TI FOOD NUTRITION

Introduction

- Dairy cows produce methane
- Reduction of methane is a priority
- Breeding:
 - Permanent
 - Cumulative
 - Long-term

Breeding for lower methane production?

- Requires data on a large amount of animals
- Measuring methane is difficult
- Indicator for methane production
 - Milk fatty acid profile

Aim

- Estimate:
 - Phenotypic variation
 - Genetic variation
 - Heritabilities

of methane yields predicted by three combinations of milk fatty acids

Data set up - Milk Genomics Initiative

Based on the study of Dijkstra et al. (2011):

$$(R^2 = 0.73)$$

Dijkstra et al. 2011 Animal Feed Science and Technology Vol. 166-167, pages 590 -595

 FA that were present in similar concentrations between our dataset and dataset Dijkstra et al. (2011):

$$(R^2 = 0.70)$$

 FA that were present in our dataset with at minimum concentration of 1 g/100 g of fat:

Methane-Quant =
$$27.1$$

 $-3.04 \times C4:0$
 $+2.71 \times C6:0$
 $-1.63 \times C18:1$ trans10+11
(R² = 0.63)

Estimating genetic parameters

 $Y = \mu + fixed environmental effects + animal + herd + e$

- animal = additive genetic relationships (4 generations)
- herd = 398 herds

Animal model used in ASReml 2.0 (Gilmour et al., 2006)

- Phenotypic variance (σ_p^2) = Animal variance (σ_{Animal}^2)
 - + Herd variance (σ^2_{Herd})
 - + Error variance (σ²_{Error})

Genetic and phenotypic parameters

• Heritability:
$$h^2 = \frac{\sigma^2_{Animal}}{(\sigma^2_{Animal} + \sigma^2_{Error})}$$

• Herd effect: Herd =
$$\frac{\sigma^2_{Herd}}{(\sigma^2_{Animal} + \sigma^2_{Herd} + \sigma^2_{Error})}$$

Animal variance (σ^2_{Animal}) Herd variance (σ^2_{Herd}) Error variance (σ^2_{Error})

Results – descriptive statistics

Predicted methane yields (in g/kg DMI)	Mean
Methane	23.6
Methane-Sim	21.3
Methane-Quant	20.9

Heritability and Herd effect

Correlations between predicted methane yields

Bivariate model with same effects in model as in univariate model:

Trait	Methane	Methane-Sim
	r _{gen}	r _{gen}
Methane-Sim	0.73	
Methane-Quant	-0.23	0.06

Conclusions

- Predicted methane yield is a heritable trait
- Herd has a large effect on predicted methane yield
- Methane and Methane-Sim explain different part of methane yield than Methane-Quant
 - One or multiple proxies necessary?

Questions??? Thank you for your attention

Contact:

Sabine.vanengelen@wur.nl

Van Engelen et al. (2015) Journal of Dairy Science Vol. 98, Issue 11, Pages 8223-8226

