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Abstract 

Infectious diseases in farm animals are of major concern because of welfare, 

production costs, and public health. Control strategies, however, are not always 

successful. Selective breeding for the animals that can defend against infections, 

therefore, could be an option. Defensive ability of animals against infections 

consists of resistance (ability to control pathogen burden) and tolerance (ability to 

maintain performance when pathogen burden increases). When it is difficult to 

distinguish between resistance and tolerance, defensive ability is measured as 

resilience that is the ability to maintain performance during an outbreak regardless 

of pathogen burden. The aims of this thesis were to: 1) estimate the genetic 

variation in resistance, tolerance, and resilience to infection in order to assess the 

amenability of these traits for selective breeding in farm animals, 2) estimate the 

genetic correlation between resistance, tolerance and resilience and 3) identify 

genomic regions associated with resistance, tolerance, and resilience. To assess the 

amenability of resistance and tolerance for selective breeding, we studied the 

genetic variances of resistance and tolerance to nematode infection in sheep. For 

resistance we used three indicators: faecal nematode egg count (FEC), pepsinogen, 

and IgA. Tolerance was measured as the reaction norm of body weight on FEC and 

pepsinogen. The heritabilities for resistance traits ranged from 0.19 to 0.59. There 

was a significant (p<0.05) genetic variation among sheep in tolerance. We also 

observed a trade-off between resistance and tolerance. To assess the amenability 

of resilience to selection, we studied variation of sows in the reproduction traits 

number of piglets born alive and number of piglets born dead before and after 

porcine reproductive and respiratory syndrome (PRRS) outbreaks. Trait correlations 

between healthy and disease phases deviated from unity and ranged from 0.57 to 

0.87. The repeatabilities of the traits during healthy and disease phases ranged 

from 0.08 to 0.16. To study the response to selection in resistance and tolerance 

when using estimated breeding values for resilience we used Monte Carlo 

simulations along with selection index theory. Selection for resilience in absence of 

records for pathogen burden resulted in favourable responses in resistance and 

tolerance, with more emphasis on tolerance than on resistance. To identify 

genomic regions associated with resistance, tolerance and resilience we studied 

pigs that were experimentally diseased with PRRS. We identified common genomic 

regions associated with resistance and resilience to PRRS and other genomic 

regions (chromosome-wise significant) associated with tolerance to PRRS. From all 

the chapters in this thesis we conclude that there is genetic variation among 

animals in response to infection which can be utilized in breeding programs. 
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1.1 Costs of infectious diseases in farm animals 

Infectious diseases in farm animals are of major concern because of animal 

welfare, production costs, and public health. Every year, farms undergo huge 

economic losses due to infectious disease. The costs of infections in farm animals 

are mainly due to animals’ production losses, treatment of infected animals, and 

disease control strategies. Infectious diseases reduce the average farm production 

drastically. For example in the case of porcine reproductive and respiratory 

syndrome (PRRS) in pigs, the disease causes huge reduction in the reproductive 

performance of sows. Infected sows have reproduction failures such as piglet loss 

due to stillbirth, mummification and abortion. Because of the reproduction failures, 

the average production of the farm in terms of number of piglets born alive will 

decline dramatically. Figure 1.1 is the weekly average production of a commercial 

pig farm for number of piglets born alive (NBA) from 2004 to 2012. Almost every 

year the farm was infected with the PRRS virus and during the PRRS outbreak the 

weekly averages of NBA dropped 10 to 65%. The reduction in the weekly average 

of NBA means a huge loss in the profit from selling piglets by the farm. In the 

Netherlands, the mean cost of PRRS including production loss, medication, 

diagnosis, and labour was estimated to be €126 per sow per PPRS outbreak (18 

weeks) (Nieuwenhuis et al., 2012), The annual cost of PRRS for US farmers was 

estimated to be $663.91 with an average of $2.36 reduction in profit per pig 

weaned per year and $2.24 reduction in profit per pig marketed per year 

(Holtkamp et al., 2013). In cattle, Shaw et al. (1998) reported that gastrointestinal 

nematode infection causes a 155 g/day decrease in weight gain of infected calves. 

Other studies have also reported 4-5 kg loss in milk production of dairy cattle 

infected with nematodes (Charlier et al., 2014). In sheep, gastrointestinal 

nematode infection may cause 10-47% reduction in bodyweight gain and up to 21% 

reduction in wool growth (Charlier et al., 2014). 

The control strategies of the infectious diseases involve biosecurity, 

vaccination, sanitation, diagnosis, antibiotics, antiviral medicines, anthelminthic 

drugs, and culling. For PRRS in US Holtkamp et al. (2013) estimated the 

immunization, pharmaceutical, and diagnosis costs to be $1.71 per pig marketed 

per year and biosecurity and outbreak related costs to be $3.08 per pig marketed 

per year. The control strategies, however, are not always effective. For example for 

PRRS the current vaccines do not provide sustainable disease control due to the 

antigenic heterogeneity and various immune escaping strategies of the PRRS-virus 

(Renukaradhya et al., 2015; Thanawongnuwech and Suradhat, 2010). Therefore, 
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selective breeding of the animals that have the ability to mount a response against 

infection could potentially be a more sustainable approach. 

 

 

 

 
Figure 1.1. Weekly average of number of piglets born alive in a commercial pig farm 
from 2004 to 2012. The drops in the weekly averages are known to be due to PRRS 
outbreaks. 

  

1.2 Response to infection: resistance, tolerance, resilience 

Response to infections in animals involves two main mechanisms: resistance 

and tolerance. Resistance is defined as the ability of an animal to limit pathogen 

burden or resist against the pathogen and harbour less amount of pathogen by e.g. 

controlling the life cycle of the pathogen. Based on this, resistance could be defined 

as the inverse of the host's pathogen burden (Råberg et al., 2007): i.e. the more 

resistant animals will have lower pathogen burden. The advantage of resistance to 

infection is that a resistant animal will not spread the infection. Resistance, 

therefore, could be especially helpful in control and eradication of highly infectious 

disease and zoonotic diseases (Bishop, 2012). Resistance, however, limits the 

survival and reproduction of the pathogen and as a consequence imposes selection 

advantages on the pathogens that can overcome resistance (Detilleux, 2011; Kause, 
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2011; Råberg et al., 2007). The selection advantage is more severe on small 

pathogens with large population size and short generation interval.  

The genetic basis of resistance can be modelled as the genetic effect on the 

phenotype for pathogen burden (𝑦𝑃𝐵):  

 

𝑦𝑃𝐵 = 𝜇𝑃𝐵 + 𝐴𝑃𝐵 + 𝑒𝑃𝐵, 

 

where 𝜇𝑃𝐵 is the average pathogen burden, 𝐴𝑃𝐵 is the breeding value for pathogen 

burden, and 𝑒𝑃𝐵 is the environmental effect for pathogen burden. 

Tolerance is defined as the ability of an individual to maintain its 

performance in spite of an increase of pathogen burden. In another words, a 

tolerant individual shows minimum symptoms of the disease despite the infection. 

The advantage of tolerance to infection is that it does not impose a selection 

pressure on the pathogen (Rausher, 2001; Read et al., 2008). This could be 

especially an advantage for the pathogens that can overcome the resistance 

mechanisms. Tolerance, however, does not stop the spread of the infection and 

therefore is not a suitable control approach for highly infectious pathogens and 

zoonotic diseases (Bishop, 2012). The genetic basis of tolerance can be modelled as 

the genetic effect on the reaction norm of animal’s performance on its pathogen 

burden using random regression models (Kause, 2011): 

 

𝑦𝑖𝑗 = 𝜇 + 𝐴0𝑗 + 𝐴1𝑗 × 𝑃𝐵𝑖𝑗 + 𝑒𝑖𝑗 , 

 

where yij is performance of individual i from family j, µ is mean of population, A0j is 

the breeding value for intercept for family j, A1j is the breeding value for slope for 

family j, PBij is the phenotype of pathogen burden for individual i from family j, 𝑒𝑖𝑗  is 

the random error. Figure 1.2 is a schematic illustration of the reaction norm of two 

individuals performance on their pathogen burden. Individual 1 has a lower 

pathogen burden compared to individual two and therefore is more resistance. 

Individual 2, however, has a less steep slope compared to individual 1 and 

therefore is more tolerant. 

If pathogen burden of an individual is unknown, response to infection could 

be measured as resilience that is the ability to maintain performance regardless of 

pathogen burden. A resilient animal, therefore, could be resistant or tolerant or 

both (Doeschl-Wilson et al., 2012). The genetic basis of resilience could be 
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modelled as the genetic effect on performance of an individual during a disease 

outbreak (Albers et al., 1987; Bisset and Morris, 1996). 

 
Figure 1.2. Schematic figure showing reaction norms of two animals (red or blue line) on 
their pathogen burden. Pathogen burden (x-axis) is a measure of resistance and the 
slope of the reaction norm line is a measure of tolerance.  

 

1.3 Selective breeding for resistance, tolerance and 

resilience 

Selective breeding for the animals that are simultaneously resistant and 

tolerant could be a pragmatic approach for controlling diseases and prevent 

production losses due to diseases in farm animals. The first step in developing 

selection strategies to increase the defensive response traits is to assess the 

presence of genetic variation for such traits and to quantify the proportion of 

phenotypic variance explained by genetics (heritability). If the heritability is large, 

selective breeding can improve the trait rapidly. It is also important to know if 

there is any trade-off between the traits. Because if for example resistance and 

tolerance are negatively correlated on the genetic level, improving one by selection 

will decrease the other one, unless both traits are included in the breeding goal and 

the selection index. 

Existence of genetic variation in resistance to infection has been reported in 

farm animals such as dairy cattle (Berry et al., 2011; Detilleux, 2009; Morris, 2007; 

Sorensen et al., 2009), sheep (Albers et al., 1987; Bishop and Morris, 2007; Davies 
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et al., 2005), pigs (Ait-Ali et al., 2007; Boddicker et al., 2012; Vincent et al., 2005, 

2006), poultry (Banat et al., 2013; Janss and Bolder, 2000; Jie and Liu, 2011) , and 

fish (Gjerde et al., 2011; Verrier et al., 2012). Heritabilities ranged from 0.04 to 

0.33. 

The existence of genetic variation in resilience, without distinguishing 

between resistance and tolerance, has also been reported in sheep (Albers et al., 

1987; Morris et al., 2010), pigs (Boddicker et al., 2012; Boddicker et al., 2014; Lewis 

et al., 2009) and fish (Kuukka-Anttila et al., 2010). Heritabilities of resilience being 

the heritabilities of performance traits during disease periods ranged from 0.09 to 

0.46. 

The existence of genetic variation in tolerance is greatly overlooked. To 

date, there are very few studies on the genetic variation of tolerance to infection in 

farm animals. Hayward et al. (2014b) found no genetic variance in tolerance of 

Soay sheep to strongyle nematode infection. In another study Hayward et al. 

(2014a) found no genetic correlation between resistance and tolerance to 

strongyle nematode infection in Soay sheep.  Råberg et al. (2007) showed genetic 

variation in tolerance and a negative genetic correlation (−𝟏. 𝟎) between 

resistance and to rodent malaria (Plasmodium chabaudi) among five different 

inbred mouse strains. Lough et al. (2015) showed genetic variation in tolerance to 

Listeria among four genetically diverse inbred mouse strains. Corby-Harris et al. 

(2007) reported differences in post-infection mortality, as an indicator of tolerance, 

for 11 lines (6 inbred lines and 5 wild lines) of Drosophila melanogaster infected by 

a strain of P. aeruginosa. In human, there is evidence for variability in tolerance to 

human malaria. For instance, a monogenic disorder called α
+
 -thalassemia, causing 

formation of abnormal haemoglobin molecules, tends to reduce the incidence of 

severe disease causing variability among individuals for disease tolerance (Williams 

et al., 2005). 

1.4 This thesis 

To date, there are very few studies on genetic aspects of tolerance to 

infection in farm animals. Furthermore, the genetic relationship between 

resistance, tolerance and resilience is unknown. The objectives of this thesis, 

therefore, were to: 1) estimate the genetic variation in resistance, tolerance, and 

resilience to infection in order to assess the amenability of these traits for selective 

breeding in farm animals, 2) estimate the genetic correlation between resistance, 
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tolerance and resilience and 3) detect genomic regions associated with resistance, 

tolerance, and resilience.  

In chapter 2, the objectives were to 1) develop statistical models to detect 

PRRS outbreaks based on reproduction records of sows, 2) estimate variation 

among sows in response (resilience) to PRRS using different statistical models, 3) 

compare predictive ability of the statistical models for estimating variation in 

response to PRRS. We developed a linear regression method to distinguish healthy 

and disease phases based on reproduction records of sows. After detecting the 

outbreaks, we studied variation among sows for reproduction traits during healthy 

and diseased period of the farm. For that we used two statistical models. We 

compared the models for their predictive ability for the sow reproduction during 

healthy and diseased period using cross-validation. 

In chapter 3, the objectives were to 1) study the genetic variation in 

resistance and tolerance of sheep to gastrointestinal nematode infection and 2) to 

estimate the trade-off between resistance and tolerance to nematode infection. 

We used a sire model on faecal nematode egg count and pepsinogen to study the 

genetic variation in resistance. We used a random regression model to study the 

reaction norm of body weight on faecal nematode egg count to study the genetic 

variation in tolerance. We finally applied a bivariate model to estimate the genetic 

correlation between resistance and tolerance to nematode infection. 

In chapter 4, the objective was to study the response to selection in 

resistance and tolerance when using estimated breeding values for resilience. For 

that we simulated a population of half-sibs with known breeding values with 

resistance and tolerance using Monte Carlo simulation. We used selection index 

theory to study genetic gain in resistance and tolerance when pathogen burden is 

unknown and selection is based on resilience and compared it to the situation 

when genetic gain in resistance and tolerance is estimated based on known 

pathogen burden. 

In chapter 5 we detected the pig’s genomic regions associated with 

resistance, resilience, and tolerance to PRRS in the data used in chapter 5. We 

compared the genomic regions associated with the traits. 

In chapter 6 I discussed the statistical models to measure response to 

diseases and the implication of breeding for resistance, tolerance and resilience in 

farm animals. 
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Abstract 

Porcine reproductive and respiratory syndrome (PRRS) is a viral disease with 

negative impacts on reproduction of sows. Genetic selection to improve the 

response of sows to PRRS could be an approach to control the disease. Determining 

sow response to PRRS requires knowing pathogen burden and sow performance. In 

practice, though, records of pathogen burden are unavailable. We develop a 

statistical method to distinguish healthy and disease phases and to develop a 

method to quantify sows’ responses to PRRS without having individual pathogen 

burden. We analyzed 10,910 sows with 57,135 repeated records of reproduction 

performance. Disease phases were recognized as strong deviation of herd-year-

week estimates for reproduction traits using two methods: method 1 used raw 

weekly averages of the herd, method 2 used a linear model with fixed effects for 

seasonality, parity, and year and random effects for herd-year-week and sow. The 

variation of sows in response to PRRS was quantified using 2 models on the traits 

“number of piglets born alive” (NBA) and “number of piglets born dead” (LOSS): 1. 

bivariate model considering the trait in healthy and disease phases as different 

traits and 2. reaction norm model modeling the response of sows as a linear 

regression of the trait on herd-year-week estimates of NBA. The linear model for 

NBA had the highest sensitivity (78%) for disease phases. Residual variances of both 

were more than doubled in the disease phase compared to the healthy phase. Trait 

correlations between healthy and disease phases deviated from unity (0.57 ± 0.13 - 

0.87 ± 0.18). In the bivariate model repeatabilities were lower in disease phase 

compared to healthy phase (0.07 ± 0.027 and 0.16 ± 0.005 for NBA; 0.07 ± 0.027 

and 0.09 ± 0.004 for LOSS). The reaction norm model fitted the data better than 

the bivariate model based on Akaike’s information criterion and had also higher 

predictive ability in disease phase based on cross validation. Our results show that 

the linear model is a practical method to distinguish between healthy and disease 

phases in farm data. We showed that there is variation among sows in response to 

PRRS implying possibilities for selection, and the reaction norm model is a good 

model to study the response of animals towards diseases.  

 

Key words: disease resistance, tolerance to infection, outbreak detection, pig, 

porcine reproductive and respiratory syndrome, reproduction.  
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2.1 Introduction 

 

A major problem in the pig industry is the viral disease porcine reproductive 

and respiratory syndrome (PRRS). The biggest economic impact of PRRS is 

reproductive failure in sows such as abortion, mummified and stillborn piglets, and 

pre-weaning mortality in piglets (Murtaugh and Rowland, 2004). Because 

vaccination against PRRS is not fully successful (Huang and Meng, 2010; Murtaugh 

and Genzow, 2011), genetic selection on the population level for sows that can 

mount a defense against PRRS could be an option. The defensive ability of a sow 

against PRRS has two mechanisms: resistance and tolerance. Resistance occurs 

when sows prevent the PRRS virus from entering the body or manipulate the virus 

life cycle to remove it from the body (Read et al., 2008; Rowland et al., 2012). 

Tolerance occurs when sows decrease the effects of the PRRS infection on 

performance despite the infection (Kause, 2011). Most studies on host–pathogen 

interactions have focused on the genetics of resistance (Vincent et al., 2006; Lewis 

et al., 2010) with little known about the genetic aspects of tolerance.  

To study resistance and tolerance, the pathogen burden of PRRS along with 

the record of performance for each sow needs to be known (Kause, 2011; Doeschl-

Wilson et al., 2012). Recording of pathogen burden in farm animals, however, is 

laborious and costly. Thus, a new method is needed to quantify sow response to 

PRRS without knowing the pathogen burden of individuals. Moreover, an effective 

method of distinguishing between healthy and diseased periods of a farm is 

required. The objectives of this study were to 1) identify PRRS outbreaks based on 

reproduction records, 2) develop statistical models to estimate variation among 

sows in response to PRRS, and 3) assess the goodness of fit and predictive ability of 

the statistical models. 

 

2.2 Material and methods 

 

2.2.1 Data 

Data were collected from a commercial pig farm located in an area in 

Canada, where PRRS is endemic. There were 68,292 records of 12,441 sows, which 

had repeated records of reproduction traits from 2003 to 2012. We used the daily 

reproductive records of the farm including parity, number of piglets born alive 

(NBA), number of piglets weaned (NWD), number of mummified piglets (MUM), 

number of stillborn piglets (STB), and abortions (binary: yes/no) (AB). We also 

created an extra trait for number of piglets born dead by summing the number of 
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stillborn and mummified piglets (LOSS). Combining mummification and stillbirth 

into a single trait was done to preclude the problem of misdiagnosis between 

mummification and stillbirth (Mckay, 1993). Mummification and stillbirth cause a 

reduction in NBA, and abortion leads to zero NBA. Therefore, reduction in NBA 

arising from those reproduction failures was expressed at the day of farrowing. 

After editing the dataset to exclude animals with no observations and also to 

remove weeks with fewer than 5 observations, a total of 57,135 records for 10,910 

sows remained from 2004 through the initial 26 weeks of 2012. The number of 

parities ranged from 1 to 14 with an average of 5. No pedigree was available. 

During suspected PRRS outbreaks based on changes in average sow performance, 

e.g. increased abortion and mummified piglets, blood samples were taken to test 

for the presence of PRRS virus and to identify the strain of PRRS viruses for 

veterinary purposes. There was no information available about any negative blood 

samples for PRRS virus. 

 

2.2.2 Partitioning production periods into healthy and disease phases 

Two methods were used to partition periods of production into healthy and 

disease phases. One method simply used raw weekly averages of the herd in each 

year. The other method used herd-year-week estimates of a linear model, in which 

herd-year-week effects were estimated simultaneously with fixed and random 

effects. In both methods, disease phases were distinguished from healthy phases as 

strong deviations (1% truncation of a normal distribution, described below) of 

herd-year-week estimates from the mean of reproduction traits.  

The traits NBA, NWD, MUM, STB, AB, and LOSS were used to test which 

traits are best for outbreak detection compared to virus isolation data. Porcine 

reproductive and respiratory syndrome decreases NWD and NBA, therefore, herd-

year-weeks with an estimate more than 2.326 standard errors below the overall 

mean of herd-year-week estimates were considered as diseased. The threshold 

2.326 corresponds to the 1% truncation point of a normal distribution. Other 

truncation points like 5% and 10% were tested as well. The 1% truncation point, 

however, resulted in more precise detection of outbreaks. Porcine reproductive 

and respiratory syndrome, on the other hand, increases AB, MUM, STB, and LOSS, 

and therefore, the herd-year-weeks with an estimate more than 2.326 standard 

errors above the overall mean of herd-year-week estimates were considered as 

diseased. The linear model was as follows: 

 

𝑌𝑖𝑗𝑘𝑙 = 𝜇 + 𝛽𝑆𝐼𝑁𝑖𝑗𝑘𝑙 + 𝑃𝐴𝑅𝑖 + 𝑌𝑅𝑗 + 𝑦𝑤𝑘 + 𝑠𝑜𝑤𝑙 + 𝑒𝑖𝑗𝑘𝑙 ,   [1] 
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where 𝑌𝑖𝑗𝑘𝑙  is the phenotypic value for the reproductive traits of 𝑙𝑡ℎ sow, 𝜇 is the 

overall mean, 𝛽 is the regression coefficient of the covariate 𝑆𝐼𝑁, and 𝑆𝐼𝑁 is a 

sinusoidal covariate to account for seasonality in production of the sow, which was 

calculated as: 𝑠𝑖𝑛⁡{[
𝐹𝑎𝑟𝑟𝑜𝑤𝑖𝑛𝑔⁡𝐷𝑎𝑡𝑒−"1⁡𝑀𝑎𝑦"

365.25
] × ⁡(2𝜋)} (Bergsma and Hermesch, 2012). 

Bergsma and Hermesch (2012) used March 21 as the point where the sinus-

function is zero (day-length is 12 hours). In our study May 1 had the best match 

with the data. 𝑃𝐴𝑅 is the fixed effect of the⁡𝑖𝑡ℎ parity for sow; 𝑌𝑅 is the fixed 

effect of the⁡𝑗𝑡ℎ year; and 𝑦𝑤 is the random effect of the 𝑘𝑡ℎ⁡herd-year-week with 

N(0, 𝜎𝑦𝑤
2 ), where 𝜎𝑦𝑤

2  is the variance of herd-year-week; ⁡sow is the random effect 

of the 𝑙𝑡ℎ sow with N(0, 𝐈𝜎𝑠𝑜𝑤
2 ), where 𝐈 is the identity matrix, as no pedigree was 

available, and 𝜎𝑠𝑜𝑤
2  is the  variance of the sow effect; and⁡𝑒𝑖𝑗𝑘𝑙 is the random 

residual term with 𝑒~N(0, 𝐈𝜎𝑒
2), where 𝐈 is the identity matrix and 𝜎𝑒

2 is the 

residual variance. Herd-year-week was included as a random effect because 

preliminary results showed confounding between sow effects and herd-year-week 

effects leading to large standard errors of herd-year-week estimates (Visscher and 

Goddard, 1993).  

In both methods, a disease phase was defined in which there were at least 

two consecutive herd-year-weeks specified as diseased. If there was a one-week 

gap between two herd-year-weeks specified as diseased, the week in between was 

also considered to be diseased when the herd-year-week estimate was at least 

1.645 standard errors below/above the average (5% truncation point of normal 

distribution).  

The sensitivity of detecting truly positive phases was calculated based on 

the date of virus isolation. For that, the dates of virus isolation were converted to 

weeks of virus isolation. A disease phase was considered to be truly positive if 

there were at most 7 weeks time lag between the disease phase and the week(s) 

of virus isolation. The 7-week lag between a disease phase and the week(s) of virus 

isolation was considered because it led to the highest match between the two (see 

Table 2.1). Transmission of PRRS virus occurs either directly by the pigs through 

bites, cuts, scrapes, tail and ear-biting or indirectly by instruments in the farm, 

clothing, water, food and aerosols. Physical obstacles like e.g. sows in different 

compartments separated by walls, therefore, can delay transmission of PRRS virus 

within the farm. It is also known that pigs are not equally susceptible to PRRS virus 

by all routes of exposure (Zimmerman et al., 2006). On the other hand, vertical 

transmission from dams to fetuses mostly happens during the last trimester of 

pregnancy and results either in dead fetuses or weak new-born piglets that might 

die before weaning (Zimmerman et al., 2006). Depending on the stage of 
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pregnancy at which the sow is infected, the reproduction symptoms of PRRS vary, 

which might delay expression of the disease on the herd level. The 7-week, 

therefore, seemed to be a reasonable time span between disease phase and the 

week(s) of virus isolation.  

Sensitivities of the approaches were calculated as: 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃⁡

𝑇𝑃+𝐹𝑁⁡
, 

where 𝑇𝑃 is the number of truly positive disease phases and 𝐹𝑁 is the number of 

false-negative phases. 

 
Table 2.1 Comparison of linear model and weekly average as two methods for partitioning 
production periods into healthy and disease phases 

  
Disease period 

 
Overlap

2
 

 

Trait
1
 Method Week

3
 Phase

4
 

 
Week

3
 Phase

4
 

Sensitivit
5
 

(%) 

NBA 
Linear Model 55 11 

 
10 3 

78 

Weekly Average 10 3 
 

21 

AB 
Linear Model 55 12 

 
4 2 

69 

Weekly Average 4 2 
 

7 

NWD 
Linear Model 68 8 

 
16 5 

50 

Weekly Average 16 5 
 

29 

STB 
Linear Model 24 5 

 
4 2 

21 

Weekly Average 4 2 
 

7 

LOSS 
Linear Model 23 4 

 
2 1 

15 

Weekly Average 2 1 
 

0 

MUM 
Linear Model 8 2 

 
3 1 

14 

Weekly Average 3 1 
 

7 
1
Traits: NBA = number piglets born alive; AB = Abortion; NWD = number of piglets weaned; 

STB = number of stillborn piglets; LOSS = number of piglets born dead due to mummification 
and/or stillbirth; MUM = number of mummified piglets  
2
Weeks and phases that were detected as disease and outbreak with both linear model and 

weekly average method 
3
Number of weeks partitioned as diseased, which were in an immediate adjacent of at least 

one diseased week. 
4
Number of disease phases, which consist at least two consecutive diseased weeks 

5
Sensitivity of the approach in detecting truly positive phases 

2.2.3 Estimation of variation among sows in response to PRRS 

Two models were used to quantify variation among sows in response to 

PRRS: a bivariate model and a reaction norm model. In both models, we included 

traits NBA and LOSS as response variables to assess the ability of each trait in 

capturing the variation among sows in response to PRRS. Number of piglets born 
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alive was chosen because most of the reproduction failures arising from PRRS 

would be expressed as a reduction in NBA at farrowing (Figure 2.1). We 

hypothesized that NBA is a good option that shows drops in production caused by 

PRRS. One may think that NWD could be a better trait as compared to NBA because 

in addition to AB and LOSS, pre-weaning mortality in piglets would be expressed in 

total number of piglets weaned. In this farm, though, cross-fostering had taken 

place among sows, which would complicate data analysis and for this reason NWD 

was not used for estimation of variance among sows in response to PRRS. We also 

used LOSS because previous studies reported significant increase in number of 

mummified and stillborn piglets as well as large variance of these two traits during 

PRRS outbreaks (Lewis et al., 2009). Abortion was not used to quantify variation 

among sows because it was a binary trait and analyses did not converge.  

The linear model with NBA as response variable was considered as the best 

method of partitioning periods into healthy and diseased because it showed the 

highest sensitivity of detecting truly disease phases (Table 2.1). Herd-year-week 

estimates of NBA from the linear model are the herd characteristics that are best 

associated with gradual changes in environment because of PRRS and were used as 

the environmental parameter in the reaction norm model. The standardized herd-

year-week estimates of NBA from the linear model ranged from 2 to −4.4 (healthy 

to diseased). Using herd-year-week estimates of NBA in the linear model allowed 

us to quantify variation in sow responses to PRRS with respect to disease severity in 

each herd-year-week without partitioning records into healthy and diseased 

phases. 
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Figure 2.1 Predicted PRRS outbreaks using the linear model based on number of piglets born 
dead due to mummification and/or stillbirth, abortion, and number of piglets born alive. The 
solid diamonds show disease herd-year-weeks during an outbreak. The empty circles show 
healthy herd-year-weeks. The arrows show the weeks in which PRRS viruses were isolated 
from blood of sows. 
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2.2.3.1 Bivariate model 

 With this model [2], sow performances in terms of NBA and LOSS in healthy 

and disease phases were studied as different traits as proposed by Falconer  (1952) 

to study genotype by environment interaction. The model was as follows:   

 

[
𝐲healthy

𝐲diseased
] =

[
𝐗healthy 𝟎

𝟎 𝐗diseased
] [

𝐛healthy

𝐛diseased
] + 𝐖𝐲𝐰 + [

𝐙healthy 𝟎

𝟎 𝐙diseased
] [

𝐚healthy

𝐚diseased
] +

[
𝐞healthy

𝐞diseased
]        [2] 

 

where⁡𝐲healthy (𝐲diseased)⁡is a vector of sow performance in the healthy phase 

(disease phase); and 𝐛healthy (𝐛diseased) is a vector of the fixed effects in healthy 

phase (disease phase), which were 𝜇, 𝑆𝐼𝑁, 𝑃𝐴𝑅, 𝑌𝑅 (see model 1 for description), 

𝑌𝑊̂ as a covariate for estimated herd-year-weeks from the basic model [1] that 

corrects for the severity of the infection, and⁡𝑆𝑇𝐴𝑇𝑈𝑆 defined by the herd-year-

week solutions of NBA as performance means in healthy and disease phase. The 

𝑌𝑊̂ was included as a covariate in the bivariate model to make it equivalent to the 

reaction norm model (see below) in terms of the fixed effects, which enabled us to 

compare the models using Akaike information criterion (see below). Random 

effects were 𝒚𝐰, which is the effect of herd-year-week with 𝒚𝐰~N(𝟎, 𝜎𝑤
2), and 

𝐚healthy (𝐚diseased), which is a vector of sow effects in the healthy phase (disease 

phase). 𝐗healthy (𝐗diseased) and 𝐙healthy (𝐙diseased) are the design matrices 

assigning the observations to the levels of fixed and random effects in the healthy 

phase (disease phase). 𝐖 is the design matrix assigning the observations to the 

levels of 𝐲𝐰 random effect. The variance of the residuals and sow effects is: 

Var [
𝐞healthy

𝐞diseased
] = 𝐑 ⊗ 𝐈⁡where⁡𝐑 = [

𝜎𝑒ℎ𝑒𝑎𝑙𝑡ℎ𝑦
2 0

0 𝜎𝑒𝑑𝑖𝑠𝑒𝑎𝑠𝑒𝑑
2

] and 

Var [
𝐚healthy

𝐚diseased
] = 𝐆 ⊗ 𝐈⁡where⁡𝐆 = [

𝜎𝑎ℎ𝑒𝑎𝑙𝑡ℎ𝑦
2 𝜎𝑎ℎ𝑒𝑎𝑙𝑡ℎ𝑦⁡𝑎𝑑𝑖𝑠𝑒𝑎𝑠𝑒𝑑

𝜎𝑎ℎ𝑒𝑎𝑙𝑡ℎ𝑦⁡𝑎𝑑𝑖𝑠𝑒𝑎𝑠𝑒𝑑
𝜎𝑎𝑑𝑖𝑠𝑒𝑎𝑠𝑒𝑑

2 ], where 

⊗⁡is the direct matrix product operator. 

 

2.2.3.2 Reaction-norm model 

The reaction norms of the reproduction traits NBA and LOSS on 

standardized herd-year-week estimates of NBA (ranged from 2 to −4.4 with 

μ = 0, σ = 1) were studied with the following model: 
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𝐲 = 𝐗𝐛 + 𝐖𝐲𝐰 + 𝐙𝐚𝐢 + 𝐙𝐲𝐰𝐚𝐬 + 𝐞     [3] 

 

where 𝐲 is a vector of sow performance; 𝐛 is a vector of fixed effects (see model 2 

for fixed effects).  𝑌𝑊̂ was included in the model as a covariate for estimated herd-

year-weeks to account for the averages of herd-year-week estimates. 𝑆𝑇𝐴𝑇𝑈𝑆 was 

used to account for the difference in average performance in healthy and disease 

phases and to make the reaction norm model equivalent to the bivariate model in 

terms of the fixed effects, which enabled us to compare the models using Akaike 

information criterion (see below); 𝒚𝐰 is the random effects of herd-year-week 

with 𝒚𝐰~N(𝟎, 𝜎𝑦𝑤
2 ); 𝐚𝐢 is a vector of sow random effects for intercept with 

𝐚𝐢~N(𝟎, 𝐈𝜎𝑎𝑖
2 ), where 𝜎𝑎𝑖

2  is the sow variance for intercept and 𝐈 is the identity 

matrix; and 𝐚𝐬 is a vector of sow random effects for slope of the reaction norms of 

performances on standardized herd-year-week estimates, obtained from the basic 

model [1], with 𝐚𝐬~⁡N(𝟎, 𝐈𝜎𝑎𝑠
2 ), where 𝜎𝑎𝑠

2  is the sow variance for slope and 𝐞 is a 

vector of residuals. 𝐗, 𝐖, and 𝐙 are the design matrices assigning the observations 

to the levels of fixed and random effects. 𝐙𝐲𝐰 is the design matrix with 

standardized herd-year-week estimates of NBA as covariates for the slopes of 

reaction norms. The variance covariance matrix for intercept and slope is 

Var [
𝐚𝐢

𝐚𝐬
] = 𝐆𝐑𝐍 where 𝐆𝐑𝐍 = [

𝜎𝑎𝑖
2 𝜎𝑎𝑖,𝑎𝑠

𝜎𝑎𝑖,𝑎𝑠
𝜎𝑎𝑠

2 ], where 𝜎𝑎𝑖,𝑎𝑠
⁡is the covariance 

between sow effects for intercept and slope. Preliminary results showed 

substantial inflated residual variances in disease phase as compared to healthy 

phases. Heterogeneity of residual variance, therefore, was considered for healthy 

and disease phases. Based on standardized herd-year-week estimates, records 

were divided in 10 classes: 9 classes for healthy phases and class 10 for diseased 

phases. A similar approach was used by Calus et al., (2002) and Lillehammer et al., 

(2009) to estimate genotype by environment interaction using reaction norm 

models. The residual variances of the 10 classes were estimated, so that: 

Var [

𝐞𝟏

𝐞𝟐

⋮
𝐞𝟏𝟎

] = 𝐑 ⊗ 𝐈⁡where⁡𝐑 =

[
 
 
 
 
𝜎𝑒1

2 0 … 0

0 𝜎𝑒2
2 0 0

⋮ ⋮ ⋱ ⋮
0 0 … 𝜎𝑒10

2
]
 
 
 
 

 

Variance components were estimated using ASReml (Gilmour et al., 2009). 

2.2.4 Correlation between performances in healthy and disease phases 

 To quantify re-ranking of sows between healthy and disease phases, we 

estimated the correlation of sow performances between healthy and disease 
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phases. With the bivariate model, the correlation was expressed in the output of 

the analysis. With the reaction norm model, the correlation between performances 

of sows in healthy and disease phases was estimated by calculating variances of 

sows in healthy and disease phases and the covariance between the two phases 

using the 𝐆𝐑𝐍.  

2.2.5 Model comparison 

2.2.5.1 Akaike information criterion (AIC) 

 The goodness of fit of the models was assessed with AIC using the following 

formula (Akaike, 1973): 

𝐴𝐼𝐶 = −2𝑙𝑜𝑔𝐿 + 2𝐾, 

where  𝑙𝑜𝑔𝐿 is the logarithm of likelihood of the model and 𝐾 is the number of 

variables in the model. 

2.2.5.2 Cross-validation 

 The predictive ability of each model was studied using cross validation. 

Because of lack of pedigree data, sows needed to have some records to predict 

future performance of them. Prediction of future performance is important for 

breeding programs as selection is directed towards the future. To assess the effect 

of including more information on predictive ability, we increased the number of 

parities included in the reference data. We hypothesized that having more parity of 

sows will lead to higher accuracy of prediction of their future performance. Four 

different parity groups were considered: parities 1 through 4 (1–4), 1 through 5 (1–

5), 1 through 6 (1–6), and 1 through 7 (1–7). In each group, the last parity was set 

to missing (validation set), and all other parities before the last one (training set) 

were used to predict the sow effects in the last parities. First, the base model (1) 

was run for each trait for each parity group. Then adjusted phenotypes were 

calculated as the sum of estimated sow effect and estimated residual for each 

record. The adjusted phenotypes were used as the response variables of each 

model. Finally, the correlations between the estimated sow effects in the training 

sets with the adjusted phenotypes in the validation sets were calculated for each 

model. 
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2.3 Results 

2.3.1 Outbreak detection 

Table 2.1 shows the results of partitioning production periods into healthy 

and disease phases. The number of disease phases detected with the linear model 

method was much larger than that with the weekly average method, although the 

threshold based on the normal distribution was the same. During PRRS outbreaks 

the performance of the farm decreased substantially, which reduced the annual 

average of production and as a consequence the deviation of a certain year-weak 

from the annual average was reduced. In the linear model method this problem 

was solved by correcting the performance for fixed and random effects. With the 

linear model, the highest numbers of disease phases were detected with NBA, AB, 

and NWD, respectively. With the weekly average approach, the highest numbers of 

disease phases were detected with NWD and NBA, respectively. Sensitivity of 

detecting truly positive disease phases was largest using the linear model with NBA 

(78%) and AB (69%) and much lower for MUM (14%), LOSS (15%), and STB (21%). 

Sensitivities were much lower using the weekly average method. Figure 2.1 

illustrates partitioned healthy and disease phases using NBA, AB, and LOSS in the 

linear model as well as the weeks in which virus had been isolated. It shows that 

there was a good accordance between specified disease phases and weeks of virus 

isolation. Using NBA in the linear model 10 out of 11 detected disease phases could 

be assigned to a week of virus isolation, considering at most a 7-week lag between 

them. It can be concluded that using the linear model with NBA as a response 

variable is the best approach to detect disease phases related to PRRS.  

2.3.2 Comparison of sow performance in healthy and disease phases 

The differences in the performance of sows for NBA during healthy and 

disease phases are summarized in Table 2.2. All the sows had performance in 

healthy phase and about 50% had at least one performance in disease phase. All 

the sows in disease phase had at least one record in healthy phase. The mean of 

NBA in disease phases decreased by 24% whereas the standard deviation increased 

by 44% as compared to healthy phase. There was a clear decrease in largest (17%) 

and smallest (50%) values of herd-year-week averages in disease phases as 

compared to healthy phases. This reduction in NBA during disease phase was 

expected because the disease phase was basically defined as the reduction in NBA.  
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Table 2.2 Comparison of number of piglets born alive in healthy and disease phases 

Phase Number of sow Number of record Mean SD Max
1
 Min

2
 

Healthy 10910 50467 11.48 3.63 12.97 8.97 
Disease

3
 5374 6668 8.73 5.21 10.74 4.30 

1
Maximum herd-year-week average  

2
Minimum herd-year-week average  

3
Sows in diseased phases had always at least one record in healthy phases. 

2.3.3 Variance components, repeatability, and ranking. 

Both bivariate and reaction norm models showed that there is variation 

among sows for NBA and LOSS during healthy and disease phases (Table 2.3). The 

sow variances in healthy phases were similar between the bivariate and reaction 

norm models for both NBA and LOSS. The sow variances during disease phases 

were almost doubled as compared to healthy phases, except for NBA in the 

bivariate model which decreased by 17%. Residual variances of both models were 

very similar. For both traits, residual variances during disease phase were more 

than doubled as compared to healthy phase, using both bivariate and reaction 

norm models. For LOSS in disease phase the increase in residual variance was larger 

than that of NBA. In addition, using the reaction norm model showed that for both 

traits, NBA and LOSS, there was variation in intercepts and slopes of the reaction 

norms.  

The variance of intercept shows the variation in performance of sows at 

zero estimate of herd-year-week for NBA, which is the average herd-year-week for 

NBA. The standardized herd-year-week estimates for NBA in healthy phase ranged 

from 2 to –2.326 in which the average production of the herd is not affected by 

PRRS. Therefore, the intercept of the reaction norm model is approximately in the 

average herd-year-week in the healthy phase. The variance of slopes shows 

variation in responses of sows to gradual changes in herd-year-week estimates 

associated with PRRS or something else. There were moderate negative 

correlations between intercept and slope at zero estimate of herd-year-weeks for 

both traits, NBA (–0.26 ± 0.05) and LOSS (–0.41 ± 0.09). The negative correlations 

between intercept and slope mean that sows with high intercepts have less steep 

slopes whereas sows with low intercepts have steep slopes. In other words, sows 

with high NBA during healthy phases may show smaller reduction in NBA during 

disease phases, whereas sows with low NBA during healthy phase may show higher 

reduction in NBA during disease phase. In the case of LOSS, it means that sows with 

high LOSS during healthy phases may have a small increase in LOSS during diseased 

phases, whereas sows with low LOSS during healthy phases may have large 

increase in LOSS during diseased phases. 



2. Variation among Sows in Response to PRRS 

 

 

 

36 

 

Table 2.3 Variance components ± SE of the bivariate and reaction norm models for number 
of piglets born alive (NBA) and number of piglets born dead due to mummification and/or 
stillbirth (LOSS)

 

Variance 

NBA 
 

LOSS 

Bivariate 
Reaction 

norm  
Bivariate 

Reaction 
norm 

Sow in healthy 
phase 

2.05 ± 0.07 1.96 ± 0.06 
 
0.30 ± 0.01 0.28 ± 0.01 

Sow in disease 
phase 

1.70 ± 0.68 3.83 ± 0.31 
 
0.57 ± 0.23 0.67 ± 0.09 

Residual healthy 
phase 

10.55 ± 0.07 10.56 ± 0.08 
 
2.87 ± 0.02 2.88 ± 0.01 

Residual disease 
phase 

22.92 ± 0.77 21.67 ± 0.49 
 
7.43 ± 0.26 7.41 ± 0.16 

Corr
1
 (healthy, 

disease) 
0.87 ± 0.18 0.81 ± 0.03 

 
0.57 ± 0.13 0.83 ± 0.05 

      Intercept 
 

2.05 ± 0.07 
  

0.31 ± 0.01 
Slope 

 
0.23 ± 0.04 

  
0.04 ± 0.01 

Corr
2
 (intercept, 

slope)  
-0.26 ± 0.05 

  
-0.41 ± 0.09 

1
Correlation between sows’ performance in healthy and disease phase 

2
Correlation between intercept and slope 

 

For NBA, with increasing the class of residual variances from 1 to 10, 

residual variance increased gradually (Table 2.4), specifically in the first eight 

classes that were in healthy phase. The increase of residual variance in disease 

phase ranged from 177% to 47% as compared to the classes 1 to 9 in healthy 

phase. The last class in healthy phase (class 9) had the highest residual variance 

(14.72 ± 0.31) among other classes in healthy phase, which might be because some 

records of diseased sows in a herd-year-week were not classified as disease phase. 

For LOSS, there were large changes in residual variances in different classes of 

residual variances. There was not a consistent pattern of change specifically in the 

first eight classes in healthy phase. In line with NBA, the last class in healthy phase 

(class 9) had the highest residual variance (4.07 ± 0.08) among other classes in 

healthy phase, which again suggests that there might have been some records of 

diseased sows in this class that were not classified in disease phase. For LOSS, 

increase of residual variance in disease phase ranged from 225% to 82% as 

compared to classes 1 to 9 of the residual variances in healthy phase. It can be 

concluded that PRRS severely increased variation in NBA and LOSS. 
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Table 2.4 Residual variances ± SE of reaction norm model grouped into 10 classes (Class) 
based on estimates of number of piglets born alive (NBA) and number of piglets born dead 
due to mummification and/or stillbirth (LOSS). There were 9 classes in healthy phase and 1 
classes in disease phase 

Phase Class NBA LOSS 

Healthy 

1 7.84 ± 0.18 2.28 ± 0.05 

2 7.76 ± 0.17 2.43 ± 0.05 

3 9.07 ± 0.19 2.41 ± 0.05 

4 9.65 ± 0.20 3.08 ± 0.06 

5 10.68 ± 0.23 2.83 ± 0.06 

6 10.94 ± 0.23 2.78 ± 0.06 

7 11.67 ± 0.24 2.64 ± 0.05 

8 12.74 ± 0.27 3.39 ± 0.07 

9 14.72 ± 0.31 4.07 ± 0.08 

    
Disease 10 21.67 ± 0.49 7.41 ± 0.16 

 

2.3.4 Correlation between performances of sows in healthy and disease phases 

Correlations between performances of sows in healthy and disease phases 

are shown in Table 2.3. For NBA, correlations between healthy and diseased 

periods were high using the bivariate (0.87 ± 0.18) and the reaction norm models 

(0.81 ± 0.03). For LOSS, correlations between healthy and diseased periods were 

moderate (0.57 ± 0.13) using the bivariate model and high (0.83 ± 0.05) using the 

reaction norm model. There was a large difference in standard errors of the 

correlation estimates between the two models. Using the bivariate model, 

standard errors of the correlation estimates were higher as compared to the 

reaction norm model. In general, correlations between performances of sows in 

healthy and disease phases significantly deviated from one (2×SE, Lynch and Walsh, 

1998) except for NBA using the bivariate model. These findings imply re-ranking of 

sows in healthy and disease phases.  

Figure 2.2 shows variation among 100 random sows for reaction norm of 

NBA on herd-year-week estimates across the 10 classes of herd-year-weeks. The x-

scale in Figure 2.2 was mirrored to reflect that the diseased phase was on the right 

side of the figure to have a similar figure as tolerance/resistance as a function of 

pathogen burden, e.g., Raberg et al., (2007). Note that we used the figure only for 

illustrative purpose to show change in the ranking of sows but not to quantify it. 

Although most of the sows showed a flat reaction norm, the ranking of sows was 

different across herd-year-week levels. The difference in ranking of sows was more 
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pronounced in the lower levels of herd-year-week, which suggests more variation 

among sows in lower levels of herd-year-weeks. 

Repeatabilities of sow performance in healthy and disease phases are 

shown in Table 2.5 Repeatabilities for LOSS were generally lower than 

repeatabilities for NBA. In general, repeatabilities of the traits were similar in 

healthy and disease phases using bivariate and reaction norm models with a slight 

decrease in disease phase. Using the bivariate model for NBA repeatability in 

disease phase was almost halved as compared to healthy phase. 

 
Table 2.5 Repeatabilities ± SE of the sows’ performances in healthy and disease phases for 
number of piglets born alive (NBA) and number of piglets born dead due to mummification 
and/or stillbirth (LOSS)  

Traits Phase Bivariate Reaction norm 

NBA 
Healthy 0.16 ± 0.005 0.16 ± 0.005 

Disease 0.07 ± 0.027 0.15 ± 0.012 

    
LOSS 

Healthy 0.09 ± 0.004 0.09 ± 0.040 

Disease 0.07 ± 0.029 0.08 ± 0.011 

 

2.3.5 Model comparison 

For both traits, AIC was lower for the reaction norm model, which suggests a 

better fit of this model for this dataset as compared to the bivariate model (Table 

2.6). The predictive abilities of the models were higher for NBA as compared to 

LOSS (Table 2.7). For both traits in healthy phase, the predictive abilities of the 

models were similar, and they increased with increasing number of parities. The 

reaction norm model had higher predictive ability in general. In disease phase, 

predictive abilities of the basic and reaction norm models were similar, and they 

also increased with increasing number of parities. In line with healthy phases, the 

reaction norm had generally higher predictive ability in disease phase as compared 

to the bivariate and basic model. The bivariate model had a very poor predictive 

ability in disease phase, which improved with increasing number of parities, but at 

a lower rate as compared to the healthy phase. These results show that the 

reaction norm model has a better fit and a better predictive ability as compared to 

the bivariate model, especially in disease phase. 
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Table 2.6. Akaike information criterion of the bivariate and reaction norm models for number of piglets born alive (NBA) and number of piglets 
born dead due to mummification and/or stillbirth (LOSS) 

Model NBA LOSS 

Bivariate 203908 128913 

Reaction norm 203181 128614 

 
 
Table 2.7. Correlations between adjusted phenotypes of sows in validation sets and predicted sow effects with training sets for number of piglets 
born alive (NBA) and number of piglets born dead due to mummification and/or stillbirth (LOSS) using three statistical models. Four parity groups 
were considered (1-4, 1-5, 1-6, and 1-7), where training sets include the records of all parities before the last one, and validation sets include the 
records of the last parity in each group. 

Trait 
Parity 
group 

Healthy phase Disease phase 
1
Basic 

1
Reaction norm 

1
Bivariate 

1
Basic 

1
Reaction norm 

1
Bivariate 

NBA 

1-4 0.193 0.202 0.194 0.081 0.077 -0.003 

1-5 0.227 0.240 0.232 0.112 0.113 0.051 

1-6 0.231 0.246 0.242 0.170 0.174 0.058 
1-7 0.251 0.284 0.255 0.177 0.223 0.057 

        

LOSS 

1-4 0.118 0.124 0.130 0.020 0.018 -0.012 

1-5 0.162 0.172 0.159 0.078 0.097 -0.046 

1-6 0.174 0.183 0.181 0.137 0.141 0.060 

1-7 0.176 0.186 0.190 0.161 0.148 0.085 
1
Statistical model
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2.4 Discussion 

2.4.1 Outbreak detection 

We introduced the linear model for reproduction performance of pig farms 

to detect accurately PRRS outbreaks. We obtained a high sensitivity of detecting 

truly positive outbreaks when considering a maximum time lag of 7 weeks between 

the weeks of virus isolation and the detected disease phases using the linear model 

on NBA. Although PRRS infects a herd rapidly (transmission rate R0 > 3) (Nodelijk et 

al., 2001), a major PRRS outbreak may take place several weeks after the 

introduction of the virus into a population. Studies have reported different time 

spans between introduction of PRRS virus and occurrence of outbreaks in pig 

populations. In a study on 4-month PRRS-free gilts (Batista et al., 2004), it was 

observed that 15 out of 15 gilts were positive for the virus around 10 days post-

infection. Another study (Houben et al., 1995) reported that littermates may 

seroconvert from 4 to 12 weeks of age when one piglet became infected during the 

fattening period. Similar to our findings, Lewis et al. (2009) observed that the effect 

of a PRRS outbreak on herd production, in terms of mummified piglets, starts a few 

weeks after veterinary diagnosis of PRRS in the herd. Based on these evidences, we 

conclude that the 7-week lag between weeks of virus isolation and the first or last 

week of detected disease phases is a reasonable approximation for the delay 

between emergence of the virus and drops in production of the herd because of 

PRRS. It must be noted that the linear model method is not capable of finding an 

outbreak at the early and end stages of an epidemic, when not all sows are infected 

or most of them are already recovered, because the weekly average of the herd is 

not dramatically influenced by PRRS. It means that in healthy phase, there might be 

some sows that were diseased but the herd-year-weeks were still partitioned as 

healthy phases. In addition, during the disease phases of the farm, there might 

have been healthy sows that were resistant to PRRS infection and sows that 

already recovered or were recovering from the disease. The possible mixture of 

diseased and healthy sows during healthy phases is supported by the high residual 

variance in the 9th class of herd-year-week estimates.  

Another method that we used to detect PRRS outbreaks was the weekly 

average method, which is similar to the Threshold/threshold method applied in 

Lewis et al. (2009). According to them, if the 30-day rolling average of the trait 

‘mummified piglets’ was larger than a 99% confidence threshold, the subsequent 

litters were considered as being in disease phase. In our study the weekly average 
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method detected few phases of PRRS outbreaks and also showed low sensitivity of 

detecting truly positive phases. The linear model, therefore, is a better method for 

outbreak detection than the weekly average method. Note that the way blood 

samples were taken may have affected sensitivity, but not the ranking of methods. 

Furthermore, the presence of diseased animals in specified healthy phases may 

lead to more number of false negative periods and as a consequence 

underestimation of sensitivity.  

 
Figure 2.2. Reaction norms of 100 randomly sampled estimated sow effects for number of 
piglets born alive (NBA) on herd-year-week estimates of NBA. The sow effects were sampled 
from the sows that had records both in healthy and disease phases. The x-scale was 
mirrored to reflect that the disease phase was on the right side of the figure. 

2.4.2 Modeling variation among sows in response to PRRS 

The second objective of this study was to develop a method to quantify 

variation among sows in response to PRRS. Both bivariate and reaction norm 

models showed that there is variation among sows during healthy and disease 

phases and that residual variance during disease phase was more than doubled as 

compared to healthy phase. This increase in the residual variance shows that the 
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disease creates a wider range of sow phenotypes because of higher rates of 

abortion, mummification, and stillbirth. The existence of sow variance in both 

phases may indicate the presence of additive genetic variance and the possibility 

for genetic improvement, because the sow variance consists of additive genetic 

variance, non-additive genetic variance, and permanent environmental variance of 

sow response to PRRS. In both models, the non-unity correlation between sow 

effects in healthy and disease phases indicates the re-ranking of sows between 

phases.  

The advantage of the bivariate model is that it directly models 

heterogeneity of genetic and residual variance as well as re-ranking between 

healthy and disease phases. Furthermore, the model is conceptually easy. The 

bivariate model, however, performed worse in terms of predictive ability and 

model fit. The bad performance is likely because sow effects are estimated in 

healthy and disease phases separately and not all sows had records in both phases. 

For some sows, therefore, there was no direct information available in one phase 

and information came solely from the correlation between sow performances. 

With the reaction norm model standard errors were smaller because all records 

contributed to the estimation of variances and covariances of the reaction norm 

and also to the correlation between the healthy and disease phases. For this 

reason, the standard errors of the correlation estimates were larger using the 

bivariate model as compared to the reaction norm model. When pedigree 

information is available, this problem would be alleviated because relatives would 

contribute information to the phase in which the sow has no observations 

available. 

Reaction norm models are powerful methods to study host tolerance in 

response to diseases and have been used in plants (Simms and Triplett, 1994; 

Simms, 2000) and animals (Raberg et al., 2007; Kause, 2011; Kause et al., 2012). We 

showed the merit of reaction norm models to estimate variation among sows in 

responses to PRRS and re-ranking of sows between healthy and disease phases. We 

used the estimates of contemporary groups, from a linear model, as the continuous 

environmental parameter in the reaction norm model. Estimates of contemporary 

groups have been used as environmental parameter for reaction norm models in 

other studies such as Pollott and Greeff (2004), Lillehammer et al. (2009), and Li 

and Hermesch (2012). This method provides a practical approach for pork 

producers to select animals that are robust in production during disease phases. It 

must be noted that performance of a sow during PRRS outbreaks is a function of 1) 

performance in PRRS free environment, 2) the degree to which a sow is infected 
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with PRRS virus (resistance), and 3) the degree to which the sow is performing well 

despite the infection (tolerance). In the current study these three components 

underlying performance in disease phases couldn’t be disentangled because the 

individual pathogen burden was not known. Superior performance of a sow during 

PRRS outbreak, therefore, could be due to higher initial performance in a PRRS free 

situation (intercept), resistance to PRRS virus, tolerance to PRRS infection or a 

combination of the three (Kause et al., 2012). As a consequence, selection of sows 

based on performance in disease phase is likely to improve all three components, 

but it is unknown to which extent. The reaction norm model had the best fit 

according to AIC and the highest predictive ability in healthy and disease phases. 

This was because sow effects were estimated on a continuous environmental scale 

and in the absence of pedigree the model takes advantage of repeated measures in 

healthy and disease phases along the continuity of the environmental scale. 

Therefore, the reaction norm model using contemporary group means seems a 

more powerful selection method to increase performance during disease phases 

than the bivariate model. 

Interpretation of the correlation between intercept and slope is not 

straightforward in reaction norm models because changing the position of 

intercept would lead to different correlations between intercept and slope, as 

shown in Van Tienderen and Koelewijn (1994). They showed that changing the 

position of the intercept in a reaction norm model could change the correlation 

between intercept and slope from −1 to 1 with a sigmoid shape. In the current 

study, the reaction norm model set the intercept at the zero estimate of herd-year-

week for NBA. The healthy phase of the farm ranged from 2 to −2.326 herd-year-

week estimates of NBA indicating that the intercept was placed almost in the 

middle of the healthy herd-year-weeks. Therefore, the correlation between 

intercept and slope can be interpreted as the correlation between performance in 

healthy phases and the change in performance, e.g. due to PRRS outbreaks. The 

negative genetic correlation indicates that sows with high performance in average 

environments have small reduction in performance due to PRRS, whereas sows 

with a lower performance seem to have a larger reduction in performance.  

Interpretation of slopes of individual sows might be affected by the data 

structure, i.e. not all sows had records in disease phases. For instance about 50% of 

the sows did not have records in diseased phases and it could well be that these 

sows have flatter reaction norms. A threshold reaction norm model as used for 

heat stress (Ravagnolo and Misztal, 2000) might be useful, as it will model the 

response to PRRS in a more direct manner. Sows without records in diseased 



2. Variation among Sows in Response to PRRS 

 

 

 

44 

 

phases, therefore, would have flat reaction norms. On the other hand, the reaction 

norm model used here does not distinguish between healthy and diseased phases, 

but uses the whole continuum of fluctuations, e.g. due to mild outbreaks of PRRS, 

other diseases or other disturbances. The current approach, therefore, makes 

better use of all data to estimate reaction norms, e.g. to increase general 

robustness. In the case of diseases, reaction norm models are mainly used in 

studies on tolerance to infection. As discussed earlier, using average of 

contemporary groups as environmental parameter in the model could lead to 

biased estimates of variation in tolerance to infection (Doeschl-Wilson et al., 2012; 

Kause and Odegard, 2012) because using general herd characteristics instead of 

pathogen burden leads to confounding effects of resistance and tolerance. To 

obtain an accurate estimate of tolerance to infectious diseases, measuring 

pathogen burden on an individual basis is needed. Measuring pathogen burden in 

different stages of pregnancy and its effect on performance, would require 

monitoring virus load of sows in short sampling intervals (Boddicker et al., 2012; 

Rowland et al., 2012). In field studies, collecting blood samples with reasonable 

intervals would be laborious and costly. With the approach presented in this study, 

producers can select sows that maintain performance at high levels regardless of 

resistance and tolerance abilities, which may improve the general robustness of 

pigs against PRRS and reduce related economic losses.  
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Abstract 

Resistance and tolerance are the two main mechanisms of host defence against 

infection. Resistance is the ability to prevent pathogen entry or control replication 

of pathogens in body. Tolerance is the ability to reduce pathogen-caused damage. 

Breeding for resistance is widespread in farm animals. However, there is 

uncertainty about whether it is better to breed for resistance or tolerance. Though 

the genetics of resistance to infection has been widely investigated, the genetics of 

tolerance to infection and, critically, its relationship with resistance remains poorly 

understood. We applied a random regression model to quantify the relationship 

between changes in body weight of lambs naturally infected with the nematode 

Teladorsagia circumcincta and changes in their faecal nematode egg count (an 

indication of nematode burden) and pepsinogenaemia (an indication of damage 

caused by nematodes in abomasum). We observed a significant additive genetic 

variation for tolerance, measured as the slopes of the reaction norms. This 

indicates the possibility of improving tolerance by selective breeding. We also 

applied a bivariate model to study the genetic correlation between resistance and 

tolerance, where, resistance was measured as increased Immunoglobulin A (a 

mucosal antibody that regulates nematode growth and fecundity) and decreased 

faecal nematode egg count. A negative genetic correlation was observed between 

tolerance and resistance, indicating that genetically more resistant animals are less 

tolerant. This is the first study reporting the trade-off between resistance and 

tolerance to an economically important pathogen in livestock. These findings 

indicate that unless both traits are included in breeding programs, breeding for 

increased resistance may decrease tolerance. 

 

Key words: Nematode infection, Resistance, Tolerance, Trade-off, Sheep Text  
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3.1 Introduction 

 

 Resistance and tolerance are the two main mechanisms of host defence 

against infection. Resistance is the ability of a host to control pathogen burden by, 

for example, preventing the pathogen from entering the body or stopping the 

replication of the pathogen within the host. Tolerance is the ability of a host to 

minimize the impact of infection on performance without influencing the invading 

pathogen (Bishop, 2012; Painter, 1958; Simms and Triplett, 1994). Improving host 

resistance will diminish the transmission of the infection in the population (Bishop 

and MacKenzie, 2003). Resistance, however, limits the survival and reproduction of 

the pathogen. Resistance imposes selection advantages on pathogens that can 

overcome resistance. This may lead to an antagonistic co-evolution between the 

host and pathogen (Parker et al., 2014; Stear et al., 2001; Woolhouse et al., 2002). 

Tolerance, on the other hand, does not necessarily reduce infection prevalence 

because a tolerant host can still spread the pathogen in the environment. 

Therefore, tolerance is an attractive target trait for animal breeders because it does 

not enforce pathogen to evolve (Råberg et al., 2009; Rausher, 2001; Read et al., 

2008). Currently, there is little evidence to support this thought but more 

evidences to support the opposite. Tolerance can improve the host condition either 

by limiting the damages in host without influencing the pathogen or by limiting the 

pathogen’s virulence. Vale et al. (2014) showed that when there is a trade-off 

between virulence and transmission, reducing virulence without reducing pathogen 

burden could lead to pathogen evolution. Tolerance might increase transmission 

rate as well as virulence (Vale et al. 2014). Increased transmission rate of the 

pathogen is a serious threat for nearby populations or newcomer hosts which are 

not tolerant. Nevertheless, tolerance reduces the symptoms of the infection in the 

host. This may provide time for the immune system to clear the infection resulting 

in decreased pathogen burden. Tolerance could be considered as a complementary 

to other treatments for eliminating diseases and is worthy to be further studied. 

 Tolerance could be measured as the slope for the reaction norm of 

individual’s performance on environmental stressors (Simms, 2000). In animals, this 

approach was firstly used to study tolerance to infections as the norm of reaction 

for body weight and red blood cells density over density of Plasmodium falciparum 

in five inbred strains of laboratory mice (Råberg et al., 2007). Random regression 

models are statistical tools to study reaction norms. When combined with the 

additive genetic relationship matrix of the individuals, random regression models 

split the genetic effect on the phenotype into the genetic effect on intercept and 
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the genetic effect on slopes of the reaction norm curves and estimates the 

covariance between intercept and slope. In a simulation study Kause (2011) used 

random regression model to study tolerance to infection as the slope of the 

individual reaction norms over pathogen burden. He showed that random 

regression is a powerful approach to study tolerance especially in farm animals 

with large family size. Random regression models were also used to study tolerance 

of animals to production diseases like e.g. ascites in domesticated chicken (Kause et 

al., 2012). Hayward et al., (2014a) and (2014b) studied tolerance as the reaction 

norm of body weight on gastrointestinal nematode burden in an unmanaged 

population of Soay sheep. Parker et al. (2014) studied variation among pea aphid 

(Acyrthosiphon pisum) genotypes in tolerance to a fungi infection (Pandora 

neoaphidis) as the slope of the reaction norm of individuals over the infection dose. 

In plants, the genetics of tolerance have been more extensively studied than in 

animals. Several studies have shown variation among morning glory inbred lines in 

tolerance to damages caused by folivories and herbivores (Fineblum and Rausher, 

1995; Simms and Triplett, 1994; Tiffin and Rausher, 1999).  

Instead of distinguishing between resistance and tolerance, other studies 

have reported the genetic basis of resilience. Resilience is measured as the ability 

to maintain performance during an infected period without measuring individual 

pathogen burdens (Albers et al., 1987; Bisset et al., 1994; Rashidi et al., 2014). 

Resilience, therefore, cannot distinguish between resistance and tolerance due to 

the absence of individual pathogen burdens (Doeschl-Wilson et al., 2012; Kause 

and Ødegård, 2012), because a healthy looking animal during an outbreak may be 

resistant, tolerant or even unexposed to infection. To study tolerance, therefore, 

records of individual pathogen burdens are necessary. 

 The genetic basis of resistance has been explored in many studies of host-

pathogen interactions in livestock (Bishop and Morris, 2007; Chang et al., 2014; 

Detilleux, 2009; Kuukka-Anttila et al., 2010; Lewis et al., 2010; Stear et al., 2009). 

Despite the availability of the statistical tools, however, tolerance to infection and 

its correlation with resistance to infection have been largely overlooked in 

livestock. To breed for tolerance or resistance, it is important to know if there is 

any genetic correlation between these traits, because if for example there is an 

unfavourable genetic correlation between tolerance and resistance, improving one 

would decrease the other one.  

We studied the trade-off between resistance and tolerance to nematode 

infection in sheep as an example of a globally important livestock system for which 

selective breeding is a key control measure. Natural infection with gastrointestinal 

nematodes reduces growth in grazing sheep (Coop et al., 1977; Coop et al., 1982). 
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Infected sheep excrete nematode eggs in faeces, which hatch and moult to become 

infective larvae and are ingested by grazing sheep. The larvae migrate to the 

abomasum and mature in the gastric glands. The mature female nematodes mate 

and produce eggs and the cycle continues. In response to gastrointestinal infection, 

lambs produce Immunoglobulin A which regulates parasite growth and fecundity 

(Stear et al., 1995). In addition, in response to the damage caused by the 

nematodes in the abomasum, which is one of the reasons for reduced growth of 

animals, pepsinogen levels rise in the bloodstream of the infected sheep (Stear et 

al., 1999). To maintain animal health and prevent economic losses, anthelmintic 

drugs are widely used to control nematode infection but this method of control is 

threatened by resistance of nematodes against anthelmintics (Jackson et al., 2009). 

Selective breeding is an attractive option for disease control (Stear et al., 2001) but 

there is debate about whether to select for resistance or tolerance (Bishop, 2012; 

Morris et al., 2010). In this study, therefore, our objectives were: 1) to quantify 

genetic variation in tolerance of sheep to nematode infection in terms of reaction 

norm of body weight on faecal egg count and pepsinogen, and 2) to examine the 

genetic correlation between resistance and tolerance to nematode infection. 

 

3.2 Material and methods 

 

3.2.1 Data 

 From a commercial flock of Scottish Blackface sheep 962 lambs from 38 rams 

and 492 ewes were studied. The relationships between parents were not known. 

Lambs were born outside from 1992 to 1996 during the last two weeks of April and 

the first week of May. Lambs grazed on pasture and were continuously exposed to 

natural mixed nematode infection. The most obvious sign of nematode infection in 

sheep is excretion of nematode eggs in faeces. Faecal egg count (FEC), therefore, is 

known as an adequate estimate of worm burden (Davies et al., 2005; Hayward et 

al., 2014a; Stear et al., 1995). To measure FEC of lambs, faecal samples were 

collected from the rectum of lambs at four weeks of age and thereafter at four-

week intervals until 20 weeks of age. A full description and analysis of FEC has been 

provided by Bishop et al. (1996). Body weight (lb) was measured at each of the first 

five faecal sampling dates each year. Plasma activity of Immunoglobulin A (IgA) 

against mature larvae from T. circumcincta was measured in the blood at four, five 

and six months of age in August, September and October of each year, except for 

October 1992 and 1993 and August 1995, using an indirect enzyme-linked 

immunosorbant assay (Strain et al., 2002). Studies have shown that IgA activity is 
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associated with reduced nematode growth and fecundity (Stear et al., 1995; Strain 

et al., 2002). High IgA level, therefore, is an indication of reduced nematode 

replication and consequently reduced FEC. Plasma pepsinogen concentrations were 

measured in the blood at five months of age in September of each year except 

1996, following the method of Paynter (1992) adapted for small quantities. 

Pepsinogen activity is associated with increased damage to the epithelial barrier 

(Stear et al., 1999) which is triggered by mast cell degranulation and as a 

consequence reduced growth (Stear et al., 2003). Higher pepsinogen level, 

therefore, is an indication of damage in abomasum caused by nematodes and can 

be used as an indication of nematode burden (Davies et al., 2005). The traits FEC, 

IgA, and pepsinogen were used as indicator traits for resistance to nematode 

infection. After collection of each faecal sample, to prevent the lambs dying from 

an overwhelming infection, all lambs were treated with the broad spectrum 

anthelmintic “Albendazole sulfoxide”. Lambs from the same year were given 

anthelmintic at the same time. The anthelmintic was given at the recommended 

dose rate of 5 mg/kg body weight (Bishop et al., 1996). Albendazole sulfoxide 

disrupts formation of microtubules in nematodes and kills them immediately. The 

formulation of Albendazole sulfoxide, however, was short-lived and sheep were 

producing parasite eggs 3-4 weeks after treatment. Lambs were slaughtered six 

weeks after the final anthelmintic treatment when they were six to seven months 

old. 

 

3.2.2 Data used for the analysis 

 From the records of body weight, records at five months of age in 

September were analysed because growth reduction caused by previous nematode 

infection are captured in the final record of body weight. For FEC, records at five 

months of age were used in the random regression model because preliminary 

results showed that the likelihood of the random regression model using FEC 

records of five months compared with its corresponding model without slope was 

largest amongst the models including FEC recorded at younger ages. For IgA, the 

genetic correlation between records at five month of age and the two other 

recorded in August and October were 0.70±0.24 and 0.84±0.16, respectively. The 

high genetic correlations between IgA recorded in three consecutive months 

indicate that IgA activity in each of the months is genetically highly associated with 

IgA activity in other months. Therefore, the IgA records in September were also 

used because they were most complete and closest to the FEC and BW records 

used for analysis. In general, records at 5 month of age were the most complete 

ones as compared to the records of the other ages. We used only the records at 



3. Trade-off between Resistance and Tolerance 

 

 

 

55 
 

five month of age and not the records at other ages to avoid the problem of 

heterogeneity of genetic variance across ages. The genetic effect on body weight 

might be different in different ages due to the change in genetic architecture of the 

trait (Hayward et al., 2014a). After removing the missing and incomplete records at 

5 month of age, about 700 lambs remained from 29 rams and 381 ewes. The 

number of offspring per sire ranged from 2 to 72 with mean 23 and SD of 17 (for 

more details see table A1 in Appendix 3.1). In general, sires had offspring in high 

and low levels of FEC and pepsinogen. Summary statistics of the traits and number 

of records available per analysis are in Table 3.1. Prior to analyses, traits were log-

transformed as ln(trait+1) for FEC (lnFEC), IgA (lnIgA), and pepsinogen (lnPeps) to 

make them normally distributed. 

 

Table 3.1. Summary statistics of the traits body weight (BW), faecal egg count (FEC), log-
transformed FEC (lnFEC), plasma IgA activity against mature larvae from T. circumcincta 
(IgA), log-transformed IgA (lnIgA), plasma pepsinogen concentrations, and log-transformed 
pepsinogen (lnPeps). Traits were recorded at 5 month of age and log-transformed as 
ln(trait+1). 

Trait
1
 Mean 

Standard 

deviation 
Minimum Maximum 

Number of 

records 

BW (lbs) 29.13 4.44 17 43 687 

FEC 213.47 299.21 0 2700 673 

lnFEC 3.98 2.33 0 7.9 673 

IgA 21.11 17.12 0 109.69 699 

lnIgA 2.75 0.94 0 4.71 699 

Pepsinogen 29.75 29.49 0 250.32 685 

lnPeps 2.80 1.39 0 5.53 685 
1
Number of records available in analyses with more than one trait (multivariate analysis) 

ranged from 662 to 688. 

 

3.2.3 Statistical analysis 

 Four statistical mixed models were used. The first model was a univariate 

mixed model [1] for heritability estimation of the traits. The second model was a 

random regression model [2] to estimate the change of body weight concomitant 

with the change in FEC and Pepsinogen. The third model was a trivariate mixed 

model [3] to estimate the genetic variance of body weight with low, medium, and 

high level of FEC and Pepsinogen. The fourth model was a bivariate mixed model 

[4] to estimate the genetic correlation between tolerance and resistance to 

nematode infection. 
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3.2.4 Heritability estimation of body weight and resistance traits 

 To study the genetic variation and heritability of body weight and resistance 

traits, we applied a univariate mixed model in which the sire effect on each trait 

was estimated. The model was as follows: 

Y μ SEX AGE YEAR sire eijkl i j k i ,l jkl         [1] 

where       is the phenotype of the     lamb (body weight, lnFEC, lnIgA, and lnPeps), 

  is the overall mean,     is the fixed effect of the     sex of lamb,     is the fixed 

effect of the     age of lamb,      is the fixed effect of the     year. For body 

weight, a fixed covariate of lnFEC or lnPeps was included in the univariate mixed 

model to make it comparable to the random regression model (see below), which 

enabled us to compare the models using Akaike information criterion and 

likelihood ratio test (see below). Random effects were:     , which is the effect of 

the     sire with           
  , where   is the additive genetic relationship matrix, 

and      
  is the variance of the sire effect; and       is the random residual term 

with          
  , where   is the identity matrix and   

  is the residual variance. We 

did not include a maternal effect in the model because preliminary results showed 

that in a univariate analysis of body weight the maternal effect absorbs all the 

genetic variation so that the direct genetic effect becomes insignificant. The reason 

was that there were not enough records per ewe, which makes the model unable 

to disentangle direct genetic effects from maternal effects. Furthermore, Hayward 

et al. (2014a) found insignificant maternal effect on body weight of sheep. 

Heritability (  ) was calculated as 

2 2
42

2 2

 

 
 

sireA
h

P P

, where,   
  is the additive 

genetic variance for each trait and   
  is the phenotypic variance for each trait 

(calculated as      
    

 ). 

 

3.2.5 Genetic analysis of tolerance 

 We studied tolerance of nematode infection as the sire effect on the slope of 

the reaction norm of body weight on lnFEC and on lnPeps. We used a random 

regression model as follows: 

          y Xb Za    Z a    eint w sl ,      [2] 

where y is a vector of body weight;   is the incidence matrix for fixed effects;   is 

the incidence matrix for the intercept random effect;    is the incidence matrix for 

lnFEC or lnPeps as a covariate for the slopes of the reaction norms;   is a vector of 

fixed effects (see description of model [1] for the fixed effects), lnFEC or lnPeps 
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were fixed covariates to account for the average of lnFEC or lnPeps, respectively; 

     is a vector of random sire effect on intercept and     is a vector of random sire 

effects on slope, with  
aint

 ~ N 0, G ARNasl


 
 
 

, where 

2
,

2
,

 

 


 
 
 
  

a aa int slint

a a aint sl sl

GRN   ,      
  is the sire variance for     ,     

  is 

the sire variance for    , and          
 is the covariance between      and    ;   is 

the vector of residuals. Heterogeneous residual variances were considered in the 

model to account for the possibility that residual variance may change with 

pathogen burden. Data were sorted from small to large based on lnFEC (lnPeps) 

and grouped into three classes of equal size with low, medium, and high levels of 

lnFEC (lnPeps). A similar approach was used by (Calus et al., 2002) for estimation of 

genotype by environment interaction. Table 3.3 shows the number of records in 

each class for lnFEC and for lnPeps. The additive genetic variance for body weight 

at each level of infection (     

 ) was calculated as: 

     

       
    

      
                

 ,  

where,    is the level of lnFEC or lnPeps.  

The covariance between body weights at two levels of lnFEC or lnPeps (         
) 

was calculated as: 

         
      

             
                    

 , 

where,    and    are the levels i or j of lnFEC or lnPeps.  

The genetic correlation between body weights at different levels of lnFEC or lnPeps 

(         
) was calculated as: 

         
 

         

      
      

 
, 

We used sire random regression models because preliminary analysis of 

body weight with a univariate animal model did not converge because of 

singularities in the average information matrix. This happened because the animal 

model did not have enough information to disentangle the residual from the 

genetic effects for intercept and slope. Therefore, we used therefore a sire model, 

which did not have this problem because of multiple offspring per sire.  

To check the results of the random regression model and make sure that the 

obtained heritabilities and correlations were not artefacts of the model, a trivariate 
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model was applied. In the trivariate model the genetic effect on body weight was 

estimated at low, medium, and high levels of lnFEC and of lnPeps. The genetic 

correlations between body weights at low, medium, and high levels of lnFEC and of 

lnPeps were also estimated. The model was: 

l l l l l l

m m m m m m

h h h h h h

  

           
           
                      

BW X 0 0 b Z 0 0 a e

BW 0 X 0 b 0 Z 0 a e

BW 0 0 X b 0 0 Z a e

, [3] 

where    ,    ,     are the vectors of body weight in environments with low, 

medium, and high levels of lnFEC or lnPeps;   ,   , and    are the incidence 

matrices for fixed effects in environments with low, medium, and high levels of 

lnFEC or lnPeps;   ,   , and    are the incidence matrix for random effects in 

environments with low, medium, and high levels of lnFEC or lnPeps;   ,   , and    

are the vectors of the fixed effects (see model [1] for fixed effects) in environments 

with low, medium, and high levels of lnFEC or lnPeps;   ,   , and    are the 

vectors of the sire random effect with

2
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l
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a

a 0 A

a

;    
 ,    

 , and    
 are the sire 

variances for   ,   , and   ;       
,       

 and       
 are the sire covariances 

between    and   ,    and   , and    and   ;   ,   , and    are the vectors of the 

residuals for low, medium, and high levels of lnFEC or lnPeps. 

 

3.2.6 Tolerance coheritability 

We calculated the tolerance coheritability as the coheritability for the slope 

of the reaction norm of body weight on FEC, applying the following formula 

described in Sae-Lim et al. (2015): 

      
  

                   
 

      
 , 

where,       
  is the slope coheritability,    is the genetic correlation between body 

weight in two levels of FEC,      
 and      

 are the genetic standard deviations of 

body weight in each of the two levels of FEC,       
  is the additive genetic variance 

of body weight at the intercept point, and       
  is the phenotypic variance of body 

weight at the intercept point. The coheritability describes the heritable association 

between BW and slope in one environment. The coheritability sign elucidates the 
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change in correlated response of tolerance when selecting for higher phenotypic 

value in one environment (Sae-Lim et al., 2015). We calculated the coheritability 

between 3 environments: zero and medium level of FEC (lnFEC=4.7), zero and high 

level of FEC (lnFEC=6.1), and medium and high level of FEC. For all the scenarios we 

calculated the coheritability when the selection environment (intercept) was 

considered at both mildest and harshest environments in terms of FEC level. 

 

3.2.7 Genetic relationship between tolerance and resistance 

The genetic correlation between tolerance and resistance of lambs to 

nematode infection was estimated using a bivariate model. The first response 

variable in the bivariate model was body weight, with a random slope applied to it, 

and the second response variable was FEC or IgA, without a random slope applied 

to it. The model was as follows:

int
BW BW BW int sl BW

sl
R R R R

R

   

          
           

a
y X 0 b Z Z 0 e

a
y 0 X b 0 0 Z e

R a

, [4] 

where     is the vector of body weight and    is the vector of resistance traits 

(lnFEC or lnIgA);     and    are the incidence matrices for fixed effects for body 

weight and resistance traits;     and    are the vectors of the fixed effects for 

body weight and resistance traits (see description of model [1] for the fixed 

effects);      is the incidence matrix for intercept,     is the matrix with the 

environmental parameter lnFEC as a covariate for the sire effects on slope, and    

is the incidence matrices for sire effect on resistance traits; and     ,     and    are 

the vectors for sire effects on intercept, slope, and resistance traits, respectively, 

with  
int

~ N ,sl

R



 
 
 
 
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where      
 ,     

 , and    
 are the sire variances for     ,     and   , respectively; 

         
,         

, and        
 are the sire covariances between      and    ,      and 

  , and     and   , respectively;     and    are the vector of residuals for body 

weight and resistance traits, respectively, with 
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2
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e
, where     

 and    
  are the 

variances of     and   ;        
 is the covariance between     and   . 

All the variance components were estimated using ASReml (Gilmour et al., 2009). 

 

3.2.8 Model comparison 

Akaike information criterion. The goodness of fit for the univariate mixed model of 

body weight and the random regression models was studied with the Akaike 

information criterion (AIC) using the following formula (Akaike, 1973): 

   –2 2 AIC logL K , 

where      is the logarithm of likelihood for the model, and   is the number of 

variables in the model. 

Likelihood ratio test. Likelihood ratio tests (LRT) were used to compare the fit of 

the univariate mixed model of body weight and the random regression models. It 

was also used to compare the bivariate models with and without the genetic 

correlation between slope and the resistance traits (lnFEC and lnIgA). The following 

formula was used (Lynch and Walsh, 1998):  

2 21 2  LRT logL logL , 

where,       is the logarithm of the likelihood for the univariate mixed models of 

body weight (or bivariate model with zero correlation between the slope and the 

resistance indicator traits), and       is the logarithm of likelihood for the random 

regression models (or bivariate model with correlation between the slope and the 

resistance traits). To compare the univariate mixed model with the random 

regression model, the LRT was assumed to follow a 50%-50% mixture of   
  and   

  

distribution, leading to a 5% threshold of 5.14 (Stram and Lee, 1994). To compare 

the bivariate models with and without genetic correlations between the slope and 

resistance traits, LRT was assumed to follow   
  distribution, leading to a 5% 

threshold of 3.84. 

 

3.3 Results 

 

3.3.1 Heritabilities for body weight and resistance traits 

Heritability for body weight was 0.21, for lnFEC was 0.19, for lnIgA was 0.59, 

and for lnPeps was 0.28 (Table 3.2). The high heritability of the parasite-specific IgA 
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response means that most of the observed variation is due to genetic variation in 

the host and a relatively small part is due to variation in exposure, i.e. the 

environmental component of the phenotypic variation. 

 

3.3.2 Genetic analysis of tolerance 

  The association between body weight and nematode infection was generally 

negative (Fig. 3.1 and Fig. 3.2). At population level, the decrease in body weight 

with increased lnFEC or pepsinogen was negligible showing hardly any sign of 

growth retardation due to nematode infections. In general, rams showed decreases 

in body weight as lnFEC or lnPeps increased. Interestingly, there were some rams 

showing improvements in body weight when nematode burden increases. 

 The variance components for the random regression model are shown in 

Table 3.3. There were genetic variances of intercept for both lnFEC and lnPeps 

environmental factors. The genetic variance of intercept indicates the genetic 

variation among sheep in body weight when FEC and Peps are zero. The 

distributions of sire estimates for slope are in Fig. A1 in Appendix 3.1. There was 

genetic variance for slope when using lnFEC and lnPeps as environmental 

covariates in the random regression. The genetic variance in slope indicated the 

genetic variation among sheep in tolerance to nematode infection. There were high 

negative genetic correlations between intercept and slope. The negative genetic 

correlation indicates that animals with high body weight at zero FEC or zero 

pepsinogen were most likely to show greater reductions in body weight at higher 

FEC and pepsinogen. In contrast animals with lower body weights at zero FEC and 

zero pepsinogen were least likely to show reduced body weights at higher FEC and 

pepsinogen. The residual variance in body weight increased as the level of FEC 

increased whereas, when the level of pepsinogen increased, the residual variance 

for body weight decreased. 
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Table 3.2. Heritabilities from the univariate mixed models for 5 traits: body weight (BW), log-
transformed faecal egg count (lnFEC), log-transformed Plasma IgA activity against mature 
larvae from T. circumcincta (lnIgA), and log-transformed plasma pepsinogen concentration 
(lnPeps). Traits were recorded at 5 month of age and log-transformed as ln(trait+1). 
(Standard errors in parentheses) 

Trait Heritability 

Body weight 0.21 (0.11) 

lnFEC 0.19 (0.10) 

lnIgA 0.59 (0.20) 

lnPeps 0.28 (0.13) 

 

Table 3.3. Variance components from the random regression model for reaction norm of 
body weight on faecal egg count and plasma pepsinogen concentrations. Traits were 
recorded at 5 month of age. Before the analysis, the log-transformation ln(trait+1) was used 
on faecal egg count (lnFEC) and pepsinogen (lnPeps). Heterogeneous residual variance was 
considered at 3 levels (low, medium, and high) of faecal egg count and pepsinogen. 
(Standard errors in parenthesis)  

Source 

lnFEC  lnPeps 

Variance 
Number of 

records
1
 

 Variance 
Number of 

records
1
 

Genetic variance in 
intercept 

1.77 (1.16) 
 

 1.37 (1.34) 
 

Genetic variance in 
slope 

0.09 (0.06) 
 

 0.16 (0.15) 
 

Genetic correlation -0.85 (0.13) 
 

 -0.76 (0.24) 
 

   
 

  
Residual 1 11.60 (1.15) 224  15.69 (1.58) 221 

Residual 2 13.00 (1.27) 224  12.13 (1.19) 221 

Residual 3 15.36 (1.51) 225  12.10 (1.20) 220 
1 

Number of records per classes of lnFEC and lnPeps 
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Figure 3.1. Sire effects on the reaction norm of body weight on log-transformed faecal egg 
count (lnFEC) obtained from the random regression model. The reaction norms (grey lines) 
are shown as the deviation from the mean reaction norm line (bold line). 
 

 
Figure 3.2. Sire effects on the reaction norm of body weight on log-transformed pepsinogen 
(lnPeps) obtained from the random regression model. The reaction norms (grey lines) are 
shown as the deviation from the mean reaction norm line (bold line). 
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The AIC was smaller for the two random regression models with either lnFEC (AIC 

= 2469.02) or lnPeps (AIC = 2423.04) as a covariate, compared to the univariate 

mixed models (for lnFEC AIC = 2474.92 and for lnPeps AIC = 2425.30), indicating a 

better fit of the random regression models than the univariate mixed models. The 

LRT indicated a significant variance of slope for both random regression models 

with lnFEC          ) or lnPeps           as covariates. 

Using the genetic variance-covariance matrix (   ) from the random 

regression models, the heritabilities of body weight across different levels of FEC 

and pepsinogen were calculated. The heritabilities formed a parabolic curve (Fig. 

3.3 and Fig. 3.4). For the random regression model of body weight on lnFEC: at zero 

FEC, the heritability of body weight was 0.53±0.31, dropping to 0.15±0.10 at 

moderate levels of FEC (lnFEC ≈ 4). At high levels of FEC (lnFEC ≈ 8) the heritability 

of body weight increased to 0.45±0.27. A similar curve was seen in the random 

regression model of body weight on lnPeps: at a zero pepsinogen value, the 

heritability of body weight was 0.32±0.30, dropping to 0.14±0.10 at moderate 

levels of pepsinogen (lnPeps ≈ 2.5). At high levels of pepsinogen (lnFEC ≈ 5.5), the 

heritability of body weight increased to 0.62±0.40.  

Using the random regression model, the breeding value for body weight was 

shown to be dependent on the infection level in the animal. Consequently, the 

changes in the heritability of body weight across different level of lnFEC and lnPeps, 

was due to changes in genetic variance of body weight while environmental 

variances were stable. To further explore the changes in the genetic variance of 

body weight as FEC and pepsinogen vary, a trivariate analysis was performed, 

where genetic and residual variances were estimated at low, medium and high 

levels of FEC and pepsinogen (Table 3.4). Heritabilities from random regression 

models were lower than the heritabilities from the trivariate models. The 

heritabilities of body weight from the trivariate model for three levels of FEC 

showed the same trend as random regression model, i.e. higher heritability at low 

and high levels of FEC. Therefore, the trivariate analysis supported the parabolic 

shape of the heritability for body weight in different levels of FEC obtained from 

the random regression models. The heritabilities of body weight from the trivariate 

model for three levels of pepsinogen were lower at the low to moderate 

pepsinogen compared to the high level of pepsinogen, which does not agree with 

the heritabilities from the random regression model. 
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Figure 3.3. Heritability of body weight (BW) recorded at 5 months of age with 
heterogeneous residual variances for 3 levels of faecal egg count obtained from the random 
regression model. Faecal egg count was log-transformed (lnFEC) as ln(trait+1). Vertical lines 
show the ±standard error of each estimate. The breaks in the heritability graph are because 
of heterogeneous residual variance for three environments with low, medium, and high level 
of faecal egg count. 
 
Table 3.4. Heritability of body weights for three levels (Low, medium, and high) of log-
transformed faecal egg count (lnFEC) and log-transformed plasma pepsinogen 
concentrations (lnPeps) generated by the random regression and trivariate models. Traits 
were recorded at 5 month of age and log-transformed as ln(trait+1). (Standard errors in 
parentheses) 

Trait Level
1
 

Model 

Reaction norm   Trivariate 

lnFEC 

1 0.35 (0.22) 
 

0.39 (0.25) 

2 0.17 (0.10) 
 

0.25 (0.21) 

3 0.23 (0.14) 
 

0.32 (0.22) 

     

lnPeps 

1 0.19 (0.16) 
 

0.25 (0.22) 

2 0.22 (0.12) 
 

0.28 (0.23) 

3 0.33 (0.19)   0.41 (0.26) 
1
low (1), medium (2), and high (3) level of lnFEC and lnPeps 
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Figure 3.4. Heritability of body weight (BW) recorded at 5 months of age with 
heterogeneous residual variances for 3 levels of pepsinogen obtained from the random 
regression model. Pepsinogen was log-transformed (lnPeps) as ln(trait+1). Vertical lines 
show the ±standard error of each estimate. The breaks in the heritability graph are because 
of heterogeneous residual variance for three environments with low, medium, and high level 
of pepsinogen. Residual variances for environments with medium and high level of 
Pepsinogen were very similar, that is why only one break is visible in this heritability graph. 
 

Genetic correlations between body weight at different levels of FEC or 

pepsinogen are shown in Fig. 3.5 and Fig. 3.6. The genetic correlations were close 

to unity for low FEC and pepsinogen and decreased as FEC and pepsinogen 

increased. At very high levels of FEC and pepsinogen the genetic correlation 

became negative. The changes in genetic correlation between body weights at 

different levels of FEC and pepsinogen were checked using the trivariate analysis 

(Table 3.5). The genetic correlations were calculated from the average of lnFEC and 

lnPeps at each level. The trends in estimated genetic correlations between body 

weight in different levels of FEC and pepsinogen were similar between random 

regression and trivariate models. However, the genetic correlations were generally 

higher in the random regression model as compared to the trivariate model. For 

pepsinogen, the genetic correlation between body weight at low and moderate 

levels was moderately high and positive with the random regression model, 

whereas for the trivariate model it was moderately low and negative. 
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Table 3.5. Correlations between body weights in three levels (Low, medium, and high) of 
log-transformed faecal egg count (lnFEC) and log-transformed plasma pepsinogen 
concentrations (lnPeps) generated by the random regression and trivariate models. Traits 
were recorded at 5 month of age and log-transformed as ln(trait+1). (Standard errors in 
parentheses) 

Trait Level
1
 

Model 

Reaction norm   Trivariate 

lnFEC 

 (1, 2) 0.37 (0.42) 
 

0.10 (0.30) 

 (2, 3) 0.92 (0.07) 
 

0.51 (0.61) 

 (1, 3) -0.02 (0.49) 
 

-0.17 (0.57) 

  
   

lnPeps 

 (1, 2) 0.57 (0.40) 
 

-0.19 (0.62) 

 (2, 3) 0.96 (0.05) 
 

0.70 (0.44) 

 (1, 3) 0.30 (0.53)   0.41 (0.60) 
1
low (1), medium (2), and high (3) level of lnFEC and lnPeps 

 
3.3.3 Tolerance coheritability 

 The slope coheritabilities ranged from -0.61 to 0.03 (Table 3.6). The 

strongest slope coheritability was at high level of FEC, when the selection 

environment was at zero FEC. The weakest slope coheritability was at high level of 

FEC, when the selection environment was at medium level of FEC. The magnitude 

of the slope coheritability in one environment depended on the selection 

environment. For example the slope coheritability at medium level of FEC was 

moderately strong (-0.47±0.31) when the selection environment was at zero FEC, 

and was weak (-0.07±0.06) when the selection environment was at high level of 

FEC. The existence of coheritability for slope indicates the possibility for selective 

breeding for tolerance. The magnitude of the slope coheritability indicates the 

magnitude of the correlated response and accuracy of selection in one 

environment when selection is performed in another environment. For example 

the strong slope coheritability at high level of FEC, when the selection environment 

is at zero FEC, indicates a strong negative response at high level of FEC with high 

accuracy of selection. In contrast, the weak slope coheritability at high level of FEC, 

when the selection environment is at medium level of FEC, indicates almost zero 

response to selection in slope. The slope coheritabilities were in general negative 

indicating that the correlated responses for tolerance are generally negative in the 

response environment. 
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Table 3.6. Coheritabilities of slope in zero, medium (lnFEC=4.7), and high (lnFEC=6.1) level of 
FEC when selection environments are different. 

Environment (FEC level) 

Slope coheritability 

Selection Response 

Zero Medium -0.47 (0.31) 

Medium Zero -0.11 (0.15) 

Zero High -0.61 (0.41) 

High Zero -0.30 (0.24) 

Medium High 0.03 (0.05) 

High Medium -0.07 (0.06) 

 

3.3.4 Genetic correlation between tolerance and resistance 

The variance components from the bivariate analysis with lnFEC and lnIgA as 

resistance traits are shown in Table 3.7 and 3.8, respectively. The variances for 

intercept and slope and the correlation between intercept and slope were similar 

to those of the random regression model. The genetic correlation between 

intercept and lnFEC was strongly negative (-0.76±0.32). There was a moderate 

positive genetic correlation between the intercept and lnIgA (0.48±0.32). The 

genetic correlations between intercept and lnFEC and lnIgA indicated that animals 

with high body weight at zero FEC were genetically more resistant. There was a 

moderately high positive genetic correlation between the slope and lnFEC 

(0.60±0.33), indicating that genetically the slopes become less steep when FEC 

increases. There was a moderately strong negative genetic correlation between the 

slope and lnIgA (-0.63±0.25), indicating that genetically the slopes become steeper 

when IgA increases. As FEC is unfavourable and IgA is favourable indicators of 

resistance, together all these results show that resistance and tolerance are 

unfavourably genetically correlated. A likelihood ratio test (LRT) showed that the 

genetic correlation between slope and lnIgA was significantly different from zero 

          but the genetic correlation between slope and lnFEC was not 

         . 
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Table 3.7. Genetic variances from random regression model for intercept and slope of the 
reaction norm of body weight on log-transformed faecal egg count (lnFEC) and lnFEC (on the 
diagonal) generated by the bivariate random regression model; Genetic correlations on 
upper off-diagonal. The residual variances for body weight and FEC are at the bottom. Traits 
were recorded at 5 month of age. (Standard errors in parentheses) 

  Intercept Slope FEC 

Intercept 1.69 (1.16) -0.86 (0.13) -0.76 (0.32) 

Slope 
 

0.10 (0.07) 0.60 (0.33) 

FEC Sym. 
 

0.21 (0.11) 

  
   

Residual 13.30
1
 (0.75) 4.12 (0.23) 

1
the residual variance for intercept and slope end up in the overall residual variance. 

 
Table 3.8. Genetic variances from random regression model of intercept and slope for the 
reaction norm of body weight on log-transformed faecal egg count (lnFEC), and log-
transformed IgA (lnIgA) (on the diagonal); Genetic correlations on upper off-diagonal. The 
residual variances for body weight and FEC are at the bottom. Traits were recorded at 5 
month of age. (standard errors in parentheses) 

  Intercept Slope IgA 

Intercept 1.93 (1.28) -0.88 (0.11) 0.48 (0.32) 

Slope 
 

0.13 (0.07) -0.63 (0.24) 

IgA Sym. 
 

0.13 (0.05) 

  
   

Residual 13.28
1
 (0.75) 0.77 (0.04) 

1
the residual variance for intercept and slope end up in the overall residual variance. 
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Figure 3.5. Genetic correlation between body weight (BW) at zero faecal egg count and body 
weight at other levels of faecal egg count obtained from the random regression model. 
Traits were recorded at 5 month of age. Faecal egg count was log transformed (lnFEC) as 
ln(trait+1). Vertical lines show the ±standard error of each estimate.  
 

 
Figure 3.6. Genetic correlation between body weight (BW) at zero pepsinogen and body 
weight at other levels of pepsinogen obtained from the random regression model. Traits 
were recorded at 5 month of age. Pepsinogen was log transformed (lnPeps) as ln(trait+1). 
Vertical lines show the ±standard error of each estimate. 
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3.4 Discussion 
 

This study has found significant genetic variation in tolerance to nematode 

infections. In addition, there was a strong negative genetic correlation between 

resistance and tolerance to nematode infection, which demonstrates a trade-off 

between tolerance and resistance.  

 

3.4.1 Heritability of body weight and resistance traits 

The heritability estimate for body weight was in the range (0.18-0.33) 

reported by other studies (Borg et al., 2009; Mortimer et al., 2014; Riggio et al., 

2008; Rose et al., 2013). The heritability estimates for faecal nematode egg counts 

were similar to other studies in different breeds (0.11-0.48) in France (Gruner et al., 

2004) Australia (Pollott and Greeff, 2004), and New Zealand (Shaw et al., 1999). 

Our flock, therefore, is representative of genetic variation in response to nematode 

infection. The heritability of IgA activity against Teladorsagia circumcincta was 

remarkably high (0.59±0.20, Table 3.2). Other studies have also shown high levels 

of genetic variation in immune responses to nematode infection (Strain et al., 

2002). For pepsinogen, the heritability was between the values reported by Davies 

et al. (2005) (0.56±0.16) and Gutierrez-Gil et al. (2010) (0.21±0.04). Davies et al. 

(2005) used the same data set as ours but used animal models with different fixed 

effects. 

 

3.4.2 Genetic analysis of resistance and tolerance 

Our results indicated significant genetic variation in both resistance and 

tolerance to nematode infection. This indicates that it would be possible to 

improve resistance or tolerance to nematode infections by selective breeding. 

Previous studies reported genetic variance in tolerance: Råberg et al. (2007) found 

variation in tolerance to Plasmodium falciparum in five inbred strains of mice. 

Kause et al. (2012) found genetic variance in tolerance to ascites in domesticated 

chicken. Ascites, however, is a metabolic disorder and not an infection. Simms and 

Triplett (1994) and Tiffin and Rausher (1999) found genetic variance in tolerance to 

parasites in the plant Common Morning Glory. In contrast, Hayward et al. (2014b) 

found no genetic variance in tolerance (measured as the slope of body weight on 

FEC) to strongyle nematode infection in feral Soay sheep. They, however, found 

that there is positive phenotypic correlation between tolerance and lifetime 

breeding success (defined as the lifetime number of lambs born to females or sired 

by males) suggesting that tolerance was under positive selection. Given that the 

previous studies of tolerance are on laboratory animals, natural populations, or 
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metabolic diseases our study is the first to report genetic variation for tolerance to 

infection in livestock. 

We found a negative genetic correlation between intercept (body weight at 

zero level of FEC or pepsinogen) and slope of the reaction norm (tolerance). The 

negative genetic correlation between intercept and slope indicates that sheep with 

high body weight at zero nematode burden may show a severe reduction in body 

weight when nematode burden increases. This means that for example, when FEC 

is the environmental factor, improving the intercept by one genetic standard 

deviation by genetic selection, without considering the slope (tolerance), would 

result in a decrease of the slope mean by 0.85 genetic standard deviations in the 

next generation. Selection of sheep based on a nematode free situation, therefore, 

has negative consequences on the performance when there is infection. We found 

a positive genetic association between intercept and resistance, meaning that the 

zero FEC at the intercept point is because the lambs were resistant and not that the 

environment was nematode free. The genetic variation in body weight at zero FEC 

(intercept), therefore, cannot be interpreted as variation in vigour of the animals. 

The genetic correlation between intercept and slope might be different when the 

intercept is placed in a nematode free environment. 

 

3.4.3 Tolerance coheritability 

The novelty of this study is that using this data allowed us to estimate the 

heritability for tolerance as the coheritability for slope. The coheritability of slope 

explains to what extent tolerance would change due to mass selection in a certain 

environment, similar to the classical definition of heritability. The coheritabilities 

were in general negative, indicating negative correlated responses. We observed 

that the coheritability depends on the selection environment. For example the 

tolerance coheritability at medium level of FEC, when the selection environment 

was at zero FEC, was different from the coheritability at zero FEC, when the 

selection environment was at medium level of FEC. This is because the genetic 

variance of body weight differs at different levels of nematode infection. In some 

cases, the coheritability was low. The magnitude of the coheritability also reflects 

the accuracy of selection because in mass selection the square root of heritability 

determines the accuracy. A low coheritability for tolerance, therefore, would 

indicate a low accuracy of selection, meaning many records of sibs or offspring are 

needed to obtain accurate breeding values for slope. We observed the highest 

absolute coheritability at high level of FEC, when the selection environment is at 

zero FEC. The high negative coheritability at high level of FEC when selection is 

performed at zero FEC, is in accordance with the high negative genetic correlation 
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between body weights at the two extreme levels of nematode infection. The 

existence of coheritabilities for slope indicates possibility of selective breeding for 

tolerance. The general negative signs for coheritabilities suggest that selecting 

animals in one environment leads to lower tolerance to another environment. 

These findings are in accordance with Sae-Lim et al. (2015) where they also found 

negative. Our slope coheritabilities are generally stronger than the slope 

coheritabilities found by Sae-Lim et al. (2015). 

 

3.4.4 Genetic correlation between resistance and tolerance 

We found a strong negative genetic correlation between resistance and 

tolerance to nematode infection in sheep. The negative genetic correlation 

between resistance and tolerance was observed using a bivariate model, where the 

slope for the reaction norm of body weight on FEC (tolerance) had a strong positive 

correlation (0.60±0.33) with FEC (Table 3.7) and a strong negative correlation (-

0.63±0.25) with IgA (Table 3.8). Additionally, there was a negative genetic 

correlation (-0.76±0.32) between intercept and FEC (Table 3.7) and a positive 

genetic correlation (0.48 ±0.32) between intercept and IgA (Table 3.8) indicating 

that animals with high body weight at zero level of FEC (intercept) are genetically 

more resistant. The negative genetic correlation between intercept and slope, 

therefore, suggests that animals with higher body weights (more resistant) show 

more severe reduction in growth when the level of infection is high (less tolerant). 

In our population, there were several rams showing an upward slope indicating 

improvement in body weight despite the nematode infection (Fig 3.1. and Fig 3.2.). 

The upward slope of the rams may suggest that offspring of those rams do not 

invest energy on clearance of infection but invest energy in tolerating the infection. 

Previous studies also reported a negative genetic correlation between resistance 

and tolerance: Råberg et al. (2007) showed a negative genetic correlation between 

resistance and tolerance to Plasmodium falciparum in 5 strains of inbred mice. 

Fineblum and Rausher (1995) showed a negative genetic correlation between 

resistance and tolerance in the plant Common Morning Glory. In contrast, Hayward 

et al. (2014a) did not find a significant genetic correlation between resistance and 

tolerance to mixed nematode infections in feral Soay sheep using similar 

methodology as us. As compared to the study on Soay sheep (Hayward et al., 

2014a,  2014b), our study may have been statistically more powerful because our  

data was more homogeneous in terms of the age of the animals at the time of 

sampling. One explanation for the negative genetic correlation between resistance 

and tolerance is that resistant animals are less likely to become heavily infected 
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during an outbreak hence tolerance is a less valuable trait for them. On the other 

hand, susceptible animals are more likely to become heavily infected and therefore 

tolerance is a more important trait for these less resistant animals (Bishop, 2012). 

The negative genetic correlation between resistance and tolerance indicates that a 

resistant animal is not tolerant and vice versa. Therefore, selective breeding for 

resistance would result in reduced mean tolerance of the population, unless both 

resistance and tolerance are included in the selection index. In a breeding context, 

it means that for example when IgA is the resistance trait, selection for increased 

IgA by one genetic standard deviation, without considering tolerance, would result 

in reduced tolerance mean by 0.63 of its genetic standard deviations in the next 

generation. 

Body weights at low level of nematode infection were shown to be 

genetically different traits from body weights at high level of nematode infection. 

One interpretation is that at low levels of infection, the immune response controls 

the infection and animals grow quickly. At high levels of infection, the ability of the 

host to repair or minimize the damages caused by infection or the immune system 

is the major determinant of growth. Therefore, resistance is likely to be more 

related to immune response to resist the infection, whereas tolerance is more 

related to the ability to repair or minimize the damages caused by the infection 

(Vale et al. 2014).  

One advantage of sheep and their nematodes as a model system is that the 

mechanisms of protection and pathology are well understood (Stear et al., 2003; 

Stear et al., 2009). Protection is mediated by IgA and IgE dependent mechanisms 

while pathology is due to IgE mediated hypersensitivity in addition to damage 

caused directly by nematodes. The relative contributions of IgE and IgA may vary 

(Stear et al., 2009). In lambs, IgA is usually the major resistance mechanism and 

resistance is associated with increased weight gain. In older animals or at higher 

intensities of infection, IgE is the dominant mechanism and IgE activity is associated 

with decreased weight gain. Therefore, it is possible that the genetic relationships 

between resistance and tolerance may differ in older animals and more research is 

needed to explore this possibility. 

 

3.4.5 The effect of anthelmintic treatment on resistance and tolerance 

Lambs in this study were treated with anthelmintic drugs every 4 weeks to 

prevent death of animals or severe growth retardation due to high nematode 

infection intensity. The function of anthelmintic drug was to eliminate the 

nematodes en masse. The effect of anthelmintic, however, was temporary and 

right after elimination of the nematode population a new population started 
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growing in the intestines of lambs. The obvious effect of the regular anthelmintic 

treatment is increased resistance of sheep because it does not allow the nematode 

burden to go to very extreme levels. The anthelmintic treatment, therefore, may 

change the range of nematode burden in the population as compared to the 

situation where animals are not treated. Consequently the genetic variance in 

resistance might be different in untreated populations. The change in nematode 

burden may change the genetic variance for body weight. The change in genetic 

variation for slope as a consequence of the change in pathogen burden remains 

unclear. On one hand slopes are estimated as linear reaction norms, which keep 

the slope variance constant across different levels of nematode infection. On the 

other hand change in the environment might influence the amount of information 

available to estimate the slope. We observed a small decrease in the average body 

weight as FEC and pepsinogen increased. The small decrease of average body 

weight might be due to the anthelmintic treatment, which prevented extreme 

increase in nematode burden. The limited increase of nematode burden in our 

population might have caused increased average tolerance. Nevertheless, as 

anthelmintic treatment is common practice in sheep husbandry our results are 

applicable for the sheep industry. However, care must be taken to generalize these 

results to wild populations where animals are not treated with anthelmintic. 

 

3.4.6 Standard errors of variance components 

The standard errors for the variance components in our study are generally 

large. The reason for the large standard errors is the relatively small dataset. We 

used only the records at five month of age and not the records at other ages to 

avoid the problem of heterogeneity of genetic variance across ages. To deal with 

the problem of heterogeneous genetic variance in repeatability models, one could 

include the interaction between animal identity and age (Hayward et al., 2014a). 

Adding the random interaction of animal and age, however, would create more 

complexity to the analysis and gives no additional power to the analysis because 

more parameters need to be estimated. 

In a simulation study of random regression with 100 sires, Kause (2011) 

showed that small family size leads to bias in estimation of variance components. 

As a similar scenario to our data, he showed that with the simulated slope 

heritability of 0.30 and 30 offspring per sire the slope variance was overestimated 

by 28%, the intercept variance was overestimated by 22%, and the genetic 

correlation between intercept and slope was overestimated by 25%. In the study of 

Kause (2011), the accuracy, calculated as a Pearson correlation coefficient between 
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true breeding values and estimated breeding values of the families, for the slope 

estimates was 65% and for the intercept estimates was 73%. The estimated slope 

variance was overestimated by more than threefold in the scenario with the same 

family size but heritability of 0.05. Therefore, our estimates may be biased and 

genetic variance in tolerance may be smaller than estimated here. Nevertheless, 

comparison of the random regression model with the univariate model show 

strong evidence for existence of genetic variation in tolerance. Despite the small 

size, an important strength of our data is that it contains different immunological 

measures on nematode infection. This allowed us to study tolerance and resistance 

based on different immunological aspects. Different measures for infection, i.e. 

FEC, IgA and pepsinogen, as well as the homogeneity in terms of the age of the 

animals at the time of sampling added to the statistical power of our analysis. 

Therefore, our study still provides useful insights in the genetic mechanisms of 

resistance and tolerance to nematode infections.  

 

3.5 Conclusion 

 

This study provides insight into the genetics of resistance and tolerance to 

nematode infection. This is the first study reporting the genetic correlation 

between resistance and tolerance to infection in pedigreed animals. Using the 

random regression models, we showed that different markers of infection can be 

used to study tolerance. This approach could easily be implemented for studying 

tolerance to infection in humans and wild animals by replacing the pedigree with 

the genomic relation matrix (Yang et al., 2010). We showed that there is genetic 

variation among lambs in both resistance and tolerance to nematode infection 

indicating the possibility for selective breeding for both traits. We also showed that 

there is a negative genetic correlation between resistance and tolerance meaning a 

trade-off between these two traits. These findings indicate that breeding schemes 

need to include both resistance and tolerance in index selection (Hazel, 1943) to 

avoid inadvertently decreasing tolerance while improving resistance. 
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Appendix 3.1 

 

Table A1. Number of offspring and range of faecal egg count and pepsinogen per sire. 

Sire 
Number 
offspring 

Faecal egg count   Pepsinogen 

Min Max Mean SD   Min Max Mean SD 

88 2 75.0 600.0 337.5 371.2 
 

6.4 93.8 50.1 61.8 

G178 2 50.0 150.0 100.0 70.7 
 

0.0 11.4 5.7 8.1 

G196 3 112.5 237.5 175.0 62.5 
 

0.0 29.5 10.6 16.4 

G197 5 87.5 350.0 167.5 112.0 
 

7.5 48.0 26.3 16.9 

G177 8 100.0 600.0 301.6 205.0 
 

0.0 82.7 25.5 28.1 

G198 9 175.0 562.5 363.9 133.7 
 

0.0 30.5 7.5 13.1 

G200 9 62.5 275.0 133.3 68.2 
 

0.0 50.6 21.4 21.4 

R94 9 0.0 325.0 111.7 93.4 
 

0.0 33.9 9.0 10.5 

62 10 0.0 2700.0 360.0 828.9 
 

17.4 148.7 54.3 39.3 

R93 10 25.0 800.0 436.3 285.9 
 

0.0 25.7 5.3 8.8 

G174 13 0.0 400.0 165.4 137.5 
 

0.0 45.0 15.9 14.2 

G179 16 0.0 737.5 303.1 243.9 
 

0.0 52.5 13.4 16.7 

R95 16 0.0 450.0 151.6 133.4 
 

1.3 69.4 25.2 20.2 

R99 16 0.0 812.5 252.3 248.8 
 

18.2 88.9 43.5 20.9 

G199 18 25.0 562.5 257.6 159.6 
 

0.0 73.7 18.7 22.0 

R97 23 0.0 2350.0 244.6 522.4 
 

0.0 103.0 34.4 24.5 



P55 24 0.0 675.0 190.6 188.6 
 

0.0 68.0 22.9 22.4 

66 26 0.0 2400.0 401.9 687.8 
 

0.0 165.0 37.3 47.4 

96 27 0.0 1875.0 364.8 417.1 
 

0.0 56.2 27.8 17.0 

65 30 0.0 900.0 228.3 232.0 
 

0.0 140.9 41.1 39.1 

77 33 0.0 1250.0 192.4 298.7 
 

0.0 98.8 42.5 24.6 

G176 36 0.0 300.0 44.4 78.4 
 

0.0 57.2 24.2 15.3 

R98 38 0.0 1200.0 382.2 327.7 
 

0.0 250.3 45.9 46.4 

P90 39 0.0 900.0 210.3 227.8 
 

0.0 68.5 15.3 17.5 

R83 40 0.0 550.0 121.9 142.6 
 

0.0 84.9 31.4 21.7 

R74 42 0.0 825.0 120.2 172.8 
 

0.0 246.7 37.9 44.3 

G175 44 0.0 887.5 196.9 219.4 
 

0.0 75.9 18.2 21.3 

R92 53 0.0 912.5 189.9 204.2 
 

0.0 73.3 27.7 19.1 

R78 72 0.0 1550.0 147.9 269.2   0.0 123.8 34.8 27.3 
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Figure A1. Distribution of sire effects on slope of body weight reaction norm on faecal egg 
count (FEC) (A) and pepsinogen (B) 
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Abstract 

Response to infection in animals has two main mechanisms: resistance (ability to 

control pathogen burden) and tolerance (ability to maintain performance given the 

pathogen burden). Selection on disease resistance and tolerance to infections 

seems a nice avenue to increase productivity of animals in the presence of disease 

infections, but it is hampered by lack of records of pathogen burden of infected 

animals. Selection on resilience (ability to maintain performance regardless of 

pathogen burden) may therefore be alternative pragmatic approach because it 

does not need records of pathogen burden. Therefore, the aim of this study was to 

assess response to selection in resistance and tolerance when selecting on 

resilience compared to direct selection on resistance and tolerance. Monte Carlo 

simulation was used combined with selection index theory to predict responses to 

selection. Using EBV for resilience in absence of records for pathogen burden 

resulted in favourable responses in resistance and tolerance to infections, with 

more emphasis on tolerance than on resistance. If resistance and tolerance were 

unfavourably correlated, lower selection responses were obtained, especially in 

resistance. Although using EBV for resilience resulted mostly in favourable 

responses in resistance and tolerance, more genetic gain could be achieved when 

pathogen burden was recorded.  

 

Key words: Resilience, resistance, tolerance, pathogen burden, genetic gain  



4. Genetic Gain in Resistance and Tolerance when Selecting on Resilience 

 

 

89 

 

4.1 Introduction 

 

Infectious diseases in farm animals impose costs on the farmer, reduce the 

welfare of animals, and create public concerns about the animal products. The 

conventional control strategies for disease such as biosecurity, vaccination, 

antibiotic treatment, and culling might not be fully successful and selective 

breeding might be a more promising approach. Selective breeding for improved 

response to infection has been a part of breeding programs for decades targeting 

(Albers et al., 1987; Bishop and Morris, 2007; Morris et al., 2010; Bishop, 2012). 

Response to infection in animals has two main mechanisms: resistance and 

tolerance. Resistance is the ability of animals to restrict the invading pathogen’s life 

cycle. A resistant animal will have minimum pathogen burden during an infection 

period. Tolerance is the animal’s ability to minimize the symptoms of infection at a 

given pathogen burden. A tolerant animal maintains the performance despite the 

pathogen burden. Tolerance, therefore, is measured as the regression of the 

animal performance on pathogen burden, i.e. reaction norm (Kause, 2011). If 

pathogen burden is known, breeding values for resistance and tolerance can be 

estimated. In practice, however, pathogen burden is not recorded at the individual 

level because it is laborious and costly. Breeders, therefore, measure resilience 

instead of tolerance. Resilience is the animal’s ability to maintain performance 

during a disease outbreak and does not need the records of pathogen burden 

(Albers et al., 1987; Bisset et al., 1996). A resilient animal shows minimum 

reduction in performance during a disease outbreak. Resilience is measured as the 

performance variation during an outbreak irrespective of the pathogen burden 

(Doeschl-Wilson et al., 2012). A resilient animal might, therefore, be resistance, 

tolerant or both. It is unknown, however, to which extent resistance and tolerance 

can be improved in breeding programs when selecting on breeding values for 

resilience. The aim of this study was to assess response to selection in resistance 

and tolerance when using estimated breeding values for resilience when pathogen 

burden is not recorded compared to using estimated breeding values for resistance 

and tolerance when pathogen burden is recorded. We used Monte Carlo simulation 

and investigated the effects of genetic parameters and the proportion of animals 

diseased on selection responses in resistance and tolerance. 
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4.2 Material and methods 

 

4.2.1 Outline of breeding scheme 

 A pig-breeding scheme in a dam line was considered focusing to increase 

dam performance traits such as litter size, piglet birth weight and survival. Due to 

disease outbreaks such as porcine reproductive and respiratory syndrome (PRRS), 

the breeding goal is extended with resistance and tolerance to infections to reduce 

the loss in performance due to infections. However, breeding values for resistance 

and tolerance can only be measured when a measure of pathogen burden is 

recorded. In absence of a measure of pathogen burden, a breeding value for 

resilience may be used. Because sow traits can only be measured in females, boars 

were selected based on half-sib information. Sows were selected based on own 

performance and half-sib information. To predict responses to selection in 

resistance and tolerance, we used Monte Carlo simulation to simulate true 

breeding values and estimate breeding values using ASReml (Gilmour et al., 2009). 

Monte Carlo simulation was used because deterministic prediction equations are 

not available for this complex case of resistance and tolerance to infections.    

 

4.2.2 Monte Carlo simulation 

  We simulated here a half-sib family structure, although in practice small full-

sib may exist as well. In the base generation, we simulated 100 sires and 10000 

dams that are all unrelated. These 100 sires were mated each with 100 dams and 

each produced one female offspring, which resulted in 100 half-sib families. We 

sampled breeding values for the base generation and the generation of offspring, 

whereas only the phenotypes of the offspring were used in breeding value 

estimation. We simulated a performance trait, i.e. litter size that is affected by 

pathogen burden when the animal is diseased and the trait pathogen burden, 

which is the inverse of disease resistance, i.e. if pathogen burden is lower (higher) 

the animal is more (less) resistant. When animals were not infected, the 

performance      was a function of the breeding value when the animal is not 

infected (    ), i.e. performance when pathogen burden is zero, and an 

environmental effect (    ) following the classical genetic model (Falconer and 

Mackay, 1996): 

                          (1)  

When animals were infected, the performance of the animal does not only depend 

on the components in equation 1, but also on the response of the animal (   ) to 
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pathogen burden    , i.e. the reaction norm on infection, which indicates the 

tolerance to infection (Kause, 2011): 

                         (2) 

In this equation the phenotypes for tolerance (   ) and pathogen burden (   ) are: 

                      (3) 

                      (4) 

where     is the average decrease in performance of infected animals compared to 

not infected animals,     is the average pathogen burden,     is the breeding value 

for slope, i.e. tolerance,     is the environmental effect for slope,     is the 

breeding value for pathogen burden, and     is the environmental effect for 

pathogen burden. The three breeding values were assumed to follow a multivariate 

normal distribution  
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where   is the numerator relationship matrix,      
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and         
 are the additive genetic variances and covariances among the three 

breeding values. The three environmental effects were assumed to follow a 

multivariate normal distribution 

 

    

   

   

     

 

 
 
 
 
 
 
     

     

          
         

    
         

             
 

 

 

 
 

, where   is the 

identity matrix,      

 ,     
 ,     

 ,          
,          

 and         
 are the 

environmental variances and covariances among the three environmental effects. 

The phenotypic variances for     ,     and     were always one. The offspring were 

randomly allocated to 100 contemporary groups of equal size. In the default 

situation, half of the contemporary groups were not infected and their phenotype 

for performance was simulated according to equation 1, whereas for infected 

animals the phenotype for performance was simulated according to equation 2. 

We simulated 100 replicates. Table 4.1 shows all the parameters used with their 

default and varied values.  
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Table 4.1. Parameter values used in the basic situation and alternative situations 

Parameter 

Parameter values 

Basic Alternative 

     

   0.3 - 

       
   0.05 0, 0.1, 0.2, 0.3, 0.4, 0.5 

    
   0.3 0, 0.1, 0.2, 0.3, 0.4, 0.5 

     
 ,        

 ,     
  1 - 

               0 
-0.75, -0.50, -0.25, 0.25, 
0.50, 0.75 

     
  1 0 

       
  1 0 

    
  -1 0 

Number of sires 100 - 

Number of dams 10000 - 

Number of half-sib progeny 100 - 

Selected proportions sires 0.05 - 

Selected proportions dams 0.2 - 

Number of contemporary groups 100  

Number of infected 
contemporary groups 

50 40, 30, 20, 10 

 
4.2.3 Breeding value estimation scenarios 

 We considered two scenarios: (1) both performance and pathogen burden 

were recorded on each animal and (2) only performance was recorded. In the first 

scenario, pathogen burden was known for each diseased animal. Therefore, we 

used a bivariate model for performance and pathogen burden. The model for 

performance (     ) was an animal random regression model in ASReml (Gilmour 

et al., 2009) to estimate breeding values for     , and    ; the model for pathogen 

burden (   ) was a simple animal model: 

                                  (5) 

                      (6) 

where   is the overall mean,    is a fixed covariate of pathogen burden for the 

average slope, and       is the residual. Breeding values were assumed trivariate 
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normally distributed as shown before. The residual variance was assumed to be 

heterogeneous for records belonging to infected contemporary groups and not 

infected contemporary groups. The residuals       and     for infected animals 

were assumed bivariate normally distributed 

 
     

   
       

 
 
     

      
           

             
 

  . In the second scenario, 

pathogen burden was considered not recorded and therefore in equation 5 

replaced by the average performance of the contemporary groups (  ) as an 

indirect measure of infection: 

                                            (7) 

where        is a fixed covariate of contemporary groups average for the average 

slope,        is the breeding value for intercept, which is different than in equation 

5,      is the breeding value for resilience to infection that is the slope of the 

reaction norm on the average of the contemporary group. The breeding values 

       and      were assumed bivariate normally distributed 

 
    

    
       

 
 
     

       

           

              
 

  . 

 

4.2.4 Evaluation of scenarios 

Per replicate, we estimated the average correlations between estimated and 

true breeding values as well as the average correlations among estimated breeding 

values for boars based on its offspring and for sows based on own performance 

and her half-sibs per replicate. The average correlation and its standard deviation 

were calculated across the 100 replicates. These average correlations were the 

inputs for response to selection calculations. 

 

4.2.5 Response to selection 

  The breeding goal was to increase performance in contemporary groups 

with and without infection and therefore the aim was to increase performance in 

absence of disease outbreak (    ), to increase tolerance to infections (   ) and to 

decrease pathogen burden (   ), i.e. to increase resistance: 

       
         

        
            (8) 
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where      
 is the economic value to increase performance in the absence of 

disease outbreak,     
 is the economic value for tolerance to infections and     

 is 

the economic value for pathogen burden or resistance. We used three breeding 

goals: (1) only increase tolerance, (2) only increase resistance, i.e. reduce pathogen 

burden and (3) to increase performance in absence of disease outbreak, increase 

tolerance and increase resistance. In the last breeding goal, we assumed for 

simplicity that all traits had an equal absolute economic value (1.0, 1.0 and -1.0 for 

    ,     and    ), because a formal economic analysis was beyond the scope of 

this study.  

  Selection was based on an index using the estimated breeding values (EBV). 

In scenario 1, we used the EBV     
 ,    

  and    
  in index   . In scenario 2, we used 

the EBV       
  and     

  in index   : 

          
        

        
            (9) 

            
         

 =            (10) 

The optimal selection index weights    and    were calculated using selection 

index theory (Hazel, 1943):  

                (11) 

The  -matrices     and    contain the variances and covariances between EBV in 

the selection indices    and   . In this case, we assumed that these estimated 

breeding values were scaled towards a variance of 1. The covariances are then 

equal to the correlations between EBV: 

    

                       

           

          

      (12) 

    
               

          
       (13) 

where            ,             and            are the correlations between     
 ,    

  and 

   
  and                is the correlation between       

  and     
  (resilience). The G-

matrices     and     contain the covariances between the EBV     
 ,    

  and    
   

or       
  and     

  with the true breeding values (TBV)     ,     and     in the 
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breeding goal. Because the EBV were standardized with variance 1, matrices     

and     were calculated as:  

    

          
     

         
    

         
    

         
     

        
    

        
    

         
     

        
    

        
    

     (14) 

    
            

     
           

    
           

    

          
     

         
    

         
    

    (15) 

We calculated the selection responses for trait j, i.e.      ,     and     as: 

    
         

     
        (16) 

Where      and      are the genetic selection differentials for sires and dams and 

   and    are the relative generation intervals of sires and dams. We aimed to 

simulate a pig breeding program for a dam line based on sib testing scheme, 

although for boars the EBV in the Monte Carlo simulation were based on offspring, 

i.e. a progeny testing scheme. However, in this simplified case in absence of Bulmer 

effect (Bulmer, 1976) a sib testing scheme and a progeny scheme would yield equal 

selection responses when    is set to 2 and    is set to 1, because the accuracy 

based on half-sibs is exactly half of the accuracy with half-sib offspring. The genetic 

selection differentials were calculated as: 

   
     

  
            (17) 

where   is the selection intensity and           is the standard deviation of the 

index. Selection intensities were calculated assuming an infinite population of 

selection candidates without correction for correlated index values among relatives 

(Hill, 1976; Meuwissen, 1991). The selected proportions in boars and sows were 

assumed 5% and 20%, respectively. Selection responses are presented in genetic 

standard deviations to facilitate comparison across traits. 

 

4.3 Results 

 

4.3.1 Correlations between estimated and true breeding values 

Correlations between estimated (EBV) and true breeding values (TBV) of 

boars are shown in Table 4.2. Correlation between EBV and TBV for pathogen 
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burden was zero when heritability of pathogen burden was zero and increased by 

increasing the heritability for pathogen burden. When pathogen burden was 

recorded, correlations between EBV and TBV for the intercept (    
          ) and 

for slope (   
         ) were about 0.9 and not changing when the heritability of 

pathogen burden was increased. However, when pathogen burden was not known 

and EBV for resilience were estimated, correlations between EBV and TBV for 

intercept (      
  and     ) and for slope and resilience (    

  and    ) were 

decreasing with increasing heritability of pathogen burden. In addition, the 

correlation between TBV for pathogen burden and EBV for resilience (    
  and 

   ) were increasing with increasing heritability of pathogen burden. The key 

message is that the EBV for resilience is correlated both with the TBV for pathogen 

burden (i.e. resistance) and the TBV for slope (i.e. tolerance). 

 

4.3.2 The effect of genetic variance in resistance and tolerance on selection 

responses  

  The Figures 4.1, 4.2 and 4.3 show selection responses in slope (tolerance) 

and in pathogen burden (resistance) as a function of the heritability of pathogen 

burden and slope for different breeding goals. If the breeding goal was to select 

only on tolerance (Figure 4.1) or only on pathogen burden (Figure 4.2), there was 

no response in pathogen burden or slope if pathogen burden was recorded and 

used in breeding value estimation. This is expected, because the genetic correlation 

between pathogen burden and slope was zero. However, when selecting on the 

EBV for resilience because pathogen burden was not recorded, both slope and 

pathogen burden responded in the favourable directions (Figure 4.1 and 4.2), 

because in both cases the same animals were selected based on the EBV for 

resilience. When selecting on resilience and the heritability of pathogen burden 

was increasing, the response in pathogen burden was increasing (in absolute 

terms) at the cost of a lower response in slope. When selecting on resilience and 

the heritability of slope was increasing, the response in slope was increasing at the 

cost of a lower response in pathogen burden. In general when selecting on 

resilience, the response in slope was higher, i.e. between 0.7 and 1.0 genetic 

standard deviation, than for pathogen burden, i.e. between 0.2 and 0.7 genetic 

standard deviation. In other words, selection on resilience places a greater 

selection pressure on slope than on pathogen burden. If the breeding goal 

contained all three traits (Figure 4.3), the selection response in tolerance (slope) 

was higher and  in resistance (pathogen burden) was lower when using the EBV for 

resilience than when EBV for slope and pathogen burden were estimated. The 

response in slope increased not only when the heritability for slope was higher, but 
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also when the heritability of pathogen burden increased. In conclusion, when the 

EBV for resilience is used in index selection when pathogen burden is not recorded, 

high selection response in tolerance and moderate selection responses in 

resistance can be achieved. 

 

Figure 4.1. Genetic gain in slope (sl) and pathogen burden (PB) shown as the proportion of 
the genetic standard deviation of the traits after one generation of index selection in sib 
testing schemes when PB phenotype is either known or unknown. Economic values for 
intercept (int), slope, and pathogen burden were:      

       
       

  . Different 

values of     

  (0, 0.1, 0.2, 0.3, 0.4, 0.5) (Panel A) and     

  (0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5) 

(Panel B) were simulated. Parameters value:     

   ,     

   ,     . Number of progeny 

per sire = 100. Selected proportion sires = 0.05, selected proportion dams = 0.20. 
 

4.3.3 The effect of genetic correlations on selection responses 

  Figure 4.4 shows the effect of the genetic correlation between slope and 

pathogen burden. A negative genetic correlation is favourable and positive 

correlation is unfavourable. When the genetic correlation was negative, i.e. -0.75, 

selection responses were very similar when pathogen burden was known or 

unknown. When the genetic correlation increased, selection responses decreased 

or became unfavourable, especially in pathogen burden when selecting on 

resilience. When using the EBV for resilience, selection responses in slope were 

higher than in pathogen burden, as seen before. With increasing the genetic 

correlation, the difference in selection responses with or without pathogen burden 

increased for all breeding goals. A peculiar result occurred when the breeding goal 
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was solely to decrease pathogen burden (Figure 4.4C) and selecting on the EBV for 

resilience, the selection response in slope became suddenly negative when the 

genetic correlation was 0.75. The direction of selection on the EBV for resilience 

suddenly changed from selecting the animals with the highest EBV to animals with 

the lowest EBV. In conclusion, the genetic correlation between slope and pathogen 

burden has a high impact on the selection responses in resistance and tolerance 

and selection on resilience may lead to an unfavourable response in resistance. 

 

Figure 4.2. Genetic gain in slope (sl) and pathogen burden (PB) shown as the proportion of 
the genetic standard deviation of the traits after one generation of index selection in sib 
testing schemes when PB phenotype is either known or unknown. Economic values for 
intercept (int), slope, and pathogen burden were:      

       
       

   . Different 

values of     

  (0, 0.1, 0.2, 0.3, 0.4, 0.5) (Panel A) and     

  (0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5) 

(Panel B) were simulated. Parameters value:     

   ,     

   ,     . Number of progeny 

per sire = 100. Selected proportion sires = 0.05, selected proportion dams = 0.20.  
 

4.3.4 The effect of the proportion of animals infected on selection responses 

  In the previous part, it was assumed that half of the contemporary groups 

were infected and the other half were not, but fortunately disease outbreaks are 

less frequent. Therefore, we investigated the effect of the percentage of 

contemporary groups infected and varied from 10% to 50% (Figure 4.5). As 

expected, selection responses in slope and pathogen burden were higher when the 

proportion of infected contemporary groups was higher. If 10% of the 

contemporary groups was infected the responses were about 57-73% of the 
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responses when 50% of the contemporary groups were infected. The figures show 

that the proportion of infected contemporary groups did not affect the efficiency of 

selection on EBV for resilience compared to selection on EBV for pathogen burden 

and slope. 

 

Figure 4.3. Genetic gain in slope (sl) and pathogen burden (PB) shown as the proportion of 
the genetic standard deviation of the traits after one generation of index selection in sib 
testing schemes when PB phenotype is either known or unknown. Economic values for 
intercept (int), slope, and pathogen burden were:      

       
       

   . Different 

values of     

  (0, 0.1, 0.2, 0.3, 0.4, 0.5) (Panel A) and     

  (0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5) 

(Panel B) were simulated. Parameters value:     

   ,     

   ,     . Number of progeny 

per sire = 100. Selected proportion sires = 0.05, selected proportion dams = 0.20. 

 

B 
A B 
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Figure 4.4. Genetic gain in slope (sl) and pathogen burden (PB) shown as the proportion of 
the genetic standard deviation of the traits after one generation of index selection in sib 
testing schemes when PB phenotype is either known or unknown as a function of the 
genetic correlation between slope and pathogen burden. Economic values for intercept (int), 
slope (sl), and pathogen burden (PB):      

       
       

    (Panel A),      
   

    
       

   (Panel B), and      
       

       
    (Panel C). Parameters 

value:     

     ,     

      ,     

   ,     

   ,     . Number of progeny per sire = 

100. Selected proportion sires = 0.05, selected proportion dams = 0.20. 
 

4.4 Discussion 

4.4.1 Model and results 

The aim of the current study was to assess response to selection in 

resistance and tolerance when selecting on resilience (unknown pathogen burden) 

compared to when selecting on resistance and tolerance (known pathogen 

burden). We found that using the EBV for resilience resulted in favourable selection 

responses in resistance and tolerance, but it was not as effective as selection on 

EBV for resistance and tolerance. Selection responses in resistance were smaller 

than in tolerance. The selection responses in resistance and tolerance depended on 

the genetic variances in these traits as well as the genetic correlation between the 

two. However, the comparison of index selection using the EBV for resilience 

compared to index selection on EBV for resistance and tolerance was not much 

affected by the genetic variances in pathogen burden or slope. This indicates that 
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selection on the EBV for resilience was quite robust and yielded favourable 

responses at least in tolerance and mostly also in resistance. 

To our knowledge, this is the first study investigating the efficiency of 

selection on resilience on the underlying genetics of resistance and tolerance. The 

results indicate that selection on an EBV for resilience can be considered being 

index selection for resistance and tolerance. In this study, we used a combination 

of Monte Carlo simulation and selection index theory to predict responses to 

selection. This was a fast and accurate way of predicting selection responses, 

because deterministic predictions for elements in the P and G matrix were not 

needed, which are expected to be complex because of involvement of a product of 

tolerance and pathogen burden. We simulated one generation of selection and did 

not account for gametic phase disequilibrium (Bulmer, 1976). Ignoring gametic 

phase disequilibrium or the so-called Bulmer-effect, however, is expected to do not 

affect the comparison of using EBV for resilience compared to EBV for tolerance 

and resistance, because the breeding scheme was considered constant in this 

study. Accounting for the Bulmer-effect is especially important when comparing 

different breeding schemes such as sib testing, progeny testing or genomic 

selection (Mulder and Bijma, 2005; Van Grevenhof et al., 2012).    
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Table 4.2. Correlation between estimated and true breeding values when pathogen burden (PB) is known or unknown. When PB was known, 
correlation between estimated (EBV) and true breeding values (TBV) for PB (        

), intercept (          
), slope (        

), TBV for PB and EBV for 

intercept (         
), and TBV for PB and EBV for slope (        

) was calculated. When PB was unknown correlation between EBV and TBV for 

intercept (           
), TBV for slope and EBV for resilience (         

), TBV for PB and EBV for intercept (          
), and TBV for PB and EBV for 

resilience (         
) was calculated. Correlations were calculated for sires based on 100 half-sib offspring when     

  varies. Parameters values: 

     

     ,     

      ,      

        

        

   . 

    
          

            
            

          
          

           
           

          
          

 

0.0 -0.04 0.12 
 
0.90 0.02 0.73 0.05 

 
0.90 0.02 0.86 0.03 

 
-0.02 0.10 0.01 0.10 

 
0.00 0.10 0.00 0.10 

0.1 0.75 0.04 
 
0.90 0.02 0.72 0.05 

 
0.90 0.02 0.82 0.03 

 
-0.02 0.09 -0.19 0.10 

 
-0.01 0.10 0.28 0.09 

0.2 0.84 0.03 
 
0.90 0.02 0.70 0.05 

 
0.90 0.02 0.79 0.04 

 
0.02 0.09 -0.28 0.09 

 
0.00 0.10 0.39 0.10 

0.3 0.89 0.02 
 
0.90 0.02 0.69 0.06 

 
0.90 0.02 0.76 0.04 

 
0.00 0.10 -0.34 0.08 

 
0.01 0.10 0.47 0.07 

0.4 0.92 0.02 
 
0.90 0.02 0.67 0.06 

 
0.90 0.02 0.73 0.05 

 
0.00 0.10 -0.38 0.08 

 
-0.01 0.10 0.51 0.08 

0.5 0.94 0.01   0.90 0.02 0.64 0.06   0.90 0.02 0.71 0.05   0.00 0.10 -0.42 0.09   0.00 0.10 0.56 0.08 
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Figure 4.5. Genetic gain in slope (sl) and pathogen burden (PB) shown as the proportion of 
the genetic standard deviation of the traits after one generation of index selection in sib 
testing schemes when PB phenotype is either known or unknown as a function of proportion 
of infected contemporary groups. Economic values for intercept (int), slope (sl), and 
pathogen burden (PB):      

       
       

    (Panel A),      
       

       
 

  (Panel B), and      
       

       
    (Panel C). Parameters value:     

     , 

    

      ,     

   ,     

   ,     . Number of progeny per sire = 100. Selected 

proportion sires = 0.05, selected proportion dams = 0.20.  
 

4.4.2 The value of recording pathogen burden 

Until recently, genetics of tolerance to infections has not attracted much 

attention in animal breeding, whereas for a long time breeding for resistance has 

been on the research agenda in animal breeding for several years (Doeschl-Wilson 

et al., 2012). The main hurdle with breeding for tolerance is that we need a 

measure of pathogen burden. Our study shows that recording of pathogen burden 

would yield a 22% increase in selection response in tolerance when the breeding 

goal contains only tolerance compared to using the EBV for resilience. 

Furthermore, for resistance it would yield an 87% increase in selection response 

when the breeding goal contains only resistance compared to using the EBV for 

resilience. When the breeding goal is to increase performance in periods without 

infection, tolerance and resistance, recording pathogen burden and using it in 

breeding value estimation would increase the genetic gain in the breeding goal by 

8% compared to when pathogen burden is not recorded. These results show clearly 
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that measuring pathogen burden can increase genetic gain in breeding programs 

compared to selection on EBV for resilience.   

Although measuring pathogen burden has clear advantages for genetic 

improvement, it is often difficult to obtain measures of pathogen burden in 

commercial animals, because animals get infected at different time points, 

registration of diseases is limited and measuring pathogen burden is costly and 

laborious. In some cases, it is feasible to obtain some indication for pathogen 

burden such as faecal egg count for nematode infections in sheep (Albers et al., 

1987; Stear et al., 1995; Bishop et al., 1996) or somatic cell count in milk as an 

indication for the severity of mastitis infection (Detilleux et al., 2012). Even though 

pathogen burden may be difficult to obtain, recording which animals are infected 

and which are not infected would be already of great value, especially for endemic 

diseases, such as mastitis. Generally, using field data leads to underestimation of 

the incidence of diseases due to imperfect sensitivity and incomplete data 

recording (Bishop and Woolliams, 2010). 

With challenge experiments, for instance the PRRS host consortium trials at 

Kansas State University (Lunney et al., 2011; Rowland et al., 2012), it is feasible to 

obtain measures of viremia at different points after infection (Boddicker et al., 

2012; Islam et al., 2013). In other words, these measures of viremia can be used as 

pathogen burden to estimate genetic variation in tolerance. Even though many 

data have been recorded on these infected pigs, it has proven be difficult to find 

genetic variation in tolerance (Lough et al. manuscript in preparation). One 

important issue is unbiased estimation of the intercept of the reaction norm when 

animals are not infected (Kause, 2011; Doeschl-Wilson et al., 2012). Therefore, the 

experiment should ideally contain partly relatives that are infected and another 

part that are not infected. Although challenge experiments are very useful for 

research on genetics of disease resistance and tolerance to infections, the value for 

commercial breeding programs may be limited because the challenge environment 

may still be very different from the commercial environments.   

4.4.3 Selection on resilience to infections 

Although selection for increased tolerance seems to be still challenging 

because of lack of pathogen burden, our study shows that using EBV for resilience 

is an effective way to increase tolerance by selection and at the same time also 

improving resistance. This is in contrast to Albers et al. (1987), who concluded that 

the heritability of resilience is too small to obtain direct selection responses to 

mass selection. Indeed mass selection will yield small selection responses in 

resilience (Kolmodin and Bijma, 2004; Sae-Lim et al., 2015), but using information 
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of sibs that are infected and not infected can greatly increase the selection 

responses in resilience, as observed in this study.  

An important drawback of using the EBV for resilience is that resilience is a 

‘black-box’: the emphasis on tolerance and resistance depends on the parameters. 

Furthermore, obtaining correct measures of the contemporary group mean may be 

statistically challenging and may lead to biased estimates of the genetic variance in 

resilience, especially to disentangle genetic trend from the contemporary group 

means (Knap and Su, 2008).  If contemporary groups are large, which is generally 

the case in pig breeding, bias is expected to be small or absent. Mixed model 

estimates of contemporary group means could be used (Rashidi et al., 2014; Silva 

et al., 2014). In previous studies, we showed that such contemporary group means 

could be used well to detect disease outbreaks (Mathur et al., 2014; Rashidi et al., 

2014). Another drawback is that the EBV for resilience will mainly pick up 

resistance and tolerance to epidemic diseases. For endemic diseases, the approach 

is less useful because there are continuously animals infected and therefore the 

contemporary group mean is not a good indicator for presence of infections. In 

those cases, presence or absence of infection at animal level could be used as a 

covariate in the random regression model. 

An important advantage of using the EBV for resilience is that it is aiming to 

select for general resilience (Guy et al., 2012). Multiple diseases may decrease the 

contemporary group means. Therefore, selection on the EBV for resilience will 

target general disease tolerance and resistance rather than specific disease 

resistance or tolerance. In addition to diseases, there may be other environmental 

factors that decrease performance, such as heat stress (Bloemhof et al., 2008) or 

seasonality (Sevillano et al.). It is likely that general mechanisms related to dealing 

with stress situations are involved. In laboratory species, heat-shock proteins are 

found to be controlling effects of stress (Queitsch et al., 2002; Sangster et al., 

2008). Genome-wide associations can help unravelling the genetic background of 

resilience (Sell-Kubiak et al.; Silva et al., 2014). 

4.5 Conclusion 

 

 In this study, we showed that using EBV for resilience in absence of 

pathogen burden recorded led to favourable responses in resistance and tolerance 

to infections. The selection responses in resistance and tolerance depended on the 

heritabilities of resistance and tolerance and the genetic correlation between 

resistance and tolerance. If resistance and tolerance were unfavourably correlated, 

responses decreased, especially in resistance. Although using EBV for resilience 
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resulted mostly in favourable responses in resistance and tolerance, more genetic 

gain could be achieved when pathogen burden is recorded. Selecting on resilience 

is targeting, however, general resilience rather than specific tolerance to a certain 

disease. 
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Abstract 

Porcine reproductive and respiratory syndrome (PRRS) is a major viral disease in 

pigs causing reproduction loss in sows and decreased growth in growing pigs. 

Conventional strategies for controlling PRRS have not been successful so far. 

Therefore, selective breeding for pigs that mount a defence against PRRS could be 

an option. Defensive ability of a pig against PPRS might have two mechanisms: 

resistance (ability to limit the PRRS viral load in the body) and tolerance (ability to 

minimize performance loss at a certain level of PRRS viral load). When it is not 

possible to distinguish between resistance and tolerance, defensive ability is 

measured as resilience, which is the ability to maintain performance during a PRRS 

outbreak regardless of viral load. In this study, area under the viremia curve up to 

14 dpi (AUC14) was used as a measure of resistance, average daily gain up to 28 dpi 

(ADG28) as a measure of resilience and regression of ADG28 on AUC14 as a 

measure of tolerance. Our aim was to identify genomic regions associated with 

resistance, tolerance and resilience to PRRS. Data on 1,320 crossbred pigs that 

were experimentally infected with PRRS virus were analysed. Animals were 

genotyped using the Illumina 60K SNP chip. After quality control, 44,787 SNP were 

used in a genome-wide association study (GWAS). Genome-wide associations for 

resistance and resilience were detected as significant SNP effect on AUC14 and 

ADG28, respectively, while genome-wide associations for tolerance were detected 

as significant SNP effects on the regression of ADG28 on AUC14. 

The heritabilities were 0.20 for AUC14, 0.26 for ADG28, and 0.21 for 

tolerance estimated as the heritability of ADG28 at average AUC14. For AUC14 and 

ADG28, a significant region (FDR < 0.20) was identified on chromosome 4 in which 

the most significant SNP for AUC14 and ADG28 explained 4.54 and 4.64% of the 

phenotypic variances, respectively. We also identified a region on chromosome 11 

for AUC14 and a region on chromosome 16 for ADG28. For tolerance, significant 

regions were identified on chromosomes 1, 9, and 18. The most significant SNP was 

on chromosome 1 and explained 0.88% of the phenotypic variance. These 

associations indicate that tolerance is under genetic control and may play an 

important role in host response to PRRS, alongside resistance. This is the first study 

to detect genomic regions associated with tolerance to PRRS that can be used in 

marker-assisted selection for improving resistance, resilience, and tolerance to 

PRRS. 

 

Key words: Genetics, genomic regions, pigs, porcine reproductive and respiratory 

syndrome, resistance, tolerance   
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5.1 Introduction 

 

Porcine reproductive and respiratory syndrome (PRRS), caused by the PRRS 

virus (PRRSv), is a major problem in pig industry. In addition to welfare problems, 

PRRS causes huge economic losses. Different control strategies, such as vaccination 

and biosecurity, have been practiced in pig farms but not all of these have been 

fully successful so far (Thanawongnuwech and Suradhat, 2010; Renukaradhya et 

al., 2015). Therefore, selective breeding for pigs that can mount a defence against 

PRRS could be a promising approach to control PRRS. The defensive ability of 

animals against infection may have two mechanisms: resistance and tolerance. 

Resistance is the ability to prevent entry of pathogen or inhibiting replication of 

pathogen in the body and it is measured as the genetic effect on pathogen burden 

following exposure (Albers et al., 1987; Raberg et al., 2007). Tolerance is the ability 

to show minimal decrease in performance given a certain pathogen burden (Raberg 

et al., 2007). The genetic basis of tolerance can be modelled as the genetic effect 

on the reaction norm of performance on its pathogen burden (Kause, 2011). 

Resilience, on the other hand, is defined as the ability of animals to maintain 

performance during a disease outbreak regardless of pathogen burden. Resilience 

is modelled as the genetic effect on performance during an outbreak (Albers et al., 

1987; Bisset et al., 1996; Rashidi et al., 2014). Boddicker et al. (2012) found 

heritabilities of 0.31 for PRRS viral load (resistance) and 0.30 for bodyweght gain 

during PRRS infection period (resilience), indicating the existence of genetic basis 

for resistance and resilience to PRRS. Boddicker et al. (2012 and 2014a) also 

identified a genomic region on chromosome 4 associated with PRRS viremia 

(resistance) and average daily gain of the infected pigs (resilience), indicating the 

possibilities for marker-assisted selection to reduce the impact of PRRS. However, 

the genetic basis of tolerance to PRRS is not known and genome-wide association 

studies (GWAS) on tolerance to PRRS have not been performed yet. The aims of 

this study were to 1) estimate the genetic parameters for resistance, resilience, and 

tolerance to PRRS, and to 2) identify genomic regions associated with resistance, 

resilience, and 3) tolerance to PRRS and investigate potential overlap in associated 

regions.  

 

5.2 Material and methods 

 

The Kansas State University Institutional Animal Care and Use Committee 

approved all experimental protocols for this study. 
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5.2.1 Animals 

From the first 8 trials and trial 15 of the PRRS host genetics consortium 

(PHGC), data on 1,320 crossbred pigs were analysed. A general overview of the 

PHGC trials is described in Lunney et al. (2011). In short, from high health multiplier 

farms that were free of PRRS, swine influenza, and Mycoplasma hyopneumoniae, 

weaned pigs from different crossbred lines were sent to the experimental centre of 

Kansas State University. Pigs were between 11 and 21 days old upon arrival at the 

experimental facility. In each trial, pigs were from the same cross and from the 

same farm, except for trial 5 and 8 in which pigs were from two farms. The 

pedigree for the first three trials included three generations. The pedigree for trials 

4-8 and 15 included sire and dam only. Upon arrival, pigs received broad spectrum 

antibiotics. After one week of acclimatization, pigs (between 17 to 32 weeks old) 

were challenged with 105 (TCID50) of NVSL-97-7985, a highly virulent PRRSv strain. 

In order to measure the virus load, blood samples were collected at -6, 0, 7, 10, 14, 

21, 28, 35, and 42 days post infection (DPI). Body weights of pigs in kg were 

recorded at 0, 7, 1, 21, 28, 35, and 42 DPI. Pigs were euthanized at 42 DPI.  

 

5.2.2 Genotypes 

Pigs were genotyped for single nucleotide polymorphism (SNP) using the 

Illumina Porcine 60k Beadchip (San Diego, California). After genotyping, unmapped 

SNPs and SNPs located on sex chromosomes, according to the Sscrofa10.2 

assembly of the reference genome (Groenen et al., 2012), were excluded from the 

dataset. In addition, SNPs with call rate <0.95, minor allele frequency <0.01, strong 

deviation from Hardy Weinberg Equilibrium (χ2 values>600), and with one of the 

genotypes having a frequency <0.02 were excluded. After all quality control 

procedures, missing genotypes were imputed across all trials using Beagle 

(Browning and Browning, 2007). Finally, out of the 64,232 initial SNPs, genotypes 

on 44,787 SNPs were available for the GWAS.  

 

5.2.3 Phenotypic traits 

The cumulative PRRS viral load of the pigs was calculated as the area under 

the PRRS viremia curve (Islam et al., 2013) from 0 to 14 DPI (AUC14). The average 

daily gain (kg/day) of the pigs from 0 to 28 DPI (ADG28) was also calculated. 

Average daily gain records after 28 DPI were not used because about 20% of the 

pigs showed a rebound in viremia levels mostly after 28 DPI (Boddicker et al., 

2012). In addition, we preliminarily studied the reaction norms of average daily 

gain (ADG) on the areas under the PRRS viremia curve (AUC) up to 7, 14, 21, 28, 35, 
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and 42 DPI using sire random regression models. Comparison of the random 

regression models with their corresponding sire models showed that the difference 

between the log-likelihoods for the random regression of ADG28 on AUC14 

(2801.48) and the univariate sire model of ADG28 (2800.90) was highest among 

other comparisons of random regression model with the univariate sire model. The 

records for AUC14 were normally distributed and ranged from 51.27 to 106.70 with 

a mean of 82.38 and a SD of 5.95. The records for ADG28 were also normally 

distributed and ranged from -0.09 to 0.77 kg/day with a mean of 0.33 kg/day and a 

SD of 0.12 kg/day. The genetic correlation between AUC14 and ADG28 was -

0.85±0.20. 

 

5.2.4 Statistical models for GWAS 

  To identify genomic regions associated with PRRS resistance and tolerance, 

we used a single-SNP analysis in which each SNP was modelled individually as a 

fixed class variable.  

  Three statistical models applied for performing the GWAS were: 1) a sire 

model for AUC14 to identify genomic regions associated with PRRS resistance; 2) a 

sire model for ADG28 to identify genomic regions associated with PRRS resilience; 

and 3) a sire model where the genetic effect on ADG28 was estimated as the 

random regression of sire on viremia (AUC14) and two fixed SNP effects were 

included to identify genomic regions associated with intercept (vigour) and slope 

(tolerance). All three models were implemented in ASReml 3 (Gilmour et al., 2009). 

 

5.2.5 SNP effects on resistance (AUC14) 

  AUC14 was used as a measure of resistance to PRRS and therefore a sire 

model for AUC14 was used to identify genomic regions associated with resistance 

to PRRS. The model was as follows: 

𝐲 = 𝐗𝐛 + 𝐙𝐚 + 𝐙𝐭𝐩 + 𝐙𝐥𝐮 + 𝐞,       [1] 

where, 𝐲 is a vector of phenotypes for AUC14; 𝐗 is the incidence matrix for fixed 

effects;  𝐛 is the vector of fixed effects including age of the pigs upon arrival as a 

covariate, sex of the pigs as a class variable, virus rebound (yes/no) as a class 

variable for the pigs showing a second viremia peak after 21 DPI, trial as a class 

variable, parity of the dam as a class variable, and SNP as a class variable coded as 0 

(AA), 1 (AB) ,or 2 (BB); 𝐙 is the incidence matrix for random sire effects; 𝐚 is a 

vector of random effects for sire, with N(𝟎, 𝐀σa
2), where 𝐀 is the pedigree-based 

average numerator relationship matrix, and σa
2 is the variance of the sire effect; 𝐙𝐭 
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is the incidence matrix for the trial by pen interaction; 𝐩 is a vector of the trial by 

pen random interaction with N(𝟎, 𝐈σp
2), where 𝐈 is the identity matrix and σp

2  is the 

variance of trial by pen interaction; 𝐙𝐥 is the incidence matrix for litter; 𝐮 is a vector 

of the litter random effects with N(𝟎, 𝐈σl
2), where σl

2 is the litter variance; and 𝐞 

the random residual term with N(0, 𝐈σe
2), and σe

2 is the residual variance. 

 

5.2.6 SNP effects on resilience (ADG28) 

 ADG28 was used as a measure of resilience to PRRS and therefore a sire 

model for ADG28 was used to identify genomic regions associated with PRRS 

resilience. The model was the same as model [1], but with 𝐲 being a vector of 

phenotypes for ADG28. 

 

5.2.7 SNP effects on vigour (intercept) and tolerance (slope) 

  Tolerance is conventionally measured as the genetic effect on the reaction 

norm of host’s performance on pathogen burden in a random regression model 

(Kause, 2011). If the intercept is put in the infection free environment, the genetic 

effect on the intercept would be the genetic effect on hosts’ performance level 

when healthy, which is also known as vigour. The genetic effect on the slope of the 

reaction norm is the genetic effect on tolerance. For the current data, however, we 

observed that the full random regression model was not significantly better 

(P>0.05) than a model with only the intercept or only the slope and yielded almost 

equal likelihoods (Lough et al. manuscript in preparation). The random regression 

model showed a perfect negative genetic correlation between intercept and slope. 

Consequently, the analysis was not able to disentangle the genetic effects of 

intercept and slope. Because of interest in regions associated with tolerance, we 

used a sire model for ADG28 in which two fixed SNP effects were included for 

intercept and slope and slope was modelled as the random regression of sire on 

AUC14. Despite the inability to disentangling the genetic effects on intercept and 

slope with the full random regression model, we hypothesised the presence of 

genetic variance in tolerance and that including separate SNP effects for intercept 

and slope might help to distinguish genomic regions affecting ADG without disease 

(intercept) and genomic regions related to tolerance to PRRS. The model was as 

follows: 

𝐲 = 𝐗𝐛 + 𝐙𝐀𝐔𝐂𝐚 + 𝐙𝐭𝐩 + 𝐙𝐥𝐮 + 𝐞,      [2] 

where 𝐲 is the vector of phenotypes for ADG28; the fixed effects were mostly the 

same as the fixed effects in model 1, except that AUC14 was added as a fixed 
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covariate and two fixed SNP effects were added as class variables for the intercept 

and slope; 𝐙𝐀𝐔𝐂 is the incidence matrix for AUC28; 𝐚 is a vector of sire effects for 

slope on AUC14, assumed distributed N(𝟎, 𝐀σa
2), where σa

2 is the variance of 𝐚. The 

additive genetic variance for ADG28 was calculated as 4 × σa
2 × (𝐴𝑈𝐶14)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅2, where 

𝐴𝑈𝐶14̅̅ ̅̅ ̅̅ ̅̅ ̅ was the average AUC14 (82.38).  

  From the two SNP effects in the model, one was the SNP effect for the 

intercept (ADG28 at zero AUC14) that estimated the SNP effects on vigour of the 

pigs, and one was the SNP effect for the regression of SNP on AUC14 that 

measured the SNP effect on tolerance. Biologically, the SNP effect for intercept 

(vigour) is the SNP effect for ADG28 in absence of disease. Note that the data does 

not contain zero AUC14 and is therefore a mathematical extrapolation to the 

situation without disease. 

 

5.2.8 Genome- and chromosome-wide associations 

 The inflation factor (λ) for the distribution of P-values from the GWAS was 

estimated using the estlambda() function of the R package GenABEL (Aulchenko et 

al., 2007). P-values were adjusted for inflation following the genomic control 

approach described by Devlin and Roeder (1999). For λ > 1.1 (WTCCC, 2007), the 

F-values were divided by λ and P-values were recalculated. Further, to control the 

number of false positives due to the large number of tests (44,787), the false 

discovery rate (FDR) was calculated using the R package qvalue (Storey and 

Tibshirani, 2003). An FDR ≤0.20 was used to indicate significant genome-wide and 

chromosome-wide associations. 

 

5.2.9 Genetic variance of the SNP 

  The variance explained by a QTL region for resistance and resilience was 

defined as the genetic variance of the significant SNPs in this region across all 

animals. The variance explained by a QTL region for vigour and tolerance was 

defined as the total genetic variance of the SNP effect on ADG28 (𝑣𝑎𝑟(𝑏𝑖𝐴𝐷𝐺28
)), 

where  𝑏𝑖𝐴𝐷𝐺28
 is the total effect of the i

th
 SNP on ADG28 calculated as: 

𝑏𝑖𝐴𝐷𝐺28
= 𝑏𝑖𝑖𝑛𝑡

+ 𝑏𝑖𝑠𝑙𝑜𝑝𝑒
× 𝐴𝑈𝐶14̅̅ ̅̅ ̅̅ ̅̅ ̅, 

where 𝑏𝑖𝑖𝑛𝑡
 is the effect of the i

th
 SNP on intercept, 𝑏𝑖𝑠𝑙𝑜𝑝𝑒

is the effect of the i
th 

SNP 

on slope and AUC14̅̅ ̅̅ ̅̅ ̅̅ ̅ is the average AUC14, which was equal to 82.38. 𝑏𝑖𝑖𝑛𝑡
 and 

𝑏𝑖𝑠𝑙𝑜𝑝𝑒
were obtained from the ASReml output. The total genetic variance explained 

by the SNP, therefore, was calculated as: 
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𝑣𝑎𝑟(𝑏𝑖𝐴𝐷𝐺28
) = 𝑣𝑎𝑟(𝑏𝑖𝑖𝑛𝑡

) + (𝐴𝑈𝐶14̅̅ ̅̅ ̅̅ ̅̅ ̅)2 ∗ 𝑣𝑎𝑟(𝑏𝑖𝑠𝑙𝑜𝑝𝑒
) + (2 ∗ 𝐴𝑈𝐶14̅̅ ̅̅ ̅̅ ̅̅ ̅) ∗

𝑐𝑜𝑣(𝑏𝑖𝑖𝑛𝑡
, 𝑏𝑖𝑠𝑙𝑜𝑝𝑒

), 

where 𝑣𝑎𝑟(𝑏𝑖𝐴𝐷𝐺28
) and 𝑣𝑎𝑟(𝑏𝑖𝑖𝑛𝑡

) are, respectively, the variances of 𝑏𝑖𝐴𝐷𝐺28
 and 

𝑏𝑖𝑖𝑛𝑡
 across all animals and 𝑐𝑜𝑣(𝑏𝑖𝑖𝑛𝑡

, 𝑏𝑖𝑠𝑙𝑜𝑝𝑒
) is the covariance between 𝑏𝑖𝐴𝐷𝐺28

 and 

𝑏𝑖𝑖𝑛𝑡
 across all animals. This approach allowed us to take the covariance between 

the SNP effects on intercept and slope into account for calculating the total genetic 

variance of the SNP effect on ADG28. Note that the genetic variance due to each 

SNP includes the additive genetic variance as well as the dominance variance due 

to that SNP. 

 

5.2.10 Candidate genes 

 The 0.2 Mb left and right flanking region of the most significant SNPs were 

searched for associated genes using BIOMART in Ensembl Sus scrofa 10.2 

(http://www.ensembl.org/biomart). The genes functions were searched for using 

NCBI genes (http://www.ncbi.nlm.nih.gov/gene) and GeneCards 

(http://www.genecards.org). 

 

5.3 Results 

 

5.3.1 Variance components 

  Variance components from the models are in Table 5.1. Heritabilities for 

resistance (0.20) and tolerance (0.21) at average AUC14 were lower than the 

heritability for resilience (0.26). Although the response variable for resilience and 

tolerance is ADG28 in both cases, the heritability of resilience was higher than 

heritability for tolerance because AUC14 was included as a fixed covariate in the 

model for tolerance, whereas for resilience it was not included in the model. 

Including AUC14 in the model explained more of the genetic variance for ADG28 

rather than the residual variance and consequently the heritability of tolerance was 

lower than that of the resilience (Table 5.1). 

 

5.3.2 Genomic control 

  The λ for SNP effects on the traits was generally larger than one except for 

tolerance. For SNP effects on resistance, the λ was 1.21, which became 0.95 after 

adjusting for the inflation (Fig. 5.1A). For SNP effects on resilience, the inflation 

factor λ was 1.28 and 0.93 after adjusting for the inflation (Fig. 5.1B). For the SNP 

effects on vigour and tolerance, the inflation factor λ for the SNP effects on vigour 

http://www.ensembl.org/biomart
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was 1.22 and 0.94 after adjusting (Fig. 5.1C). The inflation factor λ for SNP effects 

on tolerance was 0.97, which did not require any adjustment (Fig. 5.1D). 

 

Figure 5.1. QQ-plots of the SNP P-value from sire model on area under the viremia curve up 
to 14 days post infection (A), average daily gain up 28 days post infection (B), vigour for 
average daily gain before infection (C), and tolerance (D). The black circles are the observed 
P-values, the grey circles are the adjusted P-values after genomic control, and the straight 
line shows the expected P-values under the null hypothesis. For tolerance P-values were not 
adjusted. 
 

 

 

 

A
) 

A B 

C D 



5. GWAS for Resistance, Resilience, and Tolerance to PRRS 

  

 

 

120 

 

Table 5.1. Variance components (standard errors as subscripts) from the sire model on 
resistance defined as the genetic effect on area under the viremia curve at 14 days post 
infection (AUC14), resilience defined as the genetic effect on the average daily gain up to 28 
days post infection (ADG28 (g/day)), and the tolerance defined as the genetic effect on 
ADG28 (g/day) at average AUC14 (82.34) modelled as the interaction of sire and AUC14 
(Slope). 

Variance  Resistance Resilience Tolerance 

Genetic 4.78 2.80 28.24 11.50 21.14 9.37 

Residual 13.32 0.64 73.66 3.57 71.90 3.47 

Trial.Pen 1.10 0.36 11.65 2.81 11.51 2.74 

Litter 8.58 1.07 14.23 3.29 11.89 3.00 

Phenotypic 24.19 1.24 106.60 5.16 100.59 4.75 

    Heritability  0.20 0.11 0.26 0.10 0.21 0.09
1
 

1
Genetic and phenotypic variances and heritability for tolerance were calculated at the 

average AUC14 (82.34)  

 

5.3.3 Associated SNPs and candidate genes 

 

5.3.3.1 Significant SNPs for resistance, resilience and vigour 

  For resistance, resilience, and vigour, one region was identified on 

chromosome 4 from 139.26 to 140.42 Mb (Fig. 5.2-5.4, Table 5.2) in which the SNPs 

were in strong linkage disequilibrium as the r
2
 ranged from 0.5 to 1. For resistance 

and resilience, 17 significant SNPs and for vigour, 12 significant SNPs were in the 

region on chromosome 4. For resistance, the most significant SNP was 

INRA0017729 (139.50 Mb), which explained 4.54% of the phenotypic variance. For 

resilience and vigour the most significant SNPs were ASGA0023349 (139.88 Mb) 

and ALGA0029538 (139.94 Mb), which explained 4.64% of the phenotypic variance 

for resilience and 3.76% of the phenotypic variance for vigour. In addition, one 

significant SNP (ASGA0050951) was identified on chromosome 11 (56.97 Mb) for 

resistance and one significant SNP (ASGA0073613) was identified on chromosome 

16 (60.18 Mb) for resilience and vigour.  

  Twelve genes were identified near the region on chromosome 4 for 

resistance and resilience and 10 genes were identified near the region on 

chromosome 4 for vigour (Table 5.4). In addition, one gene was identified near the 

significant SNP on chromosome 11 for resistance and one gene near the significant 

SNP on chromosome 16 for resilience and vigour. 
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Figure 5.2. Genome-wide association between the area under the viremia curve up to 14 
days post infection (AUC14) and 44,787 mapped SNP across 18 autosomes using a univariate 
sire model. The straight line is the cut-off value of 5.41 which equals a FDR q-value ≤ 0.20. 

 
Figure 5.3. Genome-wide association between resilience measured as the average daily gain 
up to 28 days post infection (ADG28) and 44787 mapped SNP across 18 autosomes using a 
univariate sire model. The straight line is the cut-off value of 5.12 which equals a FDR q-value 
≤ 0.20. 
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Figure 5.4. Genome-wide associations for vigour measured as the intercept of average daily 
gain at zero viremia and 44787 mapped SNP across 18 autosomes. The straight line is the 
cut-off value of 4.90 which equals a FDR q-value ≤ 0.20. 

 
Figure 5.5. Genome-wide association for tolerance measured as the slope of average daily 
gain up to 28 days post PRRS infection (ADG28) on area under the viremia curve up to 14 
days post infection (AUC14).  
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Table 5.2. The position and proportion of phenotypic variance (𝝈𝒑
𝟐) explained by significant 

SNPs for resistance, resilience, and vigour. Results for the most significant SNP for each trait 
are bold. 

SNP SSC Position (Mb) 
SNP variance (% of 𝜎𝑝

2) 

Resistance Resilience Vigour 

ASGA0023314 

4 

139.26 2.48 3.45 2.68 

INRA0017729 139.50 4.54 4.28 3.67 

ASGA0023322 139.60 4.32 3.40 - 

MARC0056249 139.64 4.09 4.44 3.63 

WUR10000125 139.67 4.09 4.44 3.63 

ALGA0029524 139.69 3.62 4.57 3.74 

ASGA0023335 139.74 3.21 4.59 3.76 

ASGA0023344 139.77 4.09 4.44 3.63 

MARC0014819 139.80 4.09 4.44 3.63 

ASGA0023349 139.88 3.21 4.64 3.76 

ALGA0029538 139.94 3.21 4.64 3.76 

ASGA0023354 139.97 3.11 4.38 3.61 

DRGA0005385 140.01 3.11 4.38 3.61 

M1GA0006784 140.08 4.05 3.60 - 

MARC0000425 140.20 4.16 3.52 - 

ASGA0023397 140.38 3.80 3.04 - 

MARC0040196 140.42 3.80 3.04 - 

ASGA0050951 11 56.97 2.62 - - 

ASGA0073613 16 60.18 - 2.86 3.46 

 

5.3.3.2 Significant SNPs for tolerance  

  For tolerance, we did not identify any significant SNP at the genome-wide 

significance level. However, a suggestive association for tolerance on chromosome 

1 was observed (Fig. 5.5) and the chromosome-wise significance level (FDR ≤0.20) 

revealed significant regions on chromosomes 1, 9, and 18 (Table 5.3). The SNPs in 

the suggestive QTL region on chromosome 1 formed three LD blocks. The first block 

was at 39.69 Mb to 40.58 Mb and the r
2
 ranged from 0.3 to 1. The second block 

was located at 44.23 Mb to 49.47 Mb and the r
2
 ranged from 0.1 to 1. The third 

block was located at 57.08 Mb to 58.06 Mb and ther
2
 ranged from 0.6 to 1. The 

most (chromosome-wise) significant SNP for tolerance was ALGA0003292 (57.40 

Mb), which explained 0.88% of the phenotypic variance of ADG28 at average 

AUC14. In addition, there were 8 (chromosome-wise) significant SNPs on 

chromosome 1 located at 105.38 Mb, 149.05 Mb, 223.21 Mb, 225 Mb, 285 Mb, 

290.49-290.66 Mb, and 305 Mb. The (chromosome-wise) significant SNP on 

chromosome 9 (MARC0010165) was located at 42.23 Mb and the (chromosome-
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wise) significant SNP on chromosome 18 (ASGA0078711) was located at 52.35 Mb 

(Table 5.3). 

  There were 14 genes near the three regions genes on chromosome 1. One 

gene was near the significant SNP on chromosome 9, and two genes near the 

(chromosome-wise) significant SNP on 18 (Table 5.4).   

  In summary, the same genomic region on chromosome 4 was associated 

with resistance, resilience, and vigour. For vigour and resilience, the same SNP was 

detected on chromosome 16. For tolerance, a chromosome-wide genomic region 

was found on chromosome 1 and 2 regions on chromosome 9 and 18, which were 

not found for resistance, resilience and vigour. 

 

Table 5.3. Chromosome-wide significant SNP of pigs for tolerance and the proportion of 

phenotypic variance (𝝈𝒑
𝟐) of average daily gain up to 28 post infection explained by the SNP.  

Chromosome First SNP Last SNP 
Number 

of SNP 

Position (Mb) 

Variance 

Explained 

(% of 𝜎𝑝
2) 

Start End Min Max 

1 H3GA0001452 ASGA0002324 7 39.69 40.58 0.26 0.41 

MARC0021005 ASGA0002556 23 44.23 49.47 0.27 0.76 

ALGA0003278 MARC0047693 12 57.10 62.13 0.31 0.88 

ALGA0115211 ALGA0115211 1 105.38 105.38 0.32 0.32 

DRGA0001536 DRGA0001536 1 149.00 149.00 0.24 0.24 

ALGA0007558 ALGA0007558 1 223.21 223.21 0.48 0.48 

INRA0005754 INRA0005754 1 225.00 225.00 0.48 0.48 

ALGA0009447 ALGA0009447 1 285.62 285.62 0.57 0.57 

ALGA0009785 DRGA0002408 2 290.49 290.66 0.75 0.75 

ASGA0008088 ASGA0008088 1 305.52 305.52 3.29 3.29 

9 MARC0010165 MARC0010165 1 42.23 42.23 0.42 0.42 

18 ASGA0078711 ASGA0078711 1 5.24 5.24 0.47 0.47 
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Table 5.4. Candidate genes associated with resistance, resilience, vigour, and tolerance of 
pigs to porcine reproductive and respiratory syndrome. 

Gene Chromosome Resistance Resilience Vigour Tolerance 

TBC1D32 

1 

   


FAM184A 
   



MCM9 
   



ASF1A 
   



CEP85L 
   



PLN 
   



SLC35F1 
   



SMAP1 
   



B3GAT2 
   



PRRC2B 
   



SNORD62 
   



POMT1 
   



UCK1 
   



RAPGEF1 
   



PKN2 

4 

  
 

BARHL2  
  

ZNF326  
  

LRRC8C   
 

LRRC8B   
 

GBP4   
 

GBP6   
 

GBP5   
 

GBP2   
 

GBP1   
 

CCBL2   
 

GTF2B   
 

C11orf87 9 
  



POU4F1 

11 


  

RNF219 
  

RBM26 
  

NDFIP2 
  

SPRY2 
  

TENM2 16 


 


XRCC2 
18   



CCT8L2 
  



 

 



5. GWAS for Resistance, Resilience, and Tolerance to PRRS 

  

 

 

126 

 

5.3.4 The effects of the most significant SNP for intercept and slope on ADG28 

  The overall effects of the genotypes for the most significant SNPs on for 

intercept (ASGA0023349 on chromosome 4) and slope (ALGA0003292 on 

chromosome 1) on ADG28 are in Fig. 5.6 and 5.7. The effects of the homozygous 

genotypes at low AUC14 (51.27) were positive and the difference between their 

genotypic values (2a, following the notation of Falconer and Mackay (1996)) was 

0.09 kg/day (a=0.045kg/day). Therefore, selecting pigs that have the AA genotype 

will improve ADG28 at low AUC14. At high AUC14 (106.7) the effects of the both 

homozygote genotypes became negative and the difference between them 

decreased to almost zero (2a = 0.007 kg/day), meaning that both genotypes had 

equal ADG28 at high AUC14. The deviation of the AB genotypic value  from the 

average of the AA and BB genotypes (d, following the notation of Falconer and 

Mackay 1996) at low AUC14 was -0.08 kg/day, indicating a negative dominance 

effect. The deviation of the AB genotypic value from the average of the AA and BB 

genotypes (d) at high AUC14 was 0.1 kg/day and a positive dominance effect, 

indicating that the heterozygote had higher ADG28 than the homozygotes.  

  The overall effects of the genotypes for the most significant SNP for slope 

(ALGA0003292 on chromosome 1) on ADG28 are in Fig. 5.7. The effect of the BB 

genotype at low AUC14 was positive and the effect of the AA genotype was 

negative. The difference between the average phenotypic values of BB and AA 

genotypes (2a) was 0.26 kg/day (a=0.13 kg/day). Therefore, selecting pigs that have 

the BB genotype will improve ADG28 at low AUC14. At high AUC14 the effects of 

both homozygous genotypes became negative and the difference between them 

slightly decreased (a=0.10 kg/day). The deviation of the AB genotypic value (d) 

from the average of the AA and BB genotypes at low AUC14 was zero and 0.18 

kg/day at high AUC14, indicating no dominance effect at low AUC14 and a positive 

dominance effect at high AUC14. Therefore, the heterozygotes had an advantage at 

high viremia levels compared to the homozygotes. 
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Figure 5.6. Genotype effects of the most significant SNP for intercept (ASGA0023349) on 
average daily gain of pigs up to 28 days post infection (ADG28) at each viremia level (area 
under the viremia curve) up to 14 days post infection (AUC14). The frequency for AA was 
0.03, for BB was 0.72 and for AB was 0.25. 

 

Figure 5.7. Genotype effects of the most significant SNP for slope (ALGA0003292) on 
average daily gain of pigs up to 28 days post infection (ADG28) at each viremia level (area 
under the viremia curve) up to 14 days post infection (AUC14). The frequency for AA was 
0.29, for BB was 0.52 and for AB was 0.19. 
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5.4 Discussion 

 

The aim of this study was to identify genomic regions associated with 

resistance (AUC14), tolerance (slope of the change in ADG28 over AUC14) and 

resilience (ADG28) to PRRS. We identified significant genomic regions associated 

with resistance, tolerance and resilience of pigs to PRRS.  

Resistance, tolerance and resilience had moderate heritabilities indicating 

that selective breeding can improve response of pigs to PRRSv. The heritability for 

resistance (AUC14) in our study was similar to the heritability for viral load at 14 

DPI in a subset of the current data in Boddicker et al. (2014b). The heritability for 

resilience (ADG28) in our study, however, was smaller than the heritabilities for 

bodyweight gains at 21 and 42 DPI in a subset of the current data in Boddicker et 

al. (2014b). One reason for the different heritabilities for resilience is that, 

Boddicker et al. (2014b) used an animal model for variance component estimation, 

whereas in the current study we used a sire model for that. Another reason is that 

Boddicker et al. (2014b) used a subset of the data that we used. 

 

5.4.1 Common genomic region for resistance, resilience, and vigour on 

chromosome 4 

  We identified one genomic region on chromosome 4 associated with 

resistance, resilience, and vigour. The overlap between the SNPs on chromosome 4 

for resistance and resilience was expected as the preliminary results showed a 

strong favourable genetic correlation between AUC14 and ADG28. For vigour, 

however, fewer SNP were found that overlapped with the SNP for resistance and 

resilience. The overlap between the associated genomic region on chromosome 4 

for resistance, resilience, and vigour are in agreement with the high genetic 

correlations found and are in agreement with Boddicker et al. (2012) and (2014a).   

  The significant SNP on chromosome 4 explained a considerable proportion 

of the phenotypic variance for resistance and ADG28. The region on chromosome 4 

was previously reported by Boddicker et al. (2012); Boddicker et al. (2014a). 

Boddicker et al. (2012) used pigs of the same crossbred lines from the first three 

trials of the PHGC and identified the genomic regions associated with area under 

the viremia curve 0 to 21 DPI (VL in their paper) and average daily gain from 0 to 21 

DPI (WG21 in their paper) or 42 DPI (WG42 in their paper). For VL two genomic 

regions on chromosome 4 and chromosome X and for WG42 four genomic regions 

on chromosome 1, 4, 7, and 17 were found (Boddicker et al., 2012). In a follow up 

study, Boddicker et al. (2014b) validated the effect of the genomic region on 
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chromosome 4 on WG21, WG42 and VL21of the pigs from batch 4 and 5 of the 

PHGC. Then in another study Boddicker et al. (2014a) analysed pigs from trials 1 to 

8 of the PHGC and redetected the genomic region on chromosome 4 associated 

with PRRS viremia and bodyweight gain. The re-detection of the region on 

chromosome 4 in our study, using even more data, validates the major impact of 

this region on resistance, resilience, and vigour of different pig breeds. 

  We detected 12 candidate genes located within the 0.2 Mb distance of the 

region on chromosome 4 based on ENSEMBL (http://www.ensembl.org/biomart) 

and the databases NCBI (http://www.ncbi.nlm.nih.gov/gene) and GeneCards 

(http://www.genecards.org) to search the gene functions. Among the genes, there 

was the guanylate-binding protein family genes (GBP1, GBP2, GBP4, GBP5, GBP6), 

which play an important role in anti-viral activities of the immune system by 

inducing cytokines. The importance of cytokines for PRRS response is reported by 

Lunney et al. (2010) and Miller et al. (2004). The association of guanylate-binding 

protein family genes with PRRS response has also been reported by Boddicker et al. 

(2012). Another relevant gene on chromosome 4 that we found was general 

transcription factor IIB (GTF2B), which in human is involved in disease pathway and 

has antiviral effects (Lund et al., 2007). The GTF2B-gene is a novel candidate gene 

for PRRS response and was present for resistance and resilience to PRRS as well as 

vigour. Another candidate gene for resilience and vigour on chromosome 4 is 

Cysteine Conjugate-Beta Lyase 2 (CCBL2) that is involved in metabolic pathways. 

Other genes near the significant SNP on chromosome 4 were involved in cell cycle 

(PKN2), sequence-specific DNA and RNA binding polymerase (BARHL2 and ZNF326), 

and component of the volume-regulated anion channel (LRRC8B).  

  The genes near the significant SNP for resistance on chromosome 11 were 

involved in neural transcription factors that help developing sensory nervous 

system (POU4F1), RNA and nucleotide binding (RBM26), signal transducer activity 

(NDFIP2), and protein kinase binding and protein serine (SPRY2). 

  The gene (TENM2) near the significant SNP for resilience and vigour on 

chromosome 16 is involved in protein homodimerization activity and receptor 

binding.  

 

5.4.2 Genomic regions for tolerance  

  We identified three regions on chromosome 1 that were significantly 

associated with tolerance at a chromosome-wide level (FDR<0.20). Chromosome-

wide associations could be considered as suggestive as the significance threshold is 

set per chromosome and therefore we were able to find SNP that are significantly 

http://www.ensembl.org/biomart
http://www.genecards.org/
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associated per chromosome (Duijvesteijn et al., 2014). The additive variance for 

most of the SNP on chromosome 1 explained a small proportion of the phenotypic 

variance indicating small effects of those SNP on ADG28. Boddicker et al. (2012 and 

2014a) also reported two significant regions on chromosome 1 associated with 

WG42 (located on 123.33-124.67 Mb) and VL (located on 292 Mb).  

  We detected 14 candidate genes located within the 0.2 Mb distance of the 

SNP on chromosome 1 based on (http://www.ensembl.org/biomart). Among the 

genes near the chromosome-wide significant SNP for tolerance on chromosome 1, 

the most interesting one was the Beta-1,3-Glucuronyltransferase 2 gene (B3GAT2) 

that encodes a protein that is involved in the synthesis of the human natural killer-

1 (HNK-1) carbohydrate epitope (Kahler et al., 2011). This gene is involved in 

disease and metabolic pathways (www.genecards.org).  Other genes on 

chromosome 1 have a broad range of functions such as cell cycle (MCMC9), cellular 

senescence (ASF1A), embryonic cell signal carrier (TBC1D32), signalling by 

epidermal growth factor receptor (EGFR), protein kinase in cardiac muscle (PLN), 

breast cancer antigen (CEP85L), producing red blood cells (SMAP1), brain 

development (PRRC2B), and muscle structure (POMT1).  

  The gene near the significant SNP for tolerance on chromosome 9 was a 

protein coding gene, the function of which is not clear. The genes near the 

significant SNP for tolerance on chromosome 18 were involved in stability and 

repair DNA damage (XRCC2) and unfolded protein binding and anion channel 

activity (CCT8L2). 

 

5.4.3 Model for detecting genomic regions associated with tolerance 

  Tolerance is conventionally measured as the slope for the reaction norm of 

performance on pathogen burden. Random regression models are powerful 

approaches to estimate the genetic effects on intercept and slope of the reaction 

norms (Kause, 2011). Applying random regression model in our study, however, 

was not able to distinguish between intercept and slope. This was mainly due to a 

perfect negative correlation between intercept and slope (Lough et al. manuscript 

in preparation). Nevertheless, including two SNP effects in the model for intercept 

and slope, distinguished between genomic regions associated with vigour and 

tolerance. Finding different regions associated with vigour and tolerance approved 

our hypothesis that the model could differentiate SNP with effects on intercept and 

slope. We observed that the correlation between SNP effects on intercept and 

slope were almost -1 for all the SNPs. The completely negative correlation between 

http://www.ensembl.org/biomart
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SNP effects for intercept and slope proved the inability to model sire effects for 

intercept and slope simultaneously. 

  Another way of modelling SNP effects on tolerance would be a 2-step 

approach where the significant SNP effects on intercept and slope are modelled 

separately (Streit et al., 2013). In the first step, breeding values for intercept and 

slope are estimated in a random regression model. In the second step, genome-

wide association studies are performed using de-regressed breeding values for 

intercept and slope to detect significant SNP effects. This approach is particularly 

useful in dairy cattle with reliable breeding values for sires based on large offspring 

groups, but not suitable in our study because of the relative small number of 

animals with genotypes and phenotypes. We, therefore, estimated the SNP effects 

on intercept and slope in one model. 

 

5.4.4 Genetic variance of SNPs for vigour and tolerance 

  The genetic variance of each significant SNP for vigour and tolerance was 

calculated as the total genetic variance of SNP effects on ADG28. This was done to 

account in a simple but accurate way for complete negative correlation between 

the SNP effect on intercept and the SNP effect on slope. As a consequence, 

calculating the genetic variance of the SNP effect on intercept only or slope only 

without taking into account the genetic variance of the other SNP effect and the 

covariance between the two SNP effects, would result in a genetic variance of more 

than 100% of the phenotypic variance.  

  The complete negative correlation makes marker-assisted selection for 

vigour and tolerance complex, because of the complete re-ranking of genotypes 

across the range of viremia. Index selection will give proper index weights for these 

SNP and determine the direction of selection. Selection will target the additive 

allele substitution effects and not the dominance deviations. However, the 

evidence for dominance on tolerance can be utilized in the crossbreeding part of 

the pig-breeding pyramid.  

  This is the first study that reports genomic regions associated with tolerance 

to PRRS. We also detected genomic regions associated with resistance and 

resilience to PRRS, confirming earlier studies. The most significant SNP on 

chromosome 4 detected for resistance to PRRS explained a considerable 

proportion of the phenotypic variance for PRRS viremia (AUC14). Also the 

significant SNP detected for resilience and tolerance explained a considerable 

proportion of the phenotypic variance of growth (ADG28). These results provide 

biological knowledge on resistance, tolerance and resilience to PRRSv. These 
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markers identified in this study can potentially be used for marker-assisted 

selection to improve pigs response to PRRS. 
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In this thesis we aimed to: 1) estimate the genetic variation in resistance, tolerance, 

and resilience to infection in order to assess the amenability of these traits for 

selective breeding in farm animals, 2) estimate the genetic correlation between 

resistance, tolerance and resilience and 3) detect genomic regions associated with 

resistance, tolerance, and resilience. We used simple linear random regression 

models to study the reaction norm of animal performance on indicators of 

infection severity. We presented the possibility for selective breeding for 

resistance, tolerance, and resilience to two important infectious diseases in farm 

animals: porcine reproductive and respiratory syndrome in pigs and 

gastrointestinal nematode infection in sheep. We showed that selective breeding 

for resilience is expected to improve both resistance and tolerance. We also 

showed that there might be a genetic correlation between resistance and 

tolerance. The presence and sign of the genetic correlation between resistance and 

tolerance, however, might be different for different species and diseases. We 

detected genomic regions associates with resistance and tolerance to porcine 

reproductive and respiratory syndrome in pigs, indicating the possibility for marker 

assisted selection for the disease 

In the current chapter, I will discuss the following topics: 1) response to 

infection as a special case of genotype by environment interaction, 2) random 

regression model as a statistical tool for studying response to disease, 3) 

advantages and requirements of random regression models, and 4) selective 

breeding of farm animals for resistance, tolerance, and resilience to infections. 

6.1 Response to infection as a special case of genotype by 

environment interaction 

Genotype by environment (G×E) interaction is the phenomenon of a 

genotype responding differently in different environments (Falconer and Mackay, 

1996). In the case of G×E, the best performing organism in one environment might 

not be the best performing one in another environment, which may cause 

inefficiency in animal breeding. When G×E is present, breeders should not only 

consider the traits but also the environment in which the animal will perform. This 

way, breeders can breed animals for their appropriate environments. Response to 

infections in animals is a special case of G×E in two ways. The first is when ranking 

of animals on performance within a farm during different health status 

(healthy/diseased) changes. This could happen because the presence of a disease 

in a farm might change the genetic response of an animal to the environment. In 
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this case, one could apply a bivariate analysis in which the performance is 

considered as different traits in the presence and absence of a disease outbreak 

(Chapter 2), as proposed by Falconer (1952) to study genotype by environment 

interaction. The genetic correlation between the trait in the presence and absence 

of a disease outbreak would be an estimate of G×E. The non-unity genetic 

correlation reveals the re-ranking of the animals due to the presence of G×E in 

different health status of the farm. In Chapter 2 we showed that the correlation of 

sows for the reproduction traits, number of piglets born alive and piglet loss 

between healthy and diseased periods of the pig farm were 0.87 and 0.57, 

respectively. In line with our results, Herrero-Medrano et al. (2015) found the 

genetic correlations of 0.75 for number of piglets born alive, 0.74 for piglet loss, 

and 0.51 for number of weaned pigs between high and low production phases of 

pig farms. 

The second is when during a disease outbreak animals respond differently to 

infection. The genetic response of the animals might be different per level of 

infection. Some animals might show variation in their ability to control the 

infection. Animals that are able to prevent the pathogen from entry or limit the 

pathogen burden within the body are called resistant. Some other animals might 

show variation in the change in the level of performance during the infection 

outbreak. Animals that are able to keep up the performance during an infection 

outbreak could be tolerant, resistant or both (discussed in details in the followings). 

The variation in ability of animals in responding to disease may lead to re-ranking in 

different levels of infection. For that, random regression models (RRM) could be 

applied whereby the reaction norm of performance is measured along the 

continuous change in the environment due to infection (de Jong and Bijma, 2002; 

Kause, 2011). The variation in the slope of the reaction norms indicates the 

presence of G×E.  

Throughout this thesis, we extensively used random regression models to 

study response to infections in animals as the reaction norms of performance on 

infection severity or indictors of that (Chapter 2, 3, and 4). In the current chapter, I 

discuss the use of random regression models to study variation among animals in 

response to infections for direct and indirect measures of infection severity.   
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6.2 Random regression model for studying variation among 

animals in response to infections 

Random regression models measure G×E as the change in phenotype over 

the change in the environment. The main characteristic of RRM is its ability for 

simultaneous estimation of breeding values of animals in different environments 

and the ability to estimate the persistency in production (as the slope of reaction 

norm) over different environments. To study response to infections in animals, 

RRM are used to measure the reaction norm of animal performance on severity of 

disease, such as pathogen burden and year-week estimates of the performance. 

When the records of pathogen burden are used in the RRM, the reaction norm of 

animal performance on pathogen burden is a measure of tolerance to infection. In 

Chapter 3, we studied tolerance of sheep to gastrointestinal nematode infection as 

the reaction norm of sheep bodyweight on two measures of nematode burden: 

faecal egg count (FEC) and pepsinogen. We showed the presence of genetic 

variation among sheep in tolerance to nematode infection and feasibility of 

selective breeding for tolerance in sheep. We also showed that the additive genetic 

variance and consequently the heritability of sheep bodyweight depend on the 

level of nematode infection. We showed that RRM is significantly better as 

compared to the sire model using a likelihood ratio test. 

In farm animals, however, the records for individual pathogen burden or 

indications of that might not be available because recording pathogen burden or its 

related traits is laborious and costly. In that case, the mean phenotypic 

performance of the farm, like e.g. herd-year-week estimates for performance, that 

indirectly represents the infection severity can be used as a random environmental 

covariate in the RRM. When an indirect indication of disease severity is used in 

RRM, the slopes of the performance reaction norms measure the ability of the 

animals in response to infection (resilience) without distinguishing between 

resistance and tolerance. In Chapter 2, we studied resilience of sows to porcine 

reproductive and respiratory syndrome (PRRS) as the slope of the reaction norm of 

reproduction (number of piglets born alive or piglet loss) over the herd-year-week 

estimates for number of piglets born alive. We showed that there is variation 

among sows in resilience to PRRS. We compared the predictive ability of RRM 

during healthy and disease phase of the farm with a univariate animal model and a 

bivariate animal model. We showed that the predictive ability of RRM in both 

healthy and diseased environment is better than the other two models. In line with 

our results, other studies reported superiority of RRM over conventional models 
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for breeding value estimation. Huisman and van Arendonk (2004) studied the 

genetic basis of daily feed intake of pigs in different age. They showed that a RRM 

has a better fit as compared to a multivariate model based on the Akaike's 

information criterion and the Bayesian-Schwarz information criterion. Kranis et al. 

(2007) studied the genetic basis of egg production for turkeys in different 

production periods and compared RRM with a conventional multivariate model. 

They found a higher predictive ability for RRM compared with multivariate models. 

These findings show that when the environmental range is continuous, such as 

infection level in our case, RRM are better models compared to the conventional 

models for estimating breeding values. In the following paragraphs, I will discuss 

the advantages and requirements for RRM for unbiased and accurate estimation of 

breeding values and genetic variances. 

 
6.3 Strength of RRM when G×E is present 

Accurate estimation of breeding values 

 In Chapter 2, we showed that both in healthy and diseased periods of the 

pig farm, RRM has the highest accuracy of estimating the sow effects on number of 

piglets born alive (NBA) compared with univariate and bivariate models. In a 

validation study on 612,186 sow records from TopigsNorsvin, Mathur (personal 

communication, 2015) studied the predictive ability of RRM. He studied the 

reaction norm of total number of piglets born in one parity (TNB) on different 

environmental factors including seasonality, ambient temperature (heat), and the 

year-week estimates for TNB (YW). He compared the predictive ability of the RRM 

with a univariate animal model. For that, records in the training set (511,325 

records) were used to predict the breeding values in the validation set (100,861 

records). The same fixed effects were used as in the RRM and animal model. The 

correlation between the phenotype and predicted breeding values showed the 

predicting ability of each model. He observed that the predictive ability of RRM 

using different environmental factor is higher compared with that of the animal 

model (Table 6.1). These findings indicate that breeding value estimation using 

RRM is more accurate. Silva et al. (2014) studied G×E using RRM whereby the 

genetic effects on the number of piglet born alive in different herd-year-weeks 

(HYW in their paper) were estimated. They also showed that RRM models provide 

more accurate estimates of breeding values compared to a conventional univariate 

sire model. 
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Table 6.1. The correlation of sow phenotypes for total number of piglets born (TNB) with the 
breeding values from univariate animal model and random regression model (RRM). In the 
RRM, three different environmental factors were used: seasonality, ambient temperature 
(heat), and the year-week estimates for TNB (YW). The improvement is shown relative to the 
animal model. 

Model Environmental factor Correlation Improvement 

Animal  
 

0.201 
 

Random regression 

Seasonality 0.207 3.00% 

Heat 0.218 8.50% 

YW 0.208 3.50% 

 

RRM requires few parameters to describe data 

 When there are more than two environments, RRM requires fewer 

parameters to describe the genetic variation in each environment as compared to a 

multivariate analysis. For instance, when there are three environments, a 

multivariate model would require 3 genetic variances for each environment and 3 

genetic covariances between the environments to describe the data. By increasing 

the number of environments (n), the number of genetic variances and covariances 

increases with n
2
. This issue is clearly manifested with disease data where each 

level of infection can be viewed as an environment. A linear RRM requires two 

genetic variances for intercept and slope and one genetic covariance between 

them to estimate the genetic variation in each level of infection. The additive 

genetic variance of the trait in each environment and the covariance between the 

environments could be easily calculated using the (co)variance matrix of RRM. In 

chapter 3, we showed that using genetic (co)variance matrix from the RRM, the 

additive genetic of sheep bodyweight at each level of nematode burden (faecal egg 

count or Pepsinogen) is different. Furthermore, in comparison to a multivariate 

model, using an adequate amount of data, a RRM estimates variances and 

covariances smoother and with less bias (Kirkpatrick et al., 1990).  

In this thesis, we only used linear RRM, which assumed a linear relationship 

between the change in phenotype and environments. Linear relationship between 

the change in phenotype and environments has been found for milk production 

traits and fertility traits in dairy cattle (Calus et al., 2002; Kolmodin et al., 2002; 

Lillehammer et al., 2009). Linear RRM are straightforward for calculating the 

breeding values in each environment, as they are simply functions of the 

environment, breeding value for intercept, breeding value for slope, and the 

genetic covariance between intercept and slope. It is, however, possible that the 
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relationship between change in phenotype and environment is non-linear (Streit et 

al., 2012; Herrero-Medrano et al., 2015). The non-linear RRM require more 

parameters and therefore are more complex for estimating breeding values as 

compared to linear RRM. 

 
6.4 Requirements for RRM 

Despite the clear advantages of RRM over other conventional models, there 

are some requirements to be considered when applying the model. 

 
Large data for accurate estimation of breeding values in extreme environments 

 For unbiased and accurate estimation of breeding values and variances and 

covariances using RRM, count of animals as well as the number of records per 

animal per environment is important. One way of measuring the bias in estimation 

of breeding values is to look at the regression coefficient of phenotypes on 

estimated breeding values. Regression coefficient of one would indicate unbiased 

estimates of breeding values. When the regression coefficient is smaller than one 

or larger than one, breeding values are biased and the variance of estimated 

breeding values is either overestimated (b<1) or underestimated (b>1). To estimate 

the bias in breeding value estimation using RRM, I calculated the regression 

coefficient of sow phenotypes for NBA on estimated sow effects on NBA during the 

healthy and diseased phase of the farm. For that, I used a univariate animal model 

and a RRM on 57,135 records of 10,910 sows (data from Chapter 2). In the RRM, 

the reaction norm of sow phenotype for NBA on the year-week estimates for NBA 

was assessed. The sow effects on NBA from RRM were calculated at the average 

year-week estimates in healthy or diseased periods using the random regression 

(co)variance matrix (Chapter 3). To assess the effect of including more information 

on bias, four parity groups were considered: parities 1 through 4 (1–4), 1 through 5 

(1–5), 1 through 6 (1–6), and 1 through 7 (1–7). In each group, the last parity was 

set to missing (validation set), and all other parities before the last one (training 

set) were used to predict the sow effects in the last parities. The regression 

coefficients were calculated for the regression of the sow phenotypes in the 

validation sets on the sow effects estimated from the training set. For the healthy 

period, the regression coefficients were generally closer to one compared with the 

diseased period, indicating that estimated sow effects are less biased during 

healthy periods (Table 6.2). This is probably because the incidence of the healthy 

periods was high and the majority of animals had records during the healthy 

periods. The regression coefficient in the parity groups 1–4 and 1–5 for healthy 
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period, however, were slightly larger than one indicating an over-estimation of 

breeding values. By including more parity, the regression coefficients tended to be 

closer to one especially for RRM, indicating an unbiased estimation of breeding 

values. For the disease period, however, the regression coefficients from the RRM 

were generally below one and smaller than those of the animal model, indicating 

an under-estimation of breeding values using RRM. This is probably because the 

incidence of diseased periods was lower than the healthy periods and fewer 

animals had records during the diseased periods. By increasing the number of 

records (including more parity), especially during the diseased phase, the 

regression coefficient tended to be closer to one, meaning that breeding values 

were less biased. This indicated that using RRM, the breeding values in the 

environments with fewer records were more biased unless adequate amount of 

data was provided. In line with our finding, in a simulation study Kause (2011) 

showed that small sample size can lead to biased estimation of variance 

components as the variances of intercept and slope and the genetic covariance 

between them were over-estimated compared with their simulated values. The 

over-estimation of the variance components is because with small sample size, it is 

most likely that the data is not a representative of the true distribution and genetic 

parameters are strongly influenced by single observations. 

The small sample size at the environment also leads to more inaccuracy in 

estimating breeding values as well as the genetic variance. In Chapter 3, we 

observed that at the two extreme (very low/very high) levels of faecal egg count 

and pepsinogen, the SEs on the estimated breeding values for bodyweight and 

consequently heritabilities are much larger than the intermediate level of faecal 

egg count and pepsinogen. This is because fewer sheep had records at the very low 

and very high levels of faecal egg count and pepsinogen. Knap and Su (2008) 

showed that for RRM of litter-size in pigs on hear-year-season effects, increasing 

the family size resulted in smaller SE for slope estimates, indicating more accurate 

estimation of slope.  

The linear RRM assumes constant environmental sensitivity over 

environments. Therefore, even for the environments with very few observations, 

the slope could be estimated. This might enforce the breeding values and 

correlation between them towards meaningless limits leading to imprecision in 

variance components and breeding value estimation. In other words, linear RRM 

may extrapolate the breeding values for slope outside the trajectory in which 

parameters are estimated. Adequate numbers of records in each environment, 

therefore, would improve the accuracy of estimation of slope breeding values, 

because it provides more data points along the environmental covariate. Accurate 
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estimates of slope breeding values would result in accurate heritability estimates 

per environment.  

To obtain unbiased and accurate estimates of breeding values in each 

environment using RRM, the amount of records per environment and the 

connectedness between the records are crucial. The availability of adequate 

amounts of data per environment is challenging, especially for diseases in farm 

animals that may have low incidence. 

 
Table 6.2. Regression coefficients of sow phenotypes for number of piglet born alive (NBA) 
on the sow effects on NBA in healthy and diseased periods of farm, from a univariate animal 
model (Animal) and a random regression model (RRM). Four parity groups were considered 
to assess the effect of sample size on bias. 

Parity group 
Healthy Diseased 

Animal RRM Animal RRM 

Parity 1-4 1.14 1.11 0.76 0.59 

Parity 1-5 1.17 1.16 0.86 0.75 

Parity 1-6 1.08 1.07 1.04 0.98 

Parity 1-7 1.06 1.02 1.09 0.91 

 

Dependency of breeding values on the environmental factor 

Using RRM, the genetic variances are dependent on the range of 

environmental factor, which provides the opportunity to calculate breeding values 

per environment. The risk is, however, that estimated heritabilities and correlations 

are enforced towards meaningless limits. In addition, the changes in the heritability 

across different environments obtained from the RRM are not certain, because 

heritabilities with linear RRM always follow a parabolic shape across sequential 

environments. Heritability estimates from RRM, therefore, need to be validated 

with other models such as multivariate models (Chapter 3). This can be done by 

making ordinal subsets of data with sufficient number of animals and estimating 

the heritability in each subset, which could be of course at the expense of losing 

G×E information (Calus et al., 2004). For low incidence diseases, however, 

removing environments with few observations from the data is not an option 

because it can drop the important information about the disease. For low incidence 

diseases, therefore, random regression models might not be useful as it may cause 

over-estimation of breeding values (Calus et al., 2004; Kause, 2011). In that case, 

data should be analysed with other models that provide accurate estimates of 

breeding values. Silva et al. (2014) showed that employing genomic relationship 
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matrix in RRM might alleviate the uncertainty in estimated breeding values in the 

environments with few observations. They applied a genomic random regression 

models (RRM with genomic relationship matrix) on NBA of pigs to study the genetic 

effects in different herd-year-weeks. Comparing the genomic RRM with the RRM 

that used pedigree relationship matrix, they observed a greater accuracy of 

breeding value estimation across herd-year-week, which was more pronounced for 

the herd-year-weeks with fewer numbers of observations. 

6.5 Environmental factors in RRM 

 To study the genetic components of animal responses to diseases using 

RRM, an important element is the environmental factor. The genetic effect on the 

slope is a function of the environmental factor and the total additive genetic effect 

per environment is a function of the genetic effects on intercept and slope. To 

study genetics of tolerance to infection, the reaction norm of performance over the 

records of individual pathogen burdens is measured in RRM (Chapter 3). In 

practice, though, records of pathogen burden might not be available. Using the 

environmental factor that represents the infection severity, therefore, is important 

for accurate breeding value estimation of response to infections using RRM. There 

are two types of environmental factor: direct and indirect environmental factors. 

The direct environmental factors are the covariates that are direct representative 

of the environment in which animal is performing. The most obvious example of a 

direct environmental factor in case of infections is pathogen burden. Pathogen 

burden is a direct indicator of the infection severity in an animal. The inverse of 

pathogen burden in an animal is a measure of resistance to infection) (Raberg et 

al., 2007. In most cases of infectious diseases, however, the direct measure of 

pathogen burden is difficult. For example, in the case of gastrointestinal nematode 

infection in sheep, in order to measure the exact number of nematodes the animal 

needs to be autopsied. In that case, an indication of nematode burden such as 

faecal egg count and IgA will be used (Chapter 3). Another example of direct 

environmental factors is the ambient temperature used in RRM for studying 

genetics of heat stress in pigs (Bloemhof et al., 2012). To estimate the heat 

tolerance in pigs, it is desired to use the outside temperature recorded at the 

location of the farm as the environmental factor in the RRM. In practice, though, 

the outside temperature near the farm might not be available and the temperature 

recorded at the nearest weather station could be used as representative of the 

temperature on farm (Freitas et al., 2006). 
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Other types of environmental covariates are indirect approximations for the 

environmental challenges. During a disease outbreak, the individual pathogen 

burden or its indicator traits might not be known. Recording pathogen burden or its 

indicator traits require regular sampling of animals that is costly and laborious. For 

example, in the case of PRRS in pigs in order to have an accurate measure of viral 

load during an outbreak weekly sampling of the animals is needed, which requires 

a lot of labour. In field studies on response to infection, therefore, an 

environmental parameter that represents the infection severity could be used in 

RRM. The most common environmental parameters that are used in RRM are raw 

mean phenotypic performance in each environment (Calus and Veerkamp, 2003) 

and herd-year-week estimates for phenotypic performance in each environment (Li 

and Hermesch, 2012) and (Chapter 2). In the studies on response to infection, herd-

year-weeks of the performance during outbreaks are first estimated with simple 

linear models. Then the estimated herd-year-week is used as the environmental 

covariate in a RRM (Chapter 2). The slope for the reaction norm of performance on 

the herd-year-week estimates is a combined measure of resistance and tolerance 

to infection and is known as resilience (Chapter 4).  

There are two arguments against using approximations of environmental 

factor in RRM. One argument is that using an environmental estimate that is based 

on the data may result in incorrect estimation of breeding values due to the 

presence of genetic trend in the environmental estimates (Su et al., 2006). They 

proposed a RRM with Bayesian Markov Chain Monte Carlo that estimates 

environmental values simultaneously with other parameters of the model. They 

compared that method with two RRM in which the true environmental values was 

used as a covariate and in another one the phenotypic mean of the herd-year was 

used as a covariate. They observed that the correlation between true values of 

herd-year effect and herd-year averages was smaller (0.901) than the correlation 

between true values of herd-year effect and estimated means of herd-year effects 

in their proposed method (0.97). They also observed that the estimated variance 

components from the RRM with phenotypic mean of the herd-year as covariate 

were biased as the genetic variance of intercept was over-estimated and the 

genetic variance in slope was under-estimated compared to the true (simulated) 

variances. They conclude that applying the method that estimates environmental 

values simultaneously with other parameters of the RRM is a more appropriate 

approach as it provides unbiased estimates of variance components. For estimation 

of the phenotypic mean of the herd-year, however, Su et al. (2006) did not correct 

for genetic effect. Indeed, without correcting the phenotypic mean of the herd-

year, the estimates could bear genetic trends. Calus et al. (2004) suggested that 
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estimating environmental parameters using large number of animals per herd-year 

might result in unbiased estimation of breeding values using RRM. To test the 

effect of sample size on the accuracy of estimating the environmental parameter, I 

estimated the accuracy of the year-week estimates for NBA, using the data in 

chapter 2. The year-weeks were from the first week of 2004 through the week 28 

of 2012. The number of animals per year-week ranged from 2 to 190. The year-

week estimates were obtained from a univariate animal model on NBA corrected 

for fixed effects and random effects of year-week and sow (Chapter 2). I calculated 

the accuracy of the year-week estimates using the following formula: 

 

𝑟 = √1 − (
𝑠𝑒2

𝜎𝑦𝑤
2 ) , 

where, 𝑟 is the accuracy of each year-week estimate, 𝑠𝑒 is the standard error for 

each year-week estimate, and 𝜎𝑦𝑤
2  is the variance of the year-week estimates. The 

accuracy increased by increasing the number of observation per year-week (Fig. 

6.1). The lowest accuracy was 0.12 for 2 sows per year-week and the highest one 

was 0.94 for 190 sows per year-week. The number of 25 sows per year-week 

resulted in the accuracy of 0.75 and 80 sows per year-week resulted in the accuracy 

of 0.90. This finding shows that high accuracy of the year-week estimates are easily 

achievable in practice with adequate number of observations per year-week. We 

showed that RRM using year-week estimates of NBA as approximations for disease 

severity predict the future performance of sows better than univariate and 

bivariate models (Chapter 2). These findings show that using an appropriate 

statistical model and sufficient amount of data can result in accurate estimation of 

environmental factor. Accurate estimation of environmental factor in RRM 

provides more accurate estimation of breeding values in different environment 

compared with the univariate and bivariate models. 
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Figure 6.1. The accuracy of year-week estimates for number of piglets born alive. 

 

Another argument against using environmental estimates in RRM is that the 

selection environment of animals may be different from their response 

environment. Environmental estimates that are based on the selection 

environment may therefore be bad predictors for environmental factors of the 

response environment. In other words, if high performing animals are selected 

based on the severity of infection during a disease outbreak but the severity of 

infection is different in the response environment, then it is uncertain what the 

performance will be. Therefore, there might be re-ranking of animals between the 

selection environment and the response environment. To study the re-ranking of 

animals between the selection environment and the response environment, I 

estimated the correlation of sow effects on NBA between different year-week 

estimates of NBA (Fig. 6.2). Based on the PRRS infection severity, three 

environments (no infection, medium infection, severe infection) were considered 

as selection environments. Then, the correlation between sow effects in the 

selection environments and the sow effects in other year-week estimates was 

calculated. The results showed that the correlations between the sow effects in 

similar environments (nearby year-week estimates) are high (Fig. 6.2). By increasing 

the differences between the environments, the correlation tends to decline. This 

result indicates that as long as the selection environments and the response 
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environments are similar, e.g. similar severity of PRRS infection in the farm, 

breeders should not worry about re-ranking of animals.  

 Using RRM, breeders can estimate the breeding values of the animals for 

different environments. Breeders can also decide which animals are suitable for 

each environment. 

 

Figure 6.2. Correlation between the sow effects on number of piglets born alive (NBA) in the 
selection environments and the response environments. Three selection environments are 
considered based on the year-week estimates for NBA: No infection where the year-week 
estimate is 2 (diamonds), medium infection where the year-week estimate is 0 (triangles), 
and severe infection when the year-week estimate is -4 (circles). The vertical lines are the 
standard errors. 

 

6.6 Breeding for response to infection 

Controlling the infectious diseases in farm animals is an important part of 

the farm management. Farms undergo huge economic costs due to infectious 

diseases. Farm animals severely suffer from infectious diseases. The conventional 

approaches for disease control including vaccination, antibiotics, antiviral drugs, 

culling, sanitation, and biosecurity have been practiced for a long time in farm 

animals. Nowadays, the public concern about the excessive use of medicines and 

vaccines and contamination of animal products on one hand, and unsustainability 

of the conventional control strategies on the other hand have persuaded the 
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farmers to include response to infections in their breeding programs. Response to 

infections in any host consists mainly of the mechanism of controlling the 

replication of the invading pathogen in the host called “resistance”, and 

mechanism of minimizing the symptoms of the infection in the host called 

“tolerance”. When the distinction between these two mechanisms is difficult, the 

response to infections is referred to as resilience. In farm animals, studies have 

mainly reported the feasibility of selective breeding for resistance and resilience to 

infection for sheep (Albers et al., 1987; Bishop and Morris, 2007; Morris et al., 

2010), cows (Heringstad et al., 2000; Bermingham et al., 2014), poultry (Cheng et 

al., 2008; Wolc et al., 2013), and fish (Kuukka-Anttila et al., 2010; Gjerde et al., 

2011). Furthermore, there are several reviews on the importance and implication 

of resistance and resilience to infection in farm animals (Bishop and Morris, 2007; 

Bishop, 2012a, b; Bishop and Woolliams, 2014). For tolerance studies have 

discussed the methodology to estimate the trait (Kause, 2011; Kause and Odegard, 

2012), the difficulties to estimate tolerance (Doeschl-Wilson et al., 2012; Bishop 

and Woolliams, 2014), and the importance of tolerance in animals (Raberg, 2014). 

To date, apart from our studies (Chapter 3, 4), there are only two studies on the 

genetics of tolerance to infection (Raberg et al., 2007; Hayward et al., 2014). 

In this thesis, we showed that there is genetic variation in farm animals in 

response to infections. We estimated the genetic variation in resistance, tolerance 

and resilience to two economically important infectious diseases in farm animals: 

PRRS in pigs and gastrointestinal nematode infection in sheep. We showed the 

possibility of selective breeding for both diseases. We also showed that there might 

be a trade-off between resistance and tolerance, which requires careful 

consideration when including these traits in breeding programs. For including 

resistance, tolerance, and resilience in breeding programs, nevertheless, there are 

several matters to be considered. In the following paragraphs, I will discuss 

situations in which breeding for any of these three traits is beneficial.   

 

Resistance  

Resistance is the ability of a host to prevent pathogens from entry, restrain 

the replication of the invading pathogen or control the life cycle of the invading 

pathogen. Resistance is conventionally measured as the inverse of pathogen 

burden in the animal. The genetic effect on pathogen burden, therefore, is the 

genetic effect on resistance. The main advantage of resistance mechanism is that a 

resistant animal is well able to combat the disease quickly and therefore does not 
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spread the infective agent in the population. Consequently, resistance might lead 

to clearance of the infection in the population.  

We showed the possibility of selective breeding for resistance to nematode 

infection in sheep (Chapter 3) and resistance to PRRS in pigs (Chapter 5, Lough et 

al., manuscript in preparation). Selection for resistance, however, is not a novel 

strategy as nature has been using it for a long time. There are examples of naturally 

resistant livestock species to different types of infection (Bishop et al., 2002). 

Breeding for resistance has the major advantage that the resistant animal will not 

spread the infection. Breeding for resistance, therefore, could be especially a 

promising approach for controlling diseases with high transmission rates. In case of 

diseases with high transmission rate, selective breeding for resistance could help 

stopping the infection to spread to other animals or populations. Measuring 

resistance, however, requires records of pathogen burden on the individual level, 

which is not always possible in practice. Genomic selection could be a solution for 

lack of records on individual pathogen burden. By recording the pathogen burden 

of the genotyped animals in a reference population, the genomic breeding values 

for resistance in the target population can be estimated.  

Resistance mechanisms are known to be pathogen specific meaning that 

resistance to one type of pathogen may not work for another type. Resistance 

mechanism may put a selection pressure on the pathogens to overcome the 

resistance mechanism. The selection pressure is especially high in small pathogens 

with short generation interval, such as viruses, with high mutation rates and short 

generation intervals. Before including resistance into the breeding programs, 

therefore, animal breeders should be convinced that including resistance in the 

selection index would add considerably to the overall value of genetic progress as 

compared to the breeding programs without resistance in it.  

 

Tolerance 

Tolerance is the ability of a host to show minimum decrease in performance 

despite a certain amount of pathogen in body. Tolerance involves the mechanisms 

that minimize the damages caused by infection. The immunological aspects of 

tolerance are less known.  

We showed the possibility of selective breeding for tolerance to nematode 

infection in sheep (Chapter 3) and tolerance to PRRS in pigs (Chapter 5, Lough et 

al., manuscript in preparation). There are also evidences for naturally selected 

tolerant livestock species (Baker et al., 2004). Unlike resistance, tolerance is a non-
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specific mechanism against diseases. Selecting animals for tolerance can improve 

the responses of the farms to a wide range of diseases. Tolerance does not affect 

pathogen burden per se and therefore is presumed to put no selection pressure on 

the pathogen. If that is true, tolerance could be a promising approach to control 

diseases in the case when there is a risk that pathogen evolves against resistance 

by the animal. At the moment there is no scientific evidence for this thought. 

A tolerant animal might still spread the pathogen. Selection for tolerance, 

therefore, should take into account the type of the disease. In case of highly 

transmissible infections and zoonotic diseases, stopping the infection transmission 

has the highest priority. In that case breeding for tolerance is not an option 

because it does not stop the spread of the disease. Furthermore, improving the 

average tolerance may increase the transmission rate of the pathogen, which is a 

serious threat for nearby populations or newcomer hosts that are not tolerant. 

Further studies are needed on epidemiological aspects of tolerance and its effects 

on the pathogen. Therefore, animal breeders have to make sure that including 

tolerance in the breeding program has obvious advantages compared to a breeding 

program without tolerance in it.  

It is clear that breeding for resistance alone or tolerance in farm animals 

have advantages and disadvantages. Obviously, simultaneous improvement of 

resistance and tolerance in farm animals would be highly beneficial because it will 

improve the health status of the farms both in terms of controlling the infection 

and minimizing the symptoms. Including both resistance and tolerance into the 

breeding programs, though, has to consider the possible trade-off between these 

two traits (see Chapter 3 and 4). 

 

Resilience 

In field studies response to infections is mostly referred to as resilience. 

Resilience is the ability of a host to keep up performance during an outbreak. The 

difference between resilience and tolerance is that for resilience the pathogen 

burden in the animal’s body is not known while for tolerance it is known. In chapter 

2, we studied the variation among sows in resilience to PRRS and showed that 

selective breeding for sows which show minimal change in their performance 

during the PRRS outbreaks is possible. 

Resilience is a more practical way of measuring response to infections, 

compared with resistance and tolerance. The main advantage it that measuring 

resilience does not require the records of the individual pathogen burden. Because 

the individual pathogen burdens are not recorded, resilience does not distinguish 
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between resistance and tolerance. A resilient animal, therefore, could be resistant, 

tolerant, or both. In chapter 4, we showed that resilience is genetically correlated 

with both resistance and tolerance and that breeding for resilience will improve 

both resistance and tolerance to infections. This would allow selection of robust 

animals irrespective of resistance or tolerance.  

Breeding for resilience, is a more pragmatic approach in farm animals where 

robustness and production life of animals is an important trait in the breeding 

program. Applying RRM models to study resilience would allow estimation of 

breeding values of animals for different levels of disease severity. Although 

breeding for resilience is a pragmatic approach, it does not differentiate between 

resistance and tolerance and generally the realized selection responses in 

resistance and tolerance are lower compared to when having pathogen burden 

measured for each animal (Chapter 3). 

To conclude, we showed that selective breeding for resistance, tolerance, 

and resilience to disease is possible in farm animals. Tolerance to infection has 

more scientific interests, whereas, resilience to infections have more practical 

interests and is much easier to apply in breeding programs. 
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Summary 

Infectious diseases in farm animals are of major concern because of animal welfare, 

production costs, and public health. Farms undergo huge economic losses due to 

infectious disease. The costs of infections in farm animals are mainly due to 

production losses, treatment of infected animals, and disease control strategies. 

Control strategies, however, are not always successful. Selective breeding for the 

animals that can mount a defence against infection could therefore be a promising 

approach. Defensive ability of an animal has two main mechanisms: resistance 

(ability to control the pathogen burden) and tolerance (ability to maintain 

performance when pathogen burden increases). When it is difficult to distinguish 

between resistance and tolerance, defensive ability is measured as resilience that is 

the ability to maintain performance during a disease outbreak regardless of 

pathogen burden. Studies have focused on the genetics of resistance and resilience 

with little known about the genetics of tolerance and its relationship with 

resistance and resilience. The objectives of this thesis were to: 1) estimate the 

genetic variation in resistance, tolerance, and resilience to infection in order to 

assess the amenability of these traits for selective breeding in farm animals, 2) 

estimate the genetic correlation between resistance, tolerance and resilience and 

3) detect genomic regions associated with resistance, tolerance, and resilience.  

In chapter 2, we studied the variation among sows in response to porcine 

reproductive and respiratory syndrome (PRRS). First a statistical method was 

developed to detect PRRS outbreaks based on reproduction records of sows. The 

method showed a high sensitivity (78%) for disease phases. Then the variation of 

sows in response to PRRS was quantified using 2 models on the traits number of 

piglets born alive (NBA) and number of piglets born dead (LOSS): 1) bivariate model 

considering the trait in healthy and disease phases as different traits, and 2) 

reaction norm model modelling the response of sows as a linear regression of the 

trait on herd-year-week estimates of NBA. Trait correlations between healthy and 

disease phases deviated from unity (0.57±0.13 – 0.87±0.18). The repeatabilities 

ranged from 0.07±0.027 to 0.16±0.005. The reaction norm model had higher 

predictive ability in disease phase compared to the bivariate model. 

In chapter 3 we studied 1) the genetic variation in resistance and tolerance 

of sheep to gastrointestinal nematode infection and 2) the genetic correlation 

between resistance and tolerance. Sire models on faecal nematode egg count 

(FEC), IgA, and pepsinogen were used to study the genetic variation in resistance. 

Heritability for resistance traits ranged from 0.19±0.10 to 0.59±0.20. A random 

regression model was used to study the reaction norm of sheep body weight on 
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FEC as an estimate of tolerance to nematode infection. We observed a significant 

genetic variance in tolerance (P<0.05). Finally a bivariate model was used to study 

the genetic correlation between resistance and tolerance. We observed a negative 

genetic correlation (-0.63±0.25) between resistance and tolerance. 

In chapter 4, we studied the response to selection in resistance and 

tolerance when using estimated breeding values for resilience. We used Monte 

Carlo simulation to generate 100 half-sib families with known breeding values for 

resistance (pathogen burden) and tolerance. We used selection index theory to 

predict response to selection for resistance and tolerance: 1) when pathogen 

burden is known and selection is based on true breeding values for resistance and 

tolerance and 2) when pathogen burden is unknown and selection is based on 

estimated breeding values for resilience. Using EBV for resilience in absence of 

records for pathogen burden resulted in favourable responses in resistance and 

tolerance to infections, with more emphasis on tolerance than on resistance. 

However, more genetic gain in resistance and tolerance could be achieved when 

pathogen burden was known. 

In chapter 5 we studied genomics regions associated with resistance, 

resilience, and tolerance to PRRS. Resistance was modelled as sire effect on area 

under the PRRS viremia curve up to 14 days post infection (AUC14). Resilience was 

modelled as sire effects on daily growth of pigs up to 28 days post infection 

(ADG28). Tolerance was modelled as the sire effect on the regression of ADG28 on 

AUC14. We identified a major genomics region on chromosome 4 associated with 

resistance and resilience to PRRS. We also identified genomics regions on 

chromosome 1 associated with tolerance to PRRS. 

In the general discussion (chapter 6) I discussed: 1) response to infection as 

a special case of genotype by environment interaction, 2) random regression model 

as a statistical tool for studying response to disease, 3) advantages and 

requirements of random regression models, and 4) selective breeding of farm 

animals for resistance, tolerance, and resilience to infections. I concluded that 

random regression is a powerful approach to estimate response to infection in 

animals. If the adequate amount of data is available random regression model 

could estimate breeding values of animals more accurately compared to other 

models. I also concluded that before including resistance and tolerance into 

breeding programs, breeders should make sure about the added values of including 

these traits on genetic progress. Selective breeding for resilience could be a 

pragmatic approach to simultaneously improve resistance and tolerance. 
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