offs across 

spatial (village to national level) and temporal (short and long-term) scales, and sustainability 

dimensions (social, environmental and economic): 

 

Firstly, existing frameworks typically focus on specific population groups, distinguishing urban, 

rural or poor, non-poor communities (Törnqvist et al., 2008; Mehta & Movik, 2010; Sijbesma, 

2011). However, within a country these population groups (co)exist. Consequently a framework 

should address all groups, while considering that these population groups likely have different 

(i) access to sanitation facilities (WHO & UNICEF, 2014; WSP, 2014), (ii) future access targets 

(e.g. urban and rural) (Bappenas, 2014), (iii) implementing agencies (rural implementation 

typically through the Ministry of health, such as in Indonesia or Lao (Mehta & Movik, 2010; ODI 

(Overseas Development Institute), 2011); urban implementation through the ministry of public 

works or construction, such as in China and Indonesia (Yan et al., 2006; WSP, 2014) and (iv) 

support needs (e.g. financial needs of poor communities) (Sijbesma, 2011).  
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Secondly, existing sanitation frameworks typically focus on one type of sub-sector (e.g. 

wastewater or solid waste intervention) or one type of solution (e.g. decentralized wastewater 

systems) only (Aye & Widjaya, 2006; Pasang et al., 2007; Kraemer, 2010; Henriques & Louis, 

2011). Because both sub-sectors (wastewater and solid waste) aim to improve public health 

and the environment, they should be addressed and solved simultaneously to achieve the 

desired quality of life (Ersoy et al., 2008; ADB, 2013). 

Thirdly, available sanitation planning frameworks may be too complex to apply on a nationwide 

scale or require too many detailed location specific information (e.g. groundwater and soil 

conditions, accessibility, proneness to flooding) such as the Quantitative Microbial Risk 

Assessment (Surinkul & Koottatep, 2009), SANEX decision support system (Loetscher & Keller, 

2002) or the reuse oriented DFS approach (Murray & Buckley, 2009). On the contrary, other 

planning tools, such as WSP’s SDA can provide a sufficient general insight in sanitation 

requirement, but are too general and lack a clear wastewater system selection and 

corresponding basis for costing as well as lack elaboration of the solid waste sector.  

Fourthly, urban infrastructure investments are typically strategic and long-term in nature and 

have important spatial implications. Despite the availability of Geographic Information Systems 

(GIS) that may support regional priority setting and create awareness on the required 

implementation in land use planning activities (Quaye-Ballard & An, 2010; Coutinho-Rodrigues 

et al., 2011; Gondhalekar et al., 2013), this feature is not frequently linked to the output of a 

sanitation planning tool. 

Finally, a planner should be able to define implementation and operational budgets per 

responsible institution (Mara et al., 2010; Winters et al., 2014). To scale up sustainable 

sanitation support it is important that financial support is directly channeled to implementing 

institutions and combined with capacity building and technical assistance (Iyer et al., 2005). 

Louis & Magpili (2007) developed a model that provides a disciplined but simple process for 

reducing persistent deficiencies in sanitation service capacity, but is designed for a community 

level and lacks the possibilities to scale up to a nationwide allocation.  

Thus, a comprehensive framework that (1) directly links a government policy to a nationwide 

long-term planning and budgeting and corresponding allocation to responsible implementation 

institutions, (2) includes all existing population groups, (3) describes both sanitation 

(wastewater and solid waste) sectors and, (4) can visualize the implementation in GIS, is 

missing. 

 

1.2.3 Analysis of potential demand and supply of sanitation products 

To allow for valorization of resources recovered from wastewater and solid waste, it is essential 

to understand the demand for resources that may be recovered from wastewater and solid 

waste.  
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A distinction can be made between the potential demand and the market demand (Lyneis, 

2000). Demand for resources depends on a number of factors. First of all, it is affected by 

population developments. For example, a growing population requires more food production, 

which may accrue an increased demand for (recoverable) fertilizers (Cordell et al., 2011). 

However, the market demand also depends on the availability of alternative resources and the 

recovery costs compared to prices of competitive resources (Cordell et al., 2011; Saveyn & 

Eder, 2014). The market demand is further affected by the quality and safety of produced 

products (Snyman & Vorster, 2011; Raschid-Sally, 2013), which may depend on the source and 

level of hygienization of sanitation by products (Koné et al., 2007) or raw materials (e.g. 

plastics) (Lazarevic et al., 2010). The market demand for resources has further been associated 

with the level of economic development, with “richer” countries showing a higher recovery rate 

than middle or low income countries in the case of paper recycling (Berglund & Söderholm, 

2003). The market demand can further be affected by planned policies or activities (e.g. 

subsidies, campaigns) (WHO, 2006; Cordell et al., 2011).  

The potential demand for resources provides a better indication than the (current) market 

demand for the possibility to convert to a circular economy (Agudelo-Vera et al., 2011), since it 

fully recognizes the inherent business value of recoverable resources (Braungart et al., 2007). 

A method to visualize the potential demand and supply for resources is a Material Flow 

Analysis (MFA). An MFA maps fluxes of resources, such as organic matter, nutrients, water and 

recyclables (plastics, paper, metals) that are used and transformed as they flow through 

processes within specific system borders (Brunner & Rechberger, 2004). The MFA has been 

applied to analyze the potential for resource recovery from wastewater and solid waste and 

linking it to agricultural production and food security. MFA has been applied in cases in Ethiopia 

analyzing N&P and organic matter flows on a village level (Meinzinger et al., 2009), Thailand for 

water reuse schemes on a city level (Surinkul & Koottatep, 2009), China for phosphorus flows 

on a city level (Qiao et al., 2011), Indonesia for N, P and waste stream on a community level 

(Ushijima et al., 2012) and compost production and demand flows on a European level (Saveyn 

& Eder, 2014) .  

The potential supply of resources follows from number of people served by wastewater or solid 

waste system that allows for a recovery of part of the incoming flow. Several studies have 

determined the amount of resources that can be recovered, such as phosphorus and energy 

(Zeeman & Kujawa-Roeleveld, 2011; De Graaff et al., 2011; Mihelcic et al., 2011), proteins 

(Van der Steen et al., 1998; Cheng & Stomp, 2009) or plastics or paper or small recyclable 

fractions like glass, textile or metal from waste streams (Berglund & Söderholm, 2003; Aprilia et 

al., 2011; Chaerul et al., 2013). 

Quantification of the demand for resources that may be recovered from wastewater or solid 

waste requires and analysis of agricultural and consumer goods markets. The former group 

may comprise fertilizers (e.g. phosphorus) (Cordell et al., 2011), soil improvers such as 
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compost (Veeken et al., 2005), proteins, such as duckweed or algae as a feedstock for 

aquaculture (Islam et al., 2004), biofuels from algae or duckweed (Cheng & Stomp, 2009; 

Adenle et al., 2013) and water (Janssen et al., 2005; Murray & Ray, 2010a). Solid waste may 

include organics, paper (Berglund & Söderholm, 2003), plastics (Al-Salem et al., 2009), metals 

and other valuable recoverable fractions such as glass (Kang & Schoenung, 2005). The 

resource demand analysis requires evaluation and insight in their potential uses: 

• QUEFTS (quantitative evaluation of the fertility of tropical soils) may be used to evaluate the 

potential to use nutrients or organic matter from wastewater for soil fertilization for crop 

production (Janssen et al., 1990). QUEFTS allows for a detailed evaluation on nutrient 

requirements correcting crop demand for losses, nutrient accumulation on soils and ratio 

between nutrients (N, P and K) (Janssen et al., 2005). For long-term analysis, assuming an 

equilibrium between crop specific uptakes and losses would justify the possibility to use 

static fertilization rates independent of soil conditions as applied by Syers et al. (2008). 

Thus, based on specific nutrient and organic soil demand of crops the potential nutrient 

demand may be determined per type of crop; 

• Wastewater treatment applying duckweed and/or algae ponds have been widely practiced 

as an efficient (nutrient removing) treatment step (Van der Steen et al., 1998; El-Shafai et 

al., 2007). Both duckweed and algae can be harvested and applied as protein rich resource 

for animal feed stock, organic fertilizer or biofuel production (Journey et al., 1993; Islam et 

al., 2004; WHO, 2006; Cheng & Stomp, 2009; FAO, 2010; van der Spiegel et al., 2013). 

Duckweed, as a protein rich source, is also expected to enter the European feed and food 

market as replacers for animal-derived proteins, but its use is subject to European Law (van 

der Spiegel et al., 2013). Studies for biofuel production from algae and duckweed show 

their promising potential, but also reveal that they are still in an early stage of development 

and not yet ready for full scale implementation in a development world’s context (Adenle et 

al., 2013; Verma & Suthar, 2015); 

• Potential demand analysis methods for end-of-life-product consumer goods, such as 

plastics, glass, paper and metals are still subject to much debate in literature. Their demand 

depends, among others, on development of recovery technologies, economic 

developments, sustainability policies and (international) trade patterns (Van Beukering, 

2001; Berglund & Söderholm, 2003; Kang & Schoenung, 2005; Al-Salem et al., 2009; 

Lazarevic et al., 2010). 

 

Demand forecast are subject to uncertainties and depend on the type of the market. Whereas 

for agriculture and food demand trends forecast can be made based on population forecast and 

GDP (Gross Domestic Products) (Tilman et al., 2011), more dynamic industries (e.g. consumer 

goods) rely also on external factors, such as macro- economic developments including fuel 

prices, manufacturing capacity and regulations (Lyneis, 2000).  
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Despite the availability of described methods and findings, a comprehensive framework that 

includes recoverable resources from both wastewater and solid waste and allows for a 

nationwide temporal and spatial demand forecast is lacking.  

 

1.2.4 Cost and benefits of sanitation interventions 

1.2.4.1 Existing methods to determine benefits of sanitation interventions 

Policy makers should understand the combined potential outcomes (benefits) of major 

implementation (costs) before making choices (Ward, 2012). The Benefit Cost Ratio (BCR) 

describes benefits of intervention (e.g. health, social, resource recovery) relative to its costs 

(implementation and operation) and can be used to evaluate sanitation interventions (Alam & 

Marinova, 2003; Almy, 2008; WHO, 2012; Hutton, 2013). To identify the total costs and benefits 

of this implementation, monetization of both use values (e.g. sale of recovered resources, lower 

water treatment costs) and non-use values (e.g. averted health or time costs) is applied (Haller 

et al., 2007; Alam, 2008).  

Major benefits that have been monetized and are associated with sanitation development are 

(1) health, (2) access time/welfare, (3) water and environmental quality, and (4) revenues from 

resource recovery (Winara et al., 2011; Hutton, 2013). 

 

1.2.4.2 Need for an integrated approach to evaluate costs & benefits of sanitation  

Individual cause-effects to evaluate costs and benefits of different wastewater and solid waste 

interventions have been well described in literature, such as (1) the effect of discharging a 

pollution load on the quality of receiving water (e.g. Hatt et al., (2004), Suharyanto & 

Matsushita, (2011)), (2) the effect of sanitation intervention on improvement of public health 

(e.g. Malekpour et al. (2013)), (3) impact of wastewater interventions on discharged pollution 

loads (e.g. Suwarno et al. (2013)), (4) economic losses as a result of poor sanitation (e.g. 

Hutton (2013)), and (5) the potential to recover resources from sanitation interventions (De 

Graaff et al., 2011; Cornejo et al., 2013; Tervahauta et al., 2013). However, no integrated 

framework exists in scientific literature that may fully evaluate the costs and benefits of 

sanitation improvements on a national scale.  

 

 Objective of this thesis 1.3

The objective of this these is to develop a framework that can quantitatively evaluate a set of 

alternative wastewater and solid waste systems and allows for resolving costs and benefits 

across spatial and temporal scales, and sustainability dimensions (social, environmental, 

economical) on a nationwide scale.  
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It is hypothesized that access to sanitation in developing countries and specifically Indonesia 

can be accelerated by an increased cost benefit ratio resulting from resource recovery.  

To test this hypothesis, a sanitation planning framework will be developed and demonstrated, 

using Indonesia as an example. Following the identified knowledge gaps described in 

paragraph 1.2, it links the following four elements: 

1. Analysis of the technical and financial feasibility of wastewater and solid systems in relation 

to the residential (urban/rural) features; 

2. Development of a sanitation planning framework that translates targets and implementation 

into budgets allocated to responsible institutions for implementation. The impact of 

interventions on production of recoverable resources and consumption (e.g. energy, area) 

as well as (wastewater) pollution discharged should be made visible; 

3. Spatial and temporal comparison of the potential demand and supply of recoverable 

resource from wastewater and solid waste; 

4. Analysis of the Benefit to Costs Ratio (BCR): The final step involves the development of an 

approach that links the overall costs (OPEX + CAPEX) with the Benefits of wastewater and 

solid waste interventions (health, environment & water quality improvement, socio-

economic, land values increase and sale of recoverable resources. 

 

 Background on current Indonesian wastewater and solid waste sector 1.4

The development of the framework is illustrated using Indonesia as an example. While access 

to improved sanitation facilities in South East Asia has reached 72%, Indonesia is lagging 

behind with only 61% having access (WHO & UNICEF, 2015). In addition, economic losses due 

to the absence of sanitation in Indonesia are nearly a factor 10 higher than those of other Asian 

countries, such as the Philippines, Cambodia and Vietnam (Hutton et al., 2008). Moreover, the 

government of Indonesia has committed itself to provide 100% access to sanitation before 2020 

(Bappenas, 2014).  

Located in Southeast Asia, The Republic of Indonesia is an archipelago bordering Australia, 

East-Timor, Malaysia, Papua New Guinea, the Philippines and Singapore (see Figure 1.3).  
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Figure 1.3 The Republic of Indonesia (Wikimedia, 2014) 
 

In the coming 20 years Indonesia’s population is expected to grow from the current 250 million 

to over 305 million people (BPS, 2013). An equally remarkable urbanization is forecasted, as by 

2035 an estimated two third of the Indonesian population will live in urban areas compared to 

the current 50% (BPS, 2013). Nearly 60% of the population lives on Java (BPS, 2013). 

 

The vast majority of households in Indonesia with access to wastewater facilities relies on 

septic tanks (WSP, 2013). A septic tank is the minimum treatment requirement in Indonesia 

(BPS, 2014) and the construction and maintenance is the responsibility of private households 

(WSP, 2011).  

 

Despite the availability of design standards for septic tanks (MoPW, 2000), these are rarely 

enforced due to the absence of institutional capacity and, consequently, 95% of septic tanks 

leak and result in the pollution of groundwater (WSP, 2013). Community based systems or 

SANIMAS (Indonesian: Sanitasi oleh Masyarakat) comprising a community sanitation center or 

a simplified sewer system of small diameter pipes connected to an anaerobic baffled reactor, 

have been gaining grounds (Ulrich et al., 2009; Roma & Jeffrey, 2010; Reynaud et al., 2012b). 

By 2010, nearly 600 of such systems were implemented with 5,000 additional systems planned 

for the near future (Eales et al., 2013; Kearton et al., 2013). Evaluation of these systems 

(Reynaud et al., 2012a; Eales et al., 2013) confirmed the technical capabilities of the anaerobic 

systems to meet applicable effluent standards (MoE, 2003). However, challenges were 

identified such as the division of roles and responsibilities in technical and financial 

management, and the removal and safe disposal of sludge (Eales et al., 2013).  

By 2012, only 12 centralized municipal wastewater treatment plants (WWTP) were in operation 

in Indonesia serving less than 1% of the population (USAID (United States Agency for 

International Development), 2006; Kearton et al., 2013). The systems utilized were (aerated) 

The sanitation challenge 

17 
 

lagoons, UASB (Upflow Anaerobic Sludge Blanket), Rotating Bio Contactors (RBC’s) and 

activated sludge systems (Kearton et al., 2013). Poor sewer network quality causes seepage of 

groundwater into the network, which dilutes the sewage and increases the flow to the treatment 

works (USAID, 2006). Connecting households to the sewer systems is a major problem  and 

requires institutional strengthening and advocacy (Whittington et al., 2000; Kearton et al., 2013; 

Winters et al., 2014). Several medium centralized WWT systems (serving 500 to 5,000 

households), typically RBC’s or Anaerobic Filters, were established in the past years (PDPAL-

Banjarmasin, 2012) or are planned (Kearton et al., 2013).  

Existing municipal solid waste (MSW) systems include the collection of waste from households 

by motorized or hand carts to a transfer station, followed by transportation to a landfill (TTPS, 

2009; Aprilia et al., 2012). Between 2010 and 2014, 207 municipal landfills were constructed 

but only 132 have sufficient capacity until 2019 (MoPW, 2014). The government is aiming for a 

20% reduction of (urban) waste landfilled through the promotion of the “3R concept (Reduce, 

Reuse, Recycle)” (Bappenas, 2011), which has resulted in the construction of approximately 

300 communal 3R stations by 2014 (MoPW, 2013). A lively, but informal sector has developed 

that is active in the recovery of reusable solid waste components, such as plastics and paper 

(Sasaki & Araki, 2013; Chaerul et al., 2013). 

The provision of sanitation services in Indonesia has been divided between central government 

for policy making and overviewing, and local governments for implementation following Law 

32/2004 (ADB, 2013). However, the actual responsibilities for particular subsectors lie with 

individual line ministries and their corresponding offices at local level (WSP, 2014).  

The Ministry of Public Works is the lead agency for providing sanitation infrastructure to urban 

and rural areas. It provides regulations for both wastewater systems (Decree 16/2008; covering 

(i) increased coverage of wastewater, (ii) increased community and private sector involvement , 

(iii) development of a regulatory framework for urban sanitation, (iv) capacity building for 

wastewater management, and (v) increased investment for wastewater infrastructure) and solid 

waste (Decree 21/2006; covering (1) waste reduction at the source, (2) participation of 

householders and local community organizations) (ADB, 2013). The Ministry of Health is 

responsible for behavior change with a strong focus on rural sanitation development. Under its 

leadership the Community-Led Total Sanitation (CLTS) (Mehta & Movik, 2010) Strategy has 

been implemented since 2005. The CLTS is based on 5 pillars, being hand washing with soap, 

hygiene and safe food and water treatment, safe wastewater management and solid waste 

management at household level. The Ministry of planning (BAPPENAS) is in charge of setting 

sector targets and policy development, whereas the Ministry of Home Affairs is responsible for 

capacity building for local governments (WSP, 2014). 

 



Chapter 1 

16 
 

 

Figure 1.3 The Republic of Indonesia (Wikimedia, 2014) 
 

In the coming 20 years Indonesia’s population is expected to grow from the current 250 million 

to over 305 million people (BPS, 2013). An equally remarkable urbanization is forecasted, as by 

2035 an estimated two third of the Indonesian population will live in urban areas compared to 

the current 50% (BPS, 2013). Nearly 60% of the population lives on Java (BPS, 2013). 

 

The vast majority of households in Indonesia with access to wastewater facilities relies on 

septic tanks (WSP, 2013). A septic tank is the minimum treatment requirement in Indonesia 

(BPS, 2014) and the construction and maintenance is the responsibility of private households 

(WSP, 2011).  

 

Despite the availability of design standards for septic tanks (MoPW, 2000), these are rarely 

enforced due to the absence of institutional capacity and, consequently, 95% of septic tanks 

leak and result in the pollution of groundwater (WSP, 2013). Community based systems or 

SANIMAS (Indonesian: Sanitasi oleh Masyarakat) comprising a community sanitation center or 

a simplified sewer system of small diameter pipes connected to an anaerobic baffled reactor, 

have been gaining grounds (Ulrich et al., 2009; Roma & Jeffrey, 2010; Reynaud et al., 2012b). 

By 2010, nearly 600 of such systems were implemented with 5,000 additional systems planned 

for the near future (Eales et al., 2013; Kearton et al., 2013). Evaluation of these systems 

(Reynaud et al., 2012a; Eales et al., 2013) confirmed the technical capabilities of the anaerobic 

systems to meet applicable effluent standards (MoE, 2003). However, challenges were 

identified such as the division of roles and responsibilities in technical and financial 

management, and the removal and safe disposal of sludge (Eales et al., 2013).  

By 2012, only 12 centralized municipal wastewater treatment plants (WWTP) were in operation 

in Indonesia serving less than 1% of the population (USAID (United States Agency for 

International Development), 2006; Kearton et al., 2013). The systems utilized were (aerated) 

The sanitation challenge 

17 
 

lagoons, UASB (Upflow Anaerobic Sludge Blanket), Rotating Bio Contactors (RBC’s) and 

activated sludge systems (Kearton et al., 2013). Poor sewer network quality causes seepage of 

groundwater into the network, which dilutes the sewage and increases the flow to the treatment 

works (USAID, 2006). Connecting households to the sewer systems is a major problem  and 

requires institutional strengthening and advocacy (Whittington et al., 2000; Kearton et al., 2013; 

Winters et al., 2014). Several medium centralized WWT systems (serving 500 to 5,000 

households), typically RBC’s or Anaerobic Filters, were established in the past years (PDPAL-

Banjarmasin, 2012) or are planned (Kearton et al., 2013).  

Existing municipal solid waste (MSW) systems include the collection of waste from households 

by motorized or hand carts to a transfer station, followed by transportation to a landfill (TTPS, 

2009; Aprilia et al., 2012). Between 2010 and 2014, 207 municipal landfills were constructed 

but only 132 have sufficient capacity until 2019 (MoPW, 2014). The government is aiming for a 

20% reduction of (urban) waste landfilled through the promotion of the “3R concept (Reduce, 

Reuse, Recycle)” (Bappenas, 2011), which has resulted in the construction of approximately 

300 communal 3R stations by 2014 (MoPW, 2013). A lively, but informal sector has developed 

that is active in the recovery of reusable solid waste components, such as plastics and paper 

(Sasaki & Araki, 2013; Chaerul et al., 2013). 

The provision of sanitation services in Indonesia has been divided between central government 

for policy making and overviewing, and local governments for implementation following Law 

32/2004 (ADB, 2013). However, the actual responsibilities for particular subsectors lie with 

individual line ministries and their corresponding offices at local level (WSP, 2014).  

The Ministry of Public Works is the lead agency for providing sanitation infrastructure to urban 

and rural areas. It provides regulations for both wastewater systems (Decree 16/2008; covering 

(i) increased coverage of wastewater, (ii) increased community and private sector involvement , 

(iii) development of a regulatory framework for urban sanitation, (iv) capacity building for 

wastewater management, and (v) increased investment for wastewater infrastructure) and solid 

waste (Decree 21/2006; covering (1) waste reduction at the source, (2) participation of 

householders and local community organizations) (ADB, 2013). The Ministry of Health is 

responsible for behavior change with a strong focus on rural sanitation development. Under its 

leadership the Community-Led Total Sanitation (CLTS) (Mehta & Movik, 2010) Strategy has 

been implemented since 2005. The CLTS is based on 5 pillars, being hand washing with soap, 

hygiene and safe food and water treatment, safe wastewater management and solid waste 

management at household level. The Ministry of planning (BAPPENAS) is in charge of setting 

sector targets and policy development, whereas the Ministry of Home Affairs is responsible for 

capacity building for local governments (WSP, 2014). 

 



Chapter 1 

18 
 

 Scope of this thesis 1.5

We first provide an analysis on how an integrated wastewater and solid waste management 

system may add value in terms of recoverable resources and financial benefits in a Chinese 

residential area development (Chapter 2). For years China has been undergoing rapid 

urbanization and economic development. However, these developments have negatively 

impacted the environment and China is suffering from severe water pollution as a result of 

discharge of untreated wastewater (Zhang et al., 2002; van Dijk & Mingshun, 2005). As a result, 

China plans to reach an 85% treatment target by 2015 and a 15% wastewater recycling rate by 

2015 (Wang, 2012). In this analysis potential wastewater and solid waste treatment schemes 

applicable in the Chinese context are evaluated. Starting point is the closing of material cycles 

focusing on possibilities to recover and reuse valuable resources and energy from “waste” 

produced in an urban setting. Concepts with and with source separation will be compared. 

 

Secondly we describe the core of Indonesia’s current wastewater improvement strategy  

(Chapter 3). Decentralized communal treatment systems are often promoted as the core of the 

sanitation improvement in Indonesia for their low cost, their decentralized features as well as 

their potential to effectively remove organic pollutants (COD, BOD) and solids (Ulrich et al., 

2009). Since 2009 community-managed DEWATS (Decentralized Wastewater Treatment 

Systems) have been assigned a central role in reducing open defecation, improving urban 

sanitation and meeting its Millennium Development Goal for sanitation (Eales et al., 2013). 

Limited up to date information is available on the actual sustained performance of applied 

systems.  

Taking the massive scale of planned implementation into consideration, an evaluation of the 

technical and financial-economic aspects and users’ involvement of implemented treatment 

systems is performed. 

 

In Chapter 4, the technical and feasibility analysis of wastewater and solid waste systems in 

the context of Indonesia is presented. Based on the analysis, a principle, residential area-

dependent, system selection is proposed that can be a direct input for a sanitation planning.  

 

The development of a sanitation planning framework is described in Chapter 5. The principle 

selection criteria framework, developed in Chapter 4, is applied on the anticipated population 

and residential area development in Indonesia following the government’s sanitation access 

targets. The output comprise (1) visualization of implementation in GIS, (2) quantification of 

budgets and systems required, and (3) distribution of the budget according to implementing 

institutions 
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The developed approach to determine the potential demand for recoverable resources from 

wastewater and solid waste is presented in Chapter 6. Following past development, growth 

forecast and corresponding time bound and location dependent resource demand for 

agriculture (crops, plantations and horticulture), aquaculture and consumer goods (paper and 

plastics) are determined. The determined potential resource demand is finally compared to the 

potential recovery potential for Indonesia. 

  

An integrated approach to evaluate costs and benefits of wastewater and solid waste 

management to improve water quality is introduced in Chapter 7. The functionality will be 

illustrated using the heavily polluted Citarum River in West Java (Indonesia) as an example. 

The presented approach will allow for a quantification of the impact of different types of 

interventions on (1) water quality improvement, (2) resource recovery potential, and (3) 

monetized benefits to costs ratio. 

 

In Chapter 8 the outcomes of these made steps are integrated and synthesized into a National 

Sanitation Planning (NaSaP) framework. The framework is discussed and an outreach to future 

extension possibilities is presented.  
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 Scope of this thesis 1.5

We first provide an analysis on how an integrated wastewater and solid waste management 

system may add value in terms of recoverable resources and financial benefits in a Chinese 

residential area development (Chapter 2). For years China has been undergoing rapid 

urbanization and economic development. However, these developments have negatively 

impacted the environment and China is suffering from severe water pollution as a result of 

discharge of untreated wastewater (Zhang et al., 2002; van Dijk & Mingshun, 2005). As a result, 

China plans to reach an 85% treatment target by 2015 and a 15% wastewater recycling rate by 

2015 (Wang, 2012). In this analysis potential wastewater and solid waste treatment schemes 

applicable in the Chinese context are evaluated. Starting point is the closing of material cycles 

focusing on possibilities to recover and reuse valuable resources and energy from “waste” 

produced in an urban setting. Concepts with and with source separation will be compared. 

 

Secondly we describe the core of Indonesia’s current wastewater improvement strategy  

(Chapter 3). Decentralized communal treatment systems are often promoted as the core of the 

sanitation improvement in Indonesia for their low cost, their decentralized features as well as 

their potential to effectively remove organic pollutants (COD, BOD) and solids (Ulrich et al., 

2009). Since 2009 community-managed DEWATS (Decentralized Wastewater Treatment 

Systems) have been assigned a central role in reducing open defecation, improving urban 

sanitation and meeting its Millennium Development Goal for sanitation (Eales et al., 2013). 

Limited up to date information is available on the actual sustained performance of applied 

systems.  

Taking the massive scale of planned implementation into consideration, an evaluation of the 

technical and financial-economic aspects and users’ involvement of implemented treatment 

systems is performed. 

 

In Chapter 4, the technical and feasibility analysis of wastewater and solid waste systems in 

the context of Indonesia is presented. Based on the analysis, a principle, residential area-

dependent, system selection is proposed that can be a direct input for a sanitation planning.  

 

The development of a sanitation planning framework is described in Chapter 5. The principle 

selection criteria framework, developed in Chapter 4, is applied on the anticipated population 

and residential area development in Indonesia following the government’s sanitation access 

targets. The output comprise (1) visualization of implementation in GIS, (2) quantification of 

budgets and systems required, and (3) distribution of the budget according to implementing 

institutions 
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The developed approach to determine the potential demand for recoverable resources from 

wastewater and solid waste is presented in Chapter 6. Following past development, growth 

forecast and corresponding time bound and location dependent resource demand for 

agriculture (crops, plantations and horticulture), aquaculture and consumer goods (paper and 

plastics) are determined. The determined potential resource demand is finally compared to the 

potential recovery potential for Indonesia. 

  

An integrated approach to evaluate costs and benefits of wastewater and solid waste 

management to improve water quality is introduced in Chapter 7. The functionality will be 

illustrated using the heavily polluted Citarum River in West Java (Indonesia) as an example. 

The presented approach will allow for a quantification of the impact of different types of 

interventions on (1) water quality improvement, (2) resource recovery potential, and (3) 

monetized benefits to costs ratio. 

 

In Chapter 8 the outcomes of these made steps are integrated and synthesized into a National 

Sanitation Planning (NaSaP) framework. The framework is discussed and an outreach to future 

extension possibilities is presented.  
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Abstract 

China is undergoing rapid urbanization and economic development. This requires a new 

approach on spatial planning and environmental infrastructure. In the presented project an 

example of this approach is given for the city of Changzhou (China) where a new residential 

area (Qinglong district) will be developed for 100.000 inhabitants. Key issue within the 

formulation of sustainable sanitation concepts is the integration and management of water, 

waste and energy in such a way that they will become beneficial to the establishment of the 

envisaged green city. Starting point was the closing of material cycles focusing on 

possibilities to recover and reuse valuable resources and energy from “waste” produced in an 

urban setting. Four different scenarios focusing on water, nutrient and energy recovery were 

compared with the baseline wastewater management practice. Besides environmental 

benefits, the economic benefits of sustainable sanitation concepts are attractive, the break 

even point with the baseline scenario, is already after 5 years, provided that recovered 

resources will be sold for a marketable price. 

We believe that presented concepts are applicable for a wide range of new urban 

development initiatives in China and similar rapidly developing densely populated regions 

worldwide. 

 

Keywords: Sustainable sanitation, resource recovery, energy production, economic analysis, 

CO2-emission reduction 
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 Introduction 2.1

With annual growth rates frequently in the low-double digit range during the previous 15 

years, China’s economic development has been impressive. Various authors (Zhang et al., 

2002; van Dijk & Mingshun, 2005) have identified a negative impact of this economic 

progress on the environment. China’s already stressed environment is going through 

additional stress caused by the rapid industrialization and urbanization. Water scarcity and 

deteriorating water quality of rivers, lakes and groundwater are the result of industrial, 

municipal and agricultural sewage and drainage discharge (UNDP, 2005). Besides the low 

treatment rate, with a reported value of 34 % in 2002, also a low efficiency in water utilization 

and a high universal wasting of water are identified. Solving this is considered as the major 

challenge for China (Zhang et al., 2002).  

The project described in this paper is located in Jiangsu province (South East China). 

Jiangsu province, as a coastal province, is one of five provinces that contributed a total of 

more than one third of China’s GDP (Heilig, 2006). Changzhou city is located in the South of 

Jiangsu. The nearby located Taihu lake suffered from severe euthrophication in May 2007. 

As a result of this event and the expected population increase from today’s 1.4 million to a 

planned 1.8 million people in 2020 and at the same time a planned increase of total GDP in 

the urban area of 138-150 billion RMB to 370-400 billion RMB in 2020, the Changzhou 

government will follow a sustainable economic development path. The Qinglong district is 

identified as a new area in which this sustainable development should be put into practice. 

Currently the area is used for some minor farming activities, but should, in 5 years from now, 

develop into an urban area housing 100,000 people. Qinglong is regarded to start from a 

greenfield situation.  

 
 Methods 2.2

Key issue for sanitation concepts is the integration and management of water, waste and 

energy. Applying this approach will help the government in achieving its sustainable 

economic ambition. In the presented concepts the focus is on closing material and energy 

cycles. Thus, “waste” is no longer perceived as a problem, but as a valuable resource that 

can be recovered. Optimizing the use of energy combined with the recovery of energy in 

waste streams contributes to China’s national ambition of reducing CO2 emissions.  

The possibilities and virtues for resource recovery from wastewater and organic waste have 

been extensively investigated (Otterpohl, 2001; Lettinga, 2006). With the different resource 

recovery possibilities a distinction has been made between three major opportunities: 

1. Reuse of high quality effluent produced with Membrane Bioreactor (MBR) technology 

(Van Bentem et al., 2006);   

2. Recovery of energy through application of anaerobic treatment (Kujawa-Roeleveld et al., 

2005); 
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example of this approach is given for the city of Changzhou (China) where a new residential 

area (Qinglong district) will be developed for 100.000 inhabitants. Key issue within the 

formulation of sustainable sanitation concepts is the integration and management of water, 

waste and energy in such a way that they will become beneficial to the establishment of the 

envisaged green city. Starting point was the closing of material cycles focusing on 

possibilities to recover and reuse valuable resources and energy from “waste” produced in an 

urban setting. Four different scenarios focusing on water, nutrient and energy recovery were 

compared with the baseline wastewater management practice. Besides environmental 

benefits, the economic benefits of sustainable sanitation concepts are attractive, the break 

even point with the baseline scenario, is already after 5 years, provided that recovered 

resources will be sold for a marketable price. 

We believe that presented concepts are applicable for a wide range of new urban 

development initiatives in China and similar rapidly developing densely populated regions 

worldwide. 

 

Keywords: Sustainable sanitation, resource recovery, energy production, economic analysis, 

CO2-emission reduction 
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 Introduction 2.1

With annual growth rates frequently in the low-double digit range during the previous 15 

years, China’s economic development has been impressive. Various authors (Zhang et al., 

2002; van Dijk & Mingshun, 2005) have identified a negative impact of this economic 

progress on the environment. China’s already stressed environment is going through 

additional stress caused by the rapid industrialization and urbanization. Water scarcity and 

deteriorating water quality of rivers, lakes and groundwater are the result of industrial, 

municipal and agricultural sewage and drainage discharge (UNDP, 2005). Besides the low 

treatment rate, with a reported value of 34 % in 2002, also a low efficiency in water utilization 

and a high universal wasting of water are identified. Solving this is considered as the major 

challenge for China (Zhang et al., 2002).  

The project described in this paper is located in Jiangsu province (South East China). 

Jiangsu province, as a coastal province, is one of five provinces that contributed a total of 

more than one third of China’s GDP (Heilig, 2006). Changzhou city is located in the South of 

Jiangsu. The nearby located Taihu lake suffered from severe euthrophication in May 2007. 

As a result of this event and the expected population increase from today’s 1.4 million to a 

planned 1.8 million people in 2020 and at the same time a planned increase of total GDP in 

the urban area of 138-150 billion RMB to 370-400 billion RMB in 2020, the Changzhou 

government will follow a sustainable economic development path. The Qinglong district is 

identified as a new area in which this sustainable development should be put into practice. 

Currently the area is used for some minor farming activities, but should, in 5 years from now, 

develop into an urban area housing 100,000 people. Qinglong is regarded to start from a 

greenfield situation.  

 
 Methods 2.2

Key issue for sanitation concepts is the integration and management of water, waste and 

energy. Applying this approach will help the government in achieving its sustainable 

economic ambition. In the presented concepts the focus is on closing material and energy 

cycles. Thus, “waste” is no longer perceived as a problem, but as a valuable resource that 

can be recovered. Optimizing the use of energy combined with the recovery of energy in 

waste streams contributes to China’s national ambition of reducing CO2 emissions.  

The possibilities and virtues for resource recovery from wastewater and organic waste have 

been extensively investigated (Otterpohl, 2001; Lettinga, 2006). With the different resource 

recovery possibilities a distinction has been made between three major opportunities: 

1. Reuse of high quality effluent produced with Membrane Bioreactor (MBR) technology 

(Van Bentem et al., 2006);   

2. Recovery of energy through application of anaerobic treatment (Kujawa-Roeleveld et al., 

2005); 
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3. Recovery of nutrients through application of struvite precipitation (MAP process) focusing 

on P-recovery (Maurer et al., 2006); 

In present study enhanced N-recovery processes like electrodialysis, reverse osmosis or ion 

exchange were not included, as these are not successfully proven yet (Van Voorthuizen et 

al., 2008). 

 

2.2.1 Studied scenarios 

Based on the identified potential usage of these recovered resources, four scenarios were 

developed employing source separation and were compared to a baseline scenario (Figure 

2.1). 

 

2.2.2 Wastewater characteristics 

Calculations of greywater and black water and urine parameters were based on Kujawa-

Roeleveld, (2005). Table 2.1 shows the applied values of the in-house water consumption. 

 

Table 2.1 Applied values for in-house water consumption a, b 

Parameter Unit Value 

Greywater l/cap/d 90 

frequency female WC faeces + urine 1/d 1.5 

frequency female WC urine 1/d 6 

frequency male WC faeces + urine 1/d 2 

frequency male WC urine 1/d 2 

frequency male urinoir 1/d 4 

water use WC male/female to blackwater l/flush 6 

water use WC male/female to urine l/flush 3 
water use urinoir l/flush 0.1 
a In China separate discharge of rainwater from wastewater is common practice. 
b For the irrigation of city parks a value as presented by the city council of 0,75 m3/m2/year is 

applied. 

 

2.2.3 Efficiency of treatment units and conversion factors 

An anaerobic COD removal efficiency of 70% is applied for blackwater treatment (Elmitwalli 

et al., 2006; De Mes, 2007). Effluent characteristics and energy data for an MBR were 

obtained from the full-scale practical MBR in Varsseveld (Van Bentem et al., 2006). 

Nitrification and denitrification are assumed to proceed via conventional processes. 

Calculations of CO2 emission were based on oxidation of organic matter with an average 

TOC/COD ratio of 0.33 (Van Bakergem & Groen, 1998). For the calculation of CO2 emission 
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as a result of electricity production a CEF/MWh of 0.7822 is applied 

(http://cdm.ccchina.gov.cn).  

 
1. Combined collection and treatment of all wastewater streams (COM) in a (MBR). 

 
2. Treatment of COM plus the organic kitchen waste (OW) fraction after which MBR was applied. 

 
3. Combined collection and anaerobic treatment of toilet wastewater (blackwater BW) and OW, 
after which the effluent is combined with the remaining wastewater (“greywater GW”) and treated in 
an MBR. 

 

4. Separate collection of urine (U), enables nutrient recovery as struvite via MAP precipitation; 
effluent is combined with the separately collected faeces (F) and OW and treated anaerobically. 
Finally, the effluent of the anaerobic treatment is combined with GW and treated in an MBR. 

 
Baseline scenario: Combined collection and treatment of all wastewater streams (COM) in a 
conventional WWTP. 

 

Figure 2.1 Developed scenarios 
 

2.2.4 Economic costs and benefits 

In 2008 10 RMB equaled ±1 euro. Costs for the sewer system were obtained via DHVs’ local 

design institute and are 650 RMB/m for pipes inside the city (total 30 km) and 3.000 RMB/m 

for main pipes (additional 5 km in baseline scenario). For separate collection of blackwater 

and greywater, costs were 1.5 times higher and 1.7 times higher in case of additional 

separate urine collection (communication with the DHV sewerage department). 
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Presented capital costs (CAPEX) were based on DHV’s estimates of realized projects and 

converted to the local Chinese situation by the DHV China office and were calculated by 

annuities in which the depreciation period for civil works and the sewer system is 30 years, 

whereas for mechanical and electromechanical equipment 20 years was applied. Operational 

(OPEX) costs (sludge treatment, labour, maintenance) as well as Consumer Price Index 

(8.3%), energy price increase (9.8%) and interest (7.8%) were obtained via Chinese local 

sources. Membranes need to be replaced every 5 years and are considered part of OPEX. 

Determination of the running costs over time was based on the sum of indexed OPEX and 

CAPEX. All assumed values in this paper, e.g. sewer price, price for the products, energy 

price etc., were predicted based on historical market development but can be subject to 

change. A sensitivity analyses can help to identify the influence of a change of each 

individual value on the total costs. However, at this stage we consider this outside the scope 

of this paper.  

 

 Results and discussion 2.3

2.3.1 Wastewater production 

The characteristics of produced wastewater streams in different scenarios are presented in 

Table 2.2. 

 

Table 2.2 Wastewater characteristics in the scenarios; COM: all wastewater streams OW: 

organic kitchen waste, BW: blackwater, GW: greywater, F: faeces, U: urine 

Parameter Unit Scenario 1 Scenario 2 Scenario 3/4 Scenario 3 Scenario 4 
  COM COM+ OW GW BW+ OW F+OW U 
Flow m3/d 11,260 11,315 9,000 2,315 1,100 1,215 
COD mg/l 1000 1520 445 5700 11070 800 
TN mg/l 85 105 11 470 500 440 
TP mg/l 17 25 4 106 152 62 
 

2.3.2 Energy data 

Figure 2.2 shows the energy data for the operation of the four different scenarios. In the 

baseline scenario surface aeration is applied, as this is currently widely applied in China due 

to its robustness and low maintenance. In the other presented scenarios bubble aeration is 

applied, as this is generally more energy efficient.  
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Figure 2.2 Energy produced and consumed in the treatment process 

 

Figure 2.3 CO2 emissions in the different scenarios 

 

Compared to the baseline scenario, application of an MBR (Scenario 1) consumes more 

energy. Based on the loading, only Scenario 2-4 can be compared, since here the organic 

fraction of the kitchen waste is included. From that perspective, it becomes clear that 

Scenario 2 is worst in terms of energy consumption, due to a high energy input requirement 

for aeration as well as for membrane filtration. Both Scenario 3 and 4 result in an energy 

producing system, despite the application of an MBR. Scenario 4 is most favorable as part of 

the nitrogen has been removed during MAP precipitation process and therefore less 

nitrification and thus aeration is required. 
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2.3.3 CO2 emission 

In a WWTP the total CO2 emission is the sum of direct and indirect processes. Direct CO2 

emission is the result of oxidation of organic pollutants. Indirect CO2 emission is due to the 

production or consumption of electricity. Figure 2.3 shows CO2 emission from both processes 

for the four scenarios and baseline scenario. CO2 emissions related to the electricity 

requirements are in line with the energy data. However, Scenarios 3 and 4, in which part of 

the organic pollutions is converted anaerobically, thereby producing a far smaller amount of 

CO2 show a CO2 emission reduction as well. The yearly CO2 emission reduction between 

Scenario 3&4 and Scenario 2 is about 5,000 tons. Compared to the baseline scenario a 

2,500 tons reduction is achieved. However, part of the produced methane, which is 

considered to be a 21 fold stronger greenhouse gas than CO2, will dissolve in the effluent of 

the anaerobic step in Scenarios 3 and 4 and be emitted to the atmosphere in the MBR after 

all. According to Van Haandel & Lettinga (1994) the dissolved methane represents under 

equilibrium conditions 64 mg/l as COD. Thus, in Scenario 3 and 4 will emit, as a worst case 

scenario, an additional CO2 of 280 ton CO2/y, which equals about 10% of the achieved 

reduction. Today’s Clean Development Mechanism in which a price for each ton of CO2 of  

5 is applicable, provides an additional driver for implementation of sustainable sanitation 

concepts in which anaerobic treatment is included. In the remaining cost benefit analysis this 

additional income is not included. 

 

2.3.4 Water saving  

In the governments’ planning it is indicated that one person consumes between 140-160 

l/cap/d. In this project the starting point was that the daily water consumption should not be 

limited, but the quality does not necessarily need to be the same as of municipal tapwater. It 

must be noted that the provided amount is based on water used for in-house application 

(drinking, toilet, showering, etc) as well as external community oriented water use (e.g. road 

cleaning and gardening). In the present project the daily (in-house) water consumption is 

determined as 113 l/cap/d of which 90 l is greywater (Table 2.1). In contrast to the baseline 

WWTP, an MBR (Derksen et al., 2006; Van Bentem et al., 2006) will comply with the 

Chinese standards for different uses such as toilet flushing or gardening. A conventional 

WWTP can in general comply with effluent quality class IB and IA, and irrigation for some 

non-food agricultural purposes. Table 2.3 shows the standards, which are referred to.  
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Table 2.3 Discharge limits primary pollutants Class IA and B GB18918-2002 and Control 

Indexes of Reclaimed Water for Miscellaneous Use (GB/T18920-2002) 

* Figures out of brackets are for water temperature > 12ºC, whereas the figures in brackets are 

requirement for water temperature  12ºC 

 
Therefore in all four scenarios the effluent of the MBR can be reused for all aesthetic related 

applications as well as for toilet flushing. All other in-house water applications will still be fed 

by municipal tapwater. Applying the aforementioned, the daily total water consumption is 157 

l/cap/day of which only 90.5 l/cap/d is required of municipal tapwater, which equals over a 

40% reduction.  

 

2.3.5 Struvite production 

Scenario 4 includes the struvite production from urine of which an amount of 220 ton/year of 

(hydrogenated) struvite is expected. In order to realize a source-separate urine collection 

system, a more complex and elaborated sewer system is required. It is acknowledged that 

alternative methods for urine collection are available as well (Mels et al., 2005). Additionally a 

reactor aimed for struvite precipitation is required. Based on Shu et al. (2006) struvite can be 

sold at a value of 460 Euro/ton (~4,600 RMB/ton). This price level might not be realistic at 

this moment (local information), but increasing scarcity of phosphate ore 

(www.fullermoney.com, 2008) will ultimately have its effect on struvite selling prices. 

 

2.3.6 Yearly operation costs. 

Figure 2.4 shows the CAPEX based on annuities for the establishment of the presented 

WWTP and the required sewer system. Specific yearly CAPEX for sewer system ranges from 

Parameter Unit 

Discharge “Miscellaneous” use of reclaimed water 
China GB18918-

2002 
China GB/T 18920-2002 

IA IB 
Toilet 
flushing 

Road cleaning 
& fire fighting 

Gardening 
Vehicle 
wash 

Civil 
constr. 

COD mg/l 50 60 - 

BOD5 mg/l 10 20 10 15 20 10 20 

SS mg/l 10 20 - 

NH4
+-N mg/l 5 (8)* 8 (15)* 10 10 20 10 20 

TN mg/l 15 20      
TP mg/l 0.5 1      
Turbidity NTU   5 10 10 5 20 
TDS mg/l   1500 1500 1000 1000 - 
DO mg/l   1.0 
pH  6.0-9.0 6.0 - 9.0 
Fecal 
coliform 

Units/l 103 104 3 
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17 RMB/cap in Scenario 1 and 2 up to 25, 29 and 30 RMB/cap for, respectively, Scenarios 3 

and 4 and the baseline scenario. For the WWTP the specific yearly CAPEX values are 58, 

66, 81, 85 and 29 RMB/cap for, respectively, Scenarios 1-4 and the baseline scenario. It is 

found that establishment of Scenarios 3 and 4 involve almost double the costs of the 

establishment of the baseline scenario. 

 
Figure 2.4 CAPEX for the establishment of the full WWTP infrastructure (million RMB) 

 

Analysis of the OPEX (Figure 2.5) shows that Scenario 3 and 4 (both energy producing) are 

most cost effective, followed by Scenario 1. Scenario 2 comes out less favorable than the 

baseline scenario. In this estimation it is assumed that 40% of the water that is saved (which 

equals the amount of water required for toilet flushing and gardening) is sold at the price of 

2.4 RMB/m3, whereas an additional (assumed) 30% is sold for agricultural purposes at 0.5 

RMB/m3. This additional 30% is also sold at the same price in the baseline scenario. 

 

 

Figure 2.5 OPEX of the presented scenarios 
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Figure 2.6 Development of running (CAPEX and OPEX) costs  
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17 RMB/cap in Scenario 1 and 2 up to 25, 29 and 30 RMB/cap for, respectively, Scenarios 3 

and 4 and the baseline scenario. For the WWTP the specific yearly CAPEX values are 58, 

66, 81, 85 and 29 RMB/cap for, respectively, Scenarios 1-4 and the baseline scenario. It is 

found that establishment of Scenarios 3 and 4 involve almost double the costs of the 

establishment of the baseline scenario. 

 
Figure 2.4 CAPEX for the establishment of the full WWTP infrastructure (million RMB) 
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2.3.7 Risk & Sensitivity  

• In the presented scenario the starting point is that all water for the toilet flushing and park 

irrigation is obtained from treated effluent. Figure 2.7 and Figure 2.8 show the results 

when no effluent is sold for higher quality effluent purposes (still 30% used for low-quality 

purposes) and all effluent from MBR is sold as higher quality effluent (and 100% of the 

baseline scenario as low quality). Thus, it becomes clear that the application of an MBR 

only becomes economically attractive if a considerable amount of effluent can be sold for 

higher quality effluent purposes;  

• The effect of small footprint, which greatly increases the economic attractiveness of MBR 

application, was not included. In a fast urbanizing country like China, this effect will 

increase; 

• It must be taken into consideration that source separated systems bring in a risk of 

misconnection of the different sewer lines, as was shown in the case of Leidsche Rijn 

(www.waterforum.net; 20-06-2002) Experiences (personal communication with A. During) 

reveal that about 1% is falsely connected immediately after finalizing the infrastructure, 

whereas this number can increase to 15% over time due to private/illegal interventions;  

• Different scenarios and transport means are available to convey/collect blackwater to a 

treatment location. In case of a decentralized treatment step, application of vacuum toilet 

has been successfully demonstrated (Kujawa-Roeleveld et al., 2005; Meulman et al., 

2008). In present scenarios it is assumed that for the 100,000 people only one central 

treatment plant is constructed for which a sewer system based on vacuum toilet is not 

found feasible due to the long transportation distances and problems with clogging. 

When a water saving toilet is applied without the mixing of greywater such problems are 

still a possibility, which can be overcome when transportation is realized via a 

pressurized system. The required pump energy for this transport was excluded; 

• Studies have been performed in which the acceptation of source separated systems has 

been identified as a potential problem for successful introduction (Lienert & Larsen, 

2006). This issue has not been extensively incorporated in present study; 

• By offering the possibility for extensive effluent reuse for non-agricultural purposes (park 

greening), as proposed in the four scenarios, the aesthetics of the environment will be 

improved. Previous projects in which an increase of green in the living environment was 

achieved resulted in an increased “willingness to pay” for users of such areas. In this 

study this price increase has not been included. 
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 Conclusions 2.4

The outcomes of the study that were performed for the Changzhou project show that: 

• By introducing an alternative sanitation several environmental benefits can be realized, 

resulting in a 40% water saving (by closing part of the water cycle), production of energy 

(by application of anaerobic technology), reduction of CO2 emission, and struvite 

recovery (by treating separate collected urine); 

• Economic analysis shows that application of a source separated sewer system followed 

by treatment in an anaerobic and struvite precipitation and post treatment in an MBR 

becomes already attractive after a period of 5 years, provided the recovered resources 

(water, energy and nutrients) can be sold at mentioned prices. The presence of long term 

and reliable buyers are essential for the successful economic applicability of presented 

scenarios; 

• Besides the realization of the two basic goals for sanitation (assuring the public health 

and preventing the environmental pollution), this paper shows that by introducing 

sustainable sanitation concepts an enhanced resource recovery is possible which 

stimulates the economic development of rapidly emerging urban areas in China and 

similar regions.  
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Abstract 

Under the Indonesian PPSP (Accelerated Sanitation Development for Human Settlements 

Program) thousands of new DEWATS (Decentralized Wastewater Treatment Systems) may be 

realized in the coming five years. Taking the massive scale of planned implementation into 

consideration an evaluation of the technical and financial-economic aspects and users’ 

involvement for three different types of DEWATS was performed. Evaluated systems included (1) 

Settler (Set) + Anaerobic Baffled Reactor (ABR) + Anaerobic Filter (AF), (2) Digester + Set+ ABR 

+ AF and (3) Settler, equalization, activated sludge, clarifier, filtration. All three systems complied 

with the current regulations. System 3 suggested the best overall performance on selected 

parameters in the monitored period. A clear reduction in specific investment costs per household 

was found with an increasing number of households per system. Only daily, regular operational 

costs were recovered from fees collected by the community, whereas costs for desludging, major 

repairs and capital and replacement costs were not. Surveys with users showed a different 

degree of involvement of local men and women in the planning stages of the project for the 

systems. Recommendations are provided to scale up the introduction of DEWATS in a more 

sustainable way in the framework of a city wide sanitation strategy.      
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 Introduction 3.1

Access to improved sanitation in Indonesia is below most other South East Asian countries, with 

an approximate 80 million people still using open defecation. The Water and Sanitation 

Program’s (WSP) Economic Impacts of Sanitation in Indonesia (Napitupulu & Hutton, 2008) 

estimated the overall economic losses from poor sanitation at approximately US$ 6.5 x 109 

annually. Decentralized communal treatment systems are often promoted as the core of the 

sanitation improvement in Indonesia for their low cost, their decentralized features as well as their 

potential to effectively remove organic components and solids (Ulrich et al., 2009). Limited up to 

date information is available on the actual sustained performance of applied systems. Mostly, the 

effluent of DEWATS (Decentralized Wastewater Treatment Systems) is discharged locally. 

Evaluation of the effluent is important with respect to safeguarding public health and the 

environment (Vollaard et al., 2005), in particular when the body receiving the effluent waters is 

having particular functions for which it must meet related water quality criteria. In addition, this 

paper compares the financial and economic aspects of the different systems as well the level of 

involvement of the users. Analysis from these three perspectives (technical, financial-economic 

and social) is considered essential for improved and accelerated access to safe sanitation, 

upkeep with population growth and sustained and equitable service delivery in Indonesia.  

 

 Methodology 3.2

3.2.1 Site selection 

In consultation with the Ministry of Public Works (MoPW), three municipalities in Java were 

selected for evaluation. These were Yogyakarta, Surakarta (also known as Solo) and Blitar. In 

each of the municipalities three DEWATS were selected. Site visits were facilitated by local 

partner LPTP (Lembaga Pengembangan Teknologi Pedesaan or Institute for Rural Technology 

Development) in Yogyakarta and Surakarta and by the local bureau of environment in Blitar. 

Three types of systems were evaluated. The first two types are the commonly applied systems, 

whereas the third type seems to have been introduced only recently, but is gaining in popularity in 

the Blitar area. Because of its electricity use, this third type may not be classified as a DEWATS 

by all stakeholders (Ulrich et al., 2009).Table 3.1 shows the key features of the nine evaluated 

sites. 
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Table 3.1 Characteristics of evaluated DEWATS project sites organised by system 

System 1: Settler + Anaerobic Baffled Reactor (ABR) + 
Anaerobic Filter (AF) 

Project name, province, Kota/ Kabupaten 
(year); number of households (hh) 

1. Minomartani, DYI, Yogyakarta, Kab. 
Sleman (2007); 70 hh. 

2. Santan, DYI, Yogyakarta, Kota 
Yogyakarta (2010); 80 hh 

3. Kragilan, Central Java, Surakarta, Kota 
Surakarta (2005); 100 hh 

4. Sukorejo, East Java, Blitar, Kota Blitar 
(2003); 200 hh 

5. Karang wetan East Java, Blitar, Kota 
Blitar (2006); 100 hh 

System 2: Separate black (BW) and grey water (GW) collection. BW of households (and MCK1) to 
digester; effluent of digester with GW to Settler + ABR + AF 

 

6. Gambiran, DYI, Yogyakarta, Kab. 
Sleman (2008); no MCK a applied; 50 hh 

7. Pajang, Central Java, Surakarta, Kota 
Surakarta (2010); including MCK; 40 hh 
connected; 29 hh use MCK 

8. Srenang, Central Java, Surakarta, 
Kota Surakarta (2008) including MCK; 22 
hh connected; 44 hh use MCK 

System 3: Settler, equalization activated sludge, clarifier, filtration 

 

9. Kepanjen Kidul East Java, Blitar, Kota 
Blitar (2010); design capacity 400 hh 
(only 100 hh connected at time of 
evaluation) 

a MCK: Mandi Cuci Kakus: Communal toilet and washing facility 

 

3.2.2 Laboratory analysis 

For each site four samples were taken with the following schedule: Yogyakarta: 8, 17, 22 and 25 

February 2011; Surakarta: 9, 18, 23 and 28 February 2011; Blitar: 16, 21, 24, and 28 February 

2011. February is the rainy season. All evaluated systems apply a separate rainwater collection. 

However, some rainwater intrusion may have taken place. All samples were analyzed on the 

following parameters, with corresponding methods: pH (SNI 06-6989, 11-2004), Biological 

Oxygen Demand (BOD) (APHA, 2005, Section 5210-B, Section 4500-OG), Chemical Oxygen 

Demand (COD) (APHA, 2005, Section 5220-C), Total Suspended Solids (TSS) (in house method, 

spectrophotometer HACH, DR 2010), Total N (in house method, titrimetri), NH4-N (SNI 06-2479-
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2004), PO4-P (APHA, 2005, Section 4500-PD). All samples were collected and analyzed by the 

same laboratory (Balai Teknik Kesehatan Lingkungan (BTKL) in Yogyakarta). Influent samples 

were not taken because variations in quality and quantity are generally very high for small 

communities. Further, because all communities concern domestic users only, a comparable 

influent is expected. 

 

3.2.3 Surveys and questionnaires 

For each site two types of surveys were conducted. In a first survey representatives (all male) of 

each of the KSM (Kelompok Swadaya Masyarakat; “Community Independent Group”) were 

interviewed on technical, institutional and financial features of the sanitation facilities. In the 

second survey six local surveyors interviewed a total of 90 respondents (59% females and 41% 

males) at 9 sampled locations, corresponding with 10 households per site. The topics were their 

involvement and satisfaction as users and tariff payers with the service delivery and service 

management (including financial management). All respondents were randomly selected and 

were part of the connected users in every DEWATS site. The age of the respondents involved in 

the survey was 28 years and older. Most of them were female (59%). Of these respondents, 11% 

did not have any formal schooling, 27% were elementary school graduates, 19% junior high 

school graduates, 30% high school graduates, and 13% university graduates. Most of the 

respondents’ monthly incomes ranged between US$50 and US$100 (49%), 28% of the 

respondents had an income below US$50, 17% of the respondents had incomes between 

US$100-US$200 and 7% of the respondents’ incomes were above US$200. ninety-two percent 

of the respondents had never been involved in a survey before.  

 

3.2.4 Financial and economic analysis 

For each of the sites information on the capital and operational costs as well as the nature and 

level of the user’s fees were obtained during the discussion with the KSM and were – for 

reference – compared with the design documents. Construction costs included costs for the 

treatment plant itself, piping, digester (if applicable), MCK (if applicable) and facilitation (including 

training and project planning by BORDA “Bremen Overseas Research and Development 

Association” and LPTP or the local bureau of environment in Blitar). Taxes have been excluded 

from the presented data. To allow for comparison all investment costs were converted to the year 

2010 price level, using the inflation percentage provided by the World Bank 

(http://data.worldbank.org/) and the CPI (Consumer Price Index) provided by Badan Pusat 

Statistik (http://dds.bps.go.id/eng/). To calculate the annual Capital Expenditures (CAPEX), 

investment costs were multiplied with an annuity factor based on a depreciation period of 20 

years and an interest rate of 7%, which can be considered as a typical rate for Indonesia 

(www.web.worldbank). Finally, the economic losses due to poor sanitation were calculated based 
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on WSP (Napitupulu & Hutton, 2008) and were corrected with the same CPI as mentioned above. 

The size of the population of Indonesia in 2010 was based on the 2010 Census and set at 238 

million people. It is assumed that the household incomes obtained from the surveys are 

representative for the total community. In this study 1 US$ is equal to 9,000 IDR. 

 

 Results and discussion 3.3

3.3.1 Technical evaluation 

Table 3.2 shows the effluent values of the three evaluated sites after four sampling rounds as 

well as the applicable effluent standard (MoE, 2003). System 1 is based on five sites, the values 

of System 2 on three sites and the values of System 3 on one site only (see also Table 3.1). 

 

Table 3.2 Average and standard deviation effluent values and effluent standard a 

Parameter Unit System 1: 
Set-ABR-AF 

System 2: 
Dig-Set-ABR-AF 

System 3: 
Act Sludge-Filt 

Standard (No. 
112, 2003) 

pH - 6.9 (0.3)1 7.2 (0.3) 7.2 (0.5) 6-9 
BOD mg/l 49.7 (8.2) 50.0 (15.7) 29.9 (11.9)  100 
COD mg/l 121.8 (21.9) 131.1 (53.1) 79.5 (39.5)  
TSS mg/l 41.7 (24.5) 43.6 (30.0) 21.8 (10.3) 100 
Total-N mg/l 77.1(23.5) 88.0 (25.0) 58.7 (12.0)  
NH4-N mg/l 46.0 (20.6) 57.4 (26.7) 34.7(18.8)  
PO4-P mg/l 3.8 (1.8) 4.8 (1.8) 3.0 (1.9)  
a Values in brackets are standard deviations. 

 

3.3.1.1 Organic pollutants 

All three types comply with the 2003 regulations on pH, BOD and TSS. However, current effluent 

requirements are not very stringent, especially in comparison with applicable standards in 

neighboring countries. Philippines and Malaysia apply BOD effluent requirements of 30-80 mg/l 

and 20-50 BOD mg/l respectively (DENR, 1990; MDE, 2000). More stringent effluent 

requirements and extension on number of parameters (e.g. nutrients) should be considered in 

due course following, for example, a similar approach as the progressively increased raised 

standards in Malaysia to improve, in order of importance, public health, water quality and 

environmental quality. The data suggest that System 3, involving activated sludge and filtration 

performs significantly better on all effluent parameters compared to the other two system types, 

although it must be noted that System 3 is currently only operated at a quarter of its design load. 

The effluent values of System 1 (Settler + ABR + AF) and System 2 (Digester + Settler + ABR + 

AF), however, are comparable. Taking the high standard deviations of all systems into 

consideration it appears that stable operation is hard to achieve. This variation is also observed in 

the individual sites. A pilot study (Dama et al., 2002) on the ABR showed COD effluent values 

ranging between 50 mg/l and 400 mg/l with steady state values of typically 200 mg/l. Current 
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measured values on the two types of systems applying ABR are considerably lower than these 

values. Unlike in Dama’s study the currently evaluated systems have an additional anaerobic filter 

step, indicating that this filter contributes significantly to a better COD effluent. Wibisono et al. 

(2003) showed effluent COD values ranging from 80 to 144 mg/l COD in three piloted low-costs 

anaerobic systems in Indonesia, which are comparable to the values in the current study.  

 

3.3.1.2 Nutrients (N & P) 

The lower NH4-N values in System 3 as compared to the other two systems are attributed to 

nitrification in the activated sludge system. In addition, the lower total N values in System 3 are 

attributed to denitrification. System 3 was only operational for one month and nitrification capacity 

is expected to increase further. At the same time, because the system is under loaded the results 

may differ compared to treatment of the full design load. Although the effluent P-concentration in 

System 3 is lower than in System 1 and 2, 3 mg/l, 4.8 mg/l and 3.8 mg/l respectively, the values 

are more comparable to each other than the other parameters. In general P is only removed to a 

limited extent in an anaerobic system. In aerobic systems, P-removal would require alternating 

anaerobic and aerobic conditions or the addition of iron or aluminum salts (Brett et al., 1997), 

none of which are applied. The lower effluent P-value in the aerobic system is attributed to the 

higher P-uptake by aerobic biomass compared to anaerobic biomass. The presence of P is the 

most common cause of eutrophication in fresh waters, with P-concentrations in streams of 20 g/l 

already becoming problematic. Especially for smaller streams with multiple sources, such values 

are likely to be exceeded easily. In addition, with N/P ratios exceeding 16 (which is the case in all 

three systems) nitrogen also becomes a stimulant for eutrophication (Correll, 1998).  

 

3.3.1.3 Coliforms 

Levels of fecal coliforms discharged by activated sludge systems with filters (System 3) can be up 

to 1 or 2 log lower than levels in anaerobic filter systems (Systems 1 and 2) (Tchobanoglous et 

al., 2003). Currently no maximum discharge limit is formulated in the applicable 2003 law for 

these parameters. The World Health Organization (WHO) has defined several standards for 

reuse (WHO 2006) in agriculture or aquaculture, which are exceeded even for System 3. The 

Indonesian drinking water regulation for 2010 (number 492) requires the complete removal of all 

coliforms. Several KSMs reported the perceived decrease of diarrhoeal diseases since the 

establishment of the DEWATS service, but no supportive actual clinical data could be provided.  

Reasons mentioned for the perceived decrease were both the reduced contamination of 

groundwater by previously applied and now replaced soakage / pit latrines and the reduced 

contamination of surface water with which women, children (especially boys) and men have direct 

contact during clothes washing, bathing and swimming. The quality of the discharged water is 

important from an environmental, economic and health perspective. Vollaard et al. (2005) 
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Chapter 3 

50 
 

concluded in their study of the supply and bacteriological quality of drinking water and sanitation 

in Jakarta that inadequate disposal of human excreta is a threat to both piped water and 

groundwater. Phanuwan et al. (2006) showed the positive correlation between total coliforms and 

enteric viruses present in surface waters, showing the threat to protect public health from viral 

waterborne diseases. In addition, Charles et al. (2003) reported the increased discharge of Total 

Nitrogen (TN), Cryptosporidium and enteric viruses for small scale wastewater treatment systems 

(compared to a centralized wastewater treatment plant (WWTP)) as a result of insufficient 

operation and maintenance knowledge for these small scale systems. Thus, as a 

recommendation more attention to removal of pathogens could be paid in the design of DEWATS 

and their operation, as these pathogens have a direct impact on public health. Several low-cost 

post-treatment systems can be considered that have known effective removal of pathogens and 

nutrients, such as constructed wetlands or algae ponds (Laxton, 2010; Zhai et al., 2011). 

Mandatory disinfection to acceptable levels (WHO, 2006) could also be considered if reuse is 

strived for. 

 

3.3.1.4 Feedback from operators and users 

Discussion with system operators and the users revealed several issues that require attention:  

• Systems are hardly desludged, even after years of operation. However scum formation in the 

settling compartment was grave and removal was required frequently (typically twice per 

month);  

• Scum formation could be the result of attachment of biogas to incoming particles as described 

by Halalsheh et al. (2005). More frequent desludging could prevent this problem. This 

requires including the cost of sanitary desludging in the fees;   

• Often, the removed scum and sludge were disposed of in the receiving water body. Besides 

the obvious contradiction of this practice to the objective of having a sanitation system, this 

approach is also a loss of potential safe fertilizer (Fach & Fuchs, 2010). Mostly provisions to 

deal with this differently were lacking as sites were not reachable by vacuum trucks or costs 

for frequent scum removal in a hygienic way were found too expensive. This aspect requires 

more attention in the designs, promotion and training; 

• System 3 is identified as the most vulnerable one during the operation and maintenance 

(O&M) phase, as more skilled labour and understanding of the system and its electro-

mechanical equipment as well as continuous electricity supply are required to operate the 

system in a sustainable manner;  

• Manholes for both the network as well as the treatment system were often jammed. This 

limits the possibilities to operate and maintain the systems properly; 

• During rainfall several systems become odorous. Although systems are designed to separate 

rainwater from wastewater, it was observed that rainwater can penetrate the manholes, which 

can be prevented by slightly elevating the manhole lids in the design. Odour problems are 
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probably caused by a reduced hydraulic retention time resulting in the discharge of not yet 

degraded organic (volatile) components; 

• None of the systems was provided with an easily accessible sampling point (e.g. a sampling 

tap). It is suggested to include such a tap in new systems to facilitate sampling and 

monitoring the impact on the public health and environment. Further, it was mentioned that 

regular monitoring of effluent was not done or only in limited cases by either the responsible 

institutions or design or facilitation partners. If measurements were done, no feedback was 

provided to the community. More frequent monitoring and feedback to the community is 

recommended as this contributes to a better understanding of impacts and system 

performance; 

• Finally, the KSM mentioned that in the design of the DEWATS, a citywide sanitation strategy 

was not taken into consideration, although mainstreaming of DEWATS is found to be a key 

element for sustainable infrastructure development (Ulrich et al., 2009). It is recommended to 

consider the application of a citywide sanitation strategy in the realization of DEWATS to both 

stimulate the introduction of DEWATS in systems where this is found feasible and, at the 

same time, limit introduction, where this is found less feasible. 

 

3.3.2 Financial-economical evaluation 

3.3.2.1 Investment costs 

Figure 3.1 shows that the specific investment costs per household decrease as an increasing 

amount of households connected to the system. This “economy of scale” is seen both within one 

type of system (System 1 and 2) as well as for bigger systems in general. For System 1 (Set-

ABR-AF) it was thus found that investment costs per household of a system for 200 households 

(US$ 240/household) are only approximately half of that of a system for 100 households (over 

US$ 460-490/household). This trend is not only found in the complete design (including piping, 

WWTP, facilitation, toilet blocks), but also in the specific investment costs per household for the 

piping system (Figure 3.2) as well as the treatment facility (Figure 3.3). The specific costs for the 

piping system for systems of type 2 (applying separation of black water and grey water) are 

considerably higher, because a double piping system is required. This is even more pronounced 

in the cases that combine individual house connections with an MCK (Srenang and Pajang), 

since in those cases the piping costs only reflect the connected households and not those that 

use the MCK. Based on these findings, it is recommended to look for opportunities to increase 

the scale of a treatment facility to reduce the investment costs. This could for example be 

achieved by having a joint DEWATS with two or more adjacent communities. 

 



Chapter 3 

50 
 

concluded in their study of the supply and bacteriological quality of drinking water and sanitation 

in Jakarta that inadequate disposal of human excreta is a threat to both piped water and 

groundwater. Phanuwan et al. (2006) showed the positive correlation between total coliforms and 

enteric viruses present in surface waters, showing the threat to protect public health from viral 

waterborne diseases. In addition, Charles et al. (2003) reported the increased discharge of Total 

Nitrogen (TN), Cryptosporidium and enteric viruses for small scale wastewater treatment systems 

(compared to a centralized wastewater treatment plant (WWTP)) as a result of insufficient 

operation and maintenance knowledge for these small scale systems. Thus, as a 

recommendation more attention to removal of pathogens could be paid in the design of DEWATS 

and their operation, as these pathogens have a direct impact on public health. Several low-cost 

post-treatment systems can be considered that have known effective removal of pathogens and 

nutrients, such as constructed wetlands or algae ponds (Laxton, 2010; Zhai et al., 2011). 

Mandatory disinfection to acceptable levels (WHO, 2006) could also be considered if reuse is 

strived for. 

 

3.3.1.4 Feedback from operators and users 

Discussion with system operators and the users revealed several issues that require attention:  

• Systems are hardly desludged, even after years of operation. However scum formation in the 

settling compartment was grave and removal was required frequently (typically twice per 

month);  

• Scum formation could be the result of attachment of biogas to incoming particles as described 

by Halalsheh et al. (2005). More frequent desludging could prevent this problem. This 

requires including the cost of sanitary desludging in the fees;   

• Often, the removed scum and sludge were disposed of in the receiving water body. Besides 

the obvious contradiction of this practice to the objective of having a sanitation system, this 

approach is also a loss of potential safe fertilizer (Fach & Fuchs, 2010). Mostly provisions to 

deal with this differently were lacking as sites were not reachable by vacuum trucks or costs 

for frequent scum removal in a hygienic way were found too expensive. This aspect requires 

more attention in the designs, promotion and training; 

• System 3 is identified as the most vulnerable one during the operation and maintenance 

(O&M) phase, as more skilled labour and understanding of the system and its electro-

mechanical equipment as well as continuous electricity supply are required to operate the 

system in a sustainable manner;  

• Manholes for both the network as well as the treatment system were often jammed. This 

limits the possibilities to operate and maintain the systems properly; 

• During rainfall several systems become odorous. Although systems are designed to separate 

rainwater from wastewater, it was observed that rainwater can penetrate the manholes, which 

can be prevented by slightly elevating the manhole lids in the design. Odour problems are 
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probably caused by a reduced hydraulic retention time resulting in the discharge of not yet 

degraded organic (volatile) components; 

• None of the systems was provided with an easily accessible sampling point (e.g. a sampling 

tap). It is suggested to include such a tap in new systems to facilitate sampling and 

monitoring the impact on the public health and environment. Further, it was mentioned that 

regular monitoring of effluent was not done or only in limited cases by either the responsible 

institutions or design or facilitation partners. If measurements were done, no feedback was 

provided to the community. More frequent monitoring and feedback to the community is 

recommended as this contributes to a better understanding of impacts and system 

performance; 

• Finally, the KSM mentioned that in the design of the DEWATS, a citywide sanitation strategy 

was not taken into consideration, although mainstreaming of DEWATS is found to be a key 

element for sustainable infrastructure development (Ulrich et al., 2009). It is recommended to 

consider the application of a citywide sanitation strategy in the realization of DEWATS to both 

stimulate the introduction of DEWATS in systems where this is found feasible and, at the 

same time, limit introduction, where this is found less feasible. 

 

3.3.2 Financial-economical evaluation 

3.3.2.1 Investment costs 

Figure 3.1 shows that the specific investment costs per household decrease as an increasing 

amount of households connected to the system. This “economy of scale” is seen both within one 

type of system (System 1 and 2) as well as for bigger systems in general. For System 1 (Set-

ABR-AF) it was thus found that investment costs per household of a system for 200 households 

(US$ 240/household) are only approximately half of that of a system for 100 households (over 

US$ 460-490/household). This trend is not only found in the complete design (including piping, 

WWTP, facilitation, toilet blocks), but also in the specific investment costs per household for the 

piping system (Figure 3.2) as well as the treatment facility (Figure 3.3). The specific costs for the 

piping system for systems of type 2 (applying separation of black water and grey water) are 

considerably higher, because a double piping system is required. This is even more pronounced 

in the cases that combine individual house connections with an MCK (Srenang and Pajang), 

since in those cases the piping costs only reflect the connected households and not those that 

use the MCK. Based on these findings, it is recommended to look for opportunities to increase 

the scale of a treatment facility to reduce the investment costs. This could for example be 

achieved by having a joint DEWATS with two or more adjacent communities. 
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Figure 3.1 Specific total investment costs (US$) 

per household using the system, arranged by 

system 

Figure 3.2 Specific piping investment cost (US$) 

per household using the system, arranged by 

system 

  

Figure 3.3 Specific WWTP investment cost (US$) 

per household using the system, arranged by 

system 

Figure 3.4 Percentage of contribution of users to 

the total investment costs 

 

Presented findings are in line with previous studies which use a 1.5 times higher price for a 

separate black and grey water treatment system compared to a mixed wastewater sewer pipe 

(Kerstens et al., 2009). It is acknowledged that from this study it is not clear how costs will 

develop for bigger or smaller scales of System 3. However, decreasing specific costs with 

increasing household connections is plausible. The evaluated site of System 3 is designed for 

400 households, but is currently operated only for 100 households. A follow-up visit in August 

2011 to System 3 showed that more houses were getting connected. Therefore, for the 
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investment costs for the sewer system the current sewer costs were multiplied by a correction 

factor of 3, following the calculated economy of scale in the evaluated systems via extrapolation.  

 

3.3.2.2 Running costs (CAPEX + OPEX) and fees 

In Table 3.3 the balance of costs (CAPEX + Operational Expenditures (OPEX)), benefits (from 

fees) and the cash deficit are presented for each site as well as the current fee/household/month 

and the fee that would be required to come to a full cost recovery including depreciation.  

According the Sanimas (Sanitasi Masyarakat, or Sanitation by Community) approach (personal 

communication with BORDA) the level of fees should be based on all operational costs, being (a) 

daily operation and maintenance, small repairs, (b) local management and paid labour, (c) 

desludging, (d) large repairs and (e) replacement costs. Interviews with KSM, however, showed 

that only the first two (a and b) types of operational costs are seen as operational costs. As a 

result fees generally do not cover costs for desludging, large repairs or replacements. New 

connections are not paid from these fees, but are borne by the new household separately. The 

one exception where no fees are and will be collected is the case of System 3. The effluent of this 

system is expected to be of such good quality that it will be used as feeding water for a fish pond 

and that revenues from fish sale will pay for all types of costs of the service. As the fish pond was 

still under construction, this could not be verified and critical follow-up on the financial feasibility is 

recommended. 

In addition it was found that fees were not adjusted during the years of operation, whereas 

inflation in Indonesia has been considerable, with an average value of nearly 7% since 2003 

(http://dds.bps.go.id/eng/). It is recommended that in the determination of the fees all operational 

costs should be enumerated and yearly correction of fees following inflation is required.  

Finally, it is found that operational costs (OPEX) are only a fraction (3-9%) of the total costs 

(CAPEX + OPEX). Table 3.3 therefore gives the (flat) fees that the users should be paying to 

meet all operational costs. Similar values of fees to meet full cost-recovery for a centralized 

system were confirmed in discussions with the director of Joint Secretariat (Kartamantul) of 

Yogyakarta. During that meeting it was confirmed that such values will not be accepted by users. 

 

3.3.2.3 Financial and economical evaluation 

Presented results show that at this point the capital costs are not borne by the users and could 

therefore be considered to be not financially viable from the point of view of a project manager. 

Table 3.4 shows that indeed only a small percentage of the investment costs are covered by the 

community. The major part of the capital cost is provided by central, provincial and kota (city) 

/kabupaten government, which is the same for the centralized sewerage services in the more 

affluent parts of the cities. Figure 3.4 shows, however, that there is a trend towards a higher 

contribution of the community to the investment costs from those with higher household incomes.  
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(Kerstens et al., 2009). It is acknowledged that from this study it is not clear how costs will 

develop for bigger or smaller scales of System 3. However, decreasing specific costs with 
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investment costs for the sewer system the current sewer costs were multiplied by a correction 

factor of 3, following the calculated economy of scale in the evaluated systems via extrapolation.  

 

3.3.2.2 Running costs (CAPEX + OPEX) and fees 

In Table 3.3 the balance of costs (CAPEX + Operational Expenditures (OPEX)), benefits (from 

fees) and the cash deficit are presented for each site as well as the current fee/household/month 

and the fee that would be required to come to a full cost recovery including depreciation.  

According the Sanimas (Sanitasi Masyarakat, or Sanitation by Community) approach (personal 

communication with BORDA) the level of fees should be based on all operational costs, being (a) 

daily operation and maintenance, small repairs, (b) local management and paid labour, (c) 

desludging, (d) large repairs and (e) replacement costs. Interviews with KSM, however, showed 

that only the first two (a and b) types of operational costs are seen as operational costs. As a 

result fees generally do not cover costs for desludging, large repairs or replacements. New 

connections are not paid from these fees, but are borne by the new household separately. The 

one exception where no fees are and will be collected is the case of System 3. The effluent of this 

system is expected to be of such good quality that it will be used as feeding water for a fish pond 

and that revenues from fish sale will pay for all types of costs of the service. As the fish pond was 

still under construction, this could not be verified and critical follow-up on the financial feasibility is 

recommended. 

In addition it was found that fees were not adjusted during the years of operation, whereas 

inflation in Indonesia has been considerable, with an average value of nearly 7% since 2003 

(http://dds.bps.go.id/eng/). It is recommended that in the determination of the fees all operational 

costs should be enumerated and yearly correction of fees following inflation is required.  

Finally, it is found that operational costs (OPEX) are only a fraction (3-9%) of the total costs 

(CAPEX + OPEX). Table 3.3 therefore gives the (flat) fees that the users should be paying to 

meet all operational costs. Similar values of fees to meet full cost-recovery for a centralized 

system were confirmed in discussions with the director of Joint Secretariat (Kartamantul) of 

Yogyakarta. During that meeting it was confirmed that such values will not be accepted by users. 

 

3.3.2.3 Financial and economical evaluation 

Presented results show that at this point the capital costs are not borne by the users and could 

therefore be considered to be not financially viable from the point of view of a project manager. 

Table 3.4 shows that indeed only a small percentage of the investment costs are covered by the 

community. The major part of the capital cost is provided by central, provincial and kota (city) 

/kabupaten government, which is the same for the centralized sewerage services in the more 

affluent parts of the cities. Figure 3.4 shows, however, that there is a trend towards a higher 

contribution of the community to the investment costs from those with higher household incomes.  
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Table 3.3 Cash balances of the evaluated sites and actual and required fees for break-even 

  CAPEX OPEX Fees 
Cash 
Deficit Actual fees 

Required fee 
break-even 
incl. CAPEX 

System Project name Million IDR/year IDR/month/HH 
System 1 Minomartani 35.8 2.0 4.6 33.3 5,000 41,500 

Santan 29.0 1.2 4.8 25.4 5,000 31,500 

Kragilan 41.3 1.5 3.6 39.2 3,000 25,600 
Sukorejo 40.0 3.0 3.6 39.9 3,000 17,900 

Karangwetan  38.8 1.2 3.6 33.4 3,000 33,400 

System 2 Gambiran 29.2 1.2 1.2 29.2 2,000 50,700 

Pajang 32.7 3.0 5.4 30.4 6000 per HHC a 

500-1000 MCK 
43,200 

Srenang 36.4 2.4 2.4 36.4 5000 per HHC 
500-1000 MCK 

50,600 

System 3 
Kepanjen 
Kidul 

60.3 4.4 0.0 64.7 0 13,500 

a HHC: household connection; other users pay 500 IDR/toilet visit and 1000 IDR/washing 

 

Table 3.4 Origin of funds as a percentage for investment costs 

Project System Central Provincial Kabupaten/ kota BORDA Users 
Minomartani System 1 27 0 53 15 4.9 
Gambiran System 2 33 0 66 0 1.8 
Santan System 1 30 0 60 0 9.3 
Kragilan System 1 26 0 64 7 2.8 
Pajang System 2 24 13 62 0 1.4 
Srenang System 2 22 13 63 0 2.1 
suko arum System 1 0 0 77 19 4.4 
karang wetan System 1 0 30 61 8 0.9 
Kepanjen Kidul System 3 0 91 9 0 0.0 

 

In 2008 the World Bank calculated that the economic losses due to lack of access to sanitation of 

43% of the Indonesian population were 6.5x109 US$/year, mostly as a result of accumulating 

health costs (53%) and (drinking) water costs (24%), whereas the yearly gains upon improving 

this situation would be 5 x109 US$/year (WSP 2008). The Internal Rates of Return for the 

Indonesian Government to invest in providing sanitation to the not yet connected population using 

System 1, 2 and 3 are respectively 71%, 38% and 155%. Liang & van Dijk (2010) showed that 

the use of Decentralized Sanitation and Reuse (DESAR) systems in Beijing, China, is 

economically but not financially feasible as well. A similar study (Alam & Marinova, 2003) showed 

the often underestimated economic benefits for intervention in environmental protection. It is 

concluded that from a perspective of net economic gains, greater government investments in 

improved sanitation services would be a wise decision. Methods to also calculate all costs that 

must be covered to sustain an adequate service delivery are being developed and tested 

elsewhere (Fonseca et al., 2010).  
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It was found that fees are the same for all users and no progressive fees were applied (e.g. a 

higher fee for people with a higher income) or a fee based on a higher water consumption (to 

reflect the polluter pays principle). As shown in the next section, the poor, with an average 

income of less than US$2 per day, formed 28% of the household sample, while householders 

with a daily per capita income of US$7 or more formed 24%. Households in the first group tend to 

have only one tap and toilet, while households in the highest income category are likely to have 

more than two wastewater amenities and produce a much higher volume of wastewater than the 

first. Yet both categories contribute the same amounts to the investment and recurrent costs of 

the service. The currently adopted and promoted cost sharing system thus disproportionally 

benefits the better-off and it would be fairer to use a weighed system whereby households with 1-

2 rooms or a “low-volume house” pay less than households with more rooms or with a medium- 

or high-volume house. Participatory rapid appraisal methods are an easy and well-accepted way 

to develop a more equitable and community-agreed tariff system (TTPS, 2009).  

 

3.3.3 Evaluation by the user households 

Figure 3.5 shows the results of the user households’ involvement in the different stages of the 

service and in the decisions on the type and level of the monthly fees per type of evaluated 

system. It is the intention to further segregate this data by socio-economic level and for women 

and men in a later study.  

The involvement of the community at an early stage is highest for System 1, followed by System 

2 and finally in the latest type of System 3 the community is far less involved in the planning and 

implementation phase, and only becomes more involved from the operational phase. In addition, 

for both System 1 and 2, the community determines the price for new connections, whereas for 

System 3 this is done by an external contractor. For all systems new connections are largely paid 

for by the users themselves.  

The participatory implementation of DEWATS systems was found to enhance the process of 

acceptance and management of the applied technologies. Implementation of DEWATS systems 

in Indonesia is based on a demand-response approach, whereby only those communities 

showing willingness to participate in planning, training activities and to manage the costs and 

operation and management (O&M) are selected (Roma & Jeffrey, 2010). Because of the direct 

involvement of the community at – in principle – each keypoint of the project cycle (especially in 

local decision-making and in O&M, including financing management) these DEWATS systems 

are also known as Sanimas and the inclusion of local economic and social aspects is part of the 

widely accepted approach (TTPS, 2010). It seems that in the approach followed by BORDA and 

its local counterpart LPTP, who are responsible for the design and facilitation, a more intensive 

community involvement is applied compared to what was applied by the design party of System 3 

(Konsultan Pyramida Utama).  
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Table 3.3 Cash balances of the evaluated sites and actual and required fees for break-even 

  CAPEX OPEX Fees 
Cash 
Deficit Actual fees 

Required fee 
break-even 
incl. CAPEX 

System Project name Million IDR/year IDR/month/HH 
System 1 Minomartani 35.8 2.0 4.6 33.3 5,000 41,500 

Santan 29.0 1.2 4.8 25.4 5,000 31,500 

Kragilan 41.3 1.5 3.6 39.2 3,000 25,600 
Sukorejo 40.0 3.0 3.6 39.9 3,000 17,900 

Karangwetan  38.8 1.2 3.6 33.4 3,000 33,400 

System 2 Gambiran 29.2 1.2 1.2 29.2 2,000 50,700 

Pajang 32.7 3.0 5.4 30.4 6000 per HHC a 

500-1000 MCK 
43,200 

Srenang 36.4 2.4 2.4 36.4 5000 per HHC 
500-1000 MCK 

50,600 

System 3 
Kepanjen 
Kidul 

60.3 4.4 0.0 64.7 0 13,500 

a HHC: household connection; other users pay 500 IDR/toilet visit and 1000 IDR/washing 

 

Table 3.4 Origin of funds as a percentage for investment costs 

Project System Central Provincial Kabupaten/ kota BORDA Users 
Minomartani System 1 27 0 53 15 4.9 
Gambiran System 2 33 0 66 0 1.8 
Santan System 1 30 0 60 0 9.3 
Kragilan System 1 26 0 64 7 2.8 
Pajang System 2 24 13 62 0 1.4 
Srenang System 2 22 13 63 0 2.1 
suko arum System 1 0 0 77 19 4.4 
karang wetan System 1 0 30 61 8 0.9 
Kepanjen Kidul System 3 0 91 9 0 0.0 

 

In 2008 the World Bank calculated that the economic losses due to lack of access to sanitation of 

43% of the Indonesian population were 6.5x109 US$/year, mostly as a result of accumulating 

health costs (53%) and (drinking) water costs (24%), whereas the yearly gains upon improving 

this situation would be 5 x109 US$/year (WSP 2008). The Internal Rates of Return for the 

Indonesian Government to invest in providing sanitation to the not yet connected population using 

System 1, 2 and 3 are respectively 71%, 38% and 155%. Liang & van Dijk (2010) showed that 

the use of Decentralized Sanitation and Reuse (DESAR) systems in Beijing, China, is 

economically but not financially feasible as well. A similar study (Alam & Marinova, 2003) showed 

the often underestimated economic benefits for intervention in environmental protection. It is 

concluded that from a perspective of net economic gains, greater government investments in 

improved sanitation services would be a wise decision. Methods to also calculate all costs that 

must be covered to sustain an adequate service delivery are being developed and tested 

elsewhere (Fonseca et al., 2010).  
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It was found that fees are the same for all users and no progressive fees were applied (e.g. a 

higher fee for people with a higher income) or a fee based on a higher water consumption (to 

reflect the polluter pays principle). As shown in the next section, the poor, with an average 

income of less than US$2 per day, formed 28% of the household sample, while householders 

with a daily per capita income of US$7 or more formed 24%. Households in the first group tend to 

have only one tap and toilet, while households in the highest income category are likely to have 

more than two wastewater amenities and produce a much higher volume of wastewater than the 

first. Yet both categories contribute the same amounts to the investment and recurrent costs of 

the service. The currently adopted and promoted cost sharing system thus disproportionally 

benefits the better-off and it would be fairer to use a weighed system whereby households with 1-

2 rooms or a “low-volume house” pay less than households with more rooms or with a medium- 

or high-volume house. Participatory rapid appraisal methods are an easy and well-accepted way 

to develop a more equitable and community-agreed tariff system (TTPS, 2009).  

 

3.3.3 Evaluation by the user households 

Figure 3.5 shows the results of the user households’ involvement in the different stages of the 

service and in the decisions on the type and level of the monthly fees per type of evaluated 

system. It is the intention to further segregate this data by socio-economic level and for women 

and men in a later study.  

The involvement of the community at an early stage is highest for System 1, followed by System 

2 and finally in the latest type of System 3 the community is far less involved in the planning and 

implementation phase, and only becomes more involved from the operational phase. In addition, 

for both System 1 and 2, the community determines the price for new connections, whereas for 

System 3 this is done by an external contractor. For all systems new connections are largely paid 

for by the users themselves.  

The participatory implementation of DEWATS systems was found to enhance the process of 

acceptance and management of the applied technologies. Implementation of DEWATS systems 

in Indonesia is based on a demand-response approach, whereby only those communities 

showing willingness to participate in planning, training activities and to manage the costs and 

operation and management (O&M) are selected (Roma & Jeffrey, 2010). Because of the direct 

involvement of the community at – in principle – each keypoint of the project cycle (especially in 

local decision-making and in O&M, including financing management) these DEWATS systems 

are also known as Sanimas and the inclusion of local economic and social aspects is part of the 

widely accepted approach (TTPS, 2010). It seems that in the approach followed by BORDA and 

its local counterpart LPTP, who are responsible for the design and facilitation, a more intensive 

community involvement is applied compared to what was applied by the design party of System 3 

(Konsultan Pyramida Utama).  
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Moreover, all heads and the majority members of the KSM were male, whereas women made 

more use of and are more involved in daily system operation. It is suggested to have more 

women involved in the KSM to include their experience as well. Further, improvements in 

informed decision-making to facilitate the recovery of costs and equity of financing are 

recommended.  

The most important (perceived) benefit of the users of System 3 is improvement of the 

environment, whereas fewer benefits are seen in improved public health or improved water 

quality of dug wells. Possibly this relates to the fact that this community, in comparison with the 

other system users, makes only little use of dug wells and mostly relies on deep wells, which are 

less susceptible to contamination and have lower risks to health than dug wells. Alternatively, it 

could indicate a less effective awareness campaign delivered by the facilitator. In general, all 

visited communities were (very) satisfied with the DEWATS. 
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Figure 3.5 Results of the user surveys 
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Moreover, all heads and the majority members of the KSM were male, whereas women made 

more use of and are more involved in daily system operation. It is suggested to have more 

women involved in the KSM to include their experience as well. Further, improvements in 

informed decision-making to facilitate the recovery of costs and equity of financing are 

recommended.  

The most important (perceived) benefit of the users of System 3 is improvement of the 

environment, whereas fewer benefits are seen in improved public health or improved water 

quality of dug wells. Possibly this relates to the fact that this community, in comparison with the 

other system users, makes only little use of dug wells and mostly relies on deep wells, which are 

less susceptible to contamination and have lower risks to health than dug wells. Alternatively, it 

could indicate a less effective awareness campaign delivered by the facilitator. In general, all 

visited communities were (very) satisfied with the DEWATS. 
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Figure 3.5 Results of the user surveys 
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 Conclusions 3.4

Three different DEWATS used in Indonesia were reviewed, each with different technical designs, 

financial and economic parameters and different levels of community involvement. The summary 

of findings and the main conclusions on technical, financial-economic and community 

involvement are, respectively: 

• The evaluated DEWATS systems all complied with the current Indonesian regulations, 

although these effluent standards are not very stringent compared to those of neighboring 

countries. System 3 (activated sludge) showed the best effluent quality on evaluated 

parameters COD, BOD, TSS, N and P whereas the other two systems were more or less 

equal to each other. High coliforms and nitrogen effluent concentrations pose a threat to 

public health and the environment without corrective measures. More attention to O&M and 

training and site specific constraints in the design phase are recommended. Although, system 

3 (activated sludge) comes out most positive, further study of this type of system is 

recommended as only one system was evaluated and because it is identified as the most 

vulnerable system in the O&M phase; 

• DEWATS servicing the smallest communities (System 1 Dig-Set-ABR-AF) showed the 

highest investment costs per household, followed by the system providing larger communities 

(System 2 Set-ABR-AF) and System 3 (Set- Act Sludge- Filter). This economy of scale effect 

is also seen in the piping system and the treatment section only and it is recommended to 

look for ways to increase the scale of DEWATS. The users usually only cover the direct 

operational costs. By not desludging they avoid having to pay for these costs, which they are 

expected to meet as well. Their share in capital costs, typically more than 90% of the overall 

costs of the service, is very limited and does not reflect differences in socio-economic levels. 

Government investment in DEWATS systems specifically and in environmental protection in 

general would have substantial economic benefits and rates of return. For sustained and 

equitable service delivery a greater share of the user communities in recurrent cost financing 

is needed. Better informed community decisions are needed on ways in which financing can 

reflect the variation in discharge more equitably (“polluter pays” principle). This also goes for 

the regular adjustment of fees to higher recurrent costs because of inflation and system 

aging;   

• Systems 1 and 2 have a bigger involvement of the community in the planning and 

implementation phases of the projects compared to system 3. In all cases the communities 

acknowledge the positive effects of the system and show a great level of satisfaction with the 

system. 
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Abstract 

Indonesia is one of many developing countries with a backlog in achieving targets for the 

implementation of wastewater and solid waste collection, treatment and recovery systems. 

Therefore a technical and financial feasibility analysis of these systems was performed using 

Indonesia as an example. COD, BOD, nitrogen, phosphorus and pathogen removal efficiencies, 

energy requirements, sludge production, land use and resource recovery potential (phosphorus, 

energy, duckweed, compost, water) for on-site, community based and off-site wastewater 

systems were determined. Solid waste systems (conventional, centralized and decentralized 

resource recovery) were analyzed according to land requirement, compost and energy production 

and recovery of plastic and paper. In the financial analysis, investments, operational costs & 

benefits and total lifecycle costs (TLC) of all investigated options were compared. Technical 

performance and TLC were used to guide system selection for implementation in different 

residential settings. An analysis was undertaken to determine the effect of price variations of 

recoverable resources and land prices on TLC. A 10-fold increase in land prices for land intensive 

wastewater systems resulted in a 5 times higher TLC, whereas a 4-fold increase in the recovered 

resource selling price resulted in maximum 1.3 times lower TLC. For solid waste, these impacts 

were reversed – land price and resource selling price variations resulted in a maximum difference 

in TLC of 1.8 and 4 respectively. Technical and financial performance analysis can support 

decision makers in system selection and anticipate the impact of price variations on long-term 

operation. The technical analysis was based on published results of international research and 

the approach can be applied for other tropical, developing countries. All costs were converted to 

per capita unit costs and can be updated to assess other countries’ estimated costs and benefits. 

Consequently, the approach can be used to guide wastewater and solid waste system planning in 

developing countries.  

 

Keywords: wastewater, solid waste, financial analysis, technical analysis, developing countries, 

resource recovery 
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 Introduction 4.1

The Millennium Development Goals (MDG) state that the proportion of people without access to 

sanitation facilities should be halved by 2015 compared to 1990. Nevertheless, a large fraction of 

the population in developing Asia currently lacks access to improved sanitation (ADB, 2012). In 

2010, access to improved wastewater facilities in Indonesia was 56% (Ministry of Health, 2010) 

while progress reports suggest that Indonesia is not on track reaching the MDG’s (WHO & 

UNICEF, 2014). National Health Surveys (Ministry of Health, 2013) show that less than 25% of 

households is served by a solid waste management system. 

The vast majority of households in Indonesia with access to wastewater facilities rely on septic 

tanks (WSP, 2013a). A septic tank is the minimum treatment requirement in Indonesia (BPS, 

2014) and minimum design standards for septic tanks are available (MoPW, 2000), yet rarely 

enforced. Consequently, 95% of septic tanks leak and result in the pollution of groundwater 

(WSP, 2013a). Community based systems or SANIMAS (Indonesian: Sanitasi oleh Masyarakat) 

comprising a community sanitation center or a simplified sewer system of small diameter pipes 

connected to an anaerobic baffled reactor, have been gaining grounds (Ulrich et al., 2009; Roma 

& Jeffrey, 2010; Reynaud et al., 2012a). By 2010, nearly 600 of such systems were implemented 

with 5,000 additional systems planned for the near future (Eales et al., 2013; Kearton et al., 

2013). Evaluation of these systems (Reynaud et al., 2012b; Kerstens et al., 2012; Eales et al., 

2013) confirmed the technical capabilities of the anaerobic systems to meet applicable effluent 

standards (MoE, 2003). However, challenges were identified such as the division of roles and 

responsibilities in technical and financial management, and the removal and safe disposal of 

sludge (Kerstens et al., 2012; Eales et al., 2013).  

By 2012, only 12 centralized municipal wastewater treatment plants (WWTP) were in operation in 

Indonesia serving less than 1% of the population (USAID (United States Agency for International 

Development), 2006; Kearton et al., 2013). The systems utilized were (aerated) lagoons, UASB 

(Upflow Anaerobic Sludge Blanket), Rotating Bio Contactors (RBC’s) and activated sludge 

systems (Kearton et al., 2013). Poor sewer network quality causes seepage of groundwater into 

the network, which dilutes the sewage and increases the flow to the treatment works (USAID, 

2006). Connecting households to the sewer systems is a major problem (Whittington et al., 2000; 

Kearton et al., 2013) and requires institutional strengthening and advocacy (Winters et al., 2014). 

Several medium centralized WWT systems (serving 500 to 5,000 households), typically RBC’s or 

Anaerobic Filters, were established in the past years (PDPAL-Banjarmasin, 2012) or are planned 

(Kearton et al., 2013).  

Existing municipal solid waste (MSW) systems include the collection of waste from households by 

motorized or hand carts to a transfer station, followed by transportation to a landfill (TTPS, 2009; 

Aprilia et al., 2012). Between 2010 and 2014, 207 municipal landfills were constructed but only 

132 have sufficient capacity until 2019 (MoPW, 2014a). The government is aiming for a 20% 

reduction of (urban) waste landfilled through the promotion of the “3R concept (Reduce, Reuse, 
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the network, which dilutes the sewage and increases the flow to the treatment works (USAID, 

2006). Connecting households to the sewer systems is a major problem (Whittington et al., 2000; 

Kearton et al., 2013) and requires institutional strengthening and advocacy (Winters et al., 2014). 

Several medium centralized WWT systems (serving 500 to 5,000 households), typically RBC’s or 

Anaerobic Filters, were established in the past years (PDPAL-Banjarmasin, 2012) or are planned 

(Kearton et al., 2013).  

Existing municipal solid waste (MSW) systems include the collection of waste from households by 

motorized or hand carts to a transfer station, followed by transportation to a landfill (TTPS, 2009; 

Aprilia et al., 2012). Between 2010 and 2014, 207 municipal landfills were constructed but only 

132 have sufficient capacity until 2019 (MoPW, 2014a). The government is aiming for a 20% 

reduction of (urban) waste landfilled through the promotion of the “3R concept (Reduce, Reuse, 
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Recycle)” (Bappenas, 2011), which has resulted in the construction of approximately 300 

communal 3R stations by 2014 (MoPW, 2013a). 

The lack of adequate wastewater systems combined with inadequate solid waste management is 

causing the contamination of both surface and ground waters (ADB, 2013) and thereby posing 

public health and environmental risks and economic losses  (Hutton, 2013; Baum et al., 2013; 

Wright et al., 2013). Furthermore, the value of resources in wastewater and solid waste, such as 

energy, water, organics, nutrients and other recoverable products like plastic and paper, is being 

ignored. Resource recovery can benefit long-term operational and financial sustainability, while 

offering access to hygienic sanitation (Murray & Ray, 2010; Sasaki & Araki, 2013). Energy usage 

for conventional aerobic technologies contributes significantly to operational costs (Chernicharo, 

2006) and in the absence of a stable power supply, sustainable service provision may be 

compromised (Lettinga, 2006). The predicted population growth and urbanization (BPS, 2013) 

will add pressure on space availability (related to population density), especially in urban areas 

(Aprilia et al., 2012). Consequently, the area footprint of facilities becomes an important 

parameter in system selection. In this paper, system selection covers collection, transport, 

treatment, disposal and resource recovery (Tilley et al., 2014).  

This study provides a combined feasibility analysis of wastewater and solid waste technologies 

and combinations thereof. Both of these sanitation sub-sectors (wastewater and solid waste) aim 

to improve public health and the environment, and should therefore be addressed and solved 

simultaneously to achieve the desired quality of life (Ersoy et al., 2008; ADB, 2013). For that 

reason wastewater and solid waste management are often managed by one public authority e.g. 

a single ministry, as is the case in Indonesia and China (Yan et al., 2006; ADB, 2013). Moreover, 

both waste streams (water and solids) concern anthropogenic sources and are intrinsically 

related to human settlement development. Linking the feasibility of wastewater and solid waste 

technologies to (1) data on the population that has access to wastewater and solid waste facilities 

and (2) key residential features (urban/rural, land availability or population density) would 

therefore result in a sanitation decision support system and planning framework, showing the 

number of required systems and the associated costs. Data on access to sanitation, residential 

features and population development and prognoses for a wide variety of development  countries 

are freely available (UNpopulation, 2012; Ministry of Health, 2013; BPS, 2014; DSM, 2014; NBSC 

(National Bureau of Statistics in China), 2014; WHO & UNICEF, 2014). However, despite the 

availability of general guidelines on system selection (TTPS, 2009) and a range of comparisons 

and evaluations on wastewater and solid waste systems (USAID, 2006; WSP, 2011; Aprilia et al., 

2012; Eales et al., 2013; Kearton et al., 2013), a combined feasibility analysis of wastewater and 

solid waste systems under different residential conditions is lacking in scientific literature.  

A second reason for an integrated wastewater and solid waste analysis is that the organic 

fraction of solid waste and wastewater can be treated using similar technologies such as 

digestion and composting  (Zeeman & Kujawa-Roeleveld, 2011). In addition, energy consuming 
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wastewater processes (e.g. aerobic technologies) may be combined with energy producing 

(anaerobic) solid waste or wastewater treatment processes resulting in net energy producing 

systems (Kujawa-Roeleveld & Zeeman, 2006; Ersoy et al., 2008; Kerstens, De Mes, et al., 2009; 

Meinzinger et al., 2009). Insights into potential synergy for the treatment of wastewater and solid 

waste flows may thus result in more favorable financial feasibility and consequently accelerate 

sanitation development.     

This paper aims to provide an analysis of selected wastewater treatment and municipal solid 

waste systems, including the financial and environmental performance of these systems under 

Indonesian conditions. It is hypothesized that a wastewater and solid waste system selection can 

be based on a small number of readily available parameters (residential density, urban/rural 

features). By including both investment and operational costs and benefits, the proposed system 

selection framework can be combined directly with life cycle costs, thereby allowing for the 

development of a principle framework for wastewater and solid waste planning and costing in 

developing countries. 

The analysis was based on international literature and includes a comparison of different 

technological systems according to: (1) removal efficiency of COD, BOD, nitrogen, phosphorus 

and pathogens, (2) sludge production, (3) energy consumption, (4) area requirement and (5) 

resource recovery potential (phosphorus, energy, duckweed, compost and water). Secondly a 

financial analysis was performed focusing on a comparison of investment and operational costs 

as well as the potential benefits accrued from resource recovery. Subsequently the total lifecycle 

costs (TLC), comprising investment and operational costs minus potential benefits over a 20 

years operation time, were evaluated.  

 

 Material and Methods 4.2

Wastewater systems are first compared based on technical performance and the potential to 

comply with applicable regulations in order to minimize public health and environment risks. 

Following Indonesian Ministry of Public Works guideline definitions, three types of systems are 

evaluated – on-site systems (typically serving 1-5 households), community based systems (CBS; 

typically serving 50-150 households) and off-site systems (typically serving more than 500 

households). Off-site systems are further split into medium centralized systems (< 5,000 

households) and centralized systems (> 10,000 households). For off-site systems 10 

technologies that are currently applied or under consideration for application in Indonesia were 

evaluated. For on-site and CBS the currently applied septic tank and anaerobic baffled reactors 

were included in the analysis (see Table 4.1 and Table 4.2).  

Four types of municipal solid waste systems currently applied in Indonesia (MoPW, 2013b) were 

compared and evaluated according to space requirement and potential for resource recovery 

(see Table 4.3). In the subsequent financial analysis, the costs and benefits of WWT and MSW 
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Four types of municipal solid waste systems currently applied in Indonesia (MoPW, 2013b) were 

compared and evaluated according to space requirement and potential for resource recovery 
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systems and technologies are compared. The applicability of the evaluated technologies was 

compared for varying land conditions and varying recovered resource selling prices.  

 

4.2.1 Methodology for the determination of WWT technical performance 

4.2.1.1 Wastewater composition and quantities 

The same wastewater composition was assumed for all systems and technologies. The technical 

evaluation is performed based on COD (Chemical Oxygen Demand), N (nitrogen) and P 

(phosphorus) generation rates per capita per day as reported by Almy (2008) and a COD/BOD 

(Biological Oxygen Demand) ratio based on Meinzinger & Oldenburg (2009). Water consumption 

is based on the MoPW guideline (MoPW, 2011), applying an 80% wastewater return factor (DKI, 

2005). Household size was defined as 5 persons (Almy, 2008). To determine black water 

concentrations, a daily toilet usage frequency of 6 per person (Kujawa-Roeleveld, 2005) with a 

flush volume of 6 l/p/d (De Graaff et al., 2011) was used. Applied COD values correspond with 

those reported elsewhere (Meinzinger & Oldenburg, 2009), corrected for COD of toilet paper (De 

Mes, 2007), which is typically not used in Indonesia (Reynaud et al., 2012a). Calculated 

wastewater composition and quantities are shown in Table 4.4 and further detailed in Table A4.1 

of the Appendix Chapter 4.  

 

4.2.1.2  Investigated WWT technologies 

Selection of investigated technologies was first of all based on compliance with the definition of 

the Indonesian statistical bureau (BPS) which describes a latrine, a goose neck (leher angsa) and 

a septic tank or sewer connection with treatment (BPS, 2014). The second criterion was the 

already applied or planned status in Indonesia, based on the study of centralized WWTP by 

USAID (2006) and developments in the Jakarta Master Plan (JICA, 2012). The third criterion was 

the appropriate level of technologies and collection systems in view of the general level of 

technology in Indonesia. Poor operation and maintenance of facilities is a recurring bottleneck 

(USAID, 2006; Kearton et al., 2013). Thus, “new sanitation concepts” separating grey water, 

black water or feces and urine for enhanced resource recovery and applying vacuum transport 

systems (Zeeman & Kujawa-Roeleveld, 2011) are excluded because these approaches have not 

been proven on a large scale in developing countries. Separation of black water is only applied 

on a household level using septic tanks, which is already common in Indonesia (WSP, 2013a). 

Finally resource recovery technologies are selected that (1) could be added to technologies in the 

wastewater sludge processing line (phosphorus, energy and compost) or (2) recover multiple 

resources in the water line (energy, duckweed, compost). In Table 4.1 the selected WWT 

systems are described by (I) typical scales (households), (II) features of sewer systems, (III) 

sludge management, (IV) selected technologies excluding and (V) including resource recovery.  

 

Feasibility analysis of wastewater and solid waste systems for application in Indonesia 

67 
 

Table 4.1 Scale, sewer systems, sludge management, technologies and potential recovered 

resource products of selected WWT systems 

Systems On-site Community 
Based (CBS) 

Off-site systems 
Medium centralized Centralized 

I. Scale: number 
of households a 

1 50-150 500-5,000 > 10,000 

II. Sewer system None simplified sewer system (pumped) sanitary system 
III. Sludge 
management 

Centralized sludge 
processing facility (IPLT b) 

At the location of WWTP 

IV. Technologies 
excluding 
resource 
recovery 

Septic Tank 
(treating 
black 
water) 

Anaerobic 
Baffled 
Reactor + 
Filter (ABR + 
AF) 

1. Anaerobic filter (An. Fil) 
2. Aerated lagoon  
3. Conventional Activated Sludge (CAS) 
4. CAS + enhanced (N) and (P) removal (CAS + 

N&P) 
5. Aerobic Granular Sludge (AGS) 
6. Membrane Bioreactor (MBR)  

V. technologies 
including 
resource 
recovery  

Composting of IPLT b 
sludge 

7. Technology 4-6 with additional: 
o Sludge digestion to energy;  
o Struvite Crystallization from centrate  
o Dewatered Sludge composting  

8. UASB-DW-RBC c; producing energy, 
duckweed (proteins), compost 

a based on MoPW (2013c), Kerstens et al. (2012), Reynaud et al. (2012b), and MoPW (2014a) 
b IPLT: Instalasi Pengolahan Limbah Tinja; a sludge processing facility  
c UASB (Upflow Anaerobic Sludge Bed), DW (Duckweed Ponds); RBC (Rotating Bio Contactor) 

 

Both CBS and medium centralized systems apply simplified sewer systems with lower costs 

compared to a conventional or pumped sanitary system because of reduced pipe length, smaller 

diameters, shallow installation and simple inspection pits (Mara & Broome, 2008; Van Buuren, 

2010). Sanitary systems transport wastewater separately from rainwater and are particularly 

applicable in tropical regions with high rainwater run-off. These systems may require additional 

pumping depending on slope and distance to the final treatment plant (Van Buuren, 2010).  

Sludge management for on-site and community based systems in Indonesia is frequently 

performed at sludge processing facilities (IPLT) where collected sludge is delivered by vehicles 

(MoPW, 2013c; WSP, 2013b). The Imhoff Tank is typically applied as a first step of the IPLT 

followed by a simple aeration step (MoPW, 2013c). 

Applied removal efficiencies for on-site, CBS and the off-site technologies are presented in Table 

4.2. Details of design parameters for each technology and examples of mass balances are 

described in Section 2 of the Appendix Chapter 4. The conclusions on removal efficiencies 

assume that systems are designed, constructed, operated and maintained correctly. Current 

practice in Indonesia, however, shows that operation and maintenance of wastewater treatment 

systems is often poorly managed (ADB, 2013; Kearton et al., 2013) 

The impact of variations in removal efficiencies was therefore analyzed by including an efficiency 

removal reduction on values in Table 4.2 of (1) 10% for COD and BOD, (2) 5% for nutrients 
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Both CBS and medium centralized systems apply simplified sewer systems with lower costs 

compared to a conventional or pumped sanitary system because of reduced pipe length, smaller 

diameters, shallow installation and simple inspection pits (Mara & Broome, 2008; Van Buuren, 

2010). Sanitary systems transport wastewater separately from rainwater and are particularly 

applicable in tropical regions with high rainwater run-off. These systems may require additional 

pumping depending on slope and distance to the final treatment plant (Van Buuren, 2010).  

Sludge management for on-site and community based systems in Indonesia is frequently 

performed at sludge processing facilities (IPLT) where collected sludge is delivered by vehicles 

(MoPW, 2013c; WSP, 2013b). The Imhoff Tank is typically applied as a first step of the IPLT 

followed by a simple aeration step (MoPW, 2013c). 

Applied removal efficiencies for on-site, CBS and the off-site technologies are presented in Table 

4.2. Details of design parameters for each technology and examples of mass balances are 

described in Section 2 of the Appendix Chapter 4. The conclusions on removal efficiencies 

assume that systems are designed, constructed, operated and maintained correctly. Current 

practice in Indonesia, however, shows that operation and maintenance of wastewater treatment 

systems is often poorly managed (ADB, 2013; Kearton et al., 2013) 

The impact of variations in removal efficiencies was therefore analyzed by including an efficiency 

removal reduction on values in Table 4.2 of (1) 10% for COD and BOD, (2) 5% for nutrients 
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(N&P), and (3) 1 log for coliforms. The 10% COD and BOD removal efficiencies were based on 

the spread of reported removal efficiencies in a UASB system by Chernicharo (2006). The 5% 

reduced nutrient removal efficiency variation was based on the expected total N effluent variation 

in biological nutrient removal systems (EPA, 1993). The reduced log removal was based on 

Tchobanoglous et al. (2003).  

 

Table 4.2 Applied removal efficiencies for selected wastewater treatment technologies a 

Technology COD b BOD b Total Nitrogen (TN) b Total Phosphorus (TP) b Coliforms b 
Septic Tank c 60% 70% 15% 5% ~ 1 log 
ABR + AF 80% 85% 15% 5% ~ 2 log 
Anaerobic Filter 80% 85% 15% 5% ~ 2 log 
CAS 88% 96% 73% 29% ~ 4 log 
Aerated lagoon 88% 96% 73% 29% ~ 4 log 
CAS + N&P 89% 97% 90% 67% ~ 4 log 
AGS 89% 97% 90% 67% ~ 4 log 
MBR 91% 98% 91% 67% 100% 
UASB-DW-RBC 93% 95% 97% 73% ~ 4 log 
a In case additional resource recovery technologies are added to the CAS + N&P, AGS and MBR, 

the same removal efficiencies are obtained as in cases without resource recovery 
b Applied removal efficiencies are based on literature, described in section 2 of the Appendix 

Chapter 4 
c Septic tank removal efficiencies relate to black water treatment only  

 

4.2.2 Municipal Solid Waste (MSW) Management Systems 

4.2.2.1 Waste generation and composition 

Solid waste mass balances were derived based on a specific waste production of 2.5 l/p/d for 

rural and 2.75 l/p/d for urban areas with a density of 0.25 ton/m3 (BSN, 1995), resulting in a daily 

MSW production rate of 0.63 and 0.69 kg per person for rural and urban areas, respectively. 

These rates correspond with those reported elsewhere (Bhattacharya et al., 2005). Applied waste 

density at the transfer station to determine the number of vehicles necessary for waste transport 

to a landfill was 0.34 ton/m3 (KNLH, 2008). The applied Organic Solid Waste Fraction (OSWF) 

was 59% (mass) (KNLH, 2008). Plastic and paper content were obtained from Aprilia et al. 

(2013).  

 

4.2.2.2 Investigated MSW systems and determination of process features 

Four MSW systems were defined with each system comprising a full chain of activities: collection, 

transfer and transport of waste, treatment and disposal (Table 4.3). System I is a conventional 

system, in which all collected waste is landfilled and no recovery is applied. System II applies 

waste (organic, plastic and paper) separation on a centralized level (location of landfill). Plastics 
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and papers are packed and recycled (Sasaki & Araki, 2013) and the OSWF is treated using 

composting only. System III is similar to the second system, but applies digestion prior to 

composting of OSWF. System IV applies OSWF composting and plastic and paper recovery at a 

decentralized or community level. For rural areas only decentralized 3R systems were assumed, 

as direct reuse of produced compost is envisaged. Appendix Chapter 4, Section 4 provides 

details on design parameters, mass balances and a full cost breakdown for the analyzed 

systems. 

 

Table 4.3 Applied characteristics and efficiencies of selected Municipal Solid Waste (MSW) 

systems 

System 
 
Activity 

Conventional 
Applying 3R (Reduce Reuse and Recycle) 

Centralized 3R 
Decentralized 3R 

Composting Dig & Comp 
Collection from households Motorized vehicles: 3 trips/day each a 
transfer station Covered station with 2 (+1) containers a. 3R transfer station a 
Transport to centralized facility Armroll truck a (3 trips/day each) 
Fraction of Plastic and Paper 
recovered 

0% 75% b; remaining part is landfilled. 

Organic solid waste fraction 
(OSWF) separation efficiency 

0% 75% c centralized 75% c decentralized 

Fraction of separated OSWF 
digested 

0% 0% 63%d 0% 

Compost production coefficient; 
using open windrowe 

0% 0.35 kg compost/kg organic wastef 

Disposal in landfill 
15 m depth, 20 years lifetime, with 4 stages, covering 5 years. In the 
first phase land for the full period and facilities (office, weighing 
bridge, vehicles, leachate treatment plant) g are arranged 

a MoPW (2013b), TTPS (2009); b KLH (2012); c Aprilia et al. (2012); d calculated, shown in the 

Appendix Chapter 4, Section 4; e Compost is piled in rows and work without forced aeration and 

waste gas collecting (Saveyn & Eder, 2014); f MoPW (2013b) and calculated as shown in the 

online supplementary information, Section 4; g MoPW (2013b), TTPS (2009) 

 

4.2.3 Considerations for the financial analysis 

Costs of sewer systems serving CBS are based on Kerstens et al. (2012). The methodology to 

determine the costs for off-site sewer systems is further explained in Section 3 of the Appendix 

Chapter 4. For “greenfield” situations a 50% reduction in sewer construction costs was applied 

because sewer construction can be combined with other development (Rioned, 2007). 

Investment costs for on-site and CBS sludge management facilities are based on MoPW (2013c) 

and Kerstens et al. (2012). AGS, MBR and CAS investments are based on prepared designs by 

Royal HaskoningDHV and adjusted to local conditions in order to correct for price level 

differences (Moore & Mathew, 2012) (see Appendix Chapter 4, Section 5). Costs for UASB, RBC, 

AF and aerated lagoon are based on Van Buuren (2010) and Chernicharo (2006). All treatment 
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Table 4.2 Applied removal efficiencies for selected wastewater treatment technologies a 

Technology COD b BOD b Total Nitrogen (TN) b Total Phosphorus (TP) b Coliforms b 
Septic Tank c 60% 70% 15% 5% ~ 1 log 
ABR + AF 80% 85% 15% 5% ~ 2 log 
Anaerobic Filter 80% 85% 15% 5% ~ 2 log 
CAS 88% 96% 73% 29% ~ 4 log 
Aerated lagoon 88% 96% 73% 29% ~ 4 log 
CAS + N&P 89% 97% 90% 67% ~ 4 log 
AGS 89% 97% 90% 67% ~ 4 log 
MBR 91% 98% 91% 67% 100% 
UASB-DW-RBC 93% 95% 97% 73% ~ 4 log 
a In case additional resource recovery technologies are added to the CAS + N&P, AGS and MBR, 

the same removal efficiencies are obtained as in cases without resource recovery 
b Applied removal efficiencies are based on literature, described in section 2 of the Appendix 

Chapter 4 
c Septic tank removal efficiencies relate to black water treatment only  

 

4.2.2 Municipal Solid Waste (MSW) Management Systems 

4.2.2.1 Waste generation and composition 

Solid waste mass balances were derived based on a specific waste production of 2.5 l/p/d for 

rural and 2.75 l/p/d for urban areas with a density of 0.25 ton/m3 (BSN, 1995), resulting in a daily 

MSW production rate of 0.63 and 0.69 kg per person for rural and urban areas, respectively. 

These rates correspond with those reported elsewhere (Bhattacharya et al., 2005). Applied waste 

density at the transfer station to determine the number of vehicles necessary for waste transport 

to a landfill was 0.34 ton/m3 (KNLH, 2008). The applied Organic Solid Waste Fraction (OSWF) 

was 59% (mass) (KNLH, 2008). Plastic and paper content were obtained from Aprilia et al. 

(2013).  

 

4.2.2.2 Investigated MSW systems and determination of process features 

Four MSW systems were defined with each system comprising a full chain of activities: collection, 

transfer and transport of waste, treatment and disposal (Table 4.3). System I is a conventional 

system, in which all collected waste is landfilled and no recovery is applied. System II applies 

waste (organic, plastic and paper) separation on a centralized level (location of landfill). Plastics 
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and papers are packed and recycled (Sasaki & Araki, 2013) and the OSWF is treated using 

composting only. System III is similar to the second system, but applies digestion prior to 

composting of OSWF. System IV applies OSWF composting and plastic and paper recovery at a 

decentralized or community level. For rural areas only decentralized 3R systems were assumed, 

as direct reuse of produced compost is envisaged. Appendix Chapter 4, Section 4 provides 

details on design parameters, mass balances and a full cost breakdown for the analyzed 

systems. 

 

Table 4.3 Applied characteristics and efficiencies of selected Municipal Solid Waste (MSW) 

systems 

System 
 
Activity 

Conventional 
Applying 3R (Reduce Reuse and Recycle) 

Centralized 3R 
Decentralized 3R 

Composting Dig & Comp 
Collection from households Motorized vehicles: 3 trips/day each a 
transfer station Covered station with 2 (+1) containers a. 3R transfer station a 
Transport to centralized facility Armroll truck a (3 trips/day each) 
Fraction of Plastic and Paper 
recovered 

0% 75% b; remaining part is landfilled. 

Organic solid waste fraction 
(OSWF) separation efficiency 

0% 75% c centralized 75% c decentralized 

Fraction of separated OSWF 
digested 

0% 0% 63%d 0% 

Compost production coefficient; 
using open windrowe 

0% 0.35 kg compost/kg organic wastef 

Disposal in landfill 
15 m depth, 20 years lifetime, with 4 stages, covering 5 years. In the 
first phase land for the full period and facilities (office, weighing 
bridge, vehicles, leachate treatment plant) g are arranged 

a MoPW (2013b), TTPS (2009); b KLH (2012); c Aprilia et al. (2012); d calculated, shown in the 

Appendix Chapter 4, Section 4; e Compost is piled in rows and work without forced aeration and 

waste gas collecting (Saveyn & Eder, 2014); f MoPW (2013b) and calculated as shown in the 

online supplementary information, Section 4; g MoPW (2013b), TTPS (2009) 

 

4.2.3 Considerations for the financial analysis 

Costs of sewer systems serving CBS are based on Kerstens et al. (2012). The methodology to 

determine the costs for off-site sewer systems is further explained in Section 3 of the Appendix 

Chapter 4. For “greenfield” situations a 50% reduction in sewer construction costs was applied 

because sewer construction can be combined with other development (Rioned, 2007). 

Investment costs for on-site and CBS sludge management facilities are based on MoPW (2013c) 

and Kerstens et al. (2012). AGS, MBR and CAS investments are based on prepared designs by 

Royal HaskoningDHV and adjusted to local conditions in order to correct for price level 

differences (Moore & Mathew, 2012) (see Appendix Chapter 4, Section 5). Costs for UASB, RBC, 

AF and aerated lagoon are based on Van Buuren (2010) and Chernicharo (2006). All treatment 
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prices are estimates and may vary by up to 30%. Price variations are the result of a combination 

of factors. Site labour costs remains one of the key drivers, while the sourcing of materials, 

including the use of imported mechanical and electrical engineering plant, can have a profound 

effect on prices. In addition, procurement and contractual arrangements can also have a 

substantial effect on costs (Moore & Mathew, 2012). 

 

Collection and landfill costs were based on MoPW guidelines (TTPS, 2009; MoPW, 2013d, 

2014b). MSW 3R costs were based on MoPW (2013b) and are further explained in Section 4 of 

the Appendix Chapter 4. Costs include studies/design, advocacy, campaigns, institutional 

training, construction and supervision. Labour (technical and institutional) costs are based on 

function group (MoPW, 2013b) and include both technical and institutional costs. Operational 

costs include replacement costs of collection vehicles (TTPS, 2009), whereas all other facilities 

(both WWT and MSW) are assumed to have an economic lifetime of at least 20 years. An 

overview of applied prices in the financial analysis is shown in Table A4.4 in Section 5 of the 

Appendix Chapter 4. 

During this study, first hand information on prices in Indonesia was obtained during site visits and 

through discussions with involved stakeholders (see Section 5 of the Appendix Chapter 4).  

Because reported land and product selling prices varied considerably, the impact of these price 

variations on the total lifecycle costs was further evaluated. 

The applied currency conversion rates (July 2013) were 10,000 Indonesian Rupiah (Rp)/US$ and 

13,200 Rp/Euro (XE-currency, 2014). TLC are the total costs in a defined lifetime and include 

Capital Expenditures (CAPEX) at the start (t=0) or at a later year (t=l) and net Operational 

Expenditures (OPEX). Net OPEX are calculated by subtracting benefits from operational costs. 

The TLC was determined using the Net Present Value (NPV), in which the total costs are 

discounted back to its present value. The use of NPV to determine total costs was applied by 

Starkl et al. (2010) and Hauger et al. (2002). A 5% inflation (I), based on the 2009-2013 average 

rate (Inflation.EU, 2014) and a 6% discount rate (D) (Global-rates.com, 2014) for 20 (n) years are 

applied in Formula (1):  

 

(Formula 1) 
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   Results and Discussion 4.3

4.3.1 Wastewater treatment systems 

4.3.1.1 Effluent values of systems and technologies 

Table 4.4 shows the calculated influent and effluent composition and three effluent standards for 

comparison: the minimum (MoE, 2003), the more stringent Jakarta (DKI) standard (DKI, 2005) 

and the Indonesian irrigation standard (MoPW, 2001). 

No effluent requirements apply for septic tank effluents, whereas the ABR + AF (CBS) should 

comply with the 2003 regulation (MoE, 2003). Both the ABR+AF and the AF effluent comply with 

this minimum standard for discharge, as also reported by Kerstens et al. (2012) and Reynaud et 

al. (2012b). Cities may determine their own (more stringent) standards for off-site systems. The 

standard for Jakarta (DKI) is shown in Table 4.4, as an example. The Anaerobic Filter does not 

comply with the DKI standard, whereas all other off-site technologies do. The CAS N&P, AGS 

and MBR systems do comply with the irrigation standard, whereas the UASB-DW-RBC effluent 

exceeds the recommended BOD value. The MBR complies with the Coliform standard, whereas 

for the remaining systems post treatment should be considered for safe use of effluent for 

irrigation, applying chlorination, ozonization, UV radiation or filtration (Chernicharo, 2006). 

Lower removal efficiencies result in higher effluent values (see values in brackets in Table 4.4). 

Table 4.4 shows that the conclusion on meeting the minimum standards (MoE, 2003) does not 

change since effluents of all technologies, except the septic tank, do comply with the minimum 

standards. Except for the UASB-DW-RBC system, the DKI standard will not be met for any 

system in terms of COD with the assumed lower removal efficiency. The impact of assumed 

reduced removal efficiencies will also impact the conclusions on meeting the irrigation standard, 

as none of the technologies complies with COD, BOD and P standards. The assumed reduced 

Coli removal confirms the need for effluent disinfection for all systems (except for the MBR) to 

assure a hygienic practice. 
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COD, BOD, nutrients and pathogen effluent values for septic tanks are considerably higher than 

all other technologies. A relation between the use of (poor performing) septic tanks and 

eutrophication and high pathogen levels of water bodies near cities are eminent in Indonesia 

(Hart et al., 2002; Fach & Fuchs, 2010; Fulazzaky, 2010; Suharyanto & Matsushita, 2011). Septic 

tank performance can be improved using the UASB-septic tank (Lettinga et al., 1991). 

Alternatively, post treatment removal of remaining COD, N and P can be applied in a (medium) 

centralized system. Due to solids removal, chances are decreased for clogging and simpler and 

less expensive small bore sewer systems can be applied (Mara & Broome 2008;Van Buuren 

2010). However, septic tank effluent post -treatment may be hindered in the Indonesian context: 

• Because most septic tanks are not sealed and septic tanks require sealing (WSP, 2013a), 

which is a private (and costly) investment in Indonesia (WSP, 2011); 

• Besides the management of a small bore sewer system and post-treatment plant, septic 

sludge management is needed; 

• Minimum COD/N (EPA, 1993) and COD/P ratios (Janssen et al., 2002) for denitrification and 

biological P-removal apply if a CAS is used as post treatment. COD removal in a septic tank 

can jeopardize this ratio. COD is not a limiting factor in the removal of N and P using 

duckweed ponds + RBC as post treatment. 

Table 4.4 shows high effluent ammonium values for CBS systems, which is in line with reported 

values (Reynaud et al., 2012a; Kerstens et al., 2012). Calculated CBS effluent P values (Table 

4.4) are similar to measured values by Reynaud et al. (2012a) (15 mg/l PO4-P), but higher than 

measured values by Kerstens et al. (2012) (4 mg/l PO4-P). Reynaud et al. (2012a) attributed high 

P values to low water consumption. The lowest effluent values for N and P in this study were 

calculated for the UASB-DW-RBC technology (Table 4.4).  

 

4.3.1.2 Energy consumption and production of technologies 

A comparison of energy consumption and production of the described off-site technologies is 

presented in Figure 4.1. Septic tanks and ABR+AF require no energy input. Energy consumption 

for the IPLT treatment was calculated as 0.8 kWh/cap/year in this study. In the anaerobic filter 

organic matter is converted to biogas. A yearly per capita biogas production of 7 m3 is calculated 

applying the same approach as for the UASB mass balance (see Section 2 of the Appendix 

Chapter 4). Since 1 m3 of biogas equals 6 hours of 60-100 watt bulb light (Almy, 2008), collection 

of the biogas produced by 100 people would be sufficient to have lighting for 12 h per day. 

However, biogas from anaerobic filters is typically not used or flared (Kerstens et al., 2012) and 

thus contributes to greenhouse gas emissions and corresponding negative environmental 

impacts (Aye & Widjaya, 2006). The use of the produced biogas could result in a positive energy 

balance.  
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Table 4.4 shows high effluent ammonium values for CBS systems, which is in line with reported 

values (Reynaud et al., 2012a; Kerstens et al., 2012). Calculated CBS effluent P values (Table 

4.4) are similar to measured values by Reynaud et al. (2012a) (15 mg/l PO4-P), but higher than 

measured values by Kerstens et al. (2012) (4 mg/l PO4-P). Reynaud et al. (2012a) attributed high 

P values to low water consumption. The lowest effluent values for N and P in this study were 

calculated for the UASB-DW-RBC technology (Table 4.4).  

 

4.3.1.2 Energy consumption and production of technologies 

A comparison of energy consumption and production of the described off-site technologies is 

presented in Figure 4.1. Septic tanks and ABR+AF require no energy input. Energy consumption 

for the IPLT treatment was calculated as 0.8 kWh/cap/year in this study. In the anaerobic filter 

organic matter is converted to biogas. A yearly per capita biogas production of 7 m3 is calculated 

applying the same approach as for the UASB mass balance (see Section 2 of the Appendix 

Chapter 4). Since 1 m3 of biogas equals 6 hours of 60-100 watt bulb light (Almy, 2008), collection 

of the biogas produced by 100 people would be sufficient to have lighting for 12 h per day. 

However, biogas from anaerobic filters is typically not used or flared (Kerstens et al., 2012) and 

thus contributes to greenhouse gas emissions and corresponding negative environmental 

impacts (Aye & Widjaya, 2006). The use of the produced biogas could result in a positive energy 

balance.  
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Figure 4.1 Calculated per capita values for energy (E) consumption, production and Net E-use 

(Consumption-Production) for off-site systems (shown as negative values if it concerns a net 

energy producing system) 

 

Only the UASB-DW-RBC technology system produces net energy. The calculated fraction of 

incoming COD converted to methane is 0.47 (Section 2 of the Appendix Chapter 4) and is 

approximately 1.5 times the value of 0.31 and 0.33 reported by, respectively, Draaijer et al. 

(1992) and Kooijmans et al. (1986). The lower measured values in comparison to the calculated 

value could be related to methane leaving the reactor through the effluent as described by 

Kooijmans et al. (1986). Furthermore, produced biogas may not be captured properly due to 

leaking gas caps (USAID, 2006). Therefore, presented energy production may be optimistic and 

a lower value (~33%) could be expected in practice. In that case, however, the system still 

produces 9 kWh/cap/y.  

Figure 4.1 and Table A4.5 of the Appendix Chapter 4) shows 40% and 67% energy consumption 

reduction for the Aerobic Granular Sludge compared to, respectively, the Conventional Activated 

Sludge and MBR, which is in line with full scale cases (De Bruin et al., 2013; Pronk et al., 2015). 

Sludge digestion for the Conventional Activated Sludge +3R, Aerobic Granular Sludge + 3R and 

MBR+3R technologies, results in a recovery of 22%, 36% and 13% of the consumed energy, 

respectively (see  Table A4.5 of the Appendix Chapter 4).  

 

4.3.1.3 Sludge and compost production 

Table 4.5 shows the calculated sludge and compost production values for the selected 

technologies. Agricultural use of digested sludge or fecal sludge has long been practiced since 

the sludge may act as source of essential crop nutrients, stimulates microbial activity, 
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immobilizes toxic elements in soil, improves soil structure, minimizes soil erosion (Tesfamariam 

et al., 2013) and contains essential elements for crop production (C, N, P, K and Ca) 

(Dobermann & Fairhurst, 2000). At the same time (1) health, (2) social acceptability and (3) 

environmental complications are associated with the application of digested sludge (Koné et al., 

2007; Starkl et al., 2010; Tesfamariam et al., 2013), which is further elaborated in Section 7 of 

the Appendix Chapter 4. 

 

4.3.1.4 Recovery of proteins, N, and P via duckweed 

A duckweed production of 15.5 kg TS (Total Solids) per capita per year is calculated for the 

UASB-DW-RBC technology system. Duckweed is an excellent protein rich (20%) feedstock for 

aquaculture in Indonesia (Journey et al., 1993; Abery et al., 2005). Furthermore, duckweed has 

reported N and P contents of, respectively 3% and 0.5% of the TS (Korner & Vermaat, 1998; El-

Shafai et al., 2007; Bal Krishna & Polprasert, 2008) and could be used as organic fertilizer 

(Journey et al., 1993). In addition, Duckweed ponds can considerably reduce odor emission 

(Kerstens et al. 2009). In the current study no post-treatment of the CBS (ABR+AF) effluent is 

applied, because the effluent already complies with the minimum standard, but application of 

duckweed ponds can be considered if the revenues from duckweed are higher than associated 

additional land costs.  

 

P-recovery: In the Aerobic Granular Sludge, MBR and Conventional Activated Sludge + 3R 

approximately 0.35 kg P/cap/year (Table 4.5) is recovered via struvite precipitation and sludge 

reuse, which corresponds with 48% of the yearly P produced per capita. De Graaff et al. (2011) 

determined a P-recovery of 0.22 kg P/cap/year through effluent struvite precipitation and 0.16 kg 

P/cap/year sludge production for a UASB treating concentrated black water. The yearly P-

recovery from duckweed and attached biomass was calculated as 0.31 kg P/cap/y, whereas the 

amount of P recovered from composted UASB and RBC sludge was calculated as 0.04kg 

P/cap/y. 

 

Land use: The land use in the UASB-DW-RBC technology is about 400 times higher than the 

smallest footprint (AGS or MBR system) (Table 4.5), whereas the footprint of aerated lagoons is 

a tenfold that of the AGS and MBR. The effect of land use on lifecycle costs is further analyzed. 
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immobilizes toxic elements in soil, improves soil structure, minimizes soil erosion (Tesfamariam 

et al., 2013) and contains essential elements for crop production (C, N, P, K and Ca) 

(Dobermann & Fairhurst, 2000). At the same time (1) health, (2) social acceptability and (3) 

environmental complications are associated with the application of digested sludge (Koné et al., 

2007; Starkl et al., 2010; Tesfamariam et al., 2013), which is further elaborated in Section 7 of 

the Appendix Chapter 4. 
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A duckweed production of 15.5 kg TS (Total Solids) per capita per year is calculated for the 

UASB-DW-RBC technology system. Duckweed is an excellent protein rich (20%) feedstock for 

aquaculture in Indonesia (Journey et al., 1993; Abery et al., 2005). Furthermore, duckweed has 

reported N and P contents of, respectively 3% and 0.5% of the TS (Korner & Vermaat, 1998; El-

Shafai et al., 2007; Bal Krishna & Polprasert, 2008) and could be used as organic fertilizer 

(Journey et al., 1993). In addition, Duckweed ponds can considerably reduce odor emission 

(Kerstens et al. 2009). In the current study no post-treatment of the CBS (ABR+AF) effluent is 

applied, because the effluent already complies with the minimum standard, but application of 

duckweed ponds can be considered if the revenues from duckweed are higher than associated 

additional land costs.  

 

P-recovery: In the Aerobic Granular Sludge, MBR and Conventional Activated Sludge + 3R 

approximately 0.35 kg P/cap/year (Table 4.5) is recovered via struvite precipitation and sludge 

reuse, which corresponds with 48% of the yearly P produced per capita. De Graaff et al. (2011) 

determined a P-recovery of 0.22 kg P/cap/year through effluent struvite precipitation and 0.16 kg 

P/cap/year sludge production for a UASB treating concentrated black water. The yearly P-

recovery from duckweed and attached biomass was calculated as 0.31 kg P/cap/y, whereas the 

amount of P recovered from composted UASB and RBC sludge was calculated as 0.04kg 

P/cap/y. 

 

Land use: The land use in the UASB-DW-RBC technology is about 400 times higher than the 

smallest footprint (AGS or MBR system) (Table 4.5), whereas the footprint of aerated lagoons is 

a tenfold that of the AGS and MBR. The effect of land use on lifecycle costs is further analyzed. 
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Water production: Only in the MBR is water (50 m³/cap/y; Table 4.5) produced that is directly safe 

for irrigation, greening ( Kerstens et al. 2009) or as a source for drinking water production 

(Cikarang Estate, 2014). The feasibility of reusing this water depends, among others, on the 

distance to agricultural land or reservoirs and user acceptance. An evaluation of these aspects is 

beyond the scope of this study. 

 

4.3.1.5 Financial analysis of WWT 

Figure 4.2 shows the per capita TLC after 20 years of operation, subdivided by investments 

(CAPEX sewer, treatment and land) and Net operational costs. The numeric values of each 

system and technology are presented in Table A4.6 and A4.7 of the Appendix Chapter 4. 

 

 

Figure 4.2 Per capita Total Lifecycle Costs (TLC) comprising sewer, treatment and land 

investments (CAPEX) and 20 years of NET OPEX (as NPV) per system and technology. Error 

bars show maximum and minimum values of variations in land prices (factors 0.5 to 5) and 

recovered resource selling price (factors 0.5 to 2) 

 

Figure 4.3 shows the operational costs and benefits per parameter of on-site, CBS and medium 

centralized systems. The figure illustrates that costs for labour amount on average to 36% of the 

operational costs with the lowest percentage (22%) for the simpler systems (anaerobic filter) and 

the highest percentage (53%) for the more complicated systems (MBR). Energy costs for aerobic 
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Water production: Only in the MBR is water (50 m³/cap/y; Table 4.5) produced that is directly safe 

for irrigation, greening ( Kerstens et al. 2009) or as a source for drinking water production 

(Cikarang Estate, 2014). The feasibility of reusing this water depends, among others, on the 

distance to agricultural land or reservoirs and user acceptance. An evaluation of these aspects is 

beyond the scope of this study. 

 

4.3.1.5 Financial analysis of WWT 

Figure 4.2 shows the per capita TLC after 20 years of operation, subdivided by investments 

(CAPEX sewer, treatment and land) and Net operational costs. The numeric values of each 

system and technology are presented in Table A4.6 and A4.7 of the Appendix Chapter 4. 
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investments (CAPEX) and 20 years of NET OPEX (as NPV) per system and technology. Error 

bars show maximum and minimum values of variations in land prices (factors 0.5 to 5) and 
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systems (excluding Anaerobic Filter and UASB-DW-RBC) contribute to about a quarter of the 

operational costs (range 17% to 28%). An average of 17% of the operational costs is required for 

maintenance of the selected off-site WWTPs (range 4% to 22%), with the lowest contribution for 

the anaerobic filters and aerated lagoon. The sewer maintenance costs contribute on average 

16% of the costs (range 9% to 27%), with the anaerobic filters and aerated lagoon showing the 

highest contribution.  

 

Figure 4.3 Per capita yearly WWT operational costs (positive values) & benefits (negative values) 

per system and technology 

 

On-site and CBS systems have the lowest investment, Net OPEX and TLC (Figure 4.2 and 

Figure 4.3 and Table A4.6 and A4.7 of the Appendix Chapter 4). The indexed TLC of on-site 

(used as reference; set as 100), CBS, off-site (in existing areas) and off-site (green field) are, 

respectively, 100, 169, 398, 302. The average off-site costs are about 2.4 and 3.9 times higher 

than, respectively CBS and on-site technologies. However, off-site systems have higher removal 

efficiencies and better effluent quality (Table 4.4). Investments and operational costs of the 

anaerobic filter and aerated lagoon are considerably lower than those of other off-site systems 

even considering additional costs of a flaring system for an anaerobic filter (1-2% additional 

investment). The MBR, which is proposed in Jakarta (JICA, 2012), shows the highest investment, 

operational costs and TLC.  

The TLC of off-site systems in green field situations is 75% of that in existing areas due to 50% 

lower sewer costs (Rioned, 2007) and therefore off-site systems become more financially 

attractive in new urban developments. 
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The percentage of sewer system costs on the total costs for medium centralized and centralized 

systems are respectively 54% and 71%. The lower sewer costs for medium centralized systems 

are the result of (1) smaller applied diameters and pipes, (2) lower traffic impediments (Mara & 

Broome, 2008; Van Buuren, 2010), but also (3) the result of the economy of scale effect of 

medium centralized treatment systems, as these have higher per capita costs (Starkl et al., 

2012). The ratio between the off-site system with the lowest TLC (Anaerobic filter) and the 

highest TLC (MBR), for medium centralized and centralized system is, respectively, 2.15 and 

1.65 (Table A4.6 and A4.7 in the Appendix Chapter 4). The smaller ratio for the centralized 

system compared to the medium centralized system suggests that for a centralized system 

additional treatment performance can be achieved at relative lower costs. The effect of material 

type and pipe bedding was not analyzed, however it is known that optimization of these 

construction aspects can lower sewer system construction costs (Petit-Boix et al., 2014). 

Land costs (LC) and anticipated revenues from the sale of recovered products (Prod) can vary 

considerably and thus impact the TLC. Figure 4.2 showed the maximum and minimum values of 

each system and technology by changing either land price or recovered resource selling price. 

Figure A4.9 in the Appendix Chapter 4 shows the impact of each modelled land cost and product 

selling price on the TLC (excluding sewer investment and operational costs).  

The effect of varying land prices is highest for the land intensive technologies (UASB-DW-RBC 

and aerated lagoons) with nearly a factor 5 difference between the highest and lowest analyzed 

land price for the UASB-DW-RBC. The reference land price was 50 US$/m2, whereas several 

locations in Jakarta have land prices of 2000 US$/m2 (KNI, 2014), which favors compact 

technologies. Development of a technology for the application of autotrophic nitrogen removal in 

the water line (Hendrickx et al., 2012) could favour the application of UASB technology, also in 

areas with high land prices. In the latter case product recovery is limited to biogas and anaerobic 

sludge. 

The effect of product selling price of recovered resources on the TLC is highest for the UASB-

DW-RBC and the MBR technology with a factor 1.3 difference between the high and low selling 

prices (Figure A4.9 in Appendix Chapter 4). For the Conventional Activated Sludge +3R and 

Aerobic Granular Sludge +3R cases this difference is a factor 1.2. Finally, additional resource 

recovery for off-site technologies (Conventional Activated Sludge with N, P, Aerobic Granular 

Sludge and MBR), always results in a lower TLC (worst case scenario 1% difference; best case 

scenario ~20% difference) than scenarios without resource recovery. Of these three technologies 

the AGS + 3R is the most financially attractive system. 

Variation in pollution removal rates will also impact consumption and production values (Table 

4.5) and the corresponding monetary operational costs and benefits (Figure 4.3) and TLC (Figure 

4.2). Thus, a 10% lower removal of COD in a UASB will directly affect potential biogas production 

(also by approximately 10%) and consequently potential revenues. Reported variations in 

removal efficiencies of UASB systems, struvite precipitation or duckweed production range from, 
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The percentage of sewer system costs on the total costs for medium centralized and centralized 

systems are respectively 54% and 71%. The lower sewer costs for medium centralized systems 

are the result of (1) smaller applied diameters and pipes, (2) lower traffic impediments (Mara & 

Broome, 2008; Van Buuren, 2010), but also (3) the result of the economy of scale effect of 

medium centralized treatment systems, as these have higher per capita costs (Starkl et al., 

2012). The ratio between the off-site system with the lowest TLC (Anaerobic filter) and the 

highest TLC (MBR), for medium centralized and centralized system is, respectively, 2.15 and 

1.65 (Table A4.6 and A4.7 in the Appendix Chapter 4). The smaller ratio for the centralized 

system compared to the medium centralized system suggests that for a centralized system 

additional treatment performance can be achieved at relative lower costs. The effect of material 

type and pipe bedding was not analyzed, however it is known that optimization of these 

construction aspects can lower sewer system construction costs (Petit-Boix et al., 2014). 

Land costs (LC) and anticipated revenues from the sale of recovered products (Prod) can vary 

considerably and thus impact the TLC. Figure 4.2 showed the maximum and minimum values of 

each system and technology by changing either land price or recovered resource selling price. 

Figure A4.9 in the Appendix Chapter 4 shows the impact of each modelled land cost and product 

selling price on the TLC (excluding sewer investment and operational costs).  

The effect of varying land prices is highest for the land intensive technologies (UASB-DW-RBC 

and aerated lagoons) with nearly a factor 5 difference between the highest and lowest analyzed 

land price for the UASB-DW-RBC. The reference land price was 50 US$/m2, whereas several 

locations in Jakarta have land prices of 2000 US$/m2 (KNI, 2014), which favors compact 

technologies. Development of a technology for the application of autotrophic nitrogen removal in 

the water line (Hendrickx et al., 2012) could favour the application of UASB technology, also in 

areas with high land prices. In the latter case product recovery is limited to biogas and anaerobic 

sludge. 

The effect of product selling price of recovered resources on the TLC is highest for the UASB-

DW-RBC and the MBR technology with a factor 1.3 difference between the high and low selling 

prices (Figure A4.9 in Appendix Chapter 4). For the Conventional Activated Sludge +3R and 

Aerobic Granular Sludge +3R cases this difference is a factor 1.2. Finally, additional resource 

recovery for off-site technologies (Conventional Activated Sludge with N, P, Aerobic Granular 

Sludge and MBR), always results in a lower TLC (worst case scenario 1% difference; best case 

scenario ~20% difference) than scenarios without resource recovery. Of these three technologies 

the AGS + 3R is the most financially attractive system. 

Variation in pollution removal rates will also impact consumption and production values (Table 

4.5) and the corresponding monetary operational costs and benefits (Figure 4.3) and TLC (Figure 

4.2). Thus, a 10% lower removal of COD in a UASB will directly affect potential biogas production 

(also by approximately 10%) and consequently potential revenues. Reported variations in 

removal efficiencies of UASB systems, struvite precipitation or duckweed production range from, 
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respectively, 55-75% BOD (Chernicharo, 2006), 60-90% P (Le Corre et al., 2009) and 6-13 g dry 

matter/m2/d (El-Shafai et al., 2007; Bal Krishna & Polprasert, 2008) and correspond with an 

increase or decrease of 15-30%. Within this paper, the effect of varying resource selling prices 

from 0.5-2 (factor 4) was analyzed (Figure A4.9 in the Appendix Chapter 4) and showed a 

maximum impact of 1.3 on the TLC of the treatment. A 15-30% increase or decrease in the 

production of recoverable resources (with a similar selling price) is far lower than this factor 4 

increase and therefore will impact the TLC far less (< 5%). 

Besides variations as a result of varying removal efficiencies, land and recovered resource selling 

prices, the TLC is impacted by variations in investment costs. Considering (1) the large variations 

in uncertainty (30%) and the large fraction of capital costs on TLC (Figure 4.2), this impact is 

considerably higher than the other impacts (see Table A4.8 and A4.9 in the Appendix Chapter 4). 

However, because these variations impact all systems in an equal matter (e.g. the sewer costs), 

these price variations will not influence the outcome of our system comparison. 

 

4.3.2 Municipal Solid Waste systems 

4.3.2.1 Process performances 

The landfill area required for a 3R based system is reduced by 64% in comparison to 

conventional landfilling (Table 4.6). Because of a lower applied waste generation rate in rural 

areas for non-organic components, paper and plastic recovery is smaller than in urban areas.  

 

Table 4.6 Calculated resource production and consumption data of the selected MSW system, 

distinguishing conventional (no resource recovery) and resource recovery (3R) systems in urban 

and rural areas 

Scenario 
Parameter 

Unit 
Conventional 3R decentralized Centralized 3R 

Rural Urban Rural Urban Compost Dig.& Comp. 

Compost kg/cap/y - - 38.9 38.9 39.5 39.5 

Paper + Plastics kg/cap/y - - 37.6 48.4 48.4 48.4 

Electricity a kWh/cap/y - - - - - 17.6 

Area collection m2/cap 0.00 0.01 0.00 0.01 0.01 0.01 

Area 3R m2/cap - - 0.20 0.20 0.02 0.02 

Landfill area m2/cap 0.53 0.58 0.18 0.21 0.21 0.21 
a Electricity production from biogas was calculated using a generator with 40% efficiency (Van 

Nieuwenhuizen et al., 2011) 

 

Table 4.6 further shows that the per capita energy production from organic waste digestion is 

approximately equal to the per capita demand of energy of the Aerobic Granular Sludge 

wastewater treatment system. This offers opportunities for an energy neutral combined 

wastewater and solid waste treatment system or even an energy producing system when 
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applying the UASB-RBD-DW. Co-digestion of sewage sludge and OSWF has shown the potential 

to increase biogas production and reactor performance compared to separate digestion of 

sewage sludge or organic waste (Mata-Alvares et al., 2000; Zupan i  et al., 2008; Zitomer et al., 

2008), though quality of digested OSWF, with respect to heavy metal content, will decrease 

(Kujawa-Roeleveld & Zeeman, 2006).  

 

4.3.2.2 Financial analysis of MSW systems 

Figure 4.4 shows the per capita TLC after 20 years of operation. The TLC was subdivided in 

CAPEX at the start, CAPEX at a later stage for landfill extension (using Formula 1) and net 

operational costs. Figures A4.10 and A4.11 in Section 9 of the Appendix Chapter 4 show, 

respectively, the numeric values of the TLC and a detailed breakdown for capital expenditures 

(collection, landfill, 3R facilities and associated land). 

 

 

Figure 4.4 Per capita MSW total lifecycle costs (TLC) with distinction between OPEX, CAPEX at 

start and CAPEX in a later stage. Error bars show maximum and minimum values of variations in 

land prices (factors 0.5 to 5) and recovered resource selling price (factors 0.5 to 2) 

  

Figure 4.4 shows that a conventional system has lower investments (CAPEX) than a 

decentralized 3R system. Figure A4.11 in Section 9 of the Appendix Chapter 4shows that nearly 

20% of urban decentralized 3R investments are land costs. The applied open windrow 

composting has low investment and operation costs and requires minimum process control, but 
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respectively, 55-75% BOD (Chernicharo, 2006), 60-90% P (Le Corre et al., 2009) and 6-13 g dry 
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increase or decrease of 15-30%. Within this paper, the effect of varying resource selling prices 

from 0.5-2 (factor 4) was analyzed (Figure A4.9 in the Appendix Chapter 4) and showed a 

maximum impact of 1.3 on the TLC of the treatment. A 15-30% increase or decrease in the 

production of recoverable resources (with a similar selling price) is far lower than this factor 4 

increase and therefore will impact the TLC far less (< 5%). 

Besides variations as a result of varying removal efficiencies, land and recovered resource selling 

prices, the TLC is impacted by variations in investment costs. Considering (1) the large variations 

in uncertainty (30%) and the large fraction of capital costs on TLC (Figure 4.2), this impact is 

considerably higher than the other impacts (see Table A4.8 and A4.9 in the Appendix Chapter 4). 

However, because these variations impact all systems in an equal matter (e.g. the sewer costs), 

these price variations will not influence the outcome of our system comparison. 
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Table 4.6 further shows that the per capita energy production from organic waste digestion is 
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has large area requirement (Veeken, 2005). Land availability, together with labour and wage 

systems and capability of composters were identified as barriers for development of communal 

3R systems (Aprilia et al., 2012). The centralized 3R system, applying only composting, requires 

less investment than combined digestion and composting 3R systems, but both systems still 

require lower investment costs than a conventional system. However, the total sum of initial 

investments (excluding landfill extensions) for the centralized 3R systems is on average higher 

than those of a conventional system. High total investments in later stages for the conventional 

system are the result of landfill extensions, which for urban conventional and urban 3R systems 

system amount to, respectively 20 US$/cap and 8 US$/cap (discounted values) (Figure 4.4). 

Figure 4.5 shows per capita operational costs for collection and disposal and net benefits of 3R 

systems (benefits – costs; presented as negative values). Collection costs of a decentralized 3R 

system are 20% lower than the other systems, as less waste needs to be transported to a landfill. 

The highest benefits are calculated for the centralized 3R system, since besides compost, plastic 

and paper revenues, further revenues are expected from the sale of electricity (biogas). 

 

 

Figure 4.5 Per capita disposal and collection operational costs and net benefits of 3R (shown as 

negative values) per type of MSW system (US$/cap/y) 

 

Centralized 3R stations have the lowest TLC (Figure 4.4). The decentralized urban 3R system 

has a 1.15 factor higher TLC but is still more favorable than the conventional system. Several 

studies on Indonesian solid waste describe costs and benefits of different MSW systems and also 

show a preference for resource recycling (Aye & Widjaya, 2006; Aprilia et al., 2012). However, 

these studies include only parts of the MSW system, compare different scales, and apply prices 

that are too high in the Indonesian context. In addition, the referenced studies include benefits 
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that are excluded in the current study, such as revenues from the trading of carbon credits under 

the Kyoto protocol through the Clean Development Mechanism (Aprilia & Tezuka, 2010).  

Figure 4.4 further shows the maximum and minimum variations in TLC following variations in land 

prices (0.5 to 5) and product selling prices (0.5 to 2). Figure A4.13 in the Appendix Chapter 4 

shows the impact of each modelled land cost and product selling price, in which the “reference 

values” are calculated using the values presented in Table A4.4 of the Appendix Chapter 4. The 

impact of higher or lower recovered product selling prices is much higher than price variations on 

TLC of wastewater technologies. This is because (1) investment costs of municipal solid waste 

(Figure 4.4) systems are lower than those for wastewater (Table A4.6 and A4.7 of the Appendix 

Chapter 4) and (2) resource recovery (e.g. compost and biogas) potential from solid waste (Table 

4.6) is higher than for wastewater (Table 4.5). This is most noticeable for the centralized digester 

and composter, where the difference is almost a factor 4. In this study we have assumed a 

conservative compost selling price of 400 US$/ton (Table A4.4 of the Appendix Chapter 4), 

whereas other studies have used compost selling prices of more than double the applied values 

in this study (Aprilia et al., 2012). The importance of the impact of selling prices shows the need 

for a proper market analysis of recoverable products in the selection of the type of MSW system. 

The effect of variations in land price is highest on the urban decentralized 3R stations (see also 

Figure A4.11 of the Appendix Chapter 4) and shows a difference of factor 1.8 between the 

highest and lowest analyzed land prices, whereas this difference is a factor 1.55 for the 

conventional (urban) systems (Figure A4.13 in the Appendix Chapter 4). The large effect of land 

price on decentralized (community level) 3R stations calls into question the applicability of these 

systems in high dense (space scarce) areas.  

Variations in organic solid waste compost and biogas production rates or recovery rates of 

plastics and papers rates lead to variations in the presented specific per capita production rates 

(Table 4.6) and consequently the TLC. For example, a 20% lower biogas, compost and 

recoverable plastic and paper production rate will increase the TLC of the “centralized 3R 

digestion and compost” scenario from 165 to 186 US$/cap/20 years, which equates to a 1.13 

factor increase.  

 

4.3.3 Impact of WWT and MSW technical and financial performance on system 

selection 

In Indonesia septic tanks are the minimum treatment requirement (BPS, 2014). Compared to off-

site systems, on-site systems and CBS have the lowest TLC, but show the lowest removal 

efficiencies that cannot comply with standards applicable in (some) urban areas. Evidence 

suggests that there is a causal link between population density and urban function where a lot of 

people interact (e.g. cinemas, shopping malls or Commercial Business Districts) and the 

occurrence of diarrhea (Lasut et al., 2008; Gondhalekar et al., 2013). In areas with high 

population densities and different urban functions the environment receives higher pollution loads 
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that are excluded in the current study, such as revenues from the trading of carbon credits under 

the Kyoto protocol through the Clean Development Mechanism (Aprilia & Tezuka, 2010).  

Figure 4.4 further shows the maximum and minimum variations in TLC following variations in land 

prices (0.5 to 5) and product selling prices (0.5 to 2). Figure A4.13 in the Appendix Chapter 4 

shows the impact of each modelled land cost and product selling price, in which the “reference 

values” are calculated using the values presented in Table A4.4 of the Appendix Chapter 4. The 

impact of higher or lower recovered product selling prices is much higher than price variations on 

TLC of wastewater technologies. This is because (1) investment costs of municipal solid waste 

(Figure 4.4) systems are lower than those for wastewater (Table A4.6 and A4.7 of the Appendix 

Chapter 4) and (2) resource recovery (e.g. compost and biogas) potential from solid waste (Table 

4.6) is higher than for wastewater (Table 4.5). This is most noticeable for the centralized digester 

and composter, where the difference is almost a factor 4. In this study we have assumed a 

conservative compost selling price of 400 US$/ton (Table A4.4 of the Appendix Chapter 4), 

whereas other studies have used compost selling prices of more than double the applied values 

in this study (Aprilia et al., 2012). The importance of the impact of selling prices shows the need 

for a proper market analysis of recoverable products in the selection of the type of MSW system. 

The effect of variations in land price is highest on the urban decentralized 3R stations (see also 

Figure A4.11 of the Appendix Chapter 4) and shows a difference of factor 1.8 between the 

highest and lowest analyzed land prices, whereas this difference is a factor 1.55 for the 

conventional (urban) systems (Figure A4.13 in the Appendix Chapter 4). The large effect of land 

price on decentralized (community level) 3R stations calls into question the applicability of these 

systems in high dense (space scarce) areas.  

Variations in organic solid waste compost and biogas production rates or recovery rates of 

plastics and papers rates lead to variations in the presented specific per capita production rates 

(Table 4.6) and consequently the TLC. For example, a 20% lower biogas, compost and 

recoverable plastic and paper production rate will increase the TLC of the “centralized 3R 

digestion and compost” scenario from 165 to 186 US$/cap/20 years, which equates to a 1.13 

factor increase.  

 

4.3.3 Impact of WWT and MSW technical and financial performance on system 

selection 

In Indonesia septic tanks are the minimum treatment requirement (BPS, 2014). Compared to off-

site systems, on-site systems and CBS have the lowest TLC, but show the lowest removal 

efficiencies that cannot comply with standards applicable in (some) urban areas. Evidence 

suggests that there is a causal link between population density and urban function where a lot of 

people interact (e.g. cinemas, shopping malls or Commercial Business Districts) and the 

occurrence of diarrhea (Lasut et al., 2008; Gondhalekar et al., 2013). In areas with high 

population densities and different urban functions the environment receives higher pollution loads 
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and one person’s lack of sanitation can affect the health of many people (Mara et al., 2010). Off-

site options should be considered when on-site treatment could entail direct risks to public health 

or groundwater contamination, or when the risk exists of fecal contamination or eutrophication of 

surface waters, as is the case in more densely populated areas (UNEP, 2004). In rural areas or 

low density urban areas the minimum standard (on-site systems) with the lowest costs is 

recommended. In areas with increasing population densities (e.g. peri-urban areas or higher 

density rural areas) CBS are proposed, as these show better performance than on-site systems 

but still have considerably lower costs than off-site systems.  

The type of off-site technology selected depends on the local regulations, the land availability and 

the available funding. In urban areas with high population densities, high land prices and a 

demand for high water quality, such as in Jakarta or Surabaya (JICA, 2012; Navastara & Navitas, 

2012; KNI, 2014) AGS or MBR can be considered, although the latter has nearly 80% higher 

TLC. In urban areas outside Java with lower land costs anaerobic filters or aerated lagoons can 

be considered. Resource recovery can contribute to a more attractive TLC, provided recovered or 

produced products can be sold at a certain price, as is currently being investigated (WSP, 

2013b).  

Recycling and recovery of urban solid waste by both the formal and informal sector has been 

applied for many years (Damanhuri & Padmi, 2000), but lacks policies/strategies and financial 

support. Low involvement of the private sector, inefficiency, and low community awareness led to 

a low level of service of municipal waste management in Indonesia (Meidiana & Gamse, 2010). 

The legal framework for municipal solid waste management (Law no. 18/2008) directs that waste 

generation must be minimized from the source and requires involvement of communities (MoPW, 

2013e). Implementation of decentralized 3R systems has been key in MoPW’s solid waste policy 

(Bappenas, 2011). Current success rate of urban communal 3R stations was estimated as 30% 

due to poor community management (MoPW, 2014b). Consequently, MoPW has started the 

development of centralized 3R stations. Besides the (potential) improved technical operation, the 

TLC shows that a shift from decentralized to centralized 3R is financially attractive in urban areas. 

Continuation of 3R promotion has land use advantages (Table 4.6), results in the recovery of 

resources and has financial advantages. Local reuse of recovered products (of decentralized 3R 

systems) will prevent unnecessary transport. Product transport costs were not included in the 

present study. For urbanized areas with limited space and limited direct reuse potential for 

recovered resources (e.g. compost) a centralized 3R system is preferred. A market analysis on 

the demand for recoverable resources is strongly recommended for the selection and location of 

3R systems. 

The results presented in this study were typically derived on the basis of individually obtained and 

verifiable input parameters (e.g. specific wastewater production, unit costs and conversion 

factors). Due to the ‘not yet mature’ wastewater and solid waste infrastructure in Indonesia, the 

compiled results cannot be directly verified in the field. With the planned investments and facilities 
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to be constructed, further improvement and verification of results will be possible. However, the 

applied analysis on varying removal efficiencies, land prices, resource selling prices and 

investments allows already for identification of uncertainties in the results of TLC. 

The selection of wastewater and solid waste systems and their related costs are an important 

element in planning sanitation systems in developing countries (Parkinson et al., 2014). This 

study showed how this system selection can be determined based on local conditions (effluent 

requirements, urban/rural features, land availability, potential sale of recoverable resource). The 

selection approach for a WWT or MSW system based on residential features can be used for 

planning purposes not only for Indonesia, but for developing countries in general. The typical 

performance and per capita resource (e.g. energy, sludge, space) consumption and production 

data are considered representative for similar (tropical) developing countries (e.g. South East 

Asia, South America). Following a cost update on investments and operation unit costs 

parameters, the presented approach can be applied for wastewater and municipal solid waste 

system selection in other developing countries facing similar challenges as Indonesia. 

Besides population density and urban features, applicability of systems is determined by other 

factors as well. Application of septic tanks depends also on ground water levels, soil conditions 

and availability of a (piped) water supply (Loetscher & Keller, 2002). Similarly, CBS systems have 

been successfully applied in densely populated areas (Eales et al., 2013). Community Sanitation 

Centers, where people come for bathing, washing and toilet use (Ulrich et al., 2009) were 

excluded from this study. These systems are now less promoted since more and more people 

have their own water supply at home and are often no longer applied (Eales et al., 2013).  

In this analysis the practical suitability of off-site processes was not quantified, but should be 

included in the final system selection. In more remote areas skilled labour, spare parts or required 

energy and chemicals may be not available and systems depending on them are not appropriate, 

whereas simpler (e.g. anaerobic systems, lagoons or duckweed ponds) systems are (Senzia et 

al., 2003). Disregarding requirements for operation and maintenance in system selection will 

ultimately result in system failure. Besides the impact this may have on public health and the 

environment, failure also represent a loss of investment.  

Existing sewer systems are of poor quality (USAID, 2006) and in the design and construction of 

new systems improvements are needed. Furthermore, specific demands by a municipality or 

property developer (JICA, 2012; KNI, 2014) or wishes of a foreign donor (Aprilia & Tezuka, 2010) 

play a role in system selection of both WWT and MSW systems. Moreover, successful operation 

of facilities depends on the institutional capacity of the responsible actors. Despite increasing 

attention, this still needs further improvement and must be considered in the system selection 

(Kearton et al., 2013; USDP, 2014). In this study “new sanitation” systems (Zeeman & Kujawa-

Roeleveld, 2011) were excluded, as the required household level source separation and 

corresponding transport were considered too “high tech” in the current Indonesian setting. 

Demonstrations could be considered for specific small scale greenfield application.  
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 Conclusions 4.4

The study showed how the feasibility of wastewater and solid waste systems for developing 

countries can be analyzed on the basis of technical and financial performance. The technical 

performance provided insight into wastewater treatment efficiencies as well as wastewater and 

solid waste per capita resource production and consumption (land use, phosphorus, energy, 

duckweed, compost, water, plastics and papers) parameters in the Indonesian context. By putting 

a monetary value to investments, land costs, technical operational and recoverable resources the 

financial features of each system could be determined. A combination of technical and financial 

performance was used to recommend different systems for different residential scenarios. This 

confirms our hypothesis that the selection of feasible wastewater or solid waste systems can be 

based on a few key (and typically available) parameters like urban/rural features and land 

availability (related to residential densities). The cost estimates can be used for the assessment 

of required wastewater and solid waste investment and operational budgets in the planning 

process. An analysis whereby land prices and revenues from recovered resources were varied, 

showed that the effect of high land prices on land intensive WWT systems have a major impact 

(nearly a factor 5), whereas the effect on TLC by varying selling prices of recovered resources 

showed a maximum factor of 1.3 difference. For MSW, variations in land price impacted the TLC 

up to a factor of 1.8, while variation of the selling prices of recovered resources impacted the TLC 

by a factor 4. 

The technical analysis was based on scientific literature and case studies from developing 

countries. Following a cost update on investments and operation unit cost parameters, the 

presented approach can be applied in other developing countries. The presented results and 

conclusions allow decision support for Indonesia and can be considered as guidelines and 

orientation for the implementation of improved wastewater and solid waste concepts in other 

developing countries. 
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Appendix Chapter 4 

 
Section 1 Applied wastewater production values 

 
Table A4.1 Applied wastewater production values 

Parameter Unit 
Production features 

Total Grey water Black water 

Flow l/cap/d 136 100 36 

CODa g/cap/d 82 34 48 

BODb  g/cap/d 41 17 24 

Total Nitrogen (TN) a g/cap/d 12 0 12 

Total Phosphorus (TP) a  g/cap/d 2 0.2 1.8 
a Derived from Almy (2008), b a COD/BOD ratio of 2 is applied following Meinzinger & Oldenburg 

(2009) 

 

Section 2 Basis for WWT process performance in this study 

Septic tank: Presented removal efficiencies in Table 4.2 of Chapter 4 are of black water and are 

based on average reported literature values (Chernicharo 2006; Van der Graaf et al. 1989; Ulrich 

et al. 2009; Lettinga et al. 1991; Van Voorthuizen et al. 2008). A sludge production of 35 

l/person/year is applied (WSP 2013). Based on the removal efficiency, a black water COD/TSS 

(Total Suspended Solids) of 1 (Meinzinger & Oldenburg 2009) and a biodegradability (76%) and 

methanogenesis rate (86%) (Halalsheh 2002) a sludge production of 3.5 kg TSS/cap/year is 

calculated. This results in a TSS content of 10%, which is much higher than the TS content of 

1.5% measured at the sludge treatment facility (JICA 2012). This is attributed to the way septic 

tanks are emptied by typically sucking out the complete tank (WSP 2013). Pathogen removal for 

septic tanks and other technologies are based on Tchobanoglous et al. (2003). 

ABR+ AF and Anaerobic Filter: Performance is based on Ulrich et al. (2009) and verified with 

other sources (Reynaud et al. 2012a; Said 2000; Wibisono et al. 2003). Sludge production follows 

the approach described for septic tanks, in which 68% of incoming total COD is suspended 

(Halalsheh 2002). The Anaerobic Filter (Said 2000; Kearton et al. 2013) follows the process 

conditions of the ABR+AF, but sludge treatment takes place at the location of the WWTP (e.g. 

sludge drying beds or mechanical thickening) (MoPW 2013b). 

Aerated lagoons and Conventional Activated Sludge systems (CAS):  Removal efficiencies, 

sludge production and energy requirement of the CAS are determined using a model developed 

by Royal HaskoningDHV that calculates sludge production based on Chudoba & Ferdinand 

(1985), oxygen consumption using Beuthe (1970), N removal using EPA (1993), P removal using 

Janssen et al. (2002). The applied sludge load is 0.31 kg COD/kg MLSS.d at a temperature of 

29ºC (DIY_PU 2010). Removal efficiencies in the aerated lagoon are the same as CAS, but 
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sludge production, HRT and loading are based on MoPW’s guideline (MoPW 2013b), whereas 

energy consumption are based on EPA (2002). 

CAS + N&P and AGS: The CAS_N&P applies anaerobic-aerobic conditions for P-removal 

(Baetens 2001) and a pre-denitrification zone for enhanced N removal, following the Phoredox 

set-up (Brett et al. 1997). The Aerobic Granular Sludge (AGS) process, is a compact, low energy 

consuming SBR system, applying fast settling aerobic granules, but with a higher P content in the 

sludge (De Kreuk et al. 2005; De Kreuk et al. 2007). The design of a compact installation is based 

on the possibility of simultaneous nitrification/denitrification (SND) within the granules. De Kreuk 

et al. (2005) reports high removal efficiencies for phosphate (94%) and total nitrogen (94%). 

Calculations are based on the same models as CAS. Applied sludge loading is 0.27 kg COD/kg 

MLSS.d. Additional FeCl3 dosing was modeled to meet a value of maximum 5 mg/l to comply with 

the irrigation standard (MoPW 2001).  

MBR: The MBR process set-up is similar to the CAS N&P, but membranes with 100% TSS 

retention instead of clarifiers are applied to separate sludge from treated effluent. The MBR is 

based on Zenon ZW 500D submerged membranes (design flux 33 l/m2/h) and energy 

consumption of the membrane system is calculated using Van Bentem et al. (2006). 

Additional resource recovery technologies for CAS N&P, AGS and MBR: Resource recovery in 

the CAS N&P, AGS and MBR can be applied by modifications in the sludge line. Recoverable 

resources comprise (1) energy, applying sludge digestion (2) struvite by precipitation of 

phosphate in the centrate of dewatered digested sludge and (3) composting of sludge. 

• Energy: Sludge reduction and biogas production in a CSTR sludge digester with 20 days HRT 

is calculated using Chen and Hashimoto (Chen & Hashimoto 1980) with a typical organic 

fraction degradation of 40% (Van Nieuwenhuizen et al. 2011). Gas production is based on 

0.35 m3 CH4/kg COD (STP) and 1.42 g COD/g VS (Droste 1997).  

• Struvite: P-release during the digestion follows organic sludge degradation (Bi et al. 2013; Ju 

et al. 1999), whereas P release from precipitated FePO4(H2O)2 following reduction of Fe3+ to 

Fe2+ is determined as  50% using the “OliAnalyzer” software package. Selected P-recovery 

method in this study is struvite crystallization, using a Crystalactor® reactor which has been 

particularly successful from high P concentrated flows (Cornel & Schaum 2009; Giesen 

1999). Reported P-removal efficiencies approach 90% or more provided a sufficient high pH 

of about 9 is applied (Wu et al. 2001; Le Corre et al. 2009; Battistoni et al. 2002). In this study 

a P-recovery of 88% is selected, applying an over dosage of 2 mmol Mg2+.  

• Compost: Composting is described in in the municipal solid waste section.  

UASB-DW-RBC: The technology comprises 3 units.  

1. UASB (Lettinga et al. 1980; Seghezzo et al. 1998; Lettinga et al. 1993). COD and BOD 

removal efficiencies are based on  Draaijer et al. (1992) and verified with other sources 

reported values  (Chernicharo 2006; Lettinga et al. 1991; de Graaff et al. 2011). N, P removal 

are based on Van Voorthuizen et al. (2008), thus resulting in a 74%, 75%, 15% and 5% 
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removal of, respectively, COD, BOD, TN and TP. Biogas production was calculated based on 

a COD balance: CODin = CODeff + CODSludge + CODsulphate + CODbiogas, (Draaijer et al. 1992).  

• COD lost to sulphate reduction is 12% (Draaijer et al. 1992).  

• COD of sludge was calculated using the specific sludge production of Draaijer et al. 

(1992) of 0.4 kg TSS/kg TSSin and a COD/TSS ratio of 1.06 as reported by Halalsheh 

(2002).The applied TS/COD ratio of the influent was defined as 0.35, based on a 0.3 

value reported by Halalsheh (2002), and grey water and black water ratio of, respectively, 

0.3 by and 0.44 reported by Lettinga et al. (1991) for Indonesian wastewater, thus COD in 

sludge equals 15% of the influent COD. 

• Using a 74% COD removal, the effluent COD is 0.26 of COD in the influent. 

• the fraction of influent COD converted to biogas becomes 1-0.12-0.15-0.26=0.47. 

2. Duckweed ponds (DW) aim to polish the UASB effluent for N, P and produce duckweed. 

Process conditions and duckweed production were determined as shown in Table A4.2. N 

and P removal efficiencies were calculated based on N and P first order kinetics coefficients 

(K in d-1) determined in a batch process by Korner & Vermaat (1998). N and P effluent values 

in a continuous system were calculated as a function of influent N and P values, the 

constants (K) and the Hydraulic Retention Time (HRT), using the standard formula A4.1 for 

the CSTR (Tchobanoglous et al. 2003): 

 
(Formula A4.1) 

 

Besides N, P removal by duckweed other processes take place, like nitrification, 

denitrification and precipitation (Korner & Vermaat 1998; Al-Nozaily et al. 2000; Vermaat & 

Khalid Hanif 1998) and removal by duckweed was calculated as shown in Table A4.2. 

Verification of applied method for N and P removal was done by recalculating the values in 

the studies of El-Shafai et al. (2007) and Bal Krishna & Polprasert (2008) using the K values 

by Korner & Vermaat (1998). Thus, El-Shafai et al. (2007) measured Duckweed N and P–

uptake rates of, respectively, 0.44 g N/m2.d and 0.09 g P/m2.d, compared to recalculated 

values of 0.49 g N/m2.d and 0.07 g P/m2.d. Bal Krishna & Polprasert (2008) determined N 

uptake rates of 0.62 g N/m2.d compared to a recalculated value of 0.75 g N/m2.d. Calculated 

DW N and P removal efficiencies in this study were 86% and 63%, respectively. 
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Table A4.2 Approach for duckweed pond, process calculations 

 Parameters to determine Selected value or equation Applied references; (letters A-
F) refer to indicated 
parameters 

A Duckweed Yields 10 g dry weight/m2.d (El-Shafai et al. 2007) A,B,C,F, H, 
(Bal Krishna & Polprasert 
2008) A,B, F, (Alaerts et al. 
1996) A, F , (Oron et al. 1987) 
A, (Korner & Vermaat 1998)D, 

E, F, G, (Al-Nozaily et al. 2000) 

A, F, G, (Culley et al. 1973) A, 
(Vermaat & Khalid Hanif 
1998)F, G 

B Organic Loading rate 50 kg COD/ha.d 
C Area (A)  A = HRT x Q/Depth, HRT=10 

days, Depth = 0.48 m 
D Total N-removal coefficient K 0.41 d-1 based on 73 mg/l N 
E Total P-removal coefficient K 0.18 d-1 based on 14 mg/l P 
F % N-rem. by DW uptake  70% of total N-removal 
G % P-rem.by DW uptake 60% of total P-removal 
H COD and BOD removal COD: 64%, BOD 73% 

 

3. The RBC is operated as an OLAND system (Oxygen-limited autotrophic nitrification/ 

denitrification) (De Clippeleir et al. 2011; Windey et al. 2005) and aims to reduce the final 

nitrogen levels. The system features low sludge production, energy consumption, area 

requirement and N2O emissions (Mulder 2003). COD and BOD removal was based on 

literature (Vlaeminck et al. 2009; Friedler 2004; Tervahauta et al. 2013), while N removal was 

based on De Clippeleir et al. (2011), applying an N-Kjeldahl removal of 89%, a 22% NO3-N 

production of removed NKj, and a N-total removal of 51%. Sludge production follows the 
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Table A4.2 Approach for duckweed pond, process calculations 

 Parameters to determine Selected value or equation Applied references; (letters A-
F) refer to indicated 
parameters 

A Duckweed Yields 10 g dry weight/m2.d (El-Shafai et al. 2007) A,B,C,F, H, 
(Bal Krishna & Polprasert 
2008) A,B, F, (Alaerts et al. 
1996) A, F , (Oron et al. 1987) 
A, (Korner & Vermaat 1998)D, 

E, F, G, (Al-Nozaily et al. 2000) 

A, F, G, (Culley et al. 1973) A, 
(Vermaat & Khalid Hanif 
1998)F, G 
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D Total N-removal coefficient K 0.41 d-1 based on 73 mg/l N 
E Total P-removal coefficient K 0.18 d-1 based on 14 mg/l P 
F % N-rem. by DW uptake  70% of total N-removal 
G % P-rem.by DW uptake 60% of total P-removal 
H COD and BOD removal COD: 64%, BOD 73% 
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Section 3 Methodology to determine costs for off-site sewer systems 

Costs for simplified and pumped sanitary systems for Medium Centralized and Centralized 

systems are based on Loetscher described in Van Buuren (2010). These are then verified with 

reported design values in Indonesia by the IndII program (SKM 2011a; SKM 2011b) and 

constructed systems in Banjarmasin (PDPAL-Banjarmasin 2013). The applied formula for 

calculation was: 

 

CcHD = 5.04*X*G*T* (D-0.35)*(5610*(H-10)-0.46 + 1800) (Van Buuren 2010; see formula 7.11) 

Where: 

CcHD = construction costs per household depending on population density (USD/household);  

D = population density in persons/ha;  

H = number of households connected (> 10 households);  

G = dimensionless factor that expresses the impact of soil nature on costs;  

T = dimensionless factor that expresses impact of traffic impediment on costs;  

X = dimensionless factor that expresses the relative capital costs of different sewerage types 

such as conventional sewerage, simplified sewerage, covered drains and settled sewerage. 

 

In the analysis the applied sewer costs for Medium Centralized systems are the average of small 

scale and mid-scale systems, whereas the applied sewer costs for Centralized systems are the 

average of large scale and city systems from  

 

Table A4.3 Applied parameters for determination of off-site sewer system costs following Van 

Buuren (2010) 

Sewer system features 

  
Para-
meters  

System Medium Centralized Centralized 

  small scale mid-scale large scale City scale 

Description Range Selected Range Selected Range Selected Range Selected 

H 
Households 
connected 

200-
2000 1,000 

2,000-
5,000 5,000 

5,000-
15,000 10,000 

15,000-
50,000 25,000 

D Density (pp/ha) a 100-175 138 175-250 213 >250 275 >250 300 

G  
Impact of soil nature 
on costs 1-1.6 1.3 1-1.6 1.3 1-1.6 1.3 1-1.6 1.3 

T 
Impact of traffic 
impediment on costs 1-1.33 1 1-1.33 1.11 1-1.33 1.22 1-1.33 1.33 

X 
Relative capital costs 
of sewer type 0.43-1 0.43 0.43-1 0.59   0.75   0.75 

Selected sewer type simplified small simplified small pumped sanitary pumped sanitary 

Sewer costs US$ 1,020,000 6,300,000 15,800,000 41,250,000 

Pump costs US$ 9,300 26,900 42,800 98,300 

Total costs US$ 1,029,300 6,326,900 15,842,800 41,348,300 
Investments per household of 5 
people(US$) 1,029 1,265 1,584 1,654 

Investments per person (US$) 210 250 320 330 
a (TTPS 2009) 
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In “green field” situations, where sewer construction can be combined with other development, a 

reduction of 50% of sewer construction costs is applied following the costs breakdown specified 

in Rioned (2007) 

Figure A4.4 shows the comparison of calculated, designed, constructed and greenfield sewer 

system investment cost presented in Indonesian Rp (10,000 Rp equals 1 US$). 

 

 

Figure A4.4 Sewer system costs per household (in Rp; where 10,000 Rp equals 1 US$) 

comparison of calculated sewer costs (Table A4.3) and IndII program (SKM 2011a; SKM 2011b) 

and constructed systems in Banjarmasin (PDPAL-Banjarmasin 2013) and greenfield situation 

(Rioned 2007) 

 

Section 4 Basis for MSW process performance in this study 

Additional justification on applied approach is presented below 

• Collection of waste: Purity of recovered products (especially organics) can be increased using 

at source separation (Saveyn & Eder 2014). Aprilia et al. (2012) shows that less than 20% of 

the households of a monitored community in Jakarta apply source separation. In the current 

study all solid waste is assumed to be mixed and separated at decentral or central 3R 

stations with recovery percentages presented in Table 4.3 of Chapter 4;  

• Plastic and paper recovery: Recovered plastic is cleaned and compressed. Paper is bound 

together. Products are collected by “agents” of processing companies (Banda Aceh IPLT 

2013); 
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• Composting: During composting OSWF is oxidized to CO2 and H2O, while producing heat that 

evaporates water and sanitises the compost. The common practice in Indonesia is to use 

open windrows (MoPW 2013a), which was assumed in this analysis. Composting balances 

are based on Veeken et al. (2002) and Veeken et al. (2003). The applied heat production is 

20 MJ/kg OSconverted (Haug 1993), TS content is 40% (Hamelers 2001; Bhattacharya et al. 

2005), VS/TS ratio is 65% (Zhu et al. 2010; Zitomer et al. 2008; Norbu et al. 2005) and the 

maximum biodegradability is 65% (Attero 2014). The calculated value of 0.35 kg compost/kg 

Organic waste is the same as reported by PU (2013a) for small scale composters. Compost 

has a density of 0.65 kg/l (Veeken et al. 2005); 

• Digestion: The OSWF introduced into the digester is determined as 63%. Thus, sufficient heat 

production potential is maintained in the OSWF that is send to the composter directly to 

evaporate water in the total (fresh and digested) OSWF to come to a final desired TS content 

of 65% (Hamelers 2001). In case a bigger fraction of the OSWF is digested the final compost 

becomes too wet and additional dewatering and leachate treatment is required. If a smaller 

fraction is applied less biogas is produced. A 40% electricity conversion efficiency for biogas 

engines is used (Van Nieuwenhuizen et al. 2011);  

• Other technologies: Incineration of waste would result in a volume reduction, heat and 

electricity production and production of recoverable materials, but is not found feasible in non-

OECD countries, due to cost and frequently unsuitable waste composition (Aprilia et al. 

2012). 

 

The mass balances are shown in Figure A4.5 (urban conventional), Figure A4.6 (decentral 3R), 

Figure A4.7 (central 3R with composting) and Figure A4.8 (central 3R with digestion and 

composting). Mass balances are based on 200,000 people, as this is the typical mean size of a 

municipality in Indonesia (50% percentile) corrected for low density (< 25 pp/ha) rural areas (BPS 

2014). These low density rural areas were excluded, as an MSW collection system is not found 

feasible for these remote areas (MoPW 2014).  
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Section 5 Applied specific operational cost and benefit prices in this study 

 

Table A4.4 Applied specific operational cost and benefit prices of indicated parameters 

Parameter Price Unit Source 
Sludge 
disposal or 
collection 

15 US$/ton At the IPLT Banda Aceh and Pulo Gebang prices of 15 US$ for 1-2 
m3 are applied; private and industrial companies are charged 8-30 
US$/ton for disposal (Banda Aceh IPLT 2013), (Pulo Gebang 
2014). 

40% FeCl3 
solution 

200 US$/t Based on reference quotation from Weifang Menjie Chemicals Co., 
Ltd (Menjie 2014) 

PE (sludge 
thickening) 

4 US$/kg Supply price to industries  (FFI 2014) 

Electricity 0.1 
US$/kWh 

Municipal users pay 0.04-0.14 US$/kWh depending on connection. 
Applied value corresponds with 3,500-5,500 VA. (MoEMR 2012) 

Paper, 
Plastic 
selling price 

50 US$/t Field data (Banda Aceh IPLT 2013) show prices of up to 200 
US$/ton depending on the quality. In the sensitivity analysis the 
effect of selling price is determined. 

Compost 
selling price 

30 US$/t of 
sludge 

Compost selling prices from cow manure and OSWF were as high 
as 200 US$/ton (BiRu 2013), (ITB compost facility 2014) but also 
free supply to farmers is applied (Pulo Gebang 2014). The effect of 
price variations is studied in a sensitivity analysis. 40 US$/t of 

OSWF 

Struvite 
selling price 

975 US$/t Based on reference quotation from Wuhan Xingzhengshun Import 
& Export Co., Ltd (XingZhenshun 2014) 

MBR 
effluent 

0.05 US$/m3 Based on bulk price of surface water in Jababeka, Cikarang estate 
(Cikarang Estate 2014) 

Duckweed 
selling price 

100 US$/t 
fresh 
duckweed 

Reported selling prices of fresh duckweed are as high as 200-300 
US$/ton (Journey et al. 1993; El-Shafai et al. 2007). In this study 
100 US$/ton is used and effect of price variations are studied in a 
sensitivity analysis. 

Land Prices 10 US$/m2 For rural landfills estimated based on Bappeda (2014) 
50 US$/m2 WWT infrastructure, landfill developments near urban areas and 

developments of MSW collection activities in rural residential areas 
(Bappeda 2014; Navastara & Navitas 2012). 

100 US$/m2 Developments of MSW collection activities in urban residential 
areas (Bappeda 2014; Navastara & Navitas 2012).  

Because land prices fluctuate considerably (Navastara & Navitas 2012), the effect 
of land price is analysed in a sensitivity analysis. 

 

Dutch price levels for CAS, AGS and MBR systems were based on designs prepared by Royal 

HaskoningDHV. These were converted to Indonesian prices based on discussions with Dutch 

and Indonesian engineers using price levels in Indonesia compared to the Netherlands of 60%, 

80% and 80% for respectively civil, electrical and mechanical components. 
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Parameter Price Unit Source 
Sludge 
disposal or 
collection 

15 US$/ton At the IPLT Banda Aceh and Pulo Gebang prices of 15 US$ for 1-2 
m3 are applied; private and industrial companies are charged 8-30 
US$/ton for disposal (Banda Aceh IPLT 2013), (Pulo Gebang 
2014). 

40% FeCl3 
solution 

200 US$/t Based on reference quotation from Weifang Menjie Chemicals Co., 
Ltd (Menjie 2014) 

PE (sludge 
thickening) 

4 US$/kg Supply price to industries  (FFI 2014) 

Electricity 0.1 
US$/kWh 

Municipal users pay 0.04-0.14 US$/kWh depending on connection. 
Applied value corresponds with 3,500-5,500 VA. (MoEMR 2012) 

Paper, 
Plastic 
selling price 

50 US$/t Field data (Banda Aceh IPLT 2013) show prices of up to 200 
US$/ton depending on the quality. In the sensitivity analysis the 
effect of selling price is determined. 

Compost 
selling price 

30 US$/t of 
sludge 

Compost selling prices from cow manure and OSWF were as high 
as 200 US$/ton (BiRu 2013), (ITB compost facility 2014) but also 
free supply to farmers is applied (Pulo Gebang 2014). The effect of 
price variations is studied in a sensitivity analysis. 40 US$/t of 

OSWF 

Struvite 
selling price 

975 US$/t Based on reference quotation from Wuhan Xingzhengshun Import 
& Export Co., Ltd (XingZhenshun 2014) 

MBR 
effluent 

0.05 US$/m3 Based on bulk price of surface water in Jababeka, Cikarang estate 
(Cikarang Estate 2014) 

Duckweed 
selling price 

100 US$/t 
fresh 
duckweed 

Reported selling prices of fresh duckweed are as high as 200-300 
US$/ton (Journey et al. 1993; El-Shafai et al. 2007). In this study 
100 US$/ton is used and effect of price variations are studied in a 
sensitivity analysis. 

Land Prices 10 US$/m2 For rural landfills estimated based on Bappeda (2014) 
50 US$/m2 WWT infrastructure, landfill developments near urban areas and 

developments of MSW collection activities in rural residential areas 
(Bappeda 2014; Navastara & Navitas 2012). 

100 US$/m2 Developments of MSW collection activities in urban residential 
areas (Bappeda 2014; Navastara & Navitas 2012).  

Because land prices fluctuate considerably (Navastara & Navitas 2012), the effect 
of land price is analysed in a sensitivity analysis. 

 

Dutch price levels for CAS, AGS and MBR systems were based on designs prepared by Royal 

HaskoningDHV. These were converted to Indonesian prices based on discussions with Dutch 

and Indonesian engineers using price levels in Indonesia compared to the Netherlands of 60%, 

80% and 80% for respectively civil, electrical and mechanical components. 
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Section 6 Energy Consumption (Cons), Production (Prod), Net use and 

recoverable fraction WWT technical performance 

 

Table A4.5 Energy Consumption (Cons), Production (Prod), Net use and recoverable fraction 

parameter 
Unit An.Fil. 

Aer. 
Lag. CAS 

CAS 
N, P AGS MBR 

UASB-
DW-
RBC 

CAS 
+3R 

AGS 
+3R 

MBR 
+3R 

Energy Cons kWh/cap/y 1.6 11.9 22.9 23.6 14.0 41.2 4.3 24.4 14.7 41.7 

Energy Prod kWh/cap/y 0.0 0.0 0.0 0.0 0.0 0.0 19.6 5.3 5.3 5.3 

Net Energy kWh/cap/y 1.6 11.9 22.9 23.6 14.0 41.2 -15.3 19.1 9.4 36.6 

Recovered % 0 0 0 0 0 0 456 22 36 16 
 

Section 7 Negative impact associated with the application of digested sludge 

(1) Health, (2) social acceptability and (3) environmental complications are associated with the 

application of digested sludge (Tesfamariam et al. 2013; Koné et al. 2007): 

1. To minimize health risks resulting from helminthes ova (Jimenez-Cisneros 2008), a 

composting process of at least 2 months is suggested (Koné et al. 2007), although 99% fecal 

coliforms reduction can be expected after 10 days of composting (Way 2013). To reduce 

pathogen content the heat production potential of digested sludge in the composting process 

can be increased by addition of (non-digested)  waste activated sludge as long as 

permeability is in an optimum range (Veeken et al. 2003). Alternatively, co-composting of 

digested sewage sludge with OSWF has shown benefits in pathogens removal (Koné et al. 

2007; Strauss et al. 1997). 

2. Social acceptability of (fecal) sludge products must be considered. Starkl et al. (2010) 

describe reluctance in use of by-products from human feces, despite (potential) financial 

benefits. Similar resistance was found during a visit to a biogas project for individual 

households, where digesters were equipped with influent pipes for cow manure and black 

water from toilets. Only 1% of 800 households still applied the black water connection, as 

compost was expected to be less attractive for buyers (BiRu 2013).  

3. Environmental concerns are related to N and P levels reaching environmentally toxic levels 

and has caused governing authorities to set limits to how much sludge can be applied to 

agronomic land (Tesfamariam et al. 2013). Heavy metals, although not specified in the 

Indonesian compost standard (BSN 2004), could be another barrier in the application of 

processed sludge. Sewage sludge compost generally meets the proposed (European Union) 

limit values for Cd, Cr, Hg, Ni, Pb and Zn but tends to have problems in meeting the proposed 

Cu limits (Saveyn & Eder 2014). 
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Section 8 Detailed overview of calculated WWT investment and OPEX  

 

Table A4.6 Investment (sewer, treatment technology and land costs), yearly OPEX (costs, 

benefits and net OPEX) and total lifecycle costs (TLC) a for on-site, CBS and MedCen systems 

a Calculated based on Formula 1 in Chapter 4 

 

Table A4.7 Investment (sewer, treatment and land costs), yearly OPEX (Costs, benefits and net 

OPEX) and total lifecycle costs (TLC) a for Centralized systems 

a Calculated based on Formula 1 in Chapter 4 

 

 
System Unit 

on-
site 

CBS Off-site: medium centralized 

Technology  
Septic 
+ 
IPLT 

ABR 
+ AF 

An. 
Fil. 

Aerated 
lagoon 

CAS 
CAS 
+ N, 
P 

AGS MBR 
UASB-
DW-
RBC 

CAS+ 
3R 

AGS+ 
3R 

MBR+ 
3R 

In
ve

st
m

en
ts

 Sewer 

US$/cap 

0 114 229 229 229 229 229 229 229 229 229 229 

Treatment 100 64 43 28 142 178 171 324 135 195 188 341 

Land 0 10 4 15 2 3 1 1 236 3 2 2 

Total 100 188 276 272 374 410 401 555 601 427 419 572 

Y
ea

rly
 

O
P

E
X

 Costs 

US$/cap/y 

2.5 3.1 5.1 6.5 9.2 10.5 9.1 15.7 6.3 10.3 9.0 15.5 

Benefits 0.1 0.1 0.0 0.0 0.0 0.0 0.0 2.5 3.6 2.0 1.8 4.4 

Net OPEX 2.4 3.0 5.1 6.5 9.2 10.5 9.1 13.2 2.7 8.3 7.2 11.1 

TLC 20 years US$/cap 143 243 369 391 542 602 568 796 650 580 551 775 

 System Unit Off-site: centralized 

Technology  An.Fil. 
Aerated 
lagoon 

CAS 
CAS + 
N, P 

AGS MBR 
UASB-
DW-RBC 

CAS+ 
3R 

AGS+ 
3R 

MBR+ 
3R 

In
ve

st
m

en
ts

 Sewer 

US$/cap 

324 324 324 324 324 324 324 324 324 324 

Treatment 33 28 86 107 103 196 82 116 112 204 

Land 4 15 2 3 1 1 236 3 2 2 

Total 361 367 412 434 428 521 642 442 437 530 

Y
ea

rly
 

O
P

E
X

 Costs 

US$/cap/y 

3.4 4.6 6.8 7.8 6.4 12.2 4.1 7.3 5.9 11.7 

Benefits          0.0 0.0 0.0 0.0 0.0 2.5 3.6 2.0 1.8 4.4 

Net OPEX 3.4 4.6 6.8 7.8 6.4 9.8 0.5 5.3 4.1 7.2 

TLC 20 years US$/cap 423 452 537 577 546 700 650 539 512 662 
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Section 6 Energy Consumption (Cons), Production (Prod), Net use and 

recoverable fraction WWT technical performance 

 

Table A4.5 Energy Consumption (Cons), Production (Prod), Net use and recoverable fraction 

parameter 
Unit An.Fil. 

Aer. 
Lag. CAS 

CAS 
N, P AGS MBR 

UASB-
DW-
RBC 

CAS 
+3R 

AGS 
+3R 

MBR 
+3R 

Energy Cons kWh/cap/y 1.6 11.9 22.9 23.6 14.0 41.2 4.3 24.4 14.7 41.7 

Energy Prod kWh/cap/y 0.0 0.0 0.0 0.0 0.0 0.0 19.6 5.3 5.3 5.3 

Net Energy kWh/cap/y 1.6 11.9 22.9 23.6 14.0 41.2 -15.3 19.1 9.4 36.6 

Recovered % 0 0 0 0 0 0 456 22 36 16 
 

Section 7 Negative impact associated with the application of digested sludge 

(1) Health, (2) social acceptability and (3) environmental complications are associated with the 

application of digested sludge (Tesfamariam et al. 2013; Koné et al. 2007): 

1. To minimize health risks resulting from helminthes ova (Jimenez-Cisneros 2008), a 

composting process of at least 2 months is suggested (Koné et al. 2007), although 99% fecal 

coliforms reduction can be expected after 10 days of composting (Way 2013). To reduce 

pathogen content the heat production potential of digested sludge in the composting process 

can be increased by addition of (non-digested)  waste activated sludge as long as 

permeability is in an optimum range (Veeken et al. 2003). Alternatively, co-composting of 

digested sewage sludge with OSWF has shown benefits in pathogens removal (Koné et al. 

2007; Strauss et al. 1997). 

2. Social acceptability of (fecal) sludge products must be considered. Starkl et al. (2010) 

describe reluctance in use of by-products from human feces, despite (potential) financial 

benefits. Similar resistance was found during a visit to a biogas project for individual 

households, where digesters were equipped with influent pipes for cow manure and black 

water from toilets. Only 1% of 800 households still applied the black water connection, as 

compost was expected to be less attractive for buyers (BiRu 2013).  

3. Environmental concerns are related to N and P levels reaching environmentally toxic levels 

and has caused governing authorities to set limits to how much sludge can be applied to 

agronomic land (Tesfamariam et al. 2013). Heavy metals, although not specified in the 

Indonesian compost standard (BSN 2004), could be another barrier in the application of 

processed sludge. Sewage sludge compost generally meets the proposed (European Union) 

limit values for Cd, Cr, Hg, Ni, Pb and Zn but tends to have problems in meeting the proposed 

Cu limits (Saveyn & Eder 2014). 
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Section 8 Detailed overview of calculated WWT investment and OPEX  

 

Table A4.6 Investment (sewer, treatment technology and land costs), yearly OPEX (costs, 

benefits and net OPEX) and total lifecycle costs (TLC) a for on-site, CBS and MedCen systems 

a Calculated based on Formula 1 in Chapter 4 

 

Table A4.7 Investment (sewer, treatment and land costs), yearly OPEX (Costs, benefits and net 

OPEX) and total lifecycle costs (TLC) a for Centralized systems 

a Calculated based on Formula 1 in Chapter 4 

 

 
System Unit 

on-
site 

CBS Off-site: medium centralized 

Technology  
Septic 
+ 
IPLT 

ABR 
+ AF 

An. 
Fil. 

Aerated 
lagoon 

CAS 
CAS 
+ N, 
P 

AGS MBR 
UASB-
DW-
RBC 

CAS+ 
3R 

AGS+ 
3R 

MBR+ 
3R 

In
ve

st
m

en
ts

 Sewer 

US$/cap 

0 114 229 229 229 229 229 229 229 229 229 229 

Treatment 100 64 43 28 142 178 171 324 135 195 188 341 

Land 0 10 4 15 2 3 1 1 236 3 2 2 

Total 100 188 276 272 374 410 401 555 601 427 419 572 

Y
ea

rly
 

O
P

E
X

 Costs 

US$/cap/y 

2.5 3.1 5.1 6.5 9.2 10.5 9.1 15.7 6.3 10.3 9.0 15.5 

Benefits 0.1 0.1 0.0 0.0 0.0 0.0 0.0 2.5 3.6 2.0 1.8 4.4 

Net OPEX 2.4 3.0 5.1 6.5 9.2 10.5 9.1 13.2 2.7 8.3 7.2 11.1 

TLC 20 years US$/cap 143 243 369 391 542 602 568 796 650 580 551 775 

 System Unit Off-site: centralized 

Technology  An.Fil. 
Aerated 
lagoon 

CAS 
CAS + 
N, P 

AGS MBR 
UASB-
DW-RBC 

CAS+ 
3R 

AGS+ 
3R 

MBR+ 
3R 

In
ve

st
m

en
ts

 Sewer 

US$/cap 

324 324 324 324 324 324 324 324 324 324 

Treatment 33 28 86 107 103 196 82 116 112 204 

Land 4 15 2 3 1 1 236 3 2 2 

Total 361 367 412 434 428 521 642 442 437 530 

Y
ea

rly
 

O
P

E
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 Costs 

US$/cap/y 

3.4 4.6 6.8 7.8 6.4 12.2 4.1 7.3 5.9 11.7 

Benefits          0.0 0.0 0.0 0.0 0.0 2.5 3.6 2.0 1.8 4.4 
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An impact analysis (Figure A4.9) is performed based on reference prices (Table A4.5 of this 

Appendix) with land prices being varied from 0.5 to 5 times the reference values. Product selling 

prices were varied from 0.5 to 2 times the reference values. As sewer system costs are the same 

for all medium centralized systems, the TLC shown in Figure A4.9 only include the investment 

and operational costs and benefits for land acquisition and treatment systems. The maximum and 

minimum differences with the reference price were included in Figure 4.2 of Chapter 4. 

 

 

Figure A4.9 Per capita WWT TLC Sensitivity analysis for land costs (LC) and recovered product 

(Prod) prices for technologies excluding sewer investment and operational costs 
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An impact analysis (Figure A4.9) is performed based on reference prices (Table A4.5 of this 

Appendix) with land prices being varied from 0.5 to 5 times the reference values. Product selling 

prices were varied from 0.5 to 2 times the reference values. As sewer system costs are the same 

for all medium centralized systems, the TLC shown in Figure A4.9 only include the investment 

and operational costs and benefits for land acquisition and treatment systems. The maximum and 

minimum differences with the reference price were included in Figure 4.2 of Chapter 4. 

 

 

Figure A4.9 Per capita WWT TLC Sensitivity analysis for land costs (LC) and recovered product 

(Prod) prices for technologies excluding sewer investment and operational costs 
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Section 9 Financial analysis of MSW systems 

 

Figure A4.10 Per capita MSW Total lifecycle Cost (TLC) with distinction between OPEX, CAPEX 

at start and CAPEX in a later stage  

 

 

Figure A4.11 Non-discounted per capita investment costs (US$/cap) per type of MSW system, 

distinguishing land (collection, disposal and treatment) and investments (collection, treatment 

facilities, initial and extension of landfill 
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Figure A4.12 Per capita disposal and collection operational costs and net benefits of 3R (shown 

as negative values) per type of MSW system (US$/cap/y) 

 

 

Figure A4.13 Per capita MSW TLC Sensitivity analysis for land costs (LC) and recovered product 

(Prod) prices 
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Section 9 Financial analysis of MSW systems 

 

Figure A4.10 Per capita MSW Total lifecycle Cost (TLC) with distinction between OPEX, CAPEX 

at start and CAPEX in a later stage  

 

 

Figure A4.11 Non-discounted per capita investment costs (US$/cap) per type of MSW system, 

distinguishing land (collection, disposal and treatment) and investments (collection, treatment 

facilities, initial and extension of landfill 
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Figure A4.12 Per capita disposal and collection operational costs and net benefits of 3R (shown 

as negative values) per type of MSW system (US$/cap/y) 

 

 

Figure A4.13 Per capita MSW TLC Sensitivity analysis for land costs (LC) and recovered product 
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Abstract 

Many developing countries struggle to provide wastewater and solid waste services. The backlog 

in access has been partly attributed to the absence of a functional sanitation planning framework. 

Various planning tools are available; however a comprehensive framework that directly links a 

government policy to nationwide planning is missing. Therefore, we propose a framework to 

facilitate the nationwide planning process for the implementation of wastewater and solid waste 

services. The framework requires inputs from government planners and experts in the formulation 

of starting points and targets. Based on a limited number of indicators (population density, urban 

functions) three outputs are generated. The first output is a visualization of the spatial distribution 

of wastewater and solid waste systems to support regional priority setting in planning and create 

awareness. Secondly, the total number of people served, budget requirements and distribution of 

systems is determined. Thirdly, the required budget is allocated to the responsible institution to 

assure effective implementation. The determined budgets are specified by their beneficiaries, 

distinguishing urban, rural, poor and non-poor households. The framework was applied for 

Indonesia and outputs were adopted in the National Development Plan. The required budget to 

reach the Indonesian government’s 2019 target was determined to be 25 billion US$ over 5 

years. The contribution from the national budget required a more than fivefold increase compared 

to the current budget allocation in Indonesia, corresponding to an increase from 0.5 to 2.7 billion 

US$ per year. The budget for campaigning, advocacy and institutional strengthening to enable 

implementation was determined to be 10% of the total budget. The proposed framework is not 

only suitable for Indonesia, but could also be applied to any developing country that aims to 

increase access to wastewater and solid waste facilities.  

 

Keywords: wastewater, solid waste, nationwide planning, investment and operational costs, GIS 
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 Introduction 5.1

Between 2005 and 2010, developing Asia experienced remarkably higher annualized growth 

rates (7.3% in Gross Domestic Product per capita) than other developing regions like Sub 

Saharan Africa and Latin America and the Caribbean (both 2.3%) (ADB - Asian Development 

Bank, 2012). However, this rapid economic growth had limited impact on improved access to 

wastewater facilities which was 55% (ADB, 2012), corresponding with an annual 3% increase 

since 1990. Solid waste services in Asian cities is about 20% (Hutton et al., 2008) and showed 

limited increase, comparing Indonesian health data (2010-2013) which showed an increase from 

23.4% in 2010 to 24.9% in 2013 only (Ministry of Health, 2010, 2013). The Millennium 

Development Goals (MDG) aimed to halve the proportion of people without access to wastewater 

facilities by 2015 compared to 1990. A progress report shows that a number of (South East) 

Asian countries, such as Indonesia, Cambodia and India, did not meet these targets (WHO & 

UNICEF, 2015). A challenge for governments to reach the 2015 MDG and the defined 100% 

access Sustainable Development Goals (SDG) target in 2030 (United Nations, 2015) is the 

absence of a functional management framework dealing with planning and budgeting (Baum et 

al., 2013; WHO & UNICEF, 2014).  

Sanitation frameworks aim to respond to real needs and make informed decisions about 

investments for sanitation improvements involving the resources to meet recognized priorities 

(Törnqvist et al., 2008; Parkinson et al., 2014). Existing sanitation planning frameworks typically 

focus on specific population groups, distinguishing  urban, rural or poor or non-poor communities 

(Törnqvist et al., 2008; Mehta & Movik, 2010; Sijbesma, 2011), while a comprehensive planning 

framework that incorporates all these citizens is required. Planning frameworks further differ in 

level of complexity, ranging from simple methodologies relying on guiding principles and check 

lists, like the Sanitation 21-framework (Parkinson et al., 2014) to more complex ones, including 

material flow analysis (MFA) (Meinzinger et al., 2009) or Quantitative Microbial Risk Assessment 

(Surinkul & Koottatep, 2009). One example for the latter is the SANEX decision support system 

(Loetscher & Keller, 2002), which consists of several steps, including a selection and screening of 

feasible technologies on a range of criteria considering settlements characteristics, soil 

characteristics, quality of water supply, community profiles and pollution control measures. 

SANEX has been tested in small scale communities in several developing countries, including 

Indonesia (Loetscher & Keller, 2002). However, the more complex frameworks like SANEX are 

often budget and time demanding and hardly applicable for a nationwide long term sanitation 

planning, because required data input, such as soil conditions or quality of water supply are not 

available on a nationwide level (Törnqvist et al., 2008). The simpler ones may not provide the 

required level of insight to respond to real needs. 

In addition to wastewater, solid waste also contributes to pollution. Therefore, a comprehensive 

approach addressing both sanitation sub-sectors is desired (Ersoy et al., 2008; WSP - Water and 

Sanitation Program of the World Bank, 2011; ADB, 2013a). In several sanitation practices, like 
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community lead total sanitation (CLTS) (Mehta & Movik, 2010) (basic) household waste 

management is considered. However, the CLTS approach focusses on rural areas only. 

Analytical tools, like MFA, can also include solid waste flows and may support sanitation planning 

(Meinzinger et al., 2009). MFAs, though, cannot be readily up-scaled for nationwide planning due 

to their complexity.  

An available framework designed for nationwide sanitation planning and budgeting is the Service 

Delivery Assessment (SDA) of WSP (WSP, 2014). The SDA consists of (1) a review of past 

sanitation access, (2) a costing model, and (3) a diagnosis of service delivery bottlenecks. It 

lacks, however, a wastewater system selection based on residential features and neglects the 

impact of untreated sewage on public health and the environment.  

To organize and integrate wastewater and solid waste systems in land use planning activities, 

and to support regional priority setting and to create awareness of the required implementation, 

visualization in Geographic Information Systems (GIS) can be used. (Quaye-Ballard & An, 2010; 

Coutinho-Rodrigues et al., 2011; Gondhalekar et al., 2013). However, sanitation frameworks that 

present their output in GIS are scarce and are not readily available. 

Table 5.1 summarizes the differences between described existing frameworks and our 

proposed framework. It shows that none of the reviewed frameworks considers all the 

described elements to develop a sanitation plan from a (national) governmental sanitation 

(wastewater and solid waste) policy.  

In this paper, a new wastewater and solid waste planning framework is presented that directly 

links government policies to a nationwide planning roadmap. The framework requires input from 

government planners and experts in the formulation of starting points and targets. It then only 

requires a number of key indicators to arrive at: (1) spatial planning visualized in GIS, (2) required 

number of facilities and budgets per population group and (3) allocation of budgets to 

implementing institutions. The application of the framework is demonstrated using Indonesia as 

an example. 
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community lead total sanitation (CLTS) (Mehta & Movik, 2010) (basic) household waste 

management is considered. However, the CLTS approach focusses on rural areas only. 

Analytical tools, like MFA, can also include solid waste flows and may support sanitation planning 

(Meinzinger et al., 2009). MFAs, though, cannot be readily up-scaled for nationwide planning due 

to their complexity.  

An available framework designed for nationwide sanitation planning and budgeting is the Service 

Delivery Assessment (SDA) of WSP (WSP, 2014). The SDA consists of (1) a review of past 

sanitation access, (2) a costing model, and (3) a diagnosis of service delivery bottlenecks. It 

lacks, however, a wastewater system selection based on residential features and neglects the 

impact of untreated sewage on public health and the environment.  

To organize and integrate wastewater and solid waste systems in land use planning activities, 

and to support regional priority setting and to create awareness of the required implementation, 

visualization in Geographic Information Systems (GIS) can be used. (Quaye-Ballard & An, 2010; 

Coutinho-Rodrigues et al., 2011; Gondhalekar et al., 2013). However, sanitation frameworks that 

present their output in GIS are scarce and are not readily available. 

Table 5.1 summarizes the differences between described existing frameworks and our 

proposed framework. It shows that none of the reviewed frameworks considers all the 

described elements to develop a sanitation plan from a (national) governmental sanitation 

(wastewater and solid waste) policy.  

In this paper, a new wastewater and solid waste planning framework is presented that directly 

links government policies to a nationwide planning roadmap. The framework requires input from 

government planners and experts in the formulation of starting points and targets. It then only 

requires a number of key indicators to arrive at: (1) spatial planning visualized in GIS, (2) required 

number of facilities and budgets per population group and (3) allocation of budgets to 

implementing institutions. The application of the framework is demonstrated using Indonesia as 

an example. 
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The national average of access to wastewater facilities in Indonesia was 56% in 2010, with 

highest access in the urban areas (73%) (Ministry of Health, 2010). Barely 1% of the population is 

connected to a sewer system (Kearton et al., 2013). Most of the installed wastewater 

infrastructure comprises septic tanks. However, 95% of the septic tanks leach liquid directly into 

the ground or discharge to surface water (WSP, 2013a). The current septage sludge 

management system is performing poorly in terms of technical and financial operation (WSP, 

2013b). Only 25% of the Indonesian population are served by a solid waste management system 

(Ministry of Health, 2013). The lack of adequate wastewater systems, combined with inadequate 

solid waste management, is causing contamination of surface and groundwater (ADB, 2013a). 

Increased government attention towards sanitation resulted in an increased investment from 0.6 

to 1.5 billion US$ per year between 2010 and 2014 (USDP - Urban Sanitation Development 

Program, 2014). In 2013 the Ministry of Planning started preparing the National Medium Term 

Development Plan (2015-2019) for which the framework presented here was applied. In that plan, 

the “universal targets” were introduced which define that the entire population must have access 

to wastewater facilities; 70% of the population should be served by a solid waste management 

system; and a 20% reduction in landfilling of household waste should be achieved (Bappenas, 

2014a). 

 

 Description of the sanitation planning framework 5.2

The planning framework aims to generate three policy and planning relevant outputs. Firstly the 

spatial distribution of selected wastewater and solid waste systems is visualized to support 

regional priority setting and create awareness of the required implementation. Secondly, the total 

number of people served, budget requirements and number of systems are determined. A 

distinction is made between urban, rural as well as poor and non-poor population groups. These 

population groups have different (i) access to sanitation facilities (WHO & UNICEF, 2014; WSP, 

2014), (ii) future access targets (e.g. urban and rural) (Bappenas, 2014a), (iii) implementing 

agencies (rural implementation typically through the Ministry of health (Mehta & Movik, 2010; ODI 

- Overseas Development Institute, 2011); urban implementation through the ministry of public 

works or construction (Yan et al., 2006; WSP, 2014)) and (iv) support needs (e.g. financial needs 

of poor communities) (Sijbesma, 2011). Thirdly, the required budget is allocated to the 

responsible institution to assure effective implementation. In the framework, these three domains 

are addressed in a structured manner and policy and planning relevant outputs are produced 

(Figure 5.1). Outputs are generated in three process flows, namely (i) inception definition; (ii) data 

collection, and (iii) data processing. To facilitate the replication of the method, the steps 1-8 are 

numbered in the order that the framework should be applied. 
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Figure 5.1 Framework for determination of 3 Policy Planning outputs in corresponding domains, 

distinguishing processes (i-iii) executed in 8 steps  

 

(i) Inception definition (steps 1-3): 

Step 1: Define wastewater and solid waste selection criteria, system costs and the number of 

people per system 

 

System selection: 

Within this framework the features of the residential area (population density and urban function) 

determine the solid waste and wastewater system (Table 5.2). In areas with high population 

densities and urban functions, like shopping malls, the environment receives higher pathogen and 

pollution loads (Mara et al., 2010). Consequently, suitable systems differ according to the type of 

residential area. This health and environment based system selection is not incorporated into the 

MDG. The MDG’s only specify an access target, which is considered unsuitable given the above 

considerations (Baum et al. 2013). 

Three types of wastewater systems are distinguished: on-site, community based systems (CBS) 

and off-site (medium-centralized or centralized) systems (Table 5.2). On-site systems typically 

serve one household, CBS typically serve 50-100 households, a medium-centralized off-site 

system serves up to 5,000 households, whereas a centralized system may serve up to 50,000 

households. For more details reference is made to the Appendix Chapter 5, Section 1 and 

Kerstens et al. (2015).  
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are addressed in a structured manner and policy and planning relevant outputs are produced 

(Figure 5.1). Outputs are generated in three process flows, namely (i) inception definition; (ii) data 

collection, and (iii) data processing. To facilitate the replication of the method, the steps 1-8 are 
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Figure 5.1 Framework for determination of 3 Policy Planning outputs in corresponding domains, 

distinguishing processes (i-iii) executed in 8 steps  

 

(i) Inception definition (steps 1-3): 

Step 1: Define wastewater and solid waste selection criteria, system costs and the number of 

people per system 

 

System selection: 

Within this framework the features of the residential area (population density and urban function) 

determine the solid waste and wastewater system (Table 5.2). In areas with high population 

densities and urban functions, like shopping malls, the environment receives higher pathogen and 

pollution loads (Mara et al., 2010). Consequently, suitable systems differ according to the type of 

residential area. This health and environment based system selection is not incorporated into the 

MDG. The MDG’s only specify an access target, which is considered unsuitable given the above 

considerations (Baum et al. 2013). 

Three types of wastewater systems are distinguished: on-site, community based systems (CBS) 

and off-site (medium-centralized or centralized) systems (Table 5.2). On-site systems typically 

serve one household, CBS typically serve 50-100 households, a medium-centralized off-site 

system serves up to 5,000 households, whereas a centralized system may serve up to 50,000 

households. For more details reference is made to the Appendix Chapter 5, Section 1 and 

Kerstens et al. (2015).  
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Table 5.2 Basic system selection for wastewater treatment (WWT) and municipal solid waste 

(MSW) based on residential features. Typical households connected per system (hh/syst) are 

indicated in parenthesis. For MSW distinction is made between a conventional system (no 

resources recovery; only landfill) and a system with 3R (Reuse, Recycling and Recovery) 

Residential features Corresponding selected systems 

Status Residential 

Population density 

(people pp/ha) a 

WWT Systems (hh/syst) b MSW systems a 

Conventional: 

landfilling of waste 

3R + landfill 

Rural 

 

Low ( < 100) On-site (1 hh/syst) Not applied Home compost 

High (> 100) Community based (50-100 

hh/syst) 

Collection and 

landfill 

Decentralized 

recovery with 

centralized landfill Urban 

 

Low (< 100) On-site (1 hh/syst) 

Medium (100-250) Off-site: Medium-centralized 

(500-5,000 hh/sys) 

Central recovery 

with landfill 

High (>250) Off-site: Centralized 

(10,000-50,000 hh/syst) 
a indicated densities are general guidelines and can be adjusted (see also example Indonesia). 
b For a description of WWT and MSW systems reference is made to Kerstens et al. (2015)  

 

In this framework special attention is paid to poor communities. Based on population densities, 

urban slums could qualify for off-site systems. However, slums often lack water facilities, consist 

of temporary or non-legal houses, and residents are unable or unwilling to pay (Sijbesma, 2011). 

Therefore, off-site systems may not be a feasible option in the short term. Instead, temporary 

facilities such as community sanitation centers, where people may bath, wash and go to the toilet 

should be considered (Ulrich et al., 2009). These can be replaced by or adjusted to a more 

structural solution during planned renovation or rehabilitation (Bappenas, 2014a; USDP, 2015).  

Municipal Solid Waste (MSW) system selection is based on residential features (Table 5.2) and 

distinguishes two types of system. In the first (conventional) system all collected waste is 

disposed of in a landfill. No interventions are planned for households in low density rural areas, 

since collection is not feasible due to access constraints and high collection travelling distances 

(MoPW - Ministry of Public Works, 2014a). In high population density rural and urban areas a 

conventional system is applicable. In the second (3R) system the amount of waste that requires 

landfilling is reduced by resource recovery in a so-called 3R program (Reduction, Reuse, 

Recycling) and may comprise plastic and paper recovery as well as compost and energy 

production from organic solid waste (Aprilia & Tezuka, 2010; Aprilia et al., 2011; Kerstens et al., 

2015). Three scales of 3R are distinguished: home compost; decentralized (community level); 

and central (Table 5.2), involving composting, digestion and paper and plastic recovery. The 

recommended scale of 3R per type of residential area was based on an analysis that considered 
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type and amount of waste, applicable technology, collection transfer and transport costs and 

treatment locations (Achillas et al., 2013; Kerstens et al., 2015) and is further elaborated in 

Appendix Chapter 5, Section 2.  

Because of population dynamics, rural areas may become urban (BPS - Buro Pusat Statistik, 

2010a), which affects wastewater or solid waste system selection. Therefore all current rural 

areas with a population density exceeding  25 pp/ha were regarded as future urban areas 

(Bappenas, 2014b; USDP, 2015). In this framework, priority can be given to sanitation 

development in urban areas over rural areas and larger cities over smaller cities in terms of 

targets and implementation of large infrastructures. For example, landfill development in 

metropolitan and larger cities may be prioritized over medium size and small cities, which is a 

consideration of the Indonesian government (Bappenas, 2014a). 

 

Cost determination 

To enable policy makers to budget and allocate funds, investment and operational costs for each 

defined WWT and MSW system are determined. This framework uses per capita investment and 

operational costs (Kerstens et al., 2015), which allows for a direct calculation of total costs based 

on the targeted population to be served (step 7 in Figure 5.1). Investments should include 

“hardware” (costs for installations, vehicles etc.), “software” (costs for studies, designs, 

socialization, health campaigning and advocacy), and land costs. Within a country, prices may 

vary depending on location, availability of materials and skills. Accordingly, these location 

dependent price levels should be included in the framework. Reference is made to Appendix 

Chapter 5, Section 3 and Kerstens et al. (2015). Costs for replacement of septic tanks and the 

provision of in-house piping were not included in the current analysis.  

 

Step 2: Define the planning term and nationwide sanitation targets 

The framework requires input on (1) future access, (2) urban system improvement, and (3) the 

planning horizon. The targets largely determine the number of facilities and corresponding 

budgets required (see also Step 7). 

Access targets up until 2015 were typically based on the MDG’s (WHO & UNICEF, 2014). After 

2015 governments should define their own targets (Bappenas, 2014a). In many developing 

countries, households apply poorly-performing septic tanks that are in fact leach-pits (WSP, 

2013a) and that put public health at risk, especially when there is groundwater well use in the 

area (ADB, 2013a; Baum et al., 2013). Therefore, a switch from existing on-site systems to off-

site systems is included when off-site systems are recommended for that area, following Table 

5.2. The planner should define the percentage of people that will switch in discussion with the 

involved stakeholders. Since the associated health impact of providing access to people without a 

wastewater facility is larger than improving an existing, but poor performing facility (Hutton, 2013), 

priority is given to the former. The framework allows for a rapid identification of the impact of a 
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Table 5.2 Basic system selection for wastewater treatment (WWT) and municipal solid waste 

(MSW) based on residential features. Typical households connected per system (hh/syst) are 

indicated in parenthesis. For MSW distinction is made between a conventional system (no 

resources recovery; only landfill) and a system with 3R (Reuse, Recycling and Recovery) 
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Population density 

(people pp/ha) a 
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(10,000-50,000 hh/syst) 
a indicated densities are general guidelines and can be adjusted (see also example Indonesia). 
b For a description of WWT and MSW systems reference is made to Kerstens et al. (2015)  
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Recycling) and may comprise plastic and paper recovery as well as compost and energy 
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type and amount of waste, applicable technology, collection transfer and transport costs and 

treatment locations (Achillas et al., 2013; Kerstens et al., 2015) and is further elaborated in 

Appendix Chapter 5, Section 2.  
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planning horizon. The targets largely determine the number of facilities and corresponding 

budgets required (see also Step 7). 

Access targets up until 2015 were typically based on the MDG’s (WHO & UNICEF, 2014). After 

2015 governments should define their own targets (Bappenas, 2014a). In many developing 

countries, households apply poorly-performing septic tanks that are in fact leach-pits (WSP, 

2013a) and that put public health at risk, especially when there is groundwater well use in the 

area (ADB, 2013a; Baum et al., 2013). Therefore, a switch from existing on-site systems to off-

site systems is included when off-site systems are recommended for that area, following Table 

5.2. The planner should define the percentage of people that will switch in discussion with the 

involved stakeholders. Since the associated health impact of providing access to people without a 

wastewater facility is larger than improving an existing, but poor performing facility (Hutton, 2013), 

priority is given to the former. The framework allows for a rapid identification of the impact of a 



Chapter 5 

128 
 

certain switch factor or target in terms of required budgets, number of facilities and household 

connections, and thus supports an iterative calibration of this factor. At the same time, 

sustainable septic tank application requires also campaigning and advocacy and the development 

of sludge management facilities. Depending on the type of selected off-site technology, pathogen 

and pollutants removal, such as Chemical Oxygen Demand (COD), Biological Oxygen Demand 

(BOD), nitrogen (N) and phosphorus (P) may vary (Kerstens et al., 2015). Compared to septic 

tanks that only treat black water with poor removal efficiencies and cause diffused ground water 

pollution, off-site systems also treat greywater. As a tertiary step disinfection of treated effluent 

could be considered to further reduce health and environmental impact.  

Finally, the planner should define a planning horizon, which often depends on national policies 

(GoI, 2006). Preferably a long-term horizon is selected since planned infrastructure is designed 

for long lifetimes and relates to long-term water policies (Ng et al., 2014). However, the longer the 

planning period, the more uncertain developments become (Ahn & Kang, 2014) and therefore 

short-term (typically 5 years) and medium-term (10-15 years) targets in the context of longer term 

ambitions (e.g. 20 years) should be considered. 

 

Step 3: Define the roles and responsibilities per institution and system 

The implementation of a WWT or MSW system requires a series of activities including feasibility 

studies, designs and construction for which different institutions are responsible. Identification of 

the responsible authorities will assist the planner in defining and allocating implementation 

budgets (Mara et al., 2010; Winters et al., 2014). 

For each wastewater and solid waste system four features are determined: 

(1) Costs of a specific system activity as a percentage of the total costs to implement that system;  

(2) Origin of budget (National, Local, Private/users);  

(3) Responsible department or (group) of ministries and; 

(4) Activity cost type (hardware, software or land).  

For example, the costs for a household connection may amount to (1) 15% of the total 

implementation costs of an off-site system. These costs are typically funded by (2) a local 

government, for example the Ministry of Public Works (3). The costs are regarded as hardware 

(4). To determine this cost allocation, an interactive process with decision makers from different 

departments (e.g. planning or public works) to produce a matrix as shown in Table 5.5 and Table 

5.6 is suggested.  
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(ii) Data collection (Steps 4 and 5): 

• Population data and forecasts can be retrieved from on-line databases or websites 

(UNpopulation, 2012; BPS, 2013, 2014; DSM - Department of Statistics in Malaysia, 2014; 

NBSC - National Bureau of Statistics in China, 2014; WHO & UNICEF, 2014);  

• WWT and MSW management relates to human settlements and the framework uses 

residential densities (Table 5.2). Land use data can be estimated using available tools, such 

as “Google Maps”. Land use data was also used to determine compost transport costs 

between urban and rural areas (see Appendix Chapter 5 Section 3);  

• Current access data can be obtained through the Joint Monitoring Program (WHO & UNICEF, 

2014), national databases (BPS, 2010b), health surveys (Ministry of Health, 2013) or directly 

from relevant ministries (Bappenas, 2014b; MoPW, 2014a).  

 

(iii) Data Processing (Steps 6, 7 and 8): 

In Step 6, the collected residential population data and urban/rural status (Step 4) for each 

defined area is used to select the system and its corresponding per capita costs, following Table 

5.2. Selected systems per location are visualized in GIS. 

In Step 7, the population that requires service provision in an area is the sum of (1) targeted 

future residents with access and (2) the residents living in high density urban areas that switch 

from an on-site system to an off-site system following Step 2 and corrected for the residents that 

already have access at the start (Step 4). The costs for implementation in one area are calculated 

using the specific per capita costs (Step 6) combined with the population that requires servicing. 

In Step 8, the costs determined in Step 7 are allocated to responsible institutions using Step 3.  

 

 Methodology for data collection in Indonesia 5.3

Step 1. Define WWT and MSW selection criteria, costs and the number of people per system 

WWT system selection followed the criteria defined in Table 5.2 with the additional criteria that 

new urban developments (population growth) in areas with population densities ranging from 25-

100 pp/ha apply a medium-centralized WWTP, and that households in existing areas with 

densities of 25-100 pp/ha are served with septic tanks (Bappenas, 2014b). Population groups 

planned to apply on-site and CBS systems (Table 5.2) will be served by, respectively, septic 

tanks and anaerobic baffled + anaerobic filters technologies. Following discussions with the 

Indonesian Ministry of Planning, the applied distribution of technologies for medium centralized 

systems off-site systems was 40% anaerobic filters, 30% conventional activated sludge (CAS) 

systems and 30% CAS systems with enhanced N, P removal. For central systems the applied 

distribution was 10% anaerobic filters, 30% CAS systems, 30% CAS systems with enhanced 

N&P removal and 30% Aerobic Granular Sludge systems. 
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certain switch factor or target in terms of required budgets, number of facilities and household 

connections, and thus supports an iterative calibration of this factor. At the same time, 

sustainable septic tank application requires also campaigning and advocacy and the development 

of sludge management facilities. Depending on the type of selected off-site technology, pathogen 
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(BOD), nitrogen (N) and phosphorus (P) may vary (Kerstens et al., 2015). Compared to septic 
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NBSC - National Bureau of Statistics in China, 2014; WHO & UNICEF, 2014);  
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residential densities (Table 5.2). Land use data can be estimated using available tools, such 
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between urban and rural areas (see Appendix Chapter 5 Section 3);  
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2014), national databases (BPS, 2010b), health surveys (Ministry of Health, 2013) or directly 

from relevant ministries (Bappenas, 2014b; MoPW, 2014a).  
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defined area is used to select the system and its corresponding per capita costs, following Table 

5.2. Selected systems per location are visualized in GIS. 

In Step 7, the population that requires service provision in an area is the sum of (1) targeted 

future residents with access and (2) the residents living in high density urban areas that switch 

from an on-site system to an off-site system following Step 2 and corrected for the residents that 

already have access at the start (Step 4). The costs for implementation in one area are calculated 

using the specific per capita costs (Step 6) combined with the population that requires servicing. 

In Step 8, the costs determined in Step 7 are allocated to responsible institutions using Step 3.  
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new urban developments (population growth) in areas with population densities ranging from 25-

100 pp/ha apply a medium-centralized WWTP, and that households in existing areas with 

densities of 25-100 pp/ha are served with septic tanks (Bappenas, 2014b). Population groups 

planned to apply on-site and CBS systems (Table 5.2) will be served by, respectively, septic 

tanks and anaerobic baffled + anaerobic filters technologies. Following discussions with the 

Indonesian Ministry of Planning, the applied distribution of technologies for medium centralized 

systems off-site systems was 40% anaerobic filters, 30% conventional activated sludge (CAS) 

systems and 30% CAS systems with enhanced N, P removal. For central systems the applied 

distribution was 10% anaerobic filters, 30% CAS systems, 30% CAS systems with enhanced 

N&P removal and 30% Aerobic Granular Sludge systems. 

 



Chapter 5 

130 
 

The number of households connected to a medium-centralized or centralized WWTP was 

determined based on the city size (Table 5.3) following discussion with the National Development 

Planning Agency.  

Table 5.3 Households connected to a medium-centralized or centralized WWT system depending 

on size of the municipality (in 2035) 

Off-site Unit Size of municipalities (households) 
< 20,000  20,000-100,000  100,000-200,000  >200,000 

Medium-centralized Households 
connected 

500 1,000 2,000 5,000 
Centralized 10,000 10,000 25,000 50,000 
 

In the MSW selection (Table 5.4) urban areas have priority and developments are planned to 

start in 2015. High density rural areas have no priority but will be served from 2020 onwards. 

Kerstens et al. (2015) describe centralized 3R systems applying only composting and digestion + 

composting to process the organic waste fraction. In this study half of the central 3R facilities 

apply digestion and composting and the other half only composting. Applied investments and net 

Operational Expenditures (OPEX) are indicated in the Appendix Chapter 5, Section 3 and were 

obtained from Kerstens et al., (2015). To determine the number of facilities required, 

decentralized and centralized 3R facilities were defined to serve, respectively 1,200 and 40,000 

household (Bappenas, 2014b).  

 

Table 5.4 MSW system selection for Indonesia as a function of density, urban/rural status and 

time of implementation 

Residential 
features 

Type of area Rural Urban 
Population 
density (pp/ha) 

<25 >25 <100 >100 <100 >100 

Activity Implementation 
period 

Only after 2020 2015-2019 2020-2034 

Collection  no yes yes Yes 
Level of 3R Home Decentralized Decentralized Central Decentralized Central 
Landfill (disposal) no yes municipalities without an 

existing landfill a 
Extend landfills 

a 3R related developments are started at the same time as landfill developments. 

 

Construction prices differ per province in Indonesia and vary by a factors of 0.7 to 2.6 of the 

Jakarta price (TTPS - Tim Teknis Pembangunan Sanitasi, 2009). In the framework, provincial 

price corrections are included, but variations are reduced by 50%. This has been implemented 

because reported price differences were found to inaccurately reflect the cost for wastewater and 

solid waste facilities (MoPW, 2014a).  
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Step 2. Define planning boundaries and nationwide sanitation targets. 

Urban and rural WWT and MSW access targets were defined for each 5 year period from 2015 

until 2035. In this study two scenarios are compared that apply different targets for the first five 

years (2015-2019).  

1. Scenario 1 follows the “universal access” targets.  

2. Scenario 2 is a downscaled scenario 1, where only 75% of the targets defined in Scenario 1 

are reached by the end of 2019, corresponding with 75% access to WWT facilities and 53% 

for urban MSW in 2019. 

In both scenarios a 5% switch from current on-site system users to off-site systems in high 

density urban areas was defined until 2019 and a 50% switch by 2035 (Bappenas, 2014b; USDP, 

2015). After 2020 both scenarios are the same and access is 100%, excluding the low density 

rural groups for MSW development. 

 

Step 3. Definition of roles and responsibilities per institution and system. 

Table 5.5 and Table 5.6 show the applied division of budget source for WWT and MSW facilities, 

differentiating (i) level of funding, (ii) department and (iii) type of activities. The use of this table is 

clarified by two examples (marked with the thick dashed line).  

1. For on-site systems 15% of the total costs are related to general campaigning and advocacy. 

This budget is provided by the (i) national government (N), for (ii) campaign and advocacy 

(CA; referring to the Ministries of Health and Home affairs) and concerns (iii) software costs 

(S).  

2. The percentage of house connection costs for medium-centralized systems was estimated as 

13% of the total costs. This budget is provided by the (i) local government (L), of (ii) Public 

Works (PW) and concerns (iii) hardware costs (H). 
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Kerstens et al. (2015) describe centralized 3R systems applying only composting and digestion + 
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Operational Expenditures (OPEX) are indicated in the Appendix Chapter 5, Section 3 and were 
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household (Bappenas, 2014b).  

 

Table 5.4 MSW system selection for Indonesia as a function of density, urban/rural status and 

time of implementation 

Residential 
features 

Type of area Rural Urban 
Population 
density (pp/ha) 

<25 >25 <100 >100 <100 >100 

Activity Implementation 
period 

Only after 2020 2015-2019 2020-2034 

Collection  no yes yes Yes 
Level of 3R Home Decentralized Decentralized Central Decentralized Central 
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price corrections are included, but variations are reduced by 50%. This has been implemented 

because reported price differences were found to inaccurately reflect the cost for wastewater and 

solid waste facilities (MoPW, 2014a).  
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Step 2. Define planning boundaries and nationwide sanitation targets. 

Urban and rural WWT and MSW access targets were defined for each 5 year period from 2015 

until 2035. In this study two scenarios are compared that apply different targets for the first five 

years (2015-2019).  

1. Scenario 1 follows the “universal access” targets.  

2. Scenario 2 is a downscaled scenario 1, where only 75% of the targets defined in Scenario 1 

are reached by the end of 2019, corresponding with 75% access to WWT facilities and 53% 

for urban MSW in 2019. 

In both scenarios a 5% switch from current on-site system users to off-site systems in high 

density urban areas was defined until 2019 and a 50% switch by 2035 (Bappenas, 2014b; USDP, 

2015). After 2020 both scenarios are the same and access is 100%, excluding the low density 

rural groups for MSW development. 

 

Step 3. Definition of roles and responsibilities per institution and system. 

Table 5.5 and Table 5.6 show the applied division of budget source for WWT and MSW facilities, 

differentiating (i) level of funding, (ii) department and (iii) type of activities. The use of this table is 

clarified by two examples (marked with the thick dashed line).  

1. For on-site systems 15% of the total costs are related to general campaigning and advocacy. 

This budget is provided by the (i) national government (N), for (ii) campaign and advocacy 

(CA; referring to the Ministries of Health and Home affairs) and concerns (iii) software costs 

(S).  

2. The percentage of house connection costs for medium-centralized systems was estimated as 

13% of the total costs. This budget is provided by the (i) local government (L), of (ii) Public 

Works (PW) and concerns (iii) hardware costs (H). 
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Table 5.5 Applied Division (%) of budget a per (i) level of funding, (ii) department and (iii) activity 

for WWT facilities. The darkness of the colours shows the relative weight 

Sub-sector Wastewater 

System On-site CBS Medium-centralized Centralized 

Activity % 
source 

% 
source 

% 
source 

% 
source 

i ii iii i ii iii i ii iii i ii iii 
Studies                                 

Master plan                 0.25 N PW S 0.25 N PW S 

Additional studies                 0.25 Lo PW S 0.25 Lo PW S 

Design                                 

guidelines         1 N PW S 1 N PW S 1 N PW S 

detailing         4 U   S 3 N PW S 1 N PW S 

Campaign, Advocacy                                  

General 15 N CA S 2 N PW S 1.5 N CA S 3 N CA S 

Local  5 Lo CA S 4 Lo CA S 2 Lo CA S 1.5 Lo CA S 

Land          11 U   La 3 Lo   La 3 Lo   La 

Construction                                  

House connection 9 U   H 24 U   H 13 Lo PW H 11 Lo PW H 

Sewer/ septage 
sludge processing 
facility b 

1 N PW H 22 N PW H 43 N PW H 57 N PW H 

Treatment 70 U   H 32 N PW H 33 N PW H 22 N PW H 

All 100       100       100       100       
a Source codes i, ii and iii refer to: 

i. Level of funding: national (N) or local (Lo) government or users/private (U); 

ii. Ministry: Public Works (PW), Ministry of Health/Home Affairs (CA) for campaign & advocacy;  

iii. Type of activity: hardware (H), software (S) or land acquisition (La) 
b Sludge from on-site systems and community based systems is collected and processed in a 

central facility for which indicated costs are reserved. For septic tanks, designs guidelines are 

available (MoPW, 2000) and no additional studies and designs are required 
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Table 5.6 Applied Division (%) of budget a per (i) level of funding, (ii) department and (iii) activity 
for MSW facilities 

Sub-sector Municipal Solid Waste 

System Collection- transport Treatment 

Activity % 
source 

% 
source 

i ii iii i ii iii 

Studies                 

Master plan 3 N PW S 1.5 N PW S 

Additional studies 1 Lo PW S 1 Lo PW S 

Design 

guidelines 2 N PW S 2 N PW S 

detailing 2 Lo PW S 3 Lo PW S 

Campaign, Advocacy  

General 2 N Ca S 1.5 N Ca S 

Local  4 Lo Ca S 2 Lo Ca S 

Land  9 Lo La 19 Lo La 

Construction  

Civil construction 52 Lo PW H 54 N PW H 

vehicles 25 U H 

treatment facilities 16 Lo Pw H 

All 100 100 
a Source codes i, ii and iii refer to: 

i. Level of funding: national (N) or local (Lo) government or users/private (U); 

ii. Ministry: Public Works (PW), Ministry of Health/Home Affairs (CA) for campaign & advocacy; 

iii. Type of activity: hardware (H), software (S) or land acquisition (La) 

 

Step 4. Data collection on population growth, land use, urbanization and poverty level 

Provincial population and urbanization projections for 2010-2035 (BPS, 2013) were applied to all 

(nearly 80,000) 2010 urban and rural administrative areas in their respective provinces (BPS, 

2014). Residential land use and anticipated 2035 developments followed the Java Spatial Model 

(MoPW, 2011). For islands outside Java, the fraction of residential area was determined by 

extrapolation of the Java data, applying a correction factor of 0.75 to compensate for these less 

densely populated areas (see Appendix Chapter 5 Section 4). 2010 urban and rural poverty data 

(BPS, 2010b) were extrapolated to the 2015 population using the urban and rural projections 

(BPS, 2013), but excluding a possible decreasing poverty rate (Suryahadi et al., 2012). Maps with 

planned WWT and MSW system implementation were prepared in ArcGis10 (ESRI, 2010). 

 

Step 5. Collection of data on current access to and state of wastewater and solid waste facilities 

To determine the frequency distribution for rural, urban, poor and non-poor households with 

access to WWT facilities, the 2010 SUSENAS (National Socioeconomic Survey) data (BPS, 
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available (MoPW, 2000) and no additional studies and designs are required 

 

A new approach to nationwide sanitation planning for developing countries 

133 
 

Table 5.6 Applied Division (%) of budget a per (i) level of funding, (ii) department and (iii) activity 
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% 
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ii. Ministry: Public Works (PW), Ministry of Health/Home Affairs (CA) for campaign & advocacy; 

iii. Type of activity: hardware (H), software (S) or land acquisition (La) 

 

Step 4. Data collection on population growth, land use, urbanization and poverty level 

Provincial population and urbanization projections for 2010-2035 (BPS, 2013) were applied to all 

(nearly 80,000) 2010 urban and rural administrative areas in their respective provinces (BPS, 

2014). Residential land use and anticipated 2035 developments followed the Java Spatial Model 

(MoPW, 2011). For islands outside Java, the fraction of residential area was determined by 

extrapolation of the Java data, applying a correction factor of 0.75 to compensate for these less 

densely populated areas (see Appendix Chapter 5 Section 4). 2010 urban and rural poverty data 

(BPS, 2010b) were extrapolated to the 2015 population using the urban and rural projections 

(BPS, 2013), but excluding a possible decreasing poverty rate (Suryahadi et al., 2012). Maps with 

planned WWT and MSW system implementation were prepared in ArcGis10 (ESRI, 2010). 

 

Step 5. Collection of data on current access to and state of wastewater and solid waste facilities 

To determine the frequency distribution for rural, urban, poor and non-poor households with 

access to WWT facilities, the 2010 SUSENAS (National Socioeconomic Survey) data (BPS, 
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2010b) were aggregated in SPSS 17.0 using univariate data analysis. The overall access to 

WWT facilities at the end of 2014 (Table 5.7) was defined as 60% (BPS, 2013; Bappenas, 2014b; 

MoPW, 2014a; WHO & UNICEF, 2014). Provincial urban and rural MSW access data were 

collected from Ministry of Health (2010) and landfill and construction data from MoPW (2014). 

Data on existing sludge management facilities was obtained through the MoPW and the total 

number was corrected for malfunctioning plants (MoPW, 2012).  

 

Steps 6-8 were then processed as explained in Section 2, (iii) Data Processing. 

 

Table 5.7 Indonesian WWT access data for Urban, rural, poor and non-poor households 2010 

(SUSENAS) and 2014 (defined in this study) a 

Fraction of 
households 
with access 

Poor total Non-poor total Urban total Rural Total Nationwide 

2010 2014 2010 2014 2010 2014 2010 2014 2010 2014 
Open 
defecation 35% 32% 17% 15% 9% 8% 31% 29% 20% 18% 
Unimproved  29% 26% 23% 21% 18% 16% 30% 28% 24% 22% 

Improved 36% 42% 61% 64% 73% 76% 39% 42% 56% 60% 
Fraction of 
households 
with access 

Urban Rural Urban Rural   
poor non-poor   

2010 2014 2010 2014 2010 2014 2010 2014   

Open 
defecation 23% 20% 42% 39% 7% 6% 27% 26% 

  

Unimproved  22% 20% 32% 29% 17% 16% 30% 28%   

Improved 55% 60% 26% 32% 75% 78% 43% 46%   
a BPS (2010b) identifies: (1) open defecation (no latrine), (2) unimproved access (latrine, but no 

gooseneck or treatment) and (3) improved access (combination of latrine, gooseneck and 

treatment) 

 

 Results 5.4

5.4.1 Selected systems per location in GIS 

Off-site wastewater (Figure 5.2) and centralized 3R solid waste systems (Figure 5.3) are found 

around the bigger cities, like Jakarta, Surabaya, Bandung, Yogyakarta and Surakarta. In the 

yellow marked medium density urban areas (25-100 pp/ha), the current population will be served 

by on-site systems, but new developments by a medium-centralized system. Outside these urban 

areas on-site (light green), Community Based Systems (CBS) (dark green) wastewater systems 

and home composting (green) and decentralised 3R (light brown) solid waste systems are 

planned. Some areas in Indonesia are categorized as “forest /national parks/lakes” (no registered 

inhabitants) for which on-site systems are assumed for wastewater, whereas for solid waste 

these areas are indicated separately.  

A
 n

ew
 a

pp
ro

ac
h 

to
 n

at
io

nw
id

e 
sa

ni
ta

tio
n 

pl
an

ni
ng

 fo
r 

de
ve

lo
pi

ng
 c

ou
nt

rie
s 

13
5 

 

 

F
ig

u
re

 5
.2

 J
av

a 
pl

an
ne

d 
W

W
T

 d
is

tr
ib

ut
io

n 
(2

02
5)

. L
ig

ht
 g

re
en

 is
 o

n-
si

te
; d

ar
k 

gr
ee

n 
is

 C
om

m
un

ity
 B

as
ed

; o
ra

ng
e 

is
 m

ed
iu

m
-c

en
tr

al
iz

ed
 W

W
T

P
; r

ed
 

is
 c

en
tr

al
iz

ed
 W

W
T

P
; y

el
lo

w
 is

 o
n-

si
te

 fo
r 

cu
rr

en
t p

op
ul

at
io

n 
an

d 
m

ed
iu

m
-c

en
tr

al
iz

ed
 W

W
T

P
 fo

r 
ne

w
 d

ev
el

op
m

en
t; 

F
or

es
t/n

at
io

na
l p

ar
ks

/ l
ak

es
 a

pp
ly

 

on
-s

ite
 s

ys
te

m
s

O
n-

si
te

 S
ys

te
m

s 

C
om

m
un

ity
 B

as
ed

 S
ys

te
m

s 

M
ed

iu
m

 c
en

tr
al

iz
ed

 W
W

T
P

 

C
en

tr
al

iz
ed

 W
W

T
P

 

C
ur

re
nt

 p
op

ul
at

io
n 

on
-s

ite
; 

A
ll 

ne
w

 d
ev

el
op

m
en

ts
 s

er
ve

d 
w

ith
 M

ed
iu

m
-c

en
tr

al
iz

ed
 W

W
T

P
 

F
or

es
t/ 

N
at

io
na

l P
ar

ks
/L

ak
es

 

B
ou

nd
ar

y 
of

 K
ab

/K
ot

a 

B
ou

nd
ar

y 
of

 P
ro

vi
nc

e
 



Chapter 5 

134 
 

2010b) were aggregated in SPSS 17.0 using univariate data analysis. The overall access to 

WWT facilities at the end of 2014 (Table 5.7) was defined as 60% (BPS, 2013; Bappenas, 2014b; 

MoPW, 2014a; WHO & UNICEF, 2014). Provincial urban and rural MSW access data were 

collected from Ministry of Health (2010) and landfill and construction data from MoPW (2014). 

Data on existing sludge management facilities was obtained through the MoPW and the total 

number was corrected for malfunctioning plants (MoPW, 2012).  

 

Steps 6-8 were then processed as explained in Section 2, (iii) Data Processing. 

 

Table 5.7 Indonesian WWT access data for Urban, rural, poor and non-poor households 2010 

(SUSENAS) and 2014 (defined in this study) a 

Fraction of 
households 
with access 

Poor total Non-poor total Urban total Rural Total Nationwide 

2010 2014 2010 2014 2010 2014 2010 2014 2010 2014 
Open 
defecation 35% 32% 17% 15% 9% 8% 31% 29% 20% 18% 
Unimproved  29% 26% 23% 21% 18% 16% 30% 28% 24% 22% 

Improved 36% 42% 61% 64% 73% 76% 39% 42% 56% 60% 
Fraction of 
households 
with access 

Urban Rural Urban Rural   
poor non-poor   

2010 2014 2010 2014 2010 2014 2010 2014   

Open 
defecation 23% 20% 42% 39% 7% 6% 27% 26% 

  

Unimproved  22% 20% 32% 29% 17% 16% 30% 28%   

Improved 55% 60% 26% 32% 75% 78% 43% 46%   
a BPS (2010b) identifies: (1) open defecation (no latrine), (2) unimproved access (latrine, but no 

gooseneck or treatment) and (3) improved access (combination of latrine, gooseneck and 

treatment) 

 

 Results 5.4

5.4.1 Selected systems per location in GIS 

Off-site wastewater (Figure 5.2) and centralized 3R solid waste systems (Figure 5.3) are found 

around the bigger cities, like Jakarta, Surabaya, Bandung, Yogyakarta and Surakarta. In the 

yellow marked medium density urban areas (25-100 pp/ha), the current population will be served 

by on-site systems, but new developments by a medium-centralized system. Outside these urban 

areas on-site (light green), Community Based Systems (CBS) (dark green) wastewater systems 

and home composting (green) and decentralised 3R (light brown) solid waste systems are 

planned. Some areas in Indonesia are categorized as “forest /national parks/lakes” (no registered 

inhabitants) for which on-site systems are assumed for wastewater, whereas for solid waste 

these areas are indicated separately.  
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5.4.2 Numbers of people served and costs 

Planned development of access to WWT and MSW systems  

It is planned that by 2019 the majority of the population (230 million; 85%) is served by an on-site 

system, nearly 5 million people (2%) by CBS, 31 million people (12%) by a medium-centralized 

and 4.5 million (2%) by a centralized WWTP in Scenario 1 (Figure 5.4 A). In Scenario 2, planning 

shows 180 million people connected to an on-site system, 3 million to CBS, 19 million to a 

medium-centralized and 2.5 million to a centralized system, whilst 67 million (25%) remain 

without access (Figure 5.4 B). By 2035, planning shows over a third of the population would be 

connected to a medium-centralized or centralized system (Figure 5.4 A and B and Appendix 

Chapter 5, Section 5).  

 

  

Figure 5.4 A (Scenario 1; left) and B (Scenario 2; right) WWT access development with urban and 

rural on-site systems, CBS and MedCen (medium-centralized) and Cen (centralized) systems. In 

Section 5 of the Appendix Chapter 5 numeric values are presented 

 

Access to solid waste collection and treatment (including disposal) services for the two scenarios 

(Figure 5.5 A and B) show that rural collection is not planned to commence until 2020. By 2020 

collection and treatment is planned to serve 113 million people in Scenario 1 (Figure 5.5 A), and 

87 million people in Scenario 2 (Figure 5.5 B). After 2020 a higher rural treatment rate than 

collection is achieved as no collection system is planned for low density rural areas, but some 

households apply home composting to reduce 20% of landfilled waste. 

0

50

100

150

200

250

300

350

2015 2020 2025 2030 2035

M
il

li
o

n
 p

e
o

p
le

Scenario 1

On-site urban On-site rural
CBS MedCen
Cen Unimproved

0

50

100

150

200

250

300

350

2015 2020 2025 2030 2035

M
il

li
o

n
 p

e
o

p
le

Scenario 2

On-site urban On-site rural
CBS MedCen
Cen Unimproved



C
ha

pt
er

 5
 

13
6 

 

 

F
ig

u
re

 5
.3

 J
av

a 
pl

an
ne

d 
M

S
W

 s
ys

te
m

 d
is

tr
ib

ut
io

n 
in

 2
02

5;
 g

re
en

 is
 h

om
e 

co
m

po
st

in
g;

 li
gh

t b
ro

w
n 

(H
ig

h 
de

ns
ity

 r
ur

al
 a

re
as

) 
an

d 
pi

nk
 (

lo
w

 d
en

si
ty

 

ur
ba

n 
ar

ea
s)

 s
ho

w
 d

ec
en

tr
al

 3
R

 s
ta

tio
ns

; R
ed

 is
 h

ig
h 

de
ns

ity
 u

rb
an

 a
re

a 
fo

r 
ce

nt
ra

l 3
R

 fa
ci

lit
ie

s;
 F

or
es

t n
at

io
na

l p
ar

ks
 a

nd
 la

ke
s 

(g
re

y)
. 

A new approach to nationwide sanitation planning for developing countries 

137 
 

5.4.2 Numbers of people served and costs 

Planned development of access to WWT and MSW systems  

It is planned that by 2019 the majority of the population (230 million; 85%) is served by an on-site 

system, nearly 5 million people (2%) by CBS, 31 million people (12%) by a medium-centralized 

and 4.5 million (2%) by a centralized WWTP in Scenario 1 (Figure 5.4 A). In Scenario 2, planning 

shows 180 million people connected to an on-site system, 3 million to CBS, 19 million to a 

medium-centralized and 2.5 million to a centralized system, whilst 67 million (25%) remain 

without access (Figure 5.4 B). By 2035, planning shows over a third of the population would be 

connected to a medium-centralized or centralized system (Figure 5.4 A and B and Appendix 

Chapter 5, Section 5).  

 

  

Figure 5.4 A (Scenario 1; left) and B (Scenario 2; right) WWT access development with urban and 

rural on-site systems, CBS and MedCen (medium-centralized) and Cen (centralized) systems. In 

Section 5 of the Appendix Chapter 5 numeric values are presented 

 

Access to solid waste collection and treatment (including disposal) services for the two scenarios 

(Figure 5.5 A and B) show that rural collection is not planned to commence until 2020. By 2020 

collection and treatment is planned to serve 113 million people in Scenario 1 (Figure 5.5 A), and 

87 million people in Scenario 2 (Figure 5.5 B). After 2020 a higher rural treatment rate than 

collection is achieved as no collection system is planned for low density rural areas, but some 

households apply home composting to reduce 20% of landfilled waste. 
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Figure 5.5 A (Scenario 1; left) and B (Scenario 2; right) MSW access development for collection 

and treatment services. In Section 5 of the Appendix Chapter 5 numeric values are presented 

 

Until 2019, 2,360 and 1,590 medium-centralized systems are required in the two scenarios (Table 

5.8), whereas this number will increase to a planned 6,720 systems by 2034. The difference in 

centralized systems after five years is smaller (53 versus 48), because construction of centralized 

systems will start even if not all people are connected.  

In Scenario 1 (benefiting 103 million urban people, Figure 5.5 A) a total of 236 landfills (Table 5.8) 

are planned of which 105 are new while 131 already exist (MoPW, 2014b). In Scenario 2 an 

additional 45 landfills are needed to serve 87 million people. This corresponds with an average of 

about 1 million (Scenario 1) and nearly 2 million persons per landfill (Scenario 2). 

 

Table 5.8 Development of the cumulative number of WWT and MSW systems for Scenarios 1 

and 2 in 2019  

Scenario year WWT systems MSW 

On-site CBS IPLT a MedCen Cen Decentral 3R Central 3R landfill 

Scenario 1  
2019 

46,950,000 13,300 750 2,360 53 2,460 165 236 

Scenario 2 36,810,000 7,900 630 1,590 48 1,850 146 176 

100% access  2034 48,870,000 13,500 780 6,720 91 7,690 630 490 
a IPLT = (central) sludge management facility for treatment of on-site and CBS sludge. Presented 

number included the existing 88 identified functioning IPLT (MoPW, 2012) 

 

Planned WWT and MSW budget requirements 

Estimated investments for the 2019 Scenario 1 and 2 scenario are 25 and 13 billion US$ (Figure 

5.6) respectively. A total of 56 billion US$ is required until 2034 (Figure 5.6). For Scenario 1, 

nearly 20 billion US$ or 79% of all investments (2015-2019) are required for WWT facilities and 

nearly half of that amount (8.7 billion US$) is for medium-centralized WWTP investments. Nearly 
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80% of the investment in off-site systems relates to implementation of sewer systems (see 

Appendix Chapter 5, Section 3). Although in this study standardized per capita unit prices 

were used (Kerstens et al., 2015), sewer system prices depend on population densities, type 

of sewer systems, their materials and topography and may therefore differ in practice and 

should be confirmed in a design and costing phase (Loetscher & Keller, 2002; Petit-Boix et 

al., 2014). The technical and institutional operation and maintenance (O&M) budget requirements 

for solid waste is nearly 1.5 times higher than that for wastewater systems by 2019 and 1.8 times 

by 2034 (Figure 5.6 A and B). This higher solid waste O&M budget is the result of the solid waste 

collection costs that may contribute up to 70% of the operational costs (Kerstens et al., 2015). 

 

  

 

Figure 5.6 A (scenario 1; above) and B (scenario 2; below) WWT and MSW cumulative investments 

(primary Y-axis) and operational costs (OPEX) at the end of each indicated period (secondary Y-axis) 

 

WWT budget requirements for poor and non-poor households 

The calculated WWT budgets benefiting poor people in Scenario 1 and 2 are 4.4 and 2.0 billion 

US$ respectively in the period 2015-2019 (Figure 5.7). This corresponds to about 23% of the total 

WWT facilities investments, whereas 18% of the Indonesian population was poor (BPS, 2010b). 
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Figure 5.5 A (Scenario 1; left) and B (Scenario 2; right) MSW access development for collection 

and treatment services. In Section 5 of the Appendix Chapter 5 numeric values are presented 

 

Until 2019, 2,360 and 1,590 medium-centralized systems are required in the two scenarios (Table 

5.8), whereas this number will increase to a planned 6,720 systems by 2034. The difference in 

centralized systems after five years is smaller (53 versus 48), because construction of centralized 

systems will start even if not all people are connected.  

In Scenario 1 (benefiting 103 million urban people, Figure 5.5 A) a total of 236 landfills (Table 5.8) 

are planned of which 105 are new while 131 already exist (MoPW, 2014b). In Scenario 2 an 

additional 45 landfills are needed to serve 87 million people. This corresponds with an average of 

about 1 million (Scenario 1) and nearly 2 million persons per landfill (Scenario 2). 

 

Table 5.8 Development of the cumulative number of WWT and MSW systems for Scenarios 1 

and 2 in 2019  

Scenario year WWT systems MSW 

On-site CBS IPLT a MedCen Cen Decentral 3R Central 3R landfill 

Scenario 1  
2019 

46,950,000 13,300 750 2,360 53 2,460 165 236 

Scenario 2 36,810,000 7,900 630 1,590 48 1,850 146 176 

100% access  2034 48,870,000 13,500 780 6,720 91 7,690 630 490 
a IPLT = (central) sludge management facility for treatment of on-site and CBS sludge. Presented 

number included the existing 88 identified functioning IPLT (MoPW, 2012) 

 

Planned WWT and MSW budget requirements 

Estimated investments for the 2019 Scenario 1 and 2 scenario are 25 and 13 billion US$ (Figure 

5.6) respectively. A total of 56 billion US$ is required until 2034 (Figure 5.6). For Scenario 1, 

nearly 20 billion US$ or 79% of all investments (2015-2019) are required for WWT facilities and 

nearly half of that amount (8.7 billion US$) is for medium-centralized WWTP investments. Nearly 
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80% of the investment in off-site systems relates to implementation of sewer systems (see 

Appendix Chapter 5, Section 3). Although in this study standardized per capita unit prices 

were used (Kerstens et al., 2015), sewer system prices depend on population densities, type 

of sewer systems, their materials and topography and may therefore differ in practice and 

should be confirmed in a design and costing phase (Loetscher & Keller, 2002; Petit-Boix et 

al., 2014). The technical and institutional operation and maintenance (O&M) budget requirements 

for solid waste is nearly 1.5 times higher than that for wastewater systems by 2019 and 1.8 times 

by 2034 (Figure 5.6 A and B). This higher solid waste O&M budget is the result of the solid waste 

collection costs that may contribute up to 70% of the operational costs (Kerstens et al., 2015). 

 

  

 

Figure 5.6 A (scenario 1; above) and B (scenario 2; below) WWT and MSW cumulative investments 

(primary Y-axis) and operational costs (OPEX) at the end of each indicated period (secondary Y-axis) 

 

WWT budget requirements for poor and non-poor households 

The calculated WWT budgets benefiting poor people in Scenario 1 and 2 are 4.4 and 2.0 billion 

US$ respectively in the period 2015-2019 (Figure 5.7). This corresponds to about 23% of the total 

WWT facilities investments, whereas 18% of the Indonesian population was poor (BPS, 2010b). 
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The WWT investment related to rural poor households was 29% of the total rural WWT 

investment, whereas 26% of the rural population was poor. 

 

 

Figure 5.7 Calculated investments (2015-2019) benefiting poor and non-poor households per 

type of WWT system for Scenario 1 and 2 

 

5.4.3 Budget breakdown 

For Scenario 1 and 2 a contribution of 53% and 57%, respectively, from national government and 

18% and 21% from the local Government was determined (Table 5.9) using the division 

formulated in Table 5.5 and Table 5.6. The remaining part of the budget is expected to be paid by 

users directly and predominantly comprises investments for septic tanks.  
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Table 5.9 2015-2019 Scenario 1 and 2 budget division per level (national, local or users) and 

department and activity (PW-Public Works for infrastructure and design/ studies; MoH/HA 

Ministry of health and home affairs for Advocacy and campaigning) for Indonesia 

Level a 
Origin of funds  
(billion US$) 

Scenario 1 Scenario 2 
WWT MSW Total Fraction WWT MSW Total Fraction 

Total National  10.2 3.1 13.3 53% 5.3 2.0 7.3 57% 
Local 2.3 2.2 4.6 18% 1.2 1.4 2.6 21% 
users  7.2 0.1 7.3 29% 2.8 0.1 2.8 22% 
total  19.8 5.4 25.2 100% 9.3 3.5 12.8 100% 

National  Infra (PW)  8.3 2.8 11.1 84% 4.4 1.8 6.3 86% 
Design/studies (PW)  0.4 0.2 0.6 5% 0.2 0.1 0.4 5% 
Adv. Ca. (MoH/HA)  1.5 0.1 1.6 12% 0.6 0.1 0.7 9% 
Total  10.2 3.1 13.3 100% 5.3 2.0 7.3 100% 

Local  Infra (PW)  1.7 0.5 2.1 46% 0.9 0.3 1.2 44% 
Design/studies (PW)  0.0 1.7 1.7 37% 0.0 1.1 1.1 42% 
Adv. Ca (MoH/HA)  0.7 0.1 0.8 17% 0.3 0.1 0.4 14% 
total  2.3 2.2 4.6 100% 1.2 1.4 2.6 100% 

a The sum of the National and Local budgets in the first level (Total) are split up in the second 

level (National) and third level (Local) 

 

 Discussion 5.5

5.5.1 Advantages and novelty of the proposed framework 

The lack of an existing functional planning tool resulted in the development of the presented 

framework that enables nationwide planning in the wastewater and solid waste sector. The output 

directly links national policies with geographical information, number of facilities and budget 

required per responsible implementing institution. In contrast to most existing frameworks, the 

presented framework is inclusive of all population groups (urban, rural, poor and non-poor) in a 

country. It further, provides politicians and planners with meaningful insight into the viability of 

political ambitions and allows these decision-makers to anticipate the numerous consequences of 

their choices which are elaborated in the following paragraphs.  

First, the GIS outputs (Figure 5.2 and Figure 5.3) show where centralized wastewater and solid 

waste facilities coincide and allows for combined treatment of wastewater and solid waste flows in 

one central facility. This may have favourable consequences in terms of energy requirements, 

removal efficiencies and quality of compost produced (Koné et al., 2007; Zitomer et al., 2008; 

Kerstens et al., 2015). Other benefits of a combined infrastructure development can be found in 

joint management and sharing of facilities (offices, access roads), as was shown in Banda Aceh, 

where organic solid waste digestion, composting and landfilling are developed at the site of the 

septage sludge processing facility (USDP, 2015). In addition, locations were identified where 

construction of sewer systems can be integrated with the overall development of the area 

resulting in costs saving. 
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The WWT investment related to rural poor households was 29% of the total rural WWT 

investment, whereas 26% of the rural population was poor. 

 

 

Figure 5.7 Calculated investments (2015-2019) benefiting poor and non-poor households per 

type of WWT system for Scenario 1 and 2 

 

5.4.3 Budget breakdown 

For Scenario 1 and 2 a contribution of 53% and 57%, respectively, from national government and 

18% and 21% from the local Government was determined (Table 5.9) using the division 

formulated in Table 5.5 and Table 5.6. The remaining part of the budget is expected to be paid by 

users directly and predominantly comprises investments for septic tanks.  
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Table 5.9 2015-2019 Scenario 1 and 2 budget division per level (national, local or users) and 

department and activity (PW-Public Works for infrastructure and design/ studies; MoH/HA 

Ministry of health and home affairs for Advocacy and campaigning) for Indonesia 

Level a 
Origin of funds  
(billion US$) 

Scenario 1 Scenario 2 
WWT MSW Total Fraction WWT MSW Total Fraction 

Total National  10.2 3.1 13.3 53% 5.3 2.0 7.3 57% 
Local 2.3 2.2 4.6 18% 1.2 1.4 2.6 21% 
users  7.2 0.1 7.3 29% 2.8 0.1 2.8 22% 
total  19.8 5.4 25.2 100% 9.3 3.5 12.8 100% 

National  Infra (PW)  8.3 2.8 11.1 84% 4.4 1.8 6.3 86% 
Design/studies (PW)  0.4 0.2 0.6 5% 0.2 0.1 0.4 5% 
Adv. Ca. (MoH/HA)  1.5 0.1 1.6 12% 0.6 0.1 0.7 9% 
Total  10.2 3.1 13.3 100% 5.3 2.0 7.3 100% 

Local  Infra (PW)  1.7 0.5 2.1 46% 0.9 0.3 1.2 44% 
Design/studies (PW)  0.0 1.7 1.7 37% 0.0 1.1 1.1 42% 
Adv. Ca (MoH/HA)  0.7 0.1 0.8 17% 0.3 0.1 0.4 14% 
total  2.3 2.2 4.6 100% 1.2 1.4 2.6 100% 

a The sum of the National and Local budgets in the first level (Total) are split up in the second 

level (National) and third level (Local) 

 

 Discussion 5.5

5.5.1 Advantages and novelty of the proposed framework 
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construction of sewer systems can be integrated with the overall development of the area 

resulting in costs saving. 
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Second, the impact of policy choices on applied urban and rural systems was demonstrated. The 

result of prioritizing access to wastewater facilities before improving existing systems is an initial 

increase in the number of households having access to on-site systems. After 2020 the number 

of on-site systems decreases, as people living in high density urban areas with on-site access 

switched to off-site systems. With time progressing, the number of people planned to be 

connected to a centralized or medium-centralized system increased, because of (1) urban 

population growth, and (2) the switch from urban on-site users to off-site users. Comparing 

Scenario 1 and 2 shows that lower targets correspond with lower required budgets and vice 

versa. For example, with lower budget provision for rural sanitation development, less people or 

villages can be reached. 

Third, the impact of prioritizing development of landfills on city size, serving a small fraction of the 

population (Scenario 2) results in an almost double total landfill capacity when compared to 

Scenario 1. The planned number of facilities (Table 5.8) and their location also allows the planner 

to anticipate the large scale implementations and land requirements. Land availability has been 

identified as a barrier in the development of large infrastructure as well as smaller infrastructure in 

urban areas (Aprilia et al., 2012; ADB, 2013a), and space saving has been a driver for the MSW 

3R program (MoPW, 2014a). Similar large developments of medium-centralized systems took 

place in Malaysia, where between 2000 and 2008 about 300 WWTPs were built yearly (Haniffa et 

al., 2009). This large implementation of medium-centralized WTTP in Asian urban areas has 

been attributed to (1) potential lower costs than centralized systems, (2) possibilities for phased 

development and (3) potential for resource recovery (Starkl et al., 2012; Lapid, 2012). Malaysian 

developments showed the need for a nationwide investment strategy, reservation of land, 

standardization of sewer and wastewater facilities and structured training & certification programs 

(Haniffa et al., 2009).  

Fourth, the presented framework enables the policy maker to determine required investments for 

poor households and to identify additional support needs. The rural poor have least access to 

wastewater facilities (Table 5.7). Large variation in access between poor and non-poor 

populations in Indonesia were further demonstrated by WSP (2014). Rural sanitation 

development in Indonesia follows the community-led total sanitation (CLTS) approach (Mehta & 

Movik, 2010; Mara et al., 2010). Since the approach largely relies on private (household) 

investments, allocation of an additional portion of the national budget to support rural wastewater 

access developments should be considered, especially given that this will benefit the most 

disadvantaged part of the population. Such a government supply driven approach combined with 

a demand driven CLTS approach has been successfully applied in Lao (ODI, 2011).  

Fifth, the output of this framework provides guidance on required budget increases per level 

(national or local) of government and department. The 2014 national government sanitation 

budget in Indonesia was 1.5 billion US$ (USDP, 2014). The planned national and local budgets 

(Table 5.9) for Scenario 1 requires nearly 18 billion US$ over five years or 3.6 billion US$/year 
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and corresponds with a factor 2.4 increase. The local government budget in 2014 was nearly 0.9 

billion US$ (USDP, 2014) and for 2015-2019 remains at the same level, whereas the national 

budget requires a much higher increase from about 0.5 to 2.7 billion US$ per year (factor 5.4 

increase). The required implementation and operation sanitation budget may be compared with 

the socio-economic impacts that will accrue to society, such as improved health conditions, 

reduced travel and waiting time for personal hygiene and increased property values. If these 

benefits exceed the costs of implementation, this can feed into advocacy efforts to further raise 

funding from governments, households and the private sector (Hutton, 2013). 

Sixth, the framework helps to identify the budget to create an “enabling environment” to 

accelerate access to wastewater and solid waste facilities. Studies have recommended 

strengthening (1) policy frameworks and enforcements, (2) institutional arrangements and 

capacities, (3) creating demand and accountability and (4) promotion of public debate and 

communication (ADB, 2013a; Kearton et al., 2013; WSP, 2013b, 2014; USDP, 2014; Winters et 

al., 2014). Thus far, off-site systems in Indonesia have been implemented with limited success, 

especially with respect to connecting households (USAID 2006; Whittington et al. 2000; Kearton 

et al. 2013). By subsidizing household connections (see Table 5.5) an increase in connections 

may be facilitated. The required (national + local) budget reservations for campaigning and 

advocacy, amounted to 2.4 billion US$ for five years (Table 5.9) corresponding to 10% of the total 

sanitation budget. This is 5 times the current communication health budget (Bappenas, 2014b). A 

current challenge in Indonesia is underperforming septage sludge management, which has been 

attributed to the lack of demand for services from households, poor technical and financial 

management and a lack of dissemination capacity within the national government (WSP, 2013b). 

The latter was addressed in the current framework by including investments and operational 

costs of septage management, including collection, as well as advocacy and campaigning costs. 

Finally, the framework supports policy makers in the determination of tariffs for wastewater and 

solid waste services. Operation and maintenance budgets are now paid by local governments, 

but eventually should be paid by users themselves through fees. The willingness to pay for solid 

waste services has been established in Indonesia – more so than for wastewater services (WSP, 

2011). However, resistance to pay for both services can still be found (Winters et al., 2014) and 

underlines the need for campaigning and advocacy. 

 

5.5.2 Linking the framework to current sanitation practice 

Besides the absence of a functional sanitation planning tool, other barriers in sanitation 

development in developing countries are: inadequate sanitation regulatory frameworks and cross-

sector policy coordination, rapid urbanization, low community awareness on the importance of 

sanitation, land availability, limited local capacity to assure operation of facilities, and inadequate 

investments in sanitation systems (ADB, 2013a; Kearton et al., 2013).  
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sector policy coordination, rapid urbanization, low community awareness on the importance of 

sanitation, land availability, limited local capacity to assure operation of facilities, and inadequate 
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Except for regulatory barriers, the presented framework may strengthen the above listed 

shortcomings in terms of planning investment, division of responsibility and budget reservations 

for operation and maintenance. However, in the elaboration of a detailed plan (e.g. at city or 

district level), other factors should be considered such as capacity of local institutions, land 

availability, especially for landfill developments, topography, ground water levels, the skill level of 

operators, specific demands by a municipality, requirements from any foreign donors and desired 

level of household participation (Loetscher & Keller, 2002; ADB, 2013b).   

Because the framework was developed using information from the smallest available 

administrative units, the presented nationwide results can also be broken down to lower levels of 

governments, such as cities and provinces. In Section 6 of the Appendix Chapter 5, three 

examples of a “translation” of national planning to local levels are presented for WWT and MSW 

budgets, systems and percentage of investments contributing to poor households for the period 

2015-2019. In Indonesia, cities must prepare a City Sanitation Strategy to be eligible for national 

funding. Thus, a 5-year plan, using a similar residential area-based sanitation system selection as 

presented in the framework, is prepared to formulate budgets and specify required institutional 

and advocacy and campaigning activities (Kearton et al., 2013; Parkinson et al., 2014; USDP, 

2014). An example of such a CSS for the city of Tegal in Central Java is presented in Appendix 

Chapter 5, Section 7. This simultaneous development of a top-down supply and bottom-up 

demand for sanitation funding links the Indonesian central government’s policy making and 

oversight role with the local governments’ role for implementation (ADB, 2013a). 

The framework developed in this study can be applied in other developing countries ,because 

most of the required input data is readily available through on-line databases (DSM, 2014; NBSC, 

2014), and UN (United Nations) reports (UNpopulation, 2012; WHO & UNICEF, 2014).  

 

5.5.3 Outlook to further developments 

In presented application of this framework we focused on technologies that fit the current 

Indonesian context. However, in the future or for countries at a different development stage, other 

technologies may be feasible and their implementation can be accommodated in the framework 

provided their feasibility is linked to residential features and the investment and operational costs. 

Thus, the application of more advanced household level or community level WWT systems, 

including (1) nutrient removal as applied in South America or Japan (Tsuzuki, 2006; Aiyuk et al., 

2006), (2) separate collection and treatment of grey water (Chen & Wang, 2009; Kerstens et al., 

2009) or (3) replacement of conventional septic tanks by better performing UASB septic tanks 

(Kujawa-Roeleveld et al., 2005) can be included.  

New sanitation systems that aim to recover resources following source separation (Larsen et al., 

2009; Zeeman & Kujawa-Roeleveld, 2011; Tervahauta et al., 2013) were excluded in this study, 

as required separation of wastewater streams at household level and corresponding dual 

transport lines were considered too “high tech” for Indonesia, but can be fitted into this framework 
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as well. Spiller et al. (2015) proposes implementation of technologies and infrastructure which are 

flexible, adaptive and robust in order to ensure the sustainability of these systems under dynamic 

conditions. These may comprise modular or prefabricated systems to cope with changing 

capacities or an addition of a post treatment step for nutrient removal or disinfection to meet 

future effluent requirements. Alternatively these may involve the use of utility tunnels in high 

density urban areas that allow for sewer system expansions or modification in a later stage. 

Integration of these flexible technologies in the framework should be further explored. 

To link planning to a sanitation impact (e.g. improved surface water quality), the framework and 

its outputs may be combined with pollutant removal efficiencies, resource recovery potential and 

costs of WWT or MSW systems (Kerstens et al., 2015). As an example, cumulative discharged 

BOD, TN and TP loads on a national scale for Indonesia (2020) and on provincial scale for 

Jakarta (2035), using on-site systems, CBS and different four off-site technologies are compared 

as possible technical interventions. Figure 5.8 shows that on a national scale the impact on 

reduced discharge of BOD, N & P of a nutrient removing system like a Conventional Activated 

Sludge with and without enhanced N&P removal (CAS and CAS_N&P) or the Aerobic Granular 

Sludge (AGS) compared to a low cost anaerobic filter (An. Fil.) is limited (approximately 10% 

maximum) for the 2020 planned implementation. This is because only less than 15% (see Figure 

5.4 A) of the population in 2020 is planned to be connected to an off-site system and the 

remaining part to septic tanks with limited N&P removal. This may suggest that the incremental 

improvement to the environment does not outweigh the higher cost of nutrient removing systems. 

However, in a heavily urbanized area where by 2035 60% of the population is planned to be 

connected to an off-site system, such as Jakarta province, the discharged N&P is reduced by 

over 40% using nutrient removing systems. This insight can affect the choice for a WWT system 

to apply in heavily urbanized areas. The framework thus fits in the need for a planning and design 

paradigm that can resolve trade-offs across spatial scales, temporal scales, and sustainability 

dimensions (Guest et al., 2009). 
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Figure 5.8 Comparison between on-site, CBS and indicated off-site technologies (Anaerobic 

filters, Conventional Activated Sludge (CAS), CAS with enhanced N, P removal (CAS_N,P) and 

Aerobic Granular Sludge (AGS)) on discharged pollutants (BOD, TN, TP) for Indonesia (IND) in 

2020 and Jakarta Province (JKT) in 2035 following Scenario 1  

 

 Conclusions 5.6

A nationwide wastewater and solid waste planning framework was developed that links national 

policies to the required budget and facilities for different groups of beneficiaries (urban/rural and 

poor/non-poor) and for different geographical locations, whilst only using readily available and 

retrievable data. 

Planned infrastructure was visualized in GIS and supports planners in prioritizing regional 

implementation. It further allows for identification of potential cost effective planning and 

implementation by combination of wastewater and solid waste treatment facilities or integration of 

sewer developments in anticipated residential area developments. 

Application of the tool showed how policy choices (targets, prioritization) impact the number of 

facilities and budgets required. These insights can help in the formulation of additional programs 

to provide additional attention to poor households. 

The framework was applied for Indonesia and outputs were adopted in the “National Medium 

Term Development Plan”. Required budget to reach universal access by 2019 was assessed as 

25 billion US$ in 5 years. The contribution of the national budget required a more than fivefold 

increase compared to current budgets. The budget for campaigning and advocacy to strengthen 

the enabling environment was determined to be 10% of the total budget. 

The framework can be used and further extended to resolve trade-offs across spatial scales, 

temporal scales, and sustainability dimensions. 
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Figure 5.8 Comparison between on-site, CBS and indicated off-site technologies (Anaerobic 

filters, Conventional Activated Sludge (CAS), CAS with enhanced N, P removal (CAS_N,P) and 

Aerobic Granular Sludge (AGS)) on discharged pollutants (BOD, TN, TP) for Indonesia (IND) in 

2020 and Jakarta Province (JKT) in 2035 following Scenario 1  

 

 Conclusions 5.6

A nationwide wastewater and solid waste planning framework was developed that links national 

policies to the required budget and facilities for different groups of beneficiaries (urban/rural and 

poor/non-poor) and for different geographical locations, whilst only using readily available and 

retrievable data. 

Planned infrastructure was visualized in GIS and supports planners in prioritizing regional 

implementation. It further allows for identification of potential cost effective planning and 

implementation by combination of wastewater and solid waste treatment facilities or integration of 

sewer developments in anticipated residential area developments. 

Application of the tool showed how policy choices (targets, prioritization) impact the number of 

facilities and budgets required. These insights can help in the formulation of additional programs 

to provide additional attention to poor households. 

The framework was applied for Indonesia and outputs were adopted in the “National Medium 

Term Development Plan”. Required budget to reach universal access by 2019 was assessed as 

25 billion US$ in 5 years. The contribution of the national budget required a more than fivefold 

increase compared to current budgets. The budget for campaigning and advocacy to strengthen 

the enabling environment was determined to be 10% of the total budget. 

The framework can be used and further extended to resolve trade-offs across spatial scales, 

temporal scales, and sustainability dimensions. 
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Section 1 Description of wastewater systems and selection criteria 

System description 

In paragraph 5.2 (Table 5.2) of Chapter 5 reference was made to three types of wastewater 

systems that are distinguished in the framework. These will now be further elaborated:  

• On-site systems do not require a sewer system and typically serve one household only. In 

this framework the applied on-site system is a septic tank, which is also the minimum 

treatment requirement In Indonesia (BPS, 2014); 

• A Community based system (CBS) serves typically 50-100 households and in this study an 

average of 80 households was assumed. Wastewater is collected using a simplified sewer 

system (Mara & Broome, 2008). Treatment typically occurs in an anaerobic baffled reactor + 

anaerobic filter (Ulrich et al., 2009);  

• A medium-centralized off-site system serves up to 5,000 households, whereas a centralized 

system may serve up to 50,000 households in which wastewater is collected using a 

simplified or (pumped) piped-collection system (Kerstens et al., 2015). The number of 

households connected to a medium-centralized or centralized WWTP was determined based 

on the city size (Table 5.3 of Chapter 5). 

The described systems and their treatment and financial performances in the Indonesian context 

were analyzed by Kerstens et al. (2015). Septic tanks have the lowest total lifecycle costs (TLC), 

but show only a limited pathogen removal (~1 log), and low COD, BOD, nitrogen (N) and 

phosphorus (P) removal. The CBS systems have higher COD, BOD and pathogen removal than 

the septic tank, but limited N, P removal and their TLC are about 1.7 times higher than septic 

tanks (Kerstens et al., 2015). Applicable treatment technologies for off-site systems may range 

from anaerobic filters (similar performance as CBS) to membrane bioreactors (high removal 

efficiencies). Off-site systems have TLC of averagely 2.4 and 3.9 times the TLC of CBS and 

septic tanks, respectively (Kerstens et al., 2015).  

 

System selection 

Evidence suggests that there is a causal link between population density and urban functions in 

the vicinity of e.g. cinemas, shopping malls or Commercial Business Districts and the occurrence 

of diarrhoea (Lasut et al., 2008; Gondhalekar et al., 2013). Consequently, the system of choice 

differs per type of residential area. In this framework, off-site options are only considered in more 

densely populated areas, when on-site treatment could entail direct risks to public health, or when 

the risk exists of fecal contamination or eutrophication (UNEP (United Nations Environment 

Programme), 2004). The selection of type of off-site treatment technologies depends, among 
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others, on applicable effluent regulations and land availability and is usually determined in a 

location specific feasibility study (MoPW, 2013a).  

In rural areas or lower density urban areas (<100 people/ha) the minimum standard (on-site 

systems) with the lowest costs is recommended. In areas with increasing population densities, 

like peri-urban areas or higher density rural areas, CBS are proposed, because  these show 

better performance than on-site systems but still have considerable lower costs than off-site 

systems (Kerstens et al., 2015). Reference is made to Table 2 of Chapter 5 for criteria. 

Both septic tanks and CBS require regular emptying after which the sludge is treated in a central 

sludge processing facility. Consequently, in the planning of septic tanks and CBS the 

development of sludge processing facilities should be included as well. However, sludge 

collection in remote rural areas (for Indonesia < 25 pp/ha was applied) may not be feasible due to 

long transportation routes (Bappenas, 2014) and no facilities are planned for these areas.  

 

Section 2 Description of Municipal Solid Waste (MSW) systems 

Municipal Solid Waste (MSW) system selection is based on residential features (Table 5.2 of 

Chapter 5) and distinguishes conventional system and systems applying Reduction, Reuse, 

Recycling (3R) of waste. In low density rural areas only promotion of home composting is 

considered (Mehta & Movik, 2010), whereas for higher density populated rural and urban areas 

also digestion of organic waste and recovery of plastic and paper is considered. 

In high density areas, a central 3R facility (outside the city) is more financially attractive than 

(multiple) decentral stations (Kerstens et al., 2015). Large area requirements of decentral 3R 

stations in land-scarce high density urban areas result in high investments and a consequential 

barrier in the development of these systems (Aprilia et al., 2012; Kerstens et al., 2015). In 

addition, in high density urban areas there is less direct demand for recoverable products (e.g. 

compost), because of the absence of agricultural activities (BPS, 2010). In medium density areas 

with lower land costs and a potential direct sale of recovered resources to nearby farmers, 

decentral 3R facilities are proposed (Kerstens et al., 2015). Compost is especially demanded by 

the horticultural sector that is often located nearby urban areas (Aye & Widjaya, 2006; 

Indraprahasta, 2013). 

The division of households that apply a conventional or a 3R-based MSW system may have been 

formulated by the government (Bappenas, 2011) or, alternatively, should to be defined by the 

planner. In case a 30% target is defined and a low density urban area is considered, the 

framework plans that 30% of the population is served by a decentralized 3R station and 70% by a 

conventional system.  
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Section 3 Basis for wastewater and solid waste costing  

In paragraph 5.2 of Chapter 5 the need for cost determination was introduced. Table A5.1 and 

Table A5.2 show the applied investment and operational costs of WWT and MSW facilities. 

Presented prices in Table A5.1 and Table A5.2 reflect Jakarta prices. For each province these 

were adjusted using a price correction in which variation compared to the Jakarta prices were 

reduced by 50% (TTPS, 2009). 

The investment costs include “hardware” (costs for installations, vehicles etc.), “software” (costs 

for studies, designs, socialization, health campaigning and advocacy) and land costs. Operational 

costs comprise technical (e.g. energy, sludge, chemicals, maintenance) and institutional costs 

(management of facilities, operators and administrative tasks). In case resource recovery is 

applied, benefits from sale of recovered products are deducted from the operational costs 

following the values and assumptions given by Kerstens et al. (2015). 

Costs for septic tanks (Table A5.1) include costs for sludge management facilities that were 

based on the guidelines of the Ministry of Public Works and include collection vehicle costs 

(MoPW, 2013a). Prices have been further checked with representatives of IUWASH (Indonesia 

Urban Water, Sanitation and Hygiene Project) and WSP (Water and Sanitation Program of the 

World Bank) that studied septage management in the Indonesian context in depth (WSP, 2013). 

Off-site system costs were based on a system distribution discussed with Bappenas (2014b) and 

Ministry of Public Works (MoPW) (2014a) . A sludge processing facility serves a maximum of 

200,000 households. In case more households need to be served, multiple facilities are planned 

to be constructed. 

Off-site system investment costs consider sewer costs, land costs and treatment costs. In the 

cost definition of off-site sewer systems the planner should make a distinction between existing 

and new “green field” residential area developments. In a green field situation, sewer systems 

can be integrated with other developments, like electricity and water supply and road and 

pedestrian path development and therefore require only about half of the costs compared to an 

existing area (Rioned, 2007). Hence, a 50% cost reduction for off-site systems sewer systems in 

new urban development compared to existing urban areas is applied.  
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Table A5.1 Applied investment and operational expenditures (OPEX) per on-site, CBS, medium-

centralized and centralized WWT system for existing residential areas and new area to be 

developed in the future a, b 

Parameter 
Unit on-

site CBS c  
Medium-centralized d Centralized e 

Existing 
area  

New 
development 

Existing 
area 

New 
development 

Investments Sewer 

US$/cap 

0 114 229 115 324 162 

WWTP 100 74 113 113 92 92 

Total 100 188 342 228 416 254 
OPEX US$/cap/year 2.4 3.0 8.0 8.0 6.7 6.7 

a Applied investment and operational costs are rounded numbers and based on Kerstens et al. 

(2015); b Residential features refer to the projected 2025 (mid- term) data of each area; c The 

applied CBS sewer system is a simple and shallow one (Mara & Broome, 2008) and no price 

difference between existing and new development areas was applied; d Applied distribution is 

40% anaerobic filters, 30% conventional activated sludge (CAS), 30% CAS with enhanced N, P 

removal; e 10% Anaerobic filter, 30% CAS, 30% CAS N&P, 30% Aerobic Granular Sludge 

(Kerstens et al., 2015)  

Applied investments & net Operational Expenditures (OPEX) for MSW systems are shown in 
Table A5.2. 
 
Table A5.2 Applied investments & net Operational Expenditures (OPEX) for MSW systems a,b   

Parameter Unit 
Conventional 
(only landfill) 

3R 
home 3R decentral Centralized 3R 

Rural Urban Ruralc Rural Urban Compost Digest & Compost 

Investments US$/cap 45.2 72.9 2.6 73.3 95.3 57.0 69.8 

Net OPEX US$/cap/year 8.7 10.2 -1.3 4.6 5.1 5.9 5.2 
a Applied investment and (net) OPEX are based on Kerstens et al. (2015). 
b Transport of compost from central 3R facilities to rural areas is calculated separately based on 

average distances (MoPW, 2011) and transport costs of 0.70 US$/km after correction for 

increased fuel prices and wages since of the 2009 (0.40 US$/km) costs (Suletra et al., 2009); 
c the price of a home composter (serving 5 people) was 13 US$ (MoPW, 2013b) 

 
Transport costs 

Transport costs of recovered resources products (compost) between urban and rural areas were 

determined in a model using land use data (Figure A5.1). The model assumed a centric 

municipality with the urban residential areas in the centre surrounded by the non-residential urban 

areas. These latter areas can potentially be used as locations for urban agriculture development 

(Indraprahasta, 2013). A rural zone was assumed that surrounded the urban areas. Rural 

residential centres were assumed to be located in the centre of the rural zone and surrounded by 

non-residential areas (agricultural land). Thus transport of compost produced from solid waste in 

urban centres to the outer border of urban agricultural land (short arrow) is included in the 

operational costs. The same model was used to determine the costs for recovered struvite 
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transport from the urban residential areas to the middle of the rural area (long arrow). The 

transportation costs were set as 0.70 US$/km (Suletra et al., 2009) after correction for increased 

fuel prices and wages since 2009. 

 

 

Figure A5.1 Applied transportation model 

 

Section 4 Applied population and area forecasts data 

In Section 3, step 4 of Chapter 5, we refer to applied population growth data and residential are 

faction of the total administrative units. The population forecast multipliers per indicated time 

interval are presented in Table A5.3. 
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Table A5.3 Applied population forecast multipliers per Province (BPS, 2013) to be multiplied by 
the 2010 population size of each administrative unit 

Province 
number 
BPS code 

2015 2020 2025 2030 2035 
Abbreviated 
Province 
name  

urban rural urban rural urban rural urban rural urban rural 

 

11 Aceh 1.19 1.08 1.41 1.14 1.66 1.17 1.92 1.17 2.20 1.16 

12 SumUt 1.14 1.01 1.29 0.98 1.43 0.93 1.57 0.86 1.70 0.78 

13 SumBar 1.22 0.98 1.45 0.93 1.67 0.88 1.88 0.82 2.08 0.75 

14 Riau 1.16 1.14 1.32 1.27 1.48 1.39 1.64 1.51 1.80 1.62 

15 Jambi 1.14 1.08 1.29 1.15 1.44 1.20 1.59 1.23 1.73 1.25 

16 Sumsel 1.10 1.07 1.20 1.12 1.29 1.16 1.37 1.19 1.44 1.20 

17 Bengkulu 1.10 1.09 1.22 1.16 1.34 1.21 1.45 1.26 1.56 1.29 

18 Lampung 1.17 1.03 1.36 1.04 1.55 1.02 1.76 0.99 1.97 0.93 

19 BaBel 1.19 1.06 1.40 1.08 1.63 1.08 1.87 1.06 2.13 1.01 

21 KepRi 1.18 1.17 1.34 1.30 1.51 1.41 1.68 1.49 1.87 1.56 

31 DKI 1.06 0.00 1.11 0.00 1.15 0.00 1.18 0.00 1.19 0.00 

32 JaBar 1.24 0.81 1.43 0.68 1.60 0.57 1.74 0.48 1.86 0.39 

33 JaTeng 1.20 0.93 1.31 0.91 1.43 0.88 1.55 0.83 1.66 0.78 

34 Yogya 1.17 0.88 1.30 0.80 1.43 0.72 1.54 0.64 1.65 0.56 

35 JaTim 1.23 0.90 1.36 0.85 1.48 0.79 1.60 0.73 1.70 0.65 

36 Banten 1.15 1.08 1.30 1.11 1.49 1.05 1.69 0.90 1.93 0.68 

51 Bali 1.16 0.93 1.31 0.84 1.45 0.76 1.58 0.68 1.70 0.60 

52 NTB 1.14 1.02 1.32 1.01 1.50 0.97 1.69 0.91 1.88 0.83 

53 NTT 1.21 1.06 1.48 1.11 1.79 1.15 2.16 1.18 2.59 1.18 

61 Kalbar 1.18 1.05 1.38 1.07 1.61 1.07 1.85 1.05 2.10 1.00 

62 Kalteng 1.23 1.07 1.50 1.13 1.81 1.15 2.14 1.15 2.50 1.12 

63 Kalsel 1.18 1.04 1.36 1.06 1.56 1.05 1.76 1.02 1.96 0.96 

64 Kaltim 1.21 1.04 1.42 1.06 1.63 1.07 1.85 1.04 2.07 0.99 

71 Sulut 1.16 0.98 1.34 0.93 1.50 0.87 1.67 0.79 1.82 0.69 

72 Sulteng 1.22 1.05 1.47 1.08 1.76 1.09 2.08 1.08 2.45 1.04 

73 Sulsel 1.18 0.99 1.37 0.96 1.57 0.91 1.78 0.84 1.97 0.77 

74 Sultra 1.29 1.06 1.60 1.10 1.96 1.12 2.34 1.12 2.77 1.10 

75 Gorontalo 1.26 1.00 1.53 0.99 1.81 0.96 2.09 0.93 2.38 0.86 

76 Sulbar 1.12 1.10 1.24 1.21 1.35 1.31 1.46 1.41 1.56 1.51 

81 Maluku 1.17 1.06 1.30 1.13 1.44 1.20 1.58 1.26 1.72 1.31 

82 
Maluku 
Utara 1.24 1.08 1.40 1.18 1.56 1.27 1.72 1.35 1.89 1.43 

91 
Papua 
Barat 1.23 1.11 1.50 1.20 1.81 1.28 2.15 1.33 2.54 1.36 

94 Papua 1.23 1.07 1.47 1.12 1.74 1.16 2.04 1.17 2.37 1.15 

Indonesia 1.19 0.97 1.34 0.96 1.49 0.93 1.64 0.88 1.78 0.83 
 

The average residential fraction of the total administrative area (e.g. corrected for agricultural use 

age) for Java island was based on the Java Spatial Model (MoPW, 2011) and all other islands are 

shown the determination of residential fractions per urban or rural and city or regency levels are 

shown in Table A5.4 The JSM shows the fraction of total land area used for residential purposes 
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in the period 2015-2035 for urban and rural areas. These fractions were extrapolated to other 

Indonesian regions, applying a correction factor of 0.75 to compensate for these less densely 

populated areas. 

 

Table A5.4 Ratio residential area/total area for four types of residential features (urban and rural 

and city (kota) and regencies (kabupaten). The upper part of the Table shows the Java values 

based on Java Spatial Model (JSM); the lower part of the Table shows the values for other 

islands applying the correction factor of 0.75 

Region Urban or rural  

Administrative type 

Urban or rural areas 

urban rural 

Java (based on JSM) City (Kota) 0.84 0.17 
Regency (Kabupaten) 0.37 0.16 

Non-Java City (Kota) 0.63 0.13 
Regency (Kabupaten) 0.28 0.12 
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Table A5.3 Applied population forecast multipliers per Province (BPS, 2013) to be multiplied by 
the 2010 population size of each administrative unit 

Province 
number 
BPS code 

2015 2020 2025 2030 2035 
Abbreviated 
Province 
name  

urban rural urban rural urban rural urban rural urban rural 

 

11 Aceh 1.19 1.08 1.41 1.14 1.66 1.17 1.92 1.17 2.20 1.16 

12 SumUt 1.14 1.01 1.29 0.98 1.43 0.93 1.57 0.86 1.70 0.78 

13 SumBar 1.22 0.98 1.45 0.93 1.67 0.88 1.88 0.82 2.08 0.75 

14 Riau 1.16 1.14 1.32 1.27 1.48 1.39 1.64 1.51 1.80 1.62 

15 Jambi 1.14 1.08 1.29 1.15 1.44 1.20 1.59 1.23 1.73 1.25 

16 Sumsel 1.10 1.07 1.20 1.12 1.29 1.16 1.37 1.19 1.44 1.20 

17 Bengkulu 1.10 1.09 1.22 1.16 1.34 1.21 1.45 1.26 1.56 1.29 

18 Lampung 1.17 1.03 1.36 1.04 1.55 1.02 1.76 0.99 1.97 0.93 

19 BaBel 1.19 1.06 1.40 1.08 1.63 1.08 1.87 1.06 2.13 1.01 

21 KepRi 1.18 1.17 1.34 1.30 1.51 1.41 1.68 1.49 1.87 1.56 

31 DKI 1.06 0.00 1.11 0.00 1.15 0.00 1.18 0.00 1.19 0.00 

32 JaBar 1.24 0.81 1.43 0.68 1.60 0.57 1.74 0.48 1.86 0.39 

33 JaTeng 1.20 0.93 1.31 0.91 1.43 0.88 1.55 0.83 1.66 0.78 

34 Yogya 1.17 0.88 1.30 0.80 1.43 0.72 1.54 0.64 1.65 0.56 

35 JaTim 1.23 0.90 1.36 0.85 1.48 0.79 1.60 0.73 1.70 0.65 

36 Banten 1.15 1.08 1.30 1.11 1.49 1.05 1.69 0.90 1.93 0.68 

51 Bali 1.16 0.93 1.31 0.84 1.45 0.76 1.58 0.68 1.70 0.60 

52 NTB 1.14 1.02 1.32 1.01 1.50 0.97 1.69 0.91 1.88 0.83 

53 NTT 1.21 1.06 1.48 1.11 1.79 1.15 2.16 1.18 2.59 1.18 

61 Kalbar 1.18 1.05 1.38 1.07 1.61 1.07 1.85 1.05 2.10 1.00 

62 Kalteng 1.23 1.07 1.50 1.13 1.81 1.15 2.14 1.15 2.50 1.12 

63 Kalsel 1.18 1.04 1.36 1.06 1.56 1.05 1.76 1.02 1.96 0.96 

64 Kaltim 1.21 1.04 1.42 1.06 1.63 1.07 1.85 1.04 2.07 0.99 

71 Sulut 1.16 0.98 1.34 0.93 1.50 0.87 1.67 0.79 1.82 0.69 

72 Sulteng 1.22 1.05 1.47 1.08 1.76 1.09 2.08 1.08 2.45 1.04 

73 Sulsel 1.18 0.99 1.37 0.96 1.57 0.91 1.78 0.84 1.97 0.77 

74 Sultra 1.29 1.06 1.60 1.10 1.96 1.12 2.34 1.12 2.77 1.10 

75 Gorontalo 1.26 1.00 1.53 0.99 1.81 0.96 2.09 0.93 2.38 0.86 

76 Sulbar 1.12 1.10 1.24 1.21 1.35 1.31 1.46 1.41 1.56 1.51 

81 Maluku 1.17 1.06 1.30 1.13 1.44 1.20 1.58 1.26 1.72 1.31 

82 
Maluku 
Utara 1.24 1.08 1.40 1.18 1.56 1.27 1.72 1.35 1.89 1.43 

91 
Papua 
Barat 1.23 1.11 1.50 1.20 1.81 1.28 2.15 1.33 2.54 1.36 

94 Papua 1.23 1.07 1.47 1.12 1.74 1.16 2.04 1.17 2.37 1.15 

Indonesia 1.19 0.97 1.34 0.96 1.49 0.93 1.64 0.88 1.78 0.83 
 

The average residential fraction of the total administrative area (e.g. corrected for agricultural use 

age) for Java island was based on the Java Spatial Model (MoPW, 2011) and all other islands are 

shown the determination of residential fractions per urban or rural and city or regency levels are 

shown in Table A5.4 The JSM shows the fraction of total land area used for residential purposes 
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in the period 2015-2035 for urban and rural areas. These fractions were extrapolated to other 

Indonesian regions, applying a correction factor of 0.75 to compensate for these less densely 

populated areas. 

 

Table A5.4 Ratio residential area/total area for four types of residential features (urban and rural 

and city (kota) and regencies (kabupaten). The upper part of the Table shows the Java values 

based on Java Spatial Model (JSM); the lower part of the Table shows the values for other 

islands applying the correction factor of 0.75 

Region Urban or rural  

Administrative type 

Urban or rural areas 

urban rural 

Java (based on JSM) City (Kota) 0.84 0.17 
Regency (Kabupaten) 0.37 0.16 

Non-Java City (Kota) 0.63 0.13 
Regency (Kabupaten) 0.28 0.12 
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Section 5 Numeric values of people served by WWT and MSW facilities  

In paragraph 5.4.2 (Figures 5.2A/B; 5.3A/B) of Chapter 5 the development between 2015-2035 of 

people connected to a type of WWT system or served by a type of MSW system were presented. 

Figure A5.2 A/B and Figure A5.3 A/B below also show the numeric values of these developments   

 

 

Figure A5.2 A (scenario 1; above) and B (scenario 2; below) WWT access development with urban 

and rural on-site systems, CBS and MedCen (medium-centralized) and Cen (centralized) systems  
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Figure A5.3 A (scenario 1; above) and B (scenario 2; below) MSW access development for collection 

and treatment services 

 

2015 2020 2025 2030 2035
Treatment not served 245.72 158.05 43.83 38.17 31.25

Treatment rural 5.68 5.68 69.97 70.44 70.78

Treatment urban 4.06 107.34 171.02 187.79 203.62

Collection not served 191.42 158.94 60.93 55.54 48.82

Collection rural 5.01 5.01 52.87 53.07 53.21

Collection urban 59.03 107.12 171.02 187.79 203.62
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Section 6 Examples of translation of national budgets to provincial budgets 

In Chapter 5 (paragraph 5.4.2), national sanitation developments (e.g. budgets, systems) were 

provided. Because the framework was developed using information from the smallest available 

administrative units, the presented nationwide results can also be broken down to lower levels of 

governments. Below three examples of a “translation” of national planning to provincial levels for 

WWT and MSW budgets (Table A5.5), systems (Table A5.6) and percentage of investments 

contributing to poor households (Table A5.7) for the period 2015-2019 are presented.  The break 

down provides insight in how budgets should be allocated to the different provinces to implement 

the planned national targets (Table A5.5). Also it provides useful information on the number and 

type of facility or system required in each province (Table A5.6) and how much of the investments 

will benefit poor households (Table A5.7) 
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Table A5.5 Provincial MSW and WWT investments (million US$) for 2015-2019: Scenario 1 a 

prov 
code 
(BPS) 

Province 
name 

WWT 2015-2019 MSW 2015-2019 TOTAL  

On-
site CBS 

Medium 
central 

Centr
al 

Total 
WWT 

Collec-
tion 

Treat-
ment 

Total 
MSW 

WWT & 
MSW 

11 Aceh 317 21 131 - 470 6 - 6 476 

12 SumUt 533 21 418 216 1,188 35 372 407 1,595 

13 SumBar 275 1 102 27 404 12 - 12 416 

14 Riau 319 6 80 12 417 9 82 90 508 

15 Jambi 191 6 50 - 247 4 42 45 292 

16 Sumsel 500 16 121 81 717 11 96 108 825 

17 Bengkulu 96 4 47 - 147 1 18 19 166 

18 Lampung 354 20 140 42 557 10 56 67 624 

19 BaBel 47 - 24 3 73 4 - 4 78 

21 KepRi 55 3 56 9 123 4 68 71 195 

31 DKI 3 - 476 193 672 - 426 426 1,098 

32 JaBar 677 57 3,455 509 4,698 104 1,404 1,508 6,206 

33 JaTeng 839 149 636 - 1,624 52 596 649 2,273 

34 Yogya 27 0 72 - 100 6 76 81 181 

35 JaTim 1,232 198 1,095 121 2,645 68 972 1,039 3,685 

36 Banten 328 91 631 32 1,082 29 405 434 1,515 

51 Bali 51 0 104 14 168 8 49 57 226 

52 NTB 161 45 219 37 462 12 112 124 585 

53 NTT 358 7 128 22 514 6 27 34 548 

61 Kalbar 309 - 72 12 393 11 - 11 404 

62 Kalteng 214 0 28 - 243 4 - 4 247 

63 Kalsel 242 3 74 9 327 8 79 86 414 

64 Kaltim 142 3 99 80 324 6 39 45 369 

71 Sulut 61 1 65 40 167 4 - 4 171 

72 Sulteng 137 2 41 6 187 4 - 4 191 

73 Sulsel 220 9 151 113 493 11 17 27 520 

74 Sultra 115 4 55 - 175 2 - 2 177 

75 
Gorontal
o 58 1 40 - 99 3 17 20 119 

76 Sulbar 70 8 15 - 93 1 - 1 94 

81 Maluku 97 1 18 14 130 2 - 2 132 

82 
Maluku 
Utara 65 4 21 - 89 1 - 1 91 

91 
Papua 
Barat 82 8 31 - 121 3 - 3 124 

94 Papua 441 1 46 - 488 5 38 43 531 

  TOTAL 8,616 690 8,742 1,592 19,640 446 4,991 5,437 25,077 

 
a The total of 25.1 billion US$ (right lower corner) compared to the 25.2 billion US$ mentioned in 

Chapter 5 (Table 5.9) is the result of intermediate rounding 
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down provides insight in how budgets should be allocated to the different provinces to implement 
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Table A5.5 Provincial MSW and WWT investments (million US$) for 2015-2019: Scenario 1 a 

prov 
code 
(BPS) 

Province 
name 

WWT 2015-2019 MSW 2015-2019 TOTAL  

On-
site CBS 

Medium 
central 

Centr
al 

Total 
WWT 

Collec-
tion 

Treat-
ment 

Total 
MSW 

WWT & 
MSW 

11 Aceh 317 21 131 - 470 6 - 6 476 

12 SumUt 533 21 418 216 1,188 35 372 407 1,595 

13 SumBar 275 1 102 27 404 12 - 12 416 

14 Riau 319 6 80 12 417 9 82 90 508 

15 Jambi 191 6 50 - 247 4 42 45 292 

16 Sumsel 500 16 121 81 717 11 96 108 825 

17 Bengkulu 96 4 47 - 147 1 18 19 166 

18 Lampung 354 20 140 42 557 10 56 67 624 

19 BaBel 47 - 24 3 73 4 - 4 78 

21 KepRi 55 3 56 9 123 4 68 71 195 

31 DKI 3 - 476 193 672 - 426 426 1,098 

32 JaBar 677 57 3,455 509 4,698 104 1,404 1,508 6,206 

33 JaTeng 839 149 636 - 1,624 52 596 649 2,273 

34 Yogya 27 0 72 - 100 6 76 81 181 

35 JaTim 1,232 198 1,095 121 2,645 68 972 1,039 3,685 

36 Banten 328 91 631 32 1,082 29 405 434 1,515 

51 Bali 51 0 104 14 168 8 49 57 226 

52 NTB 161 45 219 37 462 12 112 124 585 

53 NTT 358 7 128 22 514 6 27 34 548 

61 Kalbar 309 - 72 12 393 11 - 11 404 

62 Kalteng 214 0 28 - 243 4 - 4 247 

63 Kalsel 242 3 74 9 327 8 79 86 414 

64 Kaltim 142 3 99 80 324 6 39 45 369 

71 Sulut 61 1 65 40 167 4 - 4 171 

72 Sulteng 137 2 41 6 187 4 - 4 191 

73 Sulsel 220 9 151 113 493 11 17 27 520 

74 Sultra 115 4 55 - 175 2 - 2 177 

75 
Gorontal
o 58 1 40 - 99 3 17 20 119 

76 Sulbar 70 8 15 - 93 1 - 1 94 

81 Maluku 97 1 18 14 130 2 - 2 132 

82 
Maluku 
Utara 65 4 21 - 89 1 - 1 91 

91 
Papua 
Barat 82 8 31 - 121 3 - 3 124 

94 Papua 441 1 46 - 488 5 38 43 531 

  TOTAL 8,616 690 8,742 1,592 19,640 446 4,991 5,437 25,077 

 
a The total of 25.1 billion US$ (right lower corner) compared to the 25.2 billion US$ mentioned in 

Chapter 5 (Table 5.9) is the result of intermediate rounding 
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Table A5.6 Provincial new MSW and WWT facilities for 2015-2019: Scenario 1 a, b 

 
a Compared to the numbers presented in Table 5.8 of Chapter 5 only the new facilities are 

required 
b Compared to the numbers presented in Table 5.8 of Chapter 5 also MSW collection vehicles, 

transport trucks are presented. For specifics on the calculation of these vehicles reference is 

made to Kerstens et al. (2015) 

 

 

 

 

 

TOTAL 

On-site CBS
Medium 
central Central

Total 
WWT Collection Treatment

Total 
MSW

WWT & 
MSW

11 Aceh 317      21       131        -     470      6            -          6          476        

12 SumUt 533      21       418        216    1,188   35          372         407      1,595     
13 SumBar 275      1        102        27      404      12          -          12        416        
14 Riau 319      6        80          12      417      9            82           90        508        
15 Jambi 191      6        50          -     247      4            42           45        292        
16 Sumsel 500      16       121        81      717      11          96           108      825        
17 Bengkulu 96        4        47          -     147      1            18           19        166        
18 Lampung 354      20       140        42      557      10          56           67        624        
19 BaBel 47        -     24          3        73        4            -          4          78          
21 KepRi 55        3        56          9        123      4            68           71        195        
31 DKI 3          -     476        193    672      -         426         426      1,098     
32 JaBar 677      57       3,455      509    4,698   104         1,404      1,508    6,206     
33 JaTeng 839      149     636        -     1,624   52          596         649      2,273     
34 Yogya 27        0        72          -     100      6            76           81        181        
35 JaTim 1,232   198     1,095      121    2,645   68          972         1,039    3,685     
36 Banten 328      91       631        32      1,082   29          405         434      1,515     
51 Bali 51        0        104        14      168      8            49           57        226        
52 NTB 161      45       219        37      462      12          112         124      585        
53 NTT 358      7        128        22      514      6            27           34        548        
61 Kalbar 309      -     72          12      393      11          -          11        404        
62 Kalteng 214      0        28          -     243      4            -          4          247        
63 Kalsel 242      3        74          9        327      8            79           86        414        
64 Kaltim 142      3        99          80      324      6            39           45        369        
71 Sulut 61        1        65          40      167      4            -          4          171        
72 Sulteng 137      2        41          6        187      4            -          4          191        
73 Sulsel 220      9        151        113    493      11          17           27        520        
74 Sultra 115      4        55          -     175      2            -          2          177        
75 Gorontalo 58        1        40          -     99        3            17           20        119        
76 Sulbar 70        8        15          -     93        1            -          1          94          
81 Maluku 97        1        18          14      130      2            -          2          132        
82 Maluku Utara 65        4        21          -     89        1            -          1          91          
91 Papua Barat 82        8        31          -     121      3            -          3          124        
94 Papua 441      1        46          -     488      5            38           43        531        

8,616   690     8,742      1,592  19,640  446         4,991      5,437    25,077   

WWT 2015-2019 MSW 2015-2019

prov code 
(BPS)

Province 
name
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Table A5.7 Calculated percentage of provincial investments per type of WWT systems in the 

period 2015-2019 benefiting poor people, following Scenario 1 

 

 

Section 7 Example of a City Sanitation Strategy: Tegal 

In Indonesia, cities must prepare a City Sanitation Strategy to be eligible for national funding. 

Thus, a 5-year plan, using a similar residential area-based sanitation system selection as 

presented in the framework, is prepared to formulate budgets and specify required institutional 

and advocacy and campaigning activities (Kearton et al., 2013; Parkinson et al., 2014; USDP, 

2014). This simultaneous development of a top-down supply and bottom-up demand for 

sanitation funding links the Indonesian central government’s policy making and oversight role with 

the local governments’ role for implementation (ADB, 2013a). 

On-site CBS
Medium 
central Central Total WWT

Aceh 30% 33% 18% 0% 27%
SumUt 19% 20% 12% 9% 15%
SumBar 18% 20% 14% 15% 17%
Riau 15% 13% 13% 17% 15%
Jambi 17% 25% 20% 0% 18%
Sumsel 19% 21% 18% 20% 19%
Bengkulu 28% 32% 17% 0% 24%
Lampung 30% 30% 24% 22% 28%
BaBel 19% 0% 21% 25% 20%
KepRi 18% 19% 17% 19% 18%
DKI 21% 0% 17% 16% 17%
JaBar 29% 34% 17% 12% 19%
JaTeng 36% 42% 26% 0% 33%
Yogya 47% 52% 37% 0% 40%
JaTim 43% 46% 28% 18% 36%
Banten 19% 24% 11% 16% 15%
Bali 25% 15% 18% 11% 19%
NTB 49% 53% 43% 38% 46%
NTT 20% 20% 7% 10% 16%
Kalbar 15% 0% 15% 19% 15%
Kalteng 11% 12% 7% 0% 10%
Kalsel 17% 18% 10% 9% 15%
Kaltim 16% 28% 9% 7% 12%
Sulut 18% 20% 12% 7% 13%
Sulteng 24% 26% 9% 7% 20%
Sulsel 24% 27% 14% 9% 18%
Sultra 23% 27% 12% 0% 20%
Gorontalo 23% 26% 20% 0% 22%
Sulbar 20% 25% 17% 0% 20%
Maluku 18% 23% 13% 17% 17%
Maluku Utara 8% 10% 3% 0% 7%
Papua Barat 30% 25% 6% 0% 23%
Papua 34% 25% 9% 0% 31%
TOTAL 27% 37% 19% 14% 23%

Province 
name

WWT 2015-2019
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Table A5.6 Provincial new MSW and WWT facilities for 2015-2019: Scenario 1 a, b 

 
a Compared to the numbers presented in Table 5.8 of Chapter 5 only the new facilities are 

required 
b Compared to the numbers presented in Table 5.8 of Chapter 5 also MSW collection vehicles, 

transport trucks are presented. For specifics on the calculation of these vehicles reference is 

made to Kerstens et al. (2015) 

 

 

 

 

 

TOTAL 

On-site CBS
Medium 
central Central

Total 
WWT Collection Treatment

Total 
MSW

WWT & 
MSW

11 Aceh 317      21       131        -     470      6            -          6          476        

12 SumUt 533      21       418        216    1,188   35          372         407      1,595     
13 SumBar 275      1        102        27      404      12          -          12        416        
14 Riau 319      6        80          12      417      9            82           90        508        
15 Jambi 191      6        50          -     247      4            42           45        292        
16 Sumsel 500      16       121        81      717      11          96           108      825        
17 Bengkulu 96        4        47          -     147      1            18           19        166        
18 Lampung 354      20       140        42      557      10          56           67        624        
19 BaBel 47        -     24          3        73        4            -          4          78          
21 KepRi 55        3        56          9        123      4            68           71        195        
31 DKI 3          -     476        193    672      -         426         426      1,098     
32 JaBar 677      57       3,455      509    4,698   104         1,404      1,508    6,206     
33 JaTeng 839      149     636        -     1,624   52          596         649      2,273     
34 Yogya 27        0        72          -     100      6            76           81        181        
35 JaTim 1,232   198     1,095      121    2,645   68          972         1,039    3,685     
36 Banten 328      91       631        32      1,082   29          405         434      1,515     
51 Bali 51        0        104        14      168      8            49           57        226        
52 NTB 161      45       219        37      462      12          112         124      585        
53 NTT 358      7        128        22      514      6            27           34        548        
61 Kalbar 309      -     72          12      393      11          -          11        404        
62 Kalteng 214      0        28          -     243      4            -          4          247        
63 Kalsel 242      3        74          9        327      8            79           86        414        
64 Kaltim 142      3        99          80      324      6            39           45        369        
71 Sulut 61        1        65          40      167      4            -          4          171        
72 Sulteng 137      2        41          6        187      4            -          4          191        
73 Sulsel 220      9        151        113    493      11          17           27        520        
74 Sultra 115      4        55          -     175      2            -          2          177        
75 Gorontalo 58        1        40          -     99        3            17           20        119        
76 Sulbar 70        8        15          -     93        1            -          1          94          
81 Maluku 97        1        18          14      130      2            -          2          132        
82 Maluku Utara 65        4        21          -     89        1            -          1          91          
91 Papua Barat 82        8        31          -     121      3            -          3          124        
94 Papua 441      1        46          -     488      5            38           43        531        

8,616   690     8,742      1,592  19,640  446         4,991      5,437    25,077   

WWT 2015-2019 MSW 2015-2019

prov code 
(BPS)

Province 
name
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Table A5.7 Calculated percentage of provincial investments per type of WWT systems in the 

period 2015-2019 benefiting poor people, following Scenario 1 

 

 

Section 7 Example of a City Sanitation Strategy: Tegal 

In Indonesia, cities must prepare a City Sanitation Strategy to be eligible for national funding. 

Thus, a 5-year plan, using a similar residential area-based sanitation system selection as 

presented in the framework, is prepared to formulate budgets and specify required institutional 

and advocacy and campaigning activities (Kearton et al., 2013; Parkinson et al., 2014; USDP, 

2014). This simultaneous development of a top-down supply and bottom-up demand for 

sanitation funding links the Indonesian central government’s policy making and oversight role with 

the local governments’ role for implementation (ADB, 2013a). 

On-site CBS
Medium 
central Central Total WWT

Aceh 30% 33% 18% 0% 27%
SumUt 19% 20% 12% 9% 15%
SumBar 18% 20% 14% 15% 17%
Riau 15% 13% 13% 17% 15%
Jambi 17% 25% 20% 0% 18%
Sumsel 19% 21% 18% 20% 19%
Bengkulu 28% 32% 17% 0% 24%
Lampung 30% 30% 24% 22% 28%
BaBel 19% 0% 21% 25% 20%
KepRi 18% 19% 17% 19% 18%
DKI 21% 0% 17% 16% 17%
JaBar 29% 34% 17% 12% 19%
JaTeng 36% 42% 26% 0% 33%
Yogya 47% 52% 37% 0% 40%
JaTim 43% 46% 28% 18% 36%
Banten 19% 24% 11% 16% 15%
Bali 25% 15% 18% 11% 19%
NTB 49% 53% 43% 38% 46%
NTT 20% 20% 7% 10% 16%
Kalbar 15% 0% 15% 19% 15%
Kalteng 11% 12% 7% 0% 10%
Kalsel 17% 18% 10% 9% 15%
Kaltim 16% 28% 9% 7% 12%
Sulut 18% 20% 12% 7% 13%
Sulteng 24% 26% 9% 7% 20%
Sulsel 24% 27% 14% 9% 18%
Sultra 23% 27% 12% 0% 20%
Gorontalo 23% 26% 20% 0% 22%
Sulbar 20% 25% 17% 0% 20%
Maluku 18% 23% 13% 17% 17%
Maluku Utara 8% 10% 3% 0% 7%
Papua Barat 30% 25% 6% 0% 23%
Papua 34% 25% 9% 0% 31%
TOTAL 27% 37% 19% 14% 23%

Province 
name

WWT 2015-2019
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An example of the outcome of a CSS for Tegal in Central Java is presented below. The CSS 

applies a similar residential area based system selection of WWT and MSW systems as 

presented in the planning framework. The CSS and the presented planning framework have both 

been developed in close cooperation with the Indonesian Ministry of Planning and Public Works 

and with support of the USDP (Urban Sanitation Development Program) project. 

 

Tegal, located in Central Java, has been working on sanitation developments for several years, 

but with limited success. It has shown a weak institutional set-up, resulting in the absence of 

properly functional septic management system, a poorly designed sludge processing facility, 

limited demand for septage treatment services, poorly designed community based sewerage, and 

limited government control over the details used for leach-pits. The city of Tegal started with the 

preparatory works of a CSS in 2009. Following identified obstacles in implementation and 

renewed interest by the City of Tegal, an updated CSS was prepared together with the Sanitation 

Working group of Tegal within the USDP framework in 2012 and 2013. 

 

To allow for prioritization of implementation, the CSS starts with a risk area analysis, based on 

the impact that lack of WWT and MSW services may have on the type of area (as a function of 

population size, density, urban and rural functions and poverty level) (Parkinson et al., 2014). 

This risk map is prepared on a desa/ kelurahan level (smallest administrative unit) for both 

wastewater and solid waste (Figure A5.4). 

 

 

Figure A5.4 Risk analysis for WWT and MSW situation in Tegal 

 

Following the urban/rural features and population density a selection of wastewater and solid 

waste systems zones on a desa/ kelurahan level is prepared Figure A5.5 & Table A5.8 for WWT 

and Figure A5.6 and Table A5.9 for MSW. In Figure A5.5 medium centralized WWT are 

presented as IPAL kawasan, which is the Indonesian name. The level of priority is based on the 

risk analysis (Figure A5.4). 
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Figure A5.5 WWT zoning for Tegal city following population density and urban/rural features 

 

Table A5.8 WWT implementation for Tegal  

Item Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 

Type of system 

on-site 
system 

(shared or 
individual) 

Hybrid: 
Community 

Based 
System 

Communal 
septic tank, 

IPAL-
communal or 
MCK+ with 
small sewer 

Off-site: 
semi-

centralised 
system 

Off-site: 
semi-

centralised 
system 

Off-site: 
semi-

centralised 
system 

Type of sewer system technology no sewer 
system 

community 
sewer system 

(pumped) 
sanitary 
sewer 
system 

(pumped) 
sanitary 
sewer 
system 

(pumped) 
sanitary 
sewer 
system 

Type of WWTP technology 
On-site: 

ind. septic 
tank 

Hybrid: CBS - 
IPAL 

communal 

Off-site: 
Aerobic 

activated 
sludge 
system 

Off-site: 
Rotating 

Bio 
Contactor 

Off-site: 
Rotating 

Bio 
Contactor 

Number of total treatment systems 
required 10,333 28 2 2 2 

Number of systems to be completed 
1-5 years 5,741 14 2 0 0 

Number of systems to be completed 
6-10 years 4,593 14 0 2 0 

Number of systems to be completed 
11-20 years 0 0 0 0 2 
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Figure A5.5 WWT zoning for Tegal city following population density and urban/rural features 

 

Table A5.8 WWT implementation for Tegal  

Item Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 

Type of system 

on-site 
system 

(shared or 
individual) 

Hybrid: 
Community 

Based 
System 

Communal 
septic tank, 

IPAL-
communal or 
MCK+ with 
small sewer 

Off-site: 
semi-

centralised 
system 

Off-site: 
semi-

centralised 
system 

Off-site: 
semi-

centralised 
system 

Type of sewer system technology no sewer 
system 

community 
sewer system 

(pumped) 
sanitary 
sewer 
system 

(pumped) 
sanitary 
sewer 
system 

(pumped) 
sanitary 
sewer 
system 

Type of WWTP technology 
On-site: 

ind. septic 
tank 

Hybrid: CBS - 
IPAL 

communal 

Off-site: 
Aerobic 

activated 
sludge 
system 

Off-site: 
Rotating 

Bio 
Contactor 

Off-site: 
Rotating 

Bio 
Contactor 

Number of total treatment systems 
required 10,333 28 2 2 2 

Number of systems to be completed 
1-5 years 5,741 14 2 0 0 

Number of systems to be completed 
6-10 years 4,593 14 0 2 0 

Number of systems to be completed 
11-20 years 0 0 0 0 2 

 



Appendix Chapter 5 

166 
 

 

 

Figure A5.6 MSW zoning for Tegal city following population density and urban/rural features. 

Zone 1 applies home composting followed by a collection using motorized vehicles to a covered 

intermediate transfer station. In Zone 2 mixed household waste is collected by hand carts and 

transferred to a transfer station with decentralized 3R. From the transfer stations, remaining 

waste of Zone 1 and 2 is transported by arm roll truck to a centralized landfill. In Zone 3, home 

composting followed by collection using hand carts to small scale transfer plants was selected. 

Dump trucks were selected to transfer the waste from these transfer stations to the landfill 
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Table A5.9 MSW implementation for Tegal city 

Zone number Zone 1 Zone 2 Zone 3 

Is 3R promoted yes yes yes 

Collection system 

Proposed type of collection system motorized 
car 

hand pulled 
cart hand pulled cart 

        

Number of collection systems required until 5 y 10 31 4 

Number of collection systems required until 20 y 17 61 9 

Transfer station  

Proposed type of transfer system 
Transfer 

Depo III + 
container 

Transfer 
Depo III + 
container TPS-biasa 

Number of new transfer station until 5 y 3 2 4 

Number of new transfer station until 20 y 4 4 8 

Transport system 

Number of new transport trucks until 5 y 

dump trucks 0 0 1 

armroll truck 2 2 0 

Number of new transport trucks until 20 y 

dump trucks 0 0 2 

armroll truck 2 3 0 

Number of container trucks until 20 years 

Treatment (composting+plastic recovery) 

Level of treatment 
household 

level 
Transfer 

Depo level 
household level 

Number of composter units until 5y 4000 9 1250 
Number of composter units until 20y 6800 18 3200 

 

The development of the population with access to wastewater (Figure A5.7) and solid waste 

services (Figure A5.8) is determined based on (1) set targets by the local government and (2) the 

residential area based system selection. 
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services (Figure A5.8) is determined based on (1) set targets by the local government and (2) the 

residential area based system selection. 
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Figure A5.7 Tegal population development with access to indicated type of wastewater treatment 

system 

 

 

Figure A5.8 Tegal population development with access to MSW services  

 

The temporal investments for each of these activities are then plotted. Similar to the planning 

framework it distinguishes software (institutional strengthening, campaigning & advocacy to 

assure sustainable operation), hardware and land (site) costs. The investment schedules for 

wastewater and solid waste are shown in Figure A5.11 and Figure A5.12 respectively. 
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Figure A5.9 Tegal WWT investment and operational costs per year in million Rp (1 US$ = 10,000 

Rp) 

 

 

Figure A5.10 Tegal MSW investment and operational costs per year in million Rp (1 US$ = 

10,000 Rp) 

 

Finally, for the first 5 year a detailed budget break-down per zone and activity is prepared. These 

are presented (in million Rp) in Figure A5.11 (WWT) and Figure A5.12(MSW). 
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Figure A5.11 Tegal WWT 5 year investment per identified zone 

 

 

Figure A5.12 Tegal MSW 5 year investment per identified zone 

 

 

Summary of activities and costs

2014 2015 2016 2017 2018

million Rp million Rp million Rp million Rp million Rp
Citywide (inc IPLT)

Masterplan 1,200               -                  -                  -                  -                  

Studies and design for IPLT -                  -                  -                  -                  -                  
Advocacy, campaign and socialization for IPLT 200                  -                  -                  -                  -                  

Site preparation IPLT -                  -                  -                  -                  -                  

Construction, supervision and procurement IPLT -                  -                  -                  -                  -                  

Operation and Maintenance IPLT -                  -                  131                  131                  131                  

zone 1
Studies and design -                  -                  -                  -                  -                  

Advocacy, campaign and socialization 178                  178                  178                  178                  178                  

Site preparation -                  -                  -                  -                  -                  

Construction, supervision and handing over 3,444               3,444               3,444               3,444               3,444               

Operation and Maintenance -                  172                  344                  517                  689                  

zone 2
Studies and design 35                    35                    35                    35                    35                    

Advocacy, campaign and socialization 75                    75                    75                    75                    75                    

Site preparation 42                    42                    42                    42                    42                    

Construction, supervision and handing over 1,300               1,300               1,300               1,300               1,300               

Operation and Maintenance -                  30                    60                    90                    120                  

zone 3
Studies and design 4,200               -                  -                  -                  -                  

Advocacy, campaign and socialization 2,350               -                  -                  -                  -                  

Site preparation 2,640               -                  -                  -                  -                  

Construction, supervision and handing over -                  115,840           115,840           115,840           18,807             

Operation and Maintenance -                  -                  -                  -                  7,440               

zone 4
Studies and design -                  -                  -                  -                  3,000               

Advocacy, campaign and socialization -                  -                  -                  -                  1,870               

Site preparation -                  -                  -                  -                  -                  

Construction, supervision and handing over -                  -                  -                  -                  -                  

Operation and Maintenance -                  -                  -                  -                  -                  

zone 5
Studies and design -                  -                  -                  -                  -                  

Advocacy, campaign and socialization -                  -                  -                  -                  -                  

Site preparation -                  -                  -                  -                  -                  

Construction, supervision and handing over -                  -                  -                  -                  -                  

Operation and Maintenance -                  -                  -                  -                  -                  

TOTAL in first 5 years (inc O&M) 15,664             121,116           121,450           121,652           37,131             417,013             

Summary of activities and costs of first five years 2014 2015 2016 2017 2018
Citywide million Rp million Rp million Rp million Rp million Rp
Masterplan -                  -                  -                   -                  -                  
Studies and design 600                  -                  -                   -                  -                  
advocacy campaign and socialization 1,350               -                  -                   -                  -                  
site preparation 3,500               3,500               -                   -                  -                  
construction + handing over -                  -                  15,450              15,450             15,450             
operation and maintenance -                  -                  -                   -                  -                  

Cluster 1
Studies and design -                  -                  48                    -                  -                  
advocacy campaign and socialization -                  -                  1,150                -                  -                  
site preparation -                  -                  30                    -                  -                  
construction + handing over -                  -                  -                   847                  847                  
operation and maintenance -                  -                  -                   -                  -                  

Cluster 2
Studies and design 67                    -                  -                   -                  -                  
advocacy campaign and socialization 600                  -                  -                   -                  -                  
site preparation 146                  -                  -                   -                  -                  
construction + handing over -                  429                  429                  429                  -                  
operation and maintenance -                  -                  -                   -                  115                  

Cluster 3
Studies and design -                  -                  -                   -                  -                  
advocacy campaign and socialization 1,150               -                  -                   -                  -                  
site preparation 10                    -                  -                   -                  -                  
construction + handing over -                  130                  130                  130                  -                  Total
operation and maintenance -                  -                  -                   -                  188                  62,176                   
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Figure A5.11 Tegal WWT 5 year investment per identified zone 
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Advocacy, campaign and socialization 178                  178                  178                  178                  178                  

Site preparation -                  -                  -                  -                  -                  

Construction, supervision and handing over 3,444               3,444               3,444               3,444               3,444               

Operation and Maintenance -                  172                  344                  517                  689                  

zone 2
Studies and design 35                    35                    35                    35                    35                    

Advocacy, campaign and socialization 75                    75                    75                    75                    75                    

Site preparation 42                    42                    42                    42                    42                    

Construction, supervision and handing over 1,300               1,300               1,300               1,300               1,300               

Operation and Maintenance -                  30                    60                    90                    120                  

zone 3
Studies and design 4,200               -                  -                  -                  -                  

Advocacy, campaign and socialization 2,350               -                  -                  -                  -                  

Site preparation 2,640               -                  -                  -                  -                  

Construction, supervision and handing over -                  115,840           115,840           115,840           18,807             

Operation and Maintenance -                  -                  -                  -                  7,440               
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Studies and design -                  -                  -                  -                  3,000               

Advocacy, campaign and socialization -                  -                  -                  -                  1,870               

Site preparation -                  -                  -                  -                  -                  

Construction, supervision and handing over -                  -                  -                  -                  -                  

Operation and Maintenance -                  -                  -                  -                  -                  
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Studies and design -                  -                  -                  -                  -                  

Advocacy, campaign and socialization -                  -                  -                  -                  -                  

Site preparation -                  -                  -                  -                  -                  

Construction, supervision and handing over -                  -                  -                  -                  -                  

Operation and Maintenance -                  -                  -                  -                  -                  

TOTAL in first 5 years (inc O&M) 15,664             121,116           121,450           121,652           37,131             417,013             

Summary of activities and costs of first five years 2014 2015 2016 2017 2018
Citywide million Rp million Rp million Rp million Rp million Rp
Masterplan -                  -                  -                   -                  -                  
Studies and design 600                  -                  -                   -                  -                  
advocacy campaign and socialization 1,350               -                  -                   -                  -                  
site preparation 3,500               3,500               -                   -                  -                  
construction + handing over -                  -                  15,450              15,450             15,450             
operation and maintenance -                  -                  -                   -                  -                  

Cluster 1
Studies and design -                  -                  48                    -                  -                  
advocacy campaign and socialization -                  -                  1,150                -                  -                  
site preparation -                  -                  30                    -                  -                  
construction + handing over -                  -                  -                   847                  847                  
operation and maintenance -                  -                  -                   -                  -                  

Cluster 2
Studies and design 67                    -                  -                   -                  -                  
advocacy campaign and socialization 600                  -                  -                   -                  -                  
site preparation 146                  -                  -                   -                  -                  
construction + handing over -                  429                  429                  429                  -                  
operation and maintenance -                  -                  -                   -                  115                  

Cluster 3
Studies and design -                  -                  -                   -                  -                  
advocacy campaign and socialization 1,150               -                  -                   -                  -                  
site preparation 10                    -                  -                   -                  -                  
construction + handing over -                  130                  130                  130                  -                  Total
operation and maintenance -                  -                  -                   -                  188                  62,176                   
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Abstract 

Projected population growth and urbanization will become a challenge for finite natural resources, 

their distribution and local availability. At the same time, 2.5 billion people do not have access to 

sanitation facilities. Indonesia is one of these rapidly growing countries with a poorly developed 

municipal wastewater and solid waste sector. Without an integrating concept to recover and 

reuse resources, “waste flows” are discarded and their potential value is ignored. Therefore, the 

Indonesian backlog may be an opportunity, since it allows for direct introduction of a circular 

resource approach. To foster a sustainable municipal wastewater and solid waste management, 

the 20 years’ demand forecast of recoverable resources (phosphorus, compost, duckweed, 

plastic and paper) was analyzed. Phosphorus, compost and duckweed analysis was based on 

nutritional demand and not on market demand. Demand for recoverable plastic and paper related 

to the potential substitution of conventionally manufactured products. Phosphorus and compost 

demand analysis was based on (1) fertilizer requirements of 68 crops (staple food, horticulture 

and plantation), and (2) anticipated increase in production area of these crops. Duckweed 

demand as a protein-rich fish feed was analyzed based on the forecasted demand from 

aquaculture (tilapia and carp). The potentially recoverable (waste) plastic and paper to substitute 

conventional manufactured products were based on extrapolation of past trends in plastic and 

paper production in Indonesia. The potential contribution of recoverable products to the 

forecasted demand for 2035 was assessed for phosphorus (15%), compost (35%), duckweed 

(7%), plastic (66%) and paper (18%). A geographical discrepancy between potential recovery and 

demand location for phosphorus and compost was found. Therefore, the locations of potential 

markets should be considered in the planning and selection of wastewater and solid waste 

facilities. The presented methodology to assess the potential demand for recoverable resources 

from wastewater and solid waste may be applied in other countries as well. 

 

Keywords: resource recovery; demand analysis; agriculture; wastewater; solid waste; 

phosphorus 
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 Introduction 6.1

The coming decades will bring profound changes to the size and spatial distribution of the global 

population. The continuing urbanization and overall growth is projected to add 2.5 billion people 

to the urban population by 2050, with nearly 90% of the increase concentrated in Asia and Africa 

(United Nations, 2014). In the coming 20 years Indonesia’s population is expected to grow from 

the current 250 million to over 305 million people (BPS, 2013). By 2035 an estimated two third of 

the Indonesian population will live in urban areas compared to the current 50% (BPS, 2013). 

These developments pose a challenge for food security and represent additional pressure on the 

food system (production and related supply of commodities) and on finite natural resources, their 

distribution and local availability (Thornton, 2010; Gerbens-Leenes et al., 2010; Cordell et al., 

2011). 

Increasing urbanization is also a challenge for the Indonesian sanitation sector that, despite 

modest improvement over the past years  is still in a poor state (ADB, 2013; Kearton et al., 2013; 

WHO & UNICEF, 2014). Indonesia is not an exception, since worldwide 2.5 billion people do not 

have access to an improved sanitation facility and some 80 countries are not on track or made 

insufficient progress to achieve the Millennium Development Goals on sanitation (WHO & 

UNICEF, 2014). However, abundance of unmanaged solid waste and wastewater may result in 

an abundance of food and economic growth if resources (e.g. phosphorus (P), organic fertilizer, 

plastics) are managed, reused and recovered (Mcdonough & Braungart, 2000; Braungart et al., 

2007; McDonough & Braungart, 2010; Kerstens et al., 2011). Therefore, an aspect of wastewater 

and solid waste development that receives increasing attention is the potential to recover 

resources from wastewater and solid waste (Lettinga, 2006; Almy, 2008; Aprilia et al., 2012; 

Thibodeau et al., 2014). Besides the needs of households provided with sanitation systems 

(“front-end” users), also the needs of potential users of sanitation products (“back-end” user) 

should be considered to foster long-term operational and financial sustainability (Murray & Ray, 

2010). Back-end users comprise among others agriculture (Schröder et al., 2011), horticulture 

(Aye & Widjaya, 2006), aquaculture (Mungkung et al., 2013) and plastic and paper processing 

industries (APKI, 2012; GBGIndonesia, 2013). Indonesia aims to have universal sanitation 

access by 2019 and massive implementation of wastewater and solid waste treatment facilities 

are planned (Bappenas, 2014). Therefore, the backlog in development of these facilities could be 

an opportunity. Including the concept of resource recovery in the planning allows for direct 

introduction of a circular resource management, instead of developing a linear management 

system (Agudelo-Vera et al., 2011). 

To assure a favorable financial perspective, it is essential to understand the demand for 

recoverable resources. Demand is affected by (1) population developments (BPS, 2013), (2) 

availability of resources (Cordell et al., 2011), (3) quality of produced products (Snyman & 

Vorster, 2011), (4) efficiencies of systems (Gerbens-Leenes et al., 2010), (5) recovery costs 

compared to prices of competitive resources (Saveyn & Eder, 2014), and (6) existing or planned 
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plastics) are managed, reused and recovered (Mcdonough & Braungart, 2000; Braungart et al., 
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are planned (Bappenas, 2014). Therefore, the backlog in development of these facilities could be 

an opportunity. Including the concept of resource recovery in the planning allows for direct 

introduction of a circular resource management, instead of developing a linear management 

system (Agudelo-Vera et al., 2011). 

To assure a favorable financial perspective, it is essential to understand the demand for 

recoverable resources. Demand is affected by (1) population developments (BPS, 2013), (2) 

availability of resources (Cordell et al., 2011), (3) quality of produced products (Snyman & 

Vorster, 2011), (4) efficiencies of systems (Gerbens-Leenes et al., 2010), (5) recovery costs 

compared to prices of competitive resources (Saveyn & Eder, 2014), and (6) existing or planned 
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policies and frameworks (WHO, 2006a; Cordell et al., 2011). Kerstens et al. (2015) demonstrated 

the impact of varying selling price of recovered resources on the financial attractiveness of 

resource recovery from wastewater and solid waste. Studies have related resource recovery 

potential with demand for a community or region using “Material Flow Analysis” (Meinzinger et al., 

2009; Ushijima et al., 2012), applying a sensitivity analysis or optimization to understand the 

balance between supply and demand (Friedler, 2004; Kerstens et al., 2009) or by comparing 

global resource recovery potential with global demand (De Graaff et al., 2011; Mihelcic et al., 

2011). Despite differences (e.g., resource, study location, or type of applied technologies) these 

studies quantify and qualify demand of recoverable resources and allow a policy maker to make 

informed choices on the feasibility of resource recovery (Ward, 2012). 

The government of Indonesia is preparing the wastewater and solid waste plans for the period 

2015 to 2019 (Bappenas, 2014). In these plans a 20% reduction of solid waste being usually 

landfilled through 3R (Reduce, Reuse and Recycle) programs is formulated (MoPW, 2013; 

Bappenas, 2014). However, the demand for recovered resources is not included in the planning 

and the reuse potential is not clear.  

In this study the potential demand for resources that can be recovered from municipal wastewater 

and solid waste in Indonesia is analyzed. Starting from past production and consumption 

patterns, an assessment for future demand is derived. This potential demand is then compared to 

the amount of resources that could be recovered. The selection of studied recoverable resources 

is based on four criteria:  

(1) Resources should have a predicted increased demand in the future; 

(2) Systems to recover or produce these resources should fit the Indonesian context (Kerstens et 

al., 2015); 

(3) Recovered resources should be solid or stackable to allow for energy efficient transport. As a 

reference a dry matter content of at least 5 % is assumed; 

(4) Recovery or production of resources from solid waste is restricted to the three largest 

fractions (organic waste, plastic and paper) in solid waste. 

Table 6.1 presents the selected resources and the form in which they can be recovered in relation 

to these four criteria. 
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Table 6.1 Applied criteria for selection of resources that can be recovered or produced from 

wastewater and solid waste, and the form in which these can be recovered 

Resource Criteria Form of 
recovery 1. Resource 

demand in future 
2. Feasible 
resource recovery 
technologies  

3. Solid or 
stackable 
resources  

4. Fraction 
in solid 
waste  

Phosphorus Essential and 
scarce plant nutrient 
without substitute in 
food production. 
Demand will 
increase a  

Wastewater, side 
stream of digester 
supernatant and 
sludge processing 
b 

Struvite, Calcium 
phosphate > 90% 
c, Compost > 65% 
d; 
Fresh Duckweed 
> 5% e 

In organic 
fraction  

Struvite b, c; 
Compost f; 
Duckweed e 

Organic 
matter 

Maintain soil organic 
content . Demand 
will increase g 

Composting of 
solid waste and 
sludge f  

Compost > 65% d; Organic 
content: 
59% h. 

Compost f; 
Duckweed e 

Proteins Demand as fish 
feed stock with high 
fish production 
growth rates i 

Production as 
duckweed in 
ponds e 

Duckweed > 5%; 
typical protein 
content is 20% of 
dry matter e 

Not 
applicable 

Duckweed e 

Plastic and 
paper 

Large increase in 
demand j 

Recoverable by 
separation and 
processing k 

Easily stackable k Plastic: 
14%; 
Paper: 
12% 

Plastic and 
paper waste 

a Janssen et al. (1990), Syers et al. (2008), Cordell et al. (2011); b Kerstens et al. (2015) , Cornel 

& Schaum (2009), De Graaff et al. (2011), Le Corre et al. (2009), Egle et al. (2015); c Giesen 

(1999); d Kerstens et al. (2015), Hamelers (2001); e El-Shafai et al. (2007); f Kerstens et al. 

(2015), Veeken (2005), Veeken et al. (2003), Koné et al. (2007), g Smaling & Janssen (1993), 

Minasny et al. (2011); h Aprilia et al. (2013); i FAO (2010), Journey et al. (1993); j GBGIndonesia 

(2013), Cornelia et al. (2013), Kemenperin (2012b), Handoyo (2014) ; k Sasaki & Araki (2013) 

 

In this study recoverable resources are related to their potential practical use. Thus, organic 

matter is a resource, but demand in agriculture and recovery from wastewater and solid waste is 

analyzed as compost. Proteins demand in aquaculture (as fish feed) and recovery from 

wastewater will be studied as duckweed. Demand for P, compost and duckweed refer to 

nutritional demand for crops or fish production and not to market demand by their producers (e.g. 

farmers). The focus of the plastic and paper analysis is the recovery potential to substitute 

conventionally manufactured products by recyclables from municipal solid waste.  

 

 Materials and methods 6.2

Developments from the year 2000 in production of agriculture, horticulture, plantation and 

aquaculture in Indonesia were analyzed. Based on this data a forecast for the production until 

2035 of staple food, horticulture and plantation crops as well as fish production was made. The 

current and future (potential) demand for a recoverable resource was analyzed for each crop or 

product. Plastic and paper past production and consumption patterns were collected and used to 
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policies and frameworks (WHO, 2006a; Cordell et al., 2011). Kerstens et al. (2015) demonstrated 

the impact of varying selling price of recovered resources on the financial attractiveness of 

resource recovery from wastewater and solid waste. Studies have related resource recovery 

potential with demand for a community or region using “Material Flow Analysis” (Meinzinger et al., 
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studies quantify and qualify demand of recoverable resources and allow a policy maker to make 

informed choices on the feasibility of resource recovery (Ward, 2012). 

The government of Indonesia is preparing the wastewater and solid waste plans for the period 

2015 to 2019 (Bappenas, 2014). In these plans a 20% reduction of solid waste being usually 

landfilled through 3R (Reduce, Reuse and Recycle) programs is formulated (MoPW, 2013; 

Bappenas, 2014). However, the demand for recovered resources is not included in the planning 

and the reuse potential is not clear.  

In this study the potential demand for resources that can be recovered from municipal wastewater 

and solid waste in Indonesia is analyzed. Starting from past production and consumption 

patterns, an assessment for future demand is derived. This potential demand is then compared to 

the amount of resources that could be recovered. The selection of studied recoverable resources 

is based on four criteria:  

(1) Resources should have a predicted increased demand in the future; 

(2) Systems to recover or produce these resources should fit the Indonesian context (Kerstens et 
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(3) Recovered resources should be solid or stackable to allow for energy efficient transport. As a 

reference a dry matter content of at least 5 % is assumed; 

(4) Recovery or production of resources from solid waste is restricted to the three largest 
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In this study recoverable resources are related to their potential practical use. Thus, organic 

matter is a resource, but demand in agriculture and recovery from wastewater and solid waste is 

analyzed as compost. Proteins demand in aquaculture (as fish feed) and recovery from 

wastewater will be studied as duckweed. Demand for P, compost and duckweed refer to 

nutritional demand for crops or fish production and not to market demand by their producers (e.g. 

farmers). The focus of the plastic and paper analysis is the recovery potential to substitute 

conventionally manufactured products by recyclables from municipal solid waste.  

 

 Materials and methods 6.2

Developments from the year 2000 in production of agriculture, horticulture, plantation and 

aquaculture in Indonesia were analyzed. Based on this data a forecast for the production until 

2035 of staple food, horticulture and plantation crops as well as fish production was made. The 

current and future (potential) demand for a recoverable resource was analyzed for each crop or 

product. Plastic and paper past production and consumption patterns were collected and used to 
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forecast future demand. The determined demand for P, compost, duckweed, plastic and paper 

was compared with the potential recovery from wastewater and solid waste (Figure 6.1). Demand 

analysis were based on secondary data made available through the Central Statistical Bureau 

(Buro Pusat Statistik; BPS) (BPS, 2014), Ministry of Agriculture (MoA) (MoA, 2014) and the 

Ministry of Industry (MoI) (Kemenperin, 2012b). Additional information was gathered through 

meetings with industrial associations (APKI, 2012), Universities (Padjajaran University, 2013) and 

FAO (2014b). Finally, an analysis of impact of different growth forecasts on the demand was 

made.  

 

Figure 6.1 Schematic presentation of the framework for forecasting the recoverable resource 

demand compared to resource recovery from wastewater and solid waste  

 

6.2.1 Fertilizer and compost demand 

Fertilizer nitrogen (N), phosphorus (P) and potassium (K), and compost (organic matter) demand 

in agriculture were each determined by the same method consisting of eight consecutive steps 

(Figure 6.2). 

Potential demand for recoverable resources from Indonesian wastewater and solid waste  

179 
 

 

Figure 6.2 Flow chart showing the method of determination of future fertilizer use per crop and 

province in Indonesia 

 

Step 1. Crop classification: Seven (staple) food crops, 15 plantation and 46 horticulture crops 

following the BPS website (BPS, 2014) were analyzed. Staple food crops comprised 

grains, pulses and root crops, including rice, maize, soybean, cassava, groundnut, green 

beans and sweet potato. Plantation crops include, among others, palm oil, sugar palm, 

rubber, coffee and tea (MoA, 2014) and are classified by the production management, 

making a distinction between small holder estate (SHE; 41%) and large estates (LE; 

59%) (MoA, 2014). Horticulture crops comprised vegetables, fruits, spices, ornament and 

medicinal plants. Ornament and medicinal production amount to respectively 0.08% and 

1% of the total horticultural area (MoA, 2014) and were therefore excluded. In the 

Appendix Chapter 6 (Section 1, Table A6.1) all analyzed crops are presented.  

Step 2. Analysis of crop features on provincial level: Data on harvested area, tree densities per 

hectare (ha) for tree crops and type and quantity of crop production on a provincial level 

were collected (Appendix Chapter 6, Table A6.2). For food, plantation, and horticulture 

crops the latest available data base years were 2013, 2011 and 2012. Data on food crops 

was obtained from BPS (2014). Data on plantation and horticulture crops was derived 

from the Ministry of Agriculture (MoA, 2014).  

Step 3. Extrapolation of future crop production: In the period 2000 to 2011 (staple) food 

production increased with 3% annually, whereas population increase was below 1.5% per 

year (BPS, 2014). In 2009 food import and export were respectively 8% and 10% of the 

food production (FAO, 2014b), indicating that most food produced in Indonesia is for the 

domestic market. For the 20 years projection, provincial food production increase is 

expected to follow provincial population increase (BPS, 2013). Between 2000 and 2011 

the total plantation crop production in tonne (t) per year increased 6.6% annually of which 

the percentage of palm oil grew from nearly 40% to over 60%, corresponding with 11% 
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growth per year (MoA, 2014). Palm oil production projections until 2025 anticipate a 

reduced, but still high growth exceeding 7% annually (Bambang, 2011). The massive 

increase of especially the palm oil sector has resulted in environmental and land 

degradation and highlighted the need for a more sustainable approach in production 

(Harmen Smit et al., 2013; Yoshizaki et al., 2013). Therefore, the growth forecast until 

2035 uses a linear forecast, corresponding with a reduced growth compared to an 

exponential one. Between 2000 and 2012 the horticultural sector showed an increase of 

5.7 % in crop production (t/year) (MoA, 2014). Although horticulture largely concerns food 

products, the long term growth is expected to be higher than the explained (staple) food 

production forecast because of a change in diets with increasing income (Pingali, 2007). 

Therefore a linear trend based on the 2000-2012 was used to forecast the 2035 

horticulture production. This resulted in a higher growth than staple food.  

Step 4. Collection of general fertilizer recommendations per crop: For each of the 68 crops, data 

on recommended fertilizer application dosage per area or tree was collected. Besides 

nutrient removal by crops, fertilizer recommendation consider soil nutrient reserves, 

unavailability of the applied nutrients to the plant roots due to fixation, leaching or other 

losses (FAO & IFA, 2000). For the majority of food crops and plantation crops data were 

obtained through direct communication with the agricultural department of Padjajaran 

University in Bandung (Padjajaran University, 2013) and verified with the FAO guidelines 

(FAO, 2005). Horticultural fertilizer recommendations were obtained from the Ministry of 

Agriculture (MoA, 2012a), (MoA, 2012b) and literature (Weiss, 2002). As the guidelines of 

Padjajaran University, mention no specific requirements on the composition of organic 

matter, this study interprets organic matter as compost, complying with the national 

regulation (BSN, 2004). Fertilizer recommendations and tree densities are shown in 

Section 1 of the Appendix Chapter 6. 

Step 5. Comparison of recommended and actual fertilizer application: Actual fertilizers application 

rates in the field by farmers vary and are generally less than recommended values as a 

result of insufficient information and financial means (Kariyasa, 2005; Irawan et al., 2012). 

Irawan et al. (2012) provide the percentage of actual inorganic fertilizer use compared to 

the recommended use for rice (68%), maize (37%) and soy bean (42%) for Indonesia. 

For other food crops and all horticultural crops no data on actual use was available. 

Therefore, the average values reported by Irawan et al. (2012) of 50% was used. Actual 

fertilizer use for plantation crops was based on Bambang (2011) who shows that 30% 

and 80% of SHE of oil palm and rubber plantations, respectively, apply fertilizers, 

whereas 100% of LE apply fertilizers. These percentages were interpreted as the fraction 

of recommended fertilizer use in this current study. Large discrepancies between the SHE 

and LE were confirmed by experts (Sinarmas, 2014). In this study the values applied by 
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farmers in the fields are referred to as actual values and also apply to future actual use 

(step 8).  

Step 6. Determination of current total recommended fertilizer use by crop and province: 

Calculation of total recommended fertilizer use was done on basis of the recommended 

dosage per crop (“fertilizers/area”; see step 4) and the provincial current crop production 

area (step 2). 

Step 7. Determination of current total actual fertilizer use by crop and province: The actual 

determined fertilizer use was calculated on the basis of the recommended values (step 4) 

with the percentage of actual use (step 5) multiplied with current provincial crop 

production (step 2). 

Step 8. Determination of recommended and actual future fertilizer use by crop and province: 

Future recommended fertilizer use is obtained by applying the provincial crops growth 

forecasts (step 3) with the recommended actual fertilizer use (step 4). Future actual 

values were based on combination of future recommended fertilizer and the actual used 

(step 5). Implicit in this assumption is that the nutrient use efficiency (yield per unit of 

nutrient input) remains the same. Increased future production can be achieved by 

increased production per hectare (and thus increased nutrient input per hectare), by 

increased area under crop production or a combination of these. 

 

Thus, the forecast of actual fertilizer (nutrient and compost) demand (DEMAct) was calculated 

using the following formula: 

DEMact = [Current prod.] x [Growth] x [Fert. req] x [Act/Recom], in which: 

DEMact: Sum of actual forecasted fertilizer (N, P and K and compost) demand (kt/y) of all 

identified crops (Table A6.1 in the Appendix Chapter 6); 

[Current prod.]: current production in ha/year (Table A6.2 of the Appendix Chapter 6); data were 

aggregated from provincial data; 

[Growth]: growth forecast per crop sector in % (step 3); see Table A6.3 of the Appendix Chapter 6 

for future production areas (ha); 

[Fert. req]: Recommended fertilizer requirement per ha. For trees, these were converted following 

a tree density (step 4), using the data presented in Table A6.1 of the Appendix Chapter 6. 

[Act/Recom]: Ratio of Actual and Recommended fertilizer requirement (step 5). 

 

The  potential P recovery from wastewater that can be recovered in Indonesia from wastewater 

using struvite precipitation on the side stream of digester supernatant and composting of 

produced biological sludge is 0.35 kg P/cap/year (cap = capita) (Kerstens et al., 2015). A 

compost production of 40 kg/cap/year from the treatment of organic solid waste fraction was 

determined as well (Kerstens et al., 2015). Using a conservative value of a P-content of 0.5% 

mass based (Veeken et al., 2005), an additional yearly P-recovery of 0.2 kg/cap/year can be 
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expected, which is in line with reported values elsewhere (Strauss, 2003). Thus, the total P-

recovery from wastewater and organic solid waste fraction amounts to 0.55 kg P/cap/year. The 

specific compost production from solid waste and wastewater sludge was 66 kg/cap/year 

(Kerstens et al., 2015). The potential P-recovery and compost production was based on the 

expected population of 305 million people by 2035 (BPS, 2013). 

 

6.2.2 Duckweed demand 

Duckweed is a valuable protein-rich feedstock for fish production (Journey et al., 1993). In 

Indonesia, most important freshwater aquaculture comprise monoculture of either tilapia or 

common carp (Dey et al., 2005). The contribution of carp and tilapia on the total fresh and 

brackish water aquaculture production amounts to 40% (Dey et al., 2005) and 20% (FAO, 2010), 

respectively. The combined total of 60% of the freshwater and brackish water fish production was 

assumed to be potentially fed with duckweed. 

Fish production per province (in the period 2005-2011) was obtained through BPS (2014) and 

categorized by origin. In 2011 produced fish originated from brackish pond (48%), freshwater 

pond (34%), fish cage (4%), floating fish cage (11%) and rice fields (3%). Cage fish and floating 

fish can relate to both salt water and fresh/brackish water production. However, no data on the 

subdivision was available. In this study, it was assumed that 50% of that production consists of 

fresh/brackish water fish production. Between 2005 and 2009 the total freshwater and brackish 

water fish production increased yearly by 10%. Between 2009 and 2011 the reported annual 

growth was 34%. This increase could be the result of actual increased fish production or, 

alternatively, different or better counting techniques. Because exponential extrapolation of the 

2005-2011 growth rates (17%) may result in unrealistic forecasts, future fish production forecast 

is based on the 2005-2011 (BPS, 2014) linear trend. 

An average fish feeding rate of 450 g fresh duckweed/kg fish/d was applied, based on Hassan & 

Edwards (1992) (660 g/kg fish/d) and El-Shafai et al. (2004) (250 g/kg fish/d). The effect that 

specific consumption rate tends to decrease when fish grow bigger (Hassan & Edwards, 1992) is 

excluded (see Appendix Chapter 6, Section 4 and Table A6.4 and A6.5 for a detailed description 

and provincial breakdown of fish production and duckweed demand). A potential fresh duckweed 

production of 250 kg/cap/year was assumed following a per capita duckweed production from 

domestic wastewater of 15 kg dry material/cap/year (Kerstens et al., 2015) and a 6% dry matter 

content (Hassan & Edwards, 1992). 

 

6.2.3 Plastic production and consumption forecasts and recovery potential  

A number of plastics are used in consumer goods: PE (Polyethelene), PP (Polypropylene) and 

PET (Polyethelene terephthalate) are typically used for plastic bags and bottles, PVC (Polyvinyl 
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chloride) is applied for houseware and toys, and PS (Polystyrene) is often applied for automobile 

parts and electronics (Syarief, 2006). 

In this study the potential recovery of waste plastics to substitute plastic produced in the final 

steps of the process is analyzed. 2005 data of midstream PE, PP, PVC, PS and PET production 

were derived from INAplas (Indonesian Olefin & Plastic Industry Association) (Syarief, 2006). 

2006 and 2012 production data were assessed based on outlook growth numbers of Syarief 

(2006) and corrected for actual PET production in 2012 (Nurhayat, 2013). These calculated 

production (5.6%) and consumption (7%) growth rates were used to determine plastic production 

and consumption till 2025. For the period 2025 until 2035 growth is expected to continue, but a 

more conservative growth pattern of 5% for both production and growth was used to mitigate a 

possible overestimation. No literature could be found on long term plastic production and 

consumption forecasts to verify these long term applied growth rates.  

To identify the potential to substitute conventional produced plastic by recovered plastic, the 

waste plastic recovery was determined. Plastic constitutes 14% of the Indonesian urban solid 

waste and the majority (80%) can potentially be recycled (Aprilia et al., 2013). In the current 

study, 75% was applied as a potential recovery to compensate for efficiency loss. Applying a 

waste production of 2.75 l/cap/d and a densities of 0.25 kg/l (BSN, 1995) a per capita yearly 

plastic waste production of 35 kg is calculated of which 26 kg/cap/year was assumed 

recoverable. 

 

6.2.4 Paper production and consumption forecasts and recovery potential  

The 2007 paper production was obtained from Kemenperin (2007), whereas the 2013 data and 

projected 2017 data were obtained from Handoyo (2014). To derive the 2017 planned production 

capacity, paper production growth until 2024 was defined as 5.5%. Similar to plastic forecasts, 

production increase between 2025 and 2035 was assumed to slow down and defined as 4%. 

Indonesian paper consumption grew 7.5% annually between 1992 and 2007, based on Wahyono 

(2001) and Kemenperin (2007). A more conservative growth of 6% was assumed until the end of 

2024 and a 4% growth between 2025 and 2034. No data on long term consumption and 

production data could be found in literature to verify the long term projection data. The 2011 data 

on imported waste paper categorized by type and country of import were obtained directly from 

the MoI (Kemenperin, 2011). Waste paper content of solid waste (12%) was obtained from Aprilia 

et al. (2013) and a 75% recovery potential (similar to plastic) was applied, resulting in a specific 

waste paper production of 30 kg/cap/year of which 23 kg/cap/year was assumed recoverable. 

 

6.2.5 Forecast impact analysis 

Demand forecasts are subject to uncertainty. Therefore an impact analysis is performed that 

compares alternative growth forecast of production sectors (staple food, planation, horticulture, 
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aquaculture, plastic, and paper). Three growth forecasts for the year 2035 were compared, being 

(1) a reduced forecast using an order 2 polynomial growth rate, (2) a linear forecast (order 1 

polynomial) and (3) exponential growth rate fitted on the first and last available date. The impact 

of different forecasts on the fraction of the resource demand that can be recovered was analyzed.  
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6.3.1 Fertilizer and compost demand and potential recovery 

Figure 6.3 shows the reported and forecasted production quantities for food, plantation and 

horticultural crops in Indonesia. Numeric values are presented in Table A6.2 (Section 2) of the 

Appendix Chapter 6. 

 

 

Figure 6.3 Nationwide reported production quantities (solid circles) based on BPS (2014), MoA 

(2014) and forecasted production (open circles) for food, plantation and horticulture until 2035 

 

Table 6.2 shows the national input of N, P, K and compost based on fertilizer recommendations 

and on the actual nutrient input per crop and sector. Rice and palm oil are presented separately 

because of their large contribution to total nutrient demand. An overview of all calculated 

recommended fertilizer demand per crop is presented in Section 3 (Table A6.3) of the Appendix 

Chapter 6. 
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Table 6.2 Indonesian national demand for nitrogen (N), phosphorus (P), potassium (K) and 

compost as calculated from fertilizer recommendations (Recom) and actual fertilization levels 

Sector Sub 
sector 

Harvested 
Area 
(1000 
ha/year)a 

N (kt/year) P (kt/year) K (kt/year) Compost (kt/year) 

Recom Actual Recom Actual Recom Actual Recom Actual 

Food 
crops 

Total 20,188 2,000 1,200 267 153 749 456 35,619 22,678 

Rice 13,770 1,446 983 162 110 540 367 27,540 18,719 

Othersb 6,418 554 217 104 43 209 89 8,080 3,959 

Plantati
on 

Total 21,884 1,520 938 569 409 1173 774 4,413 2,206 

Palm oil 8,991 382 351 300 276 473 434 0 0 

Othersb 12,893 1,139 588 269 134 701 341 4,413 2,206 

Horticulture 1,908 154 77 46 23 427 213 25,671 12,835 

Total 43,980 3,674 2,215 881 586 2,349 1,444 65,703 37,719 
a Food crops are based on BPS (2014), Plantation and horticulture on MoA (2014)  
b “others” are non-rice and non-palm oil crops in food and plantation sectors and are presented in 

Section 3 (Table A6.3) of the Appendix Chapter 6 

 

Figure 6.4 and Figure 6.5 show the 2015, 2025 and 2035 projection of P and compost 

recommended and actual regional demand per subsector (food, plantation and horticulture). 

Calculated nationwide data are presented in Table 6.3. Numeric values are presented in the 

Appendix Chapter 6 (Table A6.6, Section 5). 

 

Table 6.3 Calculated “actual” and recommended P and compost demand forecast in 2015, 2025 

and 2035 for Indonesia by sub sector 

Resource Year “Actual” and 
recommended value 

Total Food 
crops 

Plantation Horticulture  

P-demand 
(kt/year) 

2015 Actual 675 157 492 26 

Recommended 1,009 273 683 53 

2025 Actual 906 184 686 35 

Recommended 1,344 321 953 70 

2035 Actual 1,130 206 881 43 

Recommended 1,668 357 1,224 87 

Compost 
demand 
(kt/year) 

2015 Actual 40,721 23,269 2,649 14,804 

Recommended 71,448 36,544 5,297 29,607 

2025 Actual 48,359 25,017 3,699 19,644 

Recommended 85,975 39,289 7,397 39,288 

2035 Actual 57,112 27,878 4,749 24,485 

Recommended 102,250 43,783 9,498 48,969 
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In 2035, with an expected population of 305 million people (BPS, 2013), the recoverable P 

potential will amount to nearly 170 kt/year P. This corresponds with 15% of the actual total P 

demand and 10% of the recommended P demand in 2035 (Table 6.3). The recoverable compost 

by 2035 amounts to 20,130 kt/year, which amounts to nearly 20% and 35% of the recommended 

and actual demand, respectively. 

 

6.3.2 Duckweed demand and recovery potential 

Figure 6.6 shows the potential calculated fresh duckweed demand development per region (see 

Figure 6.4 for the regions) in the period 2015-2035.  

 

Figure 6.6 Calculated fresh duckweed demand development 2015-2034 per region in Indonesia 

 

Java accounts for nearly 40% potential duckweed demand while half of all Java fishery is located 

in West Java (BPS, 2014). Sulawesi accounts for about 30% of all potential duckweed demand.  

For a 305 million people population the maximum fresh duckweed production by 2035 

corresponds with 75,000 kt/year. This equals 7% of the calculated (potential) demand. 

 

6.3.3 Plastic production and consumption forecasts and recovery potential  

Figure 6.7 shows the reported Indonesian production and consumption of plastics (2005 and 

2012) and the extrapolated future developments.  
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Figure 6.7 Indonesian reported production (Prod) and consumption (Cons) data (Syarief, 2006; 

Nurhayat, 2013) and extrapolated future data. For the years 2005 and 2012 subcategories (PE, 

PP, PVC, PS and PET) are provided, while forecasts only show total quantities 

 

With a population of 305 million people (BPS, 2013) approximately 8,000 kt plastics can be 

recovered annually in 2035 (Table 6.4). This corresponds with 66 and 68% of the forecasted 

production and consumption respectively. 

 

Table 6.4 Estimated plastic consumption, production (kt/year) and recovery (%) in 2035 in 

Indonesia  

Plastic 
production  

Plastic 
consumption  

Calculated 
recoverable plastic 

Recovered as part 
of production 

Recovered as part of 
consumption 

12,086 11,892 8,036 66% 68% 
  

6.3.4 Paper production and consumption forecasts and recovery potential  

Figure 6.8 shows the reported and forecasted Indonesian paper production and consumption. 

The total demand for waste paper in 2011 amounted to 5 million t/year (APKI, 2012). 

The total amount of imported waste paper in 2011 (Figure 6.9) was 2,450 kt and equals about 

half of the total waste paper demand (APKI, 2012). More than 60% of the waste paper is supplied 

as Old Corrugated Cardboard and the main source of imported waste paper is Singapore, 

accounting for almost 20% of the total (Figure 6.9).  
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and actual demand, respectively. 
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Figure 6.8 Reported (solid rounds and triangles) and forecasted Indonesian paper production 

and consumption (Wahyono, 2001; Kemenperin, 2007; Handoyo, 2014)  

 

 

Figure 6.9 Imported to Indonesia waste paper per type and origin in 2011 (Kemenperin, 2011): 

Old Corrugated Cardboard (OCC), Sorted Office Paper (SOP), Sorted White Ledger (SWL), Old 

Newspaper (ONP), Old Magazine (OMG) and Mixed Paper (Mix). “Others” comprise 35 countries 

that together contribute 10% of the total  

 

In 2013 the total paper production amounted to 13.9 million t/year (Handoyo, 2014) of which an 
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extrapolation of the 2011 data, 3 million t/year of waste paper is expected to be imported to 

Indonesia by 2015 (Table 6.5). With an estimated total demand of 5.8 million t/year of waste 

paper, APKI (2012), local demand for waste paper exceeds 3.1 million t/year by 2015 and 

potentially 6.9 million t/year by 2035. This corresponds with 18% and 31% of the 2035 forecasted 

production and consumption, respectively. It is in line with the calculated amount of 6.9 million 

t/year demand for waste paper by 2035 (Table 6.5).  

 

Table 6.5 Estimated paper consumption, production, import and recovery in Indonesia for 2015 

and 2035 

Parameters Unit 2015 2035 
Paper production  kt/year 15,471 39,118 
Paper consumption  kt/year 8,641 22,907 
Total waste paper demand kt/year 5,871 14,845 
Waste paper imported kt/year 3,033 7,669 
Local waste paper demand kt/year 2,838 7,176 
Recovery potential kt/year 3,052 6,888 
Recovery potential as part of production % 20% 18% 
Recovery potential as part consumption % 35% 31% 
 

6.3.5 Forecast impact analysis 

In Table 6.6 the 2035 forecasted production quantities used in this study are compared with (1) 

an order 2 polynomial growth rate, (2) a linear forecast and (3) exponential growth rate.  

 

Table 6.6 Impact analysis on 2035 production and consumption quantities (kt/year) per sectors 

using an order 2 polynomial growth, a linear growth and exponential growth  

 Forecasts 
Sector Used in this 

studya 
Order 2 
Polynomial growth 

Linear 
growth 

Exponential 
growth 

Food crops production 146,000 168,000 191,000 226,000 
Plantation production 80,000 61,000 80,000 172,000 
Horticulture production 56,000 47,000 56,000 97,000 
Fish (tilapia and carp) 
production 

6,000 4,000 6,000 83,000 

Plastic consumption 12,000 5,000 7,000 14,000 
Plastic production 12,000 6,000 7,000 13,000 
Paper consumption 23,000 9,000 12,000 41,000 
Paper production 39,000 25,000 33,000 65,000 
a Growth forecast used in this study are explained in materials and methods 

 

 Discussion 6.4

To identify the potential to close material cycles in the Indonesian context, we first discuss the 

boundary conditions for our evaluation, the actual demand and recovery potential and forecasted 
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extrapolation of the 2011 data, 3 million t/year of waste paper is expected to be imported to 

Indonesia by 2015 (Table 6.5). With an estimated total demand of 5.8 million t/year of waste 

paper, APKI (2012), local demand for waste paper exceeds 3.1 million t/year by 2015 and 

potentially 6.9 million t/year by 2035. This corresponds with 18% and 31% of the 2035 forecasted 

production and consumption, respectively. It is in line with the calculated amount of 6.9 million 

t/year demand for waste paper by 2035 (Table 6.5).  

 

Table 6.5 Estimated paper consumption, production, import and recovery in Indonesia for 2015 

and 2035 

Parameters Unit 2015 2035 
Paper production  kt/year 15,471 39,118 
Paper consumption  kt/year 8,641 22,907 
Total waste paper demand kt/year 5,871 14,845 
Waste paper imported kt/year 3,033 7,669 
Local waste paper demand kt/year 2,838 7,176 
Recovery potential kt/year 3,052 6,888 
Recovery potential as part of production % 20% 18% 
Recovery potential as part consumption % 35% 31% 
 

6.3.5 Forecast impact analysis 

In Table 6.6 the 2035 forecasted production quantities used in this study are compared with (1) 

an order 2 polynomial growth rate, (2) a linear forecast and (3) exponential growth rate.  

 

Table 6.6 Impact analysis on 2035 production and consumption quantities (kt/year) per sectors 

using an order 2 polynomial growth, a linear growth and exponential growth  

 Forecasts 
Sector Used in this 

studya 
Order 2 
Polynomial growth 

Linear 
growth 

Exponential 
growth 

Food crops production 146,000 168,000 191,000 226,000 
Plantation production 80,000 61,000 80,000 172,000 
Horticulture production 56,000 47,000 56,000 97,000 
Fish (tilapia and carp) 
production 

6,000 4,000 6,000 83,000 

Plastic consumption 12,000 5,000 7,000 14,000 
Plastic production 12,000 6,000 7,000 13,000 
Paper consumption 23,000 9,000 12,000 41,000 
Paper production 39,000 25,000 33,000 65,000 
a Growth forecast used in this study are explained in materials and methods 

 

 Discussion 6.4

To identify the potential to close material cycles in the Indonesian context, we first discuss the 

boundary conditions for our evaluation, the actual demand and recovery potential and forecasted 
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developments in their regards. Second, we identify policy-related issues that should be 

considered to facilitate a transition from a business as usual scenario to a circular economy. 

Third, we list additional resources (e.g. nitrogen, algae) that can be recovered from wastewater 

and solid waste. Fourth, we evaluate the applicability to use the presented methodology for other 

countries.  

 

6.4.1 Potential resource demand and recovery analysis 

To verify the calculated demand and recovery potentials, we discuss the boundary conditions and 

results for the resource that were described in Sections 2 and 3. We then identify how the 

described outcomes are subject to uncertainties in growth forecasts and potential different uses 

of resources. 

 

6.4.1.1 Verification of resource demand and recovery potential 

Phosphorus: 

By 2035 an estimated actual demand of 1,130 kt P per year is calculated of which 78% will be 

used by plantations (Table 6.3). Table 6.2 showed that nearly 50% of the calculated current 

actual P demand is required for the palm oil sector. By 2035 over 70% of the total is expectedly 

demanded by plantations (Table 6.3, Figure 6.4). The majority of palm oil plantations are located 

in Sumatra and Kalimantan (MoA, 2014) and more than 60% of all P is expectedly needed in 

these areas. 

The presented growth of plantation crop production (Figure 6.3) is smaller than forecasted by 

Bambang (2011), but still shows a 100% increase from 2010 to 2035. In comparison for Malaysia, 

a 50% increase of domestic palm oil production is projected for 2035 compared to 2009 (Gan & 

Li, 2014). A decreased growth rate in future for Indonesia compared to past growth rates as used 

by Bambang (2011) seems plausible in the light of restricted expansion of new palm oil plantation 

areas (Gan & Li, 2014). 

The calculated actual N, P and K demand were compared with national statistics of FAO (2014a) 

on fertilizer use (FAOSTAT). There is a considerable discrepancy between the calculated actual 

N, P and K values in Table 6.2 and the data for 2011 from the FAOSTAT database. FAOSTAT 

shows a demand of 2,923 t N/year, 252 t P/year and 854 t K/year, while the calculated (actual) 

values were 2,215 t N/year, 586 t P/year and 1,444 t K/year (Table 6.2). The reported N use by 

FAO is higher than the calculated actual value, whereas for P and K these are lower than 

calculated. Several factors are identified that may explain this discrepancy (see also Appendix 

Chapter 6, Section 6 for a detailed analysis): 

1. Possible incomplete data used by FAOSTAT: Analysis of obtained datasheet suggests that 

not all private estates, and their associated P-consumption by palm oil plantations (Table 6.2) 

are included (IFPA, 2013; FAO, 2014a). A total P-demand of 310 t/year P compared with 252 
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t/year P (FAOSTAT) is calculated in case P-consumptions by palm oil plantations (276 t/year 

P Table 6.2) are excluded.  

2. Difference in used recommended and actual fertilizer rates in calculations. Discrepancy in 

calculated fertilizer demands and FAOSTATS values may further be related to applied 

fertilizer rates (Padjajaran University, 2013)  that differ from other available guidelines (FAO, 

2005; Bambang, 2011); Table 6.7 shows the recommended rice fertilizer rates in this study 

compared to reference rates. Appendix Chapter 6, Section 6 provides an additional analysis 

on fertilizer use for palm oil plantations. 

 

Table 6.7 Recommended rice fertilizer rates (kg/ha/y) in this study compared to reference rates 

Source for fertilizer rate N P K 
This study (Padjajaran University, 2013) 105 12 39 
FAO (2005) 60-100 15-25 4-35 
Bambang (2011) 70 20 14 

 

3. Farmer’s interpretation on fertilizer guidelines. Prices for KCl and  SP-36 (superphosphate, 

36% P2O5) in Indonesia are higher than urea following the ministerial guideline (Kariyasa, 

2005; MoA, 2012c). Consequently, farmers reportedly use KCl and SP36 as complementary 

fertilizers, whereas urea is regarded as the main fertilizer in farming (Kariyasa, 2005). This 

may result in a lower K and P use (as reported in FAOSTAT) compared to recommended 

values (and calculated actual values).  

4. Use of organic fertilizer as a source of N, P and K. FAOSTAT only registers produced 

inorganic fertilizers, whereas organic fertilizers are not included. Organic fertilizers also 

contain N, P and K. Chicken manure is a popular organic fertilizer in Indonesia (Buresh et al., 

2010). In addition, sheep manure production is reported as important as an output as meat 

production (Tanner et al., 2001). The total N and P to be expected from animal manure is 

approximately 400 and 150 kt/year N and P (see Appendix Chapter 6, Section 7 for 

calculation), but it cannot fully explain the discrepancy. 

5. Use of phosphate rock. Direct use of untreated phosphate rock as an alternative to 

commercial mineral fertilizers as SP or TSP (trisodium phosphate) is applied in some regions 

in Indonesia (Yusdar et al., 2007). Phosphate rock is not accounted for in the FAO statistics 

(FAO, 2014b) and application would therefore not be included.  

 

The P-recovery potential for Indonesia is lower than reported values elsewhere. Mihelcic et al. 

(2011) determined that the phosphorus present in urine and feces corresponds with 22% of the 

global P demand, whereas De Graaff et al. (2011) reported that recovery of P from wastewater as 

struvite equals 10% of the current artificial phosphorus fertilizer production in the world (excluding 

P-recovery from solid waste). Lower percentages for Indonesia compared to reported literature 

are attributed to high assumed P fertilizer demand for plantations (Table 6.2)  
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developments in their regards. Second, we identify policy-related issues that should be 

considered to facilitate a transition from a business as usual scenario to a circular economy. 

Third, we list additional resources (e.g. nitrogen, algae) that can be recovered from wastewater 

and solid waste. Fourth, we evaluate the applicability to use the presented methodology for other 

countries.  
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To verify the calculated demand and recovery potentials, we discuss the boundary conditions and 

results for the resource that were described in Sections 2 and 3. We then identify how the 

described outcomes are subject to uncertainties in growth forecasts and potential different uses 

of resources. 
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By 2035 an estimated actual demand of 1,130 kt P per year is calculated of which 78% will be 

used by plantations (Table 6.3). Table 6.2 showed that nearly 50% of the calculated current 

actual P demand is required for the palm oil sector. By 2035 over 70% of the total is expectedly 
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in Sumatra and Kalimantan (MoA, 2014) and more than 60% of all P is expectedly needed in 
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The presented growth of plantation crop production (Figure 6.3) is smaller than forecasted by 

Bambang (2011), but still shows a 100% increase from 2010 to 2035. In comparison for Malaysia, 

a 50% increase of domestic palm oil production is projected for 2035 compared to 2009 (Gan & 

Li, 2014). A decreased growth rate in future for Indonesia compared to past growth rates as used 

by Bambang (2011) seems plausible in the light of restricted expansion of new palm oil plantation 

areas (Gan & Li, 2014). 

The calculated actual N, P and K demand were compared with national statistics of FAO (2014a) 

on fertilizer use (FAOSTAT). There is a considerable discrepancy between the calculated actual 

N, P and K values in Table 6.2 and the data for 2011 from the FAOSTAT database. FAOSTAT 

shows a demand of 2,923 t N/year, 252 t P/year and 854 t K/year, while the calculated (actual) 

values were 2,215 t N/year, 586 t P/year and 1,444 t K/year (Table 6.2). The reported N use by 

FAO is higher than the calculated actual value, whereas for P and K these are lower than 

calculated. Several factors are identified that may explain this discrepancy (see also Appendix 

Chapter 6, Section 6 for a detailed analysis): 

1. Possible incomplete data used by FAOSTAT: Analysis of obtained datasheet suggests that 

not all private estates, and their associated P-consumption by palm oil plantations (Table 6.2) 

are included (IFPA, 2013; FAO, 2014a). A total P-demand of 310 t/year P compared with 252 
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t/year P (FAOSTAT) is calculated in case P-consumptions by palm oil plantations (276 t/year 

P Table 6.2) are excluded.  

2. Difference in used recommended and actual fertilizer rates in calculations. Discrepancy in 

calculated fertilizer demands and FAOSTATS values may further be related to applied 

fertilizer rates (Padjajaran University, 2013)  that differ from other available guidelines (FAO, 

2005; Bambang, 2011); Table 6.7 shows the recommended rice fertilizer rates in this study 

compared to reference rates. Appendix Chapter 6, Section 6 provides an additional analysis 

on fertilizer use for palm oil plantations. 

 

Table 6.7 Recommended rice fertilizer rates (kg/ha/y) in this study compared to reference rates 

Source for fertilizer rate N P K 
This study (Padjajaran University, 2013) 105 12 39 
FAO (2005) 60-100 15-25 4-35 
Bambang (2011) 70 20 14 

 

3. Farmer’s interpretation on fertilizer guidelines. Prices for KCl and  SP-36 (superphosphate, 

36% P2O5) in Indonesia are higher than urea following the ministerial guideline (Kariyasa, 

2005; MoA, 2012c). Consequently, farmers reportedly use KCl and SP36 as complementary 

fertilizers, whereas urea is regarded as the main fertilizer in farming (Kariyasa, 2005). This 

may result in a lower K and P use (as reported in FAOSTAT) compared to recommended 

values (and calculated actual values).  

4. Use of organic fertilizer as a source of N, P and K. FAOSTAT only registers produced 

inorganic fertilizers, whereas organic fertilizers are not included. Organic fertilizers also 

contain N, P and K. Chicken manure is a popular organic fertilizer in Indonesia (Buresh et al., 

2010). In addition, sheep manure production is reported as important as an output as meat 

production (Tanner et al., 2001). The total N and P to be expected from animal manure is 

approximately 400 and 150 kt/year N and P (see Appendix Chapter 6, Section 7 for 

calculation), but it cannot fully explain the discrepancy. 

5. Use of phosphate rock. Direct use of untreated phosphate rock as an alternative to 

commercial mineral fertilizers as SP or TSP (trisodium phosphate) is applied in some regions 

in Indonesia (Yusdar et al., 2007). Phosphate rock is not accounted for in the FAO statistics 

(FAO, 2014b) and application would therefore not be included.  

 

The P-recovery potential for Indonesia is lower than reported values elsewhere. Mihelcic et al. 

(2011) determined that the phosphorus present in urine and feces corresponds with 22% of the 

global P demand, whereas De Graaff et al. (2011) reported that recovery of P from wastewater as 

struvite equals 10% of the current artificial phosphorus fertilizer production in the world (excluding 

P-recovery from solid waste). Lower percentages for Indonesia compared to reported literature 

are attributed to high assumed P fertilizer demand for plantations (Table 6.2)  
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Compost: 

The forecasted recommended horticultural compost demand by 2035 ranges from 24 (actual) to 

nearly 50 million t/year (Table 6.3). This corresponds with 42% and nearly 50% of the total 

calculated compost demand. The total amount of compost demanded in Indonesia may grow 

from the recommended quantity of 65,000 kt/year (Table 6.2) to more than 100,000 kt/ year in 

2035 (Table 6.3). 

Compost as an organic fertilizer is considered an important resource for horticulture (Aye & 

Widjaya, 2006; Rogger et al., 2011) and may increase disease suppressiveness of crops (Veeken 

et al., 2005). In 2001 the Indonesian potential compost demand was estimated as 11 million 

t/year (Aye & Widjaya, 2006), which is only 20% of the actual and 10% of the recommended 2035 

determined demand. Compost is further recognized as a beneficial amendment in soil 

improvement (Moeskops et al., 2010) in, for example, urban landscaping (Sloan et al., 2012). The 

latter option was not included in the current analysis due to lack of local information on landscape 

activities. 

 

Duckweed: 

No information on duckweed demand for aquaculture could be found in literature to compare our 

data with. However, utilizing duckweed in its fresh, green state as a fish feed minimizes handling 

and processing costs and is safe to use, while nutritional requirements of fish are met completely 

(Journey et al., 1993; Islam et al., 2004). The protein content of dry duckweed is comparable to or 

higher than that of other common fish feed ingredients such as fish meal, soy bean, water 

hyacinths or alfalfa (Journey et al., 1993; Cheng & Stomp, 2009).  

 

Plastic: 

The specific plastic recovery value of 35 kg/cap/year fits well with reported values in other Asian 

countries, such as Malaysia (26 kg), Thailand (30 kg), Singapore (45 kg) or Japan (80 kg), but is 

higher than reported 2006 Indonesian values of 9.5 kg/year (Syarief, 2006). Pasang et al. (2007) 

and Chaerul et al. (2013) reported waste plastic production approaching 35 kg/cap/year for 

Jakarta and high income households in Bandung. However, the average reported plastic waste 

production in Bandung was below 10 kg/cap/year (Chaerul et al., 2013). The majority (73%) of 

plastic waste concerns plastic packaging waste (Chaerul et al., 2013). In view of the increasing 

plastic production (Syarief, 2006; GBGIndonesia, 2013) and an average increase of 8% in plastic 

shopping bags (Cornelia et al., 2013) values approaching 50 kg/cap/year could be expected by 

2035 from the current 10 kg/cap/year.  

 

Paper: 

Paper production has shown a continuous increase since the industry experienced a spectacular 

expansion in the 1990s in which output increased nine fold (Jonker et al., 2006). Even during the 
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Asian crisis, total sector production capacity continued to grow as the collapse of domestic 

demand was compensated by an increasing export orientation (Jonker et al., 2006). The 

presented paper recovery values (23 kg/cap/year) relate to household waste generated only and 

excludes paper recovery and recycling from waste office paper. In 2008, the amount of waste 

collected from offices was less than 10% of the total (KNLH, 2008), but sectorial waste generation 

data from neighboring countries show that waste from offices and institutions can amount to 30% 

of the total (Saeed et al., 2009).  

 

6.4.1.2 Sensitivity of forecasts 

The presented forecast demand analysis is subject to uncertainties. These uncertainties relate to 

variations in growth forecasts (Table 6.6), but also in different future uses of the studied 

resources. 

Our analysis used long-term (typically 10 years) historical data to predict the future demand. 

Following an impact analysis using different growth rates, minimum and maximum demand 

values could be identified (Table 6.6). The lower used plantation forecast compared to the 

exponential growth rate was based on changing policies in neighbouring countries that may 

impact Indonesia as well (Gan & Li, 2014).The large difference for fish production in Table 6.6 

between the exponential growth and order 2 polynomial growth or linear growth was attributed to 

the reported huge increase between 2009 and 2011. Paper and plastic consumption and 

production show the biggest variations when comparing the minimum values with used values 

(Table 6.6). Bandara et al. (2007) showed that with increasing income the paper waste 

production increases. Therefore, applied growth rates for the paper and plastic sector seem 

justified in view of increasing economic growth per capita (ADB, 2012) and increases of waste 

plastic (Cornelia et al., 2013).  

Variation in future growth rates affects the potential recovery fraction in relation to the demand. 

The minimum potential recovery is obtained with highest growth forecast and vice versa. For 

example, the calculated maximum potential recovery of compost in relation to the (actual) 

demand in 2035 in Indonesia can be as high as 39% and as low as 21%.  

Table 6.8 shows the impact of maximum and minimum applied sector growth rates on the 

potentially recoverable fraction of the demand (see also Appendix Chapter 6, Section 8).  
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Asian crisis, total sector production capacity continued to grow as the collapse of domestic 

demand was compensated by an increasing export orientation (Jonker et al., 2006). The 
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collected from offices was less than 10% of the total (KNLH, 2008), but sectorial waste generation 

data from neighboring countries show that waste from offices and institutions can amount to 30% 
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variations in growth forecasts (Table 6.6), but also in different future uses of the studied 

resources. 

Our analysis used long-term (typically 10 years) historical data to predict the future demand. 
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impact Indonesia as well (Gan & Li, 2014).The large difference for fish production in Table 6.6 
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Table 6.8 Impact of maximum (exponential growth rates) and minimum (order 2 polynomial) 

growth rates on % potential recoverable resources in 2035 for Indonesia in relation to the 

Recommended (Recom) and Actual demand and Consumption (Cons) and Production (Prod)  

Resource 
P Compost 

Duckweed 
Plastic Paper 

Recom Actual Recom Actual Cons Prod Cons Prod 

Baseline a 10% 15% 20% 35% 7% 68% 66% 30% 18% 

Minimum b 5% 7% 12% 21% 1% 58% 61% 17% 11% 

Maximum c 12% 19% 22% 39% 11% 162% 133% 77% 27% 
a Baseline uses the growth forecast applied in this study; b Minimum potential recovery is 

obtained with highest growth forecast; c Maximum potential recovery is obtained with lowest 

growth forecast 

 

In addition to uncertainties in growth forecast, future demand may be affected by different uses of 

resources. In this paper we assumed that recovered resources will be applied for indicated 

purposes. However, duckweed, as an example, is also considered as a replacement for animal-

derived proteins to enter the European market (van der Spiegel et al., 2013). In addition, 

duckweed may be used as a source for bio-fuel production and is regarded a promising 

alternative for bioenergy production (Cheng & Stomp, 2009; Verma & Suthar, 2015). These 

factors may be an additional driver for duckweed demand. A second example of how new 

developments may affect forecast is the introduction of  environmental friendly plastic bags, made 

from renewable raw materials, such as starch from cassava, corn or others (Cornelia et al., 

2013). These may become an alternative to conventionally produced or recycled plastics. The 

impact of such developments is not further quantified in the current study, but will eventually 

affect demand for resources, such as duckweed and plastics. 

 

6.4.2 Resource recovery as an option to close material cycles 

Insight in demand and supply of recoverable resources may be an incentive for policy makers to 

apply a certain type of wastewater or solid waste technology to assure long-term availability and 

sustainability of scarce (locally available) resources. Long-term availability of worldwide 

phosphorus (Cordell et al., 2011), consumer goods productions (Raitzer, 2010), and, to a lesser 

extent, organic soil in Java (Minasny et al., 2011) are under pressure. Ignoring valuable 

resources in wastewater and solid waste and continue current practices may jeopardize the 

security of future food supply. In addition, resource recovery in the Indonesian context can be 

financially more attractive than the application of conventional (non-resource recovery) systems 

(Kerstens et al., 2015). Especially in Java, the potential to recover resources is considerable, 

because resource recovery technologies are feasible and nearly 60% of the Indonesian 

population lives in Java (Kerstens et al., 2015). To shift from a business as usual scenario to a 

circular economy, a number of issues should be considered. 
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First, the safe use and social acceptability of recovered resources should be assured. P and 

compost demand for agriculture are higher than the recovery potentials from wastewater and 

solid waste (Table 6.8). Even when applying low sector growth rates, the maximum recovery of P 

and compost are, respectively 19% and 39% (Table 6.8). When demand exceeds supply, 

selective marketing of recovered resources or products, which pose no direct threat to humans, 

should be strived for. Potential markets for processed fecal sludge are palm trees, rubber 

plantations as well as fruit trees (WHO, 2006b; Almy, 2008). In addition to health aspects, social 

acceptability of sludge products must be considered. Starkl et al. (2010) describe reluctance in 

use of by-products from human feces, despite (potential) financial benefits. Hence, policy makers 

should consider (1) the origin of recovered resources (e.g. identify the need for source 

separation), (2)  level of hygienization of sanitation by-products, and (3) the perception of 

envisaged users (Koné et al., 2007; Snyman & Vorster, 2011; Raschid-Sally, 2013). 

Second, a circular economy is facilitated when distances between resource demand and supply 

locations are short (Agudelo-Vera et al., 2011). The P-demand is highest in Sumatra, followed by 

Java and Kalimantan. However, only 27% of all 305 million Indonesian people in 2035 will live in 

Sumatra and Kalimantan, whereas these two islands require over 60% of the total P (Figure 4). 

Phosphorus can be recovered for example as struvite or as a nutrient in compost from sewage 

sludge or organic solid waste in (medium) centralized wastewater or municipal solid waste 

systems (Kerstens et al., 2015). However, the application of (medium) centralized (off-site) 

systems is only financially feasible in densely populated urban areas (Kerstens et al., 2015). 

Urbanized areas can be typically found in Java, but far less in Sumatra and Kalimantan, where 

the number of people living in urban areas will be less than 55% in 2035 (BPS, 2013). The 

majority of people in Sumatra and Kalimantan will live in rural areas where septic tanks and pit 

latrines are the prevailing sanitation service. Van Voorthuizen et al. (2008) reported that 95% of 

the P is lost to the effluent when applying septic tanks. As a result the P-demand and P-supply 

locations do not match. Compost production is possible from wastewater sludge and solid waste 

and can be applied on a central and decentral level (Kerstens et al., 2015). The wider application 

possibilities of composting plants may result in a better compost marketing potential compared to 

P marketing. The production of proteins from wastewater using duckweed ponds is a feasible 

option for Indonesia, but requires off-site systems and a large footprint (Kerstens et al., 2015). In 

view of increasing land prices (Navastara & Navitas, 2012) potential benefits of duckweed 

production should outweigh the additional land costs. Application should be considered for 

locations adjacent to urban areas with surrounding aquaculture activities, such as West Java and 

Sumatra.  

Third, policy makers should consider the different stakeholders in the sanitation planning process. 

Recycling of waste plastic and paper products has been predominantly established in Indonesia 

by the informal sector (Chaerul et al. 2013; GBGIndonesia 2013; APKI 2012). To safeguard this 

apparent financially sustainable system, experiences and organization structures and the role of 
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Table 6.8 Impact of maximum (exponential growth rates) and minimum (order 2 polynomial) 

growth rates on % potential recoverable resources in 2035 for Indonesia in relation to the 

Recommended (Recom) and Actual demand and Consumption (Cons) and Production (Prod)  

Resource 
P Compost 

Duckweed 
Plastic Paper 

Recom Actual Recom Actual Cons Prod Cons Prod 

Baseline a 10% 15% 20% 35% 7% 68% 66% 30% 18% 

Minimum b 5% 7% 12% 21% 1% 58% 61% 17% 11% 

Maximum c 12% 19% 22% 39% 11% 162% 133% 77% 27% 
a Baseline uses the growth forecast applied in this study; b Minimum potential recovery is 

obtained with highest growth forecast; c Maximum potential recovery is obtained with lowest 

growth forecast 

 

In addition to uncertainties in growth forecast, future demand may be affected by different uses of 

resources. In this paper we assumed that recovered resources will be applied for indicated 

purposes. However, duckweed, as an example, is also considered as a replacement for animal-

derived proteins to enter the European market (van der Spiegel et al., 2013). In addition, 

duckweed may be used as a source for bio-fuel production and is regarded a promising 

alternative for bioenergy production (Cheng & Stomp, 2009; Verma & Suthar, 2015). These 

factors may be an additional driver for duckweed demand. A second example of how new 

developments may affect forecast is the introduction of  environmental friendly plastic bags, made 

from renewable raw materials, such as starch from cassava, corn or others (Cornelia et al., 

2013). These may become an alternative to conventionally produced or recycled plastics. The 

impact of such developments is not further quantified in the current study, but will eventually 

affect demand for resources, such as duckweed and plastics. 

 

6.4.2 Resource recovery as an option to close material cycles 

Insight in demand and supply of recoverable resources may be an incentive for policy makers to 

apply a certain type of wastewater or solid waste technology to assure long-term availability and 

sustainability of scarce (locally available) resources. Long-term availability of worldwide 

phosphorus (Cordell et al., 2011), consumer goods productions (Raitzer, 2010), and, to a lesser 

extent, organic soil in Java (Minasny et al., 2011) are under pressure. Ignoring valuable 

resources in wastewater and solid waste and continue current practices may jeopardize the 

security of future food supply. In addition, resource recovery in the Indonesian context can be 

financially more attractive than the application of conventional (non-resource recovery) systems 

(Kerstens et al., 2015). Especially in Java, the potential to recover resources is considerable, 

because resource recovery technologies are feasible and nearly 60% of the Indonesian 

population lives in Java (Kerstens et al., 2015). To shift from a business as usual scenario to a 

circular economy, a number of issues should be considered. 
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First, the safe use and social acceptability of recovered resources should be assured. P and 

compost demand for agriculture are higher than the recovery potentials from wastewater and 

solid waste (Table 6.8). Even when applying low sector growth rates, the maximum recovery of P 

and compost are, respectively 19% and 39% (Table 6.8). When demand exceeds supply, 
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the P is lost to the effluent when applying septic tanks. As a result the P-demand and P-supply 
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and can be applied on a central and decentral level (Kerstens et al., 2015). The wider application 

possibilities of composting plants may result in a better compost marketing potential compared to 

P marketing. The production of proteins from wastewater using duckweed ponds is a feasible 

option for Indonesia, but requires off-site systems and a large footprint (Kerstens et al., 2015). In 

view of increasing land prices (Navastara & Navitas, 2012) potential benefits of duckweed 

production should outweigh the additional land costs. Application should be considered for 

locations adjacent to urban areas with surrounding aquaculture activities, such as West Java and 

Sumatra.  

Third, policy makers should consider the different stakeholders in the sanitation planning process. 

Recycling of waste plastic and paper products has been predominantly established in Indonesia 

by the informal sector (Chaerul et al. 2013; GBGIndonesia 2013; APKI 2012). To safeguard this 

apparent financially sustainable system, experiences and organization structures and the role of 
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informal sector should be considered (Sasaki & Araki, 2013). The waste plastic and paper 

processing industries should also be involved in the planning process. In 2009 there were about 

60 registered manufacturers processing recycled materials in Java (Febrina, 2009). The fastest 

growing waste plastic recycling industries are in East Java where production is reported to fulfill 

70% of the plastic pellets needs of East Java (Arifianto & Fajar, 2012). The quality of recovered 

raw materials (e.g. plastics) largely determine their potential to become a replacement of virgin 

plastics (Lazarevic et al., 2010) and may require specific policy interventions to stimulate plastic 

recovery (e.g. introduction of deposits on plastic bottles). In addition, Van Beukering (2001) 

showed that developing countries, such as Indonesia, specialized in the utilization of waste 

paper. Policy makers can support international trade flow discussions to stimulate the use of 

waste paper rather than wood pulp to develop a more sustainable Indonesian pulp and paper 

sector (Raitzer, 2010). Currently, a national 20% recovery target of urban waste is proposed for 

Indonesia (Bappenas, 2014), resulting in a lower plastics and paper recovery potential than the 

calculated recoverable amount. Therefore, in the formulation of recovery targets, the current and 

planned presence of locally based recycling facilities, their local and international stakeholders 

and their needs should be included.  

 

6.4.3 Additional recoverable resources and their demand 

Besides the described resources, there are a number of other resources or products that can be 

recovered from wastewater and solid waste for which markets exist. Nitrogen is another essential 

plant nutrient that is present in wastewater. Processes for the conventional production of N 

fertilizer are based on the energy intensive fixation of atmospheric nitrogen in the Haber-Bosch 

process. Compared to the energy requirement for the Haber-Bosch process, N-recovery from 

wastewater can be energetically favorable (Tervahauta et al., 2013). However, N-recovery 

requires high concentrated flows (e.g. separately collected urine or digester supernatants) and 

relative complex technologies (e.g. stripping, ion exchange) (Maurer et al., 2006). These 

technologies are not found feasible in the current Indonesian context and therefore excluded from 

the current study. Wastewater treatment using duckweed ponds on the other hand is an 

alternative and low cost option of recovering nitrogen in the form of proteins (Bal Krishna & 

Polprasert, 2008). 

Besides duckweed, algae can be used to recover nutrients from wastewater. The use of algae 

ponds as a treatment has been widely practiced in warm climates (Van der Steen et al., 1998; El-

Shafai et al., 2007). Compared to duckweed, the recovery of the algal biomass is complicated 

and only possible by using cost- and knowledge intensive techniques such as flocculation-

flotation using chemicals and centrifugation or combinations of these (Oron et al., 1987; El-Shafai 

et al., 2007). 
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Besides paper and plastic recycling, energy recovery through incineration of paper and plastics 

may have potential benefits (Chen & Chen, 2013). However, incineration is not yet found feasible 

in Indonesia (Aprilia et al., 2012) and was therefore not further analyzed in this study. 

 

6.4.4 Applicability of used methodology in other countries 

The methodologies used in the paper are based on publicly available data from the statistical 

bureau of Indonesia and FAO, supplemented with country specific fertilizer practises and 

interviews with local stakeholders (ministries, associations and universities). This makes the 

methodology for the spatial resource demand for crop nutrients (see framework in Figure 6.2), 

proteins and recoverable plastics and papers applicable for other countries as well. The collected 

data on fertilizer demand per crop area in the online supplementary information section 1 

(required in step 4 in Figure 6.2) can directly be used as indicative values for other tropical 

countries. For non-tropical countries these values can be determined using FAO databases. 

Presented methodology and data (Kerstens et al., 2015) for specific annual per capita recovery 

potentials (P, compost, duckweed and plastics/papers) from wastewater and municipal solid 

waste allows for comparing the recovery potential in relation to their demand. 

Changing populations and distribution and the associated impact on food systems and finite 

resources make the determination of future demand for resources and their local distribution an 

important element in resource management. While many countries struggle in the implementation 

of wastewater and solid waste facilities, various technologies are available to recover resources 

from wastewater and solid waste. When planning wastewater and solid waste infrastructures, the 

developed methodology can thus contribute to a circular resource management while assuring a 

favorable financial perspective.   

 

 Conclusions 6.5

The methodology presented in this paper enables a comparison between resource demands from 

agriculture, aquaculture and the consumer goods sector on the one hand and resource recovery 

potential from wastewater and solid waste on the other. Applying our methodology for the case of 

Indonesia, we can conclude that the current poor state of the Indonesian wastewater and solid 

waste sector offers opportunities for the direct introduction of a circular resource management 

system. Such opportunities manifest in areas where high resource recovery potentials from 

municipal wastewater and solid waste match their demand, such as the urban areas on Java. 

This study demonstrated that by 2035 significant fractions of the Indonesian demand for 

phosphorus (15%), compost (35%), duckweed (7%), plastic (66%), and paper (18%) can be 

satisfied by resource recovery from wastewater and solid waste. Since resource demand exceeds 

potential recovery, selective marketing of resources, focusing on their safe use, should be 

considered.  
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The potential demand for recovered P and compost is highest in Sumatra and Java. Large 

potential duckweed demands are anticipated in Sulawesi. However, there is a geographical 

discrepancy between the potential recovery and demand location of, especially, P and compost. 

In the planning and selection of wastewater and solid waste facilities the location of potential 

markets (agriculture and aquaculture) should be considered.  

Recovery of waste paper and plastic can significantly satisfy the already established demand for 

these products and substitute products manufactured in conventional processes using wood or 

non-renewable fossil fuels.  

The methodology and data may be applied in other countries as well to assess the potential of 

recovery of resources from wastewater and solid waste to satisfy resource demand. 
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The potential demand for recovered P and compost is highest in Sumatra and Java. Large 

potential duckweed demands are anticipated in Sulawesi. However, there is a geographical 

discrepancy between the potential recovery and demand location of, especially, P and compost. 

In the planning and selection of wastewater and solid waste facilities the location of potential 

markets (agriculture and aquaculture) should be considered.  

Recovery of waste paper and plastic can significantly satisfy the already established demand for 

these products and substitute products manufactured in conventional processes using wood or 

non-renewable fossil fuels.  

The methodology and data may be applied in other countries as well to assess the potential of 

recovery of resources from wastewater and solid waste to satisfy resource demand. 
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Appendix Chapter 6 

 

Section 1 Overview of studies crops, fertilizer requirements and tree densities 

 

Table A6.1 Overview of studied crops, recommended fertilizer requirements and tree densities, 

based on Padjajaran University (2013), FAO (2005), MoA (2012a), MoA (2012b), MoA (2014) and 

Weiss (2002) 

Type Number Crop name 
kg fertilizer/ha Fertilizer/tree Tree density 

N P K Organic N P K Organic trees/ha 

(S
ta

pl
e)

 fo
od

 C
ro

ps
 

1 Paddy 105 12 39 2,000            

2 Corn 117 16 26             

3 Soybean 12 24 39             

4 Peanut 0 16 26 3,000            

5 Greenpeal 23 10 26             

6 Cassava 70 16 52 5,000            

7 Sweet Potato 82 16 52 5,000           

P
la

nt
at

io
n 

8 Sugar Palm 0.45 0.45 0.45   204  

9 Cloves 0.16 0.08 0.12 12.50 200  

10 Cashew Nut 0.16 0.03 0.18 50.00 100  

11 Cacao 0.03 0.01 0.03   1,111  

12 Rubber 0.15 0.04 0.14   550  

13 Cinnamon 2 1 1           

14 Coconut 100 22 41           

15 Palm Oil 0.32 0.25 0.39   134  

16 Coffee 0.09 0.02 0.07   1,300  

17 Pepper 0.06 0.03 0.03   2,000  

18 Nutmeg 8 2 4 2,500           

19 Areca Nut 70 47 72           

20 Sugar Cane 308 32 90           

21 Tea 150 44 41           

22 Tobacco 58 21 56           

H
or

tic
ul

tu
re

 

23 Shallot 70 39 131 15,000           

24 Onion 70 30 105 15,000           

25 Potato 187 63 131 30,000           

26 Cabbage 117 31 105 15,000           

27 Tomato 70 20 26 20,000           

28 Cayenne Pepper 70 39 78 20,000           

29 Chive 560 0 0 12,500           

30 Cauliflower 107 63 94 17,500           

31 Chinese Cabbage 233 40 126 17,500           

32 Carrots 70 20 26 15,000           

33 Radish 93 80 0 10,000           

34 Red Bean 23 10 26 0.0           
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35 Long Bean 23 40 65 17,500           

36 Chili 117 30 39 15,000           

37 Paprika 47 40 26 12,500           

38 Terung 140 121 94 0.0           

39 Bean 28 24 52 15,000           

40 Cucumber 56 50 47 20,000           

41 Kangkung 70 0 0 5,000           

42 Spinach 47 20 42 10,000           

43 Melon (Tree) 0.00 0.00 0.00 1.00       12,500  

44 Watermelon (Tree) 0.00 0.00 0.79 1.00       12,500  

45 Cantaloupe (tree) 0.00 0.00 0.00 1.00       18,000  

46 Melinjo (Tree) 0.13 0.03 0.13 40.00            192  

47 Petai (Tree) 0.13 0.03 0.13 40.00              63  

48 Jengkol (Tree) 0.13 0.03 0.13 40.00              72  

49 Avocado (Tree) 0.78 0.00 0.00 10.00            100  

50 Starfruit (Tree) 0.06 0.10 0.20 25.00            300  

51 Duku/ Langsat  
(Tree)     0.01 0.01 0.01 120.00            100  

52 Durian (Tree) 0.08 0.10 0.08 40.00            100  

53 Guava (Tree)         0.16 0.03 0.18 50.00            300  

54 Pink Water (Tree)         0.05 0.01 0.03 60.00            100  

55 Orange (Tree)         0.10 0.04 0.10 20.00            374  

56 Mangga (Tree)         0.08 0.03 0.08 20.00            100  

57 Mangoesteen 
(tree)         0.02 0.00 0.01 20.00            100  

58 Jackfruit (Tree)         0.16 0.03 0.18 35.00            100  

59 Pineaple (Tree)         0.00 0.00 0.00 0.50       24,998  

60 Papaya (Tree)         0.09 0.03 0.07 40.00         1,000  

61 Banana (Tree)         0.16 0.03 0.18 50.00         1,000  

62 Rambutan (Tree)         0.09 0.03 0.13 32.50            100  

63 Salak (Tree)         0.05 0.00 0.00 17.50         1,581  

64 Sapodilla (tree)         0.18 0.00 0.00 2.00              79  

65 Passionfruit (tree)         0.00 0.00 0.00 15.00            886  

66 Soursop (Tree)         0.12 0.06 0.08 17.50            286  

67 Apple (Tree)         0.05 0.00 0.00 40.00            615  

68 Grape (Tree)         0.35 0.16 0.26 20.00            982  
 

Another 7 plantation crops (Tamarind, cotton, kapuk, Vanilla, Fiber Sack/ Hemp, Lemongrass and 

Siwalan) and 3 horticultural crops (squash, strawberry and breadfruit) were studied of which only 

area data was available, but no fertilizer requirements.  The seven “missing” plantation crops 

amounted to 1% of the total plantation area; the missing horticultural area accounted for 1% of 

the total horticultural area.  
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Section 2 Reported and forecasted production quantities for food, plantation 

and horticulture (2000-2035) 

 

Table A6.2 Nationwide reported production quantities (kt/y) based on BPS (2014), MoA (2014) 

and forecasted production (italic font starting from 2015) for food, plantation and horticulture until 

2035 

Year Food crops  Plantation  Horticulture  

2000 81,536 18,307 15,835 

2001 80,449 20,257 16,601 

2002 81,508 21,586 18,689 

2003 85,332 22,927 21,961 

2004 88,512 23,408 23,262 

2005 89,819 24,975 23,732 

2006 89,807 31,024 25,527 

2007 94,024 31,906 25,503 

2008 102,126 32,020 27,413 

2009 108,193 33,244 28,702 

2010 112,744 35,757 25,713 

2011 111,524 37,023 29,008 

2012 116,944 - 29,428 

2013 119,163 - - 

2015 122,410 44,444 33,940 

2020 129,887 53,254 39,489 

2025 136,482 62,065 45,038 

2030 142,029 70,876 50,587 

2035 146,460 79,687 56,136 
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Section 3 Recommended fertilizer per studied crops 

 

Table A6.3 Calculated recommended nutrient demand for Indonesia food (base year 2013), 

plantation (base year 2011), and horticulture (base year 2012) 

type number Crop name 
N-total P-total K-total Compost 

kt/y kt/y kt/y kt/y 

(S
ta

pl
e)

 fo
od

 C
ro

ps
 1 Paddy 1,445.8 162.3 540.3 27,539.8 

2 Corn 450.0 60.6 100.9 0.0 
3 Soybean 6.5 13.1 21.7 0.0 
4 Peanut 0.0 8.2 13.6 1,561.9 
5 Greenpeal 4.3 1.8 4.8 0.0 
6 Cassava 79.6 17.9 59.5 5,686.1 
7 Sweet Potato 13.6 2.6 8.7 831.7 

P
la

nt
at

io
n 

8 Sugar Palm 5.7 5.7 5.7 0.0 
9 Cloves 15.9 8.3 11.5 1,217.6 
10 Cashew Nut 9.4 1.6 10.7 2,889.1 
11 Cacao 57.8 24.8 49.9 0.0 
12 Rubber 291.6 72.2 266.3 0.0 
13 Cinnamon 0.2 0.1 0.1 0.0 
14 Coconut 376.8 82.3 156.3 0.0 
15 Palm Oil 381.8 300.1 472.5 0.0 
16 Coffee 148.4 29.0 112.7 0.0 
17 Pepper 22.6 9.9 9.4 0.0 
18 Nutmeg 1.0 0.2 0.5 306.0 
19 Areca Nut 10.4 7.0 10.7 0.0 
20 Sugar Cane 166.7 17.4 48.7 0.0 
21 Tea 18.6 5.4 5.1 0.0 
22 Tobacco 13.3 4.7 12.8 0.0 

H
or

tic
ul

tu
re

 

23 Shallot 7.0 3.9 13.0 1,492.8 
24 Onion 0.2 0.1 0.3 39.5 
25 Potato 12.3 4.1 8.6 1,979.7 
26 Cabbage 7.5 2.0 6.7 964.2 
27 Tomato 4.0 1.1 1.5 1,134.5 
28 Cayenne Pepper 8.5 4.8 9.6 2,441.8 
29 Chive 32.7 0.0 0.0 730.3 
30 Cauliflower 1.3 0.7 1.1 206.1 
31 Chinese Cabbage 14.2 2.5 7.7 1,068.5 
32 Carrots 2.1 0.6 0.8 440.0 
33 Radish 0.2 0.2 0.0 22.7 
34 Red Bean 0.5 0.2 0.5 0.0 
35 Long Bean 1.8 3.0 5.0 1,325.4 
36 Chili 14.0 3.6 4.7 1,804.1 
37 Paprika 0.0 0.0 0.0 2.0 
38 Terung 7.1 6.1 4.8 0.0 
39 Bean 0.9 0.7 1.6 465.3 
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40 Cucumber 2.9 2.6 2.4 1,025.7 
41 Kangkung 3.7 0.0 0.0 266.8 
42 Spinach 2.2 0.9 1.9 462.1 
43 Melon (Tree) 0.0 0.1 0.2 88.9 
44 Watermelon (Tree) 0.0 1.6 326.2 412.7 
45 Cantaloupe (tree) 0.0 0.1 0.2 78.1 
46 Melinjo (Tree) 0.4 0.1 0.4 128.1 
47 Petai (Tree) 0.3 0.1 0.3 79.2 
48 Jengkol (Tree) 0.1 0.0 0.1 21.4 
49 Avocado (Tree) 1.6 0.0 0.0 21.0 
50 Starfruit (Tree) 0.1 0.1 0.2 23.9 
51 Duku/ Langsat (Tree) 0.0 0.0 0.0 350.5 
52 Durian (Tree) 0.5 0.6 0.5 252.8 
53 Guava (Tree) 0.5 0.1 0.5 146.3 
54 Pink Water (Tree) 0.1 0.0 0.0 80.3 
55 Orange (Tree) 1.9 0.8 2.0 387.0 
56 Mangga (Tree) 1.8 0.7 1.9 439.3 
57 Mangoesteen (tree) 0.0 0.0 0.0 35.7 
58 Jackfruit (Tree) 0.9 0.2 1.1 200.7 
59 Pineaple (Tree) 1.1 0.3 1.7 212.4 
60 Papaya (Tree) 1.1 0.3 0.8 468.0 
61 Banana (Tree) 16.8 2.9 19.0 5,157.9 
62 Rambutan (Tree) 0.9 0.2 1.3 312.9 
63 Salak (Tree) 2.0 0.1 0.0 745.5 
64 Sapodilla (tree) 0.1 0.0 0.0 1.6 
65 Passionfruit (tree) 0.0 0.0 0.0 22.7 
66 Soursop (Tree) 0.2 0.1 0.1 23.4 
67 Apple (Tree) 0.1 0.0 0.0 104.8 
68 Grape (Tree) 0.1 0.0 0.0 3.8 

Total 3,674 881 2,349 65,703 
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Section 3 Recommended fertilizer per studied crops 

 

Table A6.3 Calculated recommended nutrient demand for Indonesia food (base year 2013), 

plantation (base year 2011), and horticulture (base year 2012) 

type number Crop name 
N-total P-total K-total Compost 

kt/y kt/y kt/y kt/y 

(S
ta

pl
e)

 fo
od

 C
ro

ps
 1 Paddy 1,445.8 162.3 540.3 27,539.8 
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P
la

nt
at

io
n 

8 Sugar Palm 5.7 5.7 5.7 0.0 
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H
or

tic
ul

tu
re
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Section 4 Duckweed demand forecast 

The forecasted fish production per province is calculated using the following approach: 

• For the years 2005 until 2011 provincial data were obtained through the BPS (2014). The 

total fresh water fish production for each province (in kt/year) was determined using the 

following formula: 

Fish =  ([brackish pond] + [freshwater pond] + 50% * ([floating fish cage] + [fish cage]) + 

[rice fields]). The 50% value refers to our assumption that half of all cage fish comprises fresh 

water production.  

• Using the linear trend formula (Excel) of the 2005-2011 data, the 2015-2035 forecasts were 

made on fresh water fish productions (Table A6.4).  

 

Table A6.4 Forecasted fresh water fish production per province (kt/year) 

Province 2005 2006 2007 2008 2009 2010 2011 2015 2020 2025 2030 2035 

Aceh 24 32 35 43 38 46 34 51 62 73 84 94 

Sumut 42 39 51 79 75 92 100 145 200 255 309 364 

Sumbar 25 34 48 72 70 83 112 159 227 295 364 432 

Riau 26 26 27 26 35 38 51 59 78 97 116 134 

Jambi 9 10 13 16 20 26 28 41 58 75 92 109 

Sumsel 73 90 102 119 169 199 264 359 512 665 817 970 

Bengkulu 7 8 9 13 14 18 33 41 59 78 96 115 

Lampung 138 173 187 184 102 87 107 111 124 137 150 163 

Babel 1 1 1 1 1 2 2 3 4 5 6 7 

Kepri 0 1 1 0 0 0 3 2 4 5 6 7 

DKI 7 3 4 5 2 15 7 12 16 20 23 27 

Jabar 251 287 309 351 366 529 594 777 1,058 1,339 1,620 1,901 

Jateng 84 90 108 125 135 162 225 281 387 493 599 705 

Yogya 9 10 12 15 18 40 44 64 95 126 156 187 

Jatim 206 152 159 164 167 243 298 315 398 481 565 648 

Banten 21 22 28 28 29 71 74 104 150 196 242 288 

Bali 4 4 4 7 5 7 11 13 18 23 28 33 

NTB 14 19 26 39 35 48 102 124 183 243 303 362 

NTT 0 3 1 1 1 2 2 3 3 4 5 5 

Kalbar 5 6 7 13 13 22 24 36 53 70 87 103 

Kalteng 4 5 4 6 11 19 25 34 52 69 86 103 

Kalsel 11 11 14 19 38 54 61 95 142 188 235 282 

Kaltim 37 29 48 47 49 74 71 99 133 167 202 236 

Sulut 10 7 12 14 14 21 45 51 75 99 123 147 

Sulteng 12 12 21 13 17 28 47 55 78 102 126 150 

Sulsel 138 108 302 277 238 542 609 870 1,266 1,661 2,057 2,452 

Sultra 22 12 11 25 31 51 59 82 120 157 194 232 

Gorontalo 2 2 2 3 3 6 8 11 16 20 25 30 

Sulbar - 14 5 11 15 17 19 29 42 55 68 80 

Maluku 1 0 0 0 1 1 2 2 3 3 4 5 

Maluku 1 0 0 0 1 2 2 3 4 6 7 9 
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Utara 

Papua 

Barat 
0 6 0 1 1 1 4 6 9 13 16 19 

Papua 2 2 2 2 2 2 4 4 5 7 8 9 

Total 1,185 1,217 1,557 1,720 1,718 2,548 3,070 4,041 5,634 7,226 8,819 10,411 

 

To forecast the yearly duckweed demand consumption, the provincial freshwater fish forecasts 

were then multiplied by 60%, corresponding with the combined tilapia and carp fraction (Dey et al. 

2005; FAO 2010). These forecasts were then multiplied by a daily duckweed consumption of 450 

g fresh duckweed/kg fish/d (Hassan & Edwards 1992; El-Shafai et al. 2004), multiplied by 365 

days/year and divided by 1000 to convert to million t/year (Table A6.5). 

 

Table A6.5 Forecasted duckweed demand per province (Million t/year) 

Province 2015 2020 2025 2030 2035 

Aceh 5 6 7 8 9 

Sumut 14 20 25 30 36 

Sumbar 16 22 29 36 43 

Riau 6 8 10 11 13 

Jambi 4 6 7 9 11 

Sumsel 35 50 65 81 96 

Bengkulu 4 6 8 9 11 

Lampung 11 12 14 15 16 

Babel 0 0 0 1 1 

Kepri 0 0 0 1 1 

DKI 1 2 2 2 3 

Jabar 77 104 132 160 187 

Jateng 28 38 49 59 70 

Yogya 6 9 12 15 18 

Jatim 31 39 47 56 64 

Banten 10 15 19 24 28 

Bali 1 2 2 3 3 

NTB 12 18 24 30 36 

NTT 0 0 0 0 1 

Kalbar 4 5 7 9 10 

Kalteng 3 5 7 8 10 

Kalsel 9 14 19 23 28 

Kaltim 10 13 16 20 23 

Sulut 5 7 10 12 15 

Sulteng 5 8 10 12 15 

Sulsel 86 125 164 203 242 

Sultra 8 12 15 19 23 

Gorontalo 1 2 2 3 3 

Sulbar 3 4 5 7 8 

Maluku 0 0 0 0 1 

Maluku Utara 0 0 1 1 1 
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Papua Barat 1 1 1 2 2 

Papua 0 1 1 1 1 

Total 398 555 712 869 1,026 

 

Section 5 Numeric values of P and Compost demand per province 

 

Table A6.6 Calculated actual and recommended (recom) P and compost demand for food crops, 

plantation and horticulture and indicated group of provinces for 2015, 2025 and 2035  

Region Resource Year Food Crops Plantation Horticulture   Total  

S
um

at
ra

 (
pr

ov
in

ce
s 

1-
10

) P-demand 
 
(kt/y) 

2015 
Actual 38 287 7 332 

Recommended 64 383 15 462 

2025 
Actual 45 401 10 455 

Recommended 75 535 19 630 

2035 
Actual 50 514 12 576 

Recommended 84 687 24 795 

Compost 
demand 
  
(kt/y) 

2015 
Actual 6,151 126 3,670 9,947 

Recommended 9,772 252 7,341 17,365 

2025 
Actual 6,613 176 4,870 11,659 

Recommended 10,506 353 9,741 20,599 

2035 
Actual 7,369 226 6,071 13,666 

Recommended 11,707 453 12,141 24,301 

Region Resource Year Food Crops Plantation Horticulture   Total  

Ja
va

 (
pr

ov
in

ce
 1

1-
16

) 

P-demand 
 
(kt/y) 

2015 
Actual 76 35 13 123 

Recommended 133 61 26 220 

2025 
Actual 89 48 17 154 

Recommended 157 85 34 276 

2035 
Actual 99 62 21 182 

Recommended 174 109 42 326 

Compost 
demand 
  
(kt/y) 

2015 
Actual 10,914 506 7,847 19,267 

Recommended 17,166 1,011 15,695 33,872 

2025 
Actual 11,733 706 10,413 22,853 

Recommended 18,455 1,412 20,826 40,694 

2035 
Actual 13,075 907 12,979 26,961 

Recommended 20,566 1,813 25,958 48,338 

Region Resource Year Food Crops Plantation Horticulture   Total  

B
al

i, 
N

T
T

, N
T

B
 (

pr
ov

in
ce

 
17

-1
9)

 

P-demand 
 
(kt/y) 

2015 
Actual 11 9 1 22 

Recommended 22 17 3 42 

2025 
Actual 13 12 2 27 

Recommended 25 24 4 53 

2035 
Actual 15 15 2 33 

Recommended 28 31 5 64 

Compost 
demand 
  

2015 
Actual 1,495 818 941 3,254 

Recommended 2,412 1,636 1,881 5,930 
2025 Actual 1,607 1,143 1,248 3,998 
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(kt/y) Recommended 2,594 2,285 2,497 7,375 

2035 
Actual 1,791 1,467 1,556 4,814 

Recommended 2,890 2,934 3,112 8,936 

Region Resource Year Food Crops Plantation Horticulture   Total  

K
al

im
an

ta
n 

(p
ro

vi
nc

e 
20

-2
3)

 

P-demand 
 
(kt/y) 

2015 
Actual 12 116 2 130 

Recommended 18 144 3 165 

2025 
Actual 14 163 2 179 

Recommended 22 201 4 226 

2035 
Actual 16 209 3 227 

Recommended 24 258 5 287 

Compost 
demand 
  
(kt/y) 

2015 
Actual 1,989 7 736 2,731 

Recommended 2,980 13 1,472 4,465 

2025 
Actual 2,138 9 976 3,124 

Recommended 3,204 19 1,953 5,176 

2035 
Actual 2,383 12 1,217 3,612 

Recommended 3,570 24 2,434 6,028 

Region Resource Year Food Crops Plantation Horticulture   Total  

S
ul

aw
es

i (
pr

ov
in

ce
 2

4-
29

) P-demand 
 
(kt/y) 

2015 
Actual 18 36 3 57 

Recommended 33 62 5 100 

2025 
Actual 22 50 3 75 

Recommended 39 86 7 132 

2035 
Actual 24 64 4 93 

Recommended 43 111 9 163 

Compost 
demand 
  
(kt/y) 

2015 
Actual 2,439 940 1,352 4,730 

Recommended 3,711 1,880 2,704 8,295 

2025 
Actual 2,622 1,313 1,794 5,728 

Recommended 3,990 2,626 3,588 10,203 

2035 
Actual 2,922 1,686 2,236 6,843 

Recommended 4,446 3,371 4,472 12,289 

Region Resource Year Food Crops Plantation Horticulture   Total  

P
ap

ua
, M

al
uk

u 
(p

ro
vi

nc
e 

30
-3

3)
 

P-demand 
 
(kt/y) 

2015 
Actual 1 9 1 11 

Recommended 3 16 1 20 

2025 
Actual 2 13 1 15 

Recommended 3 22 2 27 

2035 
Actual 2 16 1 19 

Recommended 3 29 2 34 

Compost 
demand 
  
(kt/y) 

2015 
Actual 282 252 258 792 

Recommended 503 503 515 1,522 

2025 
Actual 303 351 342 997 

Recommended 541 703 684 1,927 

2035 
Actual 338 451 426 1,216 

Recommended 602 902 852 2,357 

Region Resource Year Food Crops Plantation Horticulture   Total  

i o n wP-demand 2015 Actual 157 492 26 675 
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Papua Barat 1 1 1 2 2 

Papua 0 1 1 1 1 
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2015 
Actual 1 9 1 11 

Recommended 3 16 1 20 

2025 
Actual 2 13 1 15 

Recommended 3 22 2 27 

2035 
Actual 2 16 1 19 

Recommended 3 29 2 34 

Compost 
demand 
  
(kt/y) 

2015 
Actual 282 252 258 792 

Recommended 503 503 515 1,522 

2025 
Actual 303 351 342 997 

Recommended 541 703 684 1,927 

2035 
Actual 338 451 426 1,216 

Recommended 602 902 852 2,357 

Region Resource Year Food Crops Plantation Horticulture   Total  

i o n wP-demand 2015 Actual 157 492 26 675 
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(kt/y) 

Recommended 273 683 53 1,009 

2025 
Actual 184 686 35 906 

Recommended 321 953 70 1,344 

2035 
Actual 206 881 43 1,130 

Recommended 357 1,224 87 1,668 

Compost 
demand 
  
(kt/y) 

2015 
Actual 23,269 2,649 14,804 40,721 

Recommended 36,544 5,297 29,607 71,448 

2025 
Actual 25,017 3,699 19,644 48,359 

Recommended 39,289 7,397 39,288 85,975 

2035 
Actual 27,878 4,749 24,485 57,112 

Recommended 43,783 9,498 48,969 102,250 
 

Section 6 Discrepancy between calculated and FAOSTAT data 

In paragraph 6.4.1.1 of Chapter 6 several reasons for the observed discrepancy between 

calculated and FAOSTAT values were introduced. In the current Section, there are further 

elaborated: 

 

1. Possible incomplete data used by FAOSTAT: Discussions with the FAO experts in Indonesia 

(FAO 2014b) showed that the basis for the FAO reports is the Indonesian Fertilizer 

Association datasheet (IFPA 2013). Analysis of this datasheet suggests that not all private 

estates are included, as the contribution of private estates for use of SP36 (superphosphate, 

36% P2O5) is less than 0.5% of the total SP36 use (IFPA 2013). Because 59% of all palm oil 

plantations (MoA 2014) are privately owned and palm oil is one of the major contributors to 

the P demand (Table 2 Chapter 6) a much higher value would be expected. When the palm 

oil P-demand from Table 2 (Chapter 6) is excluded a total P-demand of 310 t/year P is 

calculated. This value is closer to the reported FAO value of 252 t/year P; 

2. Difference in used recommended and actual fertilizer rates in calculations. In this study the 

used recommended fertilizer rates for N, P and K for rice are respectively 105, 12 and 39 

kg/ha/year, based on recommendations by Padjajaran University (2013). The FAO (FAO 

2005) recommends an N, P and K dosage of respectively 60-100, 15-25 and 4-35 kg/ha/year, 

whereas (Bambang 2011) recommends values of 70, 20, 14 kg/ha/year. Actual demands 

were calculated (Figure 2 of Chapter 6) using the percentage of actual inorganic compared to 

the recommended value based on Irawan et al. (2012). Different (recommended) starting 

points therefore result in different calculated actual quantities. Actual input demand depends 

on a variety of factors, among others, soil characteristics, actual nutrient uptake by the plant, 

combination of fertilizers used and budget availability (Janssen & Guiking 1990; Buresh & 

Witt 2008; Dobermann & Fairhurst 2000). Consequently, applied correction factors of Irawan 

et al. (2012) are not static as was assumed. Irawan et al. (2012) only determined percentage 

of actual inorganic fertilizer rate compared to the recommended value for rice, soy and corn. 

Other values were assumed to use the average of reported values. For plantations the use of 
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fertilizer was made depended on type of plantation (SHE and LE). The impact of made 

assumptions requires further analysis and is excluded from the current study; 

3. Farmer’s interpretation on fertilizer requirements. Prices for KCl and SP-36 in Indonesia are 

higher than urea following the ministerial guideline (MoA 2012a; Kariyasa 2005). 

Consequently, farmers reportedly use KCl and SP36 as complementary fertilizers, whereas 

urea is regarded as the main fertilizer in farming (Kariyasa 2005). Although the effect was not 

quantified by Kariyasa (2005), this may result in a lower K and P use (as reported in 

FAOSTAT) compared to recommended values (and calculated actual values);  

4. Use of organic fertilizer as a source of N, P and K. FAOSTAT only registers produced 

inorganic fertilizers, whereas organic fertilizers are not included. Organic fertilizers also 

contain N, P and K. Chicken manure is a popular organic fertilizer in Indonesia (Buresh et al. 

2010). In addition, sheep manure production is reported as important as an output as meat 

production (Tanner et al. 2001). Parikesit et al. (2005) determined that nearly 70% of dairy 

farmers used manure for application on the land (as compost or as fresh manure) and to gain 

extra income by selling. Limited information is available on the actual amount applied (FAO 

2005).The total N and P to be expected from animal manure is approximately 400 and 150 

kt/year N and P (see Appendix Chapter 6, Section 7 for calculation). This amounts to 

respectively 11 and 16% of the recommended N and P values (Table 2 of Chapter 6). This 

may explain a difference between reported FAOSTAT values and calculated fertilizers 

demand, but it cannot fully explain the discrepancy; 

5. Use of phosphate rock. Direct use of untreated phosphate rock as an alternative to 

commercial mineral fertilizers as SP or TSP is applied in some regions in Indonesia (Yusdar 

et al. 2007). Phosphate rock is not counted by FAO statistics (FAO 2014a) and application 

would therefore not be included. Phosphate rock is present in East Java, Central Java and 

West Java and especially applicable on acid grounds (Sajimin et al. 2001; Rochayati et al. 

2003; Kasno et al. 2009).  

 

Several studies suggest to make palm oil production more sustainable in terms of deforestation, 

land degradation or reuse of crop residues (Yoshizaki et al. 2013; Harmen Smit et al. 2013). 

Contrary, little attention is paid to fertilizer requirements in these studies. The used recommended 

fertilizer rate for palm trees in this study was verified with experts of the biggest palm oil 

plantation holders of Indonesia (Sinarmas 2014a; Sinarmas 2014b) who confirmed that the 

applied recommended rate of 0.25 kg P/tree/year in this study is in line with their current practice. 

This value of 0.25 kg P/tree/year is within the range of actual applied rates of 0.2-0.4 kg 

P/tree/year reported by Von Uexhill (1992), but about half of the 0.46 kg P/tree/year reported by 

Yoshizaki et al. (2013). The recommended P fertilization level for palm oil may lead to P 

accumulation in the soil in the long run as the export of P from the field with palm oil is low (FAO 

2014a). When the P level of the soil increases, the recommended P fertilization should decrease 
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(FAO 2014b) showed that the basis for the FAO reports is the Indonesian Fertilizer 

Association datasheet (IFPA 2013). Analysis of this datasheet suggests that not all private 

estates are included, as the contribution of private estates for use of SP36 (superphosphate, 

36% P2O5) is less than 0.5% of the total SP36 use (IFPA 2013). Because 59% of all palm oil 

plantations (MoA 2014) are privately owned and palm oil is one of the major contributors to 

the P demand (Table 2 Chapter 6) a much higher value would be expected. When the palm 

oil P-demand from Table 2 (Chapter 6) is excluded a total P-demand of 310 t/year P is 

calculated. This value is closer to the reported FAO value of 252 t/year P; 

2. Difference in used recommended and actual fertilizer rates in calculations. In this study the 

used recommended fertilizer rates for N, P and K for rice are respectively 105, 12 and 39 

kg/ha/year, based on recommendations by Padjajaran University (2013). The FAO (FAO 

2005) recommends an N, P and K dosage of respectively 60-100, 15-25 and 4-35 kg/ha/year, 

whereas (Bambang 2011) recommends values of 70, 20, 14 kg/ha/year. Actual demands 

were calculated (Figure 2 of Chapter 6) using the percentage of actual inorganic compared to 

the recommended value based on Irawan et al. (2012). Different (recommended) starting 

points therefore result in different calculated actual quantities. Actual input demand depends 

on a variety of factors, among others, soil characteristics, actual nutrient uptake by the plant, 

combination of fertilizers used and budget availability (Janssen & Guiking 1990; Buresh & 

Witt 2008; Dobermann & Fairhurst 2000). Consequently, applied correction factors of Irawan 

et al. (2012) are not static as was assumed. Irawan et al. (2012) only determined percentage 

of actual inorganic fertilizer rate compared to the recommended value for rice, soy and corn. 

Other values were assumed to use the average of reported values. For plantations the use of 
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fertilizer was made depended on type of plantation (SHE and LE). The impact of made 

assumptions requires further analysis and is excluded from the current study; 

3. Farmer’s interpretation on fertilizer requirements. Prices for KCl and SP-36 in Indonesia are 

higher than urea following the ministerial guideline (MoA 2012a; Kariyasa 2005). 

Consequently, farmers reportedly use KCl and SP36 as complementary fertilizers, whereas 

urea is regarded as the main fertilizer in farming (Kariyasa 2005). Although the effect was not 

quantified by Kariyasa (2005), this may result in a lower K and P use (as reported in 

FAOSTAT) compared to recommended values (and calculated actual values);  

4. Use of organic fertilizer as a source of N, P and K. FAOSTAT only registers produced 

inorganic fertilizers, whereas organic fertilizers are not included. Organic fertilizers also 

contain N, P and K. Chicken manure is a popular organic fertilizer in Indonesia (Buresh et al. 

2010). In addition, sheep manure production is reported as important as an output as meat 

production (Tanner et al. 2001). Parikesit et al. (2005) determined that nearly 70% of dairy 

farmers used manure for application on the land (as compost or as fresh manure) and to gain 

extra income by selling. Limited information is available on the actual amount applied (FAO 

2005).The total N and P to be expected from animal manure is approximately 400 and 150 

kt/year N and P (see Appendix Chapter 6, Section 7 for calculation). This amounts to 

respectively 11 and 16% of the recommended N and P values (Table 2 of Chapter 6). This 

may explain a difference between reported FAOSTAT values and calculated fertilizers 

demand, but it cannot fully explain the discrepancy; 

5. Use of phosphate rock. Direct use of untreated phosphate rock as an alternative to 

commercial mineral fertilizers as SP or TSP is applied in some regions in Indonesia (Yusdar 

et al. 2007). Phosphate rock is not counted by FAO statistics (FAO 2014a) and application 

would therefore not be included. Phosphate rock is present in East Java, Central Java and 

West Java and especially applicable on acid grounds (Sajimin et al. 2001; Rochayati et al. 

2003; Kasno et al. 2009).  

 

Several studies suggest to make palm oil production more sustainable in terms of deforestation, 

land degradation or reuse of crop residues (Yoshizaki et al. 2013; Harmen Smit et al. 2013). 

Contrary, little attention is paid to fertilizer requirements in these studies. The used recommended 

fertilizer rate for palm trees in this study was verified with experts of the biggest palm oil 

plantation holders of Indonesia (Sinarmas 2014a; Sinarmas 2014b) who confirmed that the 

applied recommended rate of 0.25 kg P/tree/year in this study is in line with their current practice. 

This value of 0.25 kg P/tree/year is within the range of actual applied rates of 0.2-0.4 kg 

P/tree/year reported by Von Uexhill (1992), but about half of the 0.46 kg P/tree/year reported by 

Yoshizaki et al. (2013). The recommended P fertilization level for palm oil may lead to P 

accumulation in the soil in the long run as the export of P from the field with palm oil is low (FAO 

2014a). When the P level of the soil increases, the recommended P fertilization should decrease 
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(Syers et al. 2008). Accumulation of P in the soil will depend on the fate of P in crop residues. 

Commonly, all fronds are left on the plantation field (Sinarmas 2014a). The harvested fruits 

contain a substantial (about half) amount of P applied (Von Uexhill 1992) and in case a mill is 

present at the plantation part of the P in fruits can be recycled again (Sinarmas 2014a; Yoshizaki 

et al. 2013).  

 

Section 7 Estimation of N and P applied on land from animal manure 

To estimate the N and P applied on the land (as referred to in Section 6.4.1.1 of Chapter 6), the 

following approach was applied: 

1. Livestock is obtained from the agricultural yearbook on livestock by the Ministry of Agriculture 

(MoA 2010); 

2. N and P excreta for dairy cows, goat, sheep, laying chicken and broiler chicken were obtained 

from Table 3 in Gerber et al. (2005) applying intensity class 3 in Gerber’s article. The ratio 

between beef cattle mineral excreta and dairy cow was obtained from CBS (2009). 

3. In this estimation it was assumed that 70% of all manure would be collected, based on 

Parikesit et al. (2005) and that all manure would be stored, allowing for composting to take 

place; 

4. During composting N-loss takes place, mostly as a result of ammonification (de Guardia et al. 

2010). The level of N-loss differs per feed stock and process conditions. Altuna (2013) 

compares several literatures of which the approximate average of 50% is applied in this 

estimation; 

5. The amount of N and P applied on the land under these conditions is then calculated by: 

[cattle] x [excreta (kg/cattle/year] x [collection rate (%)] x [correction for N-loss]. 

The values are presented in Table A6.7. 

 

Table A6.7 Estimation of yearly N and P deposited on land per type of livestock 

Type of 
livestock 

Millions of 
animals 

N-excreta 
kg/year/type 

P-excreta 
(kg/year/type) 

Collection 
rate 

N-
loss 

N-
total 

P-
total 

Unit 

Dairy cows 0.50 26.0 4.6 70% 50% 4.5 1.6 kt/year 

Beef cattle 13.6 17.9 3.2 70% 50% 85.3 30.3 kt/year 
goat 16.8 15.0 2.2 70% 50% 88.4 25.9 kt/year 
sheep 10.9 15.0 2.2 70% 50% 57.3 16.8 kt/year 
Layer 
chicken 

116.2 0.5 0.1 70% 50% 18.7 9.3 kt/year 

Broiler 
chicken 

1,115.1 0.4 0.1 70% 50% 152.2 58.4 kt/year 

Total 406.4 142.3 kt/year 
 

Section 8 Potential recoverable fraction as part of the demand 

Table A6.8 shows the impact of maximum and minimum applied sector growth rates on the 

potentially recoverable fraction of the demand. It combines: 
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• the 2035 values for compost and P-demand data (Table 6.3 of Chapter 6), the 2035 fresh 

duckweed production (Figure 6.6 of Chapter 6), the 2035 plastic consumption and production 

data (Table 6.4 of Chapter 6) and the 2035 paper production and consumption (Table 6.5 of 

Chapter 6);  

• the maximum and minimum sector growth forecast (Table 6.6 of Chapter 6); 

• the maximum recovery potential, as described in the text, namely P (170 kt/year), compost 

(20,130 kt/year), fresh duckweed (with 75,000 kt/year), recoverable plastic (8,036 kt/year) and 

recoverable paper (6,888 kt/year). 

 

Table A6.8 Impact of maximum (exponential growth rates) and minimum (order 2 polynomial) 

growth rates on % potential recoverable resources in 2035 for Indonesia in relation to the 

Recommended (Recom) and Actual demand and Consumption (Cons) and Production (Prod).  

Resource P Compost Duckweed Plastic Paper 
Recom  Actual Recom  Actual Cons Prod Cons Prod 

Baseline a 10% 15% 20% 35% 7% 68% 66% 30% 18% 
Minimum b 5% 7% 12% 21% 1% 58% 61% 17% 11% 
Maximum c 12% 19% 22% 39% 11% 162% 133% 77% 27% 

a Baseline uses the growth forecast applied in this study; b Minimum potential recovery is 

obtained with highest growth forecast; c Maximum potential recovery is obtained with lowest 

growth forecast 
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Abstract 

Absence of wastewater and solid waste facilities impacts the quality of life of many people in 

developing countries. Implementation of these facilities will benefit public health, water quality, 

livelihoods and property value. Additional benefits may result from the potential recovery of 

valuable resources from wastewater and solid waste, such as compost, energy and phosphorus, 

plastics and paper.  

Improving water quality through implementation of wastewater and solid waste interventions 

requires, among others, an analysis of (i) sources of pollution, (ii) mitigating measures and 

resource recovery potentials and their effect on water quality and health, and (iii) benefits and 

costs of interventions. We present an integrated approach to evaluate costs and benefits of 

domestic and industrial wastewater and solid waste interventions. To support a policy maker in 

formulating a cost- and environmentally effective approach, we quantified the impact of these 

interventions on (1) water quality improvement, (2) resource recovery potential, and (3) 

monetized benefits versus costs. The integration of technical, hydrological, agronomical and 

socio-economic elements to derive these three tangible outputs in a joint approach is a novelty, 

while attempts so far have focused mainly on these aspects individually.  

The approach is demonstrated using the heavily polluted Indonesian Upper Citarum River in the 

Bandung region. Domestic interventions, applying simple (anaerobic filter) technologies were 

economically most attractive with a benefit cost ratio (BCR) of 3.2, but could not reach target 

water quality standards. To approach the target water quality, both advanced domestic (nutrient 

removal systems) and industrial wastewater treatment interventions were required, leading to a 

BCR of 2. Benefits from selling recovered resources represent here an additional driver for 

improving water quality and outweigh the additional costs for resource recovery facilities. While 

included benefits captured some of the major items, these may have been undervalued. Based 

on these findings, water quality interventions justify their costs and are socially and economically 

beneficial. 

 

Keywords: wastewater, solid waste, water quality modelling, economic cost benefit analysis, 

resource recovery  
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 Introduction 7.1

Nearly 40% of the population in developing countries lacks access to improved sanitation facilities 

(WHO & UNICEF, 2015), while an estimated 90% of all wastewater in developing countries is 

discharged untreated directly into rivers, lakes or the oceans (Corcoran et al., 2010). While 

access to improved sanitation facilities in South East Asia has reached 72%, Indonesia is lagging 

behind with only 61% having access (WHO & UNICEF, 2015). Less than 4% of Indonesia’s 

septage sludge is delivered to a treatment plant and treated (WSP, 2013a). Moreover, Indonesia, 

like other developing countries, largely lacks proper solid waste management services and 

suffers from uncontrolled discharge of industrial wastewater (ADB, 2013a, 2014). The absence of 

proper domestic and industrial wastewater and solid waste facilities is associated with a number 

of impacts. 

First, discharge of untreated sewage can lead to adverse health effects on individuals from 

contamination of drinking-water, contamination of irrigated crops or direct contact (Shuval, 2003). 

The World Bank’s Water and Sanitation Program’s (WSP) estimated that poor sanitation led to an 

economic loss of US$ 6 billion annually in Indonesia, equivalent to 2.3% of the national GDP in 

2006 (Napitupulu & Hutton, 2008), with more than half of these costs being health related. Health 

conditions can be improved by wastewater and hygiene interventions (Montgomery & Elimelech, 

2007; Waddington & Snilstveit, 2009; Malekpour et al., 2013). Surinkul & Koottatep (2009) 

showed that E. coli concentrations in canals could be substantially reduced (~4 log) by sewage 

collection and treatment. Currently, 95% of septic tanks in Indonesia are poorly functioning as 

they are not sealed (WSP, 2013b) and thus represent a risk to both public health and the 

environment (Baum et al., 2013). Wright et al. (2013) highlighted the public health risks 

associated with a combination of shallow ground water sources, on-site sanitation (e.g. pit 

latrines) and high population density.  

Second, discharge of untreated wastewater will increase nutrient (nitrogen (N) and phosphorus 

(P)) and organic pollutants (Chemical oxygen demand (COD) and Biological Oxygen Demand 

(BOD)) loads in the exposed water bodies and consequently the surrounding environment. This 

may result in eutrophication and low oxygen levels in (coastal) waters as well as impact 

ecosystem functioning, leading to lower revenues from fisheries and tourism (Hart et al., 2002; 

Fulazzaky, 2010; Suharyanto & Matsushita, 2011; Suwarno et al., 2013). Domestic pollution 

depends on lifestyle and living conditions and varies with the type of residential areas (e.g. urban 

and rural areas) (Ujang & Henze, 2006; MoPW, 2011; Abu Ghunmi et al., 2011). A wide range of 

wastewater treatment systems exists and their feasibility can be linked to residential population 

density and urban/rural status (Kerstens et al., 2015) (see Appendix Chapter 7 Section 1). Not all 

pollution discharged in residential areas will reach the surface water and there is a positive 

correlation between imperviousness and urban density on pollution gradients in receiving water 

bodies (Hatt et al., 2004). In addition to domestic sources, industrial wastewater discharge may 

contribute significantly to water pollution (Fulazzaky, 2010). Management of industrial pollution 
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includes pollution prevention, resource recovery and end-of-pipe wastewater treatment (Orhon et 

al., 2009). Applicable wastewater treatment technologies depend on type of industry, 

biodegradability, toxicity, robustness, and effluent standards (Orhon et al., 2009). Treatment 

combinations of physical pre-treatment, anaerobic and/or aerobic technologies have been 

successfully and widely applied for textile, food & beverage and paper and pulp wastewater 

(Thompson et al., 2001). To allow effluent reuse, post-treatment including filtration, chemical 

oxidation, reverse osmosis and disinfection is needed (Gozálvez-Zafrilla et al., 2008). A challenge 

in managing industrial pollution prevention in Indonesia is limited availability and contradicting 

data on the status of industrial pollution (De Vries, 2012). Water quality is further affected by 

agricultural activities, as a result of fertilizer use, aquaculture and livestock emissions (Abery et 

al., 2005; Suwarno et al., 2013). Improvement of the environment also requires solid waste 

management (Ersoy et al., 2008), distinguishing minimum interventions (all waste is landfilled) 

and interventions in which recoverable waste (e.g. organic waste, paper and plastic) is reduced, 

reused and recycled (3R) (Antonopoulos et al., 2014). Here, the selection of solid waste 

interventions can be linked to residential features (Kerstens et al., 2015).  

Third, the value of recoverable resources from wastewater and solid waste, such as energy, 

water, organics, nutrients, plastic and paper is frequently neglected, whereas the sale of 

recovered resources can assure long-term operational and financial sustainability (Aye & 

Widjaya, 2006; Kerstens et al., 2009; Murray & Ray, 2010; Aprilia et al., 2012). The potential 

demand for recovered resources depends on agricultural activities (e.g. compost for horticulture, 

phosphorus as fertilizer, duckweed for aquaculture) and possibilities to replace conventional 

production processes by processes using recyclables (paper and plastics) (Kerstens, Priyanka, et 

al., in preparation). 

Finally, the absence of sanitation, wastewater and solid waste facilities may accrue socio-

economic impacts, such as travel and waiting time for community or public toilet facilities, loss of 

social capital and equity and decreased property values (Alam, 2008; Fulazzaky, 2010; Winara et 

al., 2011; Hutton, 2013). 

 

Thus, implementation of wastewater and solid waste interventions benefits public health, the 

(aquatic) environment, resource conservation, the economy and people’s welfare. However, 

given that implementation of interventions involves costs in the form of investments, operation 

and maintenance of the facilities, policy makers need to understand the outcomes (benefits) of 

major actions in relation to their costs before making choices (Ward, 2012). For example, 

wastewater interventions to meet a certain water quality may differ from those that aim (a) to 

provide basic access (Baum et al., 2013) or (b) to recover valuable resources from wastewater. 

The Benefit Cost Ratio (BCR) describes benefits of intervention (e.g. health, social, resource 

recovery) relative to its costs (implementation and operation). Given that benefits may require a 

long time to manifest and planned infrastructure are designed for long lifetimes, benefit-cost 
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analysis should use a time horizon of at least 20 years (Ng et al., 2014). A demonstrated BCR of 

one or more – indicating a return on investment of at least 1.0 given the discount rate used - can 

feed into advocacy efforts to raise funding from governments and households, and can even 

convince the private sector to invest if there are financial returns (Hutton, 2013). 

Individual cause-effect relationships have already been established in order to evaluate the costs 

and benefits of different interventions to improve water quality and improve solid waste 

management, such as: (1) the effect of discharging a pollution load on the quality of receiving 

water (e.g. Hatt et al., 2004; Suharyanto & Matsushita, 2011)), (2) the effect of sanitation 

intervention on improvement of public health (e.g. Malekpour et al. (2013)), (3) the effect of 

implementation of wastewater interventions on discharged pollution loads (e.g. Suwarno et al. 

(2013)), (4) economic losses as a result of poor sanitation (e.g. Hutton (2013)), and (5) technical 

and financial feasibility of wastewater and solid waste technologies (e.g. Kerstens et al., (2015)). 

However, no integrated framework exists in the scientific literature that quantifies the effect of 

applicable wastewater and solid waste interventions on (1) water quality, (2) resource recovery 

potential, and (3) monetized benefits and costs. This paper therefore proposes to use a 

combination of methods that describe these individual cause-effect relationships, and synthesize 

them to produce these three tangible outputs. This multi-methods approach then allows policy 

makers to make well-informed choices in wastewater and solid waste planning.  

 

The developed approach can be used on any river basin or delta. In this paper, the Upper 

Citarum River is used as a case study because of its very low water quality combined with its 

impact on the life of millions of people downstream of where major pollution is taking place. The 

Upper Citarum basin (Figure 7.1) is located in the center of the West Java, Indonesia (see also 

Appendix Chapter 7, Section 2, Figure A7.1 and A7.2) and forms the upstream area of Saguling 

reservoir. The Citarum River was listed among the 10 most polluted places in the world as a 

result of domestic and industrial pollution (Gannon, 2013). The area is known for its textile 

production that accounts for over 80% of the industrial water consumption (Kerstens et al., 2013). 

The greater Jakarta area houses approximately 25 million people, and currently receives 40% of 

its domestic, municipal and industrial water from the Citarum River, which is projected to increase 

to 75% in the coming decades (MoPW, 2011). In addition, the Citarum River and its reservoirs 

are used for agriculture, aquaculture and leisure (Fulazzaky, 2010).  
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wastewater interventions to meet a certain water quality may differ from those that aim (a) to 

provide basic access (Baum et al., 2013) or (b) to recover valuable resources from wastewater. 

The Benefit Cost Ratio (BCR) describes benefits of intervention (e.g. health, social, resource 

recovery) relative to its costs (implementation and operation). Given that benefits may require a 

long time to manifest and planned infrastructure are designed for long lifetimes, benefit-cost 
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analysis should use a time horizon of at least 20 years (Ng et al., 2014). A demonstrated BCR of 

one or more – indicating a return on investment of at least 1.0 given the discount rate used - can 

feed into advocacy efforts to raise funding from governments and households, and can even 

convince the private sector to invest if there are financial returns (Hutton, 2013). 

Individual cause-effect relationships have already been established in order to evaluate the costs 

and benefits of different interventions to improve water quality and improve solid waste 

management, such as: (1) the effect of discharging a pollution load on the quality of receiving 

water (e.g. Hatt et al., 2004; Suharyanto & Matsushita, 2011)), (2) the effect of sanitation 

intervention on improvement of public health (e.g. Malekpour et al. (2013)), (3) the effect of 

implementation of wastewater interventions on discharged pollution loads (e.g. Suwarno et al. 

(2013)), (4) economic losses as a result of poor sanitation (e.g. Hutton (2013)), and (5) technical 

and financial feasibility of wastewater and solid waste technologies (e.g. Kerstens et al., (2015)). 

However, no integrated framework exists in the scientific literature that quantifies the effect of 

applicable wastewater and solid waste interventions on (1) water quality, (2) resource recovery 

potential, and (3) monetized benefits and costs. This paper therefore proposes to use a 

combination of methods that describe these individual cause-effect relationships, and synthesize 

them to produce these three tangible outputs. This multi-methods approach then allows policy 

makers to make well-informed choices in wastewater and solid waste planning.  

 

The developed approach can be used on any river basin or delta. In this paper, the Upper 

Citarum River is used as a case study because of its very low water quality combined with its 

impact on the life of millions of people downstream of where major pollution is taking place. The 

Upper Citarum basin (Figure 7.1) is located in the center of the West Java, Indonesia (see also 

Appendix Chapter 7, Section 2, Figure A7.1 and A7.2) and forms the upstream area of Saguling 

reservoir. The Citarum River was listed among the 10 most polluted places in the world as a 

result of domestic and industrial pollution (Gannon, 2013). The area is known for its textile 

production that accounts for over 80% of the industrial water consumption (Kerstens et al., 2013). 

The greater Jakarta area houses approximately 25 million people, and currently receives 40% of 

its domestic, municipal and industrial water from the Citarum River, which is projected to increase 

to 75% in the coming decades (MoPW, 2011). In addition, the Citarum River and its reservoirs 

are used for agriculture, aquaculture and leisure (Fulazzaky, 2010).  
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Figure 7.1 Location of the Upper Citarum River basin (in box) within the Citarum basin 

 

 Materials and Methods 7.2

To assess the impact of wastewater and solid waste interventions on water quality and estimate 

resource recovery and economic returns, the following six consecutive steps were formulated 

(Figure 7.2). In step 1 the river water quality at different locations was collected. This information 

was used as a baseline to determine the impact of different types of interventions. In step 2 the 

sources of pollution COD, BOD, N and P per sector (domestic, industrial and agricultural) were 

determined. An additional assessment on the relative contribution per sector was performed 

considering variations in the pollution load reaching the surface water with different urban areas 

(Hatt et al., 2004) and the status of industrial pollution control (De Vries, 2012). In step 3 

wastewater and solid waste interventions were defined and their associated costs estimated, 

based on Kerstens et al. (2015). The impact on pollution loads discharged to the environment and 

the associated costs were further analyzed by varying treatment technologies and the percent of 

households switching from a septic tank to a sewer system connection. In step 4 the impact of 

different interventions on water quality was determined using a river basin simulation software 

(RIBASIM) (Deltares, 2009). In step 5, five different benefits were monetized: health, access time, 

water quality, environment and revenues from resource recovery (Winara et al., 2011; Kerstens et 

al., 2015). In step 6 the benefits and costs were compared over a 20 year period to estimate the 

benefit-cost ratios. In this final step also a sensitivity analysis was performed to determine the 

impact of reduced health, welfare and revenues from recovered resources and of different capital 

lifespan on the BCR. A description of the individual steps and method for data collection is further 

illustrated using the Upper Citarum River as an example. 
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Figure 7.2 Approach applied to determine the BCR of interventions. (Dashed) blocks show 

activities for which a sensitivity analysis was performed 

 

7.2.1 Step 1: Determination of water quality in Upper Citarum River 

Water quality data for COD, BOD, N and P for the period 2001-2009 in the upper Citarum River at 

Wangisagara, Sapan, Cijeruk, Deyuekholot and Nanjung (Figure 7.1) was obtained through the 

West Java Regional Environmental Agency (BPLHD, 2010a; BPLHD West Java, 2011). 

 

7.2.2 Step 2: Determination of sources of pollution 

Three sources of pollutions were distinguished and assessed for 2010 and 2030, being (A) 

Domestic, (B) Industrial and (C) Agricultural (Table 7.1).  

 

A. Domestic pollution: 

Domestic pollution was determined in five steps. 

1. Determination of specific per person pollution loads: Domestic specific water consumption 

rates followed the Indonesia guidelines (MoPW, 2011) for 6 categories of urban area: (1) 

metropolitan (> 1 million people), (2) large town ( 500,000-1 million people,) (3) medium town 

(100,000-500,000 people), (4) small town (20,000-100,000 people), (5) village (3,000 – 

20,000 people) and (6) rural (<3,000 people). An 80% return factor was used to estimate 

wastewater production from consumed water (DKI, 2005). Metropolitan specific pollution 

loads were based on Kerstens et al. (2015).  

2. Correction of pollution load with varying types of urban status: The relation between urban 

category and pollution loads was reflected using the study of Abu Ghunmi et al. (2011) 

applying a greywater pollution load decrease between urban metropolitan and rural areas of 
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30% of COD and N and 50% of P, while for urban categories in between metropolitan and 

rural areas these were made relative to water consumption data (Table 7.1). Because of lack 

of detailed data, urban and rural black water pollution load rates were assumed the same.  

3. Correction of pollution reaching surface water bodies: Baseline pollution correction 

coefficients (included in Table 7.1) were based on Hatt et al. (2004) and were 100% 

(metropolitan and large towns), 92% (medium town), 83% (small town), 74% (village) and 

65% (rural areas). Thus, only 83% of pollution generated in a small town is expected to reach 

the surface water. As specific information on these coefficients was lacking for the Upper 

Citarum Basin, two alternative scenarios were compared, being (1) where 100% of pollution 

entered the surface water, and (2) where half of the baseline value entered the surface water 

(i.e. 50% for metropolitan and large towns, 46% for medium town, 42% for small towns, 37% 

for village and 33% for rural areas). 

4. Determination of pollution loads reaching the surface water for 2010 and 2030: Total specific 

pollutions loads per location reaching the surface water were calculated applying the specific 

pollution loads (combining step 2 and 3 above) on population developments obtained from 

the Java Spatial Model (JSM). JSM shows the population development for each urban 

category between 2010 and 2030 (MoPW, 2011).  

5. Determination of the number of people with access to wastewater facilities in 2010: The 

pollution loads reaching the water bodies were corrected for interventions already in place. 

The 2010 wastewater access data were obtained from the statistical bureau of Indonesia 

(BPS) and were determined as 52%. 490,000 people were connected to the Bojong Soang 

WWTP (pond systems) in Bandung (Bojong Soang, 2012). 

 

B. Industrial pollution: 

838 industries in the catchment area were categorized by location and type (Table 7.1) and water 

consumption (m3/d) in which data on ground and surface water consumption were obtained from 

the West Java provincial agency for Energy and Mineral Resources (ESDM, 2009) and provincial 

agency for Water Resources Management (PSDA, 2010). Pollution loads were determined by 

effluent flow (using 80% return factor) and effluent concentrations (Table 7.1). Because reliable 

industrial pollution data is lacking (De Vries, 2012), an impact analysis was performed (Table 

7.2). A distinction is made between 1) a best case scenario, 2) a baseline scenario and 3) a worst 

case scenario. These scenarios vary in terms of removal efficiency and percentage of industry 

having a WWTP (Table 7.2). COD removal efficiencies in the best case followed self-reported 

COD removal efficiencies by industries, whereas the worst case effluent COD values followed 

externally measured COD removal efficiencies (De Vries, 2012). N and P are not measured by 

industries and presented values were assumed, based on Orhon et al. (2009). BPLHD (2010) 

reports that 80% of the textile industries comply with the effluent standards, whereas the 

environmental office in nearby Cimahi mentions 3% (KNLH, 2010). Therefore, the baseline case 

Integrated approach to evaluate benefits and costs of wastewater and solid waste management  

231 
 

assumes that 80% of the largest industries (consumption > 2,000 m3/d) treat their wastewater, 

while with decreasing water consumption this percentage decreases with a minimum of 25% 

(Table 7.2).  

 

C. Agricultural pollution: 

The 2010 and 2030 water demand for irrigation was based on MoPW (2011). Pollution 

discharged (Table 7.1) for rice and non-rice crops were based on BWRP (2000).  

 

Table 7.1 Basis for applied Domestic (A), Industrial (B) and Agricultural (C) pollution reaching the 

surface water 

a Based on Kerstens et al. (2015), Abu Ghunmi et al. (2011), and Hatt et al. (2004);  b Based on 

data obtained by authors from Food & Beverage (dairy, brewery) in Indonesia and c Values 

depend on type of paper and pulping process and range from typically 1,500 to over 20,000 mg/l 

COD (Arantes & Milagres, 2007; Orhon et al., 2009). Applied values are based on experience of 

authors for Pulp and Paper South East Asia; d based on BWRP (2000), e Textile industry data 

were determined based on actual measurements of 21 textile industries in project area (De Vries, 

2012) and verified with Orhon et al. (2009); f based on BWRP (2000) 

 

 

 

 

 

 

 

A. Domestic per capita pollution loads reaching surface 

water 
a
 

B. Industrial concentrations in effluent per 

type of industry 

Urban 
Category 

Water 

use 

COD BOD TN TP coliform Type of  
Industry 

COD BOD TN TP 

l/cap/d g/p/d 1/100 ml mg/l 
1. Metropolitan 190 82.2 41.1 12.3 2.1 1 x108 Food & 

beverage b 
5,000 3,000 80 30 

2. Large town 170 81.0 40.5 12.3 2.0 1 x108 Paper c 4,000 1,500 20 10 
3. Medium 
town 

150 73.5 36.7 11.3 1.9 1 x108 Pharma-
ceutical d 

5,000 1,500 127 25 

4. Small town 130 65.3 32.7 10.2 1.7 1 x108 Rubber d 7,340 4,400 1,100 220 
5. Village 100 56.9 28.5 9.1 1.5 1 x108 Textile e 1,350 450 60 20 
6. Rural 30 47.3 23.7 7.9 1.3 1 x108 Others d 280 168 42 8 
C. Agricultural pollution loads (g/Yield.ha )

f 

Type of crops COD BOD TN TP Coliforms 

Rice 45 22.5 21.5 6.5 0 
Non-rice food crops 34 17 4.6 0 0 
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30% of COD and N and 50% of P, while for urban categories in between metropolitan and 

rural areas these were made relative to water consumption data (Table 7.1). Because of lack 

of detailed data, urban and rural black water pollution load rates were assumed the same.  

3. Correction of pollution reaching surface water bodies: Baseline pollution correction 
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Citarum Basin, two alternative scenarios were compared, being (1) where 100% of pollution 

entered the surface water, and (2) where half of the baseline value entered the surface water 

(i.e. 50% for metropolitan and large towns, 46% for medium town, 42% for small towns, 37% 

for village and 33% for rural areas). 

4. Determination of pollution loads reaching the surface water for 2010 and 2030: Total specific 

pollutions loads per location reaching the surface water were calculated applying the specific 

pollution loads (combining step 2 and 3 above) on population developments obtained from 

the Java Spatial Model (JSM). JSM shows the population development for each urban 

category between 2010 and 2030 (MoPW, 2011).  
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The 2010 wastewater access data were obtained from the statistical bureau of Indonesia 

(BPS) and were determined as 52%. 490,000 people were connected to the Bojong Soang 

WWTP (pond systems) in Bandung (Bojong Soang, 2012). 

 

B. Industrial pollution: 

838 industries in the catchment area were categorized by location and type (Table 7.1) and water 

consumption (m3/d) in which data on ground and surface water consumption were obtained from 

the West Java provincial agency for Energy and Mineral Resources (ESDM, 2009) and provincial 

agency for Water Resources Management (PSDA, 2010). Pollution loads were determined by 

effluent flow (using 80% return factor) and effluent concentrations (Table 7.1). Because reliable 

industrial pollution data is lacking (De Vries, 2012), an impact analysis was performed (Table 

7.2). A distinction is made between 1) a best case scenario, 2) a baseline scenario and 3) a worst 

case scenario. These scenarios vary in terms of removal efficiency and percentage of industry 

having a WWTP (Table 7.2). COD removal efficiencies in the best case followed self-reported 

COD removal efficiencies by industries, whereas the worst case effluent COD values followed 

externally measured COD removal efficiencies (De Vries, 2012). N and P are not measured by 

industries and presented values were assumed, based on Orhon et al. (2009). BPLHD (2010) 

reports that 80% of the textile industries comply with the effluent standards, whereas the 

environmental office in nearby Cimahi mentions 3% (KNLH, 2010). Therefore, the baseline case 
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assumes that 80% of the largest industries (consumption > 2,000 m3/d) treat their wastewater, 

while with decreasing water consumption this percentage decreases with a minimum of 25% 

(Table 7.2).  
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discharged (Table 7.1) for rice and non-rice crops were based on BWRP (2000).  
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Table 7.2 Defined scenarios to determine the impact of industrial pollution loads by varying (1) 

removal efficiencies and (2) availability of WWTP based on size of water intake a. 

Scenario 1. % Removal efficiency 2. % industries with WWTP per size of water intake (m3/d)  

COD BOD TN TP 0-100 100-500 500-1,000 1,000-2,000 >2,000 

Best case 90 95 90 50 35 35 60 80 90 

Baseline 65 69 65 36 25 25 50 70 80 

Worst case 40 42 40 22 15 15 40 60 70 
a Table 7.2 shows for example that in the best case scenario, 90% of the industries with a water 

consumption exceeding 2,000 m3/d have a WWTP and removal efficiencies are 90% (COD), 95% 

(BOD), 90% (TN) and (50% (TP) 

 

7.2.3 Step 3: Formulation of interventions and their costs 

Domestic interventions: 

Selection of type of domestic WWT facilities (Table 7.3) was based on the residential features 

following Kerstens et al. (2015). For off-site systems three scenarios were compared to identify 

the effect on the surface water quality and cost: 

1. Simple Technology (ST): Anaerobic filter is applied for medium centralized systems and a 

conventional activated sludge (CAS) for centralized systems; 

2. Advanced Technology (AT): Medium central and central systems apply a CAS with additional 

N, P removal; 

3. Resource Recovery technology (RR): Comprising Aerobic Granular Sludge (AGS) system 

with sludge digestion, P-recovery as struvite and composting of produced sludge. The 

removal efficiencies of AT and RR are the same. 

 

Associated investment and operational costs were based on Kerstens et al. (2015) (see Table 

A7.1 of the Appendix Chapter 7, Section 1). The effects on discharged pollution loads reaching 

the surface water and associated investment costs of a 25%, 50% and 75% switch of households 

currently applying on-sites system to an off-site system were compared.  
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Table 7.3 WWT system selection based on (1) population density and (2) urban/rural category. 

Removal efficiencies of Simple technologies (ST), Advanced Technologies (AT) and Resource 

Recovery (RR) technologies for COD, BOD, TN, TP and coliforms are based on Kerstens et al. 

(2015) 

a Current users in urban areas with a residential density between 25-100 pp/ha apply on-site 

systems, whereas all new development will be served by medium centralized system (Kerstens et 

al. in preparation). b Selection criteria are formulated based on the expected population status in 

2020 (mid-term) 
 

Industrial interventions: 

Three industrial wastewater treatment types were formulated based on currently applied 

technologies (MPS & Nijhuis, 2012) (see Appendix Chapter 7, Section 3): (1) textile wastewater 

using reactive dyes (typically used for traditional batik), apply a CAS and activated carbon for 

color removal, (2) textile wastewater using non-reactive dyes apply CAS followed by Dissolved 

Air Flotation (DAF), and (3) other industries apply pre-treatment (DAF) and CAS. Future effluent 

values should meet at least current standards (KNLH, 2010) defined as 80 mg/l COD, 20 mg/l 

BOD, 10 mg/l N and 10 mg/l P. Investment and operational costs were determined for different 

sizes of treatment capacities, based on available engineering cost standards (see Appendix 

Chapter 7, Section 3).  

 

Municipal Solid Waste (MSW) interventions: 

Solid waste system selection interventions (Table 7.4) and their costs are based on Kerstens et 

al. (2015) and distinguish home composting, landfilling and centralized and decentralized 3R 

application (see Appendix Chapter 7, Section 4). 

 

Table 7.4 MSW system selection for Indonesia as a function of density, urban/rural status 

(Kerstens et al., 2016) 

     Type of area & 
                 density  
Activity 

Rural Urban 
<25 pp/ha >25 pp/ha <100 pp/ha >100 pp/ha 

Collection no yes yes 
Disposal no yes yes 
Level of 3R Home 

composting 
decentralized composting and 
plastic/paper recovery 

central digestion and 
composting and plastic & 
paper recovery 

System Criteria for usea Applied removal efficiencies per type of technology 

Residential 
population 
density (pp/ha) 

Status 2020b COD (%) BOD (%) TN (%) TP (%) Coliforms (%) 

ST AT/
RR 

ST AT/
RR 

ST AT/
RR 

ST AT/
RR 

ST AT/
RR 

On-site <100 Rural/ Urban 40a 45 15 5 90 

CBS >100 Rural 80a 85 15 5 99 

Medium 
Central 

100-250 Urban 
80 

88 
85 

97 
15 

90 
5 

67 
99 

99.9 
Central >250 Urban 88 97 73 29 99.9 
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Residential 
population 
density (pp/ha) 

Status 2020b COD (%) BOD (%) TN (%) TP (%) Coliforms (%) 

ST AT/
RR 

ST AT/
RR 

ST AT/
RR 

ST AT/
RR 

ST AT/
RR 

On-site <100 Rural/ Urban 40a 45 15 5 90 

CBS >100 Rural 80a 85 15 5 99 

Medium 
Central 

100-250 Urban 
80 

88 
85 

97 
15 

90 
5 

67 
99 

99.9 

Central >250 Urban 88 97 73 29 99.9 



Chapter 7 

234 
 

7.2.4 Step 4: Assessment of impact of interventions on pollution loads and 

water quality  

A generic model package (RIBASIM) for simulating the behavior of river basins under various 

hydrological conditions was used to simulate the effect of different interventions on water quality 

development in the Upper Citarum River (Deltares, 2009; Gonenc et al., 2014). Based on 

pollution loads produced in each defined catchment area and resulting water flows concentrations 

are calculated. The RIBASIM model and defined catchment areas are further explained in 

Appendix Chapter 7, Section 5. The pollution loads entering the Upper Citarum River were varied, 

using 6 scenarios (Table 7.5).  

 

Table 7.5 Defined intervention scenario (S1-S6); ST = Simple Technology ; AT = Advanced 

Technology and percentage of population served by a municipal solid waste (MSW) system 

Name Description 

S1: Baseline 2010: Baseline situation 

S2: No intervention 2030: Baseline case; same WWT access percentage as 2010 applied. Only 

correction for population growth for WWT and MSW 

S3:  

 

25% ST 2030: 100% Domestic access, use ST and 25% switch + 100% MSW  

25% AT 2030: 100% Domestic access, use AT and 25% switch + 100% MSW  

50% ST 2030: 100% Domestic access, use ST and 50% switch + 100% MSW  

50% AT 2030: 100% Domestic access, use AT and 50% switch + 100% MSW  

75% ST 2030: 100% Domestic access, use ST and 75% switch + 100% MSW  

75% AT 2030: 100% Domestic access, use AT and 75% switch + 100% MSW  

S4: Industrial only 2030: Industrial WWT intervention; 100% of big (> 1, 000 m3/d), 90% of medium 

(500-1,000 m3/d), 80% small (100-500 m3/d), and 75% of very small (< 100 

m3/d) sized industries apply intervention. Domestic WWT, MSW interventions 

follow S2 

S5: 25-75% ST/AT 2030: Combination of scenario 3 and 4 

S6a: 25-75% RR 2030: Same as S5, using recovery technologies for domestic, industrial effluent 

recycling and MSW 
a Except for S6, where a MSW resource recovery based system is applied, all other cases apply 

a conventional MSW system (no resource recovery) 

 

The output of the 2010 RISBASIM average pollutant concentrations was calibrated based on the 

average measured concentration (step 1).  

 

7.2.5 Step 5: Benefits analysis of different interventions 

Five economic benefits of wastewater and solid waste management improvements were defined 

following Hutton (2013) and Kerstens et al. (2013): 
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A. Health: 

Averted costs of fecal-oral disease from improved on-site sanitation and wastewater 

management: An average disease reduction of 36% by on-site sanitation and an additional 20% 

by adding improved off-site facilities was applied (Moraes et al., 2003; Waddington et al., 2009; 

Barreto et al., 2010). The average annual health cost per 5 member family as a result of 

unimproved sanitation was US$ 316 (Winara et al., 2011). 

Associated averted health impacts (infectious diseases and skin complaints) of less exposure 

during flooding events: Reported health cases during a period of several flooding events (January 

- March 2009) were compared to the same period in a non-flood year (January to March 2010) 

and was scaled to reflect all the flooded communities in the Citarum River basin, resulting in an 

estimated 15,000 averted cases of diarrhea in an average year (Kerstens et al., 2013). The 

economic value was estimated by multiplying the average number of additional cases per year by 

the unit cost of inpatient (hospitalized) and outpatient services, including productivity losses 

(Winara et al., 2011). 

 

B. Access time:  

Value of time savings from reduced travel time and/or queuing for meeting sanitation needs. An 

average daily gain of 115 minutes per household with an annual value of US$ 95 per household 

is used (Winara et al., 2011). Only the time of adults and school-aged children were included, 

valued at 30% and 15% of the hourly rate implied by the GDP per capita, respectively (Gwilliam, 

1997). This figure was applied to the access gain afforded by on-site sanitation facilities of 45% of 

households for the period from 2010 until 2030. 

 

C. Water:  

Reduced drinking water treatment costs to households and industries. The total cost of water 

treatment (including both capital and operating costs) using surface water of a better quality 

source will decrease from 0.13 to 0.06 US$/m3 (MoPW, 2011). This saving was multiplied by the 

assessed annual production of water from surface water sources (207 million m3 for domestic and 

70 million m3 for industrial consumers) in 2030. 

Improved fish yields from farming in downstream lakes due to improved water quality. Data 

collected through interviews with the regional Fisheries Office showed a decrease in fish catch of 

5,000 ton/year in recent years (WSP, 2012). Fish kills in Saguling (Figure 7.1) related to 

discharge of untreated wastewater have been described by Hart et al. (2002) and Abery et al. 

(2005). By 2030 the fish capture is estimated to increase by 8,000 metric tons per year (WSP, 

2012). The increase of improved water quality was assumed to account for one-third of this 

expected annual gain of farmed fish in the Citarum basin (Kerstens et al., 2013). A market prices 

of fish of 1.5 US$/kg was used (WSP, 2012). 
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a Except for S6, where a MSW resource recovery based system is applied, all other cases apply 

a conventional MSW system (no resource recovery) 

 

The output of the 2010 RISBASIM average pollutant concentrations was calibrated based on the 

average measured concentration (step 1).  
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Barreto et al., 2010). The average annual health cost per 5 member family as a result of 
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average daily gain of 115 minutes per household with an annual value of US$ 95 per household 
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Reduced drinking water treatment costs to households and industries. The total cost of water 

treatment (including both capital and operating costs) using surface water of a better quality 

source will decrease from 0.13 to 0.06 US$/m3 (MoPW, 2011). This saving was multiplied by the 

assessed annual production of water from surface water sources (207 million m3 for domestic and 

70 million m3 for industrial consumers) in 2030. 

Improved fish yields from farming in downstream lakes due to improved water quality. Data 

collected through interviews with the regional Fisheries Office showed a decrease in fish catch of 

5,000 ton/year in recent years (WSP, 2012). Fish kills in Saguling (Figure 7.1) related to 

discharge of untreated wastewater have been described by Hart et al. (2002) and Abery et al. 

(2005). By 2030 the fish capture is estimated to increase by 8,000 metric tons per year (WSP, 

2012). The increase of improved water quality was assumed to account for one-third of this 

expected annual gain of farmed fish in the Citarum basin (Kerstens et al., 2013). A market prices 

of fish of 1.5 US$/kg was used (WSP, 2012). 
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D. Environment:  

Reduced frequency of river and reservoir dredging due to improved sludge and waste 

management. An estimated 35 l/person/year of septic waste (WSP, 2013b) and 11% and 17% of 

domestic urban and rural solid waste (Ministry of Health, 2010) accumulating to nearly 500 

kt/year (t=tonne) are currently discharged to the surface water and will be prevented from being 

disposed in the surface water in 2030 with the described interventions (Table 7.5). With a cost of 

dredging estimated at US$ 3.76 (MoPW, 2011) per ton of sediment (assuming no degradation), 

the total annual cost averted was estimated. 

Rise in land prices due to improved aesthetics of riverside and lakeside real estate. Currently the 

Citarum riverside area is not developed due to water pollution. However, the area is expected to 

become a place where riverside property could be developed for inhabitants, small businesses, 

and tourist facilities in a situation where water quality is improved. The current agricultural land 

price (10.7 US$/m2) in the vicinity of Bandung was used as a benchmark for current riverside land 

prices. The current market suggests that land prices can climb to 71.3 US$/m2 in highly desirable 

locations (MoPW, 2011). In this study 50% of this increase is attributed to improved water quality. 

This value was multiplied by an estimated 50 ha of land that could be developed each year after 

the water quality improvements have occurred (Kerstens et al., 2013). 

Averted maintenance costs of hydro-electric facilities. Improved solid waste management would 

avert the current costs of US$ 0.1 million (MoPW, 2011) to evacuate the solid and unmanaged 

sludge waste to avoid equipment damage in the hydroelectric facility (Kerstens et al., 2013) . 

 

E. Recovery of resources:  

In scenario 6, resource recovery was considered (see also Table A7.4 in the Appendix Chapter 7, 

Section 4): 

• Off-site wastewater systems: Production of energy (sludge digestion), struvite (from centrate) 

and compost (digested sludge composting); 

• MSW: Energy and compost production from organic waste and recovery of plastics and 

paper; 

• Industrial wastewater: industries with a water consumption exceeding 2000 m3/d reused 80% 

of the effluent, whereas for industries using 1000-2000 m3/d this was 50%.  

To compare the production (recovery) of resources with the potential demand in the Upper 

Citarum River catchment area in 2030, the compost, struvite, plastic and paper demand in the 

whole of West Java obtained from Kerstens, Priyanka, et al. (in preparation) was corrected for 

people living in the Upper Citarum River basin area. The amount of recycled water from industries 

was compared to the total domestic and industrial water demand in 2030 in the catchment area 

(MoPW, 2011). Energy production from digestion is compared to the energy demand for domestic 

wastewater treatment in the area applying aerobic granular sludge technology (Kerstens et al., 

2015). 
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7.2.6 Step 6: Assessment of Benefits versus Costs  

To relate benefits and costs to either wastewater or solid waste interventions, BCR’s were 

presented separately. To analyze the individual impact of domestic, industrial and resource 

recovery interventions the BCR of scenarios S3: (50% ST and S3: 50% AT), S4: (Industrial 

interventions only), S5: (50% ST; S5: 50% AT) and S6 (50% RR) were determined (see also 

Table 7.5). A sensitivity analysis was performed in which input values that have the highest 

anticipated impact were varied: (1) health and access time benefits reduced from 100% to 50%, 

(2) lifespan of all wastewater and solid waste facilities varied from 20 years to 15 and 40 years, 

and (3) resource selling price reduced to half baseline values (Hutton, 2013; Kerstens et al., 

2013). Health and access time benefits were all attributed to domestic intervention. Water quality 

and environmental benefits were attributed to the fraction of COD load discharged by domestic 

and industrial sources respectively.  

 

 Results  7.3

7.3.1 Water quality in Upper Citarum River 

Figure 7.3 shows the average 2000-2009 water quality from upstream to downstream locations. 

Maximum allowable concentrations are defined in class II standard (GoI, 2001) and are COD 25 

mg/l, BOD 3 mg/l and P 0.2 mg/l. From Sapan on (Figure 7.1) all measured values exceed these 

standards. Concentrations in several Citarum branches passing high density urban areas, show 

COD values approaching 500 mg/l and pathogen levels as high as 107 Units/100 ml (BPLHD 

West Java, 2011).  

 

 

Figure 7.3 Average and standard variations of COD, BOD (primary Y-axis) and N, P (secondary 

Y-axis) concentrations at indicated locations in the upper Citarum (2000-2009) (BPLHD, 2010a) 

and COD, BOD and N limits 

0

1

2

3

4

5

6

7

0

20

40

60

80

100

120

140

Wangisagara Sapan Cijeruk Dayeuhkolot Nanjung

N
, 
P

 (
m

g
/l

)

C
O

D
, 
B

O
D

 (
m

g
/l

)
BOD COD CODlimit BODlimit

Total-P Total-N Plimit



Chapter 7 

236 
 

D. Environment:  
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7.3.2 Sources of pollution 

Current cumulative pollution loads in the Upper Citarum River basin of COD (585 t/d), BOD (264 

t/d), TN (91 t/d) and TP (20 t/d) were determined as the baseline values (Table 7.6). The 

sensitivity analysis with variations in domestic pollution coefficient (Hatt et al., 2004) and 

performance of industries shows considerable differences with the baseline scenario (Table 7.6) 

with COD loads varying between 325 and 688 t/d (see also Appendix Chapter 7, Section 7).  

 

Table 7.6 COD, BOD, TN and TP pollution loads reaching the surface water by source for the 

baseline scenario and varying pollution correction factors and industrial practices 

Source Scenario COD 
(t/d) BOD (t/d) TN (t/d) TP (t/d) 

Domestic 
Baseline loads 388 188 68 12 

100% reaches surface water 440 213 78 14 

Half of baseline loads reach surface water  194 94 34 6 

Industrial  
Baseline 163 60 6 2.6 

Best case 98 33 4 2.2 

Worst case 215 80 8 3.0 

Agriculture  34 17 16 5 

Total 
Baseline a (S1) 

585 264 91 20 
Minimum 

b 
325 144 54 13 

Maximum 
c
 688 310 103 22 

a Total baseline values comprise domestic and industrial baseline loads + agricultural loads 

b Total minimum values add domestic low pollution correction coefficient and Industrial best case 

+ agricultural loads  
c Total maximum values add domestic high pollution correction coefficient and Industrial worst 

case + agricultural loads 

 

7.3.3 Effect of selected interventions on costs and pollution loads 

The domestic pollution loads entering the Upper Citarum River depend on (1) the type of 

technology applied (simple versus advanced) and (2) the rate of current households applying on-

site systems in urban areas that will switch to an off-site system (Figure 7.4). The use of 

advanced compared to simple technologies has a minor impact on COD removal in the range of 

3-4%, but a major impact on N-removal in which a rate of 25% households switching to off-site 

systems leading to a 29% difference and a rate of 75% households switching to off-site systems 

leads to a 37% difference (Figure 7.4). 

When increasing the switch factor from 25% to 75%, the additional removed COD and N 

increased with 5% and 1% for simple technologies and 6% and 9% for advanced technologies. 

BOD removal follows the COD trend, whereas P removal follows the N trend. Thus, the 

application of advanced technologies or a higher rate of people switching from on-site system to 

off-site systems mainly affects the additional nutrient removal, while organic removal is less 
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affected. The numeric values of this analysis and further elaboration on costs of interventions and 

their impact on water quality are described in the Appendix Chapter 7, Section 7. 

 

 

Figure 7.4 Calculated domestic COD, BOD (left) and N, P (right) pollution loads per type of 

intervention and their investment costs (secondary y-axis). S1 (baseline), S2 (no intervention) and S3 

(domestic interventions) applying simple (ST) or advanced technologies (AT) with increasing (25%, 

50% and 75%) values for urban on-site users that switch to off-site systems  

 

The industrial pollution load amounts to 28% of the total load (Table 7.6), but industrial 

interventions can result in a relatively large COD reduction (35%) compared to the combined 

domestic and industrial COD reduction (see also Appendix Chapter 7, Section 7). 

 

7.3.4 Effect of interventions on water quality 

Figure 7.5 (A-F) shows the effect of interventions on the year round average water quality at 

different locations. The location names are approximate locations, as RIBASIM calculates 

concentrations in defined segments of a river (see Appendix Chapter 7, Figure A7.8). Without 

additional interventions all concentrations will increase compared to the 2010 values (Figure 7.3) 

with values as high as 100 mg/l of COD (Figure 7.5A). The modeled pollutant concentrations in 

water entering Saguling reservoir (approximate location Nanjung) are 80 mg/l COD, and 7 mg/l 

TN and 1 mg/l TP. When applying S3 with 50% AT (Figure 7.5B) a considerable drop in all 

pollution concentrations is achieved, whereas the introduction of industrial interventions result in 

approximately 20% COD & BOD removal and about 4% N & P removal (Figure 7.5C). The 

combination of these interventions (S5: 50% AT; Figure 7.5D) results in concentrations  of 30 

mg/l for COD, 10 mg/l for BOD, 3.4 mg/l for TN and 0.7 mg/l for TP . The maximum removal 

scenario (Figure 7.5F) results in values approximating the class II standard (COD < 25, BOD< 3, 

P<0.2 mg/l). Comparing Figure 7.5E (ST) with Figure 7.5F (AT) shows limited impact on COD or 
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7.3.2 Sources of pollution 

Current cumulative pollution loads in the Upper Citarum River basin of COD (585 t/d), BOD (264 

t/d), TN (91 t/d) and TP (20 t/d) were determined as the baseline values (Table 7.6). The 

sensitivity analysis with variations in domestic pollution coefficient (Hatt et al., 2004) and 

performance of industries shows considerable differences with the baseline scenario (Table 7.6) 

with COD loads varying between 325 and 688 t/d (see also Appendix Chapter 7, Section 7).  

 

Table 7.6 COD, BOD, TN and TP pollution loads reaching the surface water by source for the 

baseline scenario and varying pollution correction factors and industrial practices 
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Worst case 215 80 8 3.0 
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 688 310 103 22 

a Total baseline values comprise domestic and industrial baseline loads + agricultural loads 

b Total minimum values add domestic low pollution correction coefficient and Industrial best case 

+ agricultural loads  
c Total maximum values add domestic high pollution correction coefficient and Industrial worst 

case + agricultural loads 
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technology applied (simple versus advanced) and (2) the rate of current households applying on-

site systems in urban areas that will switch to an off-site system (Figure 7.4). The use of 
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3-4%, but a major impact on N-removal in which a rate of 25% households switching to off-site 
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affected. The numeric values of this analysis and further elaboration on costs of interventions and 

their impact on water quality are described in the Appendix Chapter 7, Section 7. 

 

 

Figure 7.4 Calculated domestic COD, BOD (left) and N, P (right) pollution loads per type of 

intervention and their investment costs (secondary y-axis). S1 (baseline), S2 (no intervention) and S3 

(domestic interventions) applying simple (ST) or advanced technologies (AT) with increasing (25%, 

50% and 75%) values for urban on-site users that switch to off-site systems  

 

The industrial pollution load amounts to 28% of the total load (Table 7.6), but industrial 

interventions can result in a relatively large COD reduction (35%) compared to the combined 

domestic and industrial COD reduction (see also Appendix Chapter 7, Section 7). 

 

7.3.4 Effect of interventions on water quality 

Figure 7.5 (A-F) shows the effect of interventions on the year round average water quality at 

different locations. The location names are approximate locations, as RIBASIM calculates 

concentrations in defined segments of a river (see Appendix Chapter 7, Figure A7.8). Without 

additional interventions all concentrations will increase compared to the 2010 values (Figure 7.3) 

with values as high as 100 mg/l of COD (Figure 7.5A). The modeled pollutant concentrations in 

water entering Saguling reservoir (approximate location Nanjung) are 80 mg/l COD, and 7 mg/l 

TN and 1 mg/l TP. When applying S3 with 50% AT (Figure 7.5B) a considerable drop in all 

pollution concentrations is achieved, whereas the introduction of industrial interventions result in 

approximately 20% COD & BOD removal and about 4% N & P removal (Figure 7.5C). The 

combination of these interventions (S5: 50% AT; Figure 7.5D) results in concentrations  of 30 

mg/l for COD, 10 mg/l for BOD, 3.4 mg/l for TN and 0.7 mg/l for TP . The maximum removal 

scenario (Figure 7.5F) results in values approximating the class II standard (COD < 25, BOD< 3, 
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BOD removal, while considerable extra N, P removal is shown when using advanced instead of 

simple domestic technologies.  

 

  

  

  

Figure 7.5 Modelled COD, BOD (primary Y-axis) and N, P (secondary Y-axis) concentrations at 

indicated locations in 2030 with varying switch factors % and simple (ST) or advanced 

technologies AT). A: S2, no intervention; B. S3: 50% AT); C. S4: Industrial only; D. S5: 50% AT; 

E. S6: 25% ST; F. S6: 75% AT. Limits for COD, BOD, and P are 100 mg/l, 3 mg/l and 0.2 mg/l  
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To reach the desired water quality levels (class II) both industrial and domestic municipal 

interventions are needed. In addition, the applied off-site technologies should also include N and 

P removal, requiring more advanced and more costly technologies (see Figure 7.4) compared to 

the application of only anaerobic filters.  

 

7.3.5 Benefits of interventions 

The maximum quantified economic benefits are US$ 430 million per year in which health benefits 

account for 39% (Figure 7.6).Health benefits largely result from reductions in fecal-oral diseases, 

since (1) the people without access to wastewater (on-site and Bojong Soang WWTP) facilities 

(48%) all have access by 2030 (55.2% of health benefits), and (2) people that have access to a 

well-managed off-site or fecal sludge management system increased from 7% to 73%, (44.6% of 

health benefits). Associated averted health impact due to irregular flooding events is only US$ 0.3 

million.  

Convenience and time savings are among the top five reasons for having a latrine in the home 

area (Winara et al., 2011). Based on Winara et al. (2011) a mean annual gain of US$ 77 million 

was determined for an additional 45% of the population in 2030 having access to their own latrine 

facilities. This estimate is conservative as (1) it excludes travel needs for urination purposes, and 

(2) time is valued conservatively at 30% of the GDP per capita at hourly values.  

US$ 13.9 million of the total US$ 23 million reduction in water treatment cost will accrue to the 

public water utilities and their consumers, while industries are expected to benefit US$ 4.7 million 

annually. The value of farmed fish yields is expected to be US$ 4 million annually. 

The combined environmental benefits (increased land value, reduced dredging, averted 

maintenance costs of hydro-electric facilities) amount to US$ 17 million, of which nearly 90% is 

attributed to increases in land value based on annual land sales. The benefits of reduced 

dredging (even assuming no decomposition or organic waste) has minor benefits. 

Table 7.7 shows the estimated reuse benefits based on the per capita production features and 

resource values (Table A7.4 in Appendix Chapter 7). 87% of the US$ 147 million yearly potential 

revenues are from municipal solid waste, 11% from domestic wastewater treatment and recovery 

and reuse of its resources and recycling, and 2% from industrial wastewater treatment and 

recycling. The potential demand for recoverable resources is higher than the potential supply 

through recovery (Table 7.7), ranging from a factor 13 for water to a factor 1.6 for plastic. 
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BOD removal, while considerable extra N, P removal is shown when using advanced instead of 

simple domestic technologies.  

 

  

  

  

Figure 7.5 Modelled COD, BOD (primary Y-axis) and N, P (secondary Y-axis) concentrations at 

indicated locations in 2030 with varying switch factors % and simple (ST) or advanced 

technologies AT). A: S2, no intervention; B. S3: 50% AT); C. S4: Industrial only; D. S5: 50% AT; 

E. S6: 25% ST; F. S6: 75% AT. Limits for COD, BOD, and P are 100 mg/l, 3 mg/l and 0.2 mg/l  
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To reach the desired water quality levels (class II) both industrial and domestic municipal 

interventions are needed. In addition, the applied off-site technologies should also include N and 

P removal, requiring more advanced and more costly technologies (see Figure 7.4) compared to 

the application of only anaerobic filters.  

 

7.3.5 Benefits of interventions 

The maximum quantified economic benefits are US$ 430 million per year in which health benefits 

account for 39% (Figure 7.6).Health benefits largely result from reductions in fecal-oral diseases, 

since (1) the people without access to wastewater (on-site and Bojong Soang WWTP) facilities 

(48%) all have access by 2030 (55.2% of health benefits), and (2) people that have access to a 

well-managed off-site or fecal sludge management system increased from 7% to 73%, (44.6% of 

health benefits). Associated averted health impact due to irregular flooding events is only US$ 0.3 

million.  

Convenience and time savings are among the top five reasons for having a latrine in the home 

area (Winara et al., 2011). Based on Winara et al. (2011) a mean annual gain of US$ 77 million 

was determined for an additional 45% of the population in 2030 having access to their own latrine 

facilities. This estimate is conservative as (1) it excludes travel needs for urination purposes, and 

(2) time is valued conservatively at 30% of the GDP per capita at hourly values.  

US$ 13.9 million of the total US$ 23 million reduction in water treatment cost will accrue to the 

public water utilities and their consumers, while industries are expected to benefit US$ 4.7 million 

annually. The value of farmed fish yields is expected to be US$ 4 million annually. 

The combined environmental benefits (increased land value, reduced dredging, averted 

maintenance costs of hydro-electric facilities) amount to US$ 17 million, of which nearly 90% is 

attributed to increases in land value based on annual land sales. The benefits of reduced 

dredging (even assuming no decomposition or organic waste) has minor benefits. 

Table 7.7 shows the estimated reuse benefits based on the per capita production features and 

resource values (Table A7.4 in Appendix Chapter 7). 87% of the US$ 147 million yearly potential 

revenues are from municipal solid waste, 11% from domestic wastewater treatment and recovery 

and reuse of its resources and recycling, and 2% from industrial wastewater treatment and 

recycling. The potential demand for recoverable resources is higher than the potential supply 

through recovery (Table 7.7), ranging from a factor 13 for water to a factor 1.6 for plastic. 
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Figure 7.6 Contribution of calculated overall economic benefits expressed in million US$ (total 

US$ 430 million) of each monetized impact (Scenario 6). Sedimentation (US$2M; 0% 

contribution) and Dam maintenance (US$0.1; 0% contribution) are not shown 

 

Table 7.7 Resource recovery potential, sector of recovery (Domestic, Industrial or MSW), 

potential demand, recovery percentage and annual economic values associated with reuse 

options based on baseline prices (Table A7.4 in Appendix Chapter 7) 

Parameter 
 Recoverable resources per sector and potential demand Total revenues 

(million 
US$/year) 

Domestic 
WWT 

Industrial 
WWT MSW Total 

recovery 
Potential 
demand Unit Recovery 

percentage 
Compost 91 - 351 442 1,240 kt/y 36% 44.2 
Plastic - - 228 228 366 kt/y 62% 45.5 
Paper - - 193 193 1185 kt/y 16% 38.6 
Electricity 27 - 89 116 78.8 GWh/y 147% 11.6 
Water - 43 - 43 563 Mm3/y 8% 2.6 
Struvite 4.2 - - 4.2 35 kt/y 12% 4.1 
Total economic value 146.6 

 

7.3.6 Assessment of Benefits versus Costs 

Following the anticipated benefits (Figure 7.6) and corresponding investment and operational 

costs (Table A7.6 in Appendix Chapter 7, Section 8) the BCR was calculated (Figure 7.7). The 

BCR varied between the interventions. The highest BCR of 3.2 is achieved by implementing 

simple technologies (S3: 50% ST), in other words an economic return of US$ 3.2 is anticipated 

for each US$ 1 invested. Because of higher costs for AT compared to ST, the BCR is expected to 

be lower for the AT scenario (BCR in S3: 50% AT = 2.06). The lowest BCR (0.52) is found in 

scenario 4 (industrial interventions alone). A joint approach tackling both domestic and industrial 

pollution results in a BCR ranging from 1.83 (S5: 50% AT) to 2.64 (S5: 50% ST). However, simple 

technologies were not found sufficient to improve the water quality to levels approaching class II, 

especially in terms of nutrient (N, P) removal (Figure 7.5). 
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Figure 7.7 Calculated BCR per analyzed scenarios, differentiating the BCR in which only 

wastewater treatment (WWT) interventions are considered and the BCR that considers both 

WWT and municipal solid waste (MSW) interventions. Scenarios that approach the target water 

quality are S5: 50%-AT andS6: 50%-RR 

 

The economic returns on combined wastewater and solid waste interventions are lower than the 

returns on wastewater interventions only (Figure 7.7). Economic costs related to absence of solid 

waste services are associated with unhygienic living conditions (Winara et al., 2011), loss of 

tourism developments or value of land (Alam & Marinova, 2003). Loss of land value, however, 

contributes to only a fraction (4%) of total related economic impact (Figure 7.6) and on their own 

do not outweigh the estimated costs (see Table A7.6 in Appendix Chapter 7) to establish the 

MSW management systems. The willingness of households to pay for solid waste collection and 

treatment services has been better established compared to wastewater services in Indonesia 

(WSP, 2011). This may be attributed to direct visibility of improving solid waste management 

(Winters et al., 2014). Consequently, there is a larger potential for recovering some of the costs 

through MSW tariffs paid by households compared with tariffs for wastewater services. Potential 

revenues from fees were excluded from the BCR analysis, but are relevant for development of a 

cost-effective wastewater and solid waste management system.  

Additional benefits of resource recovery from MSW can be a driver for improving water quality. 

The BCR (including MSW) of scenario 5 (applying AT) is 1.19 and will increase to 1.65 by 

applying resource recovery (Table 7.8). The BCR of scenario 6 with MSW recovery is even higher 

than the BCR of Scenario 5 applying ST (1.49) showing that required additional costs to improve 

the water quality can be financed through the sale of resources recovered from solid waste. 

However, application of resource recovery from wastewater only results in a minor increase in 

BCR (from 1.83 to 1.85) compared to applying only advanced technology. Thus, from a financial 
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Figure 7.6 Contribution of calculated overall economic benefits expressed in million US$ (total 

US$ 430 million) of each monetized impact (Scenario 6). Sedimentation (US$2M; 0% 

contribution) and Dam maintenance (US$0.1; 0% contribution) are not shown 

 

Table 7.7 Resource recovery potential, sector of recovery (Domestic, Industrial or MSW), 

potential demand, recovery percentage and annual economic values associated with reuse 

options based on baseline prices (Table A7.4 in Appendix Chapter 7) 

Parameter 
 Recoverable resources per sector and potential demand Total revenues 

(million 
US$/year) 

Domestic 
WWT 

Industrial 
WWT MSW Total 

recovery 
Potential 
demand Unit Recovery 

percentage 
Compost 91 - 351 442 1,240 kt/y 36% 44.2 
Plastic - - 228 228 366 kt/y 62% 45.5 
Paper - - 193 193 1185 kt/y 16% 38.6 
Electricity 27 - 89 116 78.8 GWh/y 147% 11.6 
Water - 43 - 43 563 Mm3/y 8% 2.6 
Struvite 4.2 - - 4.2 35 kt/y 12% 4.1 
Total economic value 146.6 

 

7.3.6 Assessment of Benefits versus Costs 

Following the anticipated benefits (Figure 7.6) and corresponding investment and operational 

costs (Table A7.6 in Appendix Chapter 7, Section 8) the BCR was calculated (Figure 7.7). The 

BCR varied between the interventions. The highest BCR of 3.2 is achieved by implementing 

simple technologies (S3: 50% ST), in other words an economic return of US$ 3.2 is anticipated 

for each US$ 1 invested. Because of higher costs for AT compared to ST, the BCR is expected to 

be lower for the AT scenario (BCR in S3: 50% AT = 2.06). The lowest BCR (0.52) is found in 

scenario 4 (industrial interventions alone). A joint approach tackling both domestic and industrial 

pollution results in a BCR ranging from 1.83 (S5: 50% AT) to 2.64 (S5: 50% ST). However, simple 

technologies were not found sufficient to improve the water quality to levels approaching class II, 

especially in terms of nutrient (N, P) removal (Figure 7.5). 
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Figure 7.7 Calculated BCR per analyzed scenarios, differentiating the BCR in which only 

wastewater treatment (WWT) interventions are considered and the BCR that considers both 

WWT and municipal solid waste (MSW) interventions. Scenarios that approach the target water 

quality are S5: 50%-AT andS6: 50%-RR 

 

The economic returns on combined wastewater and solid waste interventions are lower than the 

returns on wastewater interventions only (Figure 7.7). Economic costs related to absence of solid 

waste services are associated with unhygienic living conditions (Winara et al., 2011), loss of 

tourism developments or value of land (Alam & Marinova, 2003). Loss of land value, however, 

contributes to only a fraction (4%) of total related economic impact (Figure 7.6) and on their own 

do not outweigh the estimated costs (see Table A7.6 in Appendix Chapter 7) to establish the 

MSW management systems. The willingness of households to pay for solid waste collection and 

treatment services has been better established compared to wastewater services in Indonesia 

(WSP, 2011). This may be attributed to direct visibility of improving solid waste management 

(Winters et al., 2014). Consequently, there is a larger potential for recovering some of the costs 

through MSW tariffs paid by households compared with tariffs for wastewater services. Potential 

revenues from fees were excluded from the BCR analysis, but are relevant for development of a 

cost-effective wastewater and solid waste management system.  
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perspective using existing market prices, the additional investments to recover resources from 

wastewater outweigh the benefits by a small margin. 

In case recovered resources are sold at only half the current market price (Table 7.8) the BCR of 

resource recovery (S6) is lower than for AT, but still higher than 1. The BCR may change 

depending on the lifespan of capital stock (Table 7.8). A lifespan of 40 years results in a BCR 

approaching 5 (S3: 50%_ST). A major part of the cost (Table A7.1 in Appendix Chapter 7) is 

related to sewer system developments that have typically much longer potential lifespans (even 

up to 100 years) (Petit-Boix et al., 2014) and therefore it is likely the BCR will be higher than the 

baseline BCR of 3.2 for that same scenario (S3: 50%_ST). 

 

Table 7.8 Calculated Benefits Costs Ratio (BCR) and five alternative BCR’s distinguishing (A) 

only WWT based BCR or (B) WWT and MSW based BCR 
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Baseline BCR 3.20 2.06 0.52 2.64 1.83 1.85 1.62 1.26 0.52 1.49 1.19 1.65 
Resource prices 
50% of baseline 3.20 2.06 0.52 2.64 1.83 1.79 1.62 1.26 0.52 1.49 1.19 1.37 

Health impact 50% 
of baseline 2.22 1.42 0.52 1.86 1.29 1.34 1.12 0.87 0.52 1.05 0.84 1.33 

40 year capital 
lifespan 4.94 3.01 0.60 3.80 2.58 2.61 2.11 1.65 0.60 1.91 1.54 2.18 

15 year capital 
lifespan 2.60 1.70 0.48 2.19 1.53 1.55 1.40 1.09 0.48 1.29 1.03 1.42 

Access time gained 
50% of baseline 2.75 1.76 0.52 2.28 1.58 1.61 1.39 1.08 0.52 1.28 1.03 1.50 

 

 Discussion 7.4

7.4.1 Added value of integrated approaches 

Evaluating the economic performance of wastewater and solid waste interventions is a complex 

process, involving many variables and alternative combinations and coverage levels of 

interventions. Therefore a methodology was developed that combines several assessment 

methods and data sources in order to support decision making.  The added value of the 

integrated approach allows for a nuanced view on interrelations compared to single cause-effect 

relations (Mirakyan & De Guio, 2013).  Thus the effects of different interventions on water quality, 

resource recovery potential, and related economic returns could be evaluated in parallel (Figure 

7.5, Figure 7.6, and Figure 7.7). This parallel evaluation provides significant benefits in a dynamic 

context (Pollack, 2009). It also addresses the need for a method that can quantitatively evaluate a 
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set of sanitation alternatives to resolve trade-offs across sustainability dimensions (social, 

environmental, and economic), as identified by Guest et al. (2009) 

 

7.4.2 Added value of the approach in practical applications 

The practical application of the integrated approach is first demonstrated in the analysis of 

contribution of pollution per sector (industry, domestic or agriculture) related to the pollution 

prevention costs. The large contribution of domestic pollution was unambiguous and confirmed in 

a sensitivity analysis (see also Appendix Chapter 7, Section 7). Presented results are in line with 

findings of Suharyanto & Matsushita (2011) who determined that households contributed 55%, 

industries 40% and agriculture 6% of BOD pollution entering the Saguling reservoir. Suwarno et 

al. (2013) demonstrated the importance of fertilizer use management to avoid future coastal 

eutrophication in Indonesian Rivers, which corresponds with the large nutrient load as a result of 

agricultural activities (25% for P) determined in the current study. Despite a relative low (28%) 

contribution of industrial COD pollution, 35% of COD can be reduced by industrial interventions, 

whereas the investment costs for industrial interventions are less than 10% of the domestic 

interventions (Table A7.6 in Appendix Chapter 7). Further, the number of industries is only a 

fraction (~1%) of the number of households in the Citarum area and monitoring interventions 

would be much more practical than monitoring individual household connections. Thus, although 

COD pollution from industry is relatively small, it is more cost effective (> factor 5) than domestic, 

which may help a policy maker in prioritizing interventions. 

Secondly, the integrated approach supports determination of cost-effective interventions. The 

added value of applying more advanced technologies or switching more people to a sewer 

system showed that required additional investments can be justified from the point of nutrient 

removal, but less so from COD removal (Figure 7.4). In addition, the use of software tools like 

RIBASIM to model and estimate the impact of discharged pollution loads on the anticipated water 

quality allows the policy maker to relate interventions and their cost to applicable water quality 

standards. 

Thirdly, linking the resource recovery potential and its revenues to its potential demand may 

benefit formulation of policies or increase government involvement to foster financial sustainability 

of sanitation facilities (Murray & Ray, 2010). The value of recoverable resources from solid waste 

has resulted in a very active, but informal waste recovery sector in Indonesia (Chaerul et al. 2013; 

Sasaki & Araki 2013). In addition, the demonstrated potential recovery of resources exceeding 

the agricultural demand allows for selective marketing, focusing on safe reuse (e.g. on non-edible 

crops) (WHO, 2006). Electricity production from the joint wastewater and solid waste facilities is 

potentially higher than the demand for domestic wastewater and supports the potential for a joint 

development of wastewater and solid waste facilities (Zitomer et al., 2008). 

Fourthly, monetizing both direct use and indirect non-use values of sanitation implementation in 

relation to achievable surface water quality enables the formulation of a cost and environmental 
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perspective using existing market prices, the additional investments to recover resources from 

wastewater outweigh the benefits by a small margin. 
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 Discussion 7.4

7.4.1 Added value of integrated approaches 
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set of sanitation alternatives to resolve trade-offs across sustainability dimensions (social, 

environmental, and economic), as identified by Guest et al. (2009) 

 

7.4.2 Added value of the approach in practical applications 

The practical application of the integrated approach is first demonstrated in the analysis of 

contribution of pollution per sector (industry, domestic or agriculture) related to the pollution 

prevention costs. The large contribution of domestic pollution was unambiguous and confirmed in 

a sensitivity analysis (see also Appendix Chapter 7, Section 7). Presented results are in line with 

findings of Suharyanto & Matsushita (2011) who determined that households contributed 55%, 

industries 40% and agriculture 6% of BOD pollution entering the Saguling reservoir. Suwarno et 

al. (2013) demonstrated the importance of fertilizer use management to avoid future coastal 

eutrophication in Indonesian Rivers, which corresponds with the large nutrient load as a result of 

agricultural activities (25% for P) determined in the current study. Despite a relative low (28%) 

contribution of industrial COD pollution, 35% of COD can be reduced by industrial interventions, 

whereas the investment costs for industrial interventions are less than 10% of the domestic 

interventions (Table A7.6 in Appendix Chapter 7). Further, the number of industries is only a 

fraction (~1%) of the number of households in the Citarum area and monitoring interventions 

would be much more practical than monitoring individual household connections. Thus, although 

COD pollution from industry is relatively small, it is more cost effective (> factor 5) than domestic, 

which may help a policy maker in prioritizing interventions. 

Secondly, the integrated approach supports determination of cost-effective interventions. The 

added value of applying more advanced technologies or switching more people to a sewer 

system showed that required additional investments can be justified from the point of nutrient 

removal, but less so from COD removal (Figure 7.4). In addition, the use of software tools like 

RIBASIM to model and estimate the impact of discharged pollution loads on the anticipated water 

quality allows the policy maker to relate interventions and their cost to applicable water quality 

standards. 

Thirdly, linking the resource recovery potential and its revenues to its potential demand may 

benefit formulation of policies or increase government involvement to foster financial sustainability 

of sanitation facilities (Murray & Ray, 2010). The value of recoverable resources from solid waste 

has resulted in a very active, but informal waste recovery sector in Indonesia (Chaerul et al. 2013; 

Sasaki & Araki 2013). In addition, the demonstrated potential recovery of resources exceeding 

the agricultural demand allows for selective marketing, focusing on safe reuse (e.g. on non-edible 
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effective approach. The performed analysis demonstrated that the most cost effective scenario 

(S3: 50%_ST) with the highest BCR differs from the scenario reaching the required water quality 

(e.g. S5: 50%_AT). Therefore, a policy maker needs to prioritize between these two options. As a 

cost effective strategy, application of advanced technologies may be restricted to the most highly 

densely populated urban areas (where most pollution is produced). Alternatively, a phased 

approach in which first simple (low cost) technologies are implemented that are later replaced, 

converted or extended by systems that allow for nutrient removal (Spiller et al., 2015). Monetizing 

benefits may further help to raise funds from other sources or actors that benefit from improved 

water quality, such as residential project developers or tourism sites (Hutton, 2013). 

The outcomes of the study were formulated in a planning document for the Indonesian 

government (Kerstens et al., 2013) and confirms our hypothesis that quantification of tangible 

outputs using the presented approach can support policy-makers in the field.  

 

7.4.3 Options for extending the approach 

The presented framework can be further extended given the following considerations:  

• To assess the sustainability of interventions and ensure that pollution is being removed and 

not displaced, environmental emissions other than water pollution (COD, N, P), such as odor 

or greenhouse gasses may be included. The effect of greenhouse gasses emitted by low cost 

technologies (e.g. anaerobic filters or septic tanks) is excluded from the current evaluation;   

• In the determination of the water quality, several assumptions were made that may affect 

obtained results and could be incorporated in a next phase (see also Appendix Chapter 7 

Section 9). First, a connection between surface and ground water was assumed in which 

infiltrated septic tank effluent load directly influences the surface water quality. Second, 

RIBASIM model disregards biological conversion of pollutants in the surface water, whereas 

these are observed in the field (Hart et al., 2002). Third, all interventions are assumed to be 

designed, constructed, operated and maintained correctly, which may be optimistic in view of 

current practice (De Vries, 2012; ADB, 2013b). Fourth, the effect of dumped solid waste on 

water quality is excluded. Finally, surface water pollution from animal manure was excluded; 

• The low BCR of industrial interventions (0.52, see Table 7.8) and the weak mandatory 

industrial regulation in Indonesia (D’Hondt, 2013) may suggest limited possibilities to 

implement industrial pollution prevention. However, alternative means to spur Indonesian 

industries to comply with environmental standards such as public disclosure (the regular 

collection and dissemination of information about firms’ environmental performance) have 

been shown to be effective (Blackman, 2010);  

• Aerobic technologies were used as industrial references, whereas the use of anaerobic 

technologies may result in lower investment and/or operational costs (Rajeshwari et al., 2000; 

Van Lier, 2008); 
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• Not all economic impacts were quantified in this study (see also Appendix Chapter 7, section 

10), such as consumption of fish imbibing toxic wastes or otherwise infected (Lasut et al., 

2008), reduced land subsidence and improved recreational values (Day & Mourato, 1998; 

Alam, 2008). In addition, long-term impacts on the river and population of industrially 

discharged toxins and heavy metals were excluded and would specifically increase the BCR 

of scenario S4 (industrial intervention);  

• Applying advanced technologies (AT) will improve water quality (Figure 7.5), but will not 

increase quantified health or welfare impact. At the same, anticipated long-term effects of 

reduced eutrophication and less impacted ecosystem functioning (Suwarno et al., 2013) were 

not quantified, whereas these would further increase the BCR; 

• The BCR considers the overall societal perspective, whereas different costs and benefits are 

incurred and enjoyed by different stakeholders. Thus, the costs of domestic interventions are 

to a large extent paid for by the national and local governments (in Indonesia ~ 70%) and to 

lesser extent by individual households (Kerstens, et al., 2016), whereas industries typically 

pay the costs of the interventions themselves (De Vries, 2012). Benefits of improved water 

quality as a result of interventions can be either increased revenues (e.g. sale of recovered 

resources) or averted costs (e.g. lower water treatment costs) which benefit a single party, or 

are generalized to the population  (e.g. averted health or time costs) which benefit society as 

a whole (Alam, 2008). In the elaboration of a planning document, the incidence of costs and 

benefits should be further detailed. 

 

 Conclusions 7.5

In this study, an integrated method was presented that quantifies the economic costs and benefits 

of wastewater and solid waste interventions in relation to water quality improvements and 

resource recovery potential. The approach provides added value in the decision making process 

in a complex and dynamic context since it helps resolve trade-offs across different dimensions of 

sustainability (e.g. social, environmental and economic).  

Identification of pollution sources and the impact of interventions on discharged pollution loads 

allows for prioritizing of actions. By simultaneously modelling the water quality and cost impact of 

variations in (1) type of technology and (2) the household numbers switching from poor-

performing septic tanks to off-site systems, insight into the cost-effectiveness of environmental 

policies is provided. This allows a policy maker to optimize economic and water quality benefits.  

In the presented case of the Upper Citarum River, domestic interventions applying simple 

technologies were most attractive, with an estimated BCR of 3.2. However, to achieve the target 

water quality both industrial and advanced domestic WWT technologies would be required, 

leading to an estimated BCR of 2.0. Resource recovery from MSW were found to be a driver for 

improving water quality, as benefits through the sale of recovered resource outweighed the 

additional costs to improve the water quality.  



Chapter 7 

246 
 

effective approach. The performed analysis demonstrated that the most cost effective scenario 

(S3: 50%_ST) with the highest BCR differs from the scenario reaching the required water quality 

(e.g. S5: 50%_AT). Therefore, a policy maker needs to prioritize between these two options. As a 

cost effective strategy, application of advanced technologies may be restricted to the most highly 

densely populated urban areas (where most pollution is produced). Alternatively, a phased 

approach in which first simple (low cost) technologies are implemented that are later replaced, 

converted or extended by systems that allow for nutrient removal (Spiller et al., 2015). Monetizing 

benefits may further help to raise funds from other sources or actors that benefit from improved 

water quality, such as residential project developers or tourism sites (Hutton, 2013). 

The outcomes of the study were formulated in a planning document for the Indonesian 

government (Kerstens et al., 2013) and confirms our hypothesis that quantification of tangible 

outputs using the presented approach can support policy-makers in the field.  

 

7.4.3 Options for extending the approach 

The presented framework can be further extended given the following considerations:  

• To assess the sustainability of interventions and ensure that pollution is being removed and 

not displaced, environmental emissions other than water pollution (COD, N, P), such as odor 

or greenhouse gasses may be included. The effect of greenhouse gasses emitted by low cost 

technologies (e.g. anaerobic filters or septic tanks) is excluded from the current evaluation;   

• In the determination of the water quality, several assumptions were made that may affect 

obtained results and could be incorporated in a next phase (see also Appendix Chapter 7 

Section 9). First, a connection between surface and ground water was assumed in which 

infiltrated septic tank effluent load directly influences the surface water quality. Second, 

RIBASIM model disregards biological conversion of pollutants in the surface water, whereas 

these are observed in the field (Hart et al., 2002). Third, all interventions are assumed to be 

designed, constructed, operated and maintained correctly, which may be optimistic in view of 

current practice (De Vries, 2012; ADB, 2013b). Fourth, the effect of dumped solid waste on 

water quality is excluded. Finally, surface water pollution from animal manure was excluded; 

• The low BCR of industrial interventions (0.52, see Table 7.8) and the weak mandatory 

industrial regulation in Indonesia (D’Hondt, 2013) may suggest limited possibilities to 

implement industrial pollution prevention. However, alternative means to spur Indonesian 

industries to comply with environmental standards such as public disclosure (the regular 

collection and dissemination of information about firms’ environmental performance) have 

been shown to be effective (Blackman, 2010);  

• Aerobic technologies were used as industrial references, whereas the use of anaerobic 

technologies may result in lower investment and/or operational costs (Rajeshwari et al., 2000; 

Van Lier, 2008); 

Integrated approach to evaluate benefits and costs of wastewater and solid waste management  

247 
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Appendix Chapter 7 

 
Section 1 Description of applied wastewater treatment systems 

Kerstens, Leusbrock, et al., (2015) describe three types of wastewater systems: on-site, 

community based (CBS) and off-site (medium central and centralized) systems. On-site systems 

(e.g. septic tanks) do not require a sewer system and typically treat black (toilet) water only. 

Taking the effect of direct discharge pollution of greywater in account, this intervention shows low 

pollution removal efficiencies per person served (COD ~40%, BOD ~45%, N ~15%, P ~5%) 

(Kerstens et al. 2015). A community based systems, using a simplified sewer system (Mara & 

Broome 2008), serves typically 50-100 households. Treatment occurs in a anaerobic baffled 

system with removal efficiencies of COD ~80%, BOD ~85%, N ~15%, P ~15% and coliforms ~ 2 

log (Ulrich et al. 2009). Medium centralized and centralized off-site systems use a simplified or 

(pumped) sanitary system to collect and transport the wastewater and serve, respectively, up to 

5,000 and 50,000 households. Removal efficiencies of off-site system may range from similar 

values as community based systems (anaerobic filters) to higher efficiencies (COD ~ 90%, BOD 

~ 97%, TN~ 90%, TP ~67%, coliforms ~ 3 log) for technologies including enhanced nutrient 

removal (Kerstens et al. 2015).  Following the impact interventions may have on the environment 

and public health in relation to their costs, the use of on-site system is promoted for low density 

urban and rural areas only. For higher density rural areas (peri-urban) the use of community 

based systems is considered, whereas for high density urban areas off-site systems are preferred  

(Kerstens et al. 2015). Table A7.1 shows applied per capita investment and operational costs for 

applied technologies. 

 

Table A7.1 Applied per capita investment and net operational costs (OPEX) a per Simple, (ST), 

Advanced (AT) and Resource recovery (RR) technology (Kerstens et al. 2015) 

Parameter Type Unit on-site CBS Medium 
Central 

Central 

Sewer costs  

US$/cap 

0 114 229 324 

Treatment + 
land 

ST 
100 104 

60 95 
AT 188 118 
RR 194 118 

Net OPEX 
ST 

US$/cap/year 2.1 2.7 
5.1 6.8 

AT 10.5 7.8 
RR 6.3 3.2 

a In the Net OPEX costs all operational costs (labour, energy, chemicals, sludge disposal) as well 

as revenues from recoverable resources (energy, struvite and compost) at their anticipated 

selling prices (Table A7.4) were included 

 
Section 2 Maps of study area 

Figure A7.1 and Figure A7.2 show maps of the study area 
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urban and rural areas only. For higher density rural areas (peri-urban) the use of community 

based systems is considered, whereas for high density urban areas off-site systems are preferred  
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Table A7.1 Applied per capita investment and net operational costs (OPEX) a per Simple, (ST), 

Advanced (AT) and Resource recovery (RR) technology (Kerstens et al. 2015) 

Parameter Type Unit on-site CBS Medium 
Central 

Central 

Sewer costs  

US$/cap 

0 114 229 324 

Treatment + 
land 

ST 
100 104 

60 95 
AT 188 118 
RR 194 118 

Net OPEX 
ST 

US$/cap/year 2.1 2.7 
5.1 6.8 

AT 10.5 7.8 
RR 6.3 3.2 

a In the Net OPEX costs all operational costs (labour, energy, chemicals, sludge disposal) as well 

as revenues from recoverable resources (energy, struvite and compost) at their anticipated 

selling prices (Table A7.4) were included 

 
Section 2 Maps of study area 

Figure A7.1 and Figure A7.2 show maps of the study area 
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Figure A7.1 Location of the BBWS CIT (Citarum Greater Basin Territory Centre “Balai Besar 

Wilayah Sungai”) in Indonesia (MoPW 2011) 

 

 

Figure A7.2 Location of the Upper Citarum River basin within the Citarum basin (Kerstens et al. 

2013) 
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Section 3 Description of applied industrial WWT 

To determine the type and costs of industrial interventions, three types of wastewater treatment 

plant (WWTP) designs, for each typical scale were prepared (Kerstens et al. 2013). Designs were 

based on: 

1. Textile industry producing Batik (Section 3.1); 

2. Textile industry producing other types of textile (no reactive dyes) (Section 3.2); 

3. General industrial wastewater treatment plant (Food/Beverage and paper pulp) (Section 3.3). 

In case effluent is reused treatment occurs in a system as described in Section 3.4. 

 

For each of these types of “uniform” WWTP construction, CAPEX, OPEX and total running costs 

have been determined, based on quotation of international suppliers in Indonesia (Nijhuis, Aqua), 

and project visits to industries in the area (Frisian Flag and Ultra Jaya) and contractors and 

author’s estimate (Table A7.2).  

 

Table A7.2 Determined Investment and operational costs as a function of treated daily flow for 

three types of industrial wastewaters, based on MPS & Nijhuis (2012) 

Investment (US$/m3/d treated) OPEX (US$/m3 treated) 

Flow (m3/d) Batik textile non-batik 
textile 

other 
industries Batik textile non-batik 

textile 
other 
industries 

0-100 1890 2556 2556 0.47 0.57 0.55 
100-500 1368 1686 1698 0.37 0.44 0.41 
500-1000 1114 1145 1234 0.35 0.39 0.36 
1000-2000 907 848 908 0.32 0.35 0.34 
> 2000 700 581 667 0.30 0.32 0.31 
 

For cost determination it is assumed that 50% of the textile industries are batik industries 

(applying system 1) industry and 50% produces a different type of textile. In addition it is 

assumed that 50% of all industries that already have a treatment system need to upgrade their 

system before 2030. The brief overview of each design is shown below. 
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Section 3.1 Textile industry using reactive dyes (Batik industry) 

 

Figure A7.3 Process Flow Diagram of a WWTP for a textile industry using reactive dyes 

 

Influent first passes a mesh to remove suspended solids (e.g. pieces of cloth) after which the 

influent is discharged to a mixed buffer tank (Figure A7.3). The buffer tank aims to stabilize 

variations in both quantity and composition of influent. Possible pH control can take place in this 

tank.  After the buffer the wastewater is fed to an activated sludge system, where biomass 

(bacteria) convert organic pollutants (COD, BOD) into CO2 and new biomass using oxygen that is 

brought in by aeration equipment (surface or bubble). Also nitrogen components are removed 

through nitrification and denitrification. Phosphorous in the wastewater is incorporated in the cell 

mass after which it is removed from the system via the waste activated sludge. Optionally iron or 

aluminum salts can be dosed to enhance phosphorus removal (chemical precipitation). The 

treated effluent and sludge are separated in the clarifier. To remove the reactive dyes (color), 

activated carbon is dosed prior to the clarifier. The treated effluent leaves the clarifier from the 

top, whereas the sludge is returned to the activated sludge tank. Because some sludge is 

produced during the process the excess sludge needs to be removed from the system and, after 

thickening and dewatering is disposed in a landfill. 
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Section 3.2 System 2: Textile industry using non-reactive dyes 

 

Figure A7.4 Process Flow Diagram of a WWTP for a textile industry using non-reactive dyes 

 

Similar to system 1 Influent first passes a mesh to remove small scale solid particles after which it 

is introduced in a mixed buffer tank (Figure A7.4). After the buffer the water wastewater is 

introduced in an activated sludge system. Unlike system 1, in system 2 color (dye) removal and 

separation of sludge from the treated effluent happens in one DAF (Dissolved Air Flotation) unit. 

In this unit, dissolved organic dyes as well as a considerable part of phosphorus are “glued” 

together using coagulation and further turned into flocs (together with the sludge) using polymers. 

The produced flocs adsorb to introduced air that floats from the bottom to the top. The floating 

layer is continuously removed from the top using a skimmer. Similar to system excess sludge 

needs to be removed from the system and, after thickening and dewatering, disposed off in a 

landfill. 

 
Section 3.3 System 3: Other types of industry 

 

Figure A7.5 Process Flow Diagram of a WWTP for other types of industry 
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Similar to system 1 and 2 Influent first passes a mesh and a mixed buffer tank (Figure A7.4). To 

remove Fat Oil and Grease (typical for dairy industry) or non-biodegradable solids (typical for 

paper and pulp processes) pre-treatment takes place in a DAF (Dissolved Air Flotation) unit. In 

which, similar to system 2, through addition of coagulant and flocculants a considerable part of 

organic pollutants (and phosphorous) is removed prior to treatment in the activated sludge 

system (removal of organic and nitrogen). The treated effluent and sludge are separated in the 

clarifier. The treated effluent leaves the clarifier from the top. Sludge is returned to the activated 

sludge tank and partly extracted and send to a landfill. 

 

Section 3.4 Post treatment of industrial effluent 

In case effluent is reused treatment occurs in a system as presented in. 

In order to reuse effluent, it needs to be further treated on (1) particles, (2) organic (dissolved) 

components, (3) high salt concentration and pathogens. To achieve this a multi barrier system 

set-up is proposed (Figure A7.6), consisting of:  

(1) Sand filtration: the effluent of the WWTP still contains some levels of suspended solids (typical 

10-20 mg/l), which are removed in a sand filter. Typically coagulant Al3+ salts are added to 

improve this step;  

(2) After biological treatments, there may be still organic components that could not be degraded 

biologically, but can be removed in an AOP (Advanced Oxidation Process) in which a chemical 

reagent (e.g. NaOCl; Sodium hypochlorite) is used to oxidize the components;  

(3) All remaining organic components will then pass an activated carbon filter in which these 

components are adsorbed to the filter material;  

(4) after removing all organic components and particles, the water passes a reverse osmosis 

(R.O.) unit, in which all salts will to a large extent be removed;  

(5) Because in an R.O. salts are removed, addition of minerals (e.g. Na+, Cl-) may be required 

and these will be added again in a mineralization step;  

(6) finally the water will pass a disinfection step (e.g. UV, ozone) to assure that no 

pathogens/viruses are present. 

 

 

Figure A7.6 Process Flow Diagram of post-treatment system for industrial effluent 
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Section 4 Description of applied Municipal Solid Waste systems 

Municipal Solid Waste (MSW) system selection is based on residential features (Table 7.4 of 

Chapter 7) and distinguishes conventional system and systems applying Reduction, Reuse, 

Recycling (3R) of waste. In low density rural areas promotion of home composting is applied 

(Mehta & Movik 2010). For higher density populated rural and urban areas digestion and 

composting of organic waste and recovery of plastic and paper is considered. Applied costs are 

shown in Table A7.3. 

 

Table A7.3 Applied MSW Capital Expenditures (CAPEX) and net Operational Expendituresa 

(OPEX) (Kerstens et al. 2015) a. 

Parameter Unit Conventional 3R 
home 

3R decentral Centralized 3R 

Rural Urban Rural Rural Urban Compost Digest & Compost 

CAPEX US$/cap 45.2 72.9 2.6 73.3 95.3 57.0 69.8 

Net OPEX US$/cap/y 8.7 10.2 -3.7 -3.4 -4.5 -3.8 -4.4 
a In the Net OPEX costs, the anticipated recoverable resources and their anticipated selling 

prices (Table A7.4) were included 

 

Per capita resource recovery potential and economic values (Table A7.4) were based on 

Kerstens, Leusbrock, et al. (2015) and Aprilia et al. (2012). 

 

Table A7.4 Per capita recoverable resource production rates from Domestic WWT and Municipal 

Solid Waste (MSW) and their economic value 

Sector Component Per capita productiona Economic value 
Domestic 
WWT 

Struvite (as a source for P) 0.82 kg struvite/cap/year 975 US$/ta 

Electricity production 5.35 kWh/cap/year 0.1 US$/kWha 

Compost from on-site 4.4 kg/cap/year 100 US$/tb 
Compost from off-site 15 kg/cap/year 100 US$/tb 

MSW Compost 39 kg/cap/year 100 US$/tb 

Electricity production 18 kWh/cap/year 0.1 US$/kWha 

Plastic recovery 26 kg/cap/year 2000 US$/tb 

Paper recovery 22 kg/cap/year 2000 US$/tb 
a based on Kerstens, Leusbrock, et al. (2015); b based on Aprilia et al. (2012) 

 

Section 5 RIBASIM description 

RIBASIM is a generic model package for simulating the behaviour of river basins under various 

hydrological conditions, was used to simulate the effect of different interventions on water quality 

development in the Upper Citarum River (Deltares 2009; Gonenc et al. 2014). It links the 

hydrological water inputs at various locations with the specific water-users in the basin. RIBASIM 

enables the user to evaluate a variety of measures related to infrastructure, operational and 

demand management and to see the results in terms of water quantity, water quality and flow 

composition. The Upper Citarum River basin has nine catchment areas in which water abstraction 
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by domestic, industrial and agriculture activities and catchment of rain (based on 20 years rainfall 

sequence) were modelled (MoPW 2011; Kerstens et al. 2013). Based on pollution loads 

produced in each catchment area and resulting water flows concentrations are calculated. Figure 

A7.7 and Figure A7.8 show the RIBASIM overlay and model.  

 

Figure A7.7 Prepared overlay of catchment areas on the administrative maps of the Upper 

Citarum River (Kerstens et al. 2013)  

 

 

Figure A7.8 Prepared RIBASIM model in this study and approximate locations and 

corresponding links in RIBASIM (Kerstens et al. 2013) 
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Section 6 Calculated relative contribution of pollution by actor 

The contribution of domestic, industrial and agricultural sources differs with (1) the parameter 

(COD, BOD, TN and TP), (2) the expected domestic pollution coefficient and (3) the performance 

industries. The highest variation in contributions is obtained combining a high pollution coefficient 

of domestic sources (high domestic load) with the best case industries (low industrial load) and 

vice versa (Figure A7.9). The reference domestic COD contribution is 66%, with maximum values 

of 77% (high pollution coefficient and best case performing industries) and minimum 44% (low 

pollution coefficient and worst case performing industries). BOD pollution follows the pattern of 

COD pollution, but TN and TP loads show a relative high contribution of about 20% from 

agricultural activities.  

 

 

Figure A7.9 Contribution of Domestic, Industrial and Agricultural sources per parameter (COD, 

BOD, TN and TP) for baseline scenario and scenarios with highest, lowest variations in 

contribution by varying domestic pollution coefficient (pol. cof.) and industrial worst case (WC) 

and best case (BC) cases 

 

Section 7 Pollution loads discharged with different interventions 

Table A7.5 shows the effect of described interventions on calculated pollution discharged to the 

Upper Citarum River by sector (domestic, industrial, agricultural). It shows that in case the 2010 

(baseline) access values to wastewater facilities are not increased by the year 2030 (no 

additional interventions) the COD discharged will increase from 585 (S1) to 722 t/d (S2). 

Addressing only industries (Scenario 4 in Table A7.5) reduced the total COD pollution load from 

722 (scenario 2) to 565 ton COD/d, equivalent to a 22% reduction. Combining domestic and 

industrial interventions (S5: 75% AT) results in a removal of COD (67%), BOD (73%), TN (50%) 

and TP (32%) compared to S2.  
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the relation between domestic pollutants removed and domestic investment costs (Figure 7.5 in 

Chapter 7) demonstrates that additional investments in advanced technologies, compared to 

simple technology can be justified from the point of nutrient removal, but less so from COD 

removal.. The total investments for S3: 25% ST were US$ 1.15 billion to remove 260 t COD/d and 

8.7 t N/d, corresponding with 4 million US$/t COD/d and 120 million US$/t N/d. For S3: 75% AT 

investments were nearly US$ 2 billion to remove 327 t COD/d and 51 t N/d, corresponding with 

US$ 5.8 million per t COD /d and US$ 37 million per t N/d.  
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the relation between domestic pollutants removed and domestic investment costs (Figure 7.5 in 

Chapter 7) demonstrates that additional investments in advanced technologies, compared to 

simple technology can be justified from the point of nutrient removal, but less so from COD 

removal.. The total investments for S3: 25% ST were US$ 1.15 billion to remove 260 t COD/d and 

8.7 t N/d, corresponding with 4 million US$/t COD/d and 120 million US$/t N/d. For S3: 75% AT 

investments were nearly US$ 2 billion to remove 327 t COD/d and 51 t N/d, corresponding with 

US$ 5.8 million per t COD /d and US$ 37 million per t N/d.  
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Section 8 Determined costs of interventions 

Table A7.6 shows the total costs of interventions per scenario (applying a 50% switch). The S2 

intervention investments amount to US$ 123 million and relate to covering population growth 

while maintaining the same access values as in 2010. The US$ 120 million for industrial WWT 

interventions (S4) are less than 10% of the domestic ST interventions investments. The costs 

(US$ 396 million) for conventional MSW management (S3 and S5) are 22% (compared to AT) 

and 30% (compared to ST) of domestic WWT interventions. OPEX are higher for MSW (90 

million US$/ton) than for WWT (36 or 59 million US$/ton), and largely related to solid waste 

collection activities (Kerstens et al. 2015). All intervention costs in the reuse scenario (S6) have 

increased and total costs increase from US$ 2.3 billion to US$ 2.6 billion. However, as a result of 

the sale of resources the OPEX decreases from US$ 166 to 25 million per year. In the 

determination of the BCR, the cost of scenario 2 to compensate for population growth were 

deducted from costs in scenarios 3, 5 and 6. 

 

Table A7.6 Costs of interventions for described scenarios 

Scenario 

Investment (million US$) OPEX (million US$/year) 
domestic 
WWT 

Industrial 
WWT MSW Total 

domestic 
WWT 

Industrial 
WWT MSW Total 

S2: No intervention  109 0 13 123 11 0 26 37 
S3: Domestic ST 50% 1,299 0 396 1,695 36 0 90 126 
S3: Domestic AT 50% 1,781 0 396 2,177 59 0 90 150 
S4: Industrial only 109 120 13 243 11 17 26 54 
S5: Domestic ST 50%+ 
Industrial + MSW 1,299 120 396 1,815 36 17 90 143 
S5: Domestic AT 50%+ 
Industrial + MSW 1,781 120 396 2,297 59 17 90 166 
S6: 50% RR 1,803 222 579 2,637 37 23 -35 25 

 

Section 9 Considerations for improving the water quality modelling 

In our approach to determine the water quality an open connection between surface and ground 

water was assumed in which infiltrated septic tank effluent load directly influences the surface 

water quality. Degradation, conversion, sorption that take place in the soil matrix or aquifer may 

result in a lower load reaching the final surface water and thus result in lower pollution 

concentrations (ARGOSS 2001; McDowell et al. 2005). Secondly, RIBASIM model disregards 

biological degradation, conversion and sedimentation of pollutants in the surface water. Because 

the hydraulic retention time is only a few days (MoPW 2011), these processes may be neglected. 

However, the Saguling reservoir has a retention time exceeding 80 days and abundance of 

nutrients has resulted in excessive plant growth (Hart et al. 2002) indicating that biological 

processes have an impact. Thirdly, all interventions (industrial and domestic) are assumed to be 

designed, constructed, operated and maintained correctly, which may be optimistic in view of 

current practice (De Vries 2012; ADB 2013). Fourthly, the effect of dumped solid waste on water 
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quality (as COD, BOD, N and P) is excluded. Despite low solid waste collection and disposal 

rates in West Java (43% in urban; 3% in rural areas), most of the unmanaged waste is informally 

incinerated (39% urban and 63% rural) (Ministry of Health 2010), while only a limited amount is 

discharged into the river (11% urban, 17% rural) (Ministry of Health 2010), which may justify this 

exclusion. Finally, surface water pollution from animal manure was excluded. In the study area, 

over 70% of cow manure is collected in stables and composted or digested and applied on 

(horticultural) land (Parikesit et al. 2005). A further analysis of livestock management could 

provide additional tools to improve water quality. 

 

Section 10 Economic impacts not quantified in this study 

A number of health impacts were not quantified in this study, such as consuming fish that are 

raised in or exposed to polluted water from municipal and industrial discharges (Alabaster 1986) 

(Lasut et al. 2008), especially the impacts of mercury on pregnant women (National Research 

Council 2000) (Rasmussen et al. 2005). These would further increase the benefit of the proposed 

measures if included. 

Reduced land subsidence is not quantified in this study, but is a direct cause of excessive ground 

water extraction by industries, the municipality, farmers and households. Reported land 

subsidence rates amount to 7 cm/year and an estimated 1.1 million people live in a flood prone 

area of the Citarum River basin (Deltares et al. 2012). A  study for Java estimated the economic 

damages of flood damages at US$ 700 million per year (ADB 2011). Based on the proportion of 

population at risk in the study area, this corresponds with US$ 80 million flood damages. If 

industries were to use their treated wastewater effluent instead of using ground water (scenario 

6), land subsidence rate can be decreased.  

Other potentially significant benefits of improved river water quality, though not quantified in the 

current study, include the pleasures of walking, relaxing and enjoying scenery of local residents 

and tourists, and letting children play in or around the river as well as boating on the river (Day & 

Mourato 1998; Alam 2008). 
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Section 8 Determined costs of interventions 
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while maintaining the same access values as in 2010. The US$ 120 million for industrial WWT 

interventions (S4) are less than 10% of the domestic ST interventions investments. The costs 

(US$ 396 million) for conventional MSW management (S3 and S5) are 22% (compared to AT) 

and 30% (compared to ST) of domestic WWT interventions. OPEX are higher for MSW (90 

million US$/ton) than for WWT (36 or 59 million US$/ton), and largely related to solid waste 

collection activities (Kerstens et al. 2015). All intervention costs in the reuse scenario (S6) have 

increased and total costs increase from US$ 2.3 billion to US$ 2.6 billion. However, as a result of 

the sale of resources the OPEX decreases from US$ 166 to 25 million per year. In the 

determination of the BCR, the cost of scenario 2 to compensate for population growth were 

deducted from costs in scenarios 3, 5 and 6. 
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In our approach to determine the water quality an open connection between surface and ground 

water was assumed in which infiltrated septic tank effluent load directly influences the surface 

water quality. Degradation, conversion, sorption that take place in the soil matrix or aquifer may 

result in a lower load reaching the final surface water and thus result in lower pollution 

concentrations (ARGOSS 2001; McDowell et al. 2005). Secondly, RIBASIM model disregards 

biological degradation, conversion and sedimentation of pollutants in the surface water. Because 

the hydraulic retention time is only a few days (MoPW 2011), these processes may be neglected. 

However, the Saguling reservoir has a retention time exceeding 80 days and abundance of 

nutrients has resulted in excessive plant growth (Hart et al. 2002) indicating that biological 

processes have an impact. Thirdly, all interventions (industrial and domestic) are assumed to be 
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quality (as COD, BOD, N and P) is excluded. Despite low solid waste collection and disposal 

rates in West Java (43% in urban; 3% in rural areas), most of the unmanaged waste is informally 

incinerated (39% urban and 63% rural) (Ministry of Health 2010), while only a limited amount is 

discharged into the river (11% urban, 17% rural) (Ministry of Health 2010), which may justify this 

exclusion. Finally, surface water pollution from animal manure was excluded. In the study area, 

over 70% of cow manure is collected in stables and composted or digested and applied on 

(horticultural) land (Parikesit et al. 2005). A further analysis of livestock management could 

provide additional tools to improve water quality. 
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water extraction by industries, the municipality, farmers and households. Reported land 

subsidence rates amount to 7 cm/year and an estimated 1.1 million people live in a flood prone 

area of the Citarum River basin (Deltares et al. 2012). A  study for Java estimated the economic 

damages of flood damages at US$ 700 million per year (ADB 2011). Based on the proportion of 

population at risk in the study area, this corresponds with US$ 80 million flood damages. If 

industries were to use their treated wastewater effluent instead of using ground water (scenario 

6), land subsidence rate can be decreased.  

Other potentially significant benefits of improved river water quality, though not quantified in the 

current study, include the pleasures of walking, relaxing and enjoying scenery of local residents 

and tourists, and letting children play in or around the river as well as boating on the river (Day & 

Mourato 1998; Alam 2008). 
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 Motivation 8.1

Worldwide, 2.5 billion people lack access to wastewater or solid waste (WHO & UNICEF, 

2015).The absence of sanitation impacts public health (Shuval, 2003), the environment (Hart et 

al., 2002), the economy, people’s welfare (Hutton, 2013), and is a lost opportunity for potential 

resource recovery from wastewater and solid waste (Lettinga, 2006). Including resource recovery 

in sanitation planning allows for a circular resource management and may become a driver for 

economic growth (McDonough & Braungart, 2010; Agudelo-Vera et al., 2011). Resource recovery 

may thus respond to profound changes in the world’s population (United Nations, 2014), 

impacting food security and finite natural resource availability (Cordell et al., 2011). 

 

8.1.1 Current status of sanitation planning and resource recovery in 

developing countries 

The backlog in sanitation development has been partly attributed to the absence of a functional 

sanitation planning framework (WHO & UNICEF, 2014). Sanitation planning requires integration 

of health (Malekpour et al., 2013), technical (Larsen et al., 2009), environmental (Suwarno et al., 

2013), financial (Ward, 2012), institutional (Kvarnström & Mcconville, 2007), and socio- 

economical elements (Winters et al., 2014) as well as insight in the demand for sanitation by-

products (Murray & Ray, 2010a). To evaluate a set of alternative sanitation systems, a framework 

is required to resolve trade-offs between costs and benefits across spatial and temporal scales 

and to assess sustainability dimensions (Guest et al., 2009). In Chapter 2 (Kerstens, De Mes, et 

al., 2009), we demonstrated for a Chinese residential area development that an integrated 

wastewater and solid waste management scheme using resource recovery can result in both 

environmental and economic benefits, as compared to a conventional baseline scenario. Yet, in 

many developing countries, sanitation implementation focuses on a single system or sanitation 

sub-sector, for example either wastewater or solid waste. In Indonesia, for instance, decentralized 

(communal) wastewater treatment systems (DEWATS) are promoted as the core of the sanitation 

improvement (Eales et al., 2013).  

Thus, in Chapter 3 (Kerstens et al., 2012) we first evaluated the technical and financial-economic 

aspects and users’ involvement of DEWATS. It was shown that systems generally comply with 

applicable legislation, yet financial and operational management is often lacking. In addition, we 

identified the need to link planning and implementation of DEWATS to the residential features in a 

city wide sanitation strategy. 

However, no integrated framework exists in scientific literature that links and quantifies costs and 

benefits of sanitation intervention with (1) public health and economic improvements, (2) reducing 

pollution discharge loads and improving water quality, and (3) recovering and applying resources 

on a national scale. Available sanitation planning frameworks were not found applicable for 

nationwide planning, since these did not include all population groups or both wastewater and 
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solid waste treatment and resource recovery systems. In addition, available frameworks relied on 

input parameters that were not readily available on a nationwide scale. Moreover, these 

frameworks did not include integration with land use planning activities or allowed for 

identification and budget allocation of implementing institutions. Further, an integrated technical 

and financial sanitation system analysis under different residential conditions was lacking. This, 

despite the availability of technical and financial system selection criteria for sanitation systems 

(Achillas et al., 2013; Tilley et al., 2014) and the demonstrated link between residential features 

and occurrence of health and environmental issues caused by the absence of sanitation (Wright 

et al., 2013). Finally, an analysis of resource flows (Brunner & Rechberger, 2004) and insight in 

potential product markets are required to quantify the potential demand and supply of sanitation 

products. While a diversity of methods to forecast resource demand have been described 

(Lyneis, 2000; Janssen et al., 2005; Tilman et al., 2011), there is no framework that combines 

recoverable resources from wastewater and solid waste that also allows for a nationwide 

temporal and spatial demand forecast. 

 

8.1.2 Need for a sanitation nationwide planning framework 

In this thesis, we developed a framework that can quantitatively evaluate a set of alternative 

wastewater and solid waste systems. This framework resolves costs and benefits across spatial 

and temporal scales and includes sustainability dimensions (social, environmental and 

economic). It was hypothesized that access to sanitation in developing countries can be 

accelerated by an increased benefit cost ratio resulting from resource recovery. To test our 

hypothesis, we have used Indonesia as case. 

 

 Sanitation Nationwide Planning framework (SaNaP) 8.2

The Sanitation Nationwide Planning framework (SaNaP) distinguishes 3 elements: (1) sanitation 

system selection, (2) sanitation planning framework, and (3) potential resource demand analysis. 

These three elements can, in turn, be linked to come to a fourth element to quantify benefits and 

costs of sanitation interventions. 

 

8.2.1 Sanitation system selection 

Chapter 4 provides a technical and financial feasibility analysis of a range of wastewater 

treatment (WWT) and municipal solid waste (MSW) systems to guide system selection for 

implementation in different residential settings. Analyzed systems comprised on-site, community-

based systems (CBS) and ten off-site WWT systems as well as conventional, centralized and 

decentralized 3R (Reduce Reuse Recycle) MSW systems. Figure 8.1 shows a schematic 

presentation of this approach, in which a conventional (upper part) intervention is compared with 

a resource recovery (lower part) based intervention for two different residential features 
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(urban/rural). Depending on the type of area (urban/rural) and selected system, CAPEX and 

OPEX (together forming the total life cycle costs) are determined.  

 

 

Figure 8.1 Schematic presentation of the approach for determining the technical and financial 

feasibility of wastewater and solid waste technologies and the link to residential features 

 

8.2.2 Sanitation planning framework 

In Chapter 5 a comprehensive framework was developed that directly links a government policy 

to a nationwide, long-term planning and budgeting for wastewater and solid waste interventions. 

Figure 8.2 shows how, on the basis of anticipated population development (urban rural, poor and 

non-poor), sanitation (wastewater and solid waste) systems are selected. Based on government 

sanitation planning targets, three quantifiable outputs are generated: (1) visualization of required 

implementation using a geographic information system (GIS), (2) required budgets for people 

served and number of systems to be constructed, and (3) distribution of budgets for 

implementation over identified responsible institutions.  
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Figure 8.2 Schematic presentation of the framework for assessing planning outputs on the basis 

of residential developments, feasible sanitation systems and government targets 

 

8.2.3 Quantification of potential demand and supply of sanitation products  

Chapter 6 describes the future demand of recoverable resources, based on past consumption 

trends and future forecast for a selected number of recoverable resources. Figure 8.3 shows how 

demand for P-fertilizers and compost used for food, horticultural and plantation crop production 

as well as duckweed demand for aquaculture are determined following production forecasts. 

Furthermore, future demand for plastic and paper, to substitute conventionally manufactured 

products, is determined by extrapolation based on past production and consumption patterns. 

This potential resource demand forecast is then compared to the potential forecasted resource 

supply from wastewater and solid waste flows.  
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Figure 8.3 Schematic presentation of the framework for forecasting the recoverable resource 

demand compared to resource recovery from wastewater and solid waste (see Chapter 6) 

 

8.2.4 Quantification of costs and benefits of alternative sanitation 

interventions 

In Chapter 7, the three introduced elements were combined in a framework that allows for a 

quantifiable analysis of benefits and costs of a range of domestic and industrial wastewater and 

solid waste interventions. The applied framework is presented in Figure 8.4 and builds upon the 

previous three elements. Three quantifiable values are generated: (1) water quality improvements 

as a result of selected WWT systems, (2) potential resource recovery from WWT and MSW 

systems compared to the potential demand (see Figure 8.3) and, (3) the Benefit Cost Ratio 

(BCR) in which monetized benefits (health, access time, improved water sources & environment, 

land values and sale of recovered resources) were compared to required costs of interventions 

(CAPEX and OPEX). 
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Figure 8.4 Schematic presentation of the methodology used to (1) relate water quality to applied 

WWT systems, (2) relate the potential resource recovery to the potential demand and (3) 

determine the Benefit Cost Ratio (BCR)  

 

 Synthesis of the integrated SaNaP framework 8.3

Applying the nationwide population development data (of Indonesia) to the combined three 

elements (sections 8.2.1 - 8.2.3), allows for verification of the hypothesis that resource recovery 

can accelerate access to sanitation in developing countries. 

Moreover, it enables a quantitative evaluation of alternative WWT and MSW systems to resolve 

costs and benefits across spatial and temporal scales in relation to system costs, pollution loads, 

production and consumption parameters of resources (e.g. energy, area, sludge), and potential 

resource demand and supply.  

First, Figure 8.5 shows how the technical and financial feasibility analysis (Chapter 4) allows for a 

WWT and MSW system selection and their associated CAPEX (US$/cap) and OPEX 

(US$/cap/year) based on residential area criteria. Applying these residential dependent criteria on 

the anticipated Indonesian residential developments in combination with the “government 

sanitation planning target” enables us to determine the number of people that must be served and 

the corresponding number of WWT and MSW systems that must be implemented (see also 

Chapter 5). Once the specific costs of all described WWT1 and MSW systems have been 

determined, the total CAPEX (US$), OPEX (US$/year), and total lifecycle costs (US$ per 20 

                                                   
1 One on-site, one community based and ten off-site systems: (1) Anaerobic Filter, (2) Aerated lagoon, (3) UASB 
(Upflow Anaerobic Sludge Blanket)-DW (Duckweed)-RBC (Rotating Bio Contactor), (4) Conventional Activated 
Sludge (CAS), (5) CAS with enhanced N&P, (6) Aerobic Granular Sludge (AGS), (7) MBR (Membrane 
Bioreactor), (8) CAS + Resource Recovery (3R), (9) AGS + 3R and (10) MBR + 3R. On-site (septic tank) and 
community based systems (anaerobic baffled reactor + anaerobic filter) were not varied. 
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years) for all described systems can be compared using the planned implementation path. The 

impact of selected systems on the cost can be evaluated for spatial (national, provincial and city 

wide) and temporal scales (period 2015-2035).  

Second, Figure 8.5 shows the total pollution loads discharged (COD, BOD, N and P) applying 

different implemented WWT off-site technologies. Discharged pollution loads are presented in 

time and space, combining the planned sanitation development and the specific per capita 

wastewater pollution discharge (derived in Chapter 4). The framework thus gives a quantitative 

evaluation of the impact of system selection on the environment.  

Third, Figure 8.5 shows how the total, system dependent, resource production and consumption 

(e.g. energy, sludge produced, recovered phosphorus/ paper/plastic and land required) can be 

determined on the same temporal and spatial scales. Information on required resources (e.g. 

energy, chemicals or land) to implement and run a facility can be used to evaluate the 

applicability of a selected system in the regional context and its development (e.g. the planned 

provision of electricity to a certain location after a number of years). 

Finally, Figure 8.5 shows a comparison between spatial and temporal potential resource demand 

(Chapter 6) on the one hand and production of recoverable resources on the other hand. 

Comparing the potential resource supply with its demand enables an assessment of the potential 

to close material cycles in a certain location and time. 
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Figure 8.5 Sanitation National Planning (SaNaP) framework in which Chapter 4 (technology and 

financial feasibility analysis), Chapter 5 (sanitation master planning) and Chapter 6 (potential 

resource demand) are combined. The four numbered items show the spatial and temporal 

determination of (1) system costs, (2) wastewater pollution discharged, (3) production and 

consumption parameters, (4) potential resource demand and recovery  

 

 Results of nationwide application of SaNap for Indonesia 8.4

To support policy makers in the evaluation of different sanitation systems, quantification of 

potential benefits (e.g. health, environment) and associated implementation costs is required 

(Ward, 2012). Resolving these trade-offs with the different available implementation alternatives 

is a complex and dynamic matter which is guided by SaNaP. The potential of SaNaP to evaluate 

system costs, pollution loads, production and consumption parameters and potential resource 

demand and supply for a set of alternatives is shown for the case of Indonesia.  
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years) for all described systems can be compared using the planned implementation path. The 

impact of selected systems on the cost can be evaluated for spatial (national, provincial and city 

wide) and temporal scales (period 2015-2035).  

Second, Figure 8.5 shows the total pollution loads discharged (COD, BOD, N and P) applying 

different implemented WWT off-site technologies. Discharged pollution loads are presented in 

time and space, combining the planned sanitation development and the specific per capita 

wastewater pollution discharge (derived in Chapter 4). The framework thus gives a quantitative 

evaluation of the impact of system selection on the environment.  
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Finally, Figure 8.5 shows a comparison between spatial and temporal potential resource demand 

(Chapter 6) on the one hand and production of recoverable resources on the other hand. 

Comparing the potential resource supply with its demand enables an assessment of the potential 

to close material cycles in a certain location and time. 

 

Sanitation Nationwide Planning Framework: Synthesis, concluding remarks and outlook 

275 
 

 

Figure 8.5 Sanitation National Planning (SaNaP) framework in which Chapter 4 (technology and 
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consumption parameters, (4) potential resource demand and recovery  
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8.4.1 Spatial and temporal WWT and MSW system costs evaluation 

The WWT and MSW costs determined in Chapter 4 are, among others, dependent on land and 

resource (e.g. electricity) prices. Since land and resource prices vary from one place to the other 

and in time (Navastara & Navitas, 2012), an impact analysis of these variations can support 

system selection. Figure 8.6 and Figure 8.7 show a comparison of the total cumulative costs 

(CAPEX and OPEX and Total Lifecycle Costs (TLC) of on-site CBS and off-site interventions for a 

land price of 500 US$/m2 (Figure 8.6) and 100 US$/m2 (Figure 8.7) for Indonesia at the end of 

the planning period (2035). The center top of the radar chart diagram shows the total CAPEX, 

OPEX and TLC presented of planned on-site, CBS and anaerobic filter (An. Fil.) technologies as 

the sole off-site treatment technologies. Moving clockwise, the next axes show the same relative 

costs in case Conventional Activated Sludge (CAS) systems were applied. The Total Life Cycle 

Costs are presented as Net Present Values (NPV) as explained in Chapter 4 and reflect the 

mutual differences of only the off-site treatment technologies and their land costs. They exclude 

TLC of on-site systems and CBS as well as sewer systems, since these costs are the same for all 

technologies.  

 

 

Figure 8.6 Relative OPEX, CAPEX and NPV of interventions for Indonesia (2035) applying the 

indicated off-site technology (An Fil, CAS until MBR + 3R) as the sole technology for central and 

medium centralized treatment plants with a land costs of 500 US$/m2. OPEX and CAPEX include 

all CAPEX and OPEX (on-site, CBS and off-site systems), whereas TLC only includes the 

treatment + land costs of off-site technologies. The 100% value corresponds with the highest 

determined value, whereas the 0% value corresponds with an actual zero value 
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Figure 8.7 Relative OPEX, CAPEX and NPV of interventions for Indonesia (2035) applying the 

indicated off-site technology (An Fil, CAS until MBR + 3R) as the sole technology for central and 

medium centralized treatment plants with a land costs of 100 US$/m2 
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waste processed applying 3R. The level of 3R applied in this evaluation are (1) 0% 3R; (2) 

selected 3R % (31%) to reach a reduction of 20% solid waste being landfilled (see Chapter 4), 

and (3) all (100%) of solid waste is treated using 3R. Despite about 25% higher investment costs, 

the TLC of systems applying 3R is more favourable due to lower OPEX. Only 10% of these 

reduced operational costs can be attributed to reduced collection and transport costs, as a result 

of decentralized processing. The largest gain is in the decreased treatment and disposal costs 

and is attributable to the sale of recovered resources (compost, plastics and paper). In the case 

of 0% 3R scenario, the cumulative disposal and 3R OPEX amounts to US$ 805 million over 20 

years (100%) and minus US$ million 260 (= profit) for 100% 3R, indicated as -35% in Figure 8.8. 

The reduction of land required for combined landfill and centralized 3R activities outside the 

residential areas (Figure 8.9) is 20% for the 31% 3R scenario and 62% for the 100% 3R scenario 

compared to a conventional system (0% 3R). At the same time, the level of land required in 

residential areas (typically more expensive) for decentral 3R stations is higher for the scenarios in 

which 3R is applied. Land availability was identified as a barrier for development of communal 3R 

systems (Aprilia et al., 2012) and for that reason not favored in high density urban areas 

(Chapters 4 and 5).  

 

 

Figure 8.8 Indonesia (2035): Comparison of OPEX, CAPEX and NPV of interventions applying 

three levels (0%, 31% and 100%) of waste processing using 3R. OPEX, CAPEX and TLC 

distinguish collection, treatment and total costs. Negative costs correspond with net profit 

resulting from the sale of recovered resources and are found when comparing OPEX of the 100% 

3R with the 0% 3R Scenario 
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Figure 8.9 Indonesia (2035): Comparison of resource production and consumption parameters of 

interventions applying three levels (0%, 31% and 100%) of waste processing using 3R 

 

8.4.2 Impact of different WWT technologies on discharged pollution loads  

Evaluation based on costs aspects only favoured the application of low cost, non-nutrient 

removing anaerobic filter technology (Figure 8.6 and Figure 8.7). However, evaluation on the 

basis of discharged pollution loads, such as phosphorus (Figure 8.10A, B) and to a lesser extent 

COD (Figure 8.11) do not favour the anaerobic filter. The difference in the cumulative COD load 

discharged by on-site, CBS systems and any of the off-site technologies (Figure 8.11) is minor 

(<10%), since only 35% of the population is planned to be connected to off-site systems. The 

difference in COD removal efficiencies of off-site technologies is only about 10% (Chapter 4). The 

calculated P-load discharge in 2020 in Indonesia as a whole shows limited differences in the P-

removed (~10%) between the selected technologies (Figure 8.10). Despite a planned access of 

100% by 2020, less than 15% of the population is connected to an off-site system (see Chapter 

5), while the remaining population is connected to a septic tank or community based system with 

poor (5%) phosphorus removal efficiencies. Therefore, the added value of applying nutrient 

removal technologies with associated higher costs may seem marginal.  

However, when looking at the most urbanized province (Jakarta DKI) in 2035, the differences in P 

discharge between the evaluated technologies is considerable (Figure 8.10). By 2035, 60% of the 

population is planned to be connected to an off-site WWTP, based on the 50% switch factor from 

current on-site users to off-site users as explained in Chapter 5. In contrast, 40% will continue to 

use septic tanks. Technologies with high P-removal (e.g. MBR, AGS) show a reduction of P 

(diamond shapes in Figure 8.10) to the environment of 40% compared to the use of anaerobic 

filter systems. The application of the UASB-DW-RBC would result in an even higher reduction 

(~45%), but this system is hardly feasible in Jakarta setting due to its large footprint, since it is 

0%

20%

40%

60%

80%

100%
Compost prod

P-recoverable from
compost

Energy production

Plastic recoveryPaper recovery

Area inside
residential areas

Area outside
residential areas

31% 3R (selected)

100% 3R

0% 3R



Chapter 8 

278 
 

waste processed applying 3R. The level of 3R applied in this evaluation are (1) 0% 3R; (2) 

selected 3R % (31%) to reach a reduction of 20% solid waste being landfilled (see Chapter 4), 

and (3) all (100%) of solid waste is treated using 3R. Despite about 25% higher investment costs, 

the TLC of systems applying 3R is more favourable due to lower OPEX. Only 10% of these 

reduced operational costs can be attributed to reduced collection and transport costs, as a result 

of decentralized processing. The largest gain is in the decreased treatment and disposal costs 

and is attributable to the sale of recovered resources (compost, plastics and paper). In the case 

of 0% 3R scenario, the cumulative disposal and 3R OPEX amounts to US$ 805 million over 20 

years (100%) and minus US$ million 260 (= profit) for 100% 3R, indicated as -35% in Figure 8.8. 

The reduction of land required for combined landfill and centralized 3R activities outside the 

residential areas (Figure 8.9) is 20% for the 31% 3R scenario and 62% for the 100% 3R scenario 

compared to a conventional system (0% 3R). At the same time, the level of land required in 

residential areas (typically more expensive) for decentral 3R stations is higher for the scenarios in 

which 3R is applied. Land availability was identified as a barrier for development of communal 3R 

systems (Aprilia et al., 2012) and for that reason not favored in high density urban areas 

(Chapters 4 and 5).  

 

 

Figure 8.8 Indonesia (2035): Comparison of OPEX, CAPEX and NPV of interventions applying 

three levels (0%, 31% and 100%) of waste processing using 3R. OPEX, CAPEX and TLC 

distinguish collection, treatment and total costs. Negative costs correspond with net profit 

resulting from the sale of recovered resources and are found when comparing OPEX of the 100% 

3R with the 0% 3R Scenario 

 

-40%
-20%

0%
20%
40%
60%
80%

100%

Investment
collection cumulative

Investment disposal
and 3R cumulative

Investment total
cumulative

OPEX collection
cumulative

OPEX disposal and
3R cumulative

OPEX total
cumulative

Collection TLC

Treatment TLC

Total TLC

31% 3R (selected)

100% 3R

0% 3R

Sanitation Nationwide Planning Framework: Synthesis, concluding remarks and outlook 

279 
 

 

Figure 8.9 Indonesia (2035): Comparison of resource production and consumption parameters of 

interventions applying three levels (0%, 31% and 100%) of waste processing using 3R 

 

8.4.2 Impact of different WWT technologies on discharged pollution loads  

Evaluation based on costs aspects only favoured the application of low cost, non-nutrient 

removing anaerobic filter technology (Figure 8.6 and Figure 8.7). However, evaluation on the 

basis of discharged pollution loads, such as phosphorus (Figure 8.10A, B) and to a lesser extent 

COD (Figure 8.11) do not favour the anaerobic filter. The difference in the cumulative COD load 

discharged by on-site, CBS systems and any of the off-site technologies (Figure 8.11) is minor 

(<10%), since only 35% of the population is planned to be connected to off-site systems. The 

difference in COD removal efficiencies of off-site technologies is only about 10% (Chapter 4). The 

calculated P-load discharge in 2020 in Indonesia as a whole shows limited differences in the P-

removed (~10%) between the selected technologies (Figure 8.10). Despite a planned access of 

100% by 2020, less than 15% of the population is connected to an off-site system (see Chapter 

5), while the remaining population is connected to a septic tank or community based system with 

poor (5%) phosphorus removal efficiencies. Therefore, the added value of applying nutrient 

removal technologies with associated higher costs may seem marginal.  

However, when looking at the most urbanized province (Jakarta DKI) in 2035, the differences in P 

discharge between the evaluated technologies is considerable (Figure 8.10). By 2035, 60% of the 

population is planned to be connected to an off-site WWTP, based on the 50% switch factor from 

current on-site users to off-site users as explained in Chapter 5. In contrast, 40% will continue to 

use septic tanks. Technologies with high P-removal (e.g. MBR, AGS) show a reduction of P 

(diamond shapes in Figure 8.10) to the environment of 40% compared to the use of anaerobic 

filter systems. The application of the UASB-DW-RBC would result in an even higher reduction 

(~45%), but this system is hardly feasible in Jakarta setting due to its large footprint, since it is 

0%

20%

40%

60%

80%

100%
Compost prod

P-recoverable from
compost

Energy production

Plastic recoveryPaper recovery

Area inside
residential areas

Area outside
residential areas

31% 3R (selected)

100% 3R

0% 3R



Chapter 8 

280 
 

more than 100 times that of technologies such as the AGS or MBR (Chapter 4). This comparison 

shows the relevance of evaluating sanitation interventions and their pollution discharge or 

resource recovery on a temporal and spatial scale. Overall, it confirms that, in sanitation planning, 

there is no “one size fits all” solution (Guest et al., 2009).  

 

 

 

Figure 8.10 (A upper Figure, B lower Figure) Cumulative (on-site, CBS and indicated off-site 

systems combined) Total phosphorous (TP) load discharged and Total P recoverable (as struvite 

composted sludge and duckweed). Figure A: Indonesia (2020); Figure B: DKI-Jakarta (2035) 
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Figure 8.11 Indonesia (2035): Cumulative (on-site, CBS and indicated off-site systems) COD 

load discharged and net energy production or consumption. A negative value corresponds with a 

net energy producing system and is found for the UASB-DW-RBC system 
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frequently subject to power cuts or have limited access to power (Lettinga, 2006). 
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Visualizing the absolute amount of recoverable P from wastewater on a provincial level using 

different off-site technologies may help policy makers or private parties to identify the potential 

amount of P that can be sold to farmers (Chapter 4). Figure 8.12 shows the province based 

recoverable P by 2035 and suggests that the highest potential lies in highly populated and 

urbanized areas located on Java Barat (West Java) and Java Timur (East Java).  
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Visualizing the absolute amount of recoverable P from wastewater on a provincial level using 

different off-site technologies may help policy makers or private parties to identify the potential 

amount of P that can be sold to farmers (Chapter 4). Figure 8.12 shows the province based 

recoverable P by 2035 and suggests that the highest potential lies in highly populated and 

urbanized areas located on Java Barat (West Java) and Java Timur (East Java).  
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Figure 8.13 shows the time bound (period 2020 and 2035) and nationwide anticipated resource 

(compost, energy, plastic and paper) recovery potential using the selected (31%) 3R scenario 

(Chapter 5) and the 100% 3R (in which 3R is applied on all collected waste). It shows that the 

amount of recoverable resources increases as a result of (1) more people being served by the 

waste management system in a country with increasing population (relation 2020-2035) and (2) 

changing government targets with respect to the solid waste reduction targets (relation 31% 3R 

and 100% 3R). Depending on the potential demand for recoverable resources in an area, the 

government may set its own ambition level of 3R to both suit the market and stimulate 

sustainability. 

 

 

Figure 8.13 Indonesia (2020 and 2035) compost and energy production and plastic and paper 

recovery from solid waste, applying two levels (31% and 100%) of waste processing using 3R 

 

8.4.4 Spatial and temporal comparison of resource demand and supply  

Finally, SaNaP allows for a spatial and temporal evaluation of the potential recoverable resource 

demand (Chapter 6) in comparison to potential resource recovery following the planned 

implementation (Chapter 5) and associated resource recovery potential (Chapter 4). Figure 8.14 

(phosphorus), Figure 8.15 (compost) and Figure 8.16 (paper) show the cumulative recovery 

potential from wastewater on-site, CBS and off-site systems (in this example assuming the AGS 

+ 3R) and solid waste (100% 3R) in relation to its demand for each province in the year. 

The total (nationwide) P-recovery from wastewater and solid waste in 2035 is nearly 100,000 

tonnes P/year. This is almost 10% of the total calculated actual P demand by 2035 (see Chapter 

6 for definition of actual). About 20% could be recovered as an inorganic struvite fertilizer, 

whereas the remaining 80% is recoverable as an organic P-containing compost (from septic and 
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sewage sludge and organic waste processing). Jakarta produces more phosphorus than is 

required for agricultural purposes (Figure 8.14), which is due to the high recovery potential in 

combination with the limited agricultural activities in Indonesia’s capital. On the scale of Java, 

more than 30% of the P requirement can be provided through resource recovery, while Java 

accounts for nearly 60% of the total population (BPS, 2013). In contrast to this, for Sumatra and 

Kalimantan only 5% could be provided. This low value is related to the (palm oil) plantations that 

require nearly 60% of all P in the nation (Chapter 6), while the population amounts to less than 

30% of people in Indonesia. Less than half of that population is urban, which is the population 

considered for off-site technologies for selected enhanced P-recovery technologies (Chapter 4). 

In 2013 the reported inorganic fertilizer P-consumption in Indonesia amounted to 340,000 tonnes 

of inorganic P, of which nearly 80% is produced (mined) in Indonesia. The export was reported to 

be 25,000 tonnes P/year (FAO, 2014a). In 2035, the potential recoverable struvite (inorganic) 

fertilizer from wastewater is 80% of the current (2013) export P-production. Although different 

time scales are compared here (2013 and 2035), this comparison suggests that the export of 

recoverable inorganic P from wastewater could considerably strengthen Indonesia’s position as a 

P-exporting country.  

Figure 8.15 shows that the degree to which produced compost can fulfil the actual compost 

demand has less variation on a provincial level than phosphorus, because compost is produced 

both in urban and rural areas (Chapter 4). In the more urbanized areas (e.g. Java), compost is 

largely produced in centralized systems. In contrast, in rural areas (e.g. Papua) compost is 

mainly produced in decentralized systems and on household levels through home-composting of 

organic waste.  

Both phosphorus and compost demand exceed potential recovery from wastewater and solid 

waste. Since the application of recovered sanitation products is not always perceived as a safe 

or desired product (Koné et al., 2007; Starkl et al., 2010), it can be considered to selectively 

market resources, focusing on safe use first (WHO, 2006). Thus, the presented temporal and 

spatial evaluations of potential supply and demand can help a policy maker to determine what 

type of marketing and socialization or campaigning (e.g. to farmers) is required.  

 

 



Chapter 8 

284 
 

Figure 8.13 shows the time bound (period 2020 and 2035) and nationwide anticipated resource 

(compost, energy, plastic and paper) recovery potential using the selected (31%) 3R scenario 

(Chapter 5) and the 100% 3R (in which 3R is applied on all collected waste). It shows that the 

amount of recoverable resources increases as a result of (1) more people being served by the 

waste management system in a country with increasing population (relation 2020-2035) and (2) 

changing government targets with respect to the solid waste reduction targets (relation 31% 3R 

and 100% 3R). Depending on the potential demand for recoverable resources in an area, the 

government may set its own ambition level of 3R to both suit the market and stimulate 

sustainability. 

 

 

Figure 8.13 Indonesia (2020 and 2035) compost and energy production and plastic and paper 

recovery from solid waste, applying two levels (31% and 100%) of waste processing using 3R 

 

8.4.4 Spatial and temporal comparison of resource demand and supply  

Finally, SaNaP allows for a spatial and temporal evaluation of the potential recoverable resource 

demand (Chapter 6) in comparison to potential resource recovery following the planned 

implementation (Chapter 5) and associated resource recovery potential (Chapter 4). Figure 8.14 

(phosphorus), Figure 8.15 (compost) and Figure 8.16 (paper) show the cumulative recovery 

potential from wastewater on-site, CBS and off-site systems (in this example assuming the AGS 

+ 3R) and solid waste (100% 3R) in relation to its demand for each province in the year. 

The total (nationwide) P-recovery from wastewater and solid waste in 2035 is nearly 100,000 

tonnes P/year. This is almost 10% of the total calculated actual P demand by 2035 (see Chapter 

6 for definition of actual). About 20% could be recovered as an inorganic struvite fertilizer, 

whereas the remaining 80% is recoverable as an organic P-containing compost (from septic and 

0

2,000,000

4,000,000

6,000,000

8,000,000

10,000,000

12,000,000

14,000,000

selected 3R 100% 3R selected 3R 100% 3R

2020 2035

C
o

m
p

o
s
t,

 p
la

s
ti

c
 &

 p
a
p

e
r 

(t
/y

e
a
r)

, 
e
n

e
rg

y
 i

n
 

(M
W

h
/y

e
a
r)

Compost production Energy production Plastic recovery Paper recovery

Sanitation Nationwide Planning Framework: Synthesis, concluding remarks and outlook 

285 
 

sewage sludge and organic waste processing). Jakarta produces more phosphorus than is 

required for agricultural purposes (Figure 8.14), which is due to the high recovery potential in 

combination with the limited agricultural activities in Indonesia’s capital. On the scale of Java, 

more than 30% of the P requirement can be provided through resource recovery, while Java 

accounts for nearly 60% of the total population (BPS, 2013). In contrast to this, for Sumatra and 

Kalimantan only 5% could be provided. This low value is related to the (palm oil) plantations that 

require nearly 60% of all P in the nation (Chapter 6), while the population amounts to less than 

30% of people in Indonesia. Less than half of that population is urban, which is the population 

considered for off-site technologies for selected enhanced P-recovery technologies (Chapter 4). 

In 2013 the reported inorganic fertilizer P-consumption in Indonesia amounted to 340,000 tonnes 

of inorganic P, of which nearly 80% is produced (mined) in Indonesia. The export was reported to 

be 25,000 tonnes P/year (FAO, 2014a). In 2035, the potential recoverable struvite (inorganic) 

fertilizer from wastewater is 80% of the current (2013) export P-production. Although different 

time scales are compared here (2013 and 2035), this comparison suggests that the export of 

recoverable inorganic P from wastewater could considerably strengthen Indonesia’s position as a 

P-exporting country.  

Figure 8.15 shows that the degree to which produced compost can fulfil the actual compost 

demand has less variation on a provincial level than phosphorus, because compost is produced 

both in urban and rural areas (Chapter 4). In the more urbanized areas (e.g. Java), compost is 

largely produced in centralized systems. In contrast, in rural areas (e.g. Papua) compost is 

mainly produced in decentralized systems and on household levels through home-composting of 

organic waste.  

Both phosphorus and compost demand exceed potential recovery from wastewater and solid 

waste. Since the application of recovered sanitation products is not always perceived as a safe 

or desired product (Koné et al., 2007; Starkl et al., 2010), it can be considered to selectively 

market resources, focusing on safe use first (WHO, 2006). Thus, the presented temporal and 

spatial evaluations of potential supply and demand can help a policy maker to determine what 

type of marketing and socialization or campaigning (e.g. to farmers) is required.  

 

 



C
ha

pt
er

 8
 

28
6 

 

 

F
ig

u
re

 8
.1

4
 P

ro
vi

nc
e 

ba
se

d 
(2

03
5)

: P
 r

ec
ov

er
ab

le
 fr

om
 o

n-
si

te
 C

B
S

 a
nd

 o
ff

-s
ite

 W
W

T
P

 (
as

su
m

in
g 

A
G

S
 +

 3
R

) 
an

d 
10

0%
 3

R
 M

S
W

 s
ce

na
rio

 in
 

re
la

tio
n 

to
 th

e 
ac

tu
al

 d
em

an
d  

0

20
,0

00

40
,0

00

60
,0

00

80
,0

00

10
0,

00
0

12
0,

00
0

14
0,

00
0

16
0,

00
0

Potential P-recovery and demand (1,000 kg/y)

R
ec

ov
er

y

D
em

an
d

S
an

ita
tio

n 
N

at
io

nw
id

e 
P

la
nn

in
g 

F
ra

m
ew

or
k:

 S
yn

th
es

is
, c

on
cl

ud
in

g 
re

m
ar

ks
 a

nd
 o

ut
lo

ok
 

28
7 

 

 

F
ig

u
re

 8
.1

5
 P

ro
vi

nc
e 

ba
se

d 
(2

03
5)

: C
om

po
st

 p
ro

du
ct

io
n 

fr
om

 W
W

T
P

 (
A

G
S

 +
 3

R
) 

an
d 

10
0%

 3
R

 M
S

W
 s

ce
na

rio
 in

 r
el

at
io

n 
to

 th
e 

de
m

an
d 

0

1,
00

0,
00

0

2,
00

0,
00

0

3,
00

0,
00

0

4,
00

0,
00

0

5,
00

0,
00

0

6,
00

0,
00

0

7,
00

0,
00

0

8,
00

0,
00

0

9,
00

0,
00

0

10
,0

00
,0

00

Potential compost production and demand (1,000 kg/y)

P
ro

du
ct

io
n

D
em

an
d



C
ha

pt
er

 8
 

28
6 

 

 

F
ig

u
re

 8
.1

4
 P

ro
vi

nc
e 

ba
se

d 
(2

03
5)

: P
 r

ec
ov

er
ab

le
 fr

om
 o

n-
si

te
 C

B
S

 a
nd

 o
ff

-s
ite

 W
W

T
P

 (
as

su
m

in
g 

A
G

S
 +

 3
R

) 
an

d 
10

0%
 3

R
 M

S
W

 s
ce

na
rio

 in
 

re
la

tio
n 

to
 th

e 
ac

tu
al

 d
em

an
d 

0

20
,0

00

40
,0

00

60
,0

00

80
,0

00

10
0,

00
0

12
0,

00
0

14
0,

00
0

16
0,

00
0

Potential P-recovery and demand (1,000 kg/y)

R
ec

ov
er

y

D
em

an
d

S
an

ita
tio

n 
N

at
io

nw
id

e 
P

la
nn

in
g 

F
ra

m
ew

or
k:

 S
yn

th
es

is
, c

on
cl

ud
in

g 
re

m
ar

ks
 a

nd
 o

ut
lo

ok
 

28
7 

 

 

F
ig

u
re

 8
.1

5
 P

ro
vi

nc
e 

ba
se

d 
(2

03
5)

: C
om

po
st

 p
ro

du
ct

io
n 

fr
om

 W
W

T
P

 (
A

G
S

 +
 3

R
) 

an
d 

10
0%

 3
R

 M
S

W
 s

ce
na

rio
 in

 r
el

at
io

n 
to

 th
e 

de
m

an
d 

0

1,
00

0,
00

0

2,
00

0,
00

0

3,
00

0,
00

0

4,
00

0,
00

0

5,
00

0,
00

0

6,
00

0,
00

0

7,
00

0,
00

0

8,
00

0,
00

0

9,
00

0,
00

0

10
,0

00
,0

00
Potential compost production and demand (1,000 kg/y)

P
ro

du
ct

io
n

D
em

an
d



C
ha

pt
er

 8
 

28
8 

 

 

F
ig

u
re

 8
.1

6
 P

ro
vi

nc
e 

ba
se

d 
(2

03
5)

: R
ec

ov
er

ab
le

 p
ap

er
 in

 r
el

at
io

n 
to

 p
ap

er
 c

on
su

m
pt

io
n 

of
 1

00
%

 3
R

 M
S

W
 s

ce
na

rio
  

0

50
0,

00
0

1,
00

0,
00

0

1,
50

0,
00

0

2,
00

0,
00

0

2,
50

0,
00

0

3,
00

0,
00

0

3,
50

0,
00

0

4,
00

0,
00

0

4,
50

0,
00

0
Potential paper recovey  and consumption (1,000 kg/y)

R
ec

ov
er

y

C
on

su
m

pt
io

n

Sanitation Nationwide Planning Framework: Synthesis, concluding remarks and outlook 

289 
 

The potential paper recovery (Figure 8.16) is highest in urban areas (Java) and lowest in rural 

areas (e.g. Papua). As explained in Chapter 5, the current implementation plan does not foresee 

plastic or paper recovery in low density (< 25 pp/ha) rural areas due to the remoteness of these 

areas. However, still nearly 25% of all consumed paper can be supplied from recovered paper. 

Currently, plastic and paper recovery processes are predominantly established in Java (see also 

Chapter 6). Insight in potential recovery and demand of plastics and paper can facilitate 

discussions between sanitation planners and industries to align activities for collection, recovery 

and trade flows of these products. 

Figure 8.17 shows the potential cumulative supply of recovered resources from wastewater and 

solid waste activities compared to their potential demand for six clustered regions (Sumatra, 

Java, Kalimantan, Sulawesi, Bali & NTT & NTB, Papua & Maluku; see also Chapter 6).  

Figure 8.17 provides an outlook on the extent of resource recovery from wastewater and solid 

waste and their contribution to material cycle closing for each identified region. It shows to what 

extent these regions could become independent of external resources and allows evaluation of 

the need to implement resource recovery technologies to develop a circular economy. Especially 

in Java, the potential to recover resources is considerable, and P and compost recovery 

potentials exceed 30%. Since both the long-term availability of worldwide phosphorus (Cordell et 

al., 2011) and to a lesser extent organic soil in Java (Minasny et al., 2011) are under pressure, 

insight in the spatial and temporal resource recovery potential from wastewater and solid waste 

may contribute to securing food systems. It may be an incentive for policy makers to apply a 

certain type of WWT or MSW technology to assure long-term availability of scarce (locally 

available) resources. 
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Figure 8.17 Potential supply compared to potential demand of phosphorus, compost, duckweed 

and paper) demand per region in 2035.The phosphorus and compost supply from wastewater is 

calculated assuming the use of the AGS + 3R off-site technology, whereas the potential 

duckweed supply it assumes the application of the UASB-DW-RBC 

 

8.4.5 Can resource recovery accelerate access to sanitation? 

It was hypothesized, that access to sanitation (wastewater and solid waste) facilities could be 

accelerated by considering resource recovery systems and technologies in the planning process. 

A demonstrated attractive BCR of bigger than 1 can feed into advocacy efforts to raise funding 

for sanitation development from governments and households. Once the private sector is 

convinced these players are ready to invest, the diverse funding sources and innovative capacity 

of the private sector can be unleashed (Hutton, 2013). 

In Chapter 7, a BCR analysis for a specific Indonesian case (Upper Citarum River in West Java) 

was performed. This study showed that benefits through the sale of recovered resources from 

solid waste and wastewater represent a potential additional driver for improving water quality. 

These outweighed the additional costs for resource recovery facilities. It thus confirmed our 

hypothesis, namely that the BCR of sanitation interventions can be increased by applying 

resource recovery. In the study presented in Chapter 7, the benefits (health, access time, 

improved water sources and environment and increased land value) were not related to the 

resource recovery potential. Hence, the increased BCR was solely dependent on additional 

resource recovery benefits that exceeded the additional costs of resource recovery systems.  
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On a nationwide scale, these findings are the same, since addition of resource recovery 

technologies to CAS, AGS or MBR technologies could lower the total lifecycle costs (Figure 8.6 

and Figure 8.7) of WWT while achieving the same effluent quality. At the same time, it was 

shown for WWT systems that these differences were only a few (1-5%) percentage points 

(Figure 8.6 and Figure 8.7). A much lower TLC (80% reduction) could be achieved by applying 

the low cost anaerobic filter technology. However, this would result in an increased discharge of 

pollutants and pathogens to the environment (Figure 8.10). The analysis in Chapter 7 (Upper 

Citarum River) showed that implementation of only low cost (anaerobic filter) technologies would 

not result in the target water quality. In addition, the added financial value of 3R in solid waste 

management was clearly demonstrated (Figure 8.8) and has been the reason for a lively, but 

informal solid resource recovery sector in Indonesia (Sasaki & Araki, 2013; Chaerul et al., 2013).  

Moreover, it was demonstrated that the demand for recovered resources typically exceeds the 

supply (Figure 8.17), enabling selective marketing of resources, focusing on safe use (WHO, 

2006). Heavily urbanized areas (e.g. Jakarta), showed an opposite trend in which the potential 

recovery of phosphorus, and compost from wastewater and solid waste exceeded the demand 

(Figure 8.14, Figure 8.15). These areas can therefore be regarded as urban harvesting areas 

(Agudelo-Vera et al., 2011) and may “feed” recovered resources to neighbouring provinces with 

a higher demand than supply (e.g. Banten, West Java). 

 

 Evaluation of the SaNaP framework 8.5

8.5.1 Added value of a new integrated approach 

In this thesis we developed a new Sanitation Nationwide Planning (SaNaP) framework that can 

be used by policy makers for planning and evaluation of sanitation systems and considers local 

conditions (e.g. residential features) and demands (e.g. demand for resources). 

The complexity of sanitation planning does not allow for the application of a single method or 

tool, but requires an integrated approach. This offers the possibility to have a nuanced view on 

interrelations compared to single cause-effect relations (Mirakyan & De Guio, 2013). The 

integrated evaluation of interventions provides significant benefits to projects in a dynamic 

context as was shown in the comparison of the impact of different systems on (1) costs (Figure 

8.7) (2) pollution discharged (Figure 8.10) and (3) resource recovery potential (Figure 8.12) 

(Pollack, 2009). The presented framework enables evaluation of different criteria (e.g. costs, 

pollution loads, recovery potential) on different spatial (e.g. national, provincial and city) and 

temporal scales (2015-2035). 

The framework was developed to make a planning and prepare a budget for wastewater and 

solid waste facilities in developing countries following governmental policy targets. The 

Indonesian situation, as an example for many developing countries, is characterized by 

inadequate sanitation regulatory frameworks and cross-sector policy coordination, rapid 
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solid waste and wastewater represent a potential additional driver for improving water quality. 

These outweighed the additional costs for resource recovery facilities. It thus confirmed our 

hypothesis, namely that the BCR of sanitation interventions can be increased by applying 

resource recovery. In the study presented in Chapter 7, the benefits (health, access time, 

improved water sources and environment and increased land value) were not related to the 

resource recovery potential. Hence, the increased BCR was solely dependent on additional 

resource recovery benefits that exceeded the additional costs of resource recovery systems.  
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On a nationwide scale, these findings are the same, since addition of resource recovery 

technologies to CAS, AGS or MBR technologies could lower the total lifecycle costs (Figure 8.6 

and Figure 8.7) of WWT while achieving the same effluent quality. At the same time, it was 

shown for WWT systems that these differences were only a few (1-5%) percentage points 

(Figure 8.6 and Figure 8.7). A much lower TLC (80% reduction) could be achieved by applying 

the low cost anaerobic filter technology. However, this would result in an increased discharge of 

pollutants and pathogens to the environment (Figure 8.10). The analysis in Chapter 7 (Upper 

Citarum River) showed that implementation of only low cost (anaerobic filter) technologies would 

not result in the target water quality. In addition, the added financial value of 3R in solid waste 

management was clearly demonstrated (Figure 8.8) and has been the reason for a lively, but 

informal solid resource recovery sector in Indonesia (Sasaki & Araki, 2013; Chaerul et al., 2013).  

Moreover, it was demonstrated that the demand for recovered resources typically exceeds the 

supply (Figure 8.17), enabling selective marketing of resources, focusing on safe use (WHO, 

2006). Heavily urbanized areas (e.g. Jakarta), showed an opposite trend in which the potential 

recovery of phosphorus, and compost from wastewater and solid waste exceeded the demand 

(Figure 8.14, Figure 8.15). These areas can therefore be regarded as urban harvesting areas 

(Agudelo-Vera et al., 2011) and may “feed” recovered resources to neighbouring provinces with 

a higher demand than supply (e.g. Banten, West Java). 

 

 Evaluation of the SaNaP framework 8.5

8.5.1 Added value of a new integrated approach 

In this thesis we developed a new Sanitation Nationwide Planning (SaNaP) framework that can 

be used by policy makers for planning and evaluation of sanitation systems and considers local 

conditions (e.g. residential features) and demands (e.g. demand for resources). 

The complexity of sanitation planning does not allow for the application of a single method or 

tool, but requires an integrated approach. This offers the possibility to have a nuanced view on 

interrelations compared to single cause-effect relations (Mirakyan & De Guio, 2013). The 

integrated evaluation of interventions provides significant benefits to projects in a dynamic 

context as was shown in the comparison of the impact of different systems on (1) costs (Figure 

8.7) (2) pollution discharged (Figure 8.10) and (3) resource recovery potential (Figure 8.12) 

(Pollack, 2009). The presented framework enables evaluation of different criteria (e.g. costs, 

pollution loads, recovery potential) on different spatial (e.g. national, provincial and city) and 

temporal scales (2015-2035). 

The framework was developed to make a planning and prepare a budget for wastewater and 

solid waste facilities in developing countries following governmental policy targets. The 

Indonesian situation, as an example for many developing countries, is characterized by 

inadequate sanitation regulatory frameworks and cross-sector policy coordination, rapid 
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urbanization, low community awareness on the importance of sanitation, limited land availability 

and local capacity to assure operation of facilities, and inadequate investments in sanitation 

systems (ADB, 2013; Kearton et al., 2013). Therefore, the framework acknowledges the need for 

a comprehensive situation analysis (Törnqvist et al., 2008) and identifies the main stakeholders 

and implementing institutions (BAPPENAS, 2007), applicable legislations (ADB, 2013), past 

sanitation development (WHO & UNICEF, 2014), and population development forecasts (BPS, 

2013).  

The involvement of stakeholders is an essential element in sanitation planning (UNEP, 2004; 

Ulrich et al., 2009; Van Buuren, 2010; Murray & Ray, 2010b) and enables a holistic view that 

otherwise may not be achievable (Thabrew et al., 2009). In the different stages of the 

development of the framework, a variety of stakeholders were involved to cover and address the 

issues debit to the backlog in sanitation development in Indonesia. These were (1) ministries 

(Planning, Public Works, Home affairs, Health and Agriculture), (2) representatives of 

international donors, such as the World Bank and WSP (Water and Sanitation Program of the 

World Bank), (3) NGO’s active in the Indonesian sanitation development work, such as Bremen 

Overseas Research and Development Association (BORDA), HIVOS & SNV, (d) universities 

(Padjajaran University and ITB Bandung) and (4) organizations representing potential reuse 

stakeholders (Kemenperin, 2012; FAO, 2014b). In addition, SaNaP considers a variety of 

population groups (urban/rural, poor and non-poor) as important stakeholders, which is different 

to many other tools (Törnqvist et al., 2008; Mehta & Movik, 2010; Sijbesma, 2011),.  

In order to increase the effectiveness and sustainability of sanitation interventions both 

“hardware” (e.g. sewer systems, collection vehicles, treatment systems) and “software” 

measures (e.g. campaigning, advocacy, institutional capacity building and technical assistance) 

are required (Waddington & Snilstveit, 2009). SaNaP uses the situation analysis and information 

from stakeholders to directly identify and quantify these “software” and “hardware” measures 

(Chapter 5). Sustainability is further assured by defining required implementation and operational 

budgets per responsible institution (Iyer et al., 2005; Mara et al., 2010; Winters et al., 2014). 

Besides, SaNaP quantitatively evaluates the sustainability of resource recovery, following a 

technical, financial, and resource flow (supply and demand) analysis. 

The sustainability of SaNaP is further enhanced by a newly developed wastewater and solid 

waste systems selection framework (Figure 8.1) that uses key residential criteria (urban/rural 

features and population density) in a developing country’s context. The use of residential criteria 

was based on their frequently readily and freely availability (BPS, 2014; DSM, 2014; NBSC 

(National Bureau of Statistics in China), 2014). The feasibility of certain technologies may vary in 

time and place from those pre-selected for Indonesia (Chapter 4). Therefore, in due course, more 

innovative technologies, e.g. those applying source separation and enhanced nutrient recovery 

(Larsen et al., 2009) or those that have a high degree of flexibility (Spiller et al., 2015), can be 
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added to the framework to further improve its functionality and applicability (see also Section 

8.5.4).  

Sanitation infrastructure is often planned to last for a long time and are related to long-term 

policies (Ng et al., 2014). Also the ability to evaluate sanitation alternatives across spatial and 

temporal scales was identified as an important need in sanitation planning (Guest et al., 2009). 

Therefore SaNaP identifies both short (5 years) as well as mid- and long-term interventions (up 

to 20 years) in its planning. Spatial evaluation is enhanced by the use of data collected at the 

smallest administrative unit (desa) that can be aggregated to higher level of governments. For 

Indonesia the raw data of nearly 80,000 desa was collected to develop SaNaP. The spatial 

evaluation supports the identification or formulation of location specific interventions that 

considers the level of, for example, poverty and urbanization as well as resource demand (see 

also Figure 8.10-Figure 8.17 and Chapter 5). SaNaP enhanced the spatial evaluation by 

visualization of planned infrastructures in a Geographic Information System (GIS), as was shown 

in Chapter 5, which is also found a novelty in sanitation planning. 

 

8.5.2 Applicability of the framework in the field 

SaNaP has been developed to guide policy makers in the preparation of nationwide budgets and 

to evaluate how certain choices (e.g. targets, priorities, system selection) affect the required 

budgets and implementation of facilities at different levels. The advantage of a residential area-

based selection system is that most of the required input data is readily available through on-line 

databases (BPS, 2010, 2013, 2014) and does not require in-depth and resource or time 

demanding local surveys. Because residential data is collected on a local scale, the determined 

budgets and number of systems can be easily translated to local implementation (Chapter 5). 

A second advantage of the method that enhances application is that the impact of system or 

technology choices can be evaluated not only on financial parameters (CAPEX, OPEX, TLC), but 

also on environmental parameters (pollutants and pathogens discharged), spatial parameters 

(land requirements) and resource (recovery) parameters (e.g. energy requirement, sludge 

production, duckweed production). This enables site specific selection of technologies. For 

example, if stringent effluent standards prevail (e.g. in high densely populated areas), the 

interventions can be tailored to select technologies that meet those requirements (e.g. CAS N&P, 

UASB-DW-RBC, MBR, AGS), while immediately quantifying the impact (costs, space and energy 

requirement, resulting pollution loads discharged) of these interventions. Alternatively, if an area 

features major aquaculture activities, SaNaP can evaluate how duckweed production from 

wastewater treatment can contribute to the required feed based on the number of people that 

need to be connected to the system. 

In Chapter 3, it was described how the current sanitation policies favoured the application of 

DEWATS (community based sanitation, CBS) systems. SaNaP can be used to evaluate the 

impact of such policy choices, in terms of number of systems and land required, impact on 
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urbanization, low community awareness on the importance of sanitation, limited land availability 

and local capacity to assure operation of facilities, and inadequate investments in sanitation 

systems (ADB, 2013; Kearton et al., 2013). Therefore, the framework acknowledges the need for 

a comprehensive situation analysis (Törnqvist et al., 2008) and identifies the main stakeholders 

and implementing institutions (BAPPENAS, 2007), applicable legislations (ADB, 2013), past 

sanitation development (WHO & UNICEF, 2014), and population development forecasts (BPS, 

2013).  

The involvement of stakeholders is an essential element in sanitation planning (UNEP, 2004; 

Ulrich et al., 2009; Van Buuren, 2010; Murray & Ray, 2010b) and enables a holistic view that 

otherwise may not be achievable (Thabrew et al., 2009). In the different stages of the 

development of the framework, a variety of stakeholders were involved to cover and address the 

issues debit to the backlog in sanitation development in Indonesia. These were (1) ministries 

(Planning, Public Works, Home affairs, Health and Agriculture), (2) representatives of 

international donors, such as the World Bank and WSP (Water and Sanitation Program of the 

World Bank), (3) NGO’s active in the Indonesian sanitation development work, such as Bremen 

Overseas Research and Development Association (BORDA), HIVOS & SNV, (d) universities 

(Padjajaran University and ITB Bandung) and (4) organizations representing potential reuse 

stakeholders (Kemenperin, 2012; FAO, 2014b). In addition, SaNaP considers a variety of 

population groups (urban/rural, poor and non-poor) as important stakeholders, which is different 

to many other tools (Törnqvist et al., 2008; Mehta & Movik, 2010; Sijbesma, 2011),.  

In order to increase the effectiveness and sustainability of sanitation interventions both 

“hardware” (e.g. sewer systems, collection vehicles, treatment systems) and “software” 

measures (e.g. campaigning, advocacy, institutional capacity building and technical assistance) 

are required (Waddington & Snilstveit, 2009). SaNaP uses the situation analysis and information 

from stakeholders to directly identify and quantify these “software” and “hardware” measures 

(Chapter 5). Sustainability is further assured by defining required implementation and operational 

budgets per responsible institution (Iyer et al., 2005; Mara et al., 2010; Winters et al., 2014). 

Besides, SaNaP quantitatively evaluates the sustainability of resource recovery, following a 

technical, financial, and resource flow (supply and demand) analysis. 

The sustainability of SaNaP is further enhanced by a newly developed wastewater and solid 

waste systems selection framework (Figure 8.1) that uses key residential criteria (urban/rural 

features and population density) in a developing country’s context. The use of residential criteria 

was based on their frequently readily and freely availability (BPS, 2014; DSM, 2014; NBSC 

(National Bureau of Statistics in China), 2014). The feasibility of certain technologies may vary in 

time and place from those pre-selected for Indonesia (Chapter 4). Therefore, in due course, more 

innovative technologies, e.g. those applying source separation and enhanced nutrient recovery 

(Larsen et al., 2009) or those that have a high degree of flexibility (Spiller et al., 2015), can be 
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added to the framework to further improve its functionality and applicability (see also Section 

8.5.4).  

Sanitation infrastructure is often planned to last for a long time and are related to long-term 

policies (Ng et al., 2014). Also the ability to evaluate sanitation alternatives across spatial and 

temporal scales was identified as an important need in sanitation planning (Guest et al., 2009). 

Therefore SaNaP identifies both short (5 years) as well as mid- and long-term interventions (up 

to 20 years) in its planning. Spatial evaluation is enhanced by the use of data collected at the 

smallest administrative unit (desa) that can be aggregated to higher level of governments. For 

Indonesia the raw data of nearly 80,000 desa was collected to develop SaNaP. The spatial 

evaluation supports the identification or formulation of location specific interventions that 

considers the level of, for example, poverty and urbanization as well as resource demand (see 

also Figure 8.10-Figure 8.17 and Chapter 5). SaNaP enhanced the spatial evaluation by 

visualization of planned infrastructures in a Geographic Information System (GIS), as was shown 

in Chapter 5, which is also found a novelty in sanitation planning. 

 

8.5.2 Applicability of the framework in the field 

SaNaP has been developed to guide policy makers in the preparation of nationwide budgets and 

to evaluate how certain choices (e.g. targets, priorities, system selection) affect the required 

budgets and implementation of facilities at different levels. The advantage of a residential area-

based selection system is that most of the required input data is readily available through on-line 

databases (BPS, 2010, 2013, 2014) and does not require in-depth and resource or time 

demanding local surveys. Because residential data is collected on a local scale, the determined 

budgets and number of systems can be easily translated to local implementation (Chapter 5). 

A second advantage of the method that enhances application is that the impact of system or 

technology choices can be evaluated not only on financial parameters (CAPEX, OPEX, TLC), but 

also on environmental parameters (pollutants and pathogens discharged), spatial parameters 

(land requirements) and resource (recovery) parameters (e.g. energy requirement, sludge 

production, duckweed production). This enables site specific selection of technologies. For 

example, if stringent effluent standards prevail (e.g. in high densely populated areas), the 

interventions can be tailored to select technologies that meet those requirements (e.g. CAS N&P, 

UASB-DW-RBC, MBR, AGS), while immediately quantifying the impact (costs, space and energy 

requirement, resulting pollution loads discharged) of these interventions. Alternatively, if an area 

features major aquaculture activities, SaNaP can evaluate how duckweed production from 

wastewater treatment can contribute to the required feed based on the number of people that 

need to be connected to the system. 

In Chapter 3, it was described how the current sanitation policies favoured the application of 

DEWATS (community based sanitation, CBS) systems. SaNaP can be used to evaluate the 

impact of such policy choices, in terms of number of systems and land required, impact on 
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pollutants discharged etc. For example, if all people that were planned to be connected to off-site 

systems (about 13% of the population in 2019 see Chapter 5) would connect to CBS systems, 

approximately 80,000 installations until 2019 are required. The described difficulties in operation 

and maintenance as well as space requirement in urban areas of these CBS (Eales et al., 2013) 

shows that the described policy and corresponding required implementation is not feasible. In 

addition, the use of CBS increases the P discharge in urbanized area by over 50% compared to 

nutrient removing systems, which was shown in Figure 8.10 B (Jakarta 2035 example; knowing 

that CBS and anaerobic filters show similar performances, as determined in Chapter 4). 

Finally, the applicability of SaNaP in a developing context is shown in the formulation of the 

Indonesian “National Medium Term Development Plan (2015-2019)”, in which SaNaP was used 

to determine the required budget to meet the sanitation targets. To be eligible for national 

funding, Indonesian cities must prepare a City Sanitation Strategy (CSS). In this 5-year plan, 

locally required budgets and institutional strengthening and advocacy and campaigning activities 

are formulated (Kearton et al., 2013; Parkinson et al., 2014). The CSS is based on a similar 

residential-area dependent system selection and budget formulation of WWT and MSW systems 

and over 400 (on a total of 507) cities started their CSS by 2013 (USDP, 2014). This shows the 

applicability of SaNaP for both local and national governments. 

 

8.5.3 Applicability of SaNaP in other countries 

The selection approach for a WWT or MSW system based on residential features can be used 

for planning purposes not only for Indonesia, but for developing countries in general. The typical 

performance and per capita resource (e.g. energy, sludge, space) consumption and production 

data are considered representative for similar developing countries (e.g. South East Asia, South 

America) or could be updated with local information. Following a cost update on investments and 

operation unit costs parameters, the presented approach can be applied for WWT and MSW 

system selection in other developing countries facing similar challenges as Indonesia.  

Further, population and residential area development are readily available through various data 

bases (DSM, 2014; NBSC, 2014), and UN (United Nations)-reports (UNpopulation, 2012; WHO 

& UNICEF, 2014). The division of responsibilities and budgets per type of intervention applying 

the matrix as presented in Chapter 5 can be replicated in any country. Table 8.1 shows such 

typical matrix and how it can be developed by determining the percentages for source funding 

(now indicated with an X). The activities (e.g. studies, designs), responsible institutions (e.g. 

ministries, private parties) and cost type can be adjusted depending on the local practice in that 

country. For example, if a considerable part of funding is obtained from foreign NGO’s, this 

should be included as well. 
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Table 8.1 Required Division (%) of budget a per (i) level of funding, (ii) department and (iii) 
activity. This Table has been slightly modified from the examples presented in Chapter 5.  

Sub-sector Wastewater or Solid waste systems 

System System 1 System 2 System 3 

Activity % 
source 

% 
source 

% 
source 

i ii iii i ii iii i ii iii 
Studies and design                         

Master plan, Feasibility 
analysis                 X N PW S 

Environmental impact 
assessment  

        X N PW S 

Guidelines and detailing                 X Lo PW S 

Campaign, Advocacy, 
institutional strengthening  

                        

General X N CAI S X N PW S X N CAI S 

Local  X Lo CAI S X Lo CAI S X Lo CAI S 

Land          11 U   La X Lo   La 

Construction                          

House connection X U   H X U   H X Lo PW H 

Collection X N PW H X N PW H X N PW H 

Treatment X U   H X N PW H X N PW H 

All 100       100       100       
a Source codes i, ii and iii refer to: 

iv. Level of funding: national (N) or local (Lo) government or users/private (U); 

v. Ministry: Public Works (PW), Ministry of Health/Home Affairs (CAI) for campaign, advocacy 

and institutional strengthen; 

vi. Type of activity: hardware (H), software (S) or land acquisition (La) 

 

The determination of resource demand was based on publicly available data from the statistical 

bureau of Indonesia and FAO, supplemented with country specific fertilizer practises and 

interviews with local stakeholders (ministries, associations and universities). This makes the 

methodology for the spatial resource demand for crop nutrients, proteins and recoverable 

plastics and papers applicable for other countries as well.  

 

8.5.4 Options for extending SaNaP 

In the illustration of this framework we focused on technologies that fit the current Indonesian 

context. For that reason, new sanitation systems that aim to recover resources following source 

separation were excluded (Otterpohl et al., 1997; Larsen et al., 2009; Zeeman & Kujawa-

Roeleveld, 2011; Tervahauta et al., 2013). In Chapter 2, the application of new sanitation in a 

new Chinese residential development was studied and showed that such systems can be very 

attractive in terms of finances and waste valorization. A first extension option for future scenarios 
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pollutants discharged etc. For example, if all people that were planned to be connected to off-site 

systems (about 13% of the population in 2019 see Chapter 5) would connect to CBS systems, 

approximately 80,000 installations until 2019 are required. The described difficulties in operation 

and maintenance as well as space requirement in urban areas of these CBS (Eales et al., 2013) 

shows that the described policy and corresponding required implementation is not feasible. In 

addition, the use of CBS increases the P discharge in urbanized area by over 50% compared to 

nutrient removing systems, which was shown in Figure 8.10 B (Jakarta 2035 example; knowing 
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to determine the required budget to meet the sanitation targets. To be eligible for national 
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residential-area dependent system selection and budget formulation of WWT and MSW systems 

and over 400 (on a total of 507) cities started their CSS by 2013 (USDP, 2014). This shows the 

applicability of SaNaP for both local and national governments. 

 

8.5.3 Applicability of SaNaP in other countries 

The selection approach for a WWT or MSW system based on residential features can be used 

for planning purposes not only for Indonesia, but for developing countries in general. The typical 

performance and per capita resource (e.g. energy, sludge, space) consumption and production 

data are considered representative for similar developing countries (e.g. South East Asia, South 

America) or could be updated with local information. Following a cost update on investments and 

operation unit costs parameters, the presented approach can be applied for WWT and MSW 

system selection in other developing countries facing similar challenges as Indonesia.  

Further, population and residential area development are readily available through various data 

bases (DSM, 2014; NBSC, 2014), and UN (United Nations)-reports (UNpopulation, 2012; WHO 

& UNICEF, 2014). The division of responsibilities and budgets per type of intervention applying 

the matrix as presented in Chapter 5 can be replicated in any country. Table 8.1 shows such 

typical matrix and how it can be developed by determining the percentages for source funding 

(now indicated with an X). The activities (e.g. studies, designs), responsible institutions (e.g. 

ministries, private parties) and cost type can be adjusted depending on the local practice in that 

country. For example, if a considerable part of funding is obtained from foreign NGO’s, this 

should be included as well. 
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Table 8.1 Required Division (%) of budget a per (i) level of funding, (ii) department and (iii) 
activity. This Table has been slightly modified from the examples presented in Chapter 5.  
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The determination of resource demand was based on publicly available data from the statistical 

bureau of Indonesia and FAO, supplemented with country specific fertilizer practises and 

interviews with local stakeholders (ministries, associations and universities). This makes the 

methodology for the spatial resource demand for crop nutrients, proteins and recoverable 

plastics and papers applicable for other countries as well.  

 

8.5.4 Options for extending SaNaP 

In the illustration of this framework we focused on technologies that fit the current Indonesian 

context. For that reason, new sanitation systems that aim to recover resources following source 

separation were excluded (Otterpohl et al., 1997; Larsen et al., 2009; Zeeman & Kujawa-

Roeleveld, 2011; Tervahauta et al., 2013). In Chapter 2, the application of new sanitation in a 

new Chinese residential development was studied and showed that such systems can be very 

attractive in terms of finances and waste valorization. A first extension option for future scenarios 
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(e.g. Indonesia after 2035), or for countries in a different development stage (e.g. the 

Netherlands or Singapore), is the inclusion of other or more technologies. All technologies can be 

accommodated in the framework as long as their feasibility is linked to residential features and 

the investment and operational costs are known (see Figure 8.1). Further, Spiller et al. (2015) 

propose implementation of technologies and infrastructure which are flexible, adaptive and 

robust in order to ensure the sustainability of these systems under dynamic conditions. These 

may comprise modular or prefabricated systems that can cope with changing capacities or the 

addition of a post treatment step for nutrient removal or disinfection to meet future effluent 

requirements. In the current framework for Indonesia this was already considered for urban 

slums. These slums would initially apply temporary community sanitation centers (Ulrich et al., 

2009), since slums often lack water facilities, consist of temporary or non-legal houses, and their 

residents are unable or unwilling to pay for off-site systems (Sijbesma, 2011). The temporary 

solutions can be replaced by or adjusted to a more structural solution during planned renovation 

or rehabilitation (Bappenas, 2014; USDP, 2015).  

Second, system selection criteria can be extended. Currently, SaNaP uses residential features to 

select systems, since these reflect the impact that available systems may have on public health 

and the environment (Chapter 4 and 5). Besides population density and urban features, 

applicability of systems is determined by other factors as well, such as ground water levels, soil 

conditions and availability of a (piped) water supply (Loetscher & Keller, 2002). In addition, the 

practical suitability of systems can be included in the final system selection. For example, in more 

remote areas skilled labour, spare parts or required energy and chemicals may be not available 

and systems depending on them are not appropriate (Senzia et al., 2003). Moreover, successful 

operation of facilities depends on the institutional and management capacity of the responsible 

actors (see Chapter 5 and Table 8.1). Therefore, additional criteria that are available on a 

nationwide scale can be incorporated to improve the applicability of the framework. Possible 

criteria on a nationwide scale that reflect additional system selection criteria are the availability of 

electricity, piped water supply or general level of education (Ministry of Health, 2013). Besides 

the use of data collected though surveys, the use of “big data” can be considered as an 

indication for sanitation needs. Big data is data that is typically created digitally (e.g. social 

media), passively produced as a by-product of our daily lives, automatically collected, 

geographically or temporarily trackable and continuously analyzed (UN Global Pulse, 2012). The 

use of “big data” is considered a genuine opportunity to bring powerful new tools to the fight 

against poverty, hunger and diseases, since it allows to turn imperfect, complex, often 

unstructured data into actionable information (UN Global Pulse, 2012). Big data has been 

successfully applied in the development of flood management strategies (Jongman et al., 2015). 

Big data has also been used to prepare a flooding profile for Jakarta, using frequency and 

location of tweets including words, such as “flood”, and “water damage” (social data mining) 
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(Wagemaker & Loenen, 2014). Similarly, social data could be mined to prepare sanitation 

profiles in an area using sanitation related criteria, such as e.g. garbage, diarrhoea, or smell.    

Third, the current framework predominantly focused on domestic wastewater and solid waste 

streams, whereas SaNaP can be extended using other sources of pollution. In Chapter 7 (Upper 

Citarum River) specific attention was already paid to industrial pollution and this showed the 

need to develop the domestic and industrial environmental WWT sector in parallel to meet the 

target water quality. Therefore, for specific cases integration with industrial pollution actors 

(following the example of Chapter 7) can be considered to come to an effective approach to 

improve public health and the environment. 

Fourth, the objective of sanitation is to prevent pollution and improve public health. However, it is 

necessary to assess sustainability of interventions in order to ensure that pollution is being 

removed and not displaced. Similar to the analysis performed for Changzhou (Chapter 2), the 

inclusion of environmental emissions other than water pollution (COD, N & P) may enhance 

sanitation planning. Examples of such emissions are odor or greenhouse gasses (Rodriguez-

Garcia et al., 2011). Technologies that may be low cost (e.g. anaerobic ponds, septic tanks) emit 

considerable greenhouse gasses and odour, whereas the current SaNaP does not consider 

these effects yet. Wastewater and solid waste system emission values of greenhouse gasses or 

odorous compounds, such as sulphide, are available (Aye & Widjaya, 2006; Zitomer et al., 2008; 

Kerstens, van der Steen, et al., 2009; Larsen, 2011) and can be incorporated in SaNaP.  

Fifth, in the determination of the BCR (Chapter 7) not all economic impacts were quantified, such 

as consumption of fish imbibing toxic wastes or otherwise infected (Lasut et al., 2008), reduced 

land subsidence resulting from reused industrial effluent, improved recreational values (Day & 

Mourato, 1998; Alam, 2008), reduced industrially discharged toxins and heavy metals or 

anticipated long-term effects of reduced eutrophication and less impacted ecosystem functioning 

(Suwarno et al., 2013). Monetizing these impacts may further increase the benefit of sanitation 

interventions and enhance advocating sanitation interventions. 

Sixth, SaNaP can be extended by elaborating on specific market demands for recoverable 

resources. In our study we compared the potential supply with potential demand, without an in 

depth analysis of local availability of alternative resources and the recovery costs compared to 

prices of competitive resources. Moreover, to further safeguard the quality and safety of 

produced or recovered products (Snyman & Vorster, 2011; Raschid-Sally, 2013), specific 

attention can be paid to required source (e.g. need for source separation) and level of 

hygienization of sanitation by-products and the perception of envisaged users (Koné et al., 

2007). Thus far, studies show ambiguous demand for sanitation by-products by farmers (Starkl et 

al., 2010; SNV, 2013) despite their potential financial benefits. Further, the quality of recovered 

raw materials (e.g. plastics) largely determine their potential to become a replacement of virgin 

plastics (Lazarevic et al., 2010). SaNaP provides an initial assessment of the possibility to move 

towards a circular economy, but to foster long-term sustainability the quality and marketing of 
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(e.g. Indonesia after 2035), or for countries in a different development stage (e.g. the 
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the investment and operational costs are known (see Figure 8.1). Further, Spiller et al. (2015) 
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(Wagemaker & Loenen, 2014). Similarly, social data could be mined to prepare sanitation 

profiles in an area using sanitation related criteria, such as e.g. garbage, diarrhoea, or smell.    
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Fifth, in the determination of the BCR (Chapter 7) not all economic impacts were quantified, such 

as consumption of fish imbibing toxic wastes or otherwise infected (Lasut et al., 2008), reduced 

land subsidence resulting from reused industrial effluent, improved recreational values (Day & 

Mourato, 1998; Alam, 2008), reduced industrially discharged toxins and heavy metals or 

anticipated long-term effects of reduced eutrophication and less impacted ecosystem functioning 

(Suwarno et al., 2013). Monetizing these impacts may further increase the benefit of sanitation 

interventions and enhance advocating sanitation interventions. 

Sixth, SaNaP can be extended by elaborating on specific market demands for recoverable 

resources. In our study we compared the potential supply with potential demand, without an in 

depth analysis of local availability of alternative resources and the recovery costs compared to 

prices of competitive resources. Moreover, to further safeguard the quality and safety of 

produced or recovered products (Snyman & Vorster, 2011; Raschid-Sally, 2013), specific 

attention can be paid to required source (e.g. need for source separation) and level of 

hygienization of sanitation by-products and the perception of envisaged users (Koné et al., 

2007). Thus far, studies show ambiguous demand for sanitation by-products by farmers (Starkl et 

al., 2010; SNV, 2013) despite their potential financial benefits. Further, the quality of recovered 

raw materials (e.g. plastics) largely determine their potential to become a replacement of virgin 

plastics (Lazarevic et al., 2010). SaNaP provides an initial assessment of the possibility to move 

towards a circular economy, but to foster long-term sustainability the quality and marketing of 
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recovered products need to be matched with specific local demands and customs (Cordell et al., 

2011; Saveyn & Eder, 2014; Diener et al., 2014). In the provided analysis (e.g. Figure 8.17) local 

(national) resource demand and supply were compared, whereas international or regional trade 

patterns were only partly included (e.g. for waste paper in Chapter 6). Established international 

trades of recoverable resources such as for phosphorus, paper and plastics can provide 

alternative and potentially more attractive financial markets (Van Beukering, 2001).   

Next, SaNaP can be extended by including more types of recoverable resources. The selection 

of resources (Chapter 6) was based on formulated criteria, such as the recovery potential from 

wastewater and solid waste in the Indonesian setting, fraction of solid waste and transportability. 

However, there are a number of other resources or products that can be recovered from 

wastewater and solid waste for which markets exist. For example, nitrogen and potassium 

(present in wastewater) are essential nutrients for crop development (Janssen et al., 1990). 

Current nitrogen fertilizer production is an energy intensive process (Tervahauta et al., 2013). 

However, new technologies (e.g. microbial fuel cell) allow for the recovery of ammonium-nitrogen 

and simultaneously produce energy from concentrated (e.g. urine) waste streams (Kuntke et al., 

2012). Also potassium can be well recovered from source separated domestic wastewater 

streams (Zeeman & Kujawa-Roeleveld, 2011). Since (pre)-treated effluent may contain high 

levels of nutrients (see Chapter 4, Table 4.4), its direct use for irrigation purposes is increasingly 

attracting the attention of policy makers, officials and researchers (Huibers & Van Lier, 2005). 

The benefits of using (pre)-treated effluent should be offset against potential barriers, such as 

health issues (WHO, 2006; Yaya-Beas et al., 2015), unbalanced nutrient content of effluent in 

relation to the crop demand (Janssen et al., 2005), legislation (MoPW, 2001), and the perception 

of farmers and consumers (Starkl et al., 2010). In Chapter 2, we proposed the reuse of effluent 

for greening only after enhanced (membrane) treatment to comply with the applicable legislation. 

In Indonesia, reuse of (pre) treated wastewater is restricted by nutrient content and pathogen 

levels (MoPW, 2001), as was shown in Chapter 4, Table 4.4. Moreover, in the current analysis 

(Chapter 6) duckweed production as a feedstock for aquaculture was assumed following 

successful experience in the field (Journey et al., 1993; Islam et al., 2004). At the same time, 

duckweed is also considered as a replacement for animal-derived proteins to enter the European 

market (van der Spiegel et al., 2013). In addition, duckweed may be used as a source for bio-fuel 

production and is regarded a promising alternative for bioenergy production (Cheng & Stomp, 

2009; Verma & Suthar, 2015). Likewise, algae production from wastewater has been widely 

applied (Chernicharo, 2006; Laxton, 2010) and may be used for protein and biofuel production as 

well (Adenle et al., 2013). Following the determination of specific energy or protein production 

from harvested duckweed and/or algae per person, and the corresponding monetized value, 

implementation in a sanitation planning can be realized (see also Figure 8.5). Glass (2%) and 

metals (4%) are present in much smaller fraction in domestic solid waste than organic matter 

(59%), plastic (14%) and paper (12%) (Aprilia et al., 2011) and were therefore excluded from 
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analysis presented in Chapter 6. However, the recovery of these materials might still be 

attractive, especially considering construction waste streams (Tam & Tam, 2006). Thus, similar 

to the selected resources (Chapter 6) that were used to illustrate the functioning of the 

framework, alternative resources can be included to extent SaNaP and to determine the 

nationwide recovery potential in relation to its demand. 

Finally, SaNap may be enhanced by extension of visualized geographical related output. Spatial 

scales are considered in SaNaP and visualization of interventions (location of systems) in 

Geographical Information Systems (GIS) was illustrated (Chapter 5). A regional based output of 

recoverable P and compost was further visualized in a map in Chapter 6. Resource recovery 

potentials and consumption parameters (energy, phosphorus, compost, sludge, land, chemicals, 

water) were determined on the desa (smallest administrative unit) level, which would allow to 

visualize the resource harvest potential in GIS within a city district (kecamatan), at city level or on 

a provincial level. Thus, the resource recovery as a percentage of the demand values, e.g. as 

presented in bar diagram for clustered regions in Figure 8.17, can be mapped in GIS on a 

provincial level as well. The visual presentation of these resource supply and demand 

parameters can further support regional priority setting, selection and use of recovery 

technologies (Quaye-Ballard & An, 2010; Coutinho-Rodrigues et al., 2011).  

 

 The way forward 8.6

The absence of sanitation facilities negatively impacts millions of lives worldwide, especially in 

developing countries. Planning, implementation and operation of sanitation infrastructures has 

shown to be a major challenge. The anticipated population growth and urbanization will only 

further complicate the sanitation challenge, impacting vulnerable population groups most. The 

developed Sanitation Nationwide Planning Framework provides guidance in the development of 

sanitation infrastructures and aims to accelerate the number of people that have access to 

sanitation in developing countries. It further showed how resource recovery from wastewater and 

solid waste may be a driver in accelerating access to sanitation.  

The here presented framework was a cornerstone in the formulation of the Indonesian “National 

Medium Term Development Plan (2015-2019)”. The application of this framework in other rapidly 

developing countries may benefit the quality of life of millions of people. 
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recovered products need to be matched with specific local demands and customs (Cordell et al., 

2011; Saveyn & Eder, 2014; Diener et al., 2014). In the provided analysis (e.g. Figure 8.17) local 

(national) resource demand and supply were compared, whereas international or regional trade 

patterns were only partly included (e.g. for waste paper in Chapter 6). Established international 

trades of recoverable resources such as for phosphorus, paper and plastics can provide 

alternative and potentially more attractive financial markets (Van Beukering, 2001).   

Next, SaNaP can be extended by including more types of recoverable resources. The selection 

of resources (Chapter 6) was based on formulated criteria, such as the recovery potential from 

wastewater and solid waste in the Indonesian setting, fraction of solid waste and transportability. 

However, there are a number of other resources or products that can be recovered from 

wastewater and solid waste for which markets exist. For example, nitrogen and potassium 

(present in wastewater) are essential nutrients for crop development (Janssen et al., 1990). 

Current nitrogen fertilizer production is an energy intensive process (Tervahauta et al., 2013). 

However, new technologies (e.g. microbial fuel cell) allow for the recovery of ammonium-nitrogen 

and simultaneously produce energy from concentrated (e.g. urine) waste streams (Kuntke et al., 

2012). Also potassium can be well recovered from source separated domestic wastewater 

streams (Zeeman & Kujawa-Roeleveld, 2011). Since (pre)-treated effluent may contain high 

levels of nutrients (see Chapter 4, Table 4.4), its direct use for irrigation purposes is increasingly 

attracting the attention of policy makers, officials and researchers (Huibers & Van Lier, 2005). 

The benefits of using (pre)-treated effluent should be offset against potential barriers, such as 

health issues (WHO, 2006; Yaya-Beas et al., 2015), unbalanced nutrient content of effluent in 

relation to the crop demand (Janssen et al., 2005), legislation (MoPW, 2001), and the perception 

of farmers and consumers (Starkl et al., 2010). In Chapter 2, we proposed the reuse of effluent 

for greening only after enhanced (membrane) treatment to comply with the applicable legislation. 

In Indonesia, reuse of (pre) treated wastewater is restricted by nutrient content and pathogen 

levels (MoPW, 2001), as was shown in Chapter 4, Table 4.4. Moreover, in the current analysis 

(Chapter 6) duckweed production as a feedstock for aquaculture was assumed following 

successful experience in the field (Journey et al., 1993; Islam et al., 2004). At the same time, 

duckweed is also considered as a replacement for animal-derived proteins to enter the European 

market (van der Spiegel et al., 2013). In addition, duckweed may be used as a source for bio-fuel 

production and is regarded a promising alternative for bioenergy production (Cheng & Stomp, 

2009; Verma & Suthar, 2015). Likewise, algae production from wastewater has been widely 

applied (Chernicharo, 2006; Laxton, 2010) and may be used for protein and biofuel production as 

well (Adenle et al., 2013). Following the determination of specific energy or protein production 

from harvested duckweed and/or algae per person, and the corresponding monetized value, 

implementation in a sanitation planning can be realized (see also Figure 8.5). Glass (2%) and 

metals (4%) are present in much smaller fraction in domestic solid waste than organic matter 

(59%), plastic (14%) and paper (12%) (Aprilia et al., 2011) and were therefore excluded from 
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analysis presented in Chapter 6. However, the recovery of these materials might still be 

attractive, especially considering construction waste streams (Tam & Tam, 2006). Thus, similar 

to the selected resources (Chapter 6) that were used to illustrate the functioning of the 

framework, alternative resources can be included to extent SaNaP and to determine the 

nationwide recovery potential in relation to its demand. 

Finally, SaNap may be enhanced by extension of visualized geographical related output. Spatial 

scales are considered in SaNaP and visualization of interventions (location of systems) in 

Geographical Information Systems (GIS) was illustrated (Chapter 5). A regional based output of 

recoverable P and compost was further visualized in a map in Chapter 6. Resource recovery 

potentials and consumption parameters (energy, phosphorus, compost, sludge, land, chemicals, 

water) were determined on the desa (smallest administrative unit) level, which would allow to 

visualize the resource harvest potential in GIS within a city district (kecamatan), at city level or on 

a provincial level. Thus, the resource recovery as a percentage of the demand values, e.g. as 

presented in bar diagram for clustered regions in Figure 8.17, can be mapped in GIS on a 

provincial level as well. The visual presentation of these resource supply and demand 

parameters can further support regional priority setting, selection and use of recovery 

technologies (Quaye-Ballard & An, 2010; Coutinho-Rodrigues et al., 2011).  
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The absence of sanitation facilities negatively impacts millions of lives worldwide, especially in 

developing countries. Planning, implementation and operation of sanitation infrastructures has 

shown to be a major challenge. The anticipated population growth and urbanization will only 

further complicate the sanitation challenge, impacting vulnerable population groups most. The 

developed Sanitation Nationwide Planning Framework provides guidance in the development of 

sanitation infrastructures and aims to accelerate the number of people that have access to 

sanitation in developing countries. It further showed how resource recovery from wastewater and 

solid waste may be a driver in accelerating access to sanitation.  

The here presented framework was a cornerstone in the formulation of the Indonesian “National 

Medium Term Development Plan (2015-2019)”. The application of this framework in other rapidly 

developing countries may benefit the quality of life of millions of people. 
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Summary 

Worldwide 2.5 billion people lack access to sanitation. This impacts public health, 

environment, welfare, and moreover results in a loss of resources. Conventional sanitation 

systems consume energy, chemicals, land and produce sludge that requires disposal, 

whereas a range of opportunities exists that enables valorization of resources from our 

“waste”, such as energy, phosphorus, compost, plastic and paper. Resource recovery may 

become a driver for economic growth and respond to profound changes of the world’s 

population impacting food security and availability of finite natural resources.  

The backlog in sanitation development can partly be attributed to the absence of a functional 

sanitation planning framework that allows for integration of cross-sectoral elements, such as 

health, technical, environmental, financial, institutional, demand for sanitation by-products, 

and welfare aspects. To evaluate a set of alternative sanitation systems, policy makers 

require a framework for resolving trade-offs, costs and benefits across spatial and temporal 

scales, and sustainability dimensions (social, environmental and economic). 

 

In Chapter 2 we demonstrated that the integration and material cycle closing of water, waste 

and energy in a Chinese residential area development (Qinglong district in Changzhou) will 

become beneficial to the establishment of the envisaged green city. Four different scenarios 

focusing on water, nutrient and energy recovery were compared with the baseline 

wastewater management practice. Besides environmental benefits, the economic benefits of 

the resource recovery oriented sanitation concepts were shown. The financial break-even 

point with the baseline scenario was already after 5 years, provided that recovered resources 

can be sold for a marketable price. The presented concepts were considered to be applicable 

for a wide range of new urban developments in China and similar rapidly developing densely 

populated regions worldwide. 

 

Despite the potential benefits of resource recovery oriented sanitation concepts, developing 

countries often do not consider alternative sanitation systems or integrate identified cross-

sectoral elements to select a sanitation system. Rather, policies promote the introduction of a 

single type of system only. In Indonesia, for instance, decentralized (communal) wastewater 

treatment systems (DEWATS) are promoted as the core of the sanitation improvement. 

Under the Indonesian “Accelerated Sanitation Development for Human Settlements 

Program” thousands of new DEWATS are planned for construction in the coming five years. 

In Chapter 3 we therefore evaluated the technical and financial-economic aspects and users’ 

involvement of three different DEWATS:  (1) Settler + Anaerobic Baffled Reactor (ABR) + 

Anaerobic Filter (AF), (2) Digester + Settler+ ABR + AF, and (3) Settler, equalization, 

activated sludge, clarifier and filtration. The evaluation showed that all three systems 

complied with the current regulations. Further, a clear reduction in specific investment costs 
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per household was found with an increasing number of households per system. This shows 

the potential of scaling up community based systems (typically 100 households per system) 

to medium centralized off-site systems (typically 500-5,000 households per system). Only 

regular operational costs (e.g. wage of the operator) were recovered from fees collected by 

the community, whereas costs for desludging, major repairs and capital and replacement 

costs were not. Surveys with users showed different levels of involvement of local men and 

women in the planning stages of the project. The study recommended that application of 

DEWATS should be evaluated in the context of a (city wide) sanitation strategy.  

   

In spite of existing sanitation system selection criteria and the demonstrated link between 

residential features and occurrence of health and environmental issues in the absence of 

sanitation, an integrated sanitation systems analysis for different residential conditions is 

lacking. To develop a sanitation planning framework, first a technical and financial feasibility 

analysis of wastewater and solid waste systems for application in Indonesia was prepared. 

Chapter 4 describes the selection of on-site, community-based and ten off-site wastewater 

systems as well as conventional, centralized and decentralized 3R (Reduce Reuse Recycle) 

solid waste systems. COD, BOD, nitrogen, phosphorus and pathogen removal efficiencies, 

energy requirements, sludge production, land use and resource recovery potential 

(phosphorus, energy, duckweed, compost, water) of wastewater treatment systems were 

determined. Solid waste systems were analyzed according to land requirement, compost and 

energy production and recovery of plastic and paper. In the financial analysis, investments, 

operational costs and benefits and Total Lifecycle Costs of all investigated options were 

compared. Technical performance and TLC were used to guide system selection for 

implementation in different residential settings. The effect of price variations of recoverable 

resources and land prices on total lifecycle costs was determined in an analysis. A 10-fold 

increase in land prices for land intensive wastewater systems resulted in a 5 times higher 

TLC, whereas a 4-fold increase of the recovered resource market price resulted in maximum 

1.3 times lower TLC. For solid waste, these impacts were reversed – land price and resource 

selling price variations resulted in a maximum difference in TLC of 1.8 and 4 respectively. 

Technical and financial performance analysis can therefore support decision makers in 

system selection and anticipate the impact of price variations on long-term operation. 

 

To translate government policy in sanitation implementation strategy, the outcomes of the 

performed feasibility analysis was incorporated in a sanitation planning framework. Available 

sanitation planning frameworks were not found applicable, since these did not include (1) all 

population groups, (2) both wastewater and solid waste treatment and resource recovery 

systems, (3) readily available selection criteria, (4) integration with land use planning 

activities, and (5) identification and budget allocation of implementing institutions. Therefore, 
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in Chapter 5 a comprehensive framework was developed that directly links a government 

policy to a nationwide long-term planning and budgeting for wastewater and solid waste 

interventions.  The framework requires input from different stakeholders, such as government 

planners and experts to formulate starting points and targets. Based on a limited number of 

indicators to enable the sanitation system selection (population density, urban functions), 

three outputs are generated. The first output is a selection and visualization of the spatial 

distribution of wastewater and solid waste systems. The second output generates the total 

number of people served, budget requirements and distribution of systems. Thirdly, the 

required budget is allocated to the responsible institution to assure effective implementation. 

The determined budgets are specified by their beneficiaries, distinguishing urban, rural, poor 

and non-poor households. The framework was applied for Indonesia and outputs were 

adopted in the National Development Plan. A more than fivefold increase of the national 

contribution as compared to the current budget allocation is needed for Indonesia. The 

budget for campaigning, advocacy and institutional strengthening to enable implementation 

was determined to be 10% of the total budget.  

 

The initial objective of the developed sanitation planning framework is to accelerate access to 

sanitation. Therefore, it primarily focuses on the beneficiaries (or “front-end” users) of 

sanitation facilities. However, to foster long-term operational and financial sustainability, also 

the needs of potential “back-end” user of sanitation products should be considered. Back-end 

users comprise among others agriculture, horticulture, aquaculture and plastic and paper 

processing industries. Despite the availability of methods to analyze material flows and 

demand forecast, a comprehensive framework that includes recoverable resources from both 

wastewater and solid waste and that allows for a nationwide temporal and spatial demand 

forecast is lacking. Therefore, in Chapter 6 the future potential demand of recoverable 

resources based on past consumption trends and future forecast for a selected number of 

recoverable resources is described. Phosphorus and compost demand analysis was based 

on (1) fertilizer requirements of 68 staple foods, horticulture and plantation crops and (2) 

anticipated increase in production area of these crops. Duckweed demand as a protein-rich 

fish feed was analyzed based on the forecasted demand from tilapia and carp aquaculture. 

The potentially recoverable (waste) plastic and paper to substitute conventional 

manufactured products were based on extrapolation of past trends in plastic and paper 

production in Indonesia. The potential contribution of recoverable products to the forecasted 

demand for 2035 was assessed for phosphorus (15%), compost (35%), duckweed (7%), 

plastic (66%) and paper (18%). A geographical discrepancy between potential recovery and 

demand location for phosphorus and compost was determined. Therefore, the locations of 

potential markets should be considered in the planning and selection of wastewater and solid 

waste facilities. 
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Following the developed sanitation system selection criteria, planning framework, and 

resource demand analysis, Chapter 7 describes a methodology to support a policy maker in 

formulating a cost- and environmentally effective sanitation strategy. This required an 

analysis of (i) sources of pollution, (ii) mitigating measures and resource recovery potentials 

and their effect on health and water quality, and (iii) benefits and costs of interventions.  The 

impact of different sanitation interventions on (1) water quality improvement, (2) resource 

recovery potential, and (3) monetized benefits to costs ratio were quantified. The Benefit 

Cost Ratio (BCR) compared monetized benefits (health, access time, improved water 

sources & environment, land values and sale of recovered resources) to required costs of 

interventions (CAPEX and OPEX). The integration of technical, hydrological, agronomical 

and socio-economic elements to derive these three tangible outputs in a joint approach is a 

novelty. The applicability and added value of this approach was demonstrated using the 

heavily polluted Indonesian Upper Citarum River in the metropolitan Bandung – Jakarta 

region. Domestic interventions, applying simple (anaerobic filter) technologies were 

economically most attractive with a benefit cost ratio (BCR) of 3.2, but could not reach target 

water quality. To approach the desired water quality, both advanced domestic (nutrient 

removal systems) and industrial wastewater treatment interventions were required, leading to 

a BCR of 2. Benefits from selling recovered resources from solid waste and wastewater 

represent here an additional driver for improving water quality and outweigh the additional 

costs for resource recovery facilities. It was thus shown that water quality interventions justify 

their costs and are socially and economically beneficial. 

 

In the discussion Chapter 8, the Sanitation National Planning framework (SaNaP) is 

presented. The potential of the SaNaP to evaluate system costs, pollution loads, production 

and consumption parameters and potential resource demand and supply for a set of 

alternative sanitation systems is illustrated using Indonesia as an example. The introduction 

of resource recovery concepts in the Indonesian sanitation sector development can 

contribute considerably to a circular economy.  For Java that accounts for nearly 60% of the 

Indonesian population, one third of the compost and phosphorus demand can be satisfied 

through recovered resources. Resource recovery is shown to be a potential driver to 

accelerate sanitation development.  Several possibilities are identified to enhance the 

functioning of SaNaP, such as extension of the number of (1) included technologies, (2) 

system selection criteria, (3) environmental indicators, (4) monetized benefits, (5) specific 

market demands, (6) recoverable resources, and (7) visualized geographical related output. 

The here presented framework was developed for the Indonesian government, but the 

application of this framework may benefit the quality of life of millions of people in other 

rapidly developing countries.  
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List of abbreviations 

3R: Reduce Reuse Recycling of solid waste, but also applied to show that recovery of 

resources is applied for wastewater treatment technologies 

ABR + AF: Anaerobic Baffled Reactor + Anaerobic Filter 

ADB: Asian Development Bank 

AGS: Aerobic Granular Sludge 

BOD: Biological Oxygen Demand 

BPS: Buro Pusat Statistik (Central Statistical Bureau of Indonesia) 

CAPEX: Capital Expenditures 

CAS: Conventional Activated Sludge 

CBS: Community based Sanitation 

CLTS: Community Lead Total Sanitation 

COD: Chemical Oxygen Demand 

DKI: Daerah Khusus Ibukota Jakarta ("Special Capital City District of Jakarta"), 

DSM :Department of Statistics in Malaysia 

DW: Duckweed Pond 

GIS: Geographic Information Systems  

IPLT: Instalasi Pengolahan Limbah Tinja;  Sludge processing facility 

JSM: Java Spatial Model 

MBR: Membrane Bioreactor 

MDG: Millennium Development Goals 

MFA: Material Flow Analysis  

MoE: Ministry of Environment of Indonesia 

MoPW: Ministry of Public Works (of Indonesia) 

MSW: Municipal Solid Waste  

N: Nitrogen  

NBSC: National Bureau of Statistics in China 

NPV: Net Present Value 

O&M: Operation and Maintenance  

ODI: Overseas Development Institute 

OPEX: Operational Expenditures 

OSWF: Organic Solid Waste Fraction 

P: Phosphorus 

RBC: Rotating BioContactor 

Rp: Rupiah (currency applied in Indonesia) 

SANIMAS: Sanitasi oleh Masyarakat (Community Based Sanitation) 

SDG: Sustainable Development Goals 

TLC: Total Lifecycle Costs 
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