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Abstract
Heidaritabar, M. (2016). Genomic selection in egg-laying chickens. PhD thesis,
Wageningen University, the Netherlands

In recent years, prediction of genetic values with DNA markers, or genomic
selection (GS), has become a very intense field of research. Many initial studies on
GS have focused on the accuracy of predicting the genetic values with different
genomic prediction methods. In this thesis, | assessed several aspects of GS. |
started with evaluating results of GS against results of traditional pedigree-based
selection (BLUP) in data from a selection experiment that applied both methods
side by side. The impact of traditional selection and GS on the overall genome
variation as well as the overlap between regions selected by GS and the genomic
regions predicted to affect the traits were assessed. The impact of selection on
genome variation was assessed by measuring changes in allele frequencies that
allowed the identification of regions in the genome where changes must be due to
selection. These frequency changes were shown to be larger than what could be
expected from random fluctuations, indicating that selection is really affecting the
allele frequencies and that this effect is stronger in GS compared with BLUP. Next,
concordance was tested between the selected regions and regions that affect the
traits, as detected by a genome-wide association study. Results showed a low
concordance overall between the associated regions and the selected regions.
However, markers in associated regions did show larger changes in allele
frequencies compared with the average changes across the genome. The selection
experiment was performed using a medium density of DNA markers (60K). |
subsequently explored the potential benefits of whole-genome sequence data for
GS by comparing prediction accuracy from imputed sequence data with the
accuracy obtained from the 60K genotypes. Before sequencing, the selection of key
animals that should be sequenced to maximize imputation accuracy was assessed
with the original 60K genotypes. The accuracy of genotype imputation from lower
density panels using a small number of selected key animals as reference was
compared with a scenario where random animals were used as the reference
population. Even with a very small number of animals as reference, reasonable
imputation accuracy could be obtained. Moreover, selecting key animals as
reference considerably improved imputation accuracy of rare alleles compared
with a set of random reference animals. While imputation from a small reference
set was successful, imputation to whole-genome sequence data hardly improved
genomic prediction accuracy compared with the predictions based on 60K
genotypes. Using only those markers from the whole-genome sequence that are



more likely to affect the phenotype was expected to remove noise from the data,
but resulted in slightly lower prediction accuracy compared with the complete
genome sequence. Finally, | evaluated the inclusion of dominance effects besides
additive effects in GS models. The proportion of variance due to additive and
dominance effects were estimated for egg production and egg quality traits of a
purebred line of layers. The proportion of dominance variance to the total
phenotypic variance ranged from 0 to 0.05 across traits. Also, the impact of fitting
dominance besides additive effects on prediction accuracy was investigated, but
was not found to improve accuracy of genomic prediction of breeding values.
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General introduction






1 General introduction

1.1 Introduction

Over the past 50 years, animal and plant breeding programs have focused on
artificial selection, and great advances in productivity have been achieved through
this approach. Thus far, most selection programs were based on selection of
individuals with superior breeding values, based on own phenotypes and
phenotypes of relatives. The genetic architecture of the selected traits was
unknown (Dekkers and Hospital, 2002). However, when molecular genetic markers
became available the genetic nature of quantitative traits could be revealed and
with that, more genetic progress can be achieved in breeding programs (Dekkers
and Hospital, 2002).

1.2 From traditional selection to genomic selection

With traditional selection breeding values are based on best linear unbiased
prediction (BLUP), where phenotypes and pedigree information are used to predict
breeding values (EBVs) of individuals. Although traditional selection has been
successfully applied for many traits in ongoing livestock breeding programs, making
genetic progress is still difficult when the traits are measured in only one sex,
difficult to measure or have a low heritability and when traits are expressed late in
life. With rapid developments in molecular genetics, in particular the identification
of large numbers of single nucleotide polymorphisms (SNPs), the genetic
architecture of quantitative traits became better understood. Investigating the
association of genetic markers and phenotypes has been successful in detection of
some quantitative trait loci (QTL) (Georges et al., 1995). The detected QTL could be
used for marker-assisted selection (MAS), hence increasing the genetic gain.
Implementation of MAS has been limited in its success, for instance for simple
traits controlled by a single gene. However, most traits that are of interest to
breeders are polygenic (see review by Dekkers and Hospital, 2002). An issue with
MAS was that different SNPs were associated with different traits. Therefore, the
need to discover associated SNPs for all traits was a limitation for MAS. A new
method of selection using markers known as genomic selection (GS) was first
proposed by Meuwissen et al. (2001), for which discovery of associated SNPs was
no longer needed.

1.3 Genomic selection
With GS, genomic estimated breeding values (GEBVs) are calculated from SNPs

covering the whole genome rather than using only a few detected QTL. The GEBV
can be calculated based on either the estimation of SNP effects or the genomic
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1 General introduction

relationships between the genotyped individuals in the population (Meuwissen et
al.,, 2001). GS is a two-step approach. First, a reference population is both
genotyped with SNP and phenotyped for the trait(s) to be improved. Second,
prediction methods are used to estimate GEBV to predict the genotypic value of
genotyped individuals which typically are not phenotyped.

The main benefit of GS over BLUP selection is the higher accuracy of GEBV
compared with the accuracy of EBV (Meuwissen et al., 2001). Another benefit is the
decrease in generation interval due to the selection of individuals at an early age
(Schaeffer, 2006). For poultry, however, the increased accuracy of GEBV is more
important than the reduced generation interval, because the generation interval is
already short and GS can not provide a substantial reduction. Accuracies of GEBV
can be improved with more dense SNP panels (Meuwissen and Goddard, 2010).
Obtaining higher density SNP panels is still expensive. To decrease the cost of
genotyping, a small set of key animals can be genotyped at high density and
imputation can then be performed to obtain high density genotype data on the
remaining animals that are genotyped with a lower density panel.

1.4 Genotype imputation

Imputation from a low-density to a high-density SNP panel, has recently become a
common practice in genomic breeding programs for different species (Hayes et al.,
2012, Huang et al., 2012b, Wiggans et al., 2012) including layers (Vereijken et al.,
2010). Recently, imputation from a high-density SNP panel to whole-genome
sequence (WGS) was assessed in dairy cattle (Bouwman and Veerkamp, 2014,
Brondum et al., 2014, van Binsbergen et al., 2014). Considering that the imputed
genotypes will be used for subsequent genomic prediction, accurate imputation,
based on an appropriate measure of imputation accuracy is crucial (Calus et al.,
2014). Imputation accuracy may influence the accuracy of subsequent genomic
prediction. Accuracy of imputation can be examined by comparing the true and
imputed genotypes. Several factors influence the accuracy of imputation. The first
factor is the size of the reference population. Accuracy of imputation increases
when the reference population size increases and imputation accuracy depends on
the genetic relationship between the animals in the reference and validation
populations (Huang et al., 2012a). The accuracy of imputation is greatest for
individuals with the highest average genetic relationship to the reference
population, which has been attributed to them sharing more and longer haplotypes
with the reference (Hayes et al., 2012, Hickey et al., 2012, Ventura et al., 2014). In
addition to size and distance to the reference population, minor allele frequency
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1 General introduction

(MAF) of the SNP to be imputed affects accuracy (Ma et al., 2013). Low MAF SNPs
are more difficult to impute (Hayes et al., 2012, Ma et al., 2013, van Binsbergen et
al., 2014). Because some of these low MAF SNPs in WGS data are assumed to be
causal mutations underlying the quantitative traits (Gorlov et al., 2007), accurate
imputation of these low MAF SNPs is even more important for imputation of WGS
data. If the variation from causal mutations can be captured with the WGS data,
and exploited in genomic prediction, the accuracy of predicting breeding values
may be increased (Druet et al.,, 2014). Low MAF SNPs may be imputed more
accurately with a careful design of the reference population. The design of the
reference population may be particularly important when the reference population
is very small (Pszczola et al.,, 2012). Another important factor is the imputation
method, particularly if the reference population consist of limited number of
individuals (Pausch et al., 2013). Several studies have assessed the imputation
accuracy in pigs (Badke et al., 2013, Duarte et al., 2013), sheep (Hayes et al., 2012),
dairy cattle (Khatkar et al., 2012, Mulder et al., 2012, Hoze et al., 2013, Ma et al.,
2013, Pausch et al., 2013), and beef cattle (Piccoli et al., 2014, Ventura et al., 2014)
and found moderate to high imputation accuracies. However, only a few studies
have assessed the imputation accuracy in chicken (Vereijken et al., 2010). Further,
imputation from a high-density panel towards WGS using the key animals as
reference population and subsequent genomic prediction with imputed WGS have
not yet been investigated in chicken.

1.5 Beyond genomic selection

In recent years, GS has become a very active field of research. Many initial studies
on GS have investigated the accuracy of estimating the GEBV with the different
genomic prediction methods (e.g. Calus et al., 2008, Daetwyler et al.,, 2008,
Goddard, 2009). Several unanswered questions remain in this field, for instance: (1)
What is the impact of GS on genetic variation? (2) Is GS changing the allele
frequencies in the genomic regions associated with the phenotypes, the QTL? (3)
Can the GS model predict the GEBV more accurately when it models the non-
additive genetic effects due to dominance besides the additive genetic effects?
These are some questions that are addressed by the research presented in this
thesis.

1.5.1 Impact of selection on genetic variation

With the availability of large-scale SNP panels, it became possible to scan the
genome for regions that may have been targets of selection (i.e. that shows
"signatures of selection"). Identification of signatures of selection can point to
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1 General introduction

genes that contribute to variation in a specific phenotype and may help to identify
the functionally relevant genomic regions for a trait. Further, detection of
signatures of selection can increase the understanding of the history of the
population, contribute to the identification of genes underlying domestication. By
these routes, information on signatures of selection will help with the genetic
improvement of the traits of economic importance and disease resistance (Elferink
et al., 2012). Several studies have already identified genomic regions that were
predicted to be under selection during domestication and found the molecular
pathways underlying coat colour in cattle (Qanbari et al., 2014) and reproduction
(Rubin et al., 2010) or production traits in chicken (Elferink et al., 2012).

Several statistical tests have been suggested to assess the genomic variation. Most
tests are based on calculating population genetics statistics such as allele
frequencies (Elferink et al., 2012) and LD (Ennis, 2007). When a new favourable
mutation occurs in a population under selection, the frequencies of that favourable
allele as well as any neutral alleles in neighbouring regions of the same
chromosome will increase, this was called the hitch-hiking effect (Smith and Haigh,
1974). A challenge in the investigation of signatures of selection and hitch-hiking
effects is the difficulty to distinguish between the actual signatures of selection
from genetic drift. Genetic drift is a random process in which allele frequencies
within a population change by chance as a result from the random sampling of
gametes from generation to generation. A long-term consequence of genetic drift
is fixation of alleles through the loss of the alternative alleles. The chance of fixing
an allele due to genetic drift depends on the effective population size (N,) as well
as the frequency distribution of alleles (Hedrick, 2005). N, is a theoretical number
that represents the number of genetically distinct individuals that contribute
gametes to the next generation. As the population size increases, the impact of
genetic drift per generation becomes smaller so that it takes longer for chance
changes to accumulate and result in fixation (Hedrick, 2005).

With GS, the N, may decrease, since selection can be done within full-sib families.
Therefore, the impact of genetic drift may be larger for GS compared with BLUP
selection where there is less differentiation between full-sibs. Further, with small
N,, the rate of inbreeding may also increase. It is expected however, with GS that
the inbreeding rate will decrease. Due to the prediction of within family effects
(Mendelian sampling), it is expected that the chance of co-selecting full-sibs will
decrease (Daetwyler et al., 2007).
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1 General introduction

1.5.2 Genomic signatures of selection and associated regions

Where on the genome does GS affect allele frequencies? Generally, it is difficult to
distinguish between the signatures of selection and genetic drift. One way to assess
the signatures of selection is to compare them to major QTL identified through
genome-wide association studies (GWAS) (Rubin et al., 2010). It is expected to
observe an overlap between the signatures of selection and QTL identified by
GWAS. GWAS detects the genetic variation and selection acts on the genetic
variation (Przeworski et al., 2005). A few studies have explored whether there is
agreement between the genomic signatures of selection and the associated QTL for
phenotypes that have been under selection such as milk yield traits, stature and
coat colour in dairy cattle (Wiener et al., 2011, Kemper et al.,, 2014). Low
concordance was found between the signatures of selection and the QTL,
particularly for polygenic traits controlled by multiple genes. The weak
concordance suggests that signatures of selection will not overlap with the QTL
associated with quantitative traits (Wiener et al., 2011). However, the difficulty to
detect overlap does not necessarily mean that such overlap does not exist. In this
thesis, | addressed this question of concordance in three populations of layers.

1.5.3 Fitting dominance into GS models

Interaction between alleles at the same locus is called “dominance”. Dominance is
the possible genetic basis of heterosis which is exploited in crossbreeding schemes
that aim for maximizing favourable allele combinations. Since for most farm
animals such as poultry, beef cattle, and pigs commercial animals are typically
crossbreds, estimation of non-additive genetic effects are of particular importance
for crossbred populations. In general, dominance variation is expected to be larger
in crossbred populations compared with purebred populations (Su et al., 2012,
Nishio and Satoh, 2014). Understanding non-additive variance (including
dominance) can lead to increased knowledge on the genetic control and physiology
of quantitative traits, and to improved prediction of the genetic value and
phenotype of individuals (Bolormaa et al., 2015). Thus far, there has not been much
research on the estimation of dominance effects, because in the absence of
genomic information the accurate estimation of dominance requires a very large
population which includes a large number of full-sib families. With a large number
of full-sib relatives, the dominance relationships can be estimated more accurately.
Using genomic information, the detection and estimation of dominance effects at
individual loci are more feasible (Toro and Varona, 2010).

Recently, GS has renewed the interest in the prediction of dominance effects (Da et
al., 2014, Ertl et al., 2014). Inclusion of dominance effects in genomic prediction
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1 General introduction

models was investigated in several species including dairy cattle (Ertl et al., 2014),
beef cattle (Bolormaa et al., 2015), pig (Su et al., 2012), mice (Vitezica et al., 2013),
and human (Hill et al., 2008). Some of these studies demonstrated an improvement
in genomic prediction accuracy from incorporating the dominance effects into the
genomic prediction models, whereas others did not observe any improvement.
Besides the level of dominance variance that can be different for different traits,
results may vary due to additional factors such as sizes of the datasets, the density
of the SNP panels, and the population structure (presence or absence of a large
number of full-sib relatives). Dominance models may be most beneficial in
improving the prediction accuracy of crossbred populations.

1.6 Aim and outline of the thesis

The research described in this thesis is a study of GS applied in practice in layers. |
started with evaluating GS versus BLUP selection in data from a selection
experiment applying both methods side by side. Next, with the availability of next-
generation sequence data, | investigated the impact of having WGS data on the
effectiveness of GS methodologies.

The genome-wide response to selection was assessed in three populations of layers
that underwent selection for two generations based on two different selection
methods: GS and traditional BLUP selection. The changes in genetic variation were
assessed by measuring changes in allele frequencies that allowed the identification
of signatures of selection (chapter 2). To estimate the effective population size (N,),
which was needed to quantify genetic drift, a simulation study was performed using
the real experimental pedigree and simulated genotypes. The observed changes in
allele frequencies could then be compared with their expectation under pure drift
(chapter 2). Next, a GWAS was performed to identify genomic regions associated
with the index (chapter 3). The regions found by GWAS were compared with the
signatures of selection identified in chapter 2 (chapter 3). To assess the value of
WGS data for GS, data from one of the three selection experiments was used and a
small set of key animals were sequenced. The first question was to assess the
accuracy of imputation, which was applied to bring a large number of genotyped
animals to the level of WGS data. The imputation accuracy from selected key
animals was compared with a scenario where random animals were selected as the
reference population (chapter 4). Next, the advantage of WGS data for genomic
prediction was investigated by comparing prediction accuracy from imputed
sequence data with the accuracy obtained from the 60K genotypes (chapter 5).
Further, the utility of biological information for genomic prediction was
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1 General introduction

investigated by fitting only those SNPs into the prediction models that are more
likely to affect the phenotype (chapter 5). Additive and dominance genetic variance
components were estimated for eight traits (egg production and egg quality traits)
of a purebred line of layers and the impact of fitting dominance as well as additive
effects on the genomic prediction accuracy was assessed (chapter 6). Finally, in the
general discussion (chapter 7), the main findings of the current thesis are discussed
and several aspects of this work are explored. The three main topics discussed in
that chapter are: (1) long-term consequences of GS in terms of loss of genetic
variation, (2) the challenges of using WGS data for genomic prediction, and (3)
implementation of GS in layers.
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Abstract

Genomic selection (GS) is a DNA-based method of selecting for quantitative traits in
animal and plant breeding, and offers a potentially superior alternative to
traditional breeding methods that rely on pedigree and phenotype information.
Using a 60K SNP chip with markers spaced throughout the entire chicken genome,
we compared the impact of GS and traditional BLUP (best linear unbiased
prediction) selection methods applied side-by-side in three different lines of egg-
laying chickens. Differences were demonstrated between methods, both at the
level and genomic distribution of allele frequency changes. In all three lines, the
average allele frequency changes were larger with GS, 0.056, 0.064, and 0.066,
compared with BLUP, 0.044, 0.045, and 0.036 for lines B1l, B2, and W1,
respectively. With BLUP, 35 selected regions (empirical (P < 0.05) were identified
across the three lines. With GS, 70 selected regions were identified. Empirical
thresholds for local allele frequency changes were determined from gene dropping,
and differed considerably between GS (0.167 to 0.198) and BLUP (0.105 to 0.126).
Between lines, the genomic regions with large changes in allele frequencies
showed limited overlap. Our results show that GS applies selection pressure much
more locally than BLUP, resulting in larger allele frequency changes. With these
results, novel insights into the nature of selection on quantitative traits have been
gained and important questions regarding the long-term impact of GS are raised.
The rapid changes to a part of the genetic architecture, while another part may not
be selected, at least in the short term, require careful consideration, especially
when selection occurs before phenotypes are observed.

Key words: genomic selection, traditional BLUP selection, allele frequency changes



2 Genetic variation under selection in layer chicken

2.1 Introduction

Traditional selection of livestock applies a method called best linear unbiased
prediction (BLUP), which uses phenotypes and pedigree information to predict
breeding values, and has been successfully employed for many traits. Through the
use of molecular genetic tools, the genetics of quantitative traits has become
better understood and, consequently, genetic markers have the potential to
predict genetic values more accurately (Dekkers, 2004) and increase genetic gain
through marker-assisted selection (MAS). Despite the potential benefits of MAS in
breeding programs, its implementation has faced problems, especially in animal
breeding, because discovery of markers with useful effects has been limited.
Meuwissen et al. (2001) proposed a solution that does not require discovery of
marker effects but uses all markers simultaneously in a method called genomic
selection (GS). In GS, the genomic breeding value (GEBV) is estimated based on the
estimates of marker effects covering the whole genome. This approach has become
possible because of rapid developments in molecular genetics, in particular the
identification of large numbers of single nucleotide polymorphisms (SNPs) and the
development of low cost high throughput genotyping methodologies (Wang et al.,
2009). GS can increase rates of genetic gain per unit of time, because GEBVs
typically have higher reliabilities than BLUP EBVs, particularly for young animals
without phenotypic performance. Having reliable GEBVs before phenotypes can be
recorded have clear advantages in terms of costs and reduction of generation
intervals (Schaeffer, 2006).

Directional selection has an impact on allelic diversity. When genome-wide marker
panels are used for selection, it is possible to use these markers to investigate the
dynamics of allelic diversity across the genome. Most methods developed for
assessing the allelic diversity through genomic analysis are based on calculating
population genetics statistics such as allele frequencies (either directly or indirectly)
(Elferink et al., 2012) and linkage disequilibrium (LD) (Ennis, 2007). Previous studies
have shown that frequencies of the favorable alleles, as well as alleles in
neighboring regions, increase over time when a favorable mutation occurs in a
population under selection (Smith and Haigh, 1974, Barton, 2000). This process can
lead to a signature of selection. When signatures of selection are discovered, they
are taken as indications that genetic variants are, or were, present with some
measurable effect on the phenotype. Studies into signatures of selection measure
the reduction in variation after selection and information such as allele frequencies
before selection are typically unknown.

Most studies into the impact of GS have been done using simulations (Meuwissen
et al., 2001, Muir, 2007, Bastiaansen et al., 2012). A number of questions are still
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2 Genetic variation under selection in layer chicken

unanswered regarding the use of GS, for instance, what impact GS has on genetic
variation.

We aimed to broadly assess the response of the allele frequencies across the whole
genome in populations that underwent selection for two generations based on two
different estimated breeding values (EBVs). In this study, pedigree BLUP EBV and
genomic EBV (GEBV) were used to separately select the top animals within each of
three layer chicken lines. Data from the GS experiment has been used to assess the
potential and impact of this new method over two generations of selection in a
commercial breeding program. It was expected that GS applies selection pressure
directed to specific regions of the genome and leads to faster increase in the
frequency of favorable allele, as was already shown in some simulations (Sonesson
and Meuwissen, 2009, Jannink, 2010, Kinghorn et al., 2011). Genetic variation was
evaluated by measuring changes in allele frequencies across the whole genome that
allowed the identification of genomic regions under selection. Besides the general
insight into how the genome responds to selection, it was important to compare
how the response to selection changed when breeding values were estimated with
genetic markers instead of pedigree.

2.2 Materials and methods

2.2.1 Data structure

Three lines of commercial layers; two brown lines (B1 and B2) and one white line
(W1) were used. Having three lines allowed a comparison of the changes in
genomic variation for related populations. A selection experiment was carried out
to compare responses to genomic- and pedigree-based BLUP selection. For each
line, a group of males and females were taken to be the base for the GS experiment
in February 2009 (Table 2.1). All males born from 2005 to 2008 were genotyped
and used as training data, except that for the base generation of GS (GBLUP), males
hatched in January and February 2008 were not included in the training data,
because they did not have progeny with phenotypes until June 2009. The size of
the training set increased for each generation of selection by the addition of more
phenotyped and genotyped animals; that is, for each generation, the newly
genotyped animals with own or offspring phenotypes were added to the training
set (Table 2.2).

For BLUP, parents were chosen from two groups of males (88 and 110 weeks old)
and two groups of females (44 and 66 weeks old). Animals were selected from
multiple hatch dates in each generation. On average, parents for BLUP selection
were selected from nearly 6000 females and 600 males (Table 2.3).
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Table 2.1 Number of selection candidates selected based on their GEBV, number of selected parents in the base and first generations of GBLUP
selection and N, for lines B1, B2, and W1.

GEBV
GO-GBLUP® G1-GBLUP®
. Selection Selected . Selection Selected ) c
Line candidates parents p(D) candidates parents p@) Ne
F M F M F M F M F M F M

B1 389 130 59 15  0.152(1.554) 0.115(1.688) 507 138 58 15 0.114 (1.688) 0.109 (1.709) 48
B2 476 133 57 15 0.120(1.667) 0.113 (1.709) 516 143 58 15 0.112 (1.709) 0.105 (1.732) 40
W1 617 166 48 15 0.078 (1.872) 0.090 (1.804) 630 166 44 15 0.070(1.918) 0.090 (1.804) 34
Abbreviations: F, female animal; M, male animal; GBLUP, genomic best linear unbiased prediction; GEBV, genomic estimated breeding value; i,
selection intensity (i was derived from p (Supplementary notes)); p, proportion of candidates selected.
®G0-GBLUP is the base generation of GBLUP.
®G1-GBLUP is the first generation of GBLUP.
“The method used to calculate N, is given in Supplementary notes.
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Within each line, the top animals were selected based on either their EBV from
BLUP or their GEBV from GBLUP analysis. The number of selection candidates and
selected parents are in Table 2.1 for GBLUP selection and Table 2.3 for BLUP
selection. Average selection pressure was approximately the same for GBLUP and
BLUP. In addition, average selection pressure was nearly the same for males and
females (Tables 2.1 and Table 2.3) (selection intensities were calculated based on
the records in the pedigree. The pedigree does not include all hatched animals, as
there was a pre-selection during rearing based on parents’ performance. It means
only the animals housed in the laying house or being genotyped are included in the
pedigree file). Selection had been performed on a commercial index that contained
15-18 traits. Selected animals were mated at random, except that full and half-sib
matings were avoided. Restrictions were applied to ensure selection from a large
number of families to limit inbreeding. The population for GBLUP was smaller
(Table 2.1). The rationale for the smaller population was that selection could be
performed within full sib families, whereas for BLUP, all full sibs had the same
breeding values based on sib performance. The number of phenotypes required
was also smaller for GBLUP.

Table 2.2 Size of training data for all generations in lines B1, B2, and W1.

Line GO-GBLUP? G1-GBLUP® G2-GBLUP®
B1 715 1096 1355
B2 611 990 1232
w1 734 972 1220

Abbreviations: GBLUP, genomic best linear unbiased prediction.
®G0-GBLUP is the base generation of GBLUP.

®G1-GBLUP is the first generation of GBLUP.

°G2-GBLUP is the second generation of GBLUP.

Pedigree data were available for up to 14 generations before the current
experiment. The total number of pedigree records ranged between 205 000 to 227
000 animals for each of the three lines. The number of pedigree records within the
14 generations was about 18 000 for each line and included information on animal
identification number, sex, father and mother identification number, and hatch
date of each animal.

2.2.2 Collection of DNA samples and genotyping

DNA samples were extracted from individual blood samples. In total, 57 636 SNPs
were included on the chicken Illumina Infinium iSelect Beadchip (lllumina Inc., San
Diego, CA, USA) (60K chip). Genotyping and quality control were done using the
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Table 2.3 Number of selection candidates selected based on their EBV, number of selected parents in the base and first generations of BLUP
selection and N, for lines B1, B2, and W1.

EBV
GO-BLUP® G1-BLUP®
. Selection Selected . Selection Selected . c
Line candidates parents 40) candidates parents p(@) Ne
F M F M F M F M F M F M

B1 7424 1229 812 162 0.109 (1.709) 0.132 (1.627) 2603 443 297 50 0.114 (1.688) 0.113 (1.709) 99
B2 7682 1214 781 164 0.102 (1.755) 0.135 (1.608) 2594 414 254 59 0.098 (1.767) 0.143 (1.590) 83
W1 9026 1565 788 199 0.087 (1.817) 0.127 (1.627) 2450 645 153 78 0.062 (1.968) 0.121 (1.667) 121
Abbreviations: F, female animal; M, male animal; BLUP, best linear unbiased prediction; EBV, estimated breeding value; i, selection intensity (i was
derived from p (Supplementary notes)); p, proportion of candidates selected.
®G0-BLUP is the base generation of BLUP.
®G1-BLUP is the first generation of BLUP.
“The method used to calculate N, is given in Supplementary notes.
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standard protocol for Infinium iSelect Beadchips and raw data were analysed with
Genome Studio v2009.2 (Illumina Inc.) as previously described (Groenen et al.,
2011).

2.2.3 Genotyped data

The genotypes were derived from four generations of the training set (Table 2.2),
all selection candidates in two generations of GBLUP selection, and the base (GO)
and second generation (G2) of BLUP selection (Table 2.4). The genotypes of all
individuals in the training generations and three generations of selection were
obtained with the 60K chip, except the female genotypes from the last generation
that were imputed from 3K based on reference haplotypes from the population. The
accuracy of imputation was 0.95 to 0.97.

Table 2.4 Number of genotyped selection candidates used to calculate dy, for BLUP and
GBLUP selection in lines B1, B2, and W1.

Line GO-BLUP® G2-BLUP” GO-GBLUP® G2-GBLUP®
F M F M F M F M
B1 248 1058 0 110 248 126 296 130
B2 0 953 0 110 238 128 297 130
W1 230 1205 0 150 230 141 0 150

Abbreviations: F, female animal; M, male animal.

®GO0-BLUP is the base generation of BLUP. GO-BLUP included genotyped grandparents of G2-
BLUP their genotyped hatch mates.

®G2-BLUP is the second generation of BLUP.

‘GO-GBLUP is the base generation of GBLUP.

9G2-GBLUP is the second generation of GBLUP.

2.2.4 Breeding values from BLUP
The following mixed model was used to estimate the EBV:

X'X X'Z b) (XY
Z'X Z'Z+AxA7)a) \Z'Y

where Y was the phenotypic record of animal i, b was a vector of fixed effects,
including an overall mean, hatch date, and cage tier (the row and level of the cage
in the henhouse). a was the vector of random animal effects, X was the design
matrix corresponding to fixed effects, Z was the design matrix that corresponds the
records to the animal effects. A was 62/02 in which 62 was the residual variance
and o2 was the additive genetic variance. Residuals were assumed independent
and following a normal distribution; e ~ N(0,Ic2). For BLUP, only the pedigree
information was used for building the relationship matrix (A).
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2.2.5 Breeding values from GBLUP

The statistical model for GBLUP was the same as for BLUP, except that an H matrix
(single-step GBLUP) (Misztal et al., 2009) was used as the relationship matrix
instead of the A matrix. The H matrix combines the numerator relationship matrix
(A) based on pedigree information with the genomic relationship matrix (G) based
on SNP information. Single-step GBLUP has been used to distinguish between BLUP
with the H matrix from BLUP with the G matrix. In this study, only BLUP with H has
been applied. Therefore, we simply compare GBLUP (which included genomic
information) with BLUP which excludes genomic information. The GBLUP model
assumed that the SNP effects (g) were normally distributed; g ~ N(O, loé), and
that the variance of SNP effects was equal for all SNPs.

2.2.6 Generations

For GBLUP, the generations were discrete. The last generation of GBLUP-selected
animals (G2-GBLUP) had their grandparents in the base generation (GO-GBLUP).
However, for BLUP, the generations were overlapping (see data structure section)
and therefore, not all grandparents of animals in the last generation of BLUP (G2-
BLUP) were from GO-GBLUP. Allele frequencies of GO-BLUP were calculated on all
the genotyped grandparents of G2-BLUP animals and their hatch mates, including
grandparents that were not in GO-GBLUP (Table 2.4).

2.2.7 Allele frequency changes

Allele frequencies (f) were computed in GO-GBLUP, G2-GBLUP, GO-BLUP, and G2-
BLUP by counting. The absolute value of changes in allele frequencies (dy, = |f, —
fo|) within each line was calculated for all SNPs with minor allele frequency (MAF) >
0. The running averages of 11 adjacent d,, values were plotted against the location
of the middle SNP to emphasize the systematic changes of frequencies in a region
over the erratic pattern of individual SNPs.

2.2.8 Estimation of threshold values for putative selected regions

An empirical threshold was determined using the gene dropping method (Maccluer
et al.,, 1986). Gene dropping was done by dropping alleles along the existing
pedigree. The process was done by simulating one chromosome that contained 20
loci with zero mutation rate and 0.5 starting allele frequency. The haplotypes were
simulated for the founder animals in the pedigree. Genotypes were assigned to
offspring in each generation based on the Mendelian transmission rules (random
sampling). Changes in allele frequency were computed between the same
generations, including the same animals as in the real data. The distribution of
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allele frequency changes was obtained from 1000 replicates. Values of d,, beyond
the 95% threshold (P < 0.05) of the empirical distribution (Figure S2.1) were taken
to be indicative of selection.

2.2.9 Distribution of d,; under drift and selection

To compare the observed changes in allele frequencies with their expectation, we
divided the observed d,, of each SNP by SD,, which is the standard deviation of the
allele frequency after t generations of pure drift.

SD; ~ {/pq(1 — e_(ﬁ)) (1)

where p and q were the initial allele frequencies of the SNP, and N, was the
effective population size. As the rate of genetic drift is proportional to N, the
realized N, from the gene dropping analysis was used. Values obtained for N, were
48, 40, and 34 for GBLUP and 99, 83, and 121, for BLUP in lines B1, B2, and W1,
respectively (Table 2.1 and Table 2.3). t was equal to 2. A histogram of the
standardized allele frequency changes, d,,/SD;, across all SNPs was compared
with the expected distribution of SD; = 1.

2.3 Results

2.3.1 Data quality control

Genotypes from 57 636 SNPs were obtained from the chicken Illumina Infinium
iSelect Beadchip (60K) (Groenen et al., 2011). Of these SNPs, 1144 were unmapped
on the genome build WASHUC2 (Groenen et al., 2011) and were removed from the
data. Furthermore, two linkage groups and chromosomes 16, 31, and 32 were
excluded from the analysis because of insufficient SNP coverage resulting in low
information content on these chromosomes. After exclusions, approximately 37K
SNPs for the brown layer line, B1, 36K SNPs for the brown layer line, B2, and 26K
SNPs for the white layer line, W1, were found segregating and retained for analyses
(Table 2.5).

2.3.2 Response to selection

Change in mean of index values from GO-BLUP to G2-BLUP and from GO-GBLUP to
G2-GBLUP were taken as response to selection (Table 2.6). For all lines, there was a
higher response with GBLUP than BLUP, with the largest difference of 62% (0.33
standard deviation units extra response) in line B1. Across the three lines, the
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response to selection was 39% higher in GBLUP than BLUP based on the index
values, hence GS was effective (Table 2.6).

Table 2.5 Number of SNPs retained after exclusions in the genome of BLUP and GBLUP-
selected animals.

Line GBLUP BLUP
B1 37197 37254
B2 36 582 36731
W1 26 302 26 337

Abbreviations: GBLUP, genomic best linear unbiased prediction; BLUP, best linear unbiased
prediction.

2.3.3 Effect of selection method on allele frequencies

To compare the impact of selection methods on the allele frequencies and to identify
the genomic regions that have been under selection, allele frequency differences,
dy,, were calculated between generation zero (GO) and generation two (G2), for
both BLUP- and GBLUP-selected lines. Patterns of d,, across the whole genome
were very different between BLUP- and GBLUP-selected lines (Figures 2.1-2.3).
Changes in allele frequencies were on average larger with GBLUP than with
traditional BLUP. The absolute changes in allele frequency, d,,, were on average,
0.056, 0.064, and 0.066 for GBLUP compared with 0.044, 0.045, and 0.036, for
BLUP in lines B1, B2, and W1, respectively. The distribution of dy, values showed a
longer tail of high d, values for GBLUP than for BLUP (Figure 2.4).

The standardized changes in allele frequencies, dy,/SD;, were on average 1, 1.08,
and 1 for GBLUP compared with 1.12, 1.05, and 1.01 for BLUP in lines B1, B2, and
W1, respectively. From the histogram of standardized allele frequency changes, we
observed that both BLUP and GBLUP-selected lines had fewer d,, values near zero
than expected, and more dy, values in the tails of the distribution (Figure 2.5)
indicating that selection does have an impact on changes in allele frequencies.
Selection changes allele frequency in addition to changes that are expected from
drift that are indicated by the solid line in Figure 2.5. The comparison of d,, from
BLUP and from GBLUP shows that GBLUP has a higher density close to zero and in
the tail (Figure 2.6), but a lower density in the range from 1.0 or 1.5 standardized
dy, to 2.5 or 3.5 standardized d,.
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Table 2.6 Mean of index values in GO and G2 of BLUP and GBLUP for lines B1, B2, and W1.

GBLUP BLUP
Difference in response
Line between two methods
GO G2 G0-G2 G0-G2 GO G2 G0-G2 GO0-G2 (in standardized unit)
(standardized unit) (standardized unit)
Bl 605.28 804.90 199.62 0.86 662.19 800.33 138.14 0.53 0.33
B2  440.15 705.03 264.88 0.90 479.23 707.31 228.07 0.74 0.16
W1 570.25 733.44 163.19 0.59 631.43 760.46 129.03 0.44 0.14

Abbreviations: GBLUP, genomic best linear unbiased prediction; BLUP, best linear unbiased prediction; GO, base generation; G2, second

generation.
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Figure 2.1 Pattern of genetic variation after two generation of selection for line B1. Running
average of allele frequency distribution of 37 197 SNPs (GBLUP) and 37 254 SNPs (BLUP)
along the whole genome is plotted against the physical position (Mb). The deviations above
the threshold show signals of selection.

2.3.4 Threshold values for putative selected regions

Significance thresholds to declare significant selected regions (P < 0.05) were
obtained from gene dropping (Maccluer et al., 1986) and were 0.167 for line B1,
0.184 for line B2, and 0.198 for line W1 in GBLUP. The thresholds for BLUP were
lower; 0.115, 0.126, and 0.105 for lines B1, B2, and W1, respectively. These values
confirm the expectation that random fluctuations in allele frequencies would be
bigger in GBLUP than BLUP, because of the pedigree structure and smaller N, for
GBLUP (Table 2.1 and Table 2.3).

2.3.5 Selected regions

With GBLUP selection, the majority of chromosomes contained regions in which
the running average of d,, values exceeded the threshold (Figures 2.1-2.3, Tables
$2.1-S2.3). Chromosomes without significant evidence of selection were mostly the
micro and intermediate-size chromosomes, whereas others had multiple locations
of selection. Most chromosomes that contained more than one region with
evidence of selection were macrochromosomes, but there was no evidence of
clustering of significant peaks in specific regions of the genome. With BLUP, fewer
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Figure 2.2 Pattern of genetic variation after two generation of selection for line B2. Running
average of allele frequency distribution of 36 582 SNPs (GBLUP) and 36 731 SNPs (BLUP)
along the whole genome is plotted against the physical position (Mb). The deviations above
the threshold show signals of selection.

regions showed evidence of selection (Figures 2.1-2.3, Tables S2.4-2.6). No overlap
was observed between selected regions responding to BLUP selection and regions
responding to GBLUP selection. In selected regions, the average d,, were 0.241,
0.220, and 0.204 for GBLUP compared with 0.121, 0.156, and 0.135, for BLUP in
lines B1, B2, and W1, respectively. Although the number of selected regions,
number of SNPs in selected regions, and the average d,, were higher for GBLUP,
the average length of selected regions was nearly similar for GBLUP and BLUP
(Table 2.7).
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Figure 2.3 Pattern of genetic variation after two generation of selection for line W1. Running
average of allele frequency distribution of 26 302 SNPs (GBLUP) and 26 337 SNPs (BLUP)
along the whole genome is plotted against the physical position (Mb). The deviations above
the threshold show signals of selection.

Table 2.7 Number of selected regions, number of SNPs in selected regions, and the average
length of selected regions for lines B1, B2, and W1.

GBLUP BLUP
Line Number of SNPs in Average Number of SNPs in Average
selected regions length (kb) selected regions length (kb)
B1 24 240 518 10 88 643
B2 30 283 360 12 102 384
W1l 16 204 645 13 162 527

Abbreviations: GBLUP, genomic best linear unbiased prediction; BLUP, best linear unbiased
prediction; n, number of selected regions exceeding the drift threshold.

2.3.6 Overlap of selected regions between lines

Of the 70 GBLUP-selected regions in all lines, few were found to overlap between
lines, and therefore most of the selected regions were line specific. The only region
that overlapped between two brown layer lines was near position 15 Mb on
chromosome 8. This region represents the highest peak in line B2 and was among
the five highest peaks in line B1. In line W1 and B1, the highest peaks were at
regions 41-44 Mb on chromosome 4 and near position 4 Mb on chromosome 21,
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respectively. There was no
other lines.
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Figure 2.4 Distribution of d,, after two generations of selection on GBLUP or BLUP breeding
values. On the x-axis, dy, values are plotted and the number of SNPs is displayed on the y-
axis. The distribution of d,, values shows more extreme values for GBLUP than BLUP.

When lines are very different, it may be expected to see limited overlap between

the genomic regions that contribute to genetic variance and hence, would respond

to selection. The divergence between the lines was assessed by measuring the

diversity (Fst) between lines within the base generation, as well as the second

generation. The method for calculation of Fst is given in Supplementary notes.

These comparisons revealed, as expected, that lines B1 and B2 (brown layers) are

the least divergent lines (Table 2.8).

Table 2.8 Divergence between differ

ent lines using Fst values.

Method G0 G2
B2andW1 BlandB2 BlandW1 | B2andW1 BlandB2 BlandWi1
GBLUP 0.30 0.09 0.29 0.30 0.11 0.30
BLUP 0.29 0.08 0.28 0.29 0.10 0.30

Abbreviations: GBLUP, genomic best linear unbiased prediction; BLUP, best linear unbiased

prediction; GO, base generation; G2,
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bars). On the x-axis, standardized d, values are plotted and the number of SNPs is displayed
on the y-axis. The black solid line shows the expected variance of allele frequency changes
under pure drift (SD; = 1).
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2.4 Discussion

Directional selection acts on genetic variation (Przeworski et al., 2005) and allele
frequencies change as response to selection (Garnett and Falconer, 1975, Kimura,
1989). Currently, there is a great interest in using the patterns of variation to
identify genomic regions under selection (Sabeti et al., 2002). In our study, we
compared the genome-wide response to selection obtained by traditional BLUP or
GS (GBLUP). GBLUP was expected to apply selection pressure directed to specific
regions of the genome resulting in a more rapid increase of the frequency of
favorable alleles, as was already shown in simulation studies (Sonesson and
Meuwissen, 2009, Jannink, 2010, Kinghorn et al., 2011).

Our results show that both GBLUP and BLUP selection cause genome-wide changes
in allele frequencies after two generations of selection. Changes in allele
frequencies were approximately 51% larger across the genome in GBLUP compared
with BLUP selection and 64% larger in selected regions. With the larger changes in
allele frequencies, GBLUP resulted in an approximately 39% larger average
response to selection across all lines. The higher response to selection and the
larger changes in allele frequencies can, at least partially, be explained by the
smaller effective population size of GBLUP compared with BLUP. However, when
using the drift thresholds from gene dropping, all these differences were taken into
account, and yet a higher number of selected regions were detected for GBLUP in
each of the three replicate populations. This difference in number of selected
regions therefore seems to be systematic. The response to GS depends on the
initial allele frequency at the markers that are used and their LD to the QTL,
whereas the response to BLUP selection depends on the initial allele frequencies at
the QTL (Goddard, 2009). BLUP will not distinguish between QTL based on different
levels of LD between these QTL and the SNPs, whereas GBLUP can focus on a
subset of QTL, when these are in LD with the SNP set. While GBLUP can focus on a
subset of QTL, it can also select on many QTL when many SNPs have strong LD with
the QTL, such that the QTL will be effectively tagged for GBLUP. In such a situation,
and with a large training set, GBLUP can predict most (perhaps all) of the variance
explained by QTL. Our current results indicate that GBLUP has focussed on a more
limited set of QTL to select, compared with BLUP.

SNPs at extreme allele frequencies or linked to QTL of small effect are unlikely to be
used in GBLUP, because these markers are usually not discovered as having an
effect on the target trait (Goddard, 2009) and subsequently not selected to higher
frequencies. With BLUP selection, all QTL are responding to selection, including
those with very small effects, which results in small changes of allele frequencies
near, potentially many, QTL positions.
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It appears that when GBLUP is progressing, it could lead to sequential waves of
different regions being selected. In the long term, this may lead to suboptimal use
of available genetic variation (Villanueva et al., 2004). To sequentially select
different regions, the effects of the SNPs need to change, which can happen when
the model is retrained and effects are re-estimated. Continually re-estimating
marker effects and including new markers in the breeding value prediction would
be needed in the hope that new marker-QTL associations can be exploited
(Goddard, 2009). In simulation studies (Muir, 2007, Sonesson and Meuwissen,
2009, Bastiaansen et al., 2012), it was shown that if GS is practiced for many
generations, without retraining, the rate of response will decline rapidly.

To distinguish a real selection signal from genetic drift, a suitable statistical method
should be applied to distinguish whether observed changes in allele frequencies are
the result of selection rather than random genetic drift. In this study, gene
dropping through the real pedigree was used to set a threshold to differentiate
regions under selection from fluctuations in allele frequencies that can be expected
from genetic drift. Our simulation took into account the exact pedigree, to provide
an empirical distribution of the changes in allele frequencies due to genetic drift for
the pedigree under investigation. The threshold values were larger for GBLUP than
BLUP, as expected from the smaller number of selected parents (smaller Ng). In
addition, we found that selected parents for GBLUP were on average more related
to each other than selected parents for BLUP (Table 2.9). This may seem
counterintuitive, because GBLUP is expected to be better able to select across
multiple families. However, selected parents of BLUP were from different
generations and different hatch dates (overlapping generations), whereas for
GBLUP, all selected parents were from one generation. Therefore, in this study, the
relationship between selected parents for GBLUP were higher than for BLUP (Table
2.9). With fewer and more related parents selected for GBLUP, genetic drift had a
much greater influence on allele frequency variation (Result section). However, the
impact of drift was taken into account by applying the gene dropping method that
accounted for the realized pedigree.
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Table 2.9 Average genomic relationship between selected parents of G2-GBLUP and G2-
BLUP.

Line G2-GBLUP? G2-BLUP®

B1 0.066 0.040

B2 0.074 0.053

W1 0.092 0.037
Abbreviations: GBLUP, genomic best linear unbiased prediction; BLUP, best linear unbiased

prediction.
®G2-GBLUP is the second generation of GBLUP.
®G2-BLUP is the second generation of BLUP.

The observed d,, are a combination of effects from genetic drift and selection. If
genetic drift and selection act in the same direction, we expect to see a large peak
and if they act in the opposite direction, we may see a smaller peak. Separating the
effects of drift and selection is not possible when only the sum of the two can be
observed. However, using an estimate of the N,, the SD; of allele frequencies due
to drift could be calculated, and with this SD;, the observed d,, was standardized.
The distribution of the observed d,, showed a larger variance than expected under
drift, a clear indication that selection is affecting allele frequencies in both BLUP
and GBLUP (Figure 2.5). The distribution of standardized d,, showed small but
important differences between GBLUP and BLUP. GBLUP had a higher density than
BLUP for both small values and large values of standardized d,, whereas BLUP had
a higher density at intermediate values of standardized d,,, roughly for values
between 1.5 and 3.5. This result confirms the expectation that BLUP selects on all
QTL that are affecting the index, whereas GBLUP appears to favour certain regions
and ignores others. In the favoured regions, standardized d,, values were large,
that is, more SNPs with standardized d,, above 4 for GBLUP compared with BLUP
(Figure 2.6), and in the ignored regions, standardized d,, values were small,
resulting in more SNPs with standardized d,, values near 0 for GBLUP compared
with BLUP. Standardization was applied to correct for the differences in N,
between GBLUP and BLUP, so that remaining differences between the standardized
dy, distributions were due to the method of selection. To confirm that
standardization worked as expected, simulations were done with one of the
training data sets, selecting a larger and smaller number of parents in two
scenarios (resulting in different N.). Observed d,, distributions showed the
expected differences due to N, and we confirmed that after correction for N, the
distributions of standardized d,, were comparable for the two scenarios with
different N,, both under selection on BLUP or GBLUP (results not shown). In
addition, a simulation study by Liu et al. (2014) investigated the changes in allele
frequency at QTL, SNPs and linked neutral loci with different selection methods;
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GBLUP and BLUP, in a population with equal N, (N, = 200) for both methods. They
showed that after correction for drift, GBLUP moved the favourable alleles to
fixation faster than BLUP and showed larger hitch-hiking effect than BLUP (Liu et
al., 2014).

We asked whether the observed d,, peaks could be due primarily to selection and
in an attempt to address this question, we tried to predict the additive effects
responsible for the observed allele frequency peaks. This additive effect was
estimated as:

a = o;8/2i (2)

where o; was the standard deviation of the index values for the candidates (males
and females that could potentially be selected as fathers and mothers of next
generation), s was the selection coefficient, and i was selection intensity. s and i
values for the allele frequency changes at peaks are given in Table S2.7. Methods to
calculate s and i are given in Supplementary notes. Note that as i was different for
males and females, the average selection intensity for females and males was used.
The predicted additive effects (standardized unit) that would cause the observed
changes in allele frequencies were 0.28 on average (Table S2.7). The variance
explained by the five large peaks (5 loci) of each line was 2.3%, larger than typically
reported variance explained by the associated SNPs. For example, for human
height, the observed range of additive effects for 201 loci, as a percentage of
genetic variance, was 0.04 to 1.13 (Park et al., 2010). Hence, the genetic variance
estimates for the peaks of dy, are likely to be overestimated. Several possible
explanations can be given for the overestimation of a from equation (2). Selection
coefficients can be overestimated due to several assumptions being made. Any
effects of drift on the allele frequencies in the selected regions are attributed to the
additive effect of a single gene, whereas the combined effect of several linked
genes on dy, may have been observed. Other assumptions for the use of equation
(2) are that the allele frequency change was slow and that the selection coefficient
was considered to be against an unfavourable homozygote. The large observed
changes in allele frequencies should therefore be interpreted as the result of the
combined action of drift and selection on a region that may contain multiple
favourable alleles.

QTL are discovered across the whole genome and therefore a random distribution
of selection regions across the genome due to different contributions of regions to
the variance was expected. Most significant selected regions were found in
macrochromosomes (chromosomes 1, 2, 3, 4, and Z), which can be attributed to
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the fact that macrochromosomes form about 80% of the chicken genome.
Moreover, there is less recombination in macrochromosomes compared with
microchromosomes (Groenen et al., 2009, Megens et al., 2009) and regions under
strong selection, which are located in genomic regions with low recombination rate
(macrochromosomes) will be more readily detected, because they affect a wider
window of SNPs.

All lines were under selection for the same traits and two of the lines (B1 and B2)
were found to be more related to each other than to the other line based on Fst
values (Table 2.8). However, only few selected regions overlapped, even between
the two brown lines. This low level of concordance was surprising, but may be
explained by the time since the B1 and B2 lines were split, approximately 15
generations ago. Both lines were selected during this period, which may have
changed their genetic architecture, especially at loci that are important for the
selection index. The historical separation of the lines leads to a number of possible
reasons for lack of concordance. First, because selection is based on indexed
phenotypes that include multiple traits, this leads to a large number of loci that are
potentially selected. Chevin and Hospital (2008) showed that for quantitative traits,
selection at specific quantitative trait loci may strongly vary in time and depend on
the genetic background of the trait (Chevin and Hospital, 2008). Second, different
lines can have differences in initial allele frequencies for potentially favourable
alleles, resulting in differences in selection response. Starting allele frequencies are
different between lines. Third, some lack of concordance might be due to the small
effect of some alleles that could not be detected by GS. It is expected that the
frequency of loci with the largest effects would rise more rapidly in the population
and reach the detection threshold (Johansson et al., 2010). Fourth, specific variants
might have different effects in different lines. Fifth, epistatic interactions may
change the allele substitution effect of the QTL, and therefore change the marginal
effect of the marker.

In addition to the lack of concordance between different lines, overlap of selected
regions was also limited between the two methods within each line. The
correlation of d,, values from the two methods, within each line were small: 0.16
for line B1, 0.11 for line B2 and 0.15 for line W1. These correlations are positive but
have low values, reflecting the differences in response to selection for the two
methods (Figures 2.1-2.3).

Previous studies have shown the effects of selection on genetic variability (Rubin et
al., 2010, Elferink et al., 2012). These studies analyzed the variation in the current
populations to discover the impact of past selection. Congruence between these
previous studies and the current study would provide confirmation that selection is
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the major cause for changes in allele frequencies at these overlapping selected
regions. Of our 70 selected regions identified by GBLUP, 16 overlapped with
regions that showed evidence of past selection (Amaral, 2010, Rubin et al., 2010,
Elferink et al., 2012) (Table S2.8). Four of the 16 overlapped regions had very high
dy, in our results. Given the low concordance of selected regions even within the
same line selected with different methods, the low concordance with other studies,
applying different analyses in different populations, is not surprising. The most
likely reason for the limited overlap with previous studies is that these previous
studies aimed to identify regions where variation was presumably present in
ancestral populations and was largely swept from the population. In our current
experiment, the variation that was still available after historic selection and
domestication was used to generate phenotypic change. When variation is already
swept from the population, it will not contribute to current genetic progress.

Our experiment gives insight into how genomes respond to selection in general,
and specifically how that response to selection is different if breeding values are
estimated with or without genomic information. Not only will this allow a better
use of knowledge on genomic variation in breeding programs, but it may also lead
to identification of possible constraints related to the genome architecture (for
example, recombination landscape), and to (local) inbreeding effects.

2.5 Conclusion

Seventy regions with evidence of selection were detected within the layer genome
after selection by GBLUP compared with only 35 regions after selection by BLUP.
With similar selection intensities, GBLUP directed selection pressure more locally
than BLUP, favouring certain regions and ignoring others, whereas BLUP spreads
the selection pressure more evenly along the genome. This localized selection
pressure may lead to sequential waves of changing allele frequencies with
unknown implications for the available genetic variation. The opportunity to select
on GEBVs, before phenotypes of selection candidates are available, does require
careful consideration of these issues, while at the same time includes promises for
genetic improvement, as well as the understanding of genetic response to
selection.
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Abstract

Scanning the genome with high density single nucleotide polymorphisms (SNPs)
enables detection of regions where allele frequency changes rapidly between
generations. This may lead to the identification of regions responding to selection
(selected regions). Selected regions are expected to be associated with the traits
under selection and therefore overlap can be expected between associated regions
and selected regions. In this study, we performed a genome-wide association study
(GWAS) by single-step genomic best linear unbiased prediction (ssGBLUP) and by a
Bayesian stochastic search variable selection (BSSVS) method, to identify genomic
regions associated with the index used for selection. Associated regions were
compared with selected regions previously reported for the populations of three
lines of layers. Only a few associated regions overlapped with selected regions.
Because changes in allele frequencies due to selection may be subtle and may not
be significantly distinguished from expectations under genetic drift, the regions
surrounding GWAS peaks were investigated as well. SNPs in associated regions
showed significantly larger changes in allele frequencies compared with the
average changes across the genome for all of the three layer lines investigated.
Possible reasons for the limited concordance between associated regions and
selected regions include the long-distance extent of LD in the chicken genome that
can lead to different SNPs in an LD cluster being identified in different analyses,
different regions being selected in different generations, and lack of power to
detect subtle effects of association or selection response.

Key words: Selected region, associated region, layers



3 Discordance between associated regions and selection signals

3.1 Introduction

Genomic selection (GS) allows the simultaneous use of thousands of single
nucleotide polymorphisms (SNPs) across the whole genome for the prediction of
genetic merit. Using sufficiently dense genome-wide marker maps, a large part of
genetic variance is expected to be explained by these SNPs, and all quantitative
trait loci (QTL) are expected to be in linkage disequilibrium (LD) with at least one
SNP (Meuwissen et al., 2001).

Genome-wide association studies (GWAS) in chicken (Gu et al., 2011, Liu et al.,
2011, Xie et al., 2012) and other species (Duijvesteijn et al., 2010, Cole et al., 2011)
are an effective approach to detect SNPs associated with the traits of interest. In
performing GWAS, many statistical tests are performed, and therefore a very
stringent significance threshold is required and SNPs need to explain a considerable
amount of variation to pass this threshold. SNPs that explain a small amount of
variation often do not reach stringent significance thresholds in GWAS, at least not
with the commonly used sizes of experiments. GWAS typically test a single SNP,
treated as a covariate in the model (Hirschhorn and Daly, 2005) which is different
from genomic prediction models such as genomic best linear unbiased prediction
(GBLUP) (Meuwissen et al., 2001) and Bayesian stochastic search variable selection
(BSSVS) (Verbyla et al., 2009, Calus, 2014) in which all SNP effects are jointly
estimated.

GBLUP that has been developed for genomic prediction, uses realized genomic-
based relationships between individuals, computed from SNP genotypes, instead of
pedigree-based relationships, to directly compute genomic breeding values
(GEBVs). This approach is equivalent to random regression BLUP (Goddard, 2009),
which is a model that performs random regression on BLUP genotypes assuming
that each SNP explains an equal part of the total genetic variance. These regression
coefficients called SNP effects can be computed from the GEBVs generated by
GBLUP. SNP effects computed from GBLUP can also be used for detection of QTL.
With GBLUP, the variance explained by each SNP, computed from the allele
frequencies and the estimated allele substitution effect, can be used to identify
SNPs associated with the trait of interest. Single-step GBLUP (ssGBLUP) (Misztal et
al., 2009, Christensen and Lund, 2010) integrates the genomic and pedigree
information into a relationship matrix (Legarra et al., 2009, Misztal et al., 2009) to
predict GEBVs, and this method can similarly be used to perform GWAS (Wang et
al.,, 2012). An advantage of ssGBLUP over e.g. single SNP GWAS is that it directly
uses the phenotypes of non-genotyped animals in the analysis. A disadvantage of
this method is, however, the a priori assumption of GBLUP that all SNPs in the
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model explain an equal part of the genetic variance. This assumption leads to
relatively strong “shrinkage” of the estimated effects of SNP with large effects,
which may reduce the probability that a SNP is detected in GWAS. Different
Bayesian methods such as BayesC (Habier et al., 2011) and BSSVS (Verbyla et al.,
2009, Calus, 2014) have been described that apply less stringent a priori
assumption, resulting in weaker shrinkage of SNPs associated with the trait of
interest and thereby increasing the probability that a SNP is discovered in GWAS.
Few studies have investigated the concordance between regions associated with
phenotypic effects and regions identified by large changes in allele frequency that
are, putatively, due to more recent selection in dairy cattle (Wiener et al., 2011,
Kemper et al., 2014). Large allele frequency changes enabled to detect the regions
associated with qualitative (monogenic) traits, but were less powerful to detect
regions associated with quantitative traits (Wiener et al., 2011) and effectively no
selection signals were found at loci with a large effect on quantitative traits under
selection (Kemper et al., 2014). Previously, we investigated the response to GS by
identifying genomic regions where selection has changed allele frequencies
(Heidaritabar et al., 2014). Since the allele frequencies prior to selection were
known, we assessed the changes in allele frequencies after selection for detection
of selection signals. The measure used by Wiener et al. (2011) was a measure of
population differentiation (FST), whereas the measures used by Kemper et al.
(2014) were FST, haplotype homozygosity, and integrated haplotype score. In the
current study, we investigated the level of concordance between the regions
responding to selection (selected regions) (Heidaritabar et al.,, 2014), and
associated regions from a GWAS analysis. Absolute changes in allele frequencies
after selection were used as a measure to detect selected regions (Heidaritabar et
al., 2014). Regions of the genome where SNPs were strongly associated with the
trait under selection were expected to also show a response to selection and
therefore show larger allele frequency changes compared with other genomic
regions.

The objectives of this study were: (1) to identify genomic regions associated with
the selection index. (2) to assess the concordance between the associated regions
and the selected regions.

3.2 Materials and methods

3.2.1 Data structure

The study was performed with data from three lines of commercial layers; two
brown lines (B1 and B2) and one white line (W1). In each line, genotypes were
available from four generations of a training dataset (the data used to estimate
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allele substitution effects) and three subsequent generations (GO, G1, and G2) of
candidates for GBLUP selection (Table 3.1). Animals hatched between 2005 to 2008
were used as training animals for the prediction of genomic breeding values
(GEBVs) in GO. For each subsequent generation, the female selection candidates
from the previous generation were added to the training set, thereby increasing
the size of the training dataset each generation of selection. In the selection
experiment, the top animals were selected based on their GEBV from ssGBLUP
analysis. More details about the dataset were described in (Heidaritabar et al.,
2014).

Table 3.1 Number of animals used for GWAS (training data), number of genotyped selection
candidates selected based on their GEBV, and number of selected parents in different
generations of GBLUP selection for lines B1, B2, and W1.

GO-GBLUP” G1-GBLUP’ G2-GBLUP®

Lin Training* Selection Selected Selection Selected Selection
set size candidates parents candidates parents candidates

F M F M F M F M F M
Bl 844 248 126 59 15 248 149 58 15 296 130
B2 718 238 128 57 15 242 143 58 15 297 130
W1 729 230 141 48 15 259 123 44 15 0 150

F, female; M, male; GBLUP, genomic best linear unbiased prediction.

'G0-GBLUP is the first generation of genomic selection experiment.

’G1-GBLUP is offspring of GO.

*G2-GBLUP is offspring of G1.

The training data includes all males born between 2005 and 2008, including those hatched
in January and February. For line W1, 5 animals are missing while recoding the animal’s
identification numbers.

3.2.2 Data used for GWAS

Genotypes

The genotyped animals used for GWAS were from the training dataset used to
predict GEBV in GO (Table 3.1), using only phenotypic data that was available at the
time of selecting parents from GO. All genotyped animals in the training dataset
were males.

Phenotypes

The phenotype used for the GWAS, was the selection index that was used to select
animals during the experiment. The selection index contained 15-18 traits for the
different lines, with index weights based on a commercial egg-laying breeding goal.
Animals used for GWAS had high accuracy index values based on progeny test
information, including 80 daughters per sire. The size of the families was uniform.
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The total number of animals with an index value was 32 398 for line B1, 33 899 for
line B2, and 35 811 for line W1 (Table 3.2).

Table 3.2 Descriptive statistics of index values for lines B1, B2, and W1.

Line n Mean SD Maximum Minimum
B1 32398 516.57 364.68 1805.05 -1330.67
B2 33899 430.16 374.25 1641.97 -634.74
w1 35811 504.38 387.08 1905.28 -1113.64

SD, standard deviation.

3.2.3 Collection of DNA samples and genotyping

DNA samples were extracted from individual blood samples. In total, 57 636 SNPs
were genotyped using the chicken lllumina Infinium iSelect BeadChip (Illumina Inc.,
San Diego, CA, USA). Genotyping and quality control were done using the standard
protocol for the 60K chip, using Genome Studio v2009.2 (lllumina Inc.) as previously
described (Groenen et al., 2011).

3.2.4 Quality control of genotypes

The following filters were applied to SNP data before conducting subsequent
analyses. A total of 1144 SNPs were excluded, because they were not mapped on
the genome build WASHUC2. Furthermore, two linkage groups; 29 and 30, and
three chromosomes; 16, 31, and 32 were excluded because of limited SNP
coverage. SNPs with call rate less than 0.90 or a minor allele frequency (MAF) less
than 0.01 were also removed. The number of SNPs that remained for the GWAS
were 37 030 for line B1, 36 481 for line B2, and 25 959 for line W1.

3.2.5 GWAS

Different models were applied, as described below. The general approach to
perform the GWAS was to fit the animals’ index values as dependent variable in the
ssGBLUP and the BSSVS models. Then, the allele substitution effects were obtained
from these models together with the SNP genotypes. Finally, the SNP variances
were calculated based on their allele substitution effects and allele frequencies.

ssGBLUP
The statistical model used for ssGBLUP:

y=1p+Xb+Z,a+e (1)
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where y is the vector of index data, 1 is a vector of ones, p is the overall mean of
the dependent variable, b is a vector of fixed effects (hatch-date and sex), X is the
design matrix corresponding to fixed effects, Z, is an incidence matrix that related
index values to animal effects, a is the vector of genetic values of all animals
(random animal effects) and € is the vector of random residual effects. The animal
effects and residual effects were assumed to be normally distributed as:
a ~ N(0,Ho?) and e ~ N(0, I62), respectively. 62 and 62 were the additive genetic
and residual variances, respectively. H was a relationship matrix that combined the
pedigree relationship (A) and genomic relationship (G) (Aguilar et al., 2010). The
simple form of the inverse of the H matrix is:

0 0
H™ =A"+|g g1_az

where H, G, and A are as defined above. A, is the pedigree relationship matrix of
genotyped animals only. G™! was replaced by [AG + (1 — A)A,,]™ %, where A was
set to 0.95 which is the default value in preGSf90 software. Matrix G was calculated
following the approach of VanRaden (2008) as: G = ZZ'/2 Y. p;(1 — p;), where Z is
the matrix for SNP effects with elements:

0 — 2p; for homozygous AA
Z;; = 41 — 2p; for heterozygous AB or BA
2 — 2p; for homozygous BB

and p; is the allele frequency at the i"™ SNP. The allele frequencies of the current
population (training population) were used to construct the G matrix.

Calculating allele substitution effects from the ssGBLUP method was performed
using BLUPf90 software (Misztal et al., 2002). Both genotyped and non-genotyped
animals receive a GEBV from ssGBLUP analysis, but only the GEBV of genotyped
animals (ag) could be expressed as a function of allele substitution effects:
ag = Zu, where Z is the design matrix corresponding to the genotypes of each
locus, as in the calculation of G, and u is the allele substitution effect vector. The
variance of animal effect is: var(ag) = var(Zu) = ZDZ'c%, where D is an identity
matrix to give equal weights to all SNPs, ¢ is the additive genetic variance taken by
each SNP. The mixed model equations used to derive the allele substitution effects
are explained in Stranden and Garrick (2009).
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BSSVS

The second GWAS applied a Bayesian stochastic search variable selection (BSSVS)
model (Verbyla et al., 2009). The BSSVS model assumed that many SNPs (99.9%)
were not in LD with QTL, whereas 0.1% of the SNPs were assumed linked to a
moderate to large effect QTL. It is therefore expected that BSSVS emphasizes the
associated regions and avoids, to some extent, distributing the variance over
multiple SNPs. Gibbs sampling was applied by BSSVS to sample over the posterior
distribution of the model parameters. The Gibbs chain was run for 50 000 cycles
including a burn in of 10 000 cycles which were discarded. Estimates of SNP effects
were computed as the mean of their posterior distributions.

BSSVS achieves the variable selection by sampling every iteration of the Gibbs chain

a QTL indicator ; that determines whether SNP i has a large or a small effect. Large
\
100
respectively. More details on the implementation of BSSVS can be found in Calus

and Veerkamp (2011).

or small effects were sampled from distributions with variances V or

’

3.2.6 SNP variance

The SNP variances were calculated based on the estimated allele substitution
effects and allele frequencies as: Vgnp = 2p;(1 — p;)u?, where p; is the allele
frequency of i™ SNP, and y; is the allele substitution effect of i"™ SNP. Because no
significance test can be performed with either ssGBLUP (Wang et al., 2012) or
BSSVS, the 50 regions that captured the largest amount of genetic variance, were
considered as the regions (most) associated with the index. To define a region, first
the physical distances were converted to genetic distances using the recombination
rate values as reported by Elferink et al. (2010). Then, the SNP variances were
summed over windows of 1 centiMorgan (cM) across the genome.

3.2.7 Selection on index

Selection of parents from the candidates in GO and G1 was based on GEBVs
obtained with the ssGBLUP model. Selection favoured higher values of the index.
The regions where large allele frequency changes were observed across generation
of selection based on ssGBLUP were compared with associated regions identified
from GWAS results in the same line. Number of genotyped selection candidates
and selected parents in each generation are given in Table 3.1. Index values used in
the selection process were not stored after the selection step, and therefore the
GWAS was based on recalculated index values at the time of performing GWAS.
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3.2.8 Comparison of associated and selected regions

Genomic regions explaining a large amount of variance in the training dataset
according to ssGBLUP and BSSVS analyses were tested for overlap with genomic
regions that had significant allele frequency changes (selected regions) between GO
and G2 (Heidaritabar et al., 2014). Bedtools intersect, which is a tool for comparing
genomic features (Quinlan and Hall, 2010), was used to compare the associated
and selected regions and to find the overlap. Additionally, the top 50 associated
regions from GWAS and the significant selected regions were plotted into 1
Manhattan plot for comparison.

Enrichment of selected regions with genetic variance

Besides the positional comparison of selected and associated regions, the regions
around the selected SNPs were investigated for enrichment with genetic variance
from the association analysis. The associated SNPs with the highest GWAS peaks
and the selected SNPs with the largest allele frequency change are not necessarily
expected to be exactly the same due to LD, linkage drag and/or genetic drift, but at
least some SNPs in selected regions were expected to show an increased level of
association with the index. In other words, we expected the selected regions to be
enriched for genetic variance. The enrichment analysis was done by summing the
variances of the nearest 10 SNPs on either side of the SNP with the highest
observed allele frequency change in the selected region. The sum of SNP variances
captured in such selected regions was compared with the sum of SNP variances in
sliding windows of 21 SNPs across the genome to test whether the SNPs in selected
regions explained more variance than the SNPs in sliding windows across the
genome. If the large allele frequency change values are due to selection on genetic
variance in those regions, we expect that the density function of the sums of the
SNP variance from significant allele frequency changes would exceed the 90%
quantile of the density function of the sums of the SNP variance covering the whole
genome.

Enrichment of associated regions with allele frequency changes
The regions identified by the GWAS were tested for elevated levels of allele
frequency changes. The average allele frequency change in the top 50 associated
regions was compared with the average allele frequency change across all 1 cM
windows across the genome.
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3.2.9 Variance component estimation

Variance components, additive genetic variance (62) and residual variance (62),
were estimated via maximum likelihood using AIREMLF90 program (Misztal et al.,

~ ~ =2
2002). A narrow-sense heritability (h?) was computed as: h? = 5 T&Z' The
a e

heritability of the index for all lines was estimated using the genomic relationship
matrix (G).

3.3 Results

3.3.1 Heritability of index

Heritability of the index for all lines was estimated using the genomic relationship
matrix (G) and was close to 1 (Table 3.3), reflecting the fact that the index
phenotypes were estimated breeding values (EBVs) with a reliability close to 1.

Table 3.3 Estimated variance components and heritability (ﬁz) of index values estimated
from ssGBLUP.

Line 62 62 i2
B1 26 920 67.06 0.997
B2 41098 0.16 0.999
w1 48 705 217 0.999

62,additive genetic variance; G2, error variance.

3.3.2 Associated regions

SNPs were grouped into windows of 1 cM across the genome and the sum of the
SNP variances of each window was computed. The top 50 windows that
contributed the greatest genetic variance were considered associated with the
index for the following analyses. The SNP variances per window of 1 cM were
plotted across the genome for each of the three lines. The results of ssGBLUP and
BSSVS are in Figure 3.1 and Figure S3.1, respectively. With ssGBLUP, in total, 812,
821 and 667 SNPs in 50 associated regions explained 10.2%, 9%, and 11% of the
total variance for lines B1, B2, and W1, respectively (Tables $3.1-53.3). With BSSVS,
in total, 1001, 990 and 846 SNPs in 50 associated regions explained 7%, 6%, and
7.5% of the total variance for lines B1, B2, and W1, respectively (results not
shown). In all lines, some of the associated regions detected by BSSVS were similar
to the associated regions detected by ssGBLUP, with the closest similarity in line B2
(Table S3.4). The correlations of allele substitution effects estimated by ssGBLUP
with those estimated by BSSVS were 0.59 for line B1, 0.57 for line B2, and 0.58 for
line W1.
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Figure 3.1 SNP variances across the whole genome obtained by ssGBLUP for lines B1, B2, and
W1. Green and blue colours differentiate chromosomes. The red vertical lines represent the
selected regions. The red horizontal line represents the thresholds for detection of the top
50 associated regions.
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3.3.3 Overlap of associated regions between the lines

A few of the 50 top associated regions in the three lines overlapped between lines
(Table 3.4), with the highest number of overlaps (n = 4) between lines B1 and B2.
No regions were associated in all three lines.

Table 3.4 Overlapped regions of the top 50 associated regions between different lines.

N First line Second line
First Im?- Chromosome  Start region End region Start region  End region
Second line
(cM) (cM) (cM) (cM)
3 224 225 224 225
9 19 20 19 20
B1-82 9 21 22 21 22
11 23 24 23 24
B2-W1 2 253 254 253 254
B1-W1 1 387 388 387 388

cM, centiMorgan.

3.3.4 Overlap of associated regions with selected regions

GWAS identified regions associated with index, and selection on the index was
previously shown to cause significant changes in allele frequencies (Heidaritabar et
al., 2014). Most of the associated regions did, however, not overlap with the
selected regions. With ssGBLUP, no associated regions overlapped with selected
regions for lines B1 and B2, and for line W1, 3 of the 50 associated regions
overlapped with a selected region (Table 3.5). The overlapping regions were at cM
164, 223, and 37 of chromosomes 2, 3, and 7, respectively. With BSSVS, for line B1,
one associated region on chromosome 20 and for line B2, one on chromosome 15
overlapped with a selected region. For line W1, 4 of the 50 associated regions
overlapped with a selected region. The overlaps were at cM 54, 223, 37, and 3 of
chromosomes 2, 3, 7, and 15 respectively (Table 3.6). The regions on chromosomes
3 and 7 were identified in the same position with both the ssGBLUP and BSSVS
methods.

Table 3.5 Overlap regions between the selected regions and the top 50 associated regions by
ssGBLUP in lines B1, B2, and W1.

Associated regions Selected regions

Line Chromosome Start region End region Start region End region
(cM) (cM) (cM) (cM)
B1 - - - - -
B2 - - - - -
2 164 165 164.48 164.94
w1 3 223 224 222.93 223.64
7 37 38 37.73 37.99
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Table 3.6 Overlap regions between the selected regions and the top 50 associated regions by
BSSVS in lines B1, B2, and W1.

Associated regions Selected regions
Line  Chromosome Start region End region Start region End region
(cM) (cM) (cM) (cM)
B1 20 37 38 37.06 37.43
B2 15 7 8 7.12 8.28
2 54 55 54.93 55.37
Wi 3 223 224 222.93 223.64
7 37 38 37.73 37.99
15 3 4 3.68 5.36

cM, centiMorgan.

3.3.5 Enrichment of selected regions with genetic variance

For ssGBLUP, SNPs in selected regions explained more variance compared with
SNPs in sliding windows across the genome, but only for line W1 (Figure 3.2). For
BSSVS, all lines showed larger SNP variances in selected regions compared with
SNPs in sliding windows across the genome, indicating that SNPs near allele
frequency peaks were on average more strongly associated with the index than
unselected SNPs in lines B1, B2, and W1 (Figure S3.2).
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o o (=]
S S - n -
5e] se] (3]
8 4
8 S - ~
o o
[=]
= = 2> £
o w2 @
§ S 7 5§ ¢ 7 &
a =} o 8
o o
S - S -
I & [
w
o _J Ui o - \L o - \&
T T T T T T T T T T T T T T T
0.000 0.010 0.020 0.000 0.010 0.020 0.000 0.010 0.020
Sum of SNP variance Sum of SNP variance Sum of SNP variance

Figure 3.2 Distribution of SNP variance by ssGBLUP for lines B1, B2, and W1. The density of
the sum of the SNP variances from ssGBLUP is plotted for sliding windows of 21 adjacent
SNPs covering the whole genome (red) and for windows around the most significant allele
frequency changes (blue) according to selected regions reported by Heidaritabar et al.
(2014). The black vertical line indicates the 90% quantile of the red density function.
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For ssGBLUP, the variance explained by the top 10% of genome-wide windows was
above 0.0020, 0.0028, and 0.0070 for lines B1, B2, and W1, respectively (Figure
3.2). For BSSVS, the variance explained by the top 10% of genome-wide windows
was above 0.00098, 0.00066 and 0.00091 for lines B1, B2, and W1, respectively
(Figure S3.2). The variance explained by windows around significant allele
frequency changes exceeded these 10% genome-wide thresholds in 5.04%, 0.27%,
and 20.99% of the cases for lines B1, B2, and W1, respectively. For BSSVS, of the
windows around significant allele frequency changes, 18.25%, 10.09%, and 30.32%
explained variances that exceeded the 10% genome-wide thresholds for lines B1,
B2, and W1, respectively. If the large allele frequency change values are due to
selection on genetic variation in those regions, it is expected to observe the density
function of the sums of the SNP variance from significant allele frequency changes
exceeding the 90% quantile of the density function of the sums of the SNP variance
covering the whole genome.

3.3.6 Enrichment of associated regions with allele frequency
changes

For both ssGBLUP and BSSVS, the top 50 associated regions showed higher levels of
allele frequency changes compared with the average of all regions (windows of 1
cM) across the genome. Across all windows on the genome the average allele
frequency change was > 0.098, > 0.112, and > 0.125 for the windows in the top 10%
of allele frequency changes in lines B1, B2, and W1, respectively (Figure 3.3). From
the top 50 associated regions in the ssGBLUP GWAS, 18.61%, 13.85%, and 10.35%
had allele frequency changes that exceeded these 10% thresholds from the
genome-wide windows for lines B1, B2, and W1, respectively. From the top 50 top
associated regions in the BSSVS GWAS, 16.29%, 10.52%, and 15.63% had allele
frequency changes that exceeded these 10% threshold for lines B1, B2, and W1,
respectively (Figure S3.3).

62



3 Discordance between associated regions and selection signals

Line B1 Line B2 Line W1
© 4 2
o -
© -
(=g
z z 24 z © -
[ ‘® ‘®
=4 = =
(7] [ [
[a] (o] o 4
w0 o
J k L N L
o — o - o -
T T T T T T T T T T T T T T
00 01 02 03 04 00 01 02 03 04 00 01 02 03 04
Mean of allele frequency change Mean of allele frequency change Mean of allele frequency change

Figure 3.3 Distribution of SNP frequency changes in associated regions of ssGBLUP for lines
B1, B2, and W1. The density of the mean of the SNP frequency changes is plotted for sliding
windows of 1 cM covering the whole genome (red) and for windows of the 50 top associated
regions (blue) from ssGBLUP. The black vertical line indicates the 90% quantile of the red
density function.

3.4 Discussion

Our objective was to investigate the concordance between the pattern of
associated regions from GWAS and the pattern of allele frequency changes after
two generations of selection for the same trait. Since GWAS detects genetic
variation and selection acts on genetic variation (Przeworski et al., 2005, Casto and
Feldman, 2011), we expected to identify genetic associations in the regions where
the large responses to selection (selected regions) were seen, and vice versa. The
results showed a weak concordance between the two analyses, with the largest
number of overlaps for line W1. The larger overlap between the selected and
associated regions for the white line may be related to the finding that the
accuracy of genomic prediction for the white layers is considerably higher than for
the brown layers (Calus et al., 2014), due to higher LD in white compared with
brown layers (Megens et al., 2009). The higher accuracy naturally leads to a higher
response of selection, which in turn is expected to lead to stronger changes in allele
frequencies for line W1.

An obvious reason for the lack of concordance is the occurrence of false positive
selected regions as well as false positive associations. Based on the results of this
study, we cannot determine that either a selected region or an associated region is
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a false positive. In the following, we discuss several possible reasons can be
considered for the limited overlap, as well as how they might lead to false positive.

(1) 1t is very likely that the SNPs used in our study do not themselves contribute to
phenotypic variation. Clusters of SNPs in LD can be associated with the index and
due to the long-distance extent of LD in the chicken genome (Megens et al., 2009,
Heidaritabar et al., 2016), different representatives of each cluster can be identified
in different analyses. We did observe that some associated regions were in close
physical proximity (from 1 to 1.88 cM) to some selected regions (Table 3.7).

Table 3.7 Associated regions in close proximity of selected regions.

Selected regions Associated regions Associated regions
by ssGBLUP by BSSVS

Line  Chromosome Start End Start End Start End
region region region region region region

(cM) (cM) (cM) (cM) (cM) (cM)

B1 20 37.06 37.43 35 36 - -

33 148.83 149.20 147 148 146 147

B2 17 42.54 42.88 - - 40 41

20 16.19 16.28 - - 17 18

cM, centiMorgan; ssGBLUP, single-step genomic best linear unbiased prediction; BSSVS,
Bayesian stochastic search variable selection.

(2) In some selected regions, an association may not be detected in the genome
scan, because the response to selection on these regions was mainly obtained in
the later generations (G1 and G2), that were further away from the GWAS dataset
(GO). It has been reported before that for quantitative traits controlled by a large
number of loci, selection at specific quantitative trait loci may strongly vary in time
and depend on the genetic background of the trait (Chevin and Hospital, 2008). In
other words, selection can act sequentially on different alleles. One possible
explanation for the sequential waves of different regions being selected at different
times is the presence of non-additive genetic variance. When there is substantial
non-additive genetic variance underlying the expression of quantitative traits then
changing the allele frequencies of the interacting alleles by selection in one
generation will have resulted in changes of the true associations in later
generations. In other words, when dominance or epistasis is present, the expected
response of a SNP to selection will change with changes in the genetic background.
(3) Another possible reason for lack of overlap is related to MAF of SNP and QTL.
GWAS may have low power to detect associations for low MAF SNPs. Some of
these low MAF SNPs that are truly associated may have increased in frequency due
to selection and drift in G1 and could then be selected upon in the later

64



3 Discordance between associated regions and selection signals

generations. Some of the SNPs in selected regions had a low MAF (< 0.05) in GO,
but were still affected by selection (Heidaritabar et al., 2014).

(4) Large peaks of allele frequency changes can be due to genetic drift, rather than
selection. For a quantitative trait, allele frequency changes can drift substantially
above or below the values expected due to selection (Lopezfanjul et al., 1989). If
genetic drift and selection act in the same direction, we will see a large peak and if
they act in the opposite direction, we will see a smaller, or no peak (Heidaritabar et
al., 2014). Thus, false positive selected regions are possible. However, the selected
regions in our study have been ascertained taking into account the variance due to
genetic drift (Heidaritabar et al., 2014). Hence, these selected regions are unlikely
to be due to genetic drift alone. Therefore, the impact of false positives among the
selected regions on the low concordance between selected and associated regions
is expected to be small.

(5) One complication is that the index contained many traits and identification of a
large QTL is unlikely when an index comprising multiple traits is used for
association analysis. Factors such as economic weights of the index traits, the total
number of loci controlling each index trait, the difference in genetic variance
between the index traits, the proportion of the genetic variance explained by the
putative QTL for each index trait, and the genetic correlation between the index
traits all affect the association study of a multi-trait index. This reduces the power
to detect QTL, compared to analyses where GWAS is separately performed for each
of the traits underlying the index. In addition, the index values used for selection
and the index values used for GWAS were calculated at different times. The
weighing factors for each trait in the index (index used for selection) were allowed
to vary slightly to maximize the genetic gain in a desired gains approach (Brascamp,
1984). While the index values used at the time of selection are no longer available,
the newly calculated values were made as close as possible by using the same
phenotypic data that was available at the time of selection. In addition, the same
index and approach of calculating index values were applied. The exact impact of
recalculating the index is unknown, but expected to be limited given that the same
approach was followed.

Few other studies have compared selection signals and association results (Wiener
et al., 2011, Horton et al., 2012, Kemper et al., 2014). While Horton et al. (2012)
showed that selection scans were enriched for associated regions that underlay
natural variation in ecologically important traits in Arabidopsis thaliana, other
studies (Wiener et al., 2011, Kemper et al., 2014) that did similar comparison found
little concordance between the selection signals and associated regions for
complex traits in the genome of dairy cattle. Horton et al. (2012) used three
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different measures (pairwise haplotype sharing, composite likelihood ratio test of
the allele frequency spectrum, and fixation index) to detect the selection signals
and found that these measures are complementary selection tests which identified
new targets of selection and the results from different measures rarely overlap
(Horton et al., 2012). In our study, the allele frequency difference measure is
preferred over the other measures to detect the selection signals, because it is the
only measure that is not affected by recent selection that occurred before GO and
also ignores the historical selection.

More overlap in associated regions was expected between the more closely related
lines (B1 and B2) than with line W1. While this was true, still only 4 of the 50
associated regions overlapped between these two lines (Table 3.4). Even though
distance between B1 and B2 is smaller than distances with W1, the role of the
different genomic regions of the two brown lines appears to have changed
considerably since the lines were split, around 15 generations ago.

Associated regions were found to be enriched for allele frequency changes. This
was true in all three lines, and with both GWAS methods. Even though the overlap
in associated regions between the two GWAS methods was limited, still both
methods identified regions with increased allele frequency changes. The
enrichment analysis of allele frequency changes did, however, not lead to a
consistent overlap between associated and selected regions. A region being
associated was found to be more predictive of observing changes in allele
frequencies, than vice versa. Apparently, the allele frequency changes in the
associated regions often failed to reach the detection threshold to be considered as
a selected region.

3.5 Conclusions

Concordance between associated regions from GWAS analysis and selected regions
was low. However, in all three lines SNPs in associated regions from two different
GWAS methods consistently showed larger allele frequency changes than windows
of 1 cM across the genome. Selected regions were not necessarily enriched for
genetic variance in the starting generation. The most likely reasons for lack of
overlap include different SNPs in LD clusters being identified in different analyses,
different regions being selected in different generations, and lack of power to
detect subtle effects of association or selection response.
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Abstract

Genotype imputation has become a standard practice in modern genetic research
to increase genome coverage and improve the accuracy of genomic selection (GS)
and genome-wide association studies (GWAS). We assessed accuracies of imputing
60K genotype data from lower density single nucleotide polymorphism (SNP)
panels using a small set of the most common sires in a population of 2140 white
layer chickens. Several factors affecting imputation accuracy were investigated,
including the size of the reference population, the level of the relationship between
the reference and validation populations, and minor allele frequency (MAF) of the
SNP being imputed. The accuracy of imputation was assessed with different
scenarios using 22 and 62 carefully selected reference animals (Ref,, and Refg,).
Animal-specific imputation accuracy corrected for gene content was moderate on
average (~ 0.80) in most scenarios and low in the 3K to 60K scenario. Maximum
average accuracies were 0.90 and 0.93 for the most favourable scenario for Ref,,
and Refs, respectively, when SNPs were masked independent of their MAF. SNPs
with low MAF were more difficult to impute, and the larger reference population
considerably improved the imputation accuracy for these rare SNPs. When Ref,,
was used for imputation, the average imputation accuracy decreased by 0.04 when
validation population was two instead of one generation away from the reference
and increased again by 0.05 when validation was three generations away. Selecting
the reference animals from the most common sires, compared with random
animals from the population, considerably improved imputation accuracy for low
MAF SNPs, but gave only limited improvement for other MAF classes. The allelic R’
measure from Beagle software was found to be a good predictor of imputation
reliability (correlation ~ 0.8) when the density of validation panel was very low (3K)
and the MAF of the SNP and the size of the reference population were not
extremely small. Even with a very small number of animals in the reference
population, reasonable accuracy of imputation can be achieved. Selecting a set of
the most common sires, rather than selecting random animals for the reference
population, improves the imputation accuracy of rare alleles, which may be a
benefit when imputing with whole genome re-sequencing data.

Key words: imputation accuracy, layer chickens, reference population design
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4.1 Introduction

Using dense single nucleotide polymorphism (SNP) panels, genomic selection (GS)
and genome-wide association studies (GWAS) have become common in animal and
plant genomic breeding programs. Both GS and GWAS exploit linkage
disequilibrium (LD) between SNPs and causative mutations. Increasing the density
of SNP panels is therefore expected to contribute to improved accuracies of
genomic prediction and GWAS (Spencer et al., 2009, Meuwissen and Goddard,
2010a). However, higher density of SNPs means higher genotyping cost which is
still a key constraint in implementing GWAS and GS in animal breeding programs.
To overcome this constraint, selection candidates can be genotyped for a low-
density SNP panel after which a higher density SNP panel is obtained through
imputation.

Animals may be genotyped for different SNP chips due to the expansion of
available genotyping technologies, for design reasons, or due to the coexistence of
several genotyping products (Druet et al., 2010). Thus far, different SNP chips have
been developed for chicken. For instance, the publicly available chicken 60K SNP
chip (Groenen et al., 2011) from Illumina and the 600K SNP chip (Kranis et al., 2013)
from Affymetrix. Another SNP chip, containing 42K SNPs, has been developed as a
proprietary tool in chickens (Avendafio et al., 2010). These SNP chips have been
widely used for purposes such as GWAS (Luo et al., 2013, Wolc et al., 2014), GS
(Wolc et al., 2011a, Wolc et al., 2011d, Sitzenstock et al., 2013, Liu et al., 20144, Liu
et al., 2014b), fine mapping of quantitative trait loci (QTL) (Allais et al., 2014) and
identification of selection signals (Elferink et al., 2012). Because of genetic variation
within and between domesticated and commercial chicken breeds (Rubin et al.,
2010) and because of differences in LD patterns between different chicken breeds
(Megens et al., 2009), a higher density SNP chip would be useful to address
different purposes mentioned above (GS, GWAS, identification of selection signals,
and fine mapping of QTL) in a diverse range of chicken breeds and populations. In
the future, additional SNP chips or even whole-genome sequence data may replace
the current SNP chip data in avian genetic and genomic studies. As higher density
SNP chips are put into use, the re-genotyping of previously genotyped individuals
with these new chips would be costly. Imputation from the lower density chip
towards the higher density chip could then be a cost-effective strategy. With two
different SNP chips, a combined dataset with all SNPs genotyped on all individuals
would be desired. Imputation could be used, but the feasibility and accuracy of SNP
imputation between the SNP chips needs to be tested. Druet et al. (2010)
performed imputation between two SNP chips in cattle data, where the SNPs
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specific to the Illumina Bovine SNP50 (50K) chip were imputed for Dutch Holstein
bulls that were genotyped using a custom-made 60K Illumina chip (CRV, Arnhem,
the Netherlands) and vice versa (Druet et al.,, 2010). Their results showed an
imputation accuracy of 99%. Imputation accuracy is of special interest for SNPs that
have low minor allele frequency (MAF). Many studies that used SNP chip data (Lin
et al., 2010, Hayes et al., 2012, Hickey et al., 2012a, Duarte et al., 2013, Ma et al.,
2013, Pausch et al., 2013) and also sequence data (van Binsbergen et al., 2014) to
perform imputation have demonstrated lower imputation accuracy for SNPs with
low MAF. However, the effect of reference population design on imputation
accuracy of low MAF SNPs is largely unknown. Using simulation, Meuwissen and
Goddard (2010b) found that the error rate was much improved when relatives
were sequenced, and Khatkar et al. (2012) suggested that selecting animals for
genotyping based on pedigree is a strategically optimised method if pedigree
information is available.

Several factors influence the accuracy of imputation including the genetic
relationship between the animals in the reference and validation populations
(Huang et al., 2012), the size of reference population (Huang et al., 2012), MAF of
the SNP to be imputed (Ma et al., 2013), the proportion of missing genotypes on
the low and high-density panel (Mulder et al., 2012), the population structure and
levels of LD (Pimentel et al., 2013), the imputation method and, if applicable, the
parameter settings of the applied imputation algorithm (Schrooten et al., 2014).
One important factor is the genetic relationship between the animals in the
reference and validation populations (Hickey et al., 2011, Huang et al., 2012). When
close relatives of target animals are genotyped at high density, the missing SNPs
can be recovered through linkage and segregation analysis (Habier et al., 2009),
where haplotypes can be traced across generations of directly related individuals
by the Mendelian inheritance rules. The algorithms used for imputation use either
LD information such as Beagle (Browning and Browning, 2009) and IMPUTE2
(Howie et al., 2009) or both LD and pedigree information such as Alphalmpute
(Hickey et al., 2012b). If a pedigree-free imputation method is used, the most
important factors to increase the accuracy of imputation are: the size of the
reference population and the availability of a representative reference population
which maximises the accuracy of imputation and captures the highest proportion
of genetic variation in the validation population.

Few studies have investigated imputation accuracy in poultry compared with other
livestock species (see review by Calus et al.,, 2014). Thus far, they have
demonstrated that the application of imputation methods is effective in chickens.
Comparing imputation accuracies across studies is difficult, since applied
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imputation softwares, size of reference populations, imputation measures, density
panels, and population-specific parameters (e.g. LD and effective population size
(N¢)) differ substantially across studies. In general, high imputation accuracies were
found in broiler chickens (ranging from 0.94 to 0.99) (Hickey and Kranis, 2013,
Wang et al., 2013) and also in brown egg layer chickens (ranging from 0.68 to 0.97)
(Vereijken et al., 2010, Wolc et al., 2011b, Wolc et al., 2011c). Most studies in
chicken imputed missing genotypes from a very low density such as 384, 1K, or 3K
to a medium-density (20K, 36K, or 60K). For instance, Wang et al. (2013) and Hickey
et al. (2013) imputed from 384 SNPs to 20K and 36K, respectively. Vereijken et al.
(2010) imputed from three low-density panels (384, 1K, and 3K) to 57K on six
chromsomes of brown layer chickens.

This study had two objectives. The first was to investigate the accuracy of
imputation of 60K genotypes from lower density SNP panels (3K and 48K) using a
small reference population of the most common sires. Imputation from 48K to 60K
was performed not only to assess the impact of having a higher density panel as
reference (compared with 3K) on imputation accuracy, but also to mimic the
imputation of genotypes between two different SNP chips with similar densities.
The second was to investigate the factors that affect imputation accuracy, namely:
the size of reference population, the level of genetic relationship between the
reference and validation populations, and the MAF of imputed SNP.

4.2 Materials and methods

4.2.1 Data

The study was performed with data from a commercial white layer line of chicken.
Animals that were genotyped with the lllumina Infinium iSelect Beadchip (60K chip)
(lumina Inc., San Diego, CA, USA) (Groenen et al., 2011) came from four
generations of training data, preceding the three generations of selection
candidates (GO, G1, and G2) which were selected by genomic best linear unbiased
prediction (GBLUP) method. Total number of genotyped animals was 2140. More
details about the structure of data are in Heidaritabar et al. (2014b).

4.2.2 Quality control

Data from 8623 SNPs on chromosome 1 (GGA1) and 1700 SNPs on chromosome 8
(GGAS8) were used to assess imputation accuracy on two chromosomes of very
different size. SNPs were removed if they had a MAF < 0.01, a call rate < 0.9, or >
10% parent-progeny Mendelian inconsistencies. Animals were removed if their
genotype call rate was < 0.9. After filtering, 4485 SNPs on GGA1, 824 SNPs on
GGAS, and 2140 animals remained for further analyses.
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4.2.3 Selection of animals for the reference population

Of 2140 genotyped animals, 62 were sires and/or maternal grand sires (MGS) of
animals in GO. The actual number of sires and maternal grandsires of GO was 67,
but 5 of them had no DNA sample available. Of these 62 sires and maternal
grandsires, 22 most common sires were chosen as the reference population (Ref,,).
These 22 most common sires will be sequenced for further investigation of GS with
(imputed) whole-genome sequence data. Ref,, was chosen based on their
“proportion of genetic diversity” (Druet et al., 2014) in order to capture the
greatest possible proportion of genetic variation in the target population. Capturing
a large part of the genetic variation by selecting the most common sires should
provide a high accuracy of genotype imputation. The details of the method are
described in the next section. For this study, imputation was performed using 60K
genotype data on GGA1 and GGAS8. The results obtained from 22 reference animals
were compared with the results obtained with 62 reference animals.

4.2.4 Proportion of genetic diversity

The genomic relationship matrix from SNPs (G matrix) (VanRaden, 2008) was
obtained for 2140 genotyped animals. The proportion of diversity was calculated
as: P, = G;c,, where G, was a subset of the genomic relationship matrix (n = 62
genotyped sires and maternal grandsires), ¢, was a vector with the average
genomic relationship of the n sires and maternal grandsires with the target
population, and P, was a vector of the proportion of the genetic diversity captured
by the n sires and maternal grandsires.

4.2.5 Imputation scenarios

Imputation from 3K to 60K

In the “3K to 60K” scenario, imputation from a very low density SNP panel (i.e. a 3K
panel) to a medium density SNP panel (60K) was tested by masking ~ 96% of 60K
SNPs in a structured way (virtually designed and evenly spaced) across the genome.
The same reference and validation populations were used as above.

Imputation from 48K to 60K

The imputation accuracy from the “48K to 60K” scenario was compared with those
from 3K to 60K scenario to investigate the impact of SNP density in the reference
on imputation accuracy. Moreover, imputation from 48K to 60K mimics the
imputation of genotypes between two different SNP chips with similar densities. In
five different classes of MAF (see next section), each containing approximately 20%
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of all the SNPs, genotypes were set to missing in the validation population, creating
five panels of 48K SNPs.

4.2.6 Factors affecting the imputation accuracy

Size of reference population

Imputation accuracy was assessed when using the 62 sires and maternal grandsires
(Refs;), or Ref,, as the reference population. In an additional analysis, with
validation population GO, 22 animals were randomly selected as reference
population from the training population (that consisted of the four generations
before GO) which included the 62 common sires. The random selection of reference
animals and subsequent genotype imputation and validation was repeated ten
times (Refyrand)-

Relationship between the reference and validation population

The three validation populations consisted of the animals in consecutive
generations GO, G1, and G2. The number of animals in GO, G1, and G2 were 367,
395, and 148, respectively. Comparison of imputation accuracies in GO, G1, and G2
will give an insight on the effect of distance to the reference population on
imputation accuracy. Further, to assess the impact of an animal’s relationship to
the reference population on imputation accuracy, accuracies were determined
within each generation and compared with a measure of genomic relatedness
which was the average of the top five relationships (Daetwyler et al., 2013) with
animals in the reference. Additionally, imputation accuracy was also computed for
three groups of GO animals, separated by the type of direct ancestors they had in
the reference population Refg,: (1) animals who had just their sire (GR_S, n = 34),
(2) just their maternal grand sire (GR_MGS, n = 23), or (3) both their sire and
maternal grandsire (GR_SMGS, n = 310) in the reference population.

Minor Allele Frequency (MAF)

The relationship between MAF of SNPs to be imputed and the imputation accuracy
was investigated by masking SNPs in five different classes of MAF ranging from
0.008 to 0.5: [0.008-0.1], [0.1-0.2], [0.2-0.3], [0.3-0.4], and [0.4-0.5] (Table S4.1).
Imputation was done separately for all combinations of the two reference
populations (Ref,, and Refg,), the three validation populations (GO, G1, and G2),
and the five MAF classes. To investigate the impact of choosing SNPs to mask on
imputation accuracy, some scenarios were repeated with: first, SNPs being masked
based on their MAF in the GO validation population instead of the reference, and
second, SNPs being masked independent of their MAF class, i.e. SNPs from all
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different MAF ranges were masked and imputed in one analysis. Imputation
accuracy was then computed within different MAF classes. In all these scenarios,
approximately 20% of all the SNPs from the 60K panel were set to missing in the
validation population. As mentioned earlier, these scenarios were therefore
identified as 48K to 60K scenarios.

4.2.7 Imputation methods

Masked SNPs were imputed using Beagle version 3.3.2 (Browning and Browning,
2009). Beagle uses a localized haplotype cluster model to cluster haplotypes at
each marker and then defines a hidden Markov model (HMM) to find the most
likely haplotype pairs based on the individual’s known genotypes. Beagle predicts
the most likely genotype at missing SNPs from defined haplotype pairs (Browning
and Browning, 2009). In our previous study (Heidaritabar et al., 2014a), we showed
that the accuracy of imputation was very low in a preliminary analysis that applied
the default parameters. We therefore tested several parameter settings of Beagle
for the current analyses. Most importantly, Beagle was run for 50 iterations of the
phasing algorithm rather than the default number of 10 iterations. Changing other
parameters such as increasing the number of samples (number of haplotype pairs
to sample for each individual during each iteration of the phasing algorithm) and
number of imputations (average the posterior probabilities over multiple
imputations) was also tested. However, we found no increase in imputation
accuracy when these parameters were changed and default settings were
therefore applied (Heidaritabar et al., 2014a).

4.2.8 Measure of imputation accuracy

Animal-specific imputation accuracy (reorected)) COmMputed as the correlation
between the true genotypes (coded as 0, 1, or 2 minus the mean gene content) and
the imputed genotype (the most likely genotype minus the mean gene content) as
suggested by Mulder et al. (2012), was used as the measure of imputation
accuracy. Mean gene content was computed per SNP as the mean of the genotypes
represented as 0, 1, and 2, and was based on genotyped reference animals in each
scenario. The reason for correction (subtracting the mean gene content from true
and imputed genotypes) is that different SNPs have different MAF and therefore
SNPs have distributions with different means. By correcting for the gene content, it
is assumed that the correlated variables are bivariate normally distributed. Besides
calculating animal-specific imputation accuracy for each individual, the imputation
accuracy was also computed per SNP across individuals (SNP-specific imputation
accuracy). SNP-specific imputation accuracy was computed as the correlation
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between the true and imputed genotypes (the most likely genotype) for each
masked SNP coded as 0, 1, and 2 for genotypes A;A;, A1A,, and A,A,, respectively.
We then compared the square of SNP-specific imputation accuracy (“true”
imputation reliability) with allelic R’ generated by Beagle. Allelic R is the squared
correlation between the allele dosage of the most likely imputed genotype and the
allele dosage of the true genotype. The estimated A,-allele dosage was obtained
from the imputed posterior genotype probabilities as: 0 * P(A;A;) + 1 * P(ALA;) +2
* P(AA;) (Browning and Browning, 2009). The results of reyrecteq Were given and
discussed throughout this paper as the main measure of imputation accuracy for
different scenarios. Allelic R’ was compared with true imputation reliability in a
separate section (see Discussion).

4.2.9 Calculation of effective population size (N,)
N, was estimated from the observed LD values (r?) between SNPs. The r? was
related to N, based on Sved’s equation (Sved, 1971):

, 1
"1+ 4N.c

The genetic distance between SNPs (c, in Morgan units) was obtained by converting
the physical distances (in base-pairs) to genetic distances (in Morgan) using the
recombination rate values as reported by International Chicken Genome
Sequencing Consortium (ICGSC) (Hillier et al., 2004). This estimate of N, has been
obtained under the assumption of constant population size (Sved, 1971).

4.2.10 Ethics statement

Blood samples were collected as part of routine data and sample collection in a
commercial breeding program. According to the local legislation, it was not needed
to have permission from the ethics committee.

4.3 Results

In this study, the accuracy of imputation to 60K genotypes from lower density SNP
panels (3K and 48K) was assessed in genotype data from GGA1 of layer chickens,
when using a small reference population of the most common sires that are
influential in the validation population. In addition, we evaluated the factors
affecting imputation accuracy such as the size of reference population, the level of
genetic relationship between the reference and validation populations (imputation
in three discrete generations), and the MAF of imputed SNPs. Animal-specific
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imputation accuracy (reorectes) Was used as the measure of imputation accuracy. For
the 3K to 60K scenario, imputation accuracy ranged from 0.46 to 0.63 (Table 4.1).
For the 48K to 60K scenario, imputation accuracies in the first generation of the
validation population (GO) ranged from 0.68 for MAF class < 0.10 to 0.88 for MAF
class 0.3-0.4 with only 22 animals (Ref,,) in the reference population (Table 4.2,
Figure 4.1). Increasing the reference population size to 62 animals (Refgs,) improved
the accuracies to values from 0.80 to 0.93 for the same range of MAF classes (Table
4.2, Figure 4.1). From GO to G1, imputation accuracies decreased to 0.60 for MAF
class < 0.10 and to 0.86 for MAF class 0.3-0.4 when Ref,, was used (Table 4.2,
Figure 4.1). From G1 to G2, imputation accuracies increased to 0.72 for MAF class <
0.10 and to 0.89 for MAF class 0.3-0.4 when Ref,, was used (Table 4.2, Figure 4.1).
Similar to the results for GO, imputation accuracies substantially increased for G1
and G2 by increasing the size of reference population in these generations (Table
4.2, Figure 4.1).

Table 4.1 Animal-specific imputation accuracy (rcorrecteq) 0N GGA1 for 3K to 60K scenario.

Validation population Ref,, Refg,
Go' 0.50 0.63
G1? 0.46 0.58
G2* 0.50 0.60
First generation of genomic selection experiment.
2Offspring of GO.
3Offspring of G1.

4.3.1 Imputation from 3K to 60K

Imputation based on a lower density SNP panel in the validation population, from
3K instead of 48K, resulted in lower imputation accuracies, as expected (Table 4.1).
In comparison with the 48K to 60K scenarios (Table 4.2, Table 4.5), the 3K to 60K
scenario gained more in imputation accuracies from enlarging the reference
population (Table 4.1). The increase in imputation accuracies from Ref,, to Ref,
was 0.13 (0.50 to 0.63), 0.12 (0.46 to 0.58) and 0.10 (0.50 to 0.60) for GO, G1, and
G2 (Table 4.1), respectively.

4.3.2 Factors affecting the imputation accuracy

Size of reference population

As expected, accuracy of imputation increased as the size of the reference
population increased. The increase in average imputation accuracies (average
across MAF classes) from Ref,, to Refs, was 0.07 (0.82 to 0.89), 0.07 (0.78 to 0.85),
and 0.04 (0.83 to 0.87) for GO, G1, and G2, respectively (Table 4.2, Figure 4.1).
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Table 4.2 Animal-specific imputation accuracy (rcorected) @and the standard errors on GGA1 for
different MAF classes in GO, G1, and G2 validation populations (48K to 60K scenario).
Validation population

GO'
MAF’ class Ref,, Refg,
0.008-0.1 0.68 (0.005)° 0.80 (0.006)
0.1-0.2 0.82 (0.004) 0.89 (0.004)
0.2-0.3 0.86 (0.003) 0.91 (0.003)
0.3-0.4 0.88 (0.003) 0.93 (0.003)
0.4-0.5 0.86 (0.003) 0.91 (0.003)
G1’
MAF class Ref,, Refs,
0.008-0.1 0.60 (0.005) 0.73 (0.005)
0.1-0.2 0.80 (0.004) 0.86 (0.003)
0.2-0.3 0.84 (0.002) 0.89 (0.002)
0.3-0.4 0.86 (0.002) 0.91 (0.002)
0.4-0.5 0.81 (0.003) 0.87 (0.002)
G2
MAF class Ref,, Refe,
0.008-0.1 0.72 (0.007) 0.78 (0.007)
0.1-0.2 0.85 (0.005) 0.88 (0.005)
0.2-0.3 0.87 (0.005) 0.87 (0.006)
0.3-0.4 0.89 (0.004) 0.92 (0.005)
0.4-0.5 0.85 (0.005) 0.90 (0.005)

TFirst generation of genomic selection experiment.
*Minor allele frequency.

3Offspring of GO.

4Offspring of G1.

®The values in parentheses are standard errors.

Selection of animals for the reference population

Animals for Ref,, were selected for being influential, having the highest
relationships with animals in the validation population. The proportion of diversity
represented by the 62 sires and maternal grandsires of GO are in Table S4.2. The 22
and 62 sires and maternal grandsires captured 39.85% and 75.54% of genetic
variation in the target population. In comparison, a subset of 22 randomly selected
animals captured between 0.68% and 3.36% (on average 2.10% across 10 subsets)
of the genetic variation in the target population. The biggest impact from randomly
selecting 22 animals in the reference was observed for MAF class < 0.10, where
accuracy dropped by 0.07 (Table 4.3). A drop of 0.03 was observed for MAF class
0.4-0.5. The other MAF classes showed no changes in accuracy.
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Figure 4.1 Imputation accuracies in GO, G1, and G2 for 48K to 60K scenario. Imputation
accuracies (reorrected) for different MAF classes and different reference sizes for GO, G1, and
G2 validation populations. The x-axis represents different classes of MAF and y-axis shows
the imputation accuracies. The black dots are the mean imputation accuracies across
individuals in each MAF class.
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Table 4.3 Animal-specific imputation accuracy (reorrecteq) With 22 randomly selected animals
(Ref,2ranq) in the reference population.

MAF" class Refyarand

0.008-0.1 0.61 (0.006)°
0.1-0.2 0.82 (0.004)
0.2-0.3 0.86 (0.003)
0.3-0.4 0.88 (0.003)
0.4-0.5 0.83 (0.003)

Iz p:

Minor allele frequency.
®Values are the average across 10 random subsets of animals.
b -

The values in parentheses are standard errors.

Relationship between the reference and validation population

The average of the top five genomic relationships of a given animal in the validation
population with all animals in the reference population Ref,, was 0.14, 0.13, and
0.11 for GO, G1, and G2, respectively. With Refg,, these averages were 0.21, 0.16,
and 0.13 for GO, G1, and G2, respectively. Although the average top five
relationships decreased across generations, average accuracies did not follow this
declining pattern with more distant validation generations. From GO to G1, the
average imputation accuracies across all MAF classes reduced by 0.04 for both
Ref,, and Refs,. From G1 to G2, the average accuracies increased by 0.05 for Ref,,,
and by 0.02 for Refg, (Table 4.2). Also, only small differences in imputation accuracy
were observed between animals that had only their sire, only their maternal
grandsire, or both these ancestors in the reference. Imputation accuracy in the 48K
to 60K scenario for these groups of animals was always within 0.02 of the accuracy
observed across the whole validation population (Table 4.4). Also, in the 3K to 60K
scenario, the imputation accuracies were nearly the same for these three groups
(Table 4.4).

Table 4.4 Animal-specific imputation accuracy (reorrecteq) Of GO for three groups depending
on their direct ancestors in the reference population Refg,.

MAF” class GR_S*(N°=34) GR_MGS'(N=23) GR_SMGS® (N =310)
0.008-0.1 0.80 0.79 0.80
0.1-0.2 0.89 0.90 0.89
0.2-0.3 0.90 0.92 0.91
0.3-0.4 0.93 0.93 0.92
0.4-0.5 0.91 0.91 0.89
3K to 60K scenario 0.62 0.62 0.64

Minor allele frequency.

?Animals who had just their sire (S) in the reference population.

3N is the number of animals.

*Animals who had just their maternal grand sire (MGS) in the reference population.
>Animals who had both their sire and maternal grandsire (SMGS) in the reference population
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Minor Allele Frequency (MAF)

Imputation accuracies were lower when MAF of the masked SNPs was lower. SNPs
with low MAF were more difficult to impute correctly (Table 4.2) and exhibited
more variation in their accuracy of imputation (Figure 4.1). The difference in
imputation accuracy for low and higher MAF SNPs was smaller with the larger
reference, showing that even if imputation accuracy is already moderate for higher
MAF SNPs, the accuracy for low MAF SNPs can still be improved by increasing the
reference size. When SNPs were masked and evaluated based on their MAF in the
validation population, instead of in the reference population, the average
imputation accuracies across MAF classes were slightly reduced, by 0.01 on average
(Table S4.3). Compared with the scenario where SNPs were masked based on their
MAF in the reference population (Table 4.2), an increase in the accuracy was
observed when SNPs were masked independent of their MAF. Average accuracies
(average across MAF classes) were higher by 0.08 and 0.04 for Ref,, and Refg,,
respectively (Table 4.5). Again, the benefit was larger for SNPs with lower MAF and
within the smaller reference population (Ref,,).

Table 4.5 Animal-specific imputation accuracy (reomrected) With SNPs masked across the
different MAF classes when GO validation population was used for imputation.

MAF’ class Ref,, Refs,

0.008-0.1 0.80 (193)° 0.87 (186)
0.1-0.2 0.91 (178) 0.94 (177)
0.2-0.3 0.92 (181) 0.95 (180)
0.3-0.4 0.93 (186) 0.96 (189)
0.4-0.5 0.93 (184) 0.96 (194)

"Minor allele frequency.
*The numbers in the parentheses are the number of masked SNPs.

4.3.3 Parameter to measure imputation accuracy

Our main measure of accuracy, rerected, €an only be measured when masking data
in an experimental setting, which means it cannot be computed for common
imputation tasks where the true genotypes are unknown. The Beagle software,
however, estimates the “allelic R>” value, based on the posterior probability of the
most likely genotype (see Methods). The allelic R’ predicts the reliability of imputed
genotypes, and we compared it with the mean imputation reliabilities that were
obtained as the squared correlation between true and imputed genotypes for each
SNP (Table 4.6). Overall, the allelic R’ slightly overestimated the empirical
imputation reliabilities across generations and reference populations. Average
values of allelic R? (average across generations) ranged from 0.64 to 0.82 for Ref,,
and from 0.75 to 0.90 for Refs, compared with empirical imputation reliabilities
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ranging from 0.59 to 0.81 and from 0.68 to 0.85, respectively (Table 4.6). For SNPs
with higher MAF, the two measures were more similar than for SNPs with low MAF.
For instance, the difference between the two measures was as much as 0.05 for
low MAF (< 0.1) and only 0.02 for high MAF (0.4-0.5), when Ref,, was used for
imputation. In general, the correlation between the two measures was moderate
to high depending on the SNP density of the validation population. In the 48K to
60K scenario, the correlation between the allelic R* and the imputation reliability
was on average (across different MAF classes) 0.70, 0.69, and 0.58 in GO, G1, and
G2, respectively, using Ref,,. By increasing the reference size (Refg,), the correlation
increased by 0.06, 0.05, and 0.09 in GO, G1, and G2, respectively (Table 4.7).
Correlations between the allelic R” and the imputation reliability were higher in the
3K to 60K scenario, compared with the 48K to 60K scenario, with increases of 0.11,
0.11, and 0.21 in GO, G1, and G2 using Ref,,, and by 0.13, 0.13, and 0.17 in GO, G1,
and G2 using Ref,, respectively (Figure 4.2).

Table 4.6 Average allelic R? measure from Beagle and true imputation reliability on GGA1 for
different MAF classes and different reference sizes (48K to 60K scenario).

Ref,, Refs,
MAF class  Reliability® Allelic R? Reliability Allelic R?
0.008-0.1 0.59 0.64 0.68 0.75
0.1-0.2 0.73 0.77 0.79 0.85
0.2-0.3 0.78 0.80 0.83 0.88
0.3-0.4 0.81 0.82 0.85 0.90
0.4-0.5 0.79 0.81 0.83 0.87

Minor allele frequency.

®Reliability is the square of imputation accuracy per SNP across individuals (SNP-specific
imputation accuracy), i.e. the imputation accuracy per SNP was squared and were then
summed across individuals. Note that the values in this table are average across the three
generations (GO, G1, and G2).
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Table 4.7 Correlation between allelic R measure from Beagle and true imputation reliability
on GGAL1 for different MAF classes and different reference sizes in GO, G1, and G2 (48K to
60K scenario).

Ref,, Refe,
MAF” class GOo? G1° G2* GO G1 G2
0.008-0.1 0.70 0.60 0.45 0.67 0.71 0.51
0.1-0.2 0.67 0.73 0.52 0.72 0.72 0.63
0.2-0.3 0.75 0.72 0.64 0.74 0.73 0.71
0.3-0.4 0.64 0.69 0.60 0.79 0.76 0.68
0.4-0.5 0.74 0.72 0.71 0.85 0.81 0.82

"Minor allele frequency.
2. . . . .
First generation of genomic selection experiment.
3Offspring of GO.
4Offspring of G1.

4.3.4 Size of the chromosome

Imputation accuracies were obtained for GGA8 to investigate whether the
imputation results for GGA1 were representative for other chromosomes. For
GGAS, a similar pattern of accuracies was observed across generations, and across
MAF classes. Average imputation accuracies across MAF classes were slightly
smaller, by ~ 0.01, for SNPs on GGAS8 across all generations (Table S4.4).

4.4 Discussion

Several SNP chips with different densities (42K, 60K, and 600K) have been
developed for chicken and additional chips may be developed in the near future. In
this study, we mimicked the imputation of genotypes between two different SNP
chips with similar densities by imputing from 48K to 60K. We were specifically
interested in imputation of low MAF SNPs when imputing towards one of the chips,
because SNPs with low frequency may play an important role in complex traits and
may have larger effects than the common SNPs in a population (Manolio et al.,
2009). In addition, the accuracy of imputation of the 60K genotypes from a very
low density SNP panel (3K) was assessed. In both scenarios (3K to 60K and 48K to
60K), imputation was performed using a small reference population of white layer
chickens. The reference animals were carefully selected to include recent ancestors
(sires and MGS of GO0) or a subset thereof, chosen based on the proportion of their
contributions to the validation animals. The results indicate that genotype
imputation based on a small number of carefully selected reference animals
resulted in low imputation accuracy for the 3K to 60K scenario (between 0.46 to
0.50 for Ref,, and from 0.58 to 0.63 for Ref,) and in moderate imputation accuracy
for the 48K to 60K scenario (between 0.60 to 0.89 for Ref,, and from 0.73 to 0.93
for Refg,).

87



4 Genotype imputation in layer chicken

Several studies have reported reasonable accuracies of imputation of SNP
genotypes between different SNP chips in cattle (Druet et al., 2010, Khatkar et al.,
2012, Bolormaa et al., 2013). For instance, Khatkar et al. (2012) found error rates of
2.75% and 0.76% when imputing from 25K to 50K and from 35K to 50K,
respectively. Druet et al. (2010) found an error rate of 1% when imputing from 50K
to 60K. Also, in beef cattle, imputation from the public BovineSNP50K BeadChip to
a proprietary 50K panel yielded imputation accuracies (allelic RZ) in the range of
0.94 to 0.98 (Bolormaa et al., 2013). In all these studies, the reference populations
were much larger than the reference population used in our study.

Past studies showed that imputation accuracy depends on the size of reference
population, the level of relationship between the reference and validation
populations, and MAF of the SNP being imputed (Hayes et al., 2012, Hickey et al.,
2012a, Ma et al., 2013, Ventura et al.,, 2014). In the current study, imputation
accuracy depended on the size of reference population and the MAF of the SNP
being imputed, but did not depend on the level of the relationship between the
reference and validation populations. With Ref,,, only little variation in the top five
relationships was observed, while variation in the top five relationships was larger
when Refg, was used as reference population. However, with both Ref,, and Ref,,,
the imputation accuracy did not follow the pattern of variation in relationships. We
found that the size of reference population was more important for obtaining
higher accuracy when the validation population was genotyped at lower density
(3K). With a higher SNP density in the validation populations (48K), the impact of
reference size on imputation accuracy was less, showing that the factors
influencing the imputation accuracy interact with each other.

When the size of the reference population was small, the pedigree-free imputation
method implemented in Beagle yielded low to moderate imputation accuracy.
Badke et al. (2013) obtained high imputation accuracy with two small reference
populations consisting of 16 or 64 Yorkshire pigs with phased genotype data.
Imputing the genotypes of a validation population (n = 200) resulted in accuracies
of 0.90 and 0.95 using Beagle’s default parameters (Badke et al., 2013). In their
data, the reference included both parents of all the validation animals, which
probably has a beneficial effect on the imputation accuracy. This benefit could not
be tested in our data, because female parents were not genotyped. In addition to
having both parents in the reference, the use of a phased reference population is a
factor that is expected to increase the imputation accuracy compared with our
results (Browning and Browning, 2009).
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4.4.1 Factors affecting the imputation accuracy

Size of reference population

Increasing the size of the reference population decreases the probability to miss a
haplotype in the reference population (Hoze et al., 2013) and increases the
probability that multiple copies of alleles are present for making the correct
haplotypes (Li et al., 2011). As expected, the accuracy of imputation increased with
the size of reference population for both 3K to 60K and 48K to 60K scenarios, which
is in agreement with other studies (Hayes et al., 2012, Huang et al., 2012, Pausch et
al., 2013). For example, in GO, the increase in average imputation accuracies
(average across MAF classes) was 0.07 (from 0.82 to 0.89). With the 3K to 60K
scenario, the average increase in imputation accuracy was larger (e.g. from 0.50 to
0.63 for GO; Table 4.1) from increasing the reference population from 22 to 62,
indicating that when a lower density SNP panel is used for imputation, a larger
number of individuals in reference population can, at least in part, make up for the
reduced imputation accuracy. Beagle has been extensively applied to impute
missing genotypes in human and animal genetics, and imputation accuracy with
small reference populations has been reported to be moderate to high. Hayes et al.
(2012) obtained an imputation accuracy of ~ 0.8 when the reference population
consisted of only 25 or 40 Border Leicester sheep. Vereijken et al. (2010) used 57
brown layers to impute the missing genotypes of 249 animals and obtained a SNP-
specific imputation accuracy in the range of 0.75 to 0.9 (average across different
chromosomes) with different panel densities. While moderate imputation
accuracies were observed in these studies, it has also been shown that with a very
small reference population, the application of an appropriate imputation method is
crucial (Pausch et al., 2013). With a small reference population, Beagle did not
result in the highest imputation accuracies in a study on dairy cattle data (Pausch et
al., 2013).

Accuracies were higher with our Ref,, compared with the randomly selected
reference populations, Ref,,..ng. There was no improvement in accuracy for the
classes with MAF > 0.10, except for a small improvement of 0.03 for MAF class 0.4-
0.5. The largest increase of 0.07 was found for the lowest MAF class (MAF < 0.10),
indicating that including the most common sires as a reference population will
mostly benefit the imputation of the most difficult class of SNPs, those with lower
MAF. Pausch et al. (2013) showed, in Fleckvieh cattle, that pre-selecting key
animals was slightly beneficial for subsequent genotype imputation.

The required size of the reference population to achieve high imputation accuracy
differs across populations and has been suggested to depend mainly on the
effective population size, N, (Calus et al., 2011), which is relatively low for this
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population (N, = 52). In populations with small N, genotype imputation based on a
small number of carefully selected reference animals was shown to yield a
reasonable accuracy (Erbe et al., 2012).

Relationship between the reference and validation population
Several studies have shown that the relationship between the reference and
validation populations influences the imputation accuracy in sheep (Hayes et al.,
2012), maize (Hickey et al., 2012a), beef cattle (Ventura et al., 2014), and dairy
cattle (Huang et al., 2012, Khatkar et al., 2012, Mulder et al., 2012). All these
studies reported that the accuracy of imputation was greatest for individuals with
the highest average genetic relationship to the reference population, which was
attributed to them sharing more and longer haplotypes with the reference.
Ventura et al. (2014) reported that with removal of the 37 close relatives from the
reference population of 313 Angus cattle, the imputation accuracy decreased by
2.3% using Beagle. The reason given for this decrease in accuracy was that close
relatives introduce conserved long haplotypes in the reference population,
favouring an effective haplotype search in the imputation process (Ventura et al.,
2014). In our dataset, however, only small differences in imputation accuracy were
observed when animals had only their sire, only their maternal grandsire, or both
these ancestors in the reference. One possible reason that the imputation
accuracies are so similar among these three groups might be the small number of
individuals in each of these groups which makes it hard to compare the imputation
accuracies.

Instead of the average relationship with the whole reference population, we
compared imputation accuracy across the three generations with the average of
the top five relationships. It has been shown that this measure correlates better
with the accuracy of genomic prediction compared with the mean relationship
(Daetwyler et al., 2013). With Refs,, the top five relationships decreased from 0.21
in GO to 0.16 in G1, and 0.13 in G2. The average imputation accuracies (average
across MAF classes) showed only a small reduction between GO and G1, from 0.82
to 0.78 for Ref,, and from 0.89 to 0.85 for Refs,. From G1 to G2, the average
accuracies increased slightly, despite the reduction in the top five relationships. The
persistence of imputation accuracy in later generations is desirable, and may be a
feature of small populations that are closed such that most common sires can be
put in the reference. With a pedigree-based imputation method, the distance to
the reference population might have had more impact on the imputation accuracy,
because pedigree-based methods were found to be more dependent on having
close relatives in the reference population than pedigree-free imputation methods
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(Ma et al., 2013). Another factor that can explain the persistence of accuracies with
increasing distance to the reference population is the high persistence of LD across
generations (Figure 4.3). Animals that are several generations apart will still share
haplotypes, at least over short distances, and population level LD will hence only
change slowly. For the calculation of LD measured as r (Hill and Robertson, 1968),
phased and imputed SNP data were used as described in de Roos et al. (2008).
Correlation (concordance) between values of r estimated in GO or G2 was 0.93
(Figure 4.3). For pedigree-free imputation algorithms such as Beagle, the LD pattern
in the data is the only information that is explicitly used, although it has been
shown that the LD-based imputation methods use the relationship information
indirectly (Khatkar et al., 2012). With higher LD, the algorithm can better identify
the haplotypes, which is easier with 60K data in the validation population,
compared with 1K and 3K in previously reported studies (Vereijken et al., 2010,
Hayes et al., 2012). In addition, it was argued that as the density of the validation
panel increases, the effects of genetic relatedness will be less important, because
at higher density shorter haplotypes can be imputed correctly, which makes it
possible for haplotypes from more distantly related individuals to be imputed
correctly (Hickey et al., 2012a).

Our reason for imputing to higher density is to improve accuracies in genomic
prediction scenarios. High imputation accuracy is required in later generations to
achieve accurate prediction of genomic breeding values in those generations. Wolc
et al. (2011a) did not apply imputation, but they did find the accuracy of genomic
estimated breeding values (GEBV) for brown layers to be persistent between
generations two to five after the training data using real genotypes (42K SNP chip
data). This result was obtained with real genotypes in all generations but it
indicates that if imputation accuracy is high, prediction accuracy can be expected to
also be persistent in later generations (Wolc et al., 2011a).
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Figure 4.3 Concordance of LD in GO and G2. LD within each generation was measured as r
(correlation) (Hill and Robertson, 1968) between neighbouring SNPs.

Minor Allele Frequency (MAF)

It has been suggested that SNPs with low frequency may play an important role in
complex traits, and may have larger effects than the common SNPs in a population
(Manolio et al., 2009). Hence, we were specifically interested in the accuracy of
imputed genotypes for SNPs with low MAF. Accuracies of imputation were lower
when MAF of the masked SNPs was lower, which may be due to a lower degree of
LD with the 60K SNPs (selected for higher MAF), or due to a more challenging
haplotype reconstruction when few haplotypes carry the minor allele. Inclusion of
very rare SNPs may interfere with phasing, resulting in less accurately constructed
haplotypes and ultimately leading to inferior imputation quality (Liu et al., 2012).
The decline in the imputation accuracy for lower MAF was smaller when the
reference size was larger showing that the imputation accuracy probably depends
more strongly on the number of copies of the minor allele in the reference
population than the MAF itself.

The lower imputation accuracy when MAF was low is in agreement with other
studies that used chip data (Lin et al., 2010, Hayes et al., 2012, Hickey et al., 20123,
Duarte et al., 2013, Ma et al., 2013, Pausch et al., 2013) and sequence data (van
Binsbergen et al., 2014) in different species. However, various measures of the
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imputation accuracy were used in those studies, hampering a quantitative
comparison. In this study, where we used the correlation coefficient corrected for
gene content, a small decrease in imputation accuracy was observed with MAF <
0.1 compared with higher MAF SNPs. In another analysis with the same data, we
observed a greater decrease in imputation accuracy for MAF < 0.05 (Heidaritabar et
al., 2014a). Lin et al. (2010) showed that the decline in imputation accuracy already
started with MAF < 0.15 in human data. Hickey et al. (2012a) and Hayes et al.
(2012) also reported the decline in imputation accuracy for MAF < 0.1 in maize and
sheep populations. Interestingly, the selection of the most common sires appears
to especially benefit imputation accuracy of low MAF SNPs.

Small differences in imputation accuracies were observed when SNPs were masked
based on their MAF in the validation population, instead of in the reference
population. Since the fraction of the SNPs that was monomorphic in Ref,, and
Refe,, but polymorphic in the validation population (G0O) was relatively low (3.86%
in Ref,, and 1.07% in Refg,), little difference in imputation accuracies was expected
by masking MAF from the validation populations. When SNPs were masked
independent of their MAF, imputation accuracy was larger for SNPs with lower
MATF and within the smaller reference population (Ref,,) (Table 4.5), indicating that
SNPs with low MAF can be imputed more accurately when SNPs with different
ranges of MAF were used to impute them. This suggests that a genotyping panel to
be used for imputing to higher densities should not contain SNPs with intermediate
frequencies, as has been done for the currently available SNP chips.

4.4.2 Comparison of true reliability and allelic R2 from Beagle

The correlation between the allelic R reported by Beagle and the imputation
reliability calculated in this study was moderate to high, (Figure 4.2 (3K to 60K
scenario) and Table 4.7 (48K to 60K scenario)).The correlations were higher when
the reference size was larger and the MAF was higher, which is in agreement with
van Binsbergen et al. (2014). Further, the correlations tended to be higher when
the validation density was lower (3K to 60K). For the 3K to 60K scenario, the
regression of imputation reliability on allelic R® was close to 1 (low bias), ranging
from 0.82 to 0.88 in different scenarios (Figure 4.2), which allows us to predict the
reliability when the true genotypes of missing SNPs are unknown. Hence, with a
very low-density reference panel (e.g. 3K) allelic R’ may be used as a measure of
accuracy when validation using masked data is not possible. For instance,
imputation of all genotyped animals in a validation population using a small
number of sequenced animals does not allow comparison with the true genotypes
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of the non-sequenced animals, and the reference population is typically too small
to allow cross-validation.

4.4.3 Size of the chromosome

In this study, imputation accuracy was not very different between chromosomes of
different size, which is in agreement with Vereijken et al. (2010). However, a study
in Angus cattle showed that there is a positive association between the
chromosome size and the imputation accuracy (Sun et al.,, 2012). The reported
differences between the imputation accuracies on large and small chromosomes
were, however, not large (less than 0.02 using Beagle) (Sun et al.,, 2012). The
reason for a slightly lower accuracy on smaller chromosomes would be the reduced
accuracy at the beginning and end of the chromosome which would have a
relatively larger effect for small chromosomes. In another study in cattle, it was
shown that the number of SNPs per centiMorgan influenced imputation error rate
more than the chromosome size (Schrooten et al., 2014).

4.5 Conclusions

In a scenario to mimic the imputation of genotypes between different SNP chips of
similar densities, we found that moderate levels of imputation accuracy can be
achieved even with a very small number of animals in the reference population.
Selecting animals for the reference population from the most common sires, rather
than selecting random animals for the reference population, considerably
improved imputation accuracy for SNPs with low MAF, and slightly for SNPs with
the highest MAF. Accuracy could be further increased by adding animals to the
reference population particularly when the validation population was genotyped
for a low-density panel (3K) or the SNPs targeted for imputation had low MAF. The
allelic R estimated by Beagle gave a good indication of imputation reliability when
the density of validation panel was very low (3K) and the MAF of the SNP and the
size of the reference population were not extremely small.
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Abstract

There is an increasing interest in using whole-genome sequence data in genomic
selection breeding programs. Prediction of breeding values is expected to be more
accurate when whole-genome sequence is used, since the causal mutations are
assumed to be in the data. We performed genomic prediction for number of eggs
in white layers using imputed whole-genome re-sequence data including ~ 4.6
million single nucleotide polymorphisms (SNPs). The prediction accuracies based on
sequence data were compared with the accuracies from the 60K SNP panel.
Predictions were based on genomic best linear unbiased prediction (GBLUP) as well
as a Bayesian variable selection model (BayesC). Moreover, the prediction accuracy
from using different types of variants (synonymous, non-synonymous, and non-
coding SNPs) was evaluated. Genomic prediction using the 60K SNP panel resulted
in a prediction accuracy of 0.74 when GBLUP was applied. With sequence data,
there was a small increase (~ 1%) in prediction accuracy over the 60K genotypes.
With both 60K SNP panel and sequence data, GBLUP slightly outperformed BayesC
in predicting the breeding values. Selection of SNPs more likely to affect the
phenotype (i.e. non-synonymous SNPs) did not improve accuracy of genomic
prediction. The fact that sequence data was based on imputation from a small
number of sequenced animals may have limited the potential to improve the
prediction accuracy. A small reference population (n = 1004) and possible exclusion
of many causal SNPs during quality control can be other possible reasons for
limited benefit of sequence data. We expect, however, that the limited
improvement is because the 60K SNP panel was already sufficiently dense to
accurately determine the relationships between animals in our data.

Key words: genomic prediction accuracy, whole-genome sequence, causal
mutations, imputation, biological information



5 Genomic prediction using whole-genome sequence data

5.1 Introduction

Improving accuracy of genomic prediction is crucial for livestock breeding
programs, since the genetic gain achieved depends on the accuracy of predicting
breeding values. Many factors influence the accuracy of genomic prediction
including the heritability of the corresponding trait, proportion of genetic variance
explained by the single nucleotide polymorphisms (SNPs), mode of inheritance,
number of quantitative trait loci (QTL) (Hayes et al., 2010), linkage disequilibrium
(LD) between the QTL and SNPs, effective population size (N.), the size of the
reference population (Daetwyler et al., 2010), level of relatedness between the
individuals in the reference and validation population (Clark et al., 2012), and the
statistical method applied for estimation of genomic breeding values (GEBVs) (see
review by de los Campos et al., 2013). The impact of some of these factors on the
accuracy of genomic prediction may decrease if a higher density SNP panel is used.
For instance, the impact of relatedness on accuracy may decrease when more SNPs
or even whole-genome sequence data are used (Daetwyler et al.,, 2013). The
reason that the density of the SNP panel has an important effect on the accuracy of
genomic prediction is that with a larger number of SNPs, if equally distributed
across the genome, the probability that each QTL is in high LD with at least one SNP
will increase (Goddard, 2009). An important question is what the required SNP
density needs to be, particularly if the distribution of SNP allele frequencies varies
in different SNP panels of different densities. Thus far, genomic prediction of
breeding values has been widely applied in livestock breeding programs using
medium to high-density SNP panels (see review by VanRaden et al., 2009). A small
number of studies has used whole-genome sequence data for genomic prediction
in animals (Ober et al., 2012, Hayes et al., 2014, van Binsbergen et al., 2015) or in
simulations (Meuwissen and Goddard, 2010a, Clark et al., 2011, Druet et al., 2014,
MacLeod et al., 2014a). As the cost of sequencing continues to decrease, its use in
routine genetic evaluations will increasingly become feasible. However, currently it
is still too costly to sequence at sufficient coverage the thousands of animals
required to accurately estimate the small effects of the large number of mutations
affecting a complex trait. Since livestock populations are typically derived from a
small group of common ancestors, a promising method is to sequence the
influential founder animals (key animals) with the highest genetic contribution to
the current population and to impute the sequence on the remaining animals
genotyped with a lower density SNP panel (Meuwissen and Goddard, 2010a, b).
When using imputed sequence data for genomic predictions, the imputation
accuracy is a crucial factor in determining a possible increase in prediction
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accuracy. Moderate to high imputation accuracies were found in cattle (ranging
from 0.77-0.83) when imputing from a high-density SNP panel (777K) to sequence
data (van Binsbergen et al., 2014).

One additional reason to use whole-genome re-sequence data rather than SNP
panel data for genomic prediction is that SNPs with low frequency that may explain
some of the genetic variance for a trait (causal mutations), are less likely to be in
sufficient LD with the SNPs that have moderate minor allele frequency (MAF) on a
high-density SNP panel. When using whole-genome sequence data, these low MAF
SNPs are expected to be in the data and their variance can be captured with
sequence data. Based on a simulation study, Druet et al. (2014) reported that if the
variation from low MAF SNPs can be captured with the whole-genome sequence
data, and exploited in genomic prediction, the accuracy of predicting breeding
values may be increased 2-30%, depending on the trait. However, with real data in
Drosophila melanogaster, Ober et al. (2012) showed little gain in genomic
prediction accuracy after SNP panels reached 150K SNPs.

Appropriate genomic prediction methods are expected to take full advantage of
sequence data. A variety of statistical methods have been applied for implementing
genomic prediction for both simulations as well as real data (see review by de los
Campos et al., 2013). Differences between the methods are mainly with respect to
(prior) assumptions about the distribution of the SNP effects. A widely used
method, genomic best linear unbiased prediction (GBLUP), assumes equal
variances explained by each SNP, while Bayesian methods allow SNPs to have
different contributions to the genetic variance. Across many empirical studies,
there was no clear trend in differences in prediction accuracies across different
genomic prediction models (see review by de los Campos et al., 2013). With the
availability of whole-genome sequence data, differences between prediction
methods should become more pronounced (Meuwissen and Goddard, 2010a).
Although GBLUP has been found to predict the GEBVs accurately, especially in dairy
cattle data with moderate-size SNP panels (see review by VanRaden et al., 2009), in
a simulation study it was shown that GBLUP was not able to take full advantage of
sequence data if the number of QTL is small, while Bayesian variable selection
models such as BayesB might be more accurate (Meuwissen and Goddard, 2010a).
An alternative way to emphasize the effects of some SNPs is to implement genomic
predictions, where a subset of SNPs are given more emphasis in the prediction
based on their potential effect on gene function. Variants in regulatory regions or
coding regions are more likely to have an effect on any trait (Hayes et al., 2014). In
the bovine genome, coding regions were found to explain significantly more
variation than randomly chosen intergenic SNPs (non-coding regions) (Koufariotis
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et al., 2014). Prioritizing such coding SNPs in genomic predictions may increase the
prediction accuracy.

Important questions regarding the use of whole-genome sequence data for genomic
prediction are: Can we improve the accuracy of genomic selection using whole-
genome sequence data of key animals and imputation to infer whole-genome
sequence for the whole reference population? Does pre-selection of SNPs that are
more likely to affect the phenotype (i.e. non-synonymous SNPs) improve the
accuracy of genomic prediction? The main objective of this study was to investigate
how much accuracy was gained with imputed whole-genome sequence data
compared with a 60K SNP panel data in commercial white layers.

5.2 Materials and methods

5.2.1 Data

The study was performed with data from a white line of commercial layers. 1244
female animals, genotyped with the chicken Illumina Infinium iSelect BeadChip
(60K SNP panel) (lllumina Inc., San Diego, CA, USA) (Groenen et al.,, 2011) were
available. The data (1244 phenotyped and genotyped animals) came from four
generations (GO, G1, G2, and G3) of selection candidates from a genomic selection
experiment started in 2009. For the females in GO, 62 sires and maternal grandsires
were available and these were also genotyped with the 60K SNP panel. Of those 62
genotyped sires and maternal grandsires, 22 were selected to be sequenced
(Heidaritabar et al., 2015). The method used for choosing the animals to be
sequenced was based on “the proportion of genetic diversity” (Druet et al., 2014).
The trait (own performance) analysed was number of eggs in the first production
period (counting from the first egg until 25 weeks of age).

5.2.2 Genomic DNA extraction, library preparation and sequencing
DNA was extracted from blood samples using the QlAamp DNA blood spin kit
(Qiagen Sciences) (Venlo, NL). DNA quality and quantity were checked using the
Qubit 2.0 fluorometer (Invitrogen) (Carlsbad, CA, USA). Library construction for the
sequencing was performed with 1-3 ug of genomic DNA according to the Illumina
library prepping protocols (lllunima Inc.) and the Illumina 100 paired-end
sequencing kit was used for sequencing.

5.2.3 Sequence coverage, sequence mapping, and SNP calling

The average sequence depth was 17.67 across the 22 sequenced animals (Table
S5.1). Sequence reads were aligned against the current chicken reference genome
(WASHUC4) with BWA-0.7.5a (Li and Durbin, 2009) using the default parameters.
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The alignment files were converted to BAM format using Samtools-0.1.19 (Li et al.,
2009). BAM files were sorted and indexed by Samtools-0.1.19 (Li et al., 2009).
Potential PCR duplicates were removed by picard-tools-1.102
(http://picard.sourceforge.net). Realignment and SNP calling were done using
GenomeAnalysisToolKit-2.7-2 (GATK) (McKenna et al., 2010). Tools IndelRealigner
and UnifiedGenotyper were used for realignment and SNP calling, respectively.
Default parameter settings of UnifiedGenotyper were used for variant calling
except for the following parameters: heterozygosity = 0.0018 (the description
about obtaining an appropriate heterozygosity value for chicken heterozygosity is
given in Supplementary materials, Data S1), minimum phred-scaled confidence
threshold for variant calling = 20, minimum phred-scaled confidence threshold at
which variants should be emitted = 20. BAM files were pooled for SNP calling. The
total number of SNPs and insertion-deletions (INDELs) detected in the 22 animals
was 10077 670.

5.2.4 Quality control of called sequence variants

Some filters were applied to select SNPs and INDELs for further analyses. Reasons
for SNPs to be excluded were: a strand bias p-value < 0.01, zero observations of the
alternative allele on either the forward or reverse reads, being located within 5 bp
of each other, being located within 5 bp of an INDEL, a mapping quality (MQ) score
of < 20, a phred score < 20, a read depth (DP) of less than 10% of median or more
than median plus 3 standard deviation of read depth, a quality depth (QD) < 5, two
or more alternative alleles and a MAF < 0.025 (which corresponds to having
observed only a single copy of the alternative allele among the 22 sequenced
animals). After these exclusions, 4 855 168 SNPs remained for the 22 animals
across the whole-genome. For the remainder of the analyses, SNPs on autosomes
GGA1l to GGA28 were kept, except for SNPs on GGA16, the micro-chromosome
harbouring the MHC, due to the poor coverage of this chromosome in the current
assembly (Wang et al.,, 2014). Total number of called SNPs after filtrations on
autosomes GGA1 to GGA28, excluding GGA16, was 4 596 227 (Table 5.1).

5.2.5 Quality control of 60K SNP panel

SNPs from the 60K SNP panel were excluded if they had a call rate < 95%, or a MAF
< 0.01. Moreover, if the difference between observed and expected frequency of
heterozygotes was > 0.15 (indicative of departure from Hardy-Weinberg
equilibrium), the SNP was excluded. SNPs on GGA16, GGA29, GGA31, and GGA32
were excluded due to low SNP coverage. The sex chromosome, Z, was also

106


http://picard.sourceforge.net/

5 Genomic prediction using whole-genome sequence data

excluded. After these exclusions, 24 725 SNPs were available for 1244 female
animals.

5.2.6 Genotype imputation

Sequence SNPs, called across the 22 sequenced animals, were imputed from 24
725 SNPs of the 60K SNP panel in all genotyped animals using Beagle version 4.0
(Browning and Browning, 2013). Default parameter settings of Beagle were used,
except for number of iterations for genotype phasing and number of iterations for
imputation. For each of these parameters 25 iterations were used (50 iterations in
total), instead of the default values of 5 for each parameter. Pedigree information
was not used for imputation. A major challenge was to accurately impute low MAF
SNPs, which are abundant in sequence data. Imputation reliabilities were assessed
in two ways. First, imputation reliability per SNP was obtained from the allelic R’
generated by Beagle, which is a prediction of the squared correlation between the
allele dosage (number of B, alleles) of the most likely imputed genotype and the
allele dosage of the true genotype. The estimated B,-allele dosage was obtained
from the imputed posterior genotype probabilities as: 0 * P(B,B;) + 1 * P(B,B,) + 2 *
P(B,B,) (Browning and Browning, 2009). Second, we were interested in imputation
reliability per animal (animal-specific imputation reliability). To assess animal-
specific imputation reliability, the true and imputed genotypes are required.
Animal-specific imputation reliability was analysed using leave-one-out cross-
validation with the 22 sequenced animals. Animal-specific imputation reliability
was calculated as the squared correlation between the true genotypes (coded as 0,
1, or 2) and the imputed genotype (the most likely genotype). Both true and
imputed genotypes were centred by subtracting the mean gene content per SNP (2
times the allele frequency) as suggested by Mulder et al. (2012). Due to large
computation time, animal-specific imputation reliability was assessed with the data
for GGA1 only.

5.2.7 Quality control of imputed genotypes

Of 4 596 227 SNPs used for imputation, 660 188 had very low imputation reliability
(allelic R < 0.05) after imputation (Table 5.1). We excluded SNPs with allelic R? <
0.05 from the analysis. Thus, the total number of SNPs used for genomic prediction
was 3 936 039.
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Table 5.1 Total number of SNPs per chromosome before and after imputation (with allelic R’
filtration)

Number of SNPs
Chromosome Before AllelicR? 2 Allelic R? 2 Allelic R? 2
imputation 0.05* 0.52 0.85°
GGA1 1033 064 846 482 669 769 408 001
GGA2 729 384 613 969 468 379 276 741
GGA3 544 765 457 153 365 267 231150
GGA4 499 801 440113 351233 207 102
GGA5 279 787 241990 187 431 121289
GGA6 199 794 174 993 152 870 95 594
GGA7 172 870 149 134 125 244 86 392
GGAS 130918 119 048 102 647 68 370
GGA9 113 306 103 159 87615 54399
GGA10 88 764 80581 67 900 51563
GGA11 81922 75 903 65772 47 134
GGA12 116 710 99 235 86 836 62291
GGA13 84 807 73171 60919 39924
GGAl4 77 458 69 862 58 732 41189
GGA15 37265 34576 29277 22620
GGA17 51896 47 770 42 650 28316
GGA18 58916 53719 45 420 31485
GGA19 42 886 39999 36 884 28 006
GGA20 52 463 48 865 44 687 34 400
GGA21 36 640 34342 30509 23733
GGA22 11750 10 419 9727 7582
GGA23 31745 27952 24088 16 000
GGA24 30161 26 951 22 456 16 210
GGA25 8329 4178 2848 1852
GGA26 24180 22417 16 367 12 078
GGA27 28 798 17 688 12 843 8843
GGA28 27 848 22370 19293 13922
Total 4596 227 3936039 3187 663 2036 186

Total number of SNPs on the 22 sequence male animals after filtrations on called SNPs
before imputation; *Total number of SNPs on imputed 1244 re-sequence female animals
after filtrations on allelic R”.

5.2.8 Statistical methods

Two prediction methods, GBLUP and BayesC, were applied to predict GEBVs. In
addition, pedigree best linear unbiased prediction (PBLUP) was applied, which uses
phenotypes and pedigree information to estimate breeding values (EBVs).
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GBLUP
The statistical model used for GBLUP is:

y=1p+Xb+Z,a+e (1)

where y is the vector of phenotypic records, 1 is a vector of ones, | is the overall
mean of phenotypic records, b is a vector of fixed effects (hatch-date), X is the
design matrix corresponding to fixed effects, Z, is an incidence matrix that relates
genetic values to the animals, a is the vector of genomic values of all animals
(random animal effects) and e is the vector of random residual effects. The animal
effects and residual effects were assumed to be normally distributed as
a ~ N(0,Go?2) and e ~ N(0,Ic2), respectively. 62 and o2 are the additive genetic
and residual variances, respectively, and G is a matrix describing the genomic
relationships among all pairs of individuals in both the reference and validation
populations (see next section). The matrix G was calculated following the approach
of VanRaden (2008) as: G = ZZ'/2 Y. p;(1 — p;), where Z is the matrix of SNP
genotypes, coded as 0, 1, or 2 and corrected for the expected genotype
frequencies. Allele frequencies of the current population were used to construct G.
pi is the allele frequency at the i"™ SNP.

BayesC
The statistical model used for BayesC (Habier et al., 2011) is:

y=1lp+Za+e (2)

where y, 1, and e are as defined above for the GBLUP model. Z is the matrix of
genotypes of individuals, a is the vector of allele substitution effects. The prior for
a depends on the variance, 62, and the prior probability (m) that a SNP has zero
effect:

2 { 0 with probability m,
aloa =1 N(0,62) with probability (1 — 1)

With BayesC, the priors of all SNP effects have a common variance, which follows a
scaled inverse chi-square prior with parameters v, (degrees of freedom) and S2
(scale parameter). As a result, the effect of a SNP fitted with probability 1 —m
follows a mixture of multivariate student's t-distributions, t(0, va,IS§), where T is
the probability of a SNP having zero effect. We chose 1 = 0.95. More details on the
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BayesC are given in Habier et al. (2011). Gibbs sampling was used in the
implementation of BayesC to sample over the posterior distribution of the model
parameters. The Gibbs sampler was implemented using right-hand-side updating
(Calus, 2014). In the current study, we report the results (genomic prediction
accuracy and the regression coefficient) for a Gibbs chain of 140 000 cycles, noting
that the results were the same as when using only 60 000 cycles. The first 10 000
cycles were considered as burn-in and discarded.

5.2.9 Accuracy of predicting breeding values

To investigate the accuracy of genomic prediction, the dataset with imputed
sequence data was divided into two groups: the reference population and the
validation population. The youngest animals in the population, those that hatched
in October and November 2011, were used as validation population. The animals in
the reference population were born between April 2009 to June 2011. The total
number of animals in the validation and the reference populations were 240 and
1004, respectively. The phenotypes of validation animals were masked and the
breeding values of these animals were predicted using the information in the
reference population. Accuracy of genomic prediction was assessed as:

Accuracy = rBV’% (3)
where rgyphen is the correlation between the phenotypes and the estimated
breeding values (BVs) of the validation animals and h? is the heritability of the trait,
which was 0.51. The heritability is estimated by the routine genetic evaluations in
the breeding program of this chicken line. Approximated standard errors of the
accuracies were computed as Fisher (1954):

_ 2

s.e. = 1-Accuracy (4)
N—1

where N is the number of validation animals. In addition to the correlation

coefficient, we computed the regression coefficient of the phenotype on BVs to

evaluate the bias of the estimated BVs.

5.2.10 Genomic prediction using biological information

In theory, from the sequence data we only need those SNPs that have an effect on
the trait to perform our prediction. Genomic predictions with SNPs affecting gene
function may be equally or more accurate than predictions that also include non-
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functional SNPs. To enrich our dataset for SNPs that affect gene function, we
annotated SNPs using Variant Effect Predictor (VEP) (MclLaren et al., 2010) based
on the current chicken reference genome (WASHUC4) and gene annotation from
Ensembl. Three subsets of SNPs were made, based on their biological information,
firstly considering coding SNPs (cSNPs) which reside within the coding region of the
gene. cSNPs are of two types: synonymous SNPs that do not change the amino acid
sequence of a protein (subset 1) and non-synonymous SNPs (nsSNPs, subset 2) that
alter the amino acid sequence of a protein. Finally, non-coding SNPs (ncSNPs,
subset 3) that do not encode a protein comprise subset 3. Of 4 596 227 imputed
SNPs, 56 526 were cSNPs (Table S5.2), 15 516 of which were nsSNPs. Since the
number of cSNPs (56 526) was much lower than the number of ncSNPs (4 539 701),
we chose 10 random subsets of ncSNPs with almost the same number of SNPs as
within the cSNPs set (56 637 for each subset). In an additional analysis, only nsSNPs
were used for genomic prediction. For all those different sets of pre-selected SNPs,
GBLUP was applied to evaluate the accuracy of genomic predictions.

5.3 Results

To evaluate the accuracy of calling genotypes at the variable sites, the concordance
between sequence genotypes and genotypes from the 60K SNP panel in the
sequenced animals was assessed as the ratio of identical genotypes and the total
number of common SNPs in the two datasets. The average concordance for the 22
sequenced animals, across all chromosomes, was 99.6% (ranging from 98.7% to
100%).

5.3.1 MAF distribution

The MAF distribution from the 60K SNP panel was uniform, whereas the MAF
distribution from the sequence data was U-shaped with a substantial proportion of
SNPs with small MAF values (more than 25% of SNPs had a MAF lower than 0.025)
(Figure 5.1). Frequency distribution of MAF of sequence SNPs used for subsequent
analysis, after excluding the MAF < 0.025 and allelic R® < 0.05, is given in Figure 5.2.
Average MAF before excluding MAF < 0.025 was 0.17. After applying the MAF cut-
off threshold, the average MAF was 0.26.
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Figure 5.1 Distribution of minor allele frequency (MAF) in sequence and the 60K SNP panel.
For sequence data, the MAF was calculated based on the 22 sequenced animals. For the 60K
SNP panel, MAF was calculated based on the 1244 genotyped animals.
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Figure 5.2 Distribution of minor allele frequency (MAF) of sequence data involved in the final
analysis.

5.3.2 Imputation reliability

Imputation reliabilities were evaluated per SNP, using allelic R? given by Beagle, and
per animal from the leave-one-out cross-validation approach. The average allelic R’
(before quality control) from the 60K SNP panel to sequence imputation was 0.64
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across all chromosomes and 0.60 for GGAL. The average animal-specific imputation
reliability across the 22 sequenced animals for GGA1 was 0.73 (Figure 5.3).
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Figure 5.3 Animal-specific imputation reliability for the 22 sequenced animals.

5.3.3 Accuracy of predicting breeding values

As expected, accuracy was lowest (0.59) using PBLUP (Table 5.2). Genomic
prediction with GBLUP using the 60K SNP panel resulted in a prediction accuracy of
0.74. Using sequence data, there was a small increase (~ 1%) in prediction accuracy
over the 60K genotypes when GBLUP was applied, while with BayesC, the
prediction accuracy from sequence data was the same as the prediction accuracy
from the 60K SNP panel (0.72). With both the 60K SNP panel and sequence data,
GBLUP slightly outperformed BayesC. Excluding SNPs from the analyses that had
allelic R? < 0.5 or < 0.85 from the analyses resulted in predictions based on ~ 3
million and ~ 2 million SNPs, respectively (Table 5.1). Prediction accuracy remained
similar even when less than 50% of the SNPs (~ 2 million) were used to construct
the genomic relationship matrix (prediction accuracy of 0.75 and 0.76 with ~ 3 and
~ 2 million SNPs, respectively) (Table 5.2). None of the SNP pre-selection scenarios
based on the biological information of the SNPs, produced any gain in prediction
accuracies using GBLUP compared with the scenarios that used the complete set of
SNPs. There was a reduction of 0.07 in prediction accuracies when only 56 526
cSNPs were used and an even larger reduction (0.09) in accuracy when only 15 516
nsSNPs were used. However, with 56 637 ncSNPs, the decrease in prediction
accuracy was less compared with using the complete set of SNPs (0.02) (Table 5.3).
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Table 5.2 Prediction accuracy and regression coefficient of phenotype (number of eggs in
the first production period) on predicted breeding values.

Data Prediction Prediction accuracy Regression

method (SE3) coefficient
Pedigree PBLUP! 0.59 (0.04) 1.51
60K SNP panel GBLUP? 0.74 (0.03) 1.39
Sequence* GBLUP 0.75 (0.03) 1.44
Sequence GBLUP 0.75 (0.03) 1.44
Sequence GBLUP 0.76 (0.03) 1.43
60K SNP panel BayesC 0.72 (0.03) 1.51
Sequence* BayesC 0.72 (0.03) 1.56

1Pedigree best linear unbiased prediction; ’Genomic best linear unbiased prediction;
*Standard error.

*Sequence data after excluding SNPs with allelic R%< 0.05.

**Sequence data after excluding SNPs with allelic R?<0.5.

***Sequence data after excluding SNPs with allelic R?< 0.85.

Table 5.3 Genomic prediction accuracy and regression coefficient of phenotype (number of
eggs in the first production period) on predicted breeding values on the complete set of
SNPs in sequence data or after a pre-selection of SNPs.

Data Prediction Number of Prediction accuracy Regression
method SNPs (SEG) coefficient
Sequence’ GBLUP® 4596 227 0.75 (0.03) 1.45
CcSNPs’ GBLUP 56 526 0.68 (0.03) 1.20
nsSNPs® GBLUP 15516 0.66 (0.04) 1.17
ncSNPs* GBLUP 56 637 0.73 (0.03) 1.43

1Complete set of SNPs; 2Coding SNPs; 3Non-synonymous SNPs; 4Non-coding SNPs; >Genomic
best linear unbiased prediction; ®Standard error.
The average across 10 random subsets of ncSNPs.

5.3.4 Bias of predicting breeding values

The slope of the regression of the observed phenotypes on the predicted breeding
values reflects the bias in the variance of the estimated breeding values (Tables 5.2
and 5.3). Ideally, this regression coefficient should be equal to 1. Regression
coefficients were similar for both prediction methods and both the 60K SNP panel
and sequence data, ranging from 1.39 to 1.56. All regression coefficient values
were greater than 1, indicating that the variance of the breeding values was
underestimated. The results after SNP pre-selection indicated that using ncSNPs
yielded similar regression coefficients compared with using all SNPs (Table 5.3).
However, when either cSNPs or nsSNPs were used, regression coefficients were
considerably closer to 1.

114



5 Genomic prediction using whole-genome sequence data

5.4 Discussion

We investigated whether the use of whole-genome sequence data will improve the
response to genomic selection by estimating the accuracy of genomic breeding
values obtained with sequence and with a 60K SNP panel in layers. With sequence
data, it is assumed that the causal mutations responsible for trait variation are
included in the data and therefore the accuracy of predictions is expected to
improve over accuracies from the SNP panels. We observed that in our data whole-
genome sequence data hardly improved the accuracy of prediction compared with
the 60K SNP panel using both GBLUP and BayesC. Moreover, pre-selection of the
SNPs based on their biological information also did not improve the prediction
accuracy.

The accuracies from sequence data in this study were in contrast with those from
simulation studies that showed higher prediction accuracies with sequence data
compared with lower density panels (Meuwissen and Goddard, 2010a, Clark et al.,
2011, Druet et al., 2014, MaclLeod et al., 2014a). From simulations, it was found
that sequence data may not improve the accuracy of genomic prediction when the
trait is more polygenic, unless a large reference population is used (Clark et al.,
2011). It was also demonstrated that if QTL allele frequencies followed the same
distribution as the SNPs, the advantage of sequence data over SNP panels was only
1.4%, whereas with QTL alleles with very low frequencies (< 1% MAF), this
advantage was up to 20% (Druet et al., 2014). In our real data, QTL distributions
and frequencies are not known. However, the SNP effects estimated by BayesC are
consistent with a trait controlled by many genes with small effects (Figure 5.4B).
BayesC was not able to outperform GBLUP, which may be because relatedness
between the animals was high, potentially reducing the advantage of using
sequence data. Having variants affecting the trait in the data does not help when
predictions can simply rely on highly accurate estimated relationships in GBLUP. To
overcome this, the level of relatedness in the reference data could be reduced.
Such a strategy, however, may also lead to lower relatedness of the reference
animals with the validation animals, and thereby decrease the overall level of
accuracy.

Although simulations have indicated that sequence data would be beneficial for
genomic evaluations (Meuwissen and Goddard, 2010a, Clark et al., 2011, Druet et
al., 2014, Macleod et al., 2014a), the studies with real data found little benefit of
sequence data in both Drosophila melanogaster (Ober et al., 2012) and dairy cattle
(van Binsbergen et al.,, 2015). Ober et al. (2012) found that the accuracy of
prediction remained almost constant when the number of SNPs was increased
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beyond 150K. However, in their study, the sample size was less than 200 which is a
limiting factor to capitalize on the added value of whole-genome sequences,
because with the small sample size, the effect of causal mutations on quantitative
traits may not be accurately estimated.
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(B) SNP effects_60K
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Figure 5.4 SNP effects from BayesC by sequence data (A) and 60K SNP panel (B). The y-scale
represents the SNP effects multiplied by 100 000.

The small impact of increasing the density of SNPs on the accuracy may be the
small effective population size (N.), which is leading to a high level of LD (MacLeod
et al., 2014a). With small N, the variation in relationships between individuals is
large and the genetic variance explained by the SNPs is close to the full genetic
variance (VanRaden et al., 2009). With low extension of LD, a very large number of
SNPs is required for accurate genomic predictions (Wray et al., 2007). In human,
even with a 600K SNP panel, the genetic variance explained by SNPs was only half
of the known genetic variance (Yang et al., 2010). However, when LD extends over
long distances a 50K or a 60K SNP panel may capture a large proportion of genetic
variance (Hayes et al., 2010), as was shown in livestock such as sheep (Daetwyler et
al.,, 2012) and cattle (Erbe et al., 2012). The N, in our current population was 52
(Heidaritabar et al., 2015), which is relatively low, and the LD distribution (rz)
between SNPs at different distances illustrates the long-distance extent of LD in
this population (Figure S5.1). Therefore, with this small N, and observed pattern of
LD, the gain in accuracy of genomic selection from better estimation of
relationships between animals, using whole-genome sequence data is presumably
limited.
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5.4.1 Imputation reliability

The improvement of prediction accuracy using imputed sequence data is
determined by both the accuracy of imputation and the allele frequency
distribution of the QTL (Druet et al., 2014). Small declines in accuracy of genomic
prediction have been reported using imputed genotypes (van Binsbergen et al.,
2015). Other studies found a very high correlation (~ 0.96) between the GEBVs
computed from real genotypes and those obtained from imputed genotypes (see
review by Calus et al., 2014). These studies were performed using medium or high-
density SNP panels. An important challenge when imputing to sequence data is the
imputation of low MAF SNPs, which are limited in SNP panels, but abundant in
sequence data. Imputation of low MAF SNPs in cattle was found to be poor when
imputing to whole-genome sequence and this would heavily influence the overall
imputation accuracies (van Binsbergen et al., 2014) and finally the prediction
accuracy. Imputation error rate of low MAF SNPs may be even higher when the
reference population is small, as it is in this study. Imputation error rate may be
reduced by increasing the number of sequenced animals (founders) in the
reference population (Meuwissen and Goddard, 2010b). However, it is unclear how
many animals would be needed and how related they should be to the target
population for a given level of the imputation error rate (Meuwissen et al., 2013).
When we imputed to the 60K SNP panel (Heidaritabar et al., 2015), increasing the
number of key animals from 22 to 62 improved the average imputation accuracy
from 0.82 to 0.89, with the greatest increase for low MAF SNPs. In the current
study, the imputation reliability of 0.73 was estimated within the 22 sequenced
animals that were selected to be the least related to each other within the
reference population (Figure 5.5). The reliability of imputing the genotypes of the
1244 non-reference animals is expected to be higher than this value of 0.73,
because their relationships with the reference were maximized (Heidaritabar et al.,
2015).

To assess the impact of the imputation reliability on the prediction accuracy, SNPs
with different imputation reliabilities (allelic R? < 0.05, < 0.5, and < 0.85) were
excluded from the analyses. However, the prediction accuracy remained at the
same level even when SNPs with allelic R* lower than 0.5 or 0.85 were excluded
from the analyses. Therefore, we expect the effect of imputation reliability on
accuracy of prediction to be limited. However, further investigation is needed to
determine if higher prediction accuracies are possible from more accurate imputed
genotypes. In particular low MAF SNPs may be imputed with higher accuracy by
pedigree-based imputation algorithms. Also, higher prediction accuracy has been
reported when using genotype probabilities rather than the most likely genotypes
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(Mulder et al., 2012). An issue with the use of genotype probabilities instead of
most likely genotypes for sequence data is, however, that the computation time of
genomic prediction with BayesC, using our implementation, is expected to increase
at least 4-fold (van Binsbergen et al., 2015).

value
1

0.75
0.50
0.25
0.00

Figure 5.5 Pairwise relationship of the 22 sequenced animals. The pairwise relationship of
the 22 sequenced animals was extracted from the genomic relationship matrix. Different
colour indicates the extent of relationship. Lighter colours indicate closer kinship between
animals.

5.4.2 Genomic prediction accuracy using biological information

A big issue with using sequence data in genomic predictions is the estimation of the
effect of millions of SNPs (p), with small number of records (n). With the n << p
problem, the effect of causal mutations will be estimated with error and the larger
effect of causal mutations may be distributed over multiple SNPs, as shown in
Figure 5.4A. Variable selection models such as BayesC were developed to estimate
genomic breeding values while solving the n << p problem by regressing false-
positive or uninformative SNP effects towards zero and by only retaining the causal
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mutations. However, in practice, false-positive or uninformative effects are not
strictly equal to zero (Croiseau et al., 2011). To alleviate the n << p problem a
subset of SNPs could be selected, for instance based on their biological
information. Some earlier studies showed an improvement in prediction accuracy
by SNP selection (Weigel et al., 2009, Ober et al., 2012), while others found no
improvement in accuracy (Croiseau et al., 2011, Beaulieu et al., 2014). Different
strategies of SNP selection were used in these different studies. Because GBLUP
provided better accuracy than BayesC, we added a SNP pre-selection step to
GBLUP. However, a decrease in prediction accuracy was observed when only using
cSNPs or nsSNPs (Table 5.3). This decrease could be because information on
functionality is still not complete, as well as the choice for SNPs in coding regions
that may not be in LD with all functionally important variation. Strategies to
integrate the biological information into prediction have been suggested that fit
the complete set of sequence SNPs with an appropriate statistical method, that
utilises the biological information in the model priors (MacLeod et al., 2014b). That
approach, BayesRC, led to more precise mapping of QTL (MaclLeod et al., 2014b)
which may in turn result in higher prediction accuracy. When BayesRC was used for
prediction, a small increase (2% averaged over several traits) in prediction accuracy
was obtained from whole-genome imputed sequence data compared with the
800K SNP panel in dairy cattle (Hayes et al., 2014).

The accuracy based on cSNPs only used 56 526 SNPs, or a little over 1% of the SNP
data. To test whether the smaller number of cSNPs is a factor, 10 datasets of equal
size were compiled with subsets of the ncSNPs. Surprisingly, the accuracy was
higher with these ncSNPs compared with accuracy with ¢SNPs and nsSNPs. A
possible reason for this can be the more uniform coverage of the genome with the
ncSNPs compared with cSNPs (Figure S5.2).

5.5 Conclusions

Imputation to whole-genome sequence data hardly improved genomic prediction
accuracy in white layers, when compared with the predictions based on a 60K SNP
panel. Selection of SNPs more likely to affect the phenotype (i.e. non-synonymous
SNPs) achieved slightly lower accuracy than the whole-genome sequence and the
60K SNP panel when GBLUP was applied. The accuracy of the imputed genotypes
may have reduced the prediction accuracy, but our main explanation for the
limited improvement is that the 60K SNP panel can accurately determine the
relationships between animals. Increasing the number of sequenced animals, and
other methods that improve the imputation accuracy may lead to a higher
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prediction accuracy. However, we expect more impact from reducing the
relatedness among reference animals to allow genomic prediction to be less
dominated by explaining relationships, and therefore better able to explicitly pick
up QTL effects.
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Abstract

Most genomic prediction studies fit only additive effects in models to estimate
genomic breeding values (GEBVs). However, if dominance genetic effects are an
important source of variation for complex traits, accounting for them may improve
the accuracy of GEBVs. We investigated the effect of fitting dominance and additive
effects on accuracy of GEBV for eight egg production and quality traits in a
purebred line of brown layers using pedigree or genomic information (42K single
nucleotide polymorphism (SNP) panel). Phenotypes were corrected for the effect of
hatch-date. Additive and dominance genetic variances were estimated using
genomic-based (GBLUP-REML and BayesC) and pedigree-based (PBLUP-REML)
methods. Breeding values were predicted using a model that included both
additive and dominance effects and a model that included only additive effects.
The reference population consisted of about 1800 animals hatched between 2004
and 2009, while about 300 young animals hatched in 2010 were used for
validation. Accuracy of prediction was computed as the correlation between
phenotypes and estimated breeding values of the validation animals divided by the
square root of the estimate of heritability in the whole population. The proportion
of dominance variance to the total phenotypic variance ranged from 0.03 to 0.22
with PBLUP-REML across traits, from 0 to 0.03 with GBLUP-REML, and from 0.01 to
0.05 with BayesC. Accuracies of GEBV ranged from 0.28 to 0.60 across traits.
Inclusion of dominance effects, however, did not improve the accuracy of
predicting breeding values. Differences in accuracies of GEBV between genomic-
based methods were small (0.01 to 0.05), with GBLUP-REML yielding higher
prediction accuracies than BayesC for egg production, egg colour, and yolk weight,
while BayesC yielded higher accuracies than GBLUP-REML for the other traits. In
conclusion, fitting dominance effects did not impact accuracy of genomic
prediction of breeding values in this population.

Key words: Genomic prediction accuracy, additive effect, dominance effect, egg-
laying chickens
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6.1 Introduction

Genomic selection (GS) relies on prediction of genomic breeding values (GEBVs) of
individuals based on single nucleotide polymorphism (SNP) effects covering the
whole genome (Meuwissen et al., 2001). To date, most genomic prediction studies
fit only additive effects for prediction of GEBVs and ignore non-additive effects
probably due to computational complexity and an expected lack of accuracy in
estimation of non-additive effects. Moreover, variance due to non-additive effects
can manifest itself as additive variance (Hill et al., 2008). However, non-additive
genetic variance may be an important source of variation for complex traits, since it
may create the heterosis that is commonly exploited in crossbreeding schemes.
Hence, if there is substantial non-additive variance, accounting for it may improve
the accuracy of GEBVs. Non-additive genetic variance is defined as interactions
between alleles, and this can occur between alleles at the same locus, which is
called dominance, or between alleles at different loci, which is called epistasis.
Dominance variance accounted for more than 10% of phenotypic variance for some
traits of dairy cattle (Misztal et al., 1997) and pigs (Culbertson et al., 1998).
Estimation of dominance variance, however, has been shown to be sensitive to
sample size (Misztal, 1997, Misztal et al., 1997). Inclusion of dominance effects in
genomic prediction models was shown to improve accuracy of GEBVs in simulated
data (Toro and Varona, 2010, Wellmann and Bennewitz, 2012) and in real data
(e.g., Da et al., 2014, Sun et al., 2014). Further, GS with a dominance model was
superior for the selection of purebreds for crossbred performance (Zeng et al.,
2013). However, few studies have assessed the effect of dominance effects on the
accuracy of GEBVs in poultry. Poultry is a prolific species with large sib families and
thus poultry populations exhibit substantial pedigree-based dominance
relationships.

Several models for genomic prediction of breeding values using additive effects
have been proposed (see review by de los Campos et al.,, 2013). Differences
between the models are mainly with respect to assumptions about SNP effects. The
model most frequently used is a mixed linear model called genomic best linear
unbiased prediction (GBLUP), which assumes equal variance across all SNPs.
Although many SNPs may be uninformative or not in linkage disequilibrium (LD)
with quantitative trait loci (QTL), GBLUP has produced good predictive accuracy in
both simulated and real data (see review by Hayes et al., 2009). A model such as
BayesC (Habier et al., 2011) regresses small and uninformative SNP effects towards
zero and assumes only a small fraction of available SNPs have large effects on the
trait, with most SNPs expected to have zero effect. Most studies that fitted
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dominance effects into the genomic prediction applied GBLUP (e.g., Da et al., 2014,
Nishio and Satoh, 2014, Sun et al., 2014), since it is simple and has low
computational requirements in populations of limited size. In a simulation study,
Toro and Varona (2010) found that inclusion of dominance effects into a Bayesian
model that assumes a univariate t-distribution for SNP effects (BayesA) increased
the accuracy of GEBVs, leading to an increase in expected response to selection by
9 to 14%. In another simulation study, inclusion of dominance effects in a Bayesian
model increased the accuracy of estimates of genotypic values (correlation
between the true and estimated total genetic values) by about 17% (with various
SNP panel sizes) and the accuracy of GEBVs (correlation between true and
estimated GEBVs) in the offspring by 2% (Wellmann and Bennewitz, 2012).

The main objectives of this study were: (1) to estimate additive and dominance
variance components using a 42K SNP panel for eight traits of purebred layers, (2)
to quantify gains in accuracy of GEBV from genomic prediction models that include
both additive and dominance effects (MAD), compared with a model that includes
only additive effects (MA). Based on SNPs, additive and dominance variances were
estimated using both GBLUP-REML and BayesC. Moreover, the variance
components and prediction accuracies estimated from GBLUP-REML and BayesC
were compared with those estimated from pedigree-based BLUP (PBLUP-REML).

6.2 Materials and methods

6.2.1 Data

The study was performed with data from a purebred brown line of layers
maintained at Hy-Line International. In total, 6035 animals were genotyped with a
custom 42K Illumina SNP panel. The genotype data were from a genomic selection
(GS) experiment that started in 2009. With GS, 50 males and 50 females were
selected in each generation from 300 selection candidates per sex (6 male and 6
female progeny from each single sire-dam mating) based on GEBVSs. Details are in
Wolc et al. (2015). Before the start of the GS experiment, the animals were
selected based on estimated breeding values (EBVs) from traditional phenotype-
based selection. For four generations before the start of the GS experiment, only
birds that were selected for breeding were genotyped, whereas there was no
preselection for genotyping in the subsequent generations. Traits (own
performance) were measured at 26 to 28 weeks of age on more than 12 000
animals (Table 6.1) and included egg production (PD), age at sexual maturity (SM),
average egg weight (EW), albumen height (AH), egg colour (CO), egg weight for the
first three eggs (E3), egg colour of the first three eggs (C3), and yolk weight (YW).
Egg quality measurements were averaged over three to five eggs. The total number
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of animals in the pedigree was 25 738, representing up to 12 generations. There
was information on sex, sire and dam identification numbers, and hatch-date of
each animal.

More than 2100 of the animals had both genotypes and phenotypes and comprised
the reference and validation populations used for genomic prediction (Table 6.1).
The youngest animals in the population that hatched in 2010 formed the validation
population, while animals in the reference population were hatched from 2004 to
2009. The total number of animals in the reference and validation populations
differed slightly by trait and ranged from 1806 to 1834 and from 296 to 302,
respectively (Table 6.1).

6.2.2 Quality control

The following quality criteria were used to exclude SNPs before conducting
subsequent analyses: minor allele frequency (MAF) < 0.025, proportion of missing
genotypes across loci > 0.05, and parent-offspring mismatches > 0.05. After these
filters, 24 382 segregating SNPs from the 42K SNP panel were available for 6035
animals.

6.2.3 Statistical methods

Two prediction methods, GBLUP-REML and BayesC, were applied to predict GEBVs.
For both methods, MA that included only additive genetic effects, and MAD that
included both additive and dominance genetic effects were fitted. In addition,
PBLUP-REML was applied, which uses phenotypes and pedigree information to
estimate EBVs. Note that the same phenotypic data were analysed using the three
prediction methods.

PBLUP-REML additive model (MA)
The statistical model used for PBLUP-REML that included only additive genetic
effects was:

y=1p+Xb+Z,u+e (1)

where y is the vector of phenotypic records, 1 is a vector of ones, p is overall
mean, b is a vector of fixed class effects (hatch-date), X is a design matrix
corresponding to the hatch-dates, u is a vector of breeding values considered as
random effects, Z, is an incidence matrix that related records to breeding values,
and e is a vector of random residual effects. It is assumed that u ~ N(0, Ac2) and
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e ~ N(0,162) where 62 and o2 are the additive genetic and residual variances,
respectively, and A is the numerator relationship matrix based on pedigree.

PBLUP-REML dominance model (MAD)
The PBLUP-REML model that included both additive and dominance genetic effects
was:

y=1u+Xb+Zu+7Z;d+e (2)

wherey, 1, X, b, Z,;, u, and e are as defined above for the additive model, and Zy
is the incidence matrix for dominance effects. The dominance effects were
assumed to be normally distributed as: d ~ N(0, Do3), where D is the dominance
relationship matrix. The R package “nadiv” (Wolak, 2012) was used to construct the
D matrix. The dominance genetic relationship (Ag,) between individuals g and h
was computed as Lynch and Walsh (1998):

Agh= (AkmAin + AxnAim) /4 (3)

where k and | represent the sire and dam of g, m and n represent the sire and dam
of h and Aj; is the additive genetic relationship between the individuals indicated in
the subscripts. This equation, which was used for calculation of the off-diagonal
elements of D matrix, does not take into account the inbreeding of g and h from
paths connecting the parents, i.e. Ay and A, are not used for calculating Agy,. For
diagonal elements of the D matrix inbreeding was approximated by scaling
coefficients by (1 —F), following Harris (1964), where F is the inbreeding
coefficient of the individual.

The D matrix that was built from the total number of animals in the pedigree (25
738) was too large for ASReml to handle. Therefore, only the rows and columns of
the D matrix that included the dominance relationships among all pairs of
phenotyped individuals (12 326) was used in the analysis.

PBLUP-REML analyses were implemented in ASReml v3.0 (Gilmour et al., 2008), in
order to obtain REML estimates of variance components.

GBLUP-REML additive model (MA)

The additive model for GBLUP-REML was the same as for PBLUP-REML MA, except
that a G matrix was used as the relationship matrix instead of the A matrix. The G
matrix described the additive genomic relationships among all pairs of individuals
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in both the reference and validation populations based on the SNP genotypes. It
was calculated following Yang et al. (2010) as:

G= %Z(XA — 2pj)(Xa — 2p;)/2p;(1 — pj), where N is the number of SNPs, X,
was coded as 0, 1, or 2 for genotypes AA, AB, and BB, respectively, and p;j is the

observed allele frequency at the j™ SNP in the reference plus validation
populations.

GBLUP-REML dominance model (MAD)

The GBLUP-REML model with both additive and dominance genetic effects was the
same as for PBLUP-REML MAD, except that D; was used as the dominance
genomic relationship matrix instead of the D matrix. Matrix D; was calculated
following the approach of Yang et al. (2010) as:

1 2
Dg =1 2(Xp — 2pP)(Xp — 2p{)/4pf (1 — p;) , where Xp, was 0, 2p, or (4p — 2)
for genotypes AA, AB, and BB, respectively, and other terms were as defined for

the G matrix. Matrices G and Dg were constructed using the GCTA software tool
(Yang et al., 2011).

BayesC additive model (MA)
The following model was used to estimate SNP effects for the additive model:

N
Vi=HUu + Xibi + z Zl]a] + € (4)

=1

where y; is the phenotype of animal i, p is an overall mean, b; is a fixed class effect
(hatch-date) for animal i, X; is a vector corresponding to the hatch-date of animal i,
Z;; is the copy number of a given allele of SNP j centred by its mean of the
reference population, q; is the allele substitution effect of SNP j, and ¢; is the
random residual effect for animal i. The prior specification for model parameters
and the sampling strategy followed the BayesC method proposed by Habier et al.
(2011). The prior for a; depends on variance of random substitution effects for all

SNPs, 62, and the prior probability T that SNP j has zero effect:

0 with probability T,

o2 =
%o {~ N(0,02) with probability (1 — ) ()
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The priors of all SNP effects have a common variance in BayesC, which follows a
scaled inverse chi-square distribution with parameters v, (degrees of freedom) and
S2 (scale parameter). We report results for ™ = 0.95 but results (both variance
components and prediction accuracy) were very similar when m = 0.99 was used.
BayesC uses Gibbs sampling to sample from the posterior distributions of the
unknown model parameters. The length of the Markov chain was 41 000 cycles.
The first 1000 cycles were considered burn-in and discarded.

BayesC dominance model (MAD)
The following model was used to simultaneously fit both additive and dominance
effects of the SNPs:

N

j=1

where y;, 1, Xj, b, Z;j, and e; are as for the additive model, Wj; is the indicator
variable for the heterozygous genotype of SNP j centred by its mean, a; and d; are
additive and dominance effects, respectively. Specification of the dominance model
was similar to that of the additive model, with the prior distribution for a; being a
mixture of a point mass at zero and a normal distribution. The prior for d; was also

a mixture distribution, given g and 0'?1, with the corresponding definitions:

dlo? = { 0 with probability 1y, ;
iloa = 7. N(0,63) with probability (1 — 1y) @)

We chose gy = 0.95. More details of the dominance model are in Zeng et al. (2013)
who accounted for directionality of dominance by assuming that the normal
component of the prior for d; has an unknown nonzero mean (Zeng et al., 2013).
However, in our analysis we assumed the mean to be zero. The distributions of
additive and dominance effects were assumed to be independent.

The priors for additive and dominance variances were the estimates from GBLUP-
REML. BayesC analyses were carried out using a modified version of the GenSel
software (Fernando and Garrick, 2013), following Zeng et al. (2013).
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6.2.4 Variance component estimation

Variance components for each trait were estimated in the reference population
using PBLUP-REML, GBLUP-REML, or BayesC methods based on MA and MAD
models.

In BayesC MA model, the breeding values (1) of all the animals in the population
were computed in each iteration with the samples of the substitution effects of
SNP alleles (&):

u=7Za (8)

The variance of these breeding values gave the additive genetic variance in each
iteration:

~ ~\ 2
Var(ii) = i, Tf _ ( =1 ui) ©)
n n
Our estimate for the additive genetic variance is the posterior mean of each of the
Var(W) values obtained from the post burn-in Markov chain.

In BayesC MAD model, we computed the genotypic values of all the animals at each
SNP in each iteration with the samples of the additive (3;) and dominance effects
(aj) of the SNP:

(10)

By definition, the allele substitution effect at the SNP (@;) is the slope of the

following linear regression:

where
~ ’ -1 ,~
G =(27;) Z'g; (12)

and 5,- are the dominance deviations of all the animals at the SNP. Then, the total

dominance deviations across SNPs are:
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~ N ~
5= Z,-=1 5, (13)

Thus, the dominance genetic variance in each iteration is:

o L& (ZLEY
Var(8) = — - ( - ) (14)
Similar to the additive genetic variance, our estimate for the dominance genetic
variance is the posterior mean of each of the Var(g) values obtained from the post
burn-in Markov chain.

Narrow-sense heritability (h2) was estimated as the ratio of additive variance to
the total phenotypic variance (hZ = o0%/03). The dominance heritability was
estimated as the ratio of dominance variance to the total phenotypic variance
(h3 = 03/0}). For GBLUP-REML and PBLUP-REML, ASRem| also estimated
standard errors of the variance component estimates. For BayesC, standard errors
were calculated as the standard deviation of the 40 000 posterior samples of the
variance components.

6.2.5 Accuracy and bias of predicting breeding values and total
genetic values

The phenotypes of validation animals were masked and the breeding values of
those animals were predicted using information from the reference population
using the methods described above. Accuracy of prediction of breeding values was
assessed as:

TEBV,Phen (15)

2
\hp

Iegv,phen IS the correlation between hatch-corrected phenotypes and breeding

Accuracy =

values (GEBVs or EBVs) and hf, is total heritability (the pedigree-based (narrow-
sense) heritability estimated for the trait using the whole population) (Table 6.1).
We calculated the standard errors of the accuracies as Fisher (1954):

_ 1-Accuracy?

s.e.= — (16)

where M is the number of validation animals.
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In addition to the accuracy, we computed the regression of phenotypes on
estimated breeding values (GEBVs or EBVs) and used its departure from one to
evaluate bias of the EBV. These accuracy and regression statistics were calculated
based on models MA and MAD for the three methods mentioned above.

The accuracy and bias of predicting total genetic values was similarly calculated but
using total rather than additive genetic values and heritability.

6.3 Results

Means and standard deviations of all traits for different datasets (all phenotypic
records, records from genotyped animals, reference and validation populations)
are in Table 6.1. In addition to environmental differences, differences in means
between datasets reflect the effects of selection. Animals with phenotypic records
hatched between 2004 and 2010, whereas most genotyped animals were selected
parents that hatched between 2006 and 2010. Hence, the mean phenotype was
generally lower in the whole dataset than among the genotyped animals. Similarly,
a lower mean phenotype in the reference population compared with the validation
population was as expected, since the reference animals were hatched before the
validation animals. Note that for SM, the mean was lower for the selected animals,
which is desirable, compared with the mean from the whole dataset, since
selection aims to reduce age at puberty.
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Table 6.1 Number (N), mean, standard deviation (SD) and pedigree-based estimates of total
heritability for eight traits in the reference (hatched before 2010), validation (hatched in
2010) and combined datasets.

Trait Dataset N Mean SD Total heritability

all 12 297 83.20 10.67 0.34
o0 genotyped 2127 85.62 7.96 -
reference 1825 86.02 7.48 -
validation 302 83.16 10.07 -

all 12 305 152.57 9.62 0.56
M genotyped 2136 148.56 9.33 -
reference 1834 149.65 9.13 -
validation 302 141.94 7.63 -

all 12 156 57.52 4.79 0.72
EW genotyped 2114 58.04 4.35 -
reference 1814 57.87 4.30 -
validation 300 59.09 4.46 -

all 12152 7.43 1.05 0.55
AH genotyped 2114 7.72 1.03 -
reference 1814 7.60 0.98 -
validation 300 8.43 1.04 -

all 12 155 75.22 8.40 0.70
o genotyped 2113 78.15 7.24 -
reference 1813 77.98 7.16 -
validation 300 79.21 7.66 -

all 12 215 45.73 4.97 0.64
£3 genotyped 2117 45.24 4.63 -
reference 1818 45.43 4.59 -
validation 299 44.10 4.67 -

all 12 217 76.11 8.08 0.63
c3 genotyped 2117 79.40 7.34 -
reference 1818 78.90 7.16 -
validation 299 82.46 7.71 -

all 12 081 15.19 1.17 0.48
YW genotyped 2102 15.40 1.47 -
reference 1806 15.33 1.13 -
validation 296 15.85 1.18 -

Egg production (PD); age at sexual maturity (SM); average egg weight (EW); albumen height
(AH); egg colour (CO); egg colour of the first three eggs (C3); egg weight for the first three
eggs (E3); yolk weight (YW).

*Genotyped animals contained reference and validation populations.

“For SM, low values (mean) for genotyped animals compared with the mean from the whole
dataset are desired, since selection is for lower SM.

6.3.1 Variance component estimates
Variance component and heritability estimates obtained with the different
methods (GBLUP-REML, BayesC, and PBLUP-REML) for MA and MAD models for
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each trait are in Table 6.2. The additive variances estimated by MA were very
similar (either equal or slightly larger) to those estimated by MAD. With GBLUP-
REML and BayesC, residual variances estimated from MA were slightly larger than
those estimated from MAD, whereas with PBLUP-REML, residual variances were
considerably higher (~ 5% to 87% depending on the trait) when using MA
compared with MAD.

For GBLUP-REML, the narrow-sense heritability from MA was the same as that
from MAD for all traits. With BayesC and PBLUP-REML, the narrow-sense
heritability estimates from MA were 0.01 to 0.02 larger than those from MAD. For
five of the eight traits, estimates of narrow-sense heritability from PBLUP-REML
(both MA and MAD models) were similar to those from GBLUP-REML and BayesC.
For SM and YW, narrow-sense heritability from PBLUP-REML was 0.03 to 0.07
greater compared with those from genomic-based methods, whereas for EW,
estimates of narrow-sense heritability from PBLUP-REML was 0.03 to 0.07 lower
than estimates from the genomic-based methods. With genomic-based methods,
standard errors of narrow-sense heritability estimates were 0.01 to 0.03 smaller
than those from PBLUP-REML for all traits. Standard errors of estimates of narrow-
sense heritability were smaller for BayesC than for the GBLUP-REML and PBLUP-
REML methods. For all traits, PBLUP-REML vyielded much larger dominance
heritability than the genomic-based methods. Based on the MAD models and for
different traits, the proportion of dominance variance to the total phenotypic
variance (dominance heritability) ranged from 0 to 0.03, from 0.01 to 0.05, and
from 0.03 to 0.22 for GBLUP-REML, BayesC, and PBLUP-REML, respectively (Table
6.2). With GBLUP-REML, the largest dominance heritability was 0.03 + 0.03 for CO
and with BayesC, the largest dominance heritability was 0.05 + 0.03 for both CO
and YW, whereas with PBLUP-REML the largest dominance heritability was for EW
and AH (0.22 + 0.11 for EW and 0.22 + 0.13 for AH) followed by CO (0.20 + 0.11).
For all traits, standard errors of estimates of dominance heritability from PBLUP-
REML were 0.07 to 0.12 larger than those from genomic-based methods.
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Table 6.2 Variance component estimates (additive, dominance, and residual variances), narrow-sense and dominance heritability for eight traits in
layers using two models (MA and MAD) and three methods (GBLUP-REML, BayesC, and PBLUP-REML). For variance component estimation, the
reference population of ~ 1800 animals was used.

Method
GBLUP-REML BayesC PBLUP-REML
Trait  Model o? o3 o? h2 h3 o? o] o? h2 h3 o? o3 o? h2 h3
+ + + + + * + + + + + + + + +
SE SE SE SE SE SE SE SE SE SE SE SE SE SE SE
13.78 34.68 0.28 12.79 35.01 0.27 13.69 3530 0.28
MA o+ - + - + - + - - - + + -
PD 2.03 1.65 0.04 1.57 1.66 0.03 2.74 2.26 0.05
13.76 0.07 34.62 0.28 0.00 12.34 1.89 33.64 0.26 0.04 12.83 6.71 29.52 0.26 0.14
MAD + + = + + + E + + + + =
2.08 1.49 2.14 0.04 0.03 1.63 1.41 1.94 0.03 0.03 2.88 6.85 6.20 0.05 0.14
11.69 23.65 0.33 11.71 23.85 0.33 13.39 22.53  0.37
MA + - + + - + - + + - + - + + -
M 1.52 1.14 0.04 1.15 1.14 0.03 2.04 1.55 0.05
11.52 046 23.29 033 0.01 11.21 130 2310 0.31 0.04 | 1295 466 1850 0.36 0.13
MAD o+ =+ + &+ & % - + o+ o+ %
1.55 1.14 1.47 0.04 0.03 1.22 1.05 1.29 0.03 0.03 2.15 4.53 4.13 0.05 0.13
10.87 6.31 0.63 10.15 6.40 0.61 10.18 7.30 0.58
MA + - + - + - + - + - + + -
EW 0.91 0.39 0.03 0.49 0.37 0.02 1.15 0.72 0.05
10.87  0.05 6.26 0.63 0.00 10.02 0.57 5.98 0.60 0.03 9.81 3.86 3.89 0.56 0.22
MAD + * + + + + + + + + + + + + +
0.91 0.46 0.57 0.03 0.03 0.53 0.44 0.47 0.03 0.03 1.19 1.96 1.81 0.05 0.11
0.38 0.50 0.43 0.39 0.50 0.44 0.38 0.52 0.42
AH  MA 4 - + - + - + - - - + + -
0.04 0.03 0.04 0.03 0.02 0.03 0.05 0.04 0.05
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038 000 050 043 000 | 038 003 048 043 004 | 036 020 035 040 0.22
MAD + + + + + + + + + + + + + + +
0.04 0.03 0.04 0.04 0.03 003 002 003 003 003| 006 012 011 0.05 013
28.68 19.87 0.59 27.46 20.00 0.58 29.47 18.55 0.61
MA + - + + - + - + + - + - + + -
o 2.58 1.20 0.03 1.50 1.19  0.02 3.14 190 0.05
2848 143 1857 059 003 | 2694 232 1823 057 0.05 | 2834 939 1040 0.59 0.20
MAD + + + + + + + + + + + + + + +
2.60 1.42 1.69 0.03 0.03 1.64 156 161 003 003 | 324 537 491 005 011
9.78 897  0.52 9.31 9.00 0.51 9.90 942 0.51
MA + - + + - + - + + - + - + + -
£3 0.96 0.50 0.03 0.59 049  0.03 1.27 0.84  0.05
978 000 897 052 0.00]| 925 027 88L 050 001 | 971 146 817 050 0.08
MAD + + + + + + + + + + + + + + +
096 0.00 o050 003 o000| 059 026 051 003 0.01 130 217 203 0.05 0.11
25.91 2398 0.52 25.93 2421  0.52 26.97 23.48 0.53
MA + - + + - + - + + - + - + + -
3 2.53 134 0.03 1.60 133 0.03 3.13 2.04  0.05
2587 0.84 2318 052 002 | 2535 213 2270 050 0.04 | 26.83 137 2228 0.53 0.03
MAD + + + + + + + + + + + + + + +
2.54 1.47 1.85 0.03 0.03 1.72 1.40 156 0.03 0.03 3.21 5.08 4.81 0.05 0.10
0.40 0.71  0.36 0.37 073  0.34 0.46 0.67 0.41
MA + - + + - + - + + - + - + + -
YW 0.05 0.04 0.04 0.04 0.04 0.03 0.07 0.05  0.05
040 000 071 036 000 | 035 o006 069 032 005 | 044 015 054 039 0.13
MAD + + + + + + + + + + + + + + +
005 000 004 004 o000| 004 004 o004 003 003 | 007 014 013 005 012

Egg production (PD); age at sexual maturity (SM); average egg weight (EW); aloumen height (AH); egg colour (CO); egg colour of the first three eggs (C3);
egg weight for the first three eggs (E3); yolk weight (YW); MA: only additive effects were included; MAD: additive and dominance effects were included;
02: additive variance; 0(21: dominance variance; 62: residual variance; h2: narrow-sense heritability; hé: dominance heritability; SE: standard error.
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6.3.2 Accuracy of predicting breeding values and total genetic
values

In general and as expected, accuracy of predicting breeding values was lowest with
PBLUP-REML for all traits, ranging from 0.16 to 0.43, for both MA and MAD. With
genomic prediction methods (GBLUP-REML and BayesC), prediction accuracies
ranged from 0.28 + 0.05 (PD) to 0.60 * 0.04 (E3 and EW) across traits. Accuracies of
predicting breeding values were the same for MA and MAD (Table 6.3). For some
traits (PD, CO, YW), GBLUP-REML produced higher prediction accuracy than BayesC
and for other traits (AH, EW, E3, and C3), BayesC yielded higher accuracy than
GBLUP-REML. Differences between methods were, however, small (0.01 to 0.05
depending on the trait) (Table 6.3). Accuracies of predicting total genetic values are
in Table S6.1. For all prediction methods and both MA and MAD, breeding values
and total genetic values had very similar prediction accuracies (Table S6.1).
Moreover, the correlation of GEBVs with estimates of total genetic values and the
correlation of GEBVs from MA with GEBVs from MAD were very high (ranging from
0.98 to 1).

6.3.3 Bias of predicted breeding values and total genetic values

The deviation from unity of the slope coefficient for the regression of hatch-
corrected phenotypes on the predicted breeding values reflects the bias of
breeding value estimates (Table 6.3). Regression coefficients for PBLUP-REML
ranged from 0.63 and 1.26. Regression coefficients greater than 1 indicate that the
variance of estimates (GEBV or EBV) was underestimated. All regression coefficient
values were less than 1 for both GBLUP-REML and BayesC methods (ranged from
0.67 to 0.99), indicating the variance of estimates was overestimated. For GBLUP-
REML, regression coefficients were very similar between MA and MAD. For BayesC,
regression coefficients from MAD were 0.01 to 0.05 (depending on the trait)
greater than those from MA, except for E3. In addition, with PBLUP-REML, MAD
had slightly lower bias of prediction than MA. Regression coefficients of
phenotypes on estimated total genetic values were similar to those on estimated
breeding values (Table S6.1).
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Table 6.3 Accuracy of predicting breeding values and regression coefficients of phenotypes
on predicted breeding values for eight traits in egg-laying chickens using two models (MA
and MAD) and three methods (GBLUP-REML, BayesC, and PBLUP-REML).

Accuracy + SE Regression coefficient + SE
Method

Trait Model GBLUP- BayesC PBLUP- GBLUP- BayesC PBLUP-
REML REML REML REML

MA 0.30+ 0.28+ 0.17+ 0.85+ 0.78+ 0.89+

PD 0.05 0.05 0.06 0.28 0.27 0.51
MAD 0.30+ 0.28+ 0.16 + 0.85+ 0.82+ 0.89+

0.05 0.05 0.06 0.28 0.28 0.53

MA 0.30+ 0.30+ 0.25+ 0.91+ 0.88+ 1.26+

M 0.05 0.05 0.05 0.23 0.22 0.38
MAD 0.30+ 0.30+ 0.25+ 0.93+ 091+ 1.21+

0.05 0.05 0.05 0.23 0.23 0.37

MA 0.55+ 0.60 + 0.22+ 0.88+ 0.92+ 0.63+

Ew 0.04 0.04 0.05 0.10 0.09 0.19
MAD 0.55+ 0.60+ 0.23+ 0.88+ 0.94 + 0.66+

0.04 0.04 0.06 0.10 0.09 0.19

MA 0.44+ 0.46 + 0.24 + 0.81+ 0.80+ 0.67+

AH 0.05 0.05 0.05 0.14 0.13 0.15
MAD 0.44+ 0.46 + 0.23+ 0.81+ 0.82+ 0.69+

0.05 0.05 0.05 0.14 0.13 0.23

MA 0.54+ 0.51+ 0.35+ 0.98 + 0.92+ 0.87+

co 0.04 0.04 0.05 0.11 0.11 0.17
MAD 0.54+ 0.51+ 0.35+ 0.99+ 0.95+ 0.90+

0.04 0.04 0.05 0.11 0.12 0.17

MA 0.58+ 0.60+ 0.43+ 0.97 + 0.98+ 1.23+

£3 0.04 0.04 0.05 0.11 0.10 0.20
MAD 0.58+ 0.60 + 0.43+ 0.97 + 0.98+ 1.25+

0.04 0.04 0.05 0.11 0.10 0.20

MA 0.38+ 0.39+ 0.26 + 0.68 + 0.67 + 0.70t

c3 0.05 0.05 0.05 0.13 0.12 0.19
MAD 0.38+ 0.39+ 0.26 + 0.68 + 0.70+ 0.70+

0.05 0.05 0.05 0.13 0.12 0.19

MA 0.44+ 0.42+ 0.32+ 0.96 + 0.90+ 0.86+

YW 0.05 0.05 0.05 0.18 0.17 0.22
MAD 0.44+ 0.42 + 0.32+ 0.96 + 0.95+ 0.89+

0.05 0.05 0.05 0.18 0.18 0.23

Egg production (PD); age at sexual maturity (SM); average egg weight (EW); albumen height
(AH); egg colour (CO); egg colour of the first three eggs (C3); egg weight for the first three
eggs (E3); yolk weight (YW); MA: only additive effects were included; MAD: additive and
dominance effects were included; SE: standard error.
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6.4 Discussion

We investigated additive and dominance variance components and accuracy of
predicting breeding values for eight traits in a purebred line of brown layers using
either pedigree or genomic information. The estimates of dominance variance
relative to phenotypic variance differed widely between traits and methods
(GBLUP-REML, BayesC, and PBLUP-REML), ranging from 0 to 0.22. The different
amounts of dominance variance among traits were expected, since the dominance
variance largely depends on dominance effects of QTL, allele frequencies at QTL
and changes in allele frequency during selection (Ishida et al., 2000). In general,
with both pedigree and genomic-based methods, models that included dominance
effects (MAD) did not predict breeding values more accurately than additive
models that ignored dominance effects (MA).

6.4.1 Variance component estimates

For both pedigree and genomic-based methods, estimates of additive variance
were slightly higher for the MA model than for the MAD model, in agreement with
Ishida et al. (2000) and Wei and van der Werf (1993) who reported pedigree-based
variance component estimation in layers, and with Nishio and Satoh (2014) and Sun
et al. (2014) who reported genomic-based variance component estimation in pigs
and dairy cattle, respectively. These increases were not significant in relation to
standard errors of the estimates, but across eight traits and three methods,
estimates of additive variance from MAD were never higher than those from MA,
except for CO estimated by BayesC, for which the additive variance from MAD was
slightly larger than that from MA (Table 6.2). The higher additive variance with MA
is as expected because, depending on the distribution of allele frequencies, a
proportion of variance due to non-additive effects (i.e. dominance in the current
study) can be manifested as additive variance.

In general, the estimates of dominance variance were higher with PBLUP-REML
than with genomic-based methods. Standard errors of estimates of dominance
variance with PBLUP-REML were greater than those obtained with genomic-based
methods, consistent with Vitezica et al. (2013), which means that the genomic
information provided more statistical information to estimate dominance variance
than pedigree.

Estimates of residual variance were slightly higher with MA than with MAD when
using genomic-based methods, whereas this increase was much larger for PBLUP-
REML (~ 5% to 87% depending on the trait). The greater estimates of residual
variance by PBLUP-REML might be caused by dominance variance, which was part
of the residual variance when using MA. In a study that estimated dominance
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variance using a pedigree-based method in a population of cattle of 582 000
animals, it was found that almost all dominance variance was included in the
residual variance (Misztal et al., 1997).

In chickens, additive and dominance genetic variances have mostly been estimated
using models with pedigree-based relationships (e.g., Wei and Vanderwerf, 1993,
Ishida et al., 2000, Misztal and Besbes, 2000). The proportions of dominance
variance to the total phenotypic variance (dominance heritability) estimated based
on pedigree data for egg production and egg quality traits in chickens ranged from
0.01 to 0.56 (Wei and Vanderwerf, 1993, Ishida et al., 2000). In our study, the
dominance heritability estimated by PBLUP-REML MAD for SM was within the
range of the dominance heritability estimates reported by Ishida et al. (2000) for
this trait. In their study, dominance heritability ranged from 0.03 to 0.24 for SM.
For all traits, dominance heritability estimated by GBLUP-REML and BayesC were
lower, ranging from 0 to 0.05, than pedigree-based estimates, which ranged from
0.03 to 0.22. Vitezica et al. (2013) showed, using simulation, that genomic models
were more accurate for estimation of variance components than their pedigree-
based counterparts. They argued that it is hard to obtain a good estimate of
dominance variance from pedigree information and the results are accompanied by
large standard errors (Vitezica et al., 2013). Our findings are consistent with their
results, since for all traits the standard errors of dominance variance estimates
from pedigree (PBLUP-REML MAD) were 100% to 734% larger than those from the
genomic-based methods. These large standard errors from pedigree analysis
suggest a higher level of confounding of effects and less power to estimate
dominance variance with pedigree than with genomic data. In pedigree-based
models, which use expected degrees of relatedness between relatives, dominance
variance may be confounded with environmental covariance of full sibs (common
environment shared by full sibs) and maternal effects (Lynch and Walsh, 1998, Hill
et al., 2008) resulting in inflation of the dominance estimates (Misztal and Besbes,
2000). The pedigree used in the current study consisted of full sib families, but
including a random effect of dam did not substantially change the estimates of
dominance variance for most traits (results not shown). Moreover, the D matrix
used in this study is an approximation in the presence of inbreeding (see Materials
and methods); the variance-covariance structure of the additive and dominance
effects is more complicated under inbreeding. Correctly taking inbreeding into
account when building the D matrix, without approximations, may improve the
estimates of dominance variance. Methods that account for all pedigree
relationships in building D are currently lacking. With inbreeding and dominance,
the covariance between inbred individuals with dominance is no longer a function
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of only additive and dominance variance (Lynch and Walsh, 1998). Using both
simulation and real data, Ovaskainen et al. (2008) have shown that for inbred
populations, the approximations that are commonly used to compute pedigree-
based dominance relationships (equation 3) can produce substantially biased
estimates in deep pedigrees, mostly overestimating dominance variance
(Ovaskainen et al., 2008). Misztal (1997) reported that accurate pedigree-based
estimation of dominance variance requires at least 20 times as much data as
required for estimation of additive variance. Genomic-based methods, which use
realized relationships, are expected to reduce the potential confounding with
additive effects and residuals and provide more accurate estimates of dominance
variance. That is, with genomic-based methods, relationships are more accurate
than from pedigree, since the use of exact fractions of shared genes in G can
provide more accurate predictions than use of expected fractions as in A.

An alternative to our models for dominance estimation is an extension to single-
step GBLUP (ssGBLUP) (Legarra et al., 2009), using both genotyped and non-
genotyped animals by combining the pedigree and genomic information into a joint
relationship matrix. Using both genotyped and non-genotyped animals increases
the sample size and dominance may be estimated more accurately. However, the
problem that inbreeding is not completely taken into account may still exist with
ssGBLUP.

Weir (2008) (theory) and Zhu et al. (2015) (simulation) showed that the proportion
of genetic variance at a causal variant that is captured by a SNP is LD’ for additive
variance (where LD is the correlation between the SNP and the causal variant), and
LD* for dominance variance. This suggests that if LD between SNPs and causal
variants is weak to moderate, the observed dominance variance at SNPs will tend
to be smaller than the observed additive variance, even when the actual additive
and dominance variance components at causal variants are equal (Zhu et al., 2015).
This may explain the low dominance variance estimated by BayesC. Zhu et al.
(2015) tested the extent to which dominance variance reduces due to incomplete
LD between SNPs and casual variants by reducing LD (reducing the number of
simulated SNPs from 90% to 10% in steps of 10%) and found a faster decrease
(from 0.29 to 0.20 for additive variance and from 0.26 to 0.13 for dominance
variance) of the dominance variance (explained by SNPs) due to incomplete LD
than additive variance. In another simulation study by Da et al. (2014), dominance
accuracy increased as the density of SNP panel increased from 1K to 40K. They used
different SNP density panels (1K, 3K, 7K, and 40K) to estimate dominance variance
and it was shown that even a 40K SNP panel was insufficient to achieve accurate
estimates of dominance variance or dominance heritability. In almost all of their
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scenarios (with different prior for true additive variance, true dominance variance,
true additive heritability, and true dominance heritability), estimates of dominance
variance and dominance heritability increased from 1K to 40K. For example, in a
scenario with true additive and dominance variances equal to 0.06 and 0.19,
corresponding to true additive and dominance heritabilities equal to 0.05 and 0.15,
respectively, estimates of dominance variance increased from 0.01 + 0.02 with 1K
to 0.15 + 0.10 with 40K, and estimates of dominance heritability increased from
0.01 £ 0.01 with 1K to 0.12 + 0.08 with 40K.

6.4.2 Accuracy and bias of predicting breeding values and total
genetic values

In the presence of dominant gene action, a model including dominance effects is
expected to increase accuracy and reduce bias of predicting breeding values and
total genetic values. In this study, however, no improvement in the accuracy of
predicting breeding values (Table 6.3) or total genetic values (Table S6.1) was
observed with MAD compared with MA. Our results are in contrast to Sun et al.
(2014) and Da et al. (2014), who used real data, and to Wellmann and Bennewitz
(2012) and Toro and Varona (2010) who used simulated data, but consistent with
Nishio and Satoh (2014) who used real data from pigs. Those studies used high-
density SNP panels for dominance variance estimation. One reason for not
detecting an improvement in prediction accuracy by including dominance in the
model could be because dominance effects were difficult to estimate. For example,
Sun et al. (2014) found an increase of 2% in prediction accuracy of phenotypes
when including dominance compared with a model that included only additive
effects in dairy cattle. However, compared with the large dominance variance (5%
to 7% of total phenotypic variance), the 2% gain in prediction accuracy was small,
which suggests that dominance effects are difficult to estimate precisely, even with
genomic data. Another reason for not detecting an increase in prediction accuracy
with the dominance model can be related to the SNP density. Several empirical
studies have evaluated the effects of SNP density on prediction accuracy (e.g.,
Weigel et al. (2009). In a simulation study, Wellmann and Bennewitz (2012)
investigated the accuracy of predicting dominance and genotypic values and
showed that for accurate prediction of these components, high-density SNP panels
are needed. The likely reason for the increased accuracy of dominance deviations
for high-density SNP panels is that with a higher density panel, the QTL are on
average in higher LD with SNPs (Wellmann and Bennewitz, 2012). The impact of a
high-density panel and LD on accurate estimation of dominance variance has
already been discussed.
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When BayesC and PBLUP-REML were applied, in general, estimates of breeding
values were slightly less biased using MAD compared with MA, whereas with
GBLUP-REML, MAD had similar bias as MA. For the three prediction methods,
compared with MA model, the MAD model did not improve unbiasedness when
predicting total genetic values. With GBLUP-REML, the reason that total genetic
values were not better predictors of phenotypes (i.e. the accuracy of predicting
total genetic values was similar to the accuracy of GEBVs) is that the dominance
deviations, which were added to the breeding values to calculate the total genetic
values, were very small. With BayesC, the posterior mean of dominance effects was
very small relative to posterior mean of additive effects, causing the total genetic
values to be very similar to the GEBVs. Thus, total genetic values were not better
predictors of phenotypes for BayesC either.

6.5 Conclusions

Estimates of the proportion of dominance variance to the total phenotypic variance
ranged from 0 to 0.05 with genomic-based methods (GBLUP-REML and BayesC),
whereas with the pedigree-based method (PBLUP-REML), this proportion ranged
from 0.03 to 0.22. Pedigree-based estimates of dominance variance had large
standard errors and estimates were high compared with genomic-based methods.
GBLUP-REML and BayesC estimates of dominance variance were similar. Accuracy
of predicted breeding values was higher with genomic-based models than with the
pedigree-based models. With genomic-based models, accuracy of predicting
breeding values was similar to the accuracy of predicting total genetic values and
neither accuracy increased when including dominance in the model. We conclude
that fitting dominance effects did not impact accuracy of genomic prediction of
breeding values in this population.
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7 General discussion

7.1 Introduction

Genomic selection (GS) is the selection of animals based on breeding values that
are estimated using genome-wide dense markers (Meuwissen et al., 2001). Most
initial studies on GS assessed the accuracy of the genomic predictions by simulation
(e.e. Meuwissen et al., 2001, Muir, 2007, Calus et al., 2008, Meuwissen and
Goddard, 2010). Although the accuracy of GS is an important factor for determining
the genetic improvement, it is also important to understand the changes in the
genome architecture from one or several generations of GS, because this affects
the accuracy of GS in subsequent generations and the genetic variance in an
ongoing selection program. Therefore, a robust scientific study that involves GS
applied on real data and its comparison to traditional best linear unbiased
prediction (BLUP) selection methods over multiple generations was needed to
investigate the effectiveness of GS and to determine whether the promising results
from simulations were valid. Chicken is an appropriate organism for such an
evaluation, because it has a short generation interval and can produce many
progeny per family. For the analysis presented in the current thesis, data from a
selection experiment of layers was available for the evaluation of the potential of
GS for genetic improvement (i.e. increasing the response to selection) over multiple
generations.

Recently, the development of next-generation sequencing technologies has made it
feasible to obtain whole-genome sequence (WGS) data that potentially can be used
in routine genetic evaluations. One advantage of WGS data over chip data is that
single nucleotide polymorphisms (SNPs) in chip data are a biased sample (from
ascertainment bias) of all the SNPs that segregate in a population. Further, with
WGS data, it is expected that the genetic variation underlying the quantitative
traits is in the data, enabling a better understanding of the biology of the trait
(Stein, 2001). Several simulation studies have investigated the use of WGS data in
genomic evaluations (Meuwissen and Goddard, 2010, Clark et al., 2011, Druet et
al., 2014, Macleod et al., 2014, Perez-Enciso et al., 2015) and other studies have
reported the use of WGS data for genomic prediction in real data of Drosophila
melanogaster (Ober et al., 2012), dairy cattle (Hayes et al., 2014, van Binsbergen et
al., 2015), and chicken (chapter 5).

In this thesis, | investigated several aspects of GS. First, the impact of GS on
genome variation in comparison with the impact of BLUP selection was assessed
(chapter 2). Then, the concordance between the signatures of GS found in chapter
2 and the associated genomic regions detected by a genome-wide association
study (GWAS) was investigated (chapter 3). The first two analyses were performed
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using genotypes from a 60K SNP panel. Next, the value of WGS data over the 60K
SNP panel for genomic prediction was evaluated. To investigate the benefit of WGS
data, only key animals were sequenced and the sequence on the remaining animals
had to be imputed. Hence, before sequencing, the value of the key animals for
imputation was assessed with 60K genotypes by genotype imputation from lower
density SNP panels (3K and 48K) to a higher density SNP panel (60K) (chapter 4).
With real sequence data, the advantage of WGS data over the 60K SNP panel for
genomic prediction was assessed by comparing the prediction accuracy from WGS
data with the accuracy from the 60K SNP panel (chapter 5). Finally, with GS there is
renewed interest in the prediction of dominance effects. In chapter 6, | therefore
investigated the impact of fitting dominance besides the additive effects on
genomic prediction accuracy.

In this chapter, | discuss the long-term consequences of GS in terms of loss of
genetic variation, followed by a discussion of several challenges when using WGS
data in genomic predictions and possible ways to overcome some of those
challenges. Finally, the implementation of GS in layers is discussed.

7.2 Long-term consequences of GS

For continuing the long-term genetic improvement in a breeding program, the
genetic variation should be maintained. Several factors including genetic drift, finite
population size, and selection cause loss of genetic variation (Hill, 2000). The loss of
genetic variation is particularly an issue for GS compared with BLUP selection, for a
number of reasons. First, since GS acts on quantitative trait loci (QTL) with medium
to large effects (the small QTL may not be selected), these QTL and their
neighbouring alleles may be moved to fixation. As a result of QTL fixation,
heterozygosity of loci linked to one or more QTL may also decline which leads to
inbreeding at those loci (Liu et al., 2014). Results in chapter 2 showed that with
GBLUP, changes in allele frequencies are more localized around the selected loci
compared with BLUP, indicating that GS can cause faster reduction of genetic
variation at specific loci. Second, the smaller effective population size (N.) for the
GBLUP selected line (chapter 2) may lead to a quicker loss of genetic variation in
that line compared with the BLUP selected line. The smaller N, for GBLUP was due
to the fewer selected parents (chapter 2) and caused the greater genetic drift
compared with BLUP selection, thus leading to a greater risk of losing favourable
alleles with GBLUP. The effect of small N, on losing genetic variation may be more
pronounced when the number of traits in the breeding goal is larger and when the
traits are controlled by many genes (polygenic traits). In that situation, which
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occurs in many livestock breeding programs, the selection pressure on each allele
will be small. With a small selection pressure the effect of drift becomes bigger,
relative to the effect of selection and this may lead to loss of the favourable allele
(Bijma, 2012). When selecting, N, is under the control of the breeder, i.e. the N,
for GBLUP could be as large as the N, for BLUP depending on the number of
parents selected. The N. was chosen to be smaller for GBLUP in the experiment
analysed in chapter 2. Due to the greater loss of genetic variation with GBLUP
compared with BLUP selection, it is expected that the long-term response to GBLUP
is less than that for BLUP selection, as was shown in simulations (Muir, 2007) and
deterministic predictions (Goddard, 2009).

The alleles that are more likely to be lost, due to the selection pressure (on specific
loci) from GS or due to small N, are the rare alleles. These rare alleles are more
likely to be lost with GS, because GS can not select on them. GS relies on LD
between QTL and SNPs and the rare SNPs can not be in high LD with the SNPs in
the SNP panel because of the difference in the allele frequencies (if two loci have
very different allele frequencies, LD can never be high). Preserving these rare
alleles in a population for a longer period will allow selection to slowly change their
frequencies until the point that they capture a larger proportion of the genetic
variance (Daetwyler et al., 2015). Hence, these rare alleles contribute most
substantially to the long-term response to selection. Preserving these rare alleles or
decreasing the rate of losing them should be aimed. With BLUP selection, the only
way to preserve these rare alleles and thus to increase the long-term response to
selection is by having a larger N.. With the availability of genomic information,
other methods are possible. An optimization strategy has been proposed to
decrease the rate of losing rare alleles (Goddard, 2009) which is discussed in
section 7.2.1. A concern with preserving the rare alleles is that we can not
discriminate between the beneficial, deleterious, or neutral alleles. Therefore,
there is a risk that rare deleterious alleles will be preserved. However, the actual
targets of directional (positive) selection are the beneficial alleles. Whether the
selection pressure is strong enough on those beneficial alleles to counteract
genetic drift is unknown. Moreover, some neutral alleles that are ignored now by
selection may become beneficial in future if a population is exposed to a new
environment or if the selection objective changes.

7.2.1. Maintaining or generating genetic variation

Some possible strategies proposed to alleviate the loss of genetic variation are: (1)
introgression of one or more beneficial allele (Hill, 2000), (2) genome editing (GE)
(Jenko et al., 2015), and (3) an optimization approach in which SNPs are weighted
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based on their frequencies (Goddard, 2009). The first two strategies can generate
new genetic variation and the last strategy can maintain the existing genetic
variation. | will discuss these strategies and their advantages and disadvantages for
maintaining and/or generating the genetic variation.

Introgression, in which one or more beneficial alleles from a donor line is
introduced into a recipient line by repeated backcrossing to the recipient line, has
mainly been implemented in plant breeding (e.g. Jefferies et al., 2003). The
beneficial allele can be a QTL detected by a GWAS. Although introgression can
introduce new genetic variation, it has some drawbacks. First, there is uncertainty
about the true QTL and the favourable allele. Second, the effect of the QTL may be
decreased in the recipient line. Third, with the polygenic architecture of most traits
in both animal and plant breeding, an individual QTL is usually not explaining a
large proportion of genetic variation. Due to these drawbacks, introgression is not a
promising approach for increasing the genetic variation in livestock breeding.

GE is a technique that can create completely new genetic variation, because it
enables specific nucleotides in the genome of an individual to be modified, i.e. a
series of nucleotides can be added, deleted, or substituted (Jenko et al., 2015).
Since only few GE studies have been done in animal breeding programs (Tan et al.,
2012, Tan et al., 2013, Proudfoot et al., 2015), it is still unknown how suitable GE is
for genetic improvement of quantitative traits in livestock breeding. Similar to
introgression, the need to know true QTL is one of the disadvantages of GE. Other
disadvantages include technical difficulties such as the possible occurrence of off-
target editing and ethical issues. Off-target editing remains one of the main
challenges of GE, because these might affect for instance animal welfare. For
example, an off-target edit may disrupt a gene, leading to a loss of function
mutation and welfare issues or culling of the animal. Success of GE would typically
need the detection of true QTL and detection of the true QTL is almost impossible
unless a very large number of genotyped and phenotyped animals are available.
Since such a large sample size is not yet available in animal breeding programs, the
applicability of GE is currently limited.

Goddard (2009) proposed the use of optimum weights for each SNP depending on
their allele frequency, i.e. a larger weight is allocated to a SNP with lower allele
frequency and vice versa. Jannink et al. (2010) implemented the approach
proposed by Goddard, in addition to placing more weights on low-frequent alleles,
the SNP effects of the SNPs were included in the selection criteria. Compared with
unweighted GS, putting an extra weight on low-frequency favourable alleles may
decrease the rate of losing of such alleles. This causes GS to increase the frequency
of those alleles earlier on, resulting in an initial increase in genetic variance. This
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approach led to higher long-term response to selection (Jannink, 2010). These
weighting approaches were so far tested in simulations. Since some assumptions in
simulations may not be realistic, the approaches may not be as successful in
practice as was shown by simulations. For example, in simulations it was assumed
that SNP effects were known and accurate. However, in reality SNP effects may be
estimated inaccurately, which can make the application of weighted GS
problematic, in some cases placing the weight on the wrong SNPs that are not
actually of importance. The inaccuracy in estimation of SNP effects is more
problematic for alleles with smaller effects. Another assumption with simulations
by Goddard (2009) and Jannink (2010) was that LD between the QTL and SNPs was
complete. However, in reality there may be partial LD between the QTL and the
SNPs. With incomplete LD, a part of genetic variance is not explained by markers
(Goddard, 2009) and most likely the SNP effects will be smaller than the QTL effect.
Another assumption with simulations that likely contradicts reality is ignoring the
presence of any non-additive effects (Goddard, 2009). However, this assumption
may not affect validity of the simulation results, depending on the amount of non-
additive variance that will be present in the real data. Considering these issues, it
still remains a question whether long-term response to GS can be increased by
using weighted GS. The weighting approach will be more successful when selection
is on true QTL rather than on the presumed QTL. Even though it is not possible to
precisely detect the true QTL, the QTL effects should be estimated as accurate as
possible. A possible way to achieve that is to use a higher density SNP panel. With a
higher density SNP panel, the chance that a QTL is in high LD with the SNP is
increased (Goddard, 2009), leading to more accurate prediction of the QTL.
Enlarging the sample size can also increase the accuracy of estimating the QTL
effects. Most practical livestock breeding programs focus more on increasing the
number of genotyped animals and less on increasing the density of the panel to
increase the accuracy of estimating SNP effects. The potential of increasing the
density of the SNP panel has been investigated in cattle (Erbe et al., 2012, Hayes et
al.,, 2014, van Binsbergen et al., 2015) and chicken (chapter 5). Thus far, the
advantage of increasing the number of the SNPs for genomic prediction was
limited. However, it was shown that increasing sample size increases the accuracy
of genomic prediction (e.g. Liu et al., 2011).
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7.3 Challenges for dealing with WGS data in genomic
prediction

The ongoing development in molecular technology has provided new opportunities
for GS. Recent advances resulted in the availability of WGS data for more species
and more animals per species. Using WGS data for genomic prediction is expected
to have several advantages. First, it is assumed that the WGS data contains the
causal variants among the millions of SNPs. By their definition only causal variants
have an effect and all other SNPs are neutral. Therefore, with WGS data the
accuracy of genomic predictions may increase, because it does not depend on LD
between causal variants and SNPs. Second, due to the presence of the causal
mutations and the high LD between those causal mutations and other SNPs
(Meuwissen and Goddard, 2010), genomic predictions may be more persistent over
generations when WGS data is used compared with using medium to high-density
SNP panels. It was found by simulation that prediction of genetic values with WGS
data could remain accurate, even when the reference and validation populations
were ten generations apart (Meuwissen and Goddard, 2010). Third, in addition to
SNPs, information on other structural genetic variants such as insertions, deletions,
and copy number variations (CNVs) is present within WGS. The proportion of
variance explained by these variants can be quantified and included into the
genomic prediction models. | will discuss the use of CNVs for genomic prediction in
the next section (7.3.3 future use of WGS data for genomic predictions). Finally,
fourth, using WGS data accelerates the efficient detection of rare mutations that
cause genetic defects (Charlier et al., 2008). Information from these rare mutations
can be used for genomic predictions and may assist in better predictions of
potential rare diseases.

Although using WGS data for genomic prediction sounds attractive, several possible
challenges exist. | here classify the challenges into two groups. The first group are
the bioinformatics challenges presented by WGS data including: (1) an imperfect
reference genome used for calling variants, (2) imperfect mapping of the reads, (3)
imperfect sequencing technology, and (4) a very low coverage of sequenced
individuals. In addition to bioinformatics challenges, when the called sequence data
is ready to be used for downstream quantitative genetics analyses, other possible
challenges called the quantitative genetics challenges of WGS data include: (1)
accurate imputation of low MAF SNPs, (2) challenges with processing millions of
SNPs in terms of computational time, memory usage, and high rate of genotyping
errors, and (3) the choice of a suitable prediction method. In this chapter, | discuss

158



7 General discussion

the first two quantitative genetics challenges of WGS, which relate to chapters 4
and 5 of this thesis and the possible ways to overcome them.

7.3.1 Accurate imputation of low MAF SNPs

Genome sequencing of a large number of individuals is very costly. A cost-effective
strategy to obtain genome sequences of a large number of individuals is to impute
the missing genotypes. Several studies have investigated the imputation accuracy
using WGS data in dairy cattle with medium-sized reference populations and found
lower imputation accuracy for low MAF SNPs compared with more common SNPs
(Bouwman and Veerkamp, 2014, Brondum et al.,, 2014, van Binsbergen et al.,
2014). Hence, a challenge in using WGS data for genomic prediction is the accurate
imputation of the rare SNPs.

There are several reasons why one would want to accurately impute the rare SNPs.
First, these rare SNPs have been suggested to contribute to the missing heritability.
Missing heritability refers to the proportion of the genetic variance not captured by
dense SNP marker associations (Manolio et al., 2009). Second, SNPs falling within
the coding regions of the genome, and therefore more likely to have an effect on
the phenotype, tend to have low MAF (Wong et al., 2003). Third, it has been
suggested that the SNPs more likely to be responsible for complex diseases tend to
be rare (Gorlov et al., 2007). Therefore, accurate imputation of these rare SNPs
may improve genomic prediction accuracy that leads to the better predictions of
phenotypes.

To achieve the highest possible imputation accuracy for low MAF SNPs, several
factors should be considered including: an optimal designing of the reference
population, sequencing a sufficient number of individuals, applying suitable
imputation methods, and imputation accuracy measures. These factors have been
shown to affect the overall imputation accuracy (Ma et al., 2013, Pausch et al.,
2013, Calus et al., 2014a, van Binsbergen et al., 2014). However, some may be
more crucial for accurately imputing low MAF SNPs than others.

To optimize the reference population for imputation of low MAF SNPs, the
relationship between the reference population and the validation population
should be taken into account. When choosing individuals for the reference
population, the aim is to capture as much of the genetic variation present in the
validation population (selection candidates) as possible (chapter 4). Imputation
accuracy has been reported to be highest for those individuals that have the
highest average genetic relationship to the reference population, which was
attributed to them sharing more and longer haplotypes with the reference (Hayes
et al., 2012, Hickey et al., 2012, Ventura et al., 2014). The importance of sharing
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longer haplotypes is probably higher for low MAF SNPs compared with high MAF
SNPs, because the rare alleles generally sit on long haplotypes. | observed that
selecting the reference population from the most common sires (key animals), that
had the maximum relationship with the selection candidates, improved the
imputation accuracy compared with randomly selected reference populations
(chapter 4). Hence, it is important to design a reference population in such a way
that a wide range of different families that are least related to each other and most
related to the selection candidates are included (Pszczola et al., 2012). This way,
the highest amount of genomic information will be available in the reference
population.

With more sequenced animals in the reference population, the reduction in
imputation accuracy for low MAF SNPs, compared with high MAF SNPs, was smaller
(van Binsbergen et al., 2014). An increase in the imputation accuracy for low MAF
SNPs is expected from increasing the reference population size. Increasing
reference size increases the probability that multiple copies of alleles are present
for making the correct haplotypes (Li et al., 2011) and therefore increases the
imputation accuracy. van Binsbergen et al. (2014a) suggested that the increase in
imputation accuracy was limited with more than 500 animals. How many animals
should be sequenced and how many should be genotyped with lower density is an
important question to optimize the use of limited resources. Assuming that we
need 500 sequenced animals to obtain the desired imputation accuracy of rare
SNPs and also assuming that the cost of sequencing at 1x coverage for a chicken is
€50, then the total cost of sequencing 500 animals (at 17x coverage as in chapter 5)
would be €425 000. Genotyping cost of these 500 animals would be €25 000,
assuming the cost of genotyping 60K SNPs is similar to the cost of sequencing at 1x
coverage. The rationale for sequencing more individuals is to improve the
imputation accuracy of (low MAF) SNPs and finally to improve the prediction
accuracy. In chapter 4, | found that increasing the number of key animals in the
reference from 22 to 62 resulted in an ~ 18% improvement in imputation accuracy
for low MAF SNPs. Assuming that a similar amount of improvement is achieved
from using WGS data, it may offset the huge difference in cost between sequencing
and genotyping the additional 40 animals.

The use of an appropriate imputation method may increase the imputation
accuracy for low MAF SNPs. The methods used for imputation use either LD
information (LD-based imputation method) or both LD and pedigree information
(pedigree-based imputation method). Pedigree-based methods, compared with LD-
based method, are expected to yield a higher imputation accuracy for rare SNPs.
Sargolzaei et al. (2014) showed that low MAF SNPs (MAF < 0.05) were imputed
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more accurately using a pedigree-based imputation method implemented in
FlImpute compared with a pedigree-free imputation method as implemented in
Beagle (Sargolzaei et al., 2014). There are several reasons for a higher imputation
accuracy from pedigree-based methods compared with LD-based methods. First,
pedigree-based methods use within family information and therefore rely on
identification of the identity by descent (IBD) relationships among the chromosome
segments (Cheung et al., 2013, Livne et al., 2015), resulting in the increase of the
probability of finding the correct shared haplotypes, whereas LD-based methods
focus on distantly related (unrelated) individuals. Second, use of pedigree
information may improve the phasing quality and therefore also the accuracy of
subsequent genotype imputation (Delaneau et al., 2012). | used an LD-based
method (Beagle) for imputation (chapters 4 and 5). To test whether imputation
accuracies would have been much different using a pedigree-based imputation
method, | obtain here the imputation accuracies yielded by Fimpute. FImpute uses
three steps for imputation of missing genotypes. First, the pedigree information is
used for accurate phasing and imputation of the missing genotypes that can be
inferred with high certainty. Then, haplotypes are constructed using an overlapping
sliding window approach. Finally, the remaining missing genotypes are imputed
using the constructed haplotypes (Sargolzaei et al., 2014). The same leave-one-out
cross-validation approach was used as in chapter 5, to allow comparison to results
obtained from Beagle with the same approach (chapter 5). Only the SNPs from
GGA1 were imputed for this test. The average (animal-specific) imputation
accuracy showed a slight increase (~ 1%) using FImpute compared with Beagle,
indicating that when imputation is performed using a method that does not
explicitly use pedigree information, high genetic relationship between the
reference and validation population reduces the need to explicitly use pedigree
information (chapter 5), as was shown by Hickey et al. (2012). This is because with
high genetic relationship between individuals, long haplotypes are shared.
Accuracy of imputation from long haplotypes is higher compared with short
haplotypes (Sargolzaei et al., 2014). If random animals were chosen as reference, a
pedigree-based imputation method would have been expected to produce larger
imputation accuracy compared with pedigree-free imputation methods, because
random animals are probably more distant relatives of the validation population
and therefore only share shorter haplotypes. Use of pedigree information can
increase the probability of tracking these short haplotypes by explicitly using the
linkage information (Hickey et al., 2012). Note that the performance of Fimpute
was investigated only in terms of the overall accuracy. However, it is expected that
the increase in imputation accuracy from Fimpute most likely comes from the low
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MAF SNPs, since pedigree information helped mostly with the imputation of rare
SNPs (Sargolzaei et al., 2014).

It is important to have a correct measure of imputation accuracy to decide whether
further improvement of the imputation accuracy is required. Because a large
proportion of the SNPs in WGS data has a very low MAF (Meuwissen and Goddard,
2010, Druet et al., 2014, MaclLeod et al., 2014, chapter 5), any measure that is less
sensitive to errors at loci with lower MAF will produce misleading results (Calus et
al., 2014a). | examine here two measures of imputation accuracy discussed by Calus
et al. (2014a); the correlation between true and imputed genotypes and the
percentage of correctly imputed genotypes (Figure 7.1). The correlation tended to
decrease with lower MAF, whereas the percentage of correctly imputed genotypes
measure increased with lower MAF. The correlation gives more credit to correctly
imputing a low MAF SNP compared with a high MAF SNP (Calus et al., 2014a). The
difference between the two measures of imputation accuracy was small for high
MAF SNPs (e.g. 0.03 for MAF class 0.4-0.5), whereas the difference was very large
at low MAF SNPs (e.g. 0.26 for MAF class 0.008-0.1). Therefore, to interpret how
accurate low MAF SNPs were imputed, the choice of imputation accuracy measure
is crucial, whereas for high MAF SNPs, the choice of measure hardly influences the
interpretation of imputation accuracy.
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Figure 7.1 Different measures of imputation accuracy on GGA1 for different MAF classes.
The reference population Ref,, and the validation population GO are the same as those used
in chapter 4.

7.3.2 Challenges with processing millions of SNPs

The number of SNPs obtained from WGS is huge and can lead to massive statistical
and computational challenges for both imputation and genomic prediction. Many
SNPs in WGS data (e.g. SNPs in complete LD and non-segregating SNPs) may not be
essential for genomic prediction (uninformative SNPs) and also a considerable
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proportion of the low MAF SNPs may be the result of genotyping errors (erroneous
SNPs).

For several reasons, the uninformative and erroneous SNPs should be excluded.
First, estimating the effect of millions of SNPs (p), with small number of records (n)
is an issue (n << p problem) of using WGS for genomic prediction. With n << p
problem, the effect of causal mutations will be estimated with error and the larger
effect of causal mutations may be distributed over multiple SNPs. Second,
uninformative and erroneous SNPs may cause some problems for imputation and
genomic predictions. These SNPs will decrease the efficiency of imputation and
genomic prediction methods in terms of both the computational time and memory
usage. Both high memory usage and large computational time are expensive.
Moreover, high computational time will postpone the selection decisions in the
breeding program. Erroneous SNPs may influence the imputation and genomic
prediction methods, causing less accurate imputed genotypes and therefore less
accurate estimation of SNP effects which finally leads to less accurate genomic
estimated breeding values (GEBVs). Further, genotyping errors may lead to
incorrect allele frequencies. Incorrect allele frequencies have at least three adverse
effects on genomic predictions depending on what method is used for prediction.
First, scaling of the genomic relationship matrix will be affected with those
incorrect frequencies which leads to distortion of the estimated genomic
relationships between individuals. Second, estimated SNP effects from Bayesian
methods may be inaccurate, since for computation of SNP effects (allele
substitution effects), allele frequencies are used. Third, LD estimates will be
affected, because LD is estimated from allele frequencies, and may affect methods
that use LD information (e.g. Cuyabano et al., 2014). The genotyping error rate is
higher at lower sequence coverage (e.g. lower than 4x (Perez-Enciso, 2014)). The
sequence coverage for the sequence data used in chapter 5 was 17x. Hence, the
impact of genotyping errors on the results presented in chapter 5 is likely low.
Stringent quality control was done on the WGS data used in chapter 5 to make sure
that reliable SNPs were selected for genomic prediction. Most of the thresholds
used were based on the commonly used thresholds used for WGS data (Daetwyler
et al., 2014). However, some uninformative and erroneous SNPs are still expected
to be within the data, because it is very hard or even impossible to detect and
remove all genotyping errors. Further, the difficulties of processing a large number
of SNPs remain.

A subset of SNPs located in coding regions could be selected from WGS data to
perform genomic predictions. However, | did not observe any improvement in
genomic prediction accuracy by selecting only the coding SNPs or a subset of
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coding SNPs that alter the amino acid sequence of a protein (non-synonymous
SNPs) (chapter 5). Because SNPs in coding regions are more likely to have an effect
on the phenotype (Hayes et al., 2014), it was expected that the genomic prediction
accuracy would improve by including only those SNPs in the prediction model.
Possible reasons for observing no improvement from this approach are: (1)
important parts of the genome might have been missed by only using non-
synonymous SNPs for prediction and ignoring the non-coding regulatory regions,
because many SNPs in non-coding regulatory regions will also have an effect on the
phenotype. It was shown that non-coding regulatory regions were enriched for trait
associated variants in dairy and beef cattle (Koufariotis et al., 2014). (2) considering
that the non-synonymous SNPs tends to have low MAF, some of them might have
been removed during the quality control on MAF (MAF < 0.025 were excluded)
(chapter 5).

An approach to reduce the size of the WGS is to inspect the SNPs that are in
complete LD (LD = 1) with other SNPs and remove one of the SNPs. Because very
high LD only happens when SNPs have a similar frequency, it does not matter
which SNP to remove. Although this approach may lead to the removal of the
causal mutation, this should have little impact on the genomic prediction accuracy.
Because the SNPs are in complete LD, a causal mutation removed in this way will
be replaced by another SNP that is in high LD with the causal mutation.

Preselecting SNPs may not improve the prediction accuracy unless the actual
mutation affecting the trait is known and exploited in the prediction method. For
several reasons, identification of causal mutations is still a challenge. First, WGS
data still has many imperfections (some imperfections were mentioned in this
chapter) which makes it difficult to identify all the mutations. With the current
tools, it is not possible to remove all of these imperfections. Second, due to a small
number of sequenced individuals, there is still limited power to identify those
mutations. However, even if the prediction accuracy does not improve from
reducing the size of the dataset by only using preselected SNPs, a substantial
advantage of these approaches is still that the computational burden will decrease.

7.3.3 Future use of WGS data for genomic predictions

Genomic predictions can also benefit from WGS data in other ways than those
presented in this thesis. | will discuss some of the future use of WGS data for
genomic predictions including the use of other variants than only SNPs and
haplotype-based analyses using WGS.

The study presented in chapter 5 is one of the first that assessed the benefit of
WGS data for genomic prediction in layers. No significant increase in prediction
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accuracy was found using WGS compared with a 60K SNP panel. However, WGS
data provides more information than only SNP genotypes. Another type of
information are copy number variations (CNVs). CNVs are deletions or insertions of
large genomic regions, spanning from several Kb to several Mb, in the genome. The
chicken genome has been found to have 8.3% of its length being occupied by CNVs
(see review by Wang and Byers, 2014). There are several reasons to believe that
CNVs may contribute to the total genetic variation and therefore should be used
for genomic predictions. First, due to the large size of CNVs, these variants affect a
large proportion of the genome. Second, a large fraction of chicken CNVs involves
protein coding or regulatory regions (see review by Wang and Byers, 2014). Third,
human studies have shown that CNVs can have an effect on the phenotype (e.g.
complex diseases) (see review by Henrichsen et al., 2009). Although the
contribution of CNVs to the phenotypic variation of quantitative (polygenic) traits
of chickens has not been investigated, a few CNVs have been found to affect
qualitative (monogenic) traits (Elferink et al., 2008, Gunnarsson et al., 2011). From
these findings, it is expected that CNVs contribute to the total genetic variation and
therefore the proportion of variance explained by these variants should be
quantified. To know the importance of CNVs for genomic prediction, first, variance
explained by all CNVs in a GWAS (by regressing the phenotypes on CNVs) should be
estimated. If any CNV is found to be associated with the phenotype, LD between
the SNPs and CNVs should be calculated. Finally, if CNVs cause moderate to large
proportion of genetic variation and if the LD between CNVs and SNPs is not very
high (i.e. some genetic variation is caused by CNVs and can not be captured by
SNPs), CNVs should be used for genomic predictions.

The use of haplotypes rather than single SNPs for genomic predictions can be
beneficial for predicting the phenotypes more accurately (Hayes et al., 2007) and
decreasing the computation time needed for genomic prediction (Cuyabano et al.,
2014). With haplotypes QTL effects can be predicted more accurately (Ciobanu et
al., 2001, Hidalgo et al., 2014). When SNP chip data is used for genomic predictions,
haplotypes may be in stronger LD with the QTL than single SNPs and this should
improve the genomic prediction accuracy. Several simulation studies have shown
that genomic prediction accuracy improved when a haplotype model was used
rather than single SNP models (Calus et al., 2008, Villumsen et al., 2009, Sun et al.,
2014). However, with real genotype data (SNP chip data), use of haplotype models
hardly improved the genomic prediction accuracy (Edriss et al., 2013). The
advantage of using haplotype models over single SNP models for genomic
prediction may decrease by increasing marker density and increasing LD (e.g. WGS
data). With WGS, the prediction accuracy does not depend on the LD between the

165



7 General discussion

SNP and QTL. Hence, it is expected that with WGS, due to high LD and high marker
density, the use of haplotypes does not increase the prediction accuracy. However,
use of haplotypes may reduce the computation time depending on the approach
for constructing haplotypes. Several approaches to build haplotypes have been
proposed including use of LD information (Gabriel et al., 2002), use of genealogy
information (Edriss et al., 2013), or setting bins with a certain number of SNPs
placed together (Villumsen et al., 2009). All of these approaches, except the LD-
based method, resulted in increased computation time due to increasing the
number of effects to be estimated, except the LD-based method. Cuyabano et al.
(2014) showed that use of LD information to construct haplotypes is the best
design to reduce the number of explanatory variables and therefore to reduce the
computation time. They argued that due to strong LD, the number of SNPs per
haploblock is reduced considerably compared with the approach of binning nearby
SNPs. With WGS, use of LD information has a drawback, because estimation of LD
may not be accurate due to possible genotyping errors. It was shown that even low
levels of genotyping errors can result in significant reduction in the haplotype
reconstruction accuracy (Kirk and Cardon, 2002) which can therefore lead to the
reduction of genomic prediction accuracy. It is expected that the adverse impact of
genotyping errors on single SNPs is less than that on haplotypes, because a
haplotype containing several SNPs can be constructed accurately only if the
genotypes of all of those SNPs in the haploblock are correct.

In summary, using WGS data for genomic prediction faces some challenges
including the accurate imputation of low MAF SNPs and challenges with processing
millions of SNPs. An optimal designing of the reference population, sequencing
sufficient number of individuals, and a suitable imputation method all contribute to
improving the imputation accuracy for low MAF SNPs. Due to the high LD and high
marker density in WGS data, haplotyping does not seem to be a promising strategy
for improvement of the prediction accuracy. However, by haplotyping the
computational time of predictions may decrease considerably.

7.4 Implementation of GS in layers

The first livestock species for which GS was implemented was dairy cattle. Later, GS
was carried out for other species including layers. In general, the breeding
programs of layers are comparable with breeding programs of pigs, but different
from dairy cattle. Some of the characteristics of layer breeding programs that differ
from cattle breeding programs include shorter generation interval, larger number
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of selection candidates produced per generation (i.e. higher selection intensity),
lack of pedigree information for the commercial descendants of the pure lines, and
crossbreeding production system (purebreeding for dairy cattle) (Wolc et al.,
2015b). For dairy cattle, the greatest benefit of GS comes from the reduction in
generation interval (Hayes et al., 2009). For layers, most of the advantage of GS
comes from both the reduction of generation interval as well as the increase in the
selection accuracy. In practice, male generation interval reduced from 100 weeks
for BLUP selection to 30-40 weeks (i.e. a decrease of more than half), and for
females from 60 weeks to 40 weeks. The advantage of reduction in generation
interval is particularly important for males. For males the only way to obtain the
very accurate breeding values for sex-limited traits such as egg production and egg
quality traits with BLUP selection is to use progeny testing. A long time is required
to produce the daughters of the males and obtain phenotypes from those
daughters. Selection of males for the traits mentioned above can also be based on
the performance of their female sibs and other female ancestors. Without progeny
information and own performance under pedigree evaluation, fullsib males will
have the same EBVs, although their real genetic potential may be different. GS can
help with selecting the best male(s) with the highest genetic potential within every
fullsib family. These males selected to produce the next generation are the main
contributor to the genetic progress. Accuracy of EBVs also increases with GS
compared with BLUP selection not only for low-heritable traits, but also for
moderate- to high-heritable traits (Wolc et al., 2011b, Sitzenstock et al., 2013).

7.4.1 Accuracy of genomic prediction in layers

Genomic prediction studies in layers have been carried out using either different
SNP panels that are currently available (Wolc et al., 2011a, Wolc et al., 2011b, Calus
et al., 2014b) or WGS data (chapter 5) (Table 7.1). In general, all of these studies
showed higher accuracy of GS compared with BLUP selection for many traits in
layers (Table 7.1). For instance, Wolc et al. (2011b) showed that compared with
BLUP selection, accuracy of GS increased up to two-fold for selection at an early
age (before the availability of the phenotypes) and by up to 88% for selection at a
later age (Wolc et al., 2011b). Similarly, in our studies, accuracy of prediction was
lowest for BLUP compared with GS using both 42K (chapter 6) and WGS data
(chapter 5) (Table 7.1). The difference between the accuracy of GS in different
studies reported in Table 7.1 are due to differences in reference population size,
difference in traits under investigation, and difference in density of the panel used
for genomic prediction.
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Table 7.1 Reported genomic prediction accuracies in layers from several studies.

Reference Density panel Accuracy1
GS BLUP selection
Heidaritabar et al. (chapter 5)* WGS 0.75 0.59
Heidaritabar et al. (chapter 6) 42K 0.30t0 0.58 0.17 t0 0.43
Wolc et al. (2011b)"" 42K 0.20t00.72 0.17 t0 0.62
Wolc et al. (2011a)" 42K 0.32t0 0.58 0.20 t0 0.48
Calus et al. (2014b)" 60K 0.76 0.60

This table shows only the accuracy from GBLUP method, because the accuracy of Bayesian
methods were similar to GBLUP, those accuracies are not reported here.
Tra|t egg number.

Accuraues from additive model for early egg production and egg quality traits.
o AccuraC|es for early and late egg production and egg quality traits.
" Accuracies for early and late egg production and egg quality traits from their first
generation of selection.

7.4.2 Opportunities of implementing GS in layers

Most studies so far reported GS application for layers in an experimental setting
(chapter 2, Wolc et al., 2015b). Thus far, the experimental application of GS has
shown increases of selection accuracy for many traits including low-heritable (e.g.
mortality) (Sitzenstock et al., 2013), expensive to measure (e.g. feed intake) (Wolc
et al,, 2013b), and hard to measure traits (e.g. Marek’s disease) (Wolc et al.,
2013a). In addition to improvement in the accuracy of predicting breeding values,
GS could be used to redesign the breeding program by not only reduction of the
generation interval, but also reduction of the size of the breeding program (i.e.
reduction in the number of animals needed to be raised and phenotyped on a
routine basis) (Wolc et al., 2015c). Moreover, GS resulted in larger response to
selection per year, while maintaining the same annual rate of inbreeding compared
with BLUP selection (Wolc et al., 2015c). Our study (chapter 2) also showed larger
response to selection from GS compared with BLUP selection. Most of these
opportunities apply for other species such as pigs and dairy cattle as well. The
advantages of GS have also been observed in practical breeding programs.
However, the results of GS from the practical breeding programs are not publicly
available.

Traditional BLUP selection is very expensive for genetic improvement of hard
and/or expensive to measure traits (from now on, hard and/or expensive to
measure traits are called “rare phenotypes”), because it needs to measure the
phenotypes on a large number of animals to obtain accurate EBVs for these traits.
Theoretically, GS is particularly a promising approach for genetic improvement of
rare phenotypes, because it was expected that with a single reference population,
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the prediction accuracy would remain persistent across generations for such traits
(Meuwissen et al., 2001) and therefore there is no need to add more phenotyped
animals every generation to maintain the accuracy at the same level.

GS for rare phenotypes

GS can reduce the need for phenotyping for rare phenotypes. However, collecting
phenotypes can not be completely abandoned by GS, because phenotypes are still
required to estimate SNP effects. An issue for rare phenotypes is the persistence of
GS accuracy over several generations. A study in layers showed that the persistence
of GS accuracy over generations for rare traits (e.g. residual feed intake) was lower
than expected (Wolc et al., 2013b). This suggests that there is still needed to collect
more phenotypes and perform retraining. For dairy cattle, more phenotypes for
hard to measure traits such as feed intake were obtained from combining the data
from different countries (Pryce et al., 2012). Since for layers the data is not shared
between breeding companies, other approaches to solve this issue for rare
phenotypes are needed, like e.g. the use of indicator traits combined with multi-
trait prediction models for genetic improvement of such traits (in this thesis, it is
called multi-trait GS) and multi-population GS.

Pszczola et al. (2013) investigated multi-trait GS for a rare phenotype (feed intake)
in dairy cattle using less-costly indicator traits (milk yield and live weight) and found
that use of indicator traits could improve the prediction accuracy for feed intake
(Pszczola et al., 2013). Use of indicator traits in a multi-trait traditional selection
proved to be successful to increase the response to selection (Woolliams and
Smith, 1988). The results from traditional selection suggest that the multi-trait GS
can also be beneficial for genetic improvement of rare phenotypes. Wolc et al.
(2015a) used the sperm count and sperm motility as indicator traits for genetic
improvement of fertility and hatchability in layers using the 600K genotypes. They
found that the estimates of accuracy in validations were low (Wolc et al., 2015a). A
reason for their low accuracies can be the low phenotypic correlation (-0.13 to
0.14) between the predictor (sperm quality traits) and predicted traits (fertility and
hatchability). It seems that similar to traditional BLUP selection the use of predictor
traits for genetic improvement of rare phenotypes is useful only when the genetic
correlation between the predictor and predicted traits are high.

Multi-population GS has mainly been performed in cattle (Lund et al., 2014). The
success of merging several cattle populations in the reference population to
increase the prediction accuracy depended on the genetic distance (relationship)
between the populations (Lund et al., 2014). Multi-population GS can be
particularly useful for layer breeding programs, since the layer breeding companies
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usually keep several lines that are usually genotyped and phenotyped. Combining
multiple lines of layers to increase the size of the reference population was
performed with three layer lines with similar numbers of genotyped animals per
line (Calus et al., 2014b). Similar to results of multi-population GS from cattle, it
was demonstrated that multi-line genomic prediction was more effective for
closely related lines compared with less related lines. More research is required for
multi-line GS in layers. For example, the advantage of using more dense SNP panels
or WGS data is unknown. Due to the presence of causal mutation in WGS data, the
persistence of LD between QTL and marker is high, 1.0 in theory. Persistence of LD
is an important factor for improving prediction accuracy when combining multiple
populations (de Roos et al., 2008). The benefit of WGS data can be more
pronounced with multi-population GS, because by combining several population, it
is expected that the LD will be reduced and with short-distance extent of LD, a very
dense SNP panel (e.g. WGS data) is required to capture a large portion of the
variance explained by SNPs for accurate genomic predictions.

7.4.3 Challenges of implementing GS in layers

Generally, practical application of GS in layers faces some specific challenges
including the genotyping cost and collection of rare phenotypes. Although using
genomic information is an opportunity for selection of rare phenotypes, some
challenges exist regarding collecting and using these phenotypes in a GS breeding
program. For example, traits that hardly are included in the breeding goals of a
traditional breeding program, such as health and disease traits, should be well-
defined before data collection. Moreover, collecting such phenotypes most likely
requires advanced technologies (e.g. robust recording system) to precisely measure
such traits and careful data management. The main challenge of GS in layer
breeding programs is, however, genotyping cost which is discussed in the following
paragraph.

In a simulated GS breeding program for layers, Wolc et al. (2015c) showed that GS
reduced the number of selection candidates (both females and males) and also the
number of animals required to be phenotyped to obtain similar rates of genetic
improvement as obtained by BLUP selection. Although lower rearing, housing, and
phenotyping requirements would substantially decrease the costs of breeding
programs, these reduced costs most likely do not offset the extra costs from
genotyping. The reasons that genotyping cost is a particularly important limitation
of practical implementation of GS in layers compared with other species is first
that, because of the prolificacy in layers, a large number of selection candidates are
produced per generation and the value of a single selection candidate is very low
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compared with the genotyping cost. Second, the reference population size in layers
is currently limited by the number of animals with genotypes, while the number of
phenotyped animals undergoing selection is large for most economically important
traits such as egg production and egg quality traits. Hence, genotyping cost should
be reduced as much as possible in order to have a GS program that is economically
efficient. Therefore, in implementing GS, as with all new technologies, the cost
versus benefit ratio should be considered.

When sufficient number of animals have phenotypes, but high-density genotyping
is the bottleneck, a low-cost strategy such as imputation should be applied to
generate high-density SNP genotypes for a large number of animals rather than
genotyping new animals with high density. In general, the application of imputation
has been effective in many livestock species (see review by Calus et al., 2014a)
including layers (chapter 4). When increasing the reference size by imputation
approaches, several factors including the optimal reference population, number of
SNPs in the lower-density panel, imputation accuracy, accuracy of subsequent
genomic predictions should be taken into account. To decide which animals to be
genotyped with a high-density panel (i.e. having an optimal reference population)
was discussed in the previous section (7.3.1 Accurate imputation of low MAF SNPs).
In chapter 4, | showed that a lower density SNP panel in validation population
resulted in lower imputation accuracies (e.g. imputation accuracies ranging from
0.46 to 0.50 with 3K compared with 0.68 to 0.88 with 48K for one of the scenarios).
Thus, | conclude that the density panel of selection candidates should be higher
than 3K for obtaining a higher imputation accuracy. The importance of higher
density panel for selection candidates is also because of its impact on the genomic
prediction accuracy. It was suggested that when the panel density of selection
candidates was higher (3K compared with a panel containing only 1500 SNPs), the
loss in subsequent genomic prediction accuracy was lower due to the reduction of
the errors in the imputed genotypes of selection candidates (Weigel et al., 2010).
Another strategy to increase the number of genotyped animals in the reference
population is to add the selection candidates from the previous generations, that
may have obtained progeny records in the meantime. This was done in the GS
experiment described in chapter 2, where female selection candidates were added
to the reference population in later generations. This strategy is useful, since the
added selection candidates from the previous generation are closely related with
the current generation. On the other hand, keeping the original reference
population may not always be helpful for improvement of the prediction accuracy
in later generations, because in each generation the original reference population
become more distant (lower relationship) from the selection candidates. Several
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studies have shown that lower relationship between the reference and selection
candidates results in lower accuracy of GS (Clark et al., 2012, Pszczola et al., 2012).
In chapter 4, | tested the impact of distance and relationship between the
reference and validation populations on imputation accuracy and found that with
distances up to two generations, the imputation accuracy was persistent in later
generations. Although | did not compute the accuracy of subsequent genomic
prediction, from the persistency in imputation accuracy and considering the long-
distance extent of LD in our layer lines (chapter 5, Megens et al., 2009), it is
expected that the prediction accuracy will not decay by adding animals from two
generations distant to the reference. However, adding more distant generations
may not improve prediction accuracy, because of the divergence in allele
frequencies in each generation, LD decay, and selection over generations.
Genotyping costs can also be reduced by using a prediction method that can handle
non-genotyped animals. Single-step GBLUP (ssGBLUP) (Misztal et al., 2009) in which
pedigree and genomic information are used to build a joint relationship matrix can
use non-genotyped animals. ssGBLUP produced more accurate predictions than
traditional BLUP selection (Christensen et al., 2012). For several reasons, ssGBLUP
is widely used by breeding companies. First, ssGBLUP provides the opportunity to
include non-genotyped animals till the time they will be genotyped, or for which
genotyping is not possible. This strategy led to an increase of 1 to 2% in prediction
accuracy of non-genotyped selection candidates in a commercial GS (layer)
breeding program (Wolc et al., 2015b). Second, because ssGBLUP uses the BLUP
method, it is a faster and easier to implement prediction method compared with
other methods such as Bayesian methods. A fast prediction method is valuable for
breeding companies to make timely selection decisions. Third, since ssGBLUP uses
the BLUP method, it can easily be implemented for more complex prediction
models such as multi-trait (Tsuruta et al., 2011), and multi-population models
(Simeone et al., 2012). In future, another type of complex models that can benefit
from ssGBLUP is dominance models. ssGBLUP can be beneficial for dominance
models in two ways, first, using both genotyped and non-genotyped animals
increases the sample size which is a crucial factor for more accurate estimation of
dominance effects. Second, computational time will decrease. Fitting dominance
effect into BayesC prediction method (chapter 6) was not efficient in terms of the
computational time (e.g. the computational time for BayesC was about 2 days,
whereas for GBLUP, it was less than an hour).

Due to the advantages of ssGBLUP over both traditional BLUP selection and BayesC,
| think the breeding companies should continue applying ssGBLUP in their routine
genetic evaluations. However, ssGBLUP may not vyield the highest possible
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prediction accuracy for the traits controlled by only a few large QTL, because the
assumption of ssGBLUP that all SNPs in the model explain an equal part of the
genetic variance does not apply for such traits. Hence, other sophisticated methods
such as Bayesian methods should be tested for computation of prediction accuracy
for such traits. An alternative to both ssGBLUP and Bayesian method is single-step
Bayesian regression approach (SSBR) which has the advantage of ssGBLUP
(combine phenotype, genotype and pedigree data) and Bayesian methods (not
limited to normally distributed marker effects) (Fernando et al., 2014).

7.4.4 Future implementation of GS in layers

Although some genetic improvement has been obtained from GS experiment
implemented by the two largest layer breeding companies (Hy-line Int. and Hendrix
Genetics), further advancements in the GS technology is needed.

GS in crossbred populations

Pure breeding is the main breeding system in dairy cattle, whereas in layers,
crossbreeding is widely used to benefit from heterosis and combining ability of the
lines. In layers, the genetic progress created in pure lines will be moved to the
commercial animals through multipliers with a genetic lag of 3 to 4 years. Based on
the estimates of genetic correlation (ranging from 0.56 for egg number to 0.99 for
egg weight) between the purebred and crossbred performance (CP) for several egg
production and egg quality traits (Wei and Vanderwerf, 1995), it is clear that the
amount of genetic progress transferred from the pure lines to the commercial level
differs depending on the trait. A low genetic correlation between purebreds and
crossbreds shows that only a small part of genetic progress obtained in pure lines
will be transferred to the crossbreds. An alternative to purebred selection for such
traits with low genetic correlation is a combined crossbred and purebred selection
(CCPS) which was shown to be optimal for achieving genetic progress expressed in
crossbred layers (Wei and Vanderwerf, 1994). However, CCPS was shown to also
increase the level of inbreeding (Bijma et al., 2001) and requires an extensive
collection of phenotypes and pedigree data at commercial level. Using genomic
data (through marker-assisted selection (MAS)), selecting purebreds for CP not only
yielded a larger response to selection compared with purebred selection and CCPS,
but also resulted in a lower inbreeding rate (Dekkers, 2007).

Use of crossbred data for GS is expected to be especially useful for genetic
improvement of traits such as mortality, survival, and disease resistance that occur
in the field and are not expressed on the purebred animals in the nucleus
population, because nucleus animals are kept in high management conditions. In
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layer breeding programs, crossbred data can be used for genomic predictions in
several ways. First, if we assume that there are no genotypes on crossbreds but
phenotypes are available, there are two ways to achieve the benefits of crossbreds’
phenotypes; (1) the phenotypes of crossbred progeny can be used to select the
purebreds, i.e. the purebred sires of those progenies are genotyped and included in
the reference. Phenotypes of those sires will be the progeny means of crossbreds.
(2) training can be done on crossbreds with phenotypes and genotypes from
crossbreds can be obtained by calculating the genotype probabilities based on the
genotypes of their purebred parents (Esfandyari et al., 2015a). Second, when the
crossbreds have both (real) genotypes and phenotypes, the training can be done on
crossbreds. Simulation showed that this approach yields a larger response to
selection compared with having only phenotypes on crossbreds and genotypes on
purebred parents (Esfandyari et al., 2015a). Of these approaches, layer breeding
companies mostly use the progeny means of crossbreds. Because they usually do
not genotype the crossbreds due to the additional costs, but they do collect the
phenotypes, this approach (progeny means of crossbreds) is more practical and
cheaper. The use of genotype probabilities for genomic predictions has some
drawbacks, e.g. the computational time of genomic predictions may increase.
However, the use of genotype probabilities still needs to be tested with real
genotypes.

Beyond the additive genetic variation for implementing GS

To predict the CP through selection of purebreds, Ibanez-Escriche et al. (2009)
assumed additive gene action in their prediction models, while Esfandyari et al.
(2015b) included dominance effects, in addition to the additive effects, into the GS
models, assuming that including dominance may be an advantage for maximizing
CP through purebred selection. In chapter 6, | included dominance effects into GS
models to investigate whether the dominance effects improve the response to
selection in terms of higher genomic prediction accuracy. | did not have genotypes
and phenotypes on crossbred animals and therefore could not verify the results of
the simulations (Zeng et al., 2013, Esfandyari et al., 2015b). However, dominance
variance and genetic values including dominance effects could be estimated in
purebred animals which can provide insight in the importance of dominance.
Although estimates of dominance variance were non-zero for several of the traits
assessed, little improvement in accuracy of predicting both genomic breeding
values and total genetic values was observed when dominance effects were
included into the genomic prediction models (chapter 6). However, based on these
results, it is hard to conclude that dominance effects are small or absent for those
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traits (more discussion in chapter 6). More investigation about the dominance
variance and its effect on accuracy of genomic prediction is required using larger
number of phenotyped and genotyped animals and/or higher density panels,
because it was suggested that both SNP density (Wellmann and Bennewitz, 2012,
Da et al.,, 2014) and sample size are crucial factors for accurate estimation of
dominance (Misztal, 1997, Misztal et al., 1997).

GS has been efficient in breeding programs of layers at the experimental level. In
general, layer breeding companies are benefitting from GS at the practical level.
The main benefits are reduction of generation interval and increase of accuracy of
selection. GS is a promising approach for genetic improvement of rare phenotypes
in layers, however more research is required on this topic. To obtain persistent
accuracy across generations for rare phenotypes, still more phenotypes are
probably needed. The issue of having more phenotypes may be solved by multi-line
or multi-trait GS. For these approaches to be successful, there should be a high
genetic correlation between the traits in multi-trait GS and a high genetic
relationship between the lines in multi-line GS. Possible strategies to decrease the
genotyping costs, which is currently the main challenge in layer breeding programs,
are imputation, adding genotyped selection candidates to the reference, and use of
non-genotyped animals through ssGBLUP prediction method.
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Summary

Genomic selection (GS) is a marker-based method that predicts genomic breeding
values for quantitative traits on the basis of a large number of single nucleotide
polymorphisms (SNPs) that cover the whole genome. In recent years, much
research has been done on GS, with many studies focussing on the accuracy of
estimating the genomic breeding values with the different genomic prediction
methods. However, several unanswered questions remain in this field that are
addressed by the research presented in this thesis. The investigated aspects were:
impact of GS on genome variation in comparison with the impact of BLUP selection;
concordance between the signatures of GS and the associated genomic regions
detected by a genome-wide association study (GWAS); accuracy of genotype
imputation using a small number of key animals as reference; comparing genomic
prediction accuracy from whole-genome sequence data with the accuracy from the
60K SNP panel; and impact of fitting dominance in addition to the additive effects
on genomic prediction accuracy.

In chapter 2, | assessed the genome-wide response of genetic variation in three
populations of layers that underwent selection for two generations based on two
different selection methods: GS and traditional BLUP selection. The changes in
genetic variation were assessed by measuring changes in allele frequencies that
identified signatures of selection. The observed changes in allele frequencies were
assessed in comparison to the expectation under drift. Changes in allele
frequencies were on average larger with GS than with BLUP selection. The variance
of allele frequency changes was larger than that expected under drift, indicating
that selection is affecting allele frequencies in both GS and BLUP selection.

In chapter 3, | performed a GWAS in the same populations selected in chapter 2.
The GWAS identified genomic regions associated with the index used to select the
lines. Associated regions were compared with signatures of GS found in the three
populations. Concordance between the associated regions and the signatures of GS
was low. SNPs in associated regions did, however, show larger changes in allele
frequencies compared with the average changes across the genome for all of the
three layer lines investigated. On the other hand, regions of signatures of GS were
not found to be enriched for associated regions.

In chapter 4, | investigated the accuracy of imputing lower density SNP panels to
higher density SNP panels using a small set of key animals as the reference
population. The accuracy was compared with a scenario where random animals
were selected as the reference population. | showed that imputation accuracy
depended on the size of reference population and the minor allele frequency of the
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SNP being imputed, but did not depend on the level of the relationship between
the reference and validation populations. Even with a very small number of animals
in the reference population, moderate accuracy of imputation was achieved.
Choosing key animals rather than choosing random animals for the reference
population, considerably improved imputation accuracy of rare alleles. Imputation
accuracy also increased by increasing the reference population size, again
especially for rare alleles.

In chapter 5 of this thesis | investigated the benefit of whole-genome sequence
data over 60K SNP panel for genomic prediction. Imputation to whole-genome
sequence data hardly improved genomic prediction accuracy compared with the
predictions based on 60K genotypes. Pre-selection of SNP that are more likely to
affect the phenotype produced slightly lower accuracy compared with using the
complete set of SNPs from whole-genome sequence data.

In chapter 6, additive and dominance genetic variance components were estimated
for egg production and egg quality traits of a purebred line of layers. It was shown
that pedigree-based estimates of dominance variance were higher and had larger
standard errors compared with genomic-based estimates of dominance variance.
Fitting dominance effects did not impact accuracy of genomic prediction of both
breeding values and total genetic values.

In chapter 7, | discussed the main findings of the current thesis in relation to
several general aspects of GS. First, the long-term consequences of GS in terms of
loss of genetic variation was discussed. Second, challenges of using whole-genome
sequence data for genomic prediction and some possible solutions to overcome
those challenges were discussed. Finally, | discussed the implementation of GS in
layers.
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Chapter 2

Supplementary notes
Calculation of selection coefficient (s) and selection intensity (i)

Selection coefficient (s) was calculated using the following formula as:

LG5

t

The above formula was derived from the general formula for the change in gene
frequency due to selection at an additive gene which is: Ap = sp(1 — p). With the
assumption that the allele frequency is a continuous process in time, changes in
allele frequency can be written as: dp/dt =sp(1 —p) (Goddard, 2009). The
integrated form of this formula becomes p; = poest /(1 — py + poest), where p, is
the starting allele frequency at the peak, t is the number of generations of
selection, p; is the allele frequency after t generations of selection. Finally, the
selection coefficient against the unfavourable homozygote for a given SNP was
estimated from the formula (1).

Selection intensities (i) were retrieved from proportion of selection candidates
selected (p) using the tables on pp. 379-380 in Falconer and Mackay (Falconer and
Mackay, 1996). p was calculated separately for males and females by dividing the
number of selected parents by the total number of selection candidates in each
generation of GBLUP and BLUP. Since the number of males and females selected in
each generation were not equal, i was different for males and females (Table 2.1
and Table 2.3).

Calculation of effective population size (N,.)
N was estimated as: y _ Po*(1=Po)
¢ 2*var(d,,)
where p, and 1 — p, were the allele frequencies from gene dropping, var(d,,)
was the variance of allele frequency difference from gene dropping.

Calculation of Fst
Ht_ H S

Fst was calculated as: Fst =
t

where  H =(@*p*(1-p)+@*p;*@A-p))y2  and  H =2*p;*(1-p,)-
p; = (pi +pj)/2'
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where p; was the allele frequency in line i, p; was the allele frequency in line j, p;;

was the average between the allele frequencies of the two lines. Hg was the mean

expected heterozygosity between lines, and H; was the total heterozygosity in total

population.
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Figure S2.1 The distribution of allele frequency difference values obtained from gene dropping method.

distribution is under pure drift.

Table $2.1 Chromosomal regions with evidence of selection and their size by GBLUP in Line B1.

Number Chromosome Start region (b) End region (b) Size (Kb) Number of SNPs within window
1 1 4720681 4758257 38 2
2 1 166584824 167901966 1317 13
3 2 28920690 29217563 297 9
4 2 45508551 46132452 624 20
5 2 132208978 136448286 4239 23
6 2 146308646 147213733 905 12
7 2 154650591 154773773 123 3
8 3 102824077 103300601 477 32
9 4 16886356 17041365 155 5
10 5 33373065 33943902 571 11
11 6 28570859 28596240 25 2
12 6 36668647 36694690 26 2
13 8 15164327 15386078 222 6
14 12 7691443 8072782 381 16
15 12 16254872 16348587 94 5
16 17 566109 576200 10 3
17 18 588543 679660 91 6
18 20 9264214 9358727 95 10
19 21 4640996 4915810 275 5
20 27 1523159 1582373 59 7
21 z 43150739 43389428 239 8
22 z 45979603 46522178 543 14
23 z 49611037 49734015 123 4
24 Z 55076530 56159359 1083 22
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Table $2.2 Chromosomal regions with evidence of selection and their size by GBLUP in Line B2.
Number Chromosome Start region (b) End region (b) Size (Kb) Number of SNPs within window

1 1 8401914 8781041 379 15
2 1 95898565 96327303 429 9
3 1 152635633 152738843 103 3
4 2 118893774 119623629 730 24
5 2 152274434 153504517 1230 16
6 3 54888621 55308850 420 11
7 4 21568436 22527061 959 29
8 4 37930765 38125680 195 5
9 5 19083517 19462239 379 2
10 5 22063274 22221157 158 5
11 5 36054328 36593177 539 13
12 5 50458849 52048861 1590 5
13 6 26140788 26220466 80 5
14 6 28570859 28740314 169 6
15 7 26777669 27014569 237 7
16 8 15164327 15874082 710 23
17 9 21512582 21543999 31 2
18 10 14728444 14774628 46 3
19 12 7744495 7799424 55 4
20 14 5753769 5803989 50 4
21 15 1737293 2020018 283 16
22 17 9247986 9321117 73 3
23 20 4048348 4069974 22 2
24 20 6458146 6508290 50 5
25 21 4766473 4871368 105 6
26 21 5319394 5849715 530 25
27 27 81812 128044 46 6
28 4 63443182 64159026 716 14
29 4 67845625 68188297 343 11
30 z 71016792 71170715 154 4

Table $2.3 Chromosomal regions with evidence of selection and their size by GBLUP in Line W1.

Number Chromosome Start region (b) End region (b) Size (Kb) Number of SNPs within window

1 1 167395216 169276943 1882 17

2 30519034 30760143 241 8
3 2 41196442 41500199 304 6
4 2 91379231 91630576 251 9
5 3 70491928 70718748 227 10
6 3 106157684 106493357 336 14
7 4 41342661 44852911 3510 45
8 6 22109324 22197788 88 4
9 7 13973139 14071039 98 3
10 8 27274382 27607198 333 6
11 14 1299671 2112686 813 20
12 14 7530640 7807504 277 8
13 15 897724 1308491 411 13
14 24 539599 959127 420 18
15 24 5055555 5141562 86 8
16 z 22188375 23226854 1038 15

Table $2.4 Chromosomal regions with evidence of selection and their size by BLUP in Line B1.

Number Chromosome Start region (b) End region (b) Size (Kb) Number of SNPs within window
1 5 5259614 5548921 289 6
2 5 41614429 42813979 1200 11
3 6 24613780 24734193 120 3
4 7 6096647 6177766 81 6
5 7 9781078 11908872 2128 9
6 10 6230374 6652251 422 6
7 21 6780205 6930673 150 15
8 z 33473589 33832610 359 10
9 z 40001342 41155850 1155 11
10 Z 52247377 52772760 525 11

Table $2.5 Chromosomal regions with evidence of selection and their size by BLUP in Line B2.
Number Chromosome Start region (b) End region (b) Size (Kb) Number of SNPs within window

1 2 50530766 50893951 363 4
2 3 36796454 37001278 205

3 3 60672286 60784548 112 4
4 4 71538605 71706644 168 4
5 4 80768115 80890011 122 5
6 6 36698845 37029368 331 12
7 10 11684478 11742160 58 3
8 12 18001140 18109181 108 6
9 13 1291424 1533552 242 10
10 19 5953716 5979279 26 2
11 z 5909968 8728268 2818 43
12 z 21650099 21704940 55 3
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Table $2.6 Chromosomal regions with evidence of selection and their size by BLUP in Line W1.
Number Chromosome Start region (b) End region (b) Size (Kb) Number of SNPs within window

1 1 161339470 161795934 456 5
2 3 80155629 80821745 666 14
3 4 45516115 46697542 1181 26
4 4 55775170 55991394 216 5
5 5 46490989 49086660 2596 52
6 8 15134962 15266419 131 5
7 9 23496401 23683979 188 3
8 11 5445683 6203062 757 25
9 1 16558599 16927919 369 9
10 17 872685 995536 123 9
1 18 592250 633908 42 3
12 19 4807455 4840810 33 4
13 21 3887935 3982657 95 2

Table S2.7 Initial allele frequency, selection coefficients, selection intensities and additive effect for the alleles at peak
of allele frequency changes in lines B1, B2, and W1.

Line (chromosome)* Initial MAF at Selection Selection Additive Additive effect Variance explained
peak (po) coefficient (s) intensity (i) effect (a) (standardized unit) (%)
B1(3) 0.302 0.757 1.66 50.5 0.23 2.19
B1(8) 0.337 0.974 1.66 65 0.29 3.85
B1(12) 0.567 0.820 1.66 54.7 0.25 3
B1(20) 0.364 0.684 1.66 45.7 0.21 197
B1(21) 0.467 0.877 1.66 58.5 0.26 3.48
B2(2) 0.191 1.244 170 106.1 0.37 4.14
B2(3) 0.131 0.791 170 67.5 0.23 1.23
B2(4) 0.016 1.904 170 162 0.56 0.98
B2(8) 0.059 1.700 170 145 0.50 2.78
B2(21) 0.137 0.806 170 69 0.24 134
W1(2) 0.369 0.909 185 61.1 0.25 2.81
Wi1(3) 0.259 0.660 1.85 443 0.18 1.22
W1(4) 0.332 0.872 185 58.6 0.24 2.46
W1(14) 0.389 0.626 1.85 42.1 0.17 1.36
W1(z) 0.377 0.844 1.85 56.7 0.23 2.44
Average 0.29 0.96 1.74 72.4 0.28 2.3

*Additive effects were calculated for the 5 largest peaks of each line.

Table $2.8 Selected regions overlapping with selected regions detected in other studies.

Line Selected regions detected by our Selected regions detected by other
study studies . . :
N chromosome Start region (b) End region (b) Start region (b) End r'egion (b) Line type used in other studies
8 2 B1 132208978 136504544 132620000 132660000° commercial white leghorn layer
9 2 B1 146242439 147240186 146980000 147020000 domestic line
10 5 B1 33373065 35793825 33752931 33833740 broiler sire line
34026477 34289307° broiler sire line, broiler
34635714 34879253° commercial, broiler, broiler sire
line
11 18 B1 588543 679660 578906 615438" broiler, broiler sire line
1 1 B2 152635633 152738843 152516746 153003586" domesticated line, commercial,
broiler, layer, broiler sire line,
broiler dam line, dutch new
breeds
152660000 152700000° commercial white leghorn layer
2 2 B2 118893774 119623629 118647414 118747803" commercial line, broiler, layer
119340000 119380000 domestic line
3 2 B2 152274434 153504517 152674603 152903909" domesticated line, commercial,
non-commercial, broiler, broiler
ire line, dutch new breed
152720000 152860000° commercial white leghorn layer
152880000 152900000° commercial white leghorn layer
4 3 B2 54888621 55308850 54910306 55009153° chinese breed
5 4 B2 21568436 22527061 22274031 22470419° chinese breed
6 5 B2 22063274 22221157 22085297 22155963° broiler, broiler dam line
7 7 B2 26777669 27014569 26760000 26820000° commercial white leghorn layer
12 1 w1 167395216 169276943 168540000 168580000° commercial white leghorn layer
13 4 w1 41342661 44852911 43160000 43200000 domestic line
14 7 wi 13973139 14093954 13973139 14057861° non-commercial, dutch
15 14 w1 1281294 1876724 1500000 2000000° commercial white layer
16 15 w1 897724 1385483 1201531 1274715° layer, dam broiler line

*(Elferink et al., 2012).
°(Rubin et al., 2010)
“(Amaral, 2010)
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Figure S3.1 SNP variances across the whole genome obtained by BSSVS for lines B1, B2, and W1. Green and blue

colours differentiate chromosomes. The red vertical lines represent the selected regions. The red horizontal line
represents the thresholds for detection of the top 50 associated regions.
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Figure $3.2 Distribution of SNP variance by BSSVS for lines B1, B2, and W1. The density of the sum of the SNP variances
from BSSVS is plotted for sliding windows of 21 adjacent SNPs covering the whole genome (red) and for windows
around the most significant allele frequency changes (blue) according to selected regions reported by Heidaritabar et

al. (2014). The black vertical line indicates the 90% quantile of the red density function.
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Figure $3.3 Distribution of SNP frequency changes in associated regions of BSSVS for lines B1, B2, and W1. The density
of the mean of the SNP frequency changes is plotted for sliding windows of 1 ¢cM covering the whole genome (red) and
for windows of the 50 top associated regions (blue) from ssGBLUP. The black vertical line indicates the 90% quantile of

the red density function.
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Table $3.1 The top 50 associated regions with the largest proportion of SNP variance explained for index in line B1
(ssGBLUP results).

Number Chromosome Variance Start region (cM) End region (cM) Number of SNPs within window
1 1 0.0032 114 115 14
2 1 0.0041 134 135 17
3 1 0.0029 365 366 21
4 1 0.0030 387 388 17
5 1 0.0031 388 389 15
6 1 0.0057 403 404 19
7 1 0.0029 405 406 16
8 2 0.0036 108 109 20
9 2 0.0033 109 110 16
10 2 0.0045 273 274 20
11 3 0.0041 17 18 20
12 3 0.0030 19 20 17
13 3 0.0031 55 56 19
14 3 0.0028 210 211 17
15 3 0.0039 224 225 15
16 3 0.0028 230 231 15
17 3 0.0030 233 234 16
18 4 0.0032 11 12 18
19 4 0.0032 99 100 17
20 4 0.0031 107 108 15
21 5 0.0033 47 48 13
22 5 0.0034 48 49 16
23 5 0.0030 146 147 14
24 5 0.0053 150 151 16
25 7 0.0027 36 37 19
26 8 0.0028 81 82 14
27 9 0.0028 19 20 15
28 9 0.0034 21 22 17
29 9 0.0040 37 38 11
30 10 0.0030 76 77 20
31 11 0.0031 1 12 25
32 11 0.0027 23 24 20
33 11 0.0028 37 38 16
34 13 0.0028 53 54 16
35 14 0.0035 19 20 17
36 14 0.0027 65 66 17
37 18 0.0031 47 48 13
38 18 0.0042 48 49 17
39 19 0.0039 4 5 13

40 20 0.0029 34 35 28
41 20 0.0036 35 36 32
42 22 0.0032 26 27 5
43 23 0.0044 40 41 11
44 26 0.0030 12 13 16
45 26 0.0044 13 14 10
46 26 0.0092 14 15 14
47 26 0.0027 15 16 13
48 26 0.0029 32 33 10
49 28 0.0027 25 26 9
50 33 0.0041 147 148 11

cM, centiMorgan.

Table $3.2 The top 50 associated regions with the largest proportion of SNP variance explained for index in line B2
(ssGBLUP results).

Number Chromosome Variance Start region (cM) End region (cM) Number of SNPs within window
1 1 0.0068 16 17 17
2 1 0.0042 172 173 17
3 1 0.0060 242 243 21
4 1 0.0043 243 244 15
5 1 0.0034 265 266 19
6 2 0.0038 1 2 16
7 2 0.0060 4 5 22
8 2 0.0041 78 79 18
9 2 0.0037 189 190 21
10 2 0.0036 225 226 17
11 2 0.0036 253 254 20
12 2 0.0038 262 263 20
13 2 0.0034 263 264 22
14 3 0.0038 133 134 15
15 3 0.0036 224 225 14
16 4 0.0041 19 20 16
17 4 0.0041 94 95 7
18 5 0.0035 137 138 15
19 5 0.0043 148 149 13
20 6 0.0048 4 5 19
21 6 0.0048 11 12 13
22 6 0.0035 59 60 16
23 7 0.0037 76 77 14
24 7 0.0041 101 102 14
25 7 0.0039 102 103 15
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26 9 0.0062 16 17 15
27 9 0.0061 17 18 13
28 9 0.0034 19 20 8
29 9 0.0043 21 22 16
30 9 0.0040 85 86 13
31 9 0.0038 86 87 14
32 10 0.0041 66 67 14
33 10 0.0055 68 69 15
34 11 0.0049 23 24 22
35 11 0.0038 24 25 18
36 12 0.0054 5 6 15
37 13 0.0086 61 62 16
38 15 0.0035 14 15 12
39 15 0.0035 44 45 13
40 17 0.0047 13 14 16
41 17 0.0045 14 15 16
42 17 0.0045 21 22 15
43 17 0.0058 22 23 18
44 18 0.0048 19 20 21
45 18 0.0040 34 35 17
46 19 0.0035 21 22 15
47 19 0.0040 22 23 16
48 20 0.0059 10 11 25
49 20 0.0035 33 34 32
50 27 0.0034 49 50 10

cM, centiMorgan.

Table $3.3 The top 50 associated regions with the largest proportion of SNP variance explained for index in line W1
(ssGBLUP results).

Number Chromosome Variance Start region (cM) End region (cM) Number of SNPs within window
1 1 0.0074 111 112 12
2 1 0.0072 119 120 9
3 1 0.0072 175 176 11
4 1 0.0076 179 180 15
5 1 0.0094 234 235 16
6 1 0.0101 235 236 12
7 1 0.0075 238 239 13
8 1 0.0120 384 385 19
9 1 0.0101 387 388 16

10 2 0.0076 3 4 17
11 2 0.0118 13 14 12
12 2 0.0119 15 16 15
13 2 0.0114 41 42 15
14 2 0.0093 57 58 18
15 2 0.0077 79 80 18
16 2 0.0078 89 90 11
17 2 0.0079 164 165 15
18 2 0.0073 253 254 19
19 3 0.0152 1 2 18
20 3 0.0092 16 17 10
21 3 0.0071 191 192 11
22 3 0.0132 223 224 13
23 4 0.0100 6 7 14
24 4 0.0130 9 10 16
25 4 0.0077 125 126 10
26 4 0.0076 186 187 12
27 5 0.0077 145 146 13
28 6 0.0106 9 10 11
29 6 0.0103 17 18 16
30 6 0.0080 18 19 14
31 6 0.0176 29 30 8
32 7 0.0081 9 10 15
33 7 0.0114 37 38 14
34 7 0.0073 39 40 16
35 10 0.0089 51 52 9
36 10 0.0087 64 65 12
37 11 0.0088 18 19 13
38 11 0.0127 57 58 18
39 12 0.0093 24 25 10
40 12 0.0110 35 36 10
41 12 0.0080 55 56 11
42 14 0.0073 60 61 11
43 17 0.0114 25 26 11
44 20 0.0088 12 13 20
45 20 0.0103 13 14 22
46 22 0.0077 33 34 5
47 23 0.0097 21 22 12
48 23 0.0073 27 28 8
49 26 0.0115 38 39 12
50 28 0.0072 22 23 9

cM, centiMorgan.
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Table $3.4 Overlapped regions of the top 50 associated regions between different models (ssGBLUP and BSSVS).

Chromosome Associated regions by ssGBLUP Associated regions by BSSVS
Start region (cM) End region (cM) Start region (cM) End region (cM)
Line B1
1 403 404 403 404
1 405 406 405 406
2 108 109 108 109
2 273 274 273 274
3 17 18 17 18
3 55 56 55 56
4 107 108 107 108
9 37 38 37 38
10 76 77 76 77
11 11 12 11 12
18 48 49 48 49
20 34 35 34 35
20 35 36 35 36
22 26 27 26 27
23 40 41 40 41
26 13 14 13 14
26 14 15 14 15
Line B2
1 242 243 242 243
2 1 2 1 2
2 4 5 4 5
2 253 254 253 254
2 262 263 262 263
2 263 264 263 264
3 133 134 133 134
4 94 95 94 95
6 4 5 4 5
9 17 18 17 18
11 23 24 23 24
11 24 25 24 25
13 61 62 61 62
17 21 22 21 22
17 22 23 22 23
18 19 20 19 20
19 21 22 21 22
20 10 11 10 11
20 33 34 33 34
Line W1
1 234 235 234 235
1 387 388 387 388
2 15 16 15 16
2 41 42 41 42
3 1 2 1 2
3 223 224 223 224
6 17 18 17 18
6 29 30 29 30
7 9 10 9 10
7 37 38 37 38
7 39 40 39 40
11 18 19 18 19
11 57 58 57 58
17 25 26 25 26
20 12 13 12 13
20 13 14 13 14

cM, centiMorgan; ssGBLUP, single-step genomic best linear unbiased prediction; BSSVS, Bayesian stochastic search
variable selection.
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Table S4.1 Total number of SNPs masked for different MAF classes in 48K to 60K scenario.

Number of masked

Total number of

Percentage of masked

Number of masked

Total number of

Percentage of

R
MAF class SNPs? (Refy1) SNPs SNPs SNPs (Refes) SNPs masked SNPs
0.008-0.1 772 4485 0.17 837 4485 0.19

0.1-0.2 887 4485 020 885 4485 020
0.2-0.3 1081 4485 0.24 990 4485 0.22
03-0.4 835 4485 0.19 850 4485 019
0.4-0.5 733 4485 0.17 873 4485 0.19
Iy p:
Minor allele frequency.

2Single nucleotide polymorphisms.

Table S$4.2 Proportion of diversity for 62 sires and maternal grand sires (MGS) of GO.

Animal Proportion of diversity Animal Proportion of diversity
1 0.0277 32 0.0116
2 0.0267 33 0.0115
3 0.0242 34 0.0113
4 0.0214 35 0.0112
5 0.0211 36 0.0110
6 0.0199 37 0.0107
7 0.0196 38 0.0104
8 0.0187 39 0.0101
9 0.0186 40 0.0099

10 0.0186 41 0.0097
11 0.0173 42 0.0095
12 0.0165 43 0.0095
13 0.0165 44 0.0093
14 0.0152 45 0.0088
15 0.0151 46 0.0084
16 0.0149 47 0.0082
17 0.0149 48 0.0081
18 0.0148 49 0.0080
19 0.0145 50 0.0079
20 0.0145 51 0.0077
21 0.0141 52 0.0077
22 0.0141 53 0.0076
23 0.0135 54 0.0065
24 0.0133 55 0.0061
25 0.0133 56 0.0061
26 0.0121 57 0.0053
27 0.0120 58 0.0039
28 0.0119 59 0.0029
29 0.0118 60 0.0027
30 0.0118 61 0.0025
31 0.0116 62 0.0018

Table $4.3 Animal-specific imputation accuracy (rcorected) for SNPs classified by MAF in validation population (GO).

MAF class Ref,, Refs
0.008-0.1 0.67 0.82
0.1-0.2 0.81 0.88
0.2-0.3 0.84 0.91
0.3-0.4 0.85 0.91
0.4-0.5 0.83 0.89

Iy p:
Minor allele frequency.

Table S4.4 Animal-specific imputation accuracy (reorected) ON GGAS8 for different MAF classes and different reference
sizes in GO, G1, and G2.

MAF Refa, Refs,
cass [ o1 G2’ G0 61 G2
0.008-0.1 0.59 0.51 0.62 074 0.80 0.69
0.86 0.86 0.83 0587 0587 088
0.83 0.82 0.85 0.90 0.89 0.90
0.87 0.87 0.90 091 086 0.90
0.90 0.88 0.92 088 087 091

Minor allele frequency.
2p: " . . .

First generation of genomic selection experiment.
3Offspring of GO.
4Offspring of G1.
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Supplementary notes
Nucleotide diversity calculation

The software GATK computes the expected heterozygosity value as Hy = 1 — XL, (f;)?2
(Weir, 1996), to compute the prior probability that a locus is non-reference. The default
prior for heterozygosity in GATK, based on expectations for human, is 0.001. To obtain an
appropriate heterozygosity value for chicken, we calculated nucleotide diversity for each
sequenced animal. Nucleotide diversity, which is similar to expected heterozygosity, is
defined as the average number of nucleotide differences per site between any two DNA
sequences chosen randomly from the population. The method used to estimate nucleotide
diversity was based on the “modified Watterson estimator” as was developed in (Esteve-
Codina et al., 2013). Average nucleotide diversity for each of the sequenced animals was
0.0018 (Table S5.3).

Frequency

.---—E
oo2s 005 01 025 05 1 15 2 25 3 35 4

Distance between SNP neighbors in MB

00

Figure S5.1 Comparison of fraction of SNP pairs with different  levels (< 0.05, 0.05-0.1, 0.1-0.2, 0.2-0.4, 0.4-0.6, and >
0.6-1) in different distances (MB). Due to heavy computational burden, we computed r? for only GGA1 and only for
SNPs that are not more than the following distances apart: 0.05, 0.1, 0.25, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, and 4 MB (1 033
064 non-imputed SNPs on GGA1 were used in LD analysis).
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Figure S5.2 Distribution of SNPs for a random set of ncSNPs (top graph) and cSNPs (bottom graph) over bins of 1 MB.
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Table S5.1 Sequence coverage of whole-genome for the 22 sequenced animals.

Animal Sequence coverage
1 16.07
2 17.74
3 17.14
4 18.13
5 18.38
6 18.15
7 18.04
8 17.06
9 17.96
10 17.54
11 17.52
12 17.96
13 17.65
14 17.77
15 17.86
16 17.29
17 17.75
18 17.90
19 17.71
20 18.04
21 17.55
22 17.56

Average 17.67

Table $5.2 Number of SNPs in coding regions.

Annotation Number

Synonymous_variant 41031
Coding_sequence_variant 2
Stop_retained_variant 11

Missense_variant‘ 15382
Stopigained‘ 125
Imtiator_codon_var'\ant‘ 53
Stopjost‘ 10

Total 56 614

Table S5.3 Nucleotide diversity for the 22 sequenced animals.

Animal Nucleotide diversity
1 0.0018
2 0.0017
3 0.0017
4 0.0019
5 0.0017
6 0.0018
7 0.0018
8 0.0019
9 0.0019
10 0.0017
11 0.0018
12 0.0019
13 0.0019
14 0.0019
15 0.0019
16 0.0018
17 0.0019
18 0.0018
19 0.0018
20 0.0019
21 0.0017
22 0.0018

Average 0.0018
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Table S6.1 Accuracy of predicting total genotypic values and regression coefficient of phenotypes on total genotypic
values for eight traits in egg-laying chickens using two different models (MA and MAD) and three different methods
(GBLUP-REML, BayesC, and PBLUP-REML).

Accuracy | Regression coefficient
Trait Model Method
GBLUP-REML BayesC PBLUP-REML GBLUP-REML BayesC PBLUP-REML

D MA 0.30 0.28 0.17 0.85 0.78 0.89
MAD 0.30 0.31 0.16 0.85 0.87 0.87
M MA 0.30 0.30 0.25 0.91 0.88 1.26
MAD 0.30 0.29 0.24 0.91 0.87 1.19
Ew MA 0.55 0.60 0.22 0.88 0.92 0.63
MAD 0.55 0.59 0.22 0.88 0.92 0.64
AH MA 0.44 0.46 0.24 0.81 0.80 0.67
MAD 0.44 0.47 0.23 0.81 0.81 0.69
© MA 0.54 0.51 0.35 0.98 0.92 0.87
MAD 0.55 0.53 0.35 0.99 0.94 0.90
£3 MA 0.58 0.60 0.43 0.97 0.98 1.23
MAD 0.58 0.60 0.43 0.97 0.97 1.25
a MA 0.38 0.39 0.26 0.68 0.67 0.70
MAD 0.38 0.39 0.26 0.68 0.68 0.70
Yw MA 0.44 0.42 0.32 0.96 0.90 0.86
MAD 0.44 0.41 0.32 0.96 0.88 0.88

Egg production (PD); age at sexual maturity (SM); average egg weight (EW); albumen height (AH); egg colour (CO); egg
colour of the first three eggs (C3); egg weight for the first three eggs (E3); yolk weight (YW); MA : only additive effects
were included; MAD : additive and dominance effects were included.
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Training and Supervision Plan

The Basic Package (3 ECTS) year credits
WIAS introduction course 2011 1.5
Ethics and philosophy of life sciences 2012 1.5
Scientific Exposure (13 ECTS) year credits
International conferences (5.1 ECTS)

4™ international conference on quantitative genetics, Scotland (Edinburgh) 2012 1.2
64™ EAPP annual meeting, Nantes (France) 2013 1.2
10" WCGALP, Vancouver (Canada) 2014 1.5
66" EAPP annual meeting, Warsaw (Poland) 2015 1.2
Seminars and workshops (1.8 ECTS)

Hendrix Genetics academy, Boxmeer 2012 0.9
WIAS science day, Wageningen 2012 0.3
WIAS science day, Wageningen 2013 0.3
WIAS science day, Wageningen 2014 0.3
Presentations (6 ECTS)

4" international conference on quantitative genetics, Scotland (Edinburgh), Poster 2012 1.0
64™ EAPP annual meeting, Nantes (France), Oral 2013 1.0
WIAS science day, Wageningen (Netherlands), Oral 2014 1.0
10" WCGALP, Vancouver (Canada), Poster 2014 1.0
66" EAPP annual meeting, Warsaw (Poland), Oral 2015 1.0
66" EAPP annual meeting, Warsaw (Poland), Poster 2015 1.0
In-Depth Studies (23 ECTS) year credits
Disciplinary and interdisciplinary courses (15 ECTS)

Sequence data analysis training school 2012 1.5
Advanced methods and algorithms in animal breeding with focus on GS 2012 1.5
Population genetic data analysis 2012 1.0
Identity by descent (IBD) approaches to genomic analyses of genetic traits 2012 1.2
Innovagen winter school Il 2013 1.5
Genetic analysis using ASReml4.0 2014 1.5
Advanced quantitative genetics for animal breeding 2014 3.0
Introduction to theory and implementation of genomic selection 2014 1.35
Genomic selection in livestock 2015 1.2
Design of breeding programs with genomic selection 2015 1.2
Advanced statistics courses (1 ECTS)

MCMC for genetics 2012 1.0
PhD students' discussion groups (1 ECTS)

Quantitaive genetics discussion group (QDG) 2012 1.0
MSc level courses (6 ECTS)

Genetic improvement of livestock 2011 6.0
Professional skills support courses (3 ECTS) year credits
Techniques for writing and presenting a scientific paper 2012 1.2
Project and time management 2012 1.5
Career assessment 2015 0.3
Research skills and training (7 ECTS) year credits
Preparing PhD research proposal 2011 6.0
Getting started in ASReml| 2012 0.3
Introduction to R for statistical analysis 2012 0.6
Didactic Skills Training (5 ECTS) year credits
Lecturing (0.6 ECTS)

Lecture in genomic selection course - WUR 2014 0.6
Supervising practicals and excursions (2 ECTS)

Animal breeding and genetics course - WUR 2013 2.0
Supervising theses (2 ECTS)

MSc student — major thesis 2013 2.0
Education and training total (53 ECTS) 53
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