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Abstract— We present a simple and robust method for pixel 
segmentation based on spectral reflectance properties. Of four 
object categories that are relevant for PoultryBot, a mobile 
robot for poultry housings, the spectral reflectance was 
measured at wavelengths between 400 and 1000 nm. From this 
information, the distribution of reflectance values was 
determined for each combination of object category and 
wavelength band measured. From this, the wavelength band 
could be selected where the overlap between objects was lowest. 
This was found to be around 467 nm, with 16% overlap for 
chickens vs. eggs, 12% overlap for housing vs. litter, and lower 
overlap for other combinations. Images were taken with a 
standard monochrome camera and a band pass filter around 
470 nm in a commercial poultry house, to test segmentation 
using this method. Preliminary results indicate that this method 
is a promising direction for future work. 

I. INTRODUCTION 

A. Background 

In current poultry production systems in western Europe, 
but also in increasing amounts in other parts of the world, 
laying hens have freedom to move around. Compared to cage 
housing, this requires more advanced management, and more 
manual labour under unfavourable conditions, for example 
for the collection of floor eggs [1, 2]. In previous work, a 
poultry house robot (PoultryBot) was introduced that should 
assist in such tasks. For this robot, localisation and path 
planning methods were presented and evaluated in [3, 4]. In 
order to allow autonomous function of such robot, it should 
also be aware of which objects surround it. In this work, we 
explore the possibility of using spectral information for this 
task, by analysing the spectral features of objects that are 
common in poultry houses. Environmental conditions in a 
poultry house are described in [1, 4, 5]. With respect to the 
application of vision methods, the low amounts of light 
(around 5 to 20 lux), in combination with a crowded 
environment are the most problematic. When functioning 
inside a poultry house, four main object categories are of 
relevance for PoultryBot: 1) eggs, being target objects that 
have to be collected, 2) chickens, being moving obstacles that 
can be ignored while driving, because they move away from 
the robot themselves, 3) housing, being static obstacles that 
should be avoided, like metal poles and walls, and 4) litter, 
covering the floor area and indicating the driveable surface. 

B. Object detection  

For the detection of objects around a mobile robot, 
various methods exist, such as tactile feedback and distance 
sensors. Most methods however, rely on vision systems as 

 
*Research supported by Fonds Pluimveebelangen. 
All authors are with the Farm Technology Group of Wageningen 

University, Wageningen, 6708 PB (phone: +31 317 482154; fax: +31 317 
484819; e-mail: bastiaan.vroegindeweij@wur.nl).  

they can provide much more information on what kind of 
obstacle is observed. Main disadvantage of vision sensors is 
that sophisticated processing is required to come up with 
correct and reliable results under varying conditions. This not 
only relates to computation time, but involves also more 
complex algorithms, which might still suffer from variation 
in objects and environment. In the computer vision domain, 
much work is done on improving the methods used, by 
evaluating them on standard sets of images. Common 
methods make us of color, texture, shape or SIFT/SURF, 
combined with classifiers like support vector machines or 
neural networks to locate and classify features or objects. 
More information can be found in [6], while [7] is one of 
many examples present. Another variety of vision methods 
takes advantage of spectral information on objects. In 
agriculture, this method has been applied for example to 
distinguish between various kinds of green plants [8, 9]. Van 
Henten et al. [10] used a known difference between the 
spectral reflectance of cucumbers and leafs to distinguish 
these two object types in cucumber harvesting. In egg quality 
inspection, the transmission spectrum of eggs is used to assed 
internal quality parameters, like age and contamination [11-
13]. Although methods based on spectral properties require 
more effort and complex equipment in the development 
stage, the resulting method is usually more simple and robust, 
and works with common and cheap equipment like 
monochrome cameras. Furthermore, if only specific 
wavelength bands are used, the results are less sensitive 
towards the color and intensity of the environmental light, as 
long as it is evenly distributed over the area. If required, other 
object detection methods can still be added in a later stage to 
increase detection performance.  

With respect to our problem of object detection for 
PoultryBot, already some information on spectral properties 
of the relevant object categories can be found in literature. 
Prescott and Wathes [14] have presented an extensive review 
of reflective properties of poultry, their housing and the light 
characteristics therein. They presented results of 15 hen 
species, of which several are closely related to current 
commercial hybrids. Furthermore, they showed spectral 
results of various materials present in commercial poultry 
houses. Thus, their results provide a good starting point for 
our research. Spectral characteristics of hen eggs were used 
mainly for transmission measurements to determine the 
quality of shelled eggs [11, 12]. Less work has been done on 
spectral reflectance of eggs. In [14], only the spectral 
reflectance of a brown egg was reported. Gloag et al. [15] 
presented also other egg colors (although from a different 
bird), with similar results. 

C. Contribution and paper outline 

To see whether these results still hold in our conditions, 
we sampled spectral reflectance of the four object categories 
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relevant to PoultryBot. Based on the sampled spectral 
reflectance, we segmented images from a monochrome 
camera with a wavelength filter into these four categories. 
For a reliable operation of PoultryBot, it is desired that in the 
initial stage, at least 80% of the pixels (so not objects) in 
these four categories are correctly segmented. Most likely, 
this will lead to at least partial detection of the objects present 
in the image. Further processing can then be used to ensure 
that all objects are correctly identified. Finally, objects can 
appear in more than one image, so their chance of being 
detected is not completely depending on the results of 
processing a single image only. 

Our main contribution is a generic method to develop 
simple and robust segmentation based on spectral 
information. Furthermore, we demonstrate its applicability to 
the segmentation of four object categories present in a 
modern aviary poultry house with white hens. Although other 
objects and environments (like greenhouse crops or arable 
fields) could be tested as well, we decided to limit ourselves 
to the poultry house. In Section II, we present the methods 
and materials used. In Section III, we offer the results, which 
are then discussed in Section IV. Conclusions and indications 
for future work are given in Section V. 

II. MATERIALS & METHODS 

The approach used in this work consists of the 10 steps 
below, and leads from the selection of relevant objects to the 
definition of threshold values for image segmentation.  

1. Define which objects are relevant. 

2. Measure the spectral reflection for each object 
category at all relevant wavelengths. 

3. Select which measurements have to be included in 
the sample for each object category. 

4. Find the distribution of reflections for each 
combination of wavelength and object category, 
based on the selected measurements. 

5. Find the wavelength with the largest discriminative 
power, i.e. the one with the least overlap in 
reflection between the object categories. 

6. Select a suitable band pass filter for this wavelength. 

7. Acquire images using this band pass filter and a 
standard monochrome camera. 

8. Find the distribution of intensity values for each 
object category in these images. 

9. Use this information to define threshold values for 
segmentation. 

10. Segment the image on pixel-level using these 
thresholds. 

A. Materials tested 

In step 1, the four main object categories considered 
relevant in this research where eggs, chickens, housing, and 
litter. As representatives of these, white eggs, feathers of 
white hens (Dekalb White), galvanized steel, and a litter 
sample from a poultry house were used. In step 2, spectral 
reflection of these objects was measured using the setup 

described below. For this, the objects were placed on a white 
cardboard plate in the imaging setup. Other instances of the 
object categories (like brown eggs and feathers and clean 
wood shavings) were also measured in step 2, but not used in 
further processing. 

B. Spectral measurement setup 

The data on spectral reflection was collected using a 
hyperspectral line scan setup, based on the one mentioned in 
[16, 17] and shown in Fig. 1. This setup used an ImSpector 
V10E spectrograph (Spectral Imaging Ltd.) with a slit size of 
30 µm, attached to a Photonfocus MV1_DV1320 camera and 
a 25 mm lens. Data was binned by 2 cells spatially and 4 cells 
spectrally, and the outside spectral cells were removed as 
they contained no relevant data. Thus, each scan contained a 
line of 656 pixels with 192 spectral bands between 400 and 
1000 nm. As light source two tungsten halogen lamps of 150 
W with a fibre and a rod lens were placed below the camera. 
The camera/spectrograph and the light source were attached 
to a stepper motor, such that they moved over the object with 
a fixed step size (0.5 mm), and an area with a length of 150 
mm  and a width of about 300 mm was measured. Before 
measurements, the camera and light source were on for at 
least 20 minutes to avoid start-up effects. Furthermore, a dark 
room was used to avoid influence from ambient light. In the 
setup, the reflectance of the object R  is normalized from the 
measured intensity I . It is corrected for the background 
noise B , and expressed as fraction of the white reference W  
using 

 
I - B

R =
W - B

 (1) 

which is based on [17]. This normalization was performed 
automatically in the ISAAC2 software that controlled the 
imaging setup. Both references were acquired at the start of 
the measurement. The background noise B  was acquired 
using a covered lens, while the white reference W  was 
acquired using a 98% reflecting white plate. 

C. Processing methods used 

Processing of the spectral data was performed using 
Matlab. For each object category, between 38000 and 45000 
pixels were manually selected from the acquired spectral 

 
Figure 1: The hyperspectral imaging setup used for the experiments in 
step 2. On the left, the full setup is shown, with an  indication of the 
linear motion of the camera (blue arrow) and the scan line (red 
triangle). The blue box is used to place the sample upon, in this case a 
brown egg on wood shavings. On the right, a close up of the moving 
construction for the camera, spectrograph and light source. 



  

data. By using such a large number of pixels, the sample set 
covers more of the variation in the objects. For this, 
reconstructed RGB images were used to identify the objects, 
on which rectangles were drawn manually to select pixels to 
include in the sample (step 3). From these samples, the 
reflectance distribution at each wavelength band was 
determined (step 4). Next, a normal distribution was fitted on 
this data. From these results, the percentage of overlap 
between the distributions was calculated, for both the 
measured and fitted distributions. This was done for all 192 
wavelength bands by Riemann integration of the overlapping 
area on the measured distributions and by trapezoidal 
integration on the fitted distributions. Next, the total amount 
of overlap per wavelength band was calculated by summing 
the values of all object categories. Based on this, the 
wavelength band could be selected where the sum of the 
overlap between the four groups was lowest (step 5). 

D. Application of filtering at the selected wavelength 
band  

The next step was to evaluate whether the chosen 
wavelength band was also effective under the conditions 
found in a commercial poultry house. Thus, images were 
acquired under such conditions, in the same poultry house as 
used in [3, 4]. In the house, animals of the same breed as used 
for the collection of the spectral data (Dekalb White) were 
present. Ambient light intensities were measured using a 
Voltcraft MS-1300 photometer, and ranged between 5 and 15 
lux. 

For image acquisition (step 7), a standard monochrome 
camera and a band pass filter at the selected wavelength band 
suffice. Thus, a band pass filter (470 nm, with a spectral 
width of 85 nm FWHM) was attached to an Ueye UI148xSE 
monochrome camera equipped with a lens with 4 mm focal 
distance. Frame rate was set to 3 fps, with the diaphragm 
fully opened and a fixed gain was applied inside the camera. 
Additional light was added to the scene using a 14-led white-
blue light source, to better distribute the measured pixel 
intensities over the available sensor range. 

Processing was performed with LabVIEW and started by 
taking the square root of each pixel, to correct for the uneven 

illumination in the images. Next, the threshold levels for the 
various object categories were empirically determined from 
the images using visual feedback (step 9). Using these 
intensity values, pixel-wise segmentation was applied, to 
distinguish between the object categories (step 10). To 
improve the segmentation results, and allow for object 
detection, more (advanced) processing steps can be added in 
a later stage. Furthermore, a corresponding ground-truth 
image was obtained by manually labelling all pixels in the 
image into 5 categories: eggs, hens, housing, litter, and 
unknown. 

III. RESULTS 

The hyperspectral imaging (step 2) resulted for each pixel 
in a stack of 192 wavelength bands a 2D frame. From this, 
explanatory pictures like Fig. 2 could be made to inspect the 
results, before continuing to process them. Fig. 2 shows on 
the left side an RGB image (reconstructed from the 
wavelength bands), containing the four main object 
categories. On the right side, the spectra corresponding to 
locations indicated on the left are given. It can be seen that 
eggs had the highest reflectance, followed by chickens, 
housing and litter, although the latter two switch order in the 
second half of the spectrum. Furthermore, the difference 
between litter and both eggs and chickens was large at lower 
wavelengths, but reduced with increasing wavelengths. For 
housing and litter, the difference was initially small, but 
increased at larger wavelengths. 

In step 3, multiple pixels for the same object category 
were selected, as described in Section IIC. The resulting 
reflectance distributions for the four object categories and 
two wavelength bands are shown in Fig. 3, together with 
normal distributions fitted to this data (step 4). Clear 
differences exist in the distribution of data. Litter and housing 
have narrower distributions than chickens and eggs. In 
addition, there is some overlap between litter and housing, as 
well as between feathers and eggs. Furthermore, this overlap 
turns out to differ between the various wavelength bands.  

In step 5, overlap between all combinations of object 
types was quantified for each wavelength band, as described 
in section IIC. The least overlap was found for wavelength 

Figure 2:  Results of hyperspectral imaging for the four object categories. On the left side an RGB image reconstructed from the spectral data, 
on the right side the spectra that correspond to the locations indicated on the left.



  

bands between 430 and 515 nm. Among this range, the 
lowest overlap is found at the 467 nm band. In Table I, the 
overlap percentages are given for the best wavelength band 
(467 nm) and a clearly deviating one (663 nm), on both the 
measured and fitted data. Data in Table I corresponds to Fig. 
3. There are clear differences in overlap between both 
wavelength bands and the various object combinations. At 
the 467 nm band, the overlap is quite evenly distributed over 
the categories, whereas at other wavelength bands, it has 
moved more towards one or two combinations. Most overlap 
is found between eggs vs. chickens and housing vs. litter, 
whereas the combinations eggs vs. housing, eggs vs. litter 
and chickens vs. litter have hardly any overlap.  

Based on the lowest amount of overlap, a band pass filter 
around 470 nm was selected for image acquisition in the 
poultry house (step 6-7). Two of the acquired images are 
shown in Fig. 4, together with the preliminary results from 
segmentation (step 9) and the associated ground truth. The 
artificial illumination pattern that is visible in the images 
affected the segmentation results. For example, part of the 
litter was segmented as hens or housing and some mixing of 
object categories was present on pixel level. In some images, 
housing objects had similar intensities as hens and litter, and 
could thus not be segmented separately. Also, ambient light 
intensity varied considerably within some images, which 
made accurate setting of the threshold values difficult. 
Depending on the object category, the requirement of 
correctly segmenting 80% of the pixels in the correct group 
seemed possible. 

DISCUSSION 

In the results, significant variation in the reflectance can 
be observed at the ends of the measured spectra. A likely 
explanation is the limited amount of light available at these 
wavelengths, especially around 400 nm, as the light source 
emitted hardly any UV light. Combined with limited 
sensitivity of the camera chip at the ends of its spectral range, 
this might result in reflectance values that are largely 
determined by sensor noise [17]. Prescott and Wathes [14] 
indicate similar findings from their measurements, especially 
around 400 nm. They did not indicate whether this originated 
from technical limitations of their setup instead or if it was a 
specific feature of the sample measured. To investigate 
whether any relevant features are present in the wavelength 
range below 450 nm, it is advised to add a UV light source to 
the hyperspectral imaging setup. However, the amount of UV 
available in a poultry house is limited, and artificially adding 
UV light might have undesirable consequences for animal 
welfare. Thus, investigating or using UV wavelengths seems 
of limited use for our case.  

Furthermore, measurements on housing material were 
performed using relatively clean materials. In the poultry 
house however, it can be expected that there is some 
contamination with dust and poultry droppings. As result, the 
reflectance of objects might vary from the values presented 
and the spectral response might change. Also, reflectance of 
housing was constant throughout the spectrum, but sensitive 
to the angle towards the light source during hyperspectral 
imaging. Thus, this requires substantial attention when using 

TABLE I.  RESULTS OF WAVELENGTH SELECTION, SHOWING THE OVERLAP BETWEEN VARIOUS CATEGORIES IN 
PERCENTAGES. DATA IS PRESENTED FOR BOTH MEASURED AND FITTED DISTRIBUTIONS, AT THE BEST WAVELENGTH BAND 
(467 NM) AND A LESS SUITABLE WAVELENGTH BAND (663 NM). 

Wavelength 
Data 
type 

Eggs vs. 
Chickens 

Eggs vs. 
Housing 

Eggs vs. 
Litter 

Chickens vs. 
Housing 

Chickens vs. 
Litter 

Housing vs. 
Litter Summed 

467 measured 16.2 1.7 0.0 6.9 0.2 11.5 36.5 

467 fitted 14.2 0.2 0.0 8.8 0.3 18.1 41.6 

663 measured 23.0 1.0 0.3 2.7 0.8 78.1 105.7 

663 fitted 24.4 0.0 0.0 1.1 0.6 79.1 105.3 

 

 
Figure 3: Distribution of reflectance for the 4 main object categories, at the 467 nm (left) and 663 nm (right) wavelength bands. Points indicate 
measured data, while lines represent the fitted distributions. 



  

the presented approach and data to test and develop methods 
for practical applications. 

For the selection of the most suitable wavelength band, 
the sum of the overlap percentage was used. Here, 
segmentation was weighted equally for each object 
combination. For practical applications however, it might be 
relevant to apply different weight factors, to allow better 
discrimination of objects that are of higher importance. For 
improving the segmentation results, using multiple spectral 
bands simultaneously seems also promising. In this way, 
separate wavelength bands can be selected for different 
object categories, such that differences in reflectance become 
more distinct. Initial testing on segmentation for brown eggs 
indicated that overlap could be reduced from 40 to 10% using 
this method.  

Initial results from applying this approach in a poultry 
house show that segmenting multiple object categories using 
this method is quite promising. However, still some 
difficulties arise, especially with respect to the light 
distribution in the image and setting the thresholds for the 
segmentation of housing. Both problems might be related, 
and have to do with the low amounts of ambient light. Thus, 
additional illumination was required. As a result, illumination 
spots appear, which require correction during processing. 
Also, they lead to a wider range of intensities for a single 
object category than was expected from step 4. Thus, object 
categories tend to overlap more, which makes it more 
difficult to segment them correctly. Possible options to deal 
with this are the adding of more homogeneous illumination 
or an improved illumination correction to improve the input 
image. As processing is currently done using a very simple 
threshold, segmenting by more advanced methods like 
considering adjacent pixels or using fuzzy methods to relate 
pixels to multiple object categories might be used as well. 

Such methods can be combined with morphologic image 
processing like erode, dilate and shape filtering to reconstruct 
object shapes and thus improve the final classification result. 
The first results of the method presented are promising, and 
can be extended to reach the desired level of 80% correctly 
segmented pixels. Future work will address improvement of 
results by adding more advanced processing, and evaluation 
under a wider range of conditions.  

CONCLUSION 

In this work, a simple and robust segmentation method 
based on spectral reflectance properties was presented. 
Spectral reflectance of four object categories that are relevant 
for PoultryBot (eggs, chickens, housing and litter) was 
investigated in the range between 400 and 1000 nm. Between 
the four object categories that are relevant for PoultryBot 
(eggs, chickens, housing, and litter), clear differences could 
be observed in the amount of reflectance. At the wavelength 
band around 467 nm, the overlap of the four object categories 
was found to be the lowest, and was 16% for chickens and 
eggs, 12% for litter and housing, and lower for the other 
combinations. Images taken in a commercial poultry house, 
using a standard monochrome camera and a band pass filter 
around 470 nm, indicated that pixel-based segmentation of 
the object categories is possible using this method. First 
results showed that the desired level of 80% correctly 
segmented pixels seems possible, making this method a 
promising direction for future work. 
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Figure 4: First segmentation results. From left to right: original image (brightness increased by 100), segmentation result, ground truth. 
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