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Background 
Malaria is a multifaceted disease caused by protozoan parasites belonging to the 
genus Plasmodium. The parasite is transmitted to humans by bites of an infected 
Anopheles mosquito. Only mosquito species of the genus Anopheles can transmit 
human Plasmodia. In 2015 over three billion people were to a certain extent exposed 
to the risk of malaria transmission and about 20% of the world population (1.2 billion) 
lives in parts of the world with a high risk of infection (WHO, 2015b). Estimates from 
2015 state that worldwide, 214 million malaria cases occurred leading to 438,000 
deaths (Figure 1.1). However, the number of malaria related deaths is controversial, 
with some authors suggesting that the actual number of casualties is approximately 
twice as high (Murray et al., 2012). 

Although a decline in malaria cases and deaths has been observed since 2000, the 
group that is most affected remains to be found in Sub-Saharan Africa [SSA] (90%), 
in particular children below the age of five years (WHO, 2015b). At least in 109 
nations or territories malaria is prevalent, and it is the fifth cause of death from 
infectious disease worldwide (RBM, 2013). Besides, the burden of malaria is not only 
expressed and felt in health parameters. The economic burden caused due to malaria 
morbidity and mortality is estimated at US$ 12 billion per year absorbing up to 40% of 
the health expenditure in SSA countries (RBM, 2013; Sachs et al., 2002).  

 

 

 

 

 

 

 

 

Life cycle  
Malaria is caused by infection with parasites of the genus Plasmodium. There are 
currently five known species of Plasmodium that affect humans: P. falciparum, P. 
malariae, P. ovale, P. vivax and P. knowlesi (White et al., 2014). The main route of 
malaria transmission is from human to human through the bite of a female anopheline 
mosquito. Mosquito females rely on blood meals to develop offspring. The parasites 

 

 

 

 

 

 

 

 
Figure 1.1: Confirmed malaria cases per 1000 people. Source: World Health Organisation, 
Malaria Report 2015 
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reproduce in the mosquito to become infective for humans (Figure 1.2). When an 
infectious female bites a human, the parasites find their way to the liver where they 
reproduce asexually and develop into merozoites. Mature merozoites, having erupted 
from the liver cells, invade red blood cells to reproduce again and invade other red 
blood cells (Leggat, 2003). A vital process besides these phases is the differentiation 
of merozoites into gametocytes; if a female Anopheles consumes a blood meal 
ingesting the gametocytes, the cycle starts all over again (Leggat, 2003; Sherman, 
1998).  

 

 

 

 

 

 

 

 

 

Over 400 Anopheles species are known, whereas approximately 60 are capable of 
transmitting Plasmodium. The majority of malaria in SSA is spread by mosquitoes 
belonging to the An. gambiae complex , and to a lesser extent An. funestus (Sinka et 
al., 2012). In particular An. gambiae sensu stricto and An. arabiensis are major 
contributors to transmission. An. funestus and An. gambiae are principally 
endophagic (indoor biting) and have their resting place indoors (endophilic), whereas 
An. arabiensis is described as opportunistic, exophagic and exophilic (Figure 1.3). 

From past to present 
In 1880, malaria parasites were first identified using a microscope followed by the 
discovery of mosquitoes as the parasite-transmitting vector (Capanna, 2006), and 
after the discovery of the transmission cycle by Ronald Ross scientists had more 
insight in interrupting the transmission and how to control malaria (Hay et al., 2004). 
An extensive variety of efforts followed to get rid of the disease during the 19th and 

 

 

 

 

 

 

 

 

 

Figure 1.2: Life cycle of the Plasmodium parasite in humans and malaria mosquitoes.  
Source: Malaria, The Lancet 2014, Nicholas J White, Sasithon Pukrittayakamee. 
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20th century. Mainly as a result of improved housing, the development of social 
settings and altered agricultural methods, a major reduction of malaria was achieved. 
Following the discovery of dichlorodiphenyltrichloroethane [DDT] in 1940, synthetic 
insecticides became the main instrument in the fight against malaria and in 1955 the 
World Health Organization [WHO] initiated GMEP (global malaria eradication 
programme). Insecticides opened the door to large-scale malaria control, with great 
short-term results. Although many parts of the world were engaged in deploying this 
method, the process of eradication stagnated. Due to the multifaceted and obstinate 
nature of the disease, WHO ceased the GMEP in 1969 (Hay et al., 2004). Malaria 
was eliminated from many areas, mainly in temperate zones, and regarded to be a 
minor health issue in many formerly-endemic areas; the disease, however, was not 
controlled in tropical zones and even found its way back in some controlled areas as 
further efforts against malaria were disregarded. In the following decades malaria 
developed to be one of the most important threats to public health in SSA countries 
(Murray et al., 2012). 

In 1998 a new world wide initiative was called into life with the Roll Back Malaria 
Partnership Global Malaria Action Plan [RBM GMAP]. This global framework for 
coordinated action against malaria aims to create agreement among key actors in 
malaria control, harmonizes action and assembles means to combat malaria in 
endemic areas. Initiators WHO, UNICEF, the World Bank and UNDP had set an 

Figure 1.3: An Anopheles gambiae s.s. mosquito taking a bloodmeal. Source: Centers of 
Disease Control, United States of America  
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ambitious goal by stating that malaria related deaths would be near zero by 2015 
(RBM, 2013). The focus shifted again toward malaria elimination, and numerous 
efforts were made to develop and implement effective methods to prevent, diagnose 
and cure malaria. Principally due to intensified use of long-lasting insecticidal nets 
[LLINs] and indoor residual spraying [IRS] of insecticides in houses, large reductions 
in malaria morbidity and mortality were observed between 2000 and 2013: 30% less 
malaria deaths and 50% less malaria infections in children and adolescents (Murray 
et al., 2012; WHO, 2015b). Not only did vector control contribute to the decline in 
malaria, effective case management insured that malaria was treated promptly. Rapid 
diagnosis tests [RDTs] and artemisinin-based combination therapy [ACT] has been 
made widely available and affordable. 

However, with the present tools and interventions the goal of malaria eradication has 
to overcome several challenges. Current knowledge on the endgame of malaria 
emphasizes the heterogeneous character of the disease stressing the complexities 
and dynamics of transmission, ecology and environment (Alonso et al., 2011c; 
Feachem et al., 2010; White et al., 2014). Every region has its own set of these 
factors, making an one fits all strategy unlikely to succeed (Mendis et al., 2009). 
Finally, we arrived in an age where the effective methods to control malaria are 
threatened. Current vector control is under pressure as malaria mosquitoes become 
resistant against insecticides used (Ranson et al., 2011). Moreover, worrying 
numbers of reports about mosquito species biting outdoors and during the day make 
bed nets and IRS less effective (Russell et al., 2013; Sougoufara et al., 2014). 
Likewise, case management is becoming less effective as malaria parasites develop 
resistance against ACTs (Dondorp et al., 2010).  

Because of these challenges it is recognized that upscaling of present-day tools with 
the existing understanding will not be sufficient to eradicate malaria; it is addressed 
that research on developing tools, innovative interventions, and strategies to interrupt 
transmission needs to be pursued in order to attain the goals set by RBM (Alonso et 
al., 2011c; Snow, 2015; Tanner et al., 2015). 

Malaria control 

Insecticide treated nets  
Insecticide-treated bed nets, impregnated with a pyrethroid derivative, mostly 
permethrin, have proven to be effective over the past decades. Numerous studies in 
different settings focussing on different health outcomes have found significant effects 
of LLINs on malaria morbidity and mortality. A systematic review in 2009 by the 
Cochrane collaboration reviewed over 20 large scale studies examining the impact of 
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LLINs on several health outcomes (Lengeler, 2009). However, several studies 
conducted in 1990s found that the decrease in child mortality attributed to the use of 
bed nets appeared significantly lower in study sites with a high malaria transmission 
(Binka et al., 1996; D'Alessandro et al., 1995; Fraser-Hurt et al., 1999; Habluetzel et 
al., 1997; Nevill et al., 1996). During a large scale bed net trial in Asembo, Kenya, it 
became clear that it is possible to reduce morbidity and save the life of one on every 
four children by implementing LLINs (Phillips-Howard et al., 2003; ter Kuile et al., 
2003). Nonetheless, results are heavily compromised if re-treatment of the nets is not 
regularly performed. And a decline of the positive effect of LLINs on morbidity and 
mortality is found after the first year in a number of studies (Binka et al., 1996; 
D'Alessandro et al., 1995; Habluetzel et al., 1997; Nevill et al., 1996; Phillips-Howard 
et al., 2003). Additionally, a limitation of LLINs to control malaria is that people are not 
protected against malaria transmission when vectors are exophagic, biting outdoors. 
The most prominent vectors in SSA traditionally prefer to bite indoors (Pates et al., 
2005). However due to the impact of permethrin indoors, mosquitoes tend to become 
more exophagic over time (Geissbuhler et al., 2007). In relation to this it is found that 
LLINs can have a community wide effect, which in turn reduces the chance of 
transmission outdoors (Binka et al., 1996; W. A. Hawley et al., 2003; Howard et al., 
2000). 

Indoor residual spraying  
Indoor residual spraying is the procedure of applying insecticides on the inside of 
residencies or other roofed constructions to kill, reduce the life span or repel 
mosquitos. It is obtainable in multiple formulations, and sprayed on walls and resting 
places of mosquitoes. It kills mosquitoes depending on the insecticide, but the 
repellent effect of IRS keeping the vector outside is the primary transmission 
interrupting process (RBM, 2013). IRS has an extensive history as effective 
intervention method against malaria. Strong evidence exists of the effectiveness of 
IRS in reducing malaria incidence (Murphy, 2003; Pluess et al., 2010). It has been a 
foremost contributor to the elimination of malaria in the United States, parts of Russia 
and numerous areas in Europe and Asia. Moreover, IRS has contributed to controlling 
malaria in SSA. However, in areas of perennial transmission IRS alone or in 
combination with other strategies is not effective and sustainable over time (Pinder et 
al., 2015). The large scale project on IRS conducted in Garki, Nigeria, is the best 
example. This study showed a significant decline in prevalence of the disease, but 
only during the wet season, and effects were not sustainable (Gramiccia &  Molineaux 
1980). In another study with stable malaria IRS had a protective effect on the 
incidence of young children, however, no difference was found between the control 
and intervention concerning all age prevalence (Curtis et al., 1998). In a similar 
transmission situation, the prevalence of malaria was lowered with 50% after 
spraying, this was nonetheless not sustainable enough to last (Sharp et al., 2007). In 
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case of unstable malaria, IRS had more profound effects in two large scale studies: 
prevalence and incidence had dropped to a fraction of the original state (Misra et al., 
1999; Rowland et al., 2000). Additionally, a review by the Cochrane collaboration 
concluded that proof of IRS improving health outcomes is limited regarding long-term 
observational data.  

Case management 
Subsequent to preventing malaria through vector control, diagnosing and treating 
infections is the most important approach to control malaria. And if performed 
systematically at a large scale, case management with artemisinin combination 
therapy [ACT] is capable of reducing the transmission intensity and child mortality 
(Thwing et al., 2011). In situations with higher transmission intensity, though, the 
influence of early diagnosis and treatment of infected individuals on transmission is 
restricted. Since in areas where people are exposed to many infective bites, some 
immunity is developed and infected individuals are often asymptomatic (WHO, 
2015a). Consequently, case management principally saves and cures lives and is not 
an instrument to interrupt transmission. In western countries, early diagnosis and 
treatment with appropriate drugs almost always results in recovery. However, in low 
and middle income countries early diagnosis and access to health care are not as 
widely available as in the higher income countries. An additional concern of case 
management and effective treatment in these developing settings, as mentioned 
before, is the resistance of the parasite against drugs (Dondorp et al., 2010). Large 
scale misuse and bad compliance make medicines ineffective. A proper diagnosis 
should be administered, the right drugs prescribed and taken in the precise dose for 
the right period (Amexo et al., 2004; Gwer et al., 2007). 

Alternative control measures 
Besides the three conventional fields of controlling malaria as described by RBM and 
WHO, there are several novel methods being developed. The vanguard of new 
controlling interventions exists out of vaccines making the parasite innocuous within 
the infected individual (Penny et al., 2015), control of mosquito larvae (larval source 
management) and the genetic modification of anopheline mosquitoes (Elden, 2011; 
Takken et al., 2009). 
Since the 1970s researchers have extensively been looking for an effective 
vaccination against malaria infection. Unlike most other infectious diseases, immunity 
is minimal after contact with the pathogen. It takes many infections before the 
immune system starts to accumulate resistance against malaria. To-date only one 
vaccine has proven effectiveness and is currently being investigated in Sub Saharan 
Africa with further trials (Tinto et al., 2015). Where present vector control strategies 
are recognized not to be effective when vectors bite outdoors and before dusk, 
interventions that do target these characteristics can make a major contribution 
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towards eradication. Mosquito larval control as well as the genetic modification of 
mosquitoes aim to reduce the number of infective bites. The first method attempts to 
put pressure on the mosquito population by finding ways to interrupt the development 
of larvae (Fillinger et al., 2011). The latter focusses on manipulating the genome of 
mosquitoes to disable its capabilities to carry the parasite; or to sterilise male 
mosquitoes to disrupt reproduction (Sinkins et al., 2006). However, when released in 
nature the survival of modified strains is posing a great challenge (Alphey, 2014). 
 
Odour-baited traps 
Another development and possible alternative method to reduce malaria - and the 
subject of this thesis - is the use of odour-baited mosquito traps [OBT] to mass trap 
malaria vectors. Unlike any other intervention it attempts to target the olfactory 
pathway: the sense on which the vector relies to track down potential blood meals 
(Takken et al., 1999; Zwiebel et al., 2004). OBTs are already, and for many years, 
successfully deployed for the control of tsetse flies, the principle vectors of human 
and animal trypanosomiasis (Vale et al., 1988). 

For malaria mosquitoes, research has focussed on the mechanism and elements that 
are mediating the host-seeking process of the mosquito. During the past decennia it 
became clear that mosquitoes are attracted to a combination of body odour and 
carbon dioxide (Andreasen et al., 2004; Takken, 1996). Synthetic lures trying to mimic 
a host have been tested and studies demonstrate that malaria mosquitoes are 
attracted to synthetic odour (Okumu et al., 2010b; Verhulst et al., 2011a). Based on 
these findings a trapping mechanism was developed to attract and kill malaria 
mosquitoes (Hiscox et al., 2014). The research on malaria mosquito trapping has 
intensified over the past five years reporting on the relative attractiveness and 
possible health impact (Njiru et al., 2006; Okumu et al., 2010c). However, there has 
never been a large scale epidemiological study attempting to find the relationship 
between deploying odour-baited mosquito traps, vector densities and malaria 
incidence and prevalence. The OBT could have great implications for malaria control 
for it is not susceptible to any form of insecticide or drug resistance, and could 
complement the existing intervention methods by reducing vector densities in areas of 
high or low malaria transmission. Moreover, it could unlike IRS and LLINs also target 
mosquitoes during daylight and outdoors providing a community effect rather than 
only an individual effect. 

Malaria epidemiology 
The spread of malaria depends on the lifecycle of the Plasmodium parasite in 
humans and malaria vectors, and on the behaviour and environment of these hosts 
(Greenwood, 1997). Interventions to control or eliminate malaria are concentrating on 
the disruption of the transmission to ultimately reduce the incidence, prevalence and 
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mortality of malaria (WHO, 2015b). A decline in the local malaria incidence begins if 
the average number of new cases occurring from an infected individual (the R0) is 
less than one. Likewise if the number of infectious bites of mosquitoes (entomologic 
inoculation rate) becomes less than one per human, malaria will shrink. Starting from 
these concepts, malaria epidemiology is constructed and complex versions of 
epidemiological models allow for thorough understanding how to interrupt 
transmission (Reiner et al., 2013). These models and theories form the basis for 
evaluation of the impact of malaria interventions. Current vector control interventions 
focus on prevention of the interaction of host-seeking mosquitoes with humans by 
using repellent insecticides or LLINs (Hemingway, 2014). Direct results of these 
interventions are fewer infective bites and less offspring. However, the actual effect of  
vector control measures on malaria transmission may vary due to a large number of 
variables in a specific setting. For example, whether there is other mosquito control or 
whether the primary vector bites indoors or outdoors, or if there is a preference to bite 
humans or also other animals (Chitnis et al., 2012). The availability of humans to 
mosquitoes may depend on the distance from breeding sites or the accessibility of 
houses, but also on human social economic status and human behaviour like outdoor 
occupation (Griffin et al., 2010). 

Heterogeneity in human populations may also influence the evaluation of trials to 
effective drugs against malaria infection or chemoprophylaxis to prevent infection. 
Different levels of immunity and varying demographic backgrounds can be important 
predictor variables (Crompton et al., 2014). The number of new cases over a certain 
period (incidence) or the percentage of people testing positive in a cross section of 
the population (prevalence) as well as different transmission parameters are often 
used for evaluation. Trials evaluating the effect of such vector or parasite 
interventions on the malaria epidemiology rely on the proper monitoring of these 
outcomes. An appropriate health and demographic surveillance (HDSS) designed to 
sensibly collect the data of interest is of vital importance to achieve a valid result 
(Alonso et al., 2011a). Ultimately, if the epidemiology at a local scale is well 
understood, and data relating to malaria infection and the intervention applied is 
carefully collected, predictions based on mathematical models may further explore 
the effectiveness and implications of such interventions (Chitnis et al., 2010; Griffin et 
al., 2010).  

This thesis 
Presently it is recognized by the Roll Back Malaria programme that malaria 
eradication is the goal. In order to attain this, several challenges have to be dealt with. 
Current instruments to control malaria like IRS, LLINs and case management are 



 
Chapter 1 

18 
 

unlikely to achieve this goal alone. Current strategies and interventions have to be 
improved and new developments initiated. Leading groups and institutions working on 
malaria control repeatedly emphasize this, identify the challenges encountered and 
spearhead solutions to overcome them. 

The aim of this PhD dissertation is to develop and conduct an epidemiological study 
to assess the impact of mass trapping of mosquitoes by means of odour-baited traps 
on malaria vectors, malaria incidence and prevalence. The study was conducted on 
Rusinga Island, an area with approximately 25,000 inhabitants in Lake Victoria, 
Kenya. 

Objectives of the thesis 
 To describe a detailed protocol about the SolarMal project so that similar 

studies may be aided with the methods and implementation 
 To develop an appropriate statistical design to analyse the intervention trial 
 To develop new outcome measures that consider the spatial effects of 

interventions against pathogens over time and through space 
 To describe the design, implementation and results of a novel and effective 

health and demographic surveillance system based on a digital data platform 
to monitor the progress of a large scale intervention 

 To present the collection methods and results of variables associated with the 
relationship between malaria and OBTs for future modelling purposes 

 To elucidate risk factors for malaria at the study site 
 To use a geostatistical model to emphasize the importance of considering the 

geographical heterogeneous nature of malaria risk factors when introducing a 
malaria control intervention  

 To demonstrate that OBTs contribute to a reduction in malaria vectors and 
therewith biting 

 To study if there is a substantial reduction in malaria incidence in intervened 
areas and island wide 

 To study if there is a significant reduction in malaria prevalence in intervened 
areas 
 

Chapter 2 introduces the study protocol of the intervention trial. It is an overview 
chapter that includes all different disciplines and research plans of the project. 
Timelines, brief research strategies, methods of data collection and structures to 
evaluate the data are described. 

The third chapter describes the methods of data collection and introduces a new time 
efficient and cost effective data management platform and organization tool. Health 
and demographic surveillance systems (HDSS) are often installed on sites in low and 
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middle income countries to monitor specific health interventions in a research 
population. Logistics and organisation of data collection, quality and management 
have always been a time and cost consuming effort. Here a complete digitized 
system relying on computer tablets to collect data in the field and advanced available 
free software to manage the data server is presented. 

In Chapter 4 the experimental design of the SolarMal trial is described. The 
implications of a stepped-wedge cluster-randomized trial to evaluate a pathogen is 
described and two new outcome measures are suggested. By modelling possible 
randomisation procedures and different sizes of intervention effectiveness, an 
appropriate statistical design is chosen for analysing the SolarMal project. 
 
Chapter 5 describes the findings of the HDSS. In order to conduct a proper trial 
relying on data collection by HDSS, the data collected should be able to reflect the 
demographic dynamics as well as possible. This chapter reports detailed figures on 
demographic parameters and household characteristics. 

The heterogeneous nature of malaria is present at all geographic levels. Risk factors 
are not equally distributed, and therefore effects of interventions will not have similar 
effects in different settings. Chapter 6 performs a malaria risk factor analysis by using 
two models, a standard linear regression model and a geographic weighted 
regression model that accounts for geographic variation of risk factors. It is concluded 
that malaria and risk factors for malaria are highly heterogeneous distributed, even on 
a micro epidemiological scale. Recommendations are made to aid guidance of 
malaria intervention deployment and future field implementation of OBTs.  
 
The 7th chapter describes the outcome of the SolarMal project following the study 
protocol of Chapter 2 and using the proposed analysis of Chapter 4. It is concluded 
that OBTs have a significant effect on malaria vector densities and malaria 
prevalence, comparable to the effect of bed nets on some malaria vectors and 
malaria prevalence. 

The final chapter discusses the results and methods of this thesis. Weak and strong 
aspects are put forward in the light of recommendations for future research. 
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Background 
 

 

Abstract 
Background: Increasing levels of insecticide and drug resistance, as well as 

outdoor, residual transmission of malaria threaten the efficacy of existing tools 

used for control of this disease. The development of odour-baited mosquito traps 

has led to the possibility of controlling malaria through mass trapping of malaria 

vectors. Through daily removal trapping it is anticipated that vector populations 

could be suppressed to a level where continued transmission of malaria will no 

longer be possible. Methods: A stepped wedge cluster-randomised trial design 

was used for the implementation of mass-mosquito trapping on Rusinga Island, 

western Kenya (The SolarMal Project). Over the course of two years (2013 – 

2015) all households on the island were provided with a solar-powered mosquito 

trapping system. A continuous health and demographic surveillance system 

combined with parasitological surveys three times a year, successive rounds of 

mosquito monitoring and regular sociological studies allow measurement of 

intervention outcomes before, during and at completion of the rollout of traps. Data 

collection will continue after achieving mass coverage with traps in order to 

estimate the longer term effectiveness of this novel intervention. Solar energy was 

also exploited to provide electric light and mobile phone charging for each 

household and the impacts of these immediate tangible benefits upon 

acceptability of, and adherence to the use of the intervention are being measured. 
Discussion: This study will be the first to evaluate whether the principle of solar-

powered mass-mosquito trapping could be an effective tool for the elimination of 

malaria. If proven to be effective this novel approach to malaria control would be a 

valuable addition to the existing strategies of long-lasting insecticide-treated nets 

and case management. Sociological studies provide a knowledge base for 

understanding usage of this novel tool. 

Key words: Vector control, mass trapping, anopheline mosquitoes, odour-baited 

trap, transmission, clinical malaria, stepped wedge cluster-randomised trial 
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Significant reductions in malaria infections and mortality since the year 2000 are 
associated with increased coverage of vector control interventions such as long-
lasting insecticidal nets [LLINs] and indoor residual spraying [IRS], as well as 
improved availability and access to preventive therapies, diagnosis and treatment 
(Bhatt et al., 2015). However, the development and spread of insecticide resistance, 
drug resistance and the occurrence of residual malaria transmission outdoors and in 
the early evening threatens the long term sustainability of current tools for malaria 
control. This necessitates the development of new alternatives, particularly as many 
regions move towards malaria elimination (Alonso et al., 2011c; Tanner et al., 2015). 
In 2013 an estimated 538,000 people lost their lives due to malaria with 90% of those 
deaths occurring in the WHO African Region (World Health Organization, 2015); a 
region where millions of dollars of malaria-associated economic losses are suffered 
every year (Sachs et al., 2002). With the addition of new tools for malaria control that 
could reduce household spending on malaria-associated expenses, millions of people 
could escape the cycle of poverty and disease. Estimates show that for each dollar 
spent to control malaria, up to 60 USD worth of benefits could be gained for the 
overall well-being of a society in the sub-Saharan Africa region (WHO, 2015). 

Studies to characterise the components of human odour which are attractive to host-
seeking Anopheles gambiae s.s. have led to the identification of a large number of 
compounds (Mukabana et al., 2012b; Okumu et al., 2010b; Verhulst et al., 2011b) 
which, at appropriate concentrations, can be combined to create synthetic mosquito 
lures that mimic a human host (Menger et al., 2014b; Okumu et al., 2010b). These 
lures can remain attractive to mosquitoes even after a year of use (Mweresa et al., 
2015). Synthetic lures can be placed in counter flow trapping systems and used to 
lure and capture host-seeking mosquitoes both inside and outside houses (Hiscox et 
al., 2014; Jawara et al., 2009; Matowo et al., 2013). By capturing mosquitoes 
outdoors, rates of mosquito house entry can be lowered by between 33% and 80% 
under semi-field conditions (Hiscox et al., 2014; Menger et al., 2014b) and by 50% in 
the field (Menger et al., 2015). It is anticipated that above a certain threshold level of 
trap coverage, traps could be used to effectively reduce Anopheles gambiae s.l. and 
Anopheles funestus populations enough to lower the entomological inoculation rate to 
a level at which malaria transmission cannot be sustained (Okumu et al., 2010a). The 
principle of mass-trapping for the control of tsetse flies has already been 
demonstrated in several African countries (Keating et al., 2015; Rayaisse et al., 2010) 
and we expect that this principle can also be applied to malaria vectors. 

The Asembo Bay area of western Kenya was one of the first regions in sub-Saharan 
Africa to receive insecticide-treated bed nets [ITNs] as part of a trial in the mid-1990s 
(Hawley et al., 2003; Phillips-Howard et al., 2003; ter Kuile et al., 2003), but despite 
increasing population coverage of ITNs since 2000, as well as provision of 



 
Chapter 2 

24 
 

Artemether-Lumefantrine, intermittent IRS and presumptive treatment in pregnancy, 
malaria remains prevalent in western Kenya (Idris et al., 2014; Zhou et al., 2011). The 
history of sustained vector control interventions as well as extensive prior 
understanding of malaria and malaria interventions in the Lake Victoria region of 
Kenya mean that this setting is ideal for a study investigating the efficacy of odour-
baited traps combined with long-lasting insecticidal nets [LLINs] and case 
management for malaria control. 

In this rural region of Kenya few residential buildings are connected to the main 
electrical grid and most households light their homes using kerosene tin lamps. The 
requirement of an energy supply to power the electrical fan inside the odour-baited 
trap prompted the decision to integrate the mosquito trapping systems into a solar-
home system, henceforth referred to as a solar-powered mosquito trapping system 
[SMoTS]. SMoTS include two electrical [LED] lights and a mobile phone charging port 
in addition to the odour-baited mosquito trap. These additional, immediate, private 
benefits of the system were expected to increase usability and improve adherence to 
the public health intervention that requires the sustained participation of residents 
(Oria et al., 2014). 

Here we describe the study design and methods used by the SolarMal project to test 
this intervention on Rusinga Island, western Kenya. The SolarMal project is the first 
trial to measure the efficacy of this novel approach to malaria vector control. A 
stepped wedge cluster-randomised approach is applied to the intervention rollout so 
that the intervention coverage gradually increased from no coverage to coverage of 
all eligible households over the course of 24 months. 

Study Objectives 

Primary Objective 
 To determine whether augmentation of the Kenyan national malaria control 

(LLINs + case management) by mass-trapping of malaria vectors will lead to 
elimination of malaria from Rusinga Island, western Kenya. 

Secondary Objectives 
Medical (all outcome measures include contemporaneous comparison of intervened 
with non-intervened areas, as well as before-and-after measures of intervened areas 
compared with baseline): 

 To measure the effect of mass-mosquito trapping on clinical malaria 
incidence, measured as fever + positive rapid diagnostic test [RDT] result. 
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 To determine the impact of mass-mosquito trapping on malaria prevalence 
measured by RDT. 

 To calculate differences in both measured and reported all-cause fevers 
following the introduction of odour-baited traps. 

Entomological (all outcome measures include contemporaneous comparison of 
intervened with non-intervened areas, as well as before-and-after measures of 
intervened areas compared with baseline): 

 To assess whether the mass-trapping of mosquitoes reduces the population 
density of malaria vectors on Rusinga Island. 

 To determine whether the mass-distribution of odour-baited mosquito traps 
leads to changes in mosquito species composition. 

 To record changes in entomological inoculation rate associated with 
implementation of the intervention. 

 To compare mosquito densities and species composition indoors and 
outdoors. 

Sociological: 

 To determine the behavioural, socio-cultural and organisational factors that 
influence the effective and sustainable use of SMoTS 

 To foster learning relevant to adapting the implementation and sustainability 
strategy as an integral component of the intervention. 

 To understand how the introduction and use of SMoTS affects and/or is 
affected by the use of other malaria control interventions. 

Methods/ Design 

Study area and participant eligibility 
The study is underway on Rusinga Island, western Kenya; an island that is located 
approximately 75 km southwest of the city of Kisumu and has a surface area of 
around 44 km2. Research activities are conducted through the Thomas Odhiambo 
Campus of the International Centre of Insect Physiology and Ecology [icipe] in Mbita 
Point, located a couple of kilometres from Rusinga Island. In a population census 
conducted by the project in May 2012 the total population of the island was 23,337 
people, living in 4,062 households. The majority of the population belongs to the Luo 
ethnic group and Dholuo is the main language spoken by residents. Many families in 
this area are polygamous and a household (locally referred to as a homestead or 
dala) may comprise of more than one house. The primary occupations of people are 
fishing in Lake Victoria and small-scale farming. The climate is tropical with a long 
rainy season typically occurring from February to May with a shorter rainy season 
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from October to November. Malaria is typically endemic in this region and 
transmission occurs throughout the year (Beier et al., 1994; Zhou et al., 2011). 

All households and residents of Rusinga Island are eligible for inclusion in the study 
with recruitment commencing in June 2012 and continuing until November 2015. The 
assignment of households to clusters and metaclusters (see section on study design 
below) was completed in May 2013 and any household constructed before this point 
was eligible to receive an odour-baited trapping system. Households constructed after 
this time were eligible to participate in the health and demographic surveillance, 
parasitological, entomological and sociological studies, but were no longer recruited 
to the intervention arm of the study as this could have led to a higher density 
coverage of traps in areas receiving the intervention towards the end of the rollout. 

In order for the results of the intervention to be generalizable across whole societies, 
all residents of the island are eligible for participation regardless of age, gender, 
ethnicity, health status or whether they are natives of the island. For overall 
participation in the study and recruitment to health and demographic surveillance 
[HDSS] as well as malaria testing by RDT, individual written consent is provided by 
adults aged 18 years and older and for mature minors. For persons aged 13-17 years 
individual assent is provided alongside written consent of an adult. For persons under 
13 years of age written parental consent is provided before recruitment to the study. 
All consent forms are in either English or DhoLuo and are signed by the recruiter and 
a witness. Informed verbal consent is provided by individuals or heads of household 
before participation in sociological and entomological studies respectively. 
Participation in the study is voluntary and all participants are free to withdraw at any 
time without giving a reason for their withdrawal. 

Enumeration of the population and recruitment of participants is ongoing throughout 
the study period (i.e. from May 2012 until November 2015). Three rounds of HDSS 
take place during each year of the study, recording births and deaths as well as in 
and out migration across both arms of the study. A unique identification number is 
assigned to every individual, house and household recruited to the study during the 
HDSS. 

The population of Rusinga is sensitised about project activities and findings in a 
number of ways throughout the course of the study. An initial community launch day 
was held on the island in August 2012 with the aim of informing community members 
about the project using song, dance, sketches and speeches. In order to ensure good 
communication between the project scientific staff and the study participants, a 
community advisory board [CAB] was established, including representatives of key 
groups of stakeholders. The CAB meets formally four times each year to receive 
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updates on project progress and plans from scientific staff and in turn to provide 
feedback from the community and to discuss project plans. Informal meetings 
between the CAB and project staff are also held whenever the need arises. In May 
2013 a public balloting event was held where the sequence of the rollout was 
selected with the participation of community members (Oria et al., 2014). Thereafter, 
weekly community training workshops were held to train each cluster of 
approximately 50 households in the maintenance of SMoTS.  

Intervention – solar-powered mosquito trapping systems (SMoTS) 
The odour-baited traps (Suna traps) that are used during this intervention were 
developed in collaboration between Wageningen University and Research Centre 
(the Netherlands), the International Centre of Insect Physiology and Ecology [icipe] 

and Biogents AG (Germany) (Hiscox et 
al., 2014) (Figure 2.1). The traps are 
baited with a blend of five organic 
attractants that mimic a human odour 
and lure mosquitoes towards the trap 
(Menger et al., 2014b). The blend of five 
chemicals is supplemented with a carbon 
dioxide mimic (Turner et al., 2011) in 
order to increase the attraction of malaria 
vectors to the trap. The odour baits are 
produced at the field site in Kenya by 
impregnating strips of nylon with each 
attractant at the appropriate 
concentration (Mukabana et al., 2012a). 
Baits are prepared in batches and stored 

at -20°C to prevent the organic chemicals from volatising before they are used. Semi-
field studies have shown that baits remain attractive to An. gambiae even after weekly 
use over 52 weeks (Mweresa et al., 2015). During the course of the study odour baits 
are replaced in each intervened household by project field staff at three-monthly 
intervals. Previous studies have shown that a host-seeking mosquito can detect 
human or animal odours at distances of 50 metres or more (Gillies et al., 1968; Gillies 
et al., 1970) and we expect that the odour-baited Suna trap has a similar radius of 
attraction. Traps were suspended outside houses, beside the primary sleeping area 
with the fan section at 30 cm above the ground, a position that has previously been 
shown to result in the highest mosquito catch rates (Hiscox et al., 2014). As described 
in the background section above, the requirement of electrical power for the trap 
means that each SMoTS comprises of an odour-baited mosquito trap, solar panel, 
battery, two LED lights, one mobile phone charging port and the associated electrical 
wiring. 

 

 

 

 

 

 

 

 

 
Figure 2.1: Schematic representation of the 
Suna trap. Source: Hiscox et al., 2014 
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During the course of the study each eligible household on Rusinga Island was offered 
one SMoTS. If a household comprised of more than one residential structure (house), 
the project staff requested household members to reach a consensus agreement on 
which house the SMoTS should be installed on. If no consensus was reached, the 
SMoTS was not installed. 

Two weeks prior to SMoTS installation in any given cluster, residents of the cluster 
were invited to attend a community training workshop held at a local community 
centre, such as a church or school building. During each training workshop study 
participants were reminded of the aims of the study and took part in question-and-
answer sessions about malaria transmission and prevention. Demonstration SMoTS 
were used to show participants how the system operates and how to empty the trap 
of mosquitoes and clean it on a weekly basis (Oria et al., 2015). Contact information 
for project-employed technicians was provided so that any technical faults in the 
systems could be reported and resolved promptly. 

Study Design 
The SolarMal trial uses a stepped wedge cluster-randomised trial [SWCRT] design 
(Hemming et al., 2015) where the intervention is allocated to geographically defined 
clusters in a randomised order until full coverage is achieved. This trial design is 
appropriate for a vector control intervention such as an odour-baited trap that is 
expected to have an impact which extends to an area beyond the house on which it is 
installed (spill-over effect). Replication of the intervention in multiple clusters while 
maintaining contemporaneous control areas can be achieved with a cluster-
randomised trial [CRT] design, typically aiming to reduce infection at the individual 
level by targeting a whole community/area with the intervention. The stepped wedge 
design provides the opportunity of attaining area-wide coverage and group 
randomisation by the gradual crossover of all clusters to the intervention arm. In this 
way the effect of the intervention can be measured when used at relatively small 
scale, up to mass-coverage. 

Randomising the intervention allocation 
Clusters of households were constructed by means of a travelling salesman algorithm 
whereby the shortest distance from one household to another is continually chosen, 
creating a cluster after every 50 or 51 households (Figure 2.2). The number of houses 
per cluster is expected to be large enough for measurement of the maximal 
intervention effect at the centre of the cluster, avoiding spill-over from surrounding 
non-intervened areas. The degree of protection among people living in households at 
the edges of clusters may be affected by mosquitoes from surrounding non-
intervened areas; alternatively, intervened households located at cluster edges may 
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exert an effect on mosquitoes in neighbouring areas which are yet to receive the 
intervention, as was observed during the early bed net studies (Hawley et al., 
2003).Computer simulations of possible rollout scenarios were made on basis of a 
human susceptible-infected-susceptible transmission model (Silkey et al. under 
review). A hierarchical design was selected and adopted as the rollout strategy for 
SolarMal. The design groups the 81 clusters of 50 or 51 households into nine larger 
areas, each referred to as a metacluster. Within every metacluster the intervention 
was subsequently introduced to each of nine clusters in a random order. Once the 
intervention had been applied to all clusters in one metacluster the rollout moved 
randomly to the next metacluster; all clusters eventually received the intervention 
according to this SWCRT design. During a community rollout ballot held in May 2013,  
nine possible rollout sequences were presented for blind selection, one starting in 
each of the nine metaclusters. After placing a printed map of each sequence in a 
sealed, unmarked envelope and placing the nine envelopes in to a box, one member 
of the community was chosen at random to draw an envelope and open it to reveal 

Figure 2.2: Rusinga Island with 81 project clusters, each containing 50-51 households, 
numbered consecutively in the order in which the SMoTS were installed. Metaclusters, 
each containing nine clusters, are outlined in bold red lines. Insets show close-up views of 
geographically smaller clusters in the northwest and southeast of the island. 
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the order of the rollout which would be followed (Oria et al., 2014). The selected 
SWCRT sequence is illustrated in Figure 2.2. 

Demographic surveillance 
During successive rounds of health and demographic surveillance (see Figure 2.3 for 
schedule), records of the complete population of the island were maintained by door 
to door visits, collecting data using a tablet computer installed with data collection and 
management software (Homan et al., 2015). Data is uploaded to the local server on a 
daily basis creating a near real time demographic database that subsequently serves 
other parts of the project. A team of fieldworkers collect data simultaneously in all 
nine metaclusters on a daily basis. Over the course of three months all households 
and individuals are visited by fieldworkers to update demographic information. By 
conducting successive rounds of surveillance, data was available for each of the 81 
clusters throughout the baseline and rollout period, thus providing information about 
both arms of the intervention for before-and-after and contemporaneous measures of 
intervention effect. The last survey before the start of the intervention rollout served 
as a baseline record of the population and took place from January-June 2013. The 
location of all houses was recorded using a GPS built in to the tablet computers. 

Measurement of malaria incidence and prevalence 
Clinical malaria incidence is recorded during the routine HDSS surveillance of all 
individuals (three rounds of surveillance each year, see Figure 2.3). During household 
visits residents are asked to report any fever in the previous two weeks, two days and 
at the time of the visit. If fever is reported to have occurred within two weeks of the 
visit, body temperature is measured using an in-ear thermometer (Braun™ IRT 3020). 
If the measured in-ear temperature is greater than 37.4°C the individual is tested for 
malaria using an RDT (SD BIOLINE™ Malaria Ag P.f/Pan HRP-II/pLDH). Any person 
with a positive RDT is provided with an appropriate dose of Artemether –Lumefantrine 
or referred to a local health clinic in the case of pregnancy, child under six months of 
age or severe symptoms. By collecting clinical malaria data continuously, information 
is available for baseline and throughout the course of the rollout for all 81 of the 
clusters. 

In addition to the detection of malaria-associated fever within the HDSS, cross 
sectional malaria prevalence surveys are carried out in a randomly selected 10% of  
the study population three times per year (Figure 2.3). All selected individuals are 
tested for malaria using an RDT and a dry blood spot is also collected from each 
person as well as a measure of in-ear temperature. Validation of RDTs is performed 
using high-resolution melting PCR [HRM-PCR] (Kipanga et al., 2014) on a random 
sample of 200 dry blood spots from each round of surveillance. As for the HDSS and 
clinical malaria monitoring process, this data collection method allows for 
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measurement of malaria prevalence in all 81 clusters of the SWCRT at regular 
intervals throughout the course of the project. 

Entomological data collection and evaluation 
Monitoring of mosquitoes began in September 2012 and will continue until December 
2015 (see Figure 2.3). Sampling of mosquitoes at houses is performed using 
Mosquito Magnet-X® traps (American Biophysics corporation, North Kingstown, RI), 
baited with the same blend of five chemicals that are used for the intervention 
(Menger et al., 2014b) and carbon dioxide produced by yeast and molasses 
fermentation (Mweresa et al., 2014). For each round of sampling 80 households are 
randomly selected with replacement from the active database maintained by the 
HDSS. In common with data collection in other arms of the project, random selection 
of households for entomological monitoring enables measurement of entomological 
outcomes across the island throughout the duration of the SWCRT. Working four 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  Figure 2.3: Timeline showing the workflow of the SolarMal project from planning               
  stages to completion of intervention rollout. 
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nights a week, ten houses are sampled every night with traps set at dusk (between 
17:00h and 18:00h) and collected after dawn (between 07:00h and 08:00h). Each 
house is sampled once inside the house and once outside, with the inside/outside 
order randomised. The complete round of sampling takes four weeks to complete, 
following which there is a two week period without sampling to make preparations for 
the next round. When a house has already been installed with a SMoTS, the Suna 
trap is disconnected during the two nights when the MM-X trap is used instead. 

After collection of traps, mosquitoes are knocked down using a -20°C freezer and 
identified to species group on the basis of morphology (Gillies et al., 1987). 
Specimens are separated and pooled by collection date, house of collection, 
inside/outside location, morphologically identified species group, sex and abdominal 
status. Pooled mosquitoes are stored in 80% ethanol for subsequent molecular 
analysis: PCR for identification of An. gambiae s.l. complex and An. funestus s.l. 
complex (Koekemoer et al., 2002; Scott et al., 1993), and HRM-PCR for detection of 
Plasmodium DNA and blood meal analysis (Kipanga et al., 2014). 

Household and environmental data 
Information was collected on variables that could have a direct or indirect effect on 
the association between the intervention and malaria infection or entomological 
outcomes. Every third health and demographic surveillance round incorporated a 
digital questionnaire for the collection of information about houses and households. 
Information about the construction materials used to build each house and the 
number of rooms was recorded, as well as the presence/absence of eaves and 
whether there were preventative measures taken against mosquitoes, such as LLINs 
and IRS. Indicators of socio-economic status were also included in these update 
rounds; as was information on land and house ownership, occupation and highest 
level of education of the head of household. Additionally, high resolution satellite 
images were obtained to provide data on possible confounding environmental 
variables including the normalized difference vegetation index, and a water 
accumulation index [TWI]. 

Social sciences 
A mixture of quantitative and qualitative approaches to social science data collection 
were used. Prior to the commencement of the intervention rollout a structured 
questionnaire was carried out with one adult male and one adult female in each of 
204 randomly selected households (5% of all households). The questionnaire was 
repeated with a new random selection of 5% of households after completion of the 
rollout (see Figure 2.3). 
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In addition to the structured questionnaires, listening surveys were conducted during 
each community training workshop to record trends in questions asked by community 
members over the course of the rollout. Listening surveys were performed during the 
installation of SMoTS in order to gauge initial reactions to the intervention. Data is 
also collected informally during other project community events such as an event held 
to launch the project on the island and the rollout ballot, among others. Throughout 
the course of the study, focus group discussions with specific stakeholders not only 
provided a useful tool for gathering information on community knowledge, attitudes 
and perceptions, but also helped the project to build links with the community. 

Throughout the duration of the study, community members are able to contact a 
project community liaison officer and the solar technicians by phone in order to report 
technical faults in the SMoTS. A detailed record of phone calls is maintained by an 
on-site project manager and these records are used to schedule maintenance 
activities as well as to understand how well the systems are performing over time. 
Intermittent spot checks carried out once a week in randomly selected households 
during the evening allow the field staff to monitor the performance of systems during 
the hours of darkness. During the final phase of the project (December 2014 – 
December 2015), interviews with key stakeholders and focus group discussions will 
be used to develop and finalise a sustainability plan for the maintenance of SMoTS 
beyond 2015. 

Data entry and management 
The collection and management of data was fully digitalised, with all data entered by 
means of a tablet computer. Open Data Kit [ODK] (Hartung et al., 2010) is used to 
build and conduct questionnaires. Data are uploaded to a secure local server on a 
daily basis. Demographic data are stored and then transferred to OpenHDS, a data 
management platform (Asangansi et al., 2013; Homan et al., 2015). New information 
is automatically incorporated into the demographic core database. This data 
management platform allows for data cleaning immediately after upload to the server. 
To prevent duplication of ID codes in the system, the OpenHDS software generates a 
new unique ID for each individual, house and household as required. There are 
several built- in methods to prevent errors in data entry. Mostly, answers need to be 
logical and are listed as multiple choice in the electronic questionnaires. For instance, 
a male cannot be recorded as having a pregnancy, and the age of a new-born cannot 
be more than one year.  

A system, SU2, to ensure quality post-hoc was deployed in 2013 (SU2). The 
programme, which automatically runs every night, provides the data manager with a 
report on operational statistics and inconsistencies in data collected the previous day. 
The SU2 software tracks which individuals and houses are visited on a daily basis 
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and produces an up-to-date geodatabase of locations to visit for uploading to the 
tablet computer. Maps based on this information guide fieldworkers in navigating 
through their assigned area and recognising which houses and individuals still need 
to be visited during a round of surveillance. 

Power and sample size rationale 
There is some controversy about power calculations for SWCRTs (Hussey et al., 
2007), and the power of our design depended on the correlation between 
observations on the same individuals at sequential HDSS visits. We could not 
determine the level of correlation from the single baseline enumeration visit. A lower  
bound for the minimum detectable effect size is therefore that of a single visit per 
person, occurring halfway through the rollout. Using previously published formulae, 
this approach could have anticipated to have had 80% power to detect approximately 
52% reduction in clinical incidence (Hemming et al., 2011). Conversely, a parallel 
CRT with six repeated visits and independent outcomes for each visit would have 
power to detect an approximately 23% reduction in clinical incidence, corresponding 
to an upper bound to the anticipated minimum detectable effect size. Analogous 
calculations for prevalence (Hemming et al., 2011), using a baseline malaria 
prevalence of 23.9% (RDT prevalence rate during the baseline survey for this project) 
and sample size of around 1,860 persons (10% of the population that was initially 
enumerated for this project) suggest that a single prevalence survey should have had 
80% power to detect a 27% reduction in prevalence. Six repeated surveys carried 
out, might have power to detect effects as small as an 11% reduction in prevalence, 
assuming that correlations between repeated observations were small. 

Analytical plan 
The datasets included for the analysis comprise results of the HDSS, clinical malaria 
surveys, cross sectional malaria prevalence surveys and monitoring of mosquito 
densities. Malaria fever incidence is the primary outcome of the trial. Data is included 
up to the end of the next month after full intervention coverage was attained. For 
analyses of parasitological as well as entomological outcomes, intervention status is 
classified week by week on an intention to treat basis. The whole study cluster is 
classified as intervened or non-intervened based on whether installation was 
complete in that cluster by the end of the week. Clusters are excluded from analysis 
during weeks in which some, but not all, of the households are provided with the 
intervention (i.e. during the week in which installations took place in that cluster). For 
malaria prevalence and incidence numbers and proportions of positive RDT tests are 
summarised by week and arm of the trial. For mosquito densities, rates of 
anophelines collected per trapping night are presented by week and arm of the trial. 
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Following the SWCRT design described by Silkey et al. (under review) an analytical 
plan was constructed. The primary analysis of the impact of the trial on malaria 
incidence, prevalence and vector densities follows two measures of effect: a 
contemporaneous comparison comparing the outcomes in intervened clusters with 
the not yet intervened clusters and a comparison of the final results in intervened 
areas with the baseline status. Generalized linear mixed models [GLMM] with a 
binomial distribution will be deployed to carry out significance testing against the null 
hypothesis of no effect using a likelihood ratio test. For mosquito densities a GLMM 
will be used with a Poisson distribution. For analysis of medical and entomological 
data random effects will be used to allow for spatial effects as well as effects of round 
of surveillance. Final models will consider possible confounding effects on the 
relationship between the intervention effect and measured outcomes. 

Ethical approval 
Ethical approval was obtained from the Kenyan Medical Research Institute [KEMRI]; 
non-SSC Protocol No. 350. All participants were provided with written and oral 
information regarding the project aims, the ongoing demographic surveillance, the 
implementation of the intervention, and the collection and use of blood samples, 
mosquito sampling and social sciences activities. Adults, mature minors and 
caregivers of children provided written informed consent in English or in the local 
language agreeing to participation in the SolarMal project. 
 
Discussion 
The long term sustainability of malaria control achieved through the use of LLINs and 
case management with drugs is threatened by the development of insecticide and 
drug resistance. The SolarMal project has been designed to test for the first time 
whether mass-trapping of mosquitoes can form a viable option for malaria control on 
Rusinga Island in Kenya, in addition to the already established LLIN + curative 
strategy of the Kenyan National Malaria Control Programme. The study takes place in 
an area where LLIN coverage is high and drugs for case management are available 
and accessible. 
The primary outcomes of the study will provide information about the efficacy of 
mass-mosquito trapping on clinical malaria incidence, Plasmodium parasite 
prevalence, mosquito densities, EIR and sociological outcomes. A SWCRT design 
allows for before-and-after as well as contemporaneous measures of intervention 
effect; and clustering of the intervention permits measurement of a possible spill-over 
effect of traps in to neighbouring non-intervened areas. Through gradual scale-up of 
intervention coverage over two years, with baseline measurements before the 
commencement of the rollout and at least seven months of follow-up after completion 
of the rollout, an understanding of the time taken to achieve an impact through mass-
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trapping will also be gained. By gathering data on multiple outcomes it will be possible 
to attribute an effect on malaria to the intervention. Likewise, if the intervention is 
ineffective it will be possible to offer explanations for this outcome. Understanding the 
mechanism behind a successful intervention will be vitally important in optimising the 
system for future scale-up and, in the instance of no observed effect, understanding 
this result will also allow improvements to the approach which could lead to success 
in the future.  

In addition to the anticipated impact on malaria, members of the study population are 
expected to immediately benefit through the electrical lighting and mobile phone 
charging facilities provided with the SMoTS. Electrical lighting is expected to reduce a 
reliance on kerosene that is typically used to light houses in this region. As the fumes 
emitted by burning kerosene are known to negatively affect the respiratory system 
(Lam et al., 2012), replacement of kerosene lamps by electric lights is likely to remove 
this health hazard. As well as removing health risks attributed to inhalation of 
kerosene fumes, the risk of fire and burns (Peck et al., 2008) is also reduced by 
providing electric indoor lighting. With a reduced expenditure on kerosene and mobile 
phone charging the intervention should lead to financial savings and improved 
socioeconomic status which in turn may lead to other health improvements. 

In order to ensure that risks to the population are minimised, the continued use of 
LLINs by all age groups is recommended at all community meetings and training 
sessions. Participation in the intervention does not affect the use of existing health 
facilities. The creation of a CAB has facilitated regular exchanges of information 
between scientists, project field staff and the Rusinga Island community and it is 
expected that some members of this board will remain actively involved in the 
maintenance of the SMoTS beyond the follow-up period of the study. By the 
completion of the rollout in mid-2015 the community were beginning to form groups to 
save money for the purpose of maintaining SMoTS beyond the research period. The 
provision of electrical lighting and mobile phone charging provides an incentive for 
users to keep the systems running and links with Kenyan solar-home system 
providers are being made to ensure continuous provision of replacement components 
at prices which are affordable for low-income households. By working closely with the 
Kenyan Ministries of Health and Energy the SolarMal project has formed a strong 
basis for continuing and expanding the use of SMoTS on Rusinga Island and 
elsewhere in the region. 

If the intervention is proven to be an effective tool for malaria control, researchers will 
work together with industry and policy makers to develop cost-effective, long-lasting 
and readily available malaria mosquito trapping systems for use in at-risk areas. It is 
anticipated that a scale-up of systems would follow a public-private model with 
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investment from governments and NGOs as well as financial contributions by end-
users. Scale up would initially be focussed in the East African region with exploratory 
studies in the Americas and Southeast Asia. 
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Abstract 
Background: Health in low and middle income countries is on one hand 

characterized by a high burden associated with preventable communicable 

diseases and on the other hand considered to be under-documented due to 

improper basic health and demographic record-keeping. Health and Demographic 

Surveillance Systems have provided researchers, policy makers and governments 

with data about local population dynamics and health related information. In order 

for an HDSS to deliver high quality data, effective organization of data collection 

and management are vital. HDSSs impose a challenging logistical process 

typically characterized by door to door visits, poor navigational guidance, 

conducting interviews recorded on paper, error prone data entry, an extensive 

staff and marginal data quality management possibilities. Methods: A large trial 

investigating the effect of odour-baited mosquito traps on malaria vector 

populations and malaria transmission on Rusinga Island, western Kenya, has 

deployed an HDSS. By means of computer tablets in combination with Open Data 

Kit and OpenHDS data collection and management software, experiences with 

time efficiency, cost effectiveness and high data quality are illustrated. Step by 

step, a complete organization of the data management infrastructure is described, 

ranging from routine work in the field to the organization of the centralized data 

server. Results and discussion: Adopting innovative technological 

advancements has enabled the collection of demographic and malaria data 

quickly and effectively, with minimal margin for errors. Real-time data quality 

controls integrated within the system can lead to financial savings and a time 

efficient work flow. Conclusion: This novel method of HDSS implementation 

demonstrates the feasibility of integrating electronic tools in large-scale health 

interventions. 

Key words: Health and Demographic Surveillance System; Mobile data collection; 

Data management platform; Malaria; Kenya 
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Background 
Health and demographic surveillance systems [HDSS] are used to provide a 
framework for prospective collection of demographic and public health data within a 
community. Such systems, originally called population laboratories, have been in 
operation since the 20th century, and constitute the basis of population-based 
research in areas where national or local authorities lack a proper registration system 
to monitor the most important demographic events (Kesler & Levin, 1970). In order for 
population and health researchers to acquire longitudinal data on communities, 
systematically constructed systems have undergone several developments (Garenne 
& Koumans, 1997); where originally the focus remained on surveying demographic 
data (demographic surveillance systems, DSS), principally due to efforts of the 
INDEPTH network (International Network of field sites with continuous Demographic 
Evaluation of Populations and Their Health in developing countries), health indicators 
became a routine part of science-driven surveillance systems, retitling the concept as 
HDSS (health and demographic surveillance system) (INDEPTH, 2002). Despite 
these developments, public health systems in developing countries often lack 
adequate infrastructure to monitor demographic and health information; rural areas in 
particular experience challenges with the collection of reliable health-related data. 
The World Health Organization [WHO] states that vast rural areas in Sub-Saharan 
Africa are a reservoir for a variety of predominantly preventable communicable 
diseases such as HIV/AIDS, tuberculosis and malaria (WHO; World Health Statistics 
2014) .The absence of well-operating national or local demographic and health 
surveillance systems hampers evidence-based research into these diseases. Over 
the past decades there are numerous examples of scientific institutions deploying 
community-based HDSSs in order to provide policy makers and governments with 
recommendations on health planning and intervention methods. A classic example is 
the Garki project in Nigeria where, during the 1970s, field experiments were 
conducted to understand the effects of Indoor Residual Spraying [IRS] and Mass 
Drug Administration [MDA] on malaria and entomological outcomes (Gramiccia & 
Molineaux, 1980). Another, more recent, malaria control study which used HDSS to 
capture prospective data was the Asembo Bay Cohort Project, which ultimately 
showed a large protective effect of Long Lasting Insecticidial Nets [LLIN] against 
malaria infection. 
 
Nowadays, community-based HDSSs are established at an increasing number of 
sites to investigate a range of different health indicators and diseases. The main goal 
of the INDEPTH network is to harmonize the data of HDSSs from different sites in 
developing countries to achieve a valid comparison of information and accordingly get 
more insight into health related trends (Sankoh et al., 2011). 
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There are currently 43 INDEPTH associated centres that run one or more HDSSs for 
scientific purposes (Sankoh et al., 2012). At all these HDSS sites, the field and data 
management operations pose logistical challenges. Interviews in most sites are 
essentially paper based which makes conducting questionnaires time consuming and 
error prone. Visiting households and individuals can be time consuming, as keeping 
track of where fieldworkers navigate and which community members have been 
visited can only be done manually. Likewise, transferring data from paper into a digital 
form is a lengthy process with a lot of room for error. Not only the content of data can 
be entered incorrectly, but assigning new data to the right entity or ID is an error-
prone process with small typos leading to unrecognizable and ultimately squandered 
data (Gyapong et al., 2013; Kahn et al., 2012; Kouanda et al., 2013; Scott et al., 
2012). Finally, accumulating and managing data relies heavily on obsolete database 
software with limited data quality assurance structures. 
The past decade has borne witness to major developments in mobile computer 
technology as well as software applications. Advanced computer tablets and 
improved data collection and management software have become accessible and 
affordable to the wider public. In high and middle income countries there are 
numerous examples of ways to utilize the available technologies to improve health 
(Bloomfield et al., 2014; Martínez-Pérez et al., 2013). Although there have been 
several pilot studies which experimented with a telephone-based technology to collect 
health and demographic data, in the lower income countries these technologies 
remain mainly underused because of logistical and organizational constraints 
(Asangansi et al., 2010; Schobel et al., 2014).In some low- income countries, mobile 
computer technology and advanced data collection and management software has 
been tested. In Akpabuyo Nigeria, the use of computer tablets with practical collection 
software and a comprehensive data management system has been tested 
(Asangansi et al., 2013). The study showed that it is possible to save a great deal of 
time compared to the paper-based and analogue data collection and management. 
Not only time could be saved, costs could also be decreased considerably and data 
quality increased. Another study in Malawi investigated how the use of computer 
technology and software could best be organized to create a feasible system of 
health data collection and management (Matavire & Manda, 2014). A governmental 
initiative in Kenya in 2006 marked a first step towards a digitalized health 
management (Odhiambo-Otieno, 2005). 
In 2012 an HDSS was initiated on Rusinga Island, western Kenya, to facilitate a large 
malaria control trial, the SolarMal project (Hiscox et al., 2012).This paper describes 
the computer-based HDSS developed for this project. It is shown that community-
based health research served by HDSSs may be of higher quality, more cost-effective 
and more time efficient than currently deployed surveillance systems. 
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Methods 
Study location and population 
Rusinga Island with approximately 25,000 inhabitants is located in Lake Victoria, 
western Kenya (0°21′ S and 0°26 south, 34°13′ and 34°07’ east). The island is 
administratively part of Homa Bay County in western Kenya (Figure 3.1) and is 
connected to the mainland with a causeway. The land surface area of Rusinga Island 
is approximately 44 km2 with an elevation between 1100 m and 1300 m above sea 
level. Average daily temperatures lie between 16 and 34 degrees Celsius with 
temperatures higher during the dry seasons which occur between June-October and 
late December-February. The SolarMal project, including HDSS activities, operates 
through the International Centre of Insect Physiology and Ecology [icipe] at the village 
of Mbita Point just across the causeway, on the mainland. The population of Rusinga 
Island belongs to the Luo ethnic community and, besides the national language of 
Swahili, DhoLuo is primarily spoken. Fishing and farming are the principal 
occupations. There are several health facilities in the area; one public health centre, 
three government-run dispensaries and three private clinics. A district hospital is 
found at Mbita Point. Malaria transmission occurs throughout the year, with peaks in 
transmission at the end of the rainy seasons where parasite prevalence is around 
30% (WHO Country Profile 2013: Kenya, Malaria). Furthermore, schistosomiasis, 
filariasis, HIV, and tuberculosis are endemic on Rusinga (Central Bureau of Statistics 
MoPaND. Kenya Demographic and Health Survey 2003). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Study site: Africa with Kenya highlighted dark grey; in the right upper 
corner Kenya with Homa Bay County highlighted; Homa Bay County with Rusinga 
Island tinted in dark grey. 
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Data collection system 
The HDSS team consists of 10 fieldworkers [FWs], one fieldworker manager [FWM], 
a database manager and a system developer. Fieldworkers who spoke DhoLuo 
fluently and had a prior basic knowledge of computing were trained to use mobile 
tablet computer devices (Samsung Galaxy Tab 2, 10.1). A pilot study was conducted 
to test the usability of the computer tablets, as well as digital questionnaires, prior to 
the initial HDSS census. The HDSS uses the Open Health and Demographic 
Surveillance [OpenHDS] data system (Asangansi et al., 2013), a software platform 
that is based on a centralized database. This database is linked to a web application 
for data management, linked to a tablet computer-based mobile component which 
allows digitalization of data at the point of capture, and wireless synchronization to the 
central data store based on the Open Data Kit [ODK] platform (Asangansi et al., 
2013; Hartung et al., 2010) (Figure 3.2). ODK is a free, open-source application 
intended to facilitate mobile data collection services. ODK consists of two software 
components for data collection, transfer and storage, and various tools exist for the 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Data pathways using the ODK and OpenHDS platform: electronic questionnaires are 
created uploaded to the computer tablets by the ODK server. Wireless synchronization of digitalized 
data collected at the point of capture is transferred to the central data store based on the ODK 
server. Cleaned data is transferred to the OpenHDS server that in turn synchronizes the up to date   
  database to the computer tablets. 
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authoring of the electronic questionnaires used in the data collection process. ODK-
Collect is used to render electronic questionnaire forms on mobile devices running the 
Android operation system, which includes forms to report core vital events as well as 
customized forms. ODK-Aggregate is a web application that supports data transfer 
and storage at a local server or a “cloud” server. 
In addition to ODK-Collect, the OpenHDS mobile data collection application is 
installed on the tablets. This application contains a database which is pre-populated 
with data on the administrative location hierarchy in the study area (district, villages, 
neighbourhoods), and any information previously collected on individuals, houses and 
households in the area. This allows selection of the individual or house using the 
software during a visit to a household, and makes it possible to simply amend or add 
new information associated with the individual or house that has been selected. The 
differentiation made between houses and households follows the local culture, where 
the term dhala is used for a group that is socially and financially dependent or formed 
of related family members sharing the same facilities and recognizing one member as 
head of the household. A house is always defined as a single residential structure. 
The XLS-Form application is used for authoring questionnaire forms for ODK in the X-
Form format. This allows integration of all possible structures of questions into the 
questionnaire: open answers, multiple choice answers, as well as posing constraints 
and requirements to answer outcomes. Questionnaires are published to ODK-
Aggregate, and then downloaded to the tablets using ODK-Collect. This includes both 
questionnaires for capturing core vital events (births, deaths, in- and out-migrations) 
and study-specific questionnaires (parasitology, malaria incidence etc.). Electronic 
forms which are completed in the field using OpenHDS mobile are stored in ODK-
Collect and synchronized over a Wi-Fi connection at the field station to the central 
database through ODK-Aggregate server (Figure 3.2). After subsequent automated 
customized data checks, cleaned data is then submitted to the definite OpenHDS 
database. At the end of each update round, clean data is synchronized to the tablets 
to ensure that the most up to date information is taken back to the field for 
consecutive follow up surveys. 

Data collection rounds 
The SolarMal project was initiated in January 2012 and will run through December 
2015. The population census survey took place from June to September 2012, 
enumerating households, houses and individuals on the island. During the census 
survey, fieldworkers were assisted by individuals of the local community that are 
enrolled in a malaria programme, the Rusinga Malaria Project. The fieldworkers of the 
HDSS were familiarized with the population and geography of the island. In 
subsequent rounds of data collection, regular communication with the Rusinga 
Malaria Programme members and village elders enabled fieldworkers to find newly 
created households. All houses were mapped using the Global Positioning System  
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function on the tablet, recording latitude and longitude with an accuracy of five to 15  
meters. Households are given a unique code consisting of two letters, relating to the  
name of the village where it is located, followed by a two digit number. Houses within  
a multi-house household have one extra letter, and all individuals are assigned a 
unique code comprising of five letters and two digits. Individuals were asked to 
provide their full name, sex, date of birth, main occupation and their relationship to the 
head of household. Subsequent analyses of individual data were performed using 
unique individual ID codes in order to ensure the anonymity of personal data.  
 

Table 3.1: An individual health questionnaire administered to everyone enrolled in the study. In the right 
column an example of an individual’s answer in bold. 

Question Answer possibility 
Individual ID ABCDE100 
Fieldworker ID TO01 
Illness over past 2 weeks Yes; No 
If illness reported: what symptoms? 1) Diarrhoea, 2) Fever, 3) Vomiting, 4) 

Rash, 5) Bowel ache, 6) Head ache, 7) 
Cough/sore throat, 8) Joint pain, 9) 
Dizziness, 10) Other (manually specify) 

Fever over the last 2 days? Yes; No 
Current fever? Yes, No 
Under malaria treatment now? Yes; No 
If illness or fever reported: take 
temperature measurement 

37.6 

If temperature 37.4 °C or above: RDT test 1) Negative, 2) P. falciparum, 3) Other 
Plasmodium, 4) Mixed malaria infection, 5) 
respondent refused to take test 

Do you suffer respiratory symptoms? Yes, No 
If respiratory symptoms are experienced: 
Did you seek medical attention? 

Yes, No 

If medical attention: what medical attention 
was sought?  

1) Doctor, 2) Nurse, 3) Community health 
worker, 4) Traditional healer, 5) Other 
(manually specify) 

Do you use any drug for the fever? Yes, No 
If using drugs against fever: which drugs? 1) Anti malarials, 2) Antibiotics, 3) Pain 

killers, 4) Other (manually specify)  



 
Innovative tools and OpenHDS for the Rusinga HDSS 

 

47 
 

3 

 

To ensure that FWs are adding data to the correct corresponding house and 
individual in the field in subsequent follow up surveys, each house was provided with 
a door sticker showing its unique ID (Figure 3.3). The unique ID is also expressed as 
a barcode which is scanned with the tablet on arrival at the house and recorded in the 
data base. Once scanned, the barcode is validated against existing barcodes in the 
mobile application of OpenHDS and the application allows questionnaires to be filled 
in and stored. Each household is visited three times a year to collect and update 
demographic and malaria-related data. Members of the HDSS team visit all 
residential structures in nine geographic areas on the island simultaneously taking 
approximately three months to cover their area. At all households observed 

pregnancies, new births, deaths 
and migrations which have 
occurred since the previous visit, 
are recorded and updated.  
Digital questionnaires concerning 
demographic information are 
consistent with the HDSS 
questionnaire format of the 
INDEPTH network (Table 3.1). 
Moreover, the standardized 
questionnaire formats are widely 
used in East Africa and Kenya 
and therefore apply well to our 
research site. 
 
Upon arrival at a household the 
barcode is scanned and a digital 
log, which includes the interview 
date and time, is automatically 
created. After recording deaths 
and births, migrations into or out 
of the household are documented. 
There is a differentiation between 
migrations within the island and 
from elsewhere. Individuals 
moving within the island maintain 
their individual ID which becomes 
associated with the new 
household. These individuals 
found in the system by filtering on 

 

 

 

 

 

 

 
Figure 3.3: Project sticker with barcode on the doorpost 
of a house: barcode scanning, integrated into the mobile 
data collection, allows quick identification of locations 
and study population to add or amend health and 
demographic information. 

 
 

 

 

 

 

 

 
Figure 3.4: Navigating assigned houses: converting the 
near-real time demographic database into a geo-
database displayed with Google Maps Mobile assists 
fieldworkers with tracking every house.  
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their previous village and their name, subsequently selecting and migrating him or 
her. Moving out of Rusinga puts the individual in an inactive state in the database; 
people moving into Rusinga are provided with a new unique ID code if not previously 
enumerated, and all personal information is collected, as in the census survey. These 
individuals are found in the system by filtering on their previous village and their name 
and subsequently associating the individual ID with the new household ID through the 
completion of a migration form. If it is known that the individual in question does not 
plan to be a resident of the island no questionnaire is filled out. If it is known that an 
absent person is definitely coming back, no out migration is documented. To 
distinguish between temporary and permanent migration we use six months as a 
threshold. General information about the house construction, composition of 
household members and the presence and use of bed nets (as a malaria preventive 
tool) is collected for every house which is newly added to the database and for 
existing houses once per year. 

Use of geographical information  
On basis of the geographical coordinates of houses and demographic as well as 
malaria-related data gathered during the census of July 2012, the study design for the 
sequence of the rollout of the SolarMal intervention was developed and has been 
described elsewhere (Silkey et al., Personal Communications). Briefly, the island is 
divided into 81 clusters each containing 50 or 51 households, with nine clusters 
making up one metacluster. Metaclusters form the geographical basis for the HDSS 
follow up surveys. The fieldworkers are each assigned one of the metaclusters in 
which to visit every house and individual once during an interval of three months. One 
fieldworker is deployed to an area conditional on relative progress in the surveillance. 
For navigational purposes, the demographic database is converted into a geographic 
database (KML file), allowing us to plot houses to be visited in the Google Earth 
mobile (Version 7.1.3. 1255) application integrated in the tablet (constructed with 
ESRI 2011. ArcGIS Desktop: Release 09. Redlands, CA: Environmental Systems 
Research Institute). Using the GPS function, FWs can track themselves on the map 
navigating in real time from one house to another (Figure 3.4). Furthermore, the 
geographic database also includes all server data enabling the FWs to select any 
house on the Google Earth map, consequently displaying the personal information of 
people living there.  

Data quality and management 
Data quality is initially controlled by designing questionnaires which permit answers to 
fall within an acceptable range. For example, using input constraints a date can only 
be entered as a date format, only women can deliver a child, a body temperature 
must lie within 35 to 42 degrees Celsius. After questionnaires have been entered in 
the field, the data is transferred to the ODK-Aggregate server. Unique IDs for 
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individuals, houses and households are automatically generated per FW to ensure 
that no duplicate values are entered in the system. Questionnaires which were not 
fully completed are not accepted for upload to the server. Data is then transferred 
from ODK-Aggregate to the OpenHDS server using the Mirth Connect data 
integration platform. All events entered during field visits are checked for 
inconsistencies during this step. Faulty records are filtered for further checking, and 
an error report is sent to the data manager by email. Births or deaths registered with 
an event date long in the past, multiple new-borns or separate deaths with the same 
date of event will be double checked with the FW or with the head of household. In 
addition, doubtful migrations are double checked, for instance if a child of three years 
old was found to be migrated because of marriage or work. Once in the OpenHDS 
server, the data manager has access to information about all individuals who have 
ever been active in the database, as well as their event history. A range of options to 
detect residual inconsistencies and perform data cleaning are available. An error 
often found in HDSSs is that individuals or households were duplicated during the 
census round under a slightly different name with different unique IDs at geographical 
border areas of FWs. An option to merge individuals and their past events provides a 
practical solution to this problem. In addition to this real time data quality control a 
web-based monitoring system was introduced that allows the data manager and 
FWM to extract a weekly snapshot of certain fieldwork related matters in the database 
(SU2 Web based monitoring). The web interface displays information about where 
FWs have been in the past week, as well as which household visits are yet to take 
place. Subsequently, the geographical database converted to KML files are uploaded 
to tablets at the beginning of every follow up round. The tool automatically removes 
individuals and houses which have already been visited during a given round of 
surveillance from the visit plan, publishing a file with remaining houses to be visited 
that can be uploaded to the computer tablets. Furthermore, the tool can be used to 
produce graphs of how many individual and houses were visited and how many forms 
were filled in during the previous week, allowing the performance of fieldworkers to be 
tracked. The tool gives the opportunity to see where FWs have been, how long they 
have taken to conduct the work delivered, as well as which forms have been filled in 
and how often. This information gives the FWM a quick insight into every FW’s 
performance, so that inconsistencies can be addressed promptly and systematically. 
Additionally, on a weekly basis the tool generates 20 houses on basis of the houses 
already visited, to be revisited by the FWM. During re-visits, the usual procedure of 
demographic questionnaires is conducted and discrepancies between the results 
obtained by the FWM and FW are discussed with the FW in question. 

Finally, all data of the HDSS, as well as entomological, parasitological, geographical 
and sociological data are fed into a MySQL relational database ready to be analysed. 
All data are linked through the unique individual, house or household IDs, making 
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extraction of spatial and temporal data a mere case of entering the desired query in to 
MySQL. Nightly backups of the databases are automatically copied to a network-
attached storage system. The local server is a highly secured drive located at the field 
station icipe. 

Ethical clearance 
Ethical approval was obtained from the Kenyan Medical Research Institute (KEMRI); 
non-SSC Protocol No. 350. All participants are provided with information regarding 
the project outline, the ongoing HDSS procedures, the implementation of the 
intervention, and the collection and use of blood samples. Adults, mature minors and 
caregivers of children provided written informed consent in the local language 
agreeing to participation in the SolarMal project. 

Results and Discussion 

Resource allocation 
We describe a data collection and management platform which advances the 
electronic systems employed in HDSSs in developing countries a step further mainly 
by integrating mobile-device based data collection with a centralized real-time data 
system. This integration is one of the important improved aspects within the described 
HDSS, resulting in organizational and scientific advantages. HDSS sites often rely on 
paper-based conducting of questionnaires before the data is entered in to a digital 
database (Derra et al., 2012; Gyapong et al., 2013; Kahn et al., 2012; Pison et al., 
2014; Scott et al., 2012). The Android operating system is used on powerful tablet 
computers, allowing us to develop or deploy the desired software. In combination with 
the freely available mobile data collection software, ODK-Collect and OpenHDS 
mobile, collecting data on paper is set to become obsolete. This not only saves time 
because data can be entered by merely navigating through the digitalized form, also 
the process of double-entry of paper questionnaires in to a digital format is no longer 
necessary. Fewer field workers and staff are required to perform the same job as 
before. Besides the cost-effectiveness on the basis of reduced staffing, the use of 
stationery is reduced to a minimum amount. Fieldworkers are provided with computer 
tablets, tablet protection covers and a paper notebook for occasional notes. 
Stationary in the office is reduced to a flip board to manage discussions, and some 
paper notebooks and pencils. All data collection and management is fully digital. Thus 
where traditional paper based HDSSs would approximately use one A4 for updates 
on household information and one A4 for individual health information, a digitalized 
data collection with 25,000 people and 8,000 houses would save over 30,000 A4 
papers per survey. In the last five years there are sites where HDSSs have migrated 
from paper-based to some sort of digitalized entering system (Kouanda et al., 2013; 
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Odhiambo FO, 2012; Sacoor et al., 2013; Sifuna et al., 2014; Wanyua et al., 2013). 
However, none of these sites have linked data collection software in the field directly 
to a real-time database. At the moment of writing, there is at least one other collection 
system using computer technology to integrate collection, management and database 
utilities; the LINKS system is in some ways similar to the system described in this 
paper (Pavluck et al., 2014). LINKS also uses the ODK platform to collect data and is 
deployed at several sites in Africa. It is an easy implementable, cost reducing and 
efficient platform; however, the concept of a near real time database and its 
advantages is not exploited. Furthermore, there are examples of health data 
collection systems where PDAs and telephones are used, which is considerably more 
efficient than the paper based surveillances. However, they show major limitations in 
terms of user-friendliness and scalability (Anantraman et al., 2002; DeRenzi et al., 
2011). This is mostly caused by the obsolescence and limited compatibility of 
software and hardware used. 

Time and organizational efficiency  
Making use of the latest openly available technology, data collection in the field 
enables researchers and field workers to be time efficient, resulting in cost reductions 
and organizational efficacy. At most INDEPTH affiliated HDSS sites the Household 
Registration System [HRS] is used for managing demographic and health-related 
data, either by digitalizing filled in paper forms or direct digital entry in the field (Derra 
et al., 2012; Gyapong et al., 2013; Kouanda et al., 2013; Odhiambo et al., 2012; 
Wanyua et al., 2013). There are also examples of HDSS sites where a different data 
management system is developed relying on paper or non-paper based data 
collection (Kahn et al., 2012; Sacoor et al., 2013; Scott et al., 2012). The data 
collection system described in this paper has several advantages compared to the 
HRS in terms of organizational efficiency (Phillips et al., 2000). Firstly, traditional 
cleaning of data accumulating to an entity like an individual or household is largely 
removed. As the OpenHDS mobile application is a copy of the aggregated 
longitudinal database, in the application interface, adding data is only possible after 
selecting an existing entity. The constant uploading of collected data to the OpenHDS 
server and the synchronization of the database to the tablets makes reliable 
continuity of the data achievable. 

Secondly, the entire process of creating an electronic questionnaire, up to viewing the 
collected data in a server, is a manageable, time efficient task for any scientist once 
basic training has been provided. The XLS-Form authoring tool allows also non-
computer scientists to create a questionnaire with the option to apply the preferred 
constraints. Concepts in questionnaires such as skip logic, input constraints, 
structured data model and an entry concept from the start, which the HRSs lack 
(Phillips et al., 2000), have in our project let to only few forms of mistakes and errors 
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that were relatively easy to detect. In a sample of our data we detected some 
incorrectly entered dates of birth and names, however in the following visit this 
personal data is always checked and corrected appropriately. The number of 
corrected mistakes in demographic data after one data collection round was never 
more than one percent. Simply uploading the XLS- form within ODK-Collect on the 
computer tablet allows one to conduct the questionnaires in OpenHDS mobile. All 
questionnaires related to the core demographic data collection are standardized and 
configured to OpenHDS mobile. 

Thirdly, translating the real time database into a geographical database is a 
convenient way to assist FWs in real-time navigating their area of data collection. 
Demographic or disease-related data can be linked to a house location with its 
coordinate using the free Google Earth software. Tapping a house location on the 
device shows all the available household information. This combination of real time 
GPS navigation and fixed visiting points in space enables the FW to invest a minimal 
amount of effort in locating households at the study site. In this way fieldworkers of 
the HDSS manage to visit an average of approximately 15 houses and 40 people per 
day. The visiting of houses without a digital navigation platform can leave room for 
suboptimal walking routes. 

Finally, after data collection has finished and data content has been cleaned, records 
can immediately be used to guide other parts of the project that rely on data collection 
structure of OpenHDS. Also, where the analysis of data in current HDSSs can only 
commence after it is manually entered and cleaned, this system allows one to have a 
dataset ready for analysis shortly after collection. Data cleaning is performed on a 
daily basis and, with roughly 500 data entries per day the data manager usually 
finishes routine cleaning in less than two hours. Manually entering great amounts of 
questionnaires and post-hoc cleaning of entered data can take many more hours 
even if every single questionnaire is digitally entered and cleaned in one minute. 

One aspect of this particular HDSS is the facilitation of healthy team cohesion. The 
SolarMal project is a multidisciplinary project with multiple researchers collecting data 
on sociological, entomological and parasitological outcomes integrated with a HDSS. 
The complete project data and storage is linked to the OpenHDS infrastructure, there 
are twice-monthly meetings with all project staff to discuss data-related issues and all 
research areas make use of the data gathered through the HDSS in planning and 
carrying out data collection activities and subsequently analysing the data. 

Data quality assurance 
Organizational efficiency and data quality assurance go hand in hand, commencing 
from the OpenHDS platform where all data is centrally stored. Having the ODK-
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Aggregate and the OpenHDS server opens up the possibility for the data manager to 
check and clean the contents of data in a consistent way on a daily basis. This near-
real-time quality assurance is conducted on the level of the ODK-Aggregate by 
means of a customized list of queries looking for inconsistencies that are easily 
detectable, like double visited individuals. The more in-depth data cleaning is then 
possible at the level of the OpenHDS. The platform offers a range of tools to check, 
research and amend all aspects of the demography in a population. Another large 
advantage of this system is the automatic generation of unique IDs. Automating the 
assignment of IDs avoids duplication of individuals or multiple individuals with the 
same ID. All data collected in the project are related to one of these three levels of 
unique IDs, in this way it is safeguarded that data collected is attributed to the right 
person or house. Furthermore, by means of the KML file, the FW knows which house 
is visited. Selecting the house ID in the OpenHDS mobile application directly gives 
access to editing and attaching new data to the individuals living there. Demographic 
and other questionnaires can easily be filled in and attached to the right unique ID, 
thus reducing confusing data accumulation drastically. In addition, all houses are 
provided with a door sticker with a unique bar code and the house and household ID. 
Scanning the barcode confirms the physical presence of the FW at the house, so that 
the data entered truly correspond to the house that is visited and it is not possible for 
a FW to enter data remotely. Lastly, a web-based monitoring of the database to 
monitor the performance of FWs is under development. This monitoring allows the 
FWs and data manager to follow the performance of every FW. Monitoring of 
fieldworkers to increase data quality is not a new concept (Asangansi et al., 2013; 
Schobel et al., 2014). However, a near-real-time database that automatically displays 
FW performance is a convenience never described. Tracking the route walked by 
FWs, and observing the number of individuals and questionnaires filled in are 
currently the most prominent and helpful tools to detect fieldworker inconsistencies. 
More importantly, simple analysis of this data can shed light on interviewer bias, 
which can directly be discussed with the FW in question.  

Challenges and future research 
Despite the advancement of and improved accessibility of information technology, the 
development and implementation of the described infrastructure in low and middle 
income countries will meet obstacles and limitations. Primarily, the requirement of 
electricity and a computer server near the field work site are vital. Likewise, this 
operation only becomes truly feasible with a trained data manager who has advanced 
I.T. skills. During this pioneering phase, having access to or collaborating with a 
software developer is also necessary. So, although on one hand cost and time 
savings are made in the long term, setting up the initial facilities requires a significant 
financial investment and demands a well-designed strategic plan for the context of the 
HDSS. Another complementary investment is the training of staff involved in the 
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HDSS in how to handle the hardware and the software. Digitalization of the HDSS 
process from an existing paper-based system can lead to a drastic reduction of 
personnel, which facilitates the operational procedures of the HDSS. Furthermore, 
there are many HDSS currently using paper based systems that desire to migrate to a 
fully digitalized HDSS. This transition can introduce a whole set of unforeseen 
difficulties that rely on complex logistical issues which necessitate more data and 
software professionals (Wilcox et al., 2012). 
 
One of the biggest issues experienced throughout the past HDSSs, is dealing with 
migration of the population under study. Where the OpenHDS system allows this 
problem to be handled much more promptly than paper-based or obsolete household 
registration systems, it is still a challenge to make sure that internal migrations 
between households are correctly processed. Individuals can always be immigrated 
again, but the reintroduction relies on the name given by the person in question. We 
experienced that sometimes other names are given or the original name was 
incorrectly provided. 

Conclusion 
In regions that lack adequate organization to monitor demographic and health 
information little is known about population dynamics and the epidemiology of 
disease. It is these areas where health is often heavily compromised and where 
collection of specific health-related data can greatly improve our understanding of 
health issues. The HDSS within the SolarMal project provides an example of a user-
friendly infrastructure for field data collection in evidence-based research in low and 
middle income countries by making use of the currently available technologies. 
Whereas most HDSSs still work with paper based or obsolete digital systems, this 
paper describes a totally digitalized platform that allows fieldworkers and field 
managers to quickly and systematically keep clean data, make fewer mistakes with 
data collection and make use of a structured data model and entry concept from the 
start. Stakeholders such as government health officers, local administrators and 
scientists have easy access to real time data storage on a secure central database 
which enables them to conduct near-real-time quality assurance. Besides, remote 
progress monitoring allow scientists to quickly detect inconsistencies. Most 
importantly, this system could radically increase cost-effectiveness by saving time 
and money on stationery, data clerks, organizational costs and manual logistics.  
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Abstract 
Background: Many interventions against infectious diseases have geographically 

diffuse effects. This leads to contamination between arms in cluster-randomised 

trials. Pathogen elimination is the goal of many intervention programs against 

infectious agents, but contamination means that standard CRT designs and 

analyses do not provide inferences about the interventions’ potential to interrupt 

pathogen transmission at maximum scale-up. Methods: A generic model of 

disease transmission was used to simulate infections in stepped wedge cluster-

randomized trials of a transmission-reducing intervention, where the intervention 

has spatially diffuse effect. Simulations of such trials were then used to examine 

the potential of such designs for providing generalizable causal inferences about 

the impact of such interventions, including measurements of the contamination 

effect. The simulations were applied to the geography of Rusinga Island, Lake 

Victoria, Kenya, the site of the SolarMal trial of the use of odour-baited mosquito 

traps to eliminate Plasmodium falciparum malaria. These were used to compare 

variants in the proposed SWCRT designs for the SolarMal trial. Results: 

Measures of contamination effects were found to provide measures that could be 

assessed in the simulated trials. Assuming the spatial contamination inspired by 

analyses of trials of insecticide-treated nets against malaria. When applied to the 

geography of the SolarMal trial these measures were found to be robust to 

different variants of SWCRT design. Analyses of the likely extent of contamination 

effects supported the choice of cluster size for the trial. Conclusion: The SWCRT 

is an appropriate design for trials to assess the feasibility of local elimination of a 

pathogen. Estimates of the effects of incomplete coverage can be made by 

analysing the extent of contamination between arms in such trials, and also 

support inferences about causality. The SolarMal example illustrates how generic 

transmission models incorporating spatial smoothing can be used to simulate such 

trials for purposes of power calculation and optimization of cluster size and 

randomization strategies. The approach is applicable to a range of infectious              

  diseases transmitted via environmental reservoirs or via arthropod vectors. 
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Introduction 
Pathogen elimination is the goal of many intervention programs against infectious 
agents such as mass chemotherapy, vaccine programs, behaviour change to reduce 
contacts, and vector control. The objective of interrupting transmission in whole 
populations impacts the choice of trial study designs. Typical before-and-after 
comparisons of populations have no replication and no contemporaneous control, and 
therefore an effective sample size of one. If transmission continues post-intervention 
it is impossible to know whether this was the result of bad luck. If transmission is 
successfully interrupted with a before-and-after design, it is unclear whether the 
intensity of intervention was appropriate, a massive overkill, or whether the 
disappearance of the pathogen was fortuitous. In such studies, it is not possible to 
distinguish changes in transmission resulting from the intervention from stochastic 
fluctuations in transmission levels or, in the case where pathogens are endemic, from 
environmental variation. 

Randomization is critical if a study is to provide robust evidence of causality 
(Cartwright, 2010). Where assignment at the individual level is impossible, cluster-
randomized trials [CRT] are often the best way to derive causal inferences about 
infrastructural or behavioural interventions. Clustering may be needed due to the 
nature of the intervention or where effects at the community level are anticipated 
which would be averaged across the whole population in an individual-level 
randomized trial (Hussey et al., 2007; Mdege et al., 2012; Zhan et al., 2014). CRTs 
are therefore the usual approach to achieve replication and contemporaneous 
controls in trials of infectious disease interventions, which typically provide both 
individual protection to the immediate recipients and also induce community effects 
by reducing onward transmission. Cluster size is critical in such trials: if the clusters 
are too small then the effect of the interventions will be propagated beyond the cluster 
edge via the community effect throughout the whole population, biasing the difference 
between the trials arms towards zero; if the clusters are too large, and hence few in 
number, there are insufficient degrees of freedom to distinguish the intervention effect 
from residual stochastic variation among clusters. Only with a sufficient number of 
adequately-sized clusters is it possible to improve the inference from a standard 
before-and-after CRT. 

Unfortunately, standard parallel CRT designs cannot provide a rigorous test of 
whether local elimination of a pathogen is feasible. This requires scale-up to universal 
coverage over the whole area, which cannot be achieved if there are untreated 
control clusters. For this purpose we propose the use of stepped wedge cluster 
randomized trials [SWCRT], in which the intervention is introduced one cluster at a 
time until the whole area is covered. SWCRT elegantly combine the elements of 
group randomization, replication, contemporaneous controls, and complete coverage. 
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Population-based trials of infectious disease interventions do not directly estimate the 
efficacy of an intervention in reducing the rate of transmission that would be observed 
in a laboratory setting. This is both because interventions are generally not applied 
perfectly, and also because what is measured (the effectiveness) is generally the 
cumulative effects of recurrent transmission events, conditional on the pattern of 
contacts. Different effectiveness measures can be estimated in CRTs (and SWCRTs), 
either by comparing clusters before intervention with those that have already been 
intervened, or by comparing the whole study area with a non-intervention area (or 
possibly the same area, pre-intervention) (Halloran et al., 2010; Halloran et al., 1991). 
With an appropriate cluster size, it is also possible to estimate the range and gradient 
of the intervention effect across cluster boundaries. The latter is exemplified by an 
analysis of CRTs of insecticide treated nets [ITNs] (Binka et al., 1998; Hawley et 
al.,2003; Howard et al., 2000) for the control of malaria. These analyses confirm that 
if the central area of the intervention clusters is far enough away from the intervention 
boundaries, an estimate of the locally maximum intervention effect can be made, 
unaffected by contamination from control clusters. These studies also provide 
information about the effects of imperfect coverage that can be used to parameterize 
process models for predicting the impact of sub-optimal deployment in other settings. 

With SWCRT designs, while the individual cluster size may be approximately 
constant in terms of either area or population, the boundaries between the arms are 
constantly changing, and hence the size of congruent intervention areas, increases 
during the course of the study. Eventually the entire population receives the 
intervention, so the maximal intervention population is obtained (Wolbers et al., 
2012). Thus, the overall size of such a trial is likely to be very large, with the costs of 
intervention deployment large in relation to those of data collection. An adequate 
sample size in terms of the total number of individuals enrolled or volume of data is a 
given (as seen in our application example, the Solar Power for Malaria Control trial 
[SolarMal]) and so these trials are likely to be powered to allow analysis of the 
temporal pattern of effectiveness. In this spirit, we evaluate designs under the 
assumption of one large overall sample size, as per section 1, so that the assessment 
of power is a comparison of power and time dependent measures of effectiveness 
among designs rather than a calculation intended for estimation of absolute sample 
size needed to detect a given size of signal. 

Empirical power and sample size calculations for CRT and SWCRT designs have 
been proposed (Reich et al., 2012; Wolbers et al., 2012), but these do not directly 
address the issue of community effects, either as contaminating the control arm of the 
study or as potential target for measurement. Our approach, to address the impact of 
community effects directly, is compatible with that of Halloran, et al. (Halloran, 2012), 
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where each household in our simulation is a mini-community with its own population, 
and its own location relative to other mini-communities on the landscape. 

In this paper, simulations of SWCRTs are used to consider how these designs might 
be analysed to provide generalizable causal inferences about an intervention, giving 
particular consideration to the impact of variations in the cluster size relative to the 
extent of community effects. We use a generic model of disease transmission for the 
simulations, so that the results are broadly applicable to a range of infections 
transmitted either directly, via environmental reservoirs, or via arthropod vectors. Two 
new measures of effectiveness, inspired by analyses of CRTs of ITNs as protection 
against malaria infection, are proposed and their merits for inferring causality from the 
data produced in a SWCRT design are considered. The new measures are applied as 
an example to the design of a trial of the use of odour-baited mosquito traps [OBTs] 
to reduce mosquito population size, reduce biting intensity, and eliminate P. 
falciparum malaria from Rusinga Island, Lake Victoria, Kenya (SolarMal) (Hiscox et 
al., 2012). 

Methods 

Simulation model of infection 
The core of all simulations presented in this paper is a simple individually-based 
susceptible-infected-susceptible model of infection transmission. The model does not 
aim to reproduce the within-host dynamics of any particular pathogen, since each 
infection is recorded only at one point in time, and each individual is available to be 
infected again at the next time step. The model aims to capture the force of infection 
at each time step before, during, and after the intervention is introduced across the 
study area. Once the behaviour of the model is confirmed, the theoretical impacts and 
interactions of the pathogen’s initial incidence, the extent of the community effect, and 
the efficacy of the proposed intervention are explored via simulations of three study 
design schemes for assigning sequences to clusters of uniform physical size. For this 
discrete time model, incidence is defined as the proportion of individuals with disease 
recorded at the specified time step. Empirical power estimates and confidence 
interval widths of model predictions are used to evaluate the proposed experimental 
designs, in terms of both optimal design structure and most informative measures of 
effectiveness. From these general results, a preferred design structure is selected for 
the SolarMal trial (Hiscox et al., 2012). 

Discrete-time stochastic simulations of disease transmission are implemented using a 
one week time step and a population of simulated individuals indexed with 𝑖, where 
𝑁(𝑡) is the cumulative number of individuals having received the intervention for the 
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first time at time step 𝑡. The total number of individuals in the simulation is then 𝑁(𝑇), 
where 𝑇 is the last time step of the intervention. Simulated individuals are allocated to 
random point locations in a defined geometry. To initialize the simulation to a stable 
state, infections are independently assigned to each individual with a probability equal 
to a specified incidence, 𝑦0 for each week of the initial ten weeks of the simulation. 
For subsequent time points, 𝑡 > 10, new infections were generated via a two-state 
autoregressive [AR] process with distributed lag, such that, for each individual 𝑖 at 
time step 𝑡 the incidence is: 

     𝑦(𝑖, 𝑡) ~ Bernoulli (𝐸[𝑦(𝑖, 𝑡))    (1a) 

E [𝑦(𝑖, 𝑡)] = 1 – exp (-𝛽0yr (i, t))   (1b) 

where 𝛽0 , the transmission parameter, is the expected number of infectious contacts 
received by each host per time step; 𝑦𝑟(𝑖, 𝑡) is the infectious reservoir for each 
simulated individual at time step t defined as the percentage of infected members in 
its neighbourhood: 

    yr(i, t) = ∑ wτ
10
τ=6

∑ yj (j,t−τ)Ir(i,j)

∑ Irj (i,j)
   (2) 

and 𝐼𝑟(𝑖, 𝑗) is an indicator variable taking the value 1 if hosts 𝑖 and 𝑗 are located a 
distance less than 𝑟 from each other, and is otherwise 0. These weights 𝑤𝜏 (which 
sum to 1) specify a kernel defining the lag times varying between 6-10 time units 
(weeks). To achieve an approximately stable endemic state with strictly positive 
transmission, the parameter 𝛽0 is assigned a value based on the mean infectious 
reservoir across the whole study population at time 0, 

 

    𝑦𝑟(0)𝛽0 = −
𝑙𝑛 (1−𝑦𝑟(0))

𝑦𝑟(0)
     (3) 

leading to a susceptible-infected-susceptible model of infection dynamics with the 
generation-time distributed according to the lag. The generation-time, and spatial 
averaging of the infectious reservoir 𝑦𝑟(𝑖, 𝑡) over each neighbourhood is intended to 
approximate the spatial and temporal pattern of P. falciparum transmission. It is 
intended to approximate to proportionality the data that might be generated in a trial in 
which the outcome is incidence of clinical disease, which in turn is assumed to vary 
proportionately to the force of infection. A latent period equivalent to six weekly time 
steps is simulated in order to capture the delay between the infection process and 
clinical disease and the approximate generation time of the infection (this is a very 
simple approximation to the generation time of Plasmodium falciparum malaria). The 
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direct effect of the intervention is to reduce the force of infection in the intervention 
clusters, by the protective efficacy against infection, so that the individual and time-
specific transmission is modelled as 

𝑦(𝑖, 𝑡) ~ Bernoulli (𝐸[𝑦(𝑖, 𝑡))     (4a) 

E [𝑦(𝑖, 𝑡)] = (1 – exp (-𝛽0yr (i, t)(1- 𝐶𝑟(i, t)𝐸𝑠))  (4b) 

where 𝑦𝑟(𝑖, 𝑡, ) is defined as before and captures the state of the reservoir for each 
individual at each time step, 𝐸𝑠 is the efficacy of the proposed intervention in 
protecting users from any single infection event (i.e. the proportionate reduction in the 
probability that infection occurs); and 𝐶𝑟(𝑖, 𝑡) is the percentage of each individual’s 
neighborhood that has received the intervention at time 𝑡. 1 − 𝐶𝑟(𝑖, 𝑡)𝐸𝑠 thus 
represents the proportion of transmission that withstands the effect of the 
intervention.  

Since the simulation does not aim to capture effects of changing immune status in the 
course of the trial, i.e., the transmission parameter 𝛽 is held constant at 𝛽0 𝐸𝑠 can 
capture effects achieved by reducing the infectious reservoir with chemotherapy, 
vaccines, isolation of infectious cases, or reducing the vectorial capacity for vector 
borne diseases. 

Simulated trial designs for random geographies with uniform initial incidence 
To evaluate the impact of various initialization parameters, ten island landscapes 
were simulated. For each landscape, 1000 households were allocated to random 
point locations in a square grid of dimension 9 km × 9 km Four-thousand individuals 
were randomly assigned across these households, with each household constrained 
to have at least one member. Once the locations of these households were assigned, 
the neighbours of each inhabitant was calculated as all those individuals within a 
community radius 𝑟, the maximum physical extent of the postulated community effect. 
The landscape description was completed by dividing the grid into 81 equal-area (but 
not equal population) clusters and calculating a median location of all households 
within each cluster. 

Three possible CRT designs were simulated for each landscape: the random, the oil 
drop, and the hierarchical designs, represented schematically in Figure 4.1. For the 
first design, the order in which clusters are selected to receive the intervention was 
completely random, i.e., the intervention sequences for the random design are single 
permutations of the cluster numbering. For the second design, a cluster was initially 
selected at random from among the 81 possible clusters; clusters were then chosen 
at increasing median cluster distance from the initial cluster, forming a single 
intervention zone that increased in size until the grid was completely covered. 
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The third, hierarchical, design is a compromise between the random and the oil drop, 
motivated by the desire to retain comparators remote from the intervention while 
maintaining sufficient randomness not to bias experimental outcomes. For the 
hierarchical design, the grid was divided into nine equal-size meta-clusters, which 
were further subdivided into nine equal-size clusters. Hierarchical sequences were 
generated with the following algorithm: one cluster of the 81 was selected at random; 
all clusters within the same meta-cluster as the initial cluster were then selected at 
random until all had received the intervention and the meta-cluster was full. The next 
cluster was then chosen at random from the remaining 72 clusters. The procedure 
was repeated until all clusters in all meta-clusters on the grid had received the 
intervention. The relative randomness of these design structures can be stated in 
terms of the number of suitable sequences that could be generated for each design. 
A total of 81! possible sequences exist for the random design 81 possible sequences 

 

 

 

 

 

 

 

 

 

 
Figure 4.1: Schematics of three SWCRT design                    
sequences on a grid of 81 equal-area clusters. 
Clusters are numbered in the order of the design 
rollout sequence. In the diagram as shaded, 
clusters 1-20 have received the intervention. 
Clusters 21-81 have not yet received the 
intervention. All sequences begin at one randomly 
selected cluster. (A)Hierarchical SWCRT sequence: 
the sequence begins at one randomly selected 
metacluster; clusters within that metacluster are 
filled in a random order until the metacluster is 
complete, then the next metacluster is selected. (B) 
Oil Drop SWCRT sequence: the sequence begins 
at one randomly selected cluster and spreads 
across adjacent clusters until the grid is filled. (C) 
Random SWCRT sequence: clusters are selected 
at random until the grid is completely filled.  
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exist for the oil drop design, and (9)! × (9)! possible sequences exist for the 
hierarchical design. 

The simulated intervention was introduced to all households within a single cluster 
during each time step. The duration of the intervention introduction across the study 
was 81 time steps (weeks), 𝑇 = 81. The total number of individuals in the study was 
𝑁(𝑇), so that at each time t, some number N(t) of individuals moved to the 
intervention arm, which had total size at time t of ∑ (𝑡

𝜏=1 𝑁𝜏). The non-intervention arm 
was divided into those who have neighbours with the intervention and were thus 
susceptible to first order community effects, and a pure comparator group who were 
neither recipients of the intervention nor neighbours of any recipients of the 
intervention. The total number of individuals in these three groups, and the numbers 
of clinical cases occurring within each group, (intervened, non-intervened but nearby, 
non-intervened but remote) were tallied during the initialization period and at all 
subsequent time steps, as per Figure 4.2 in the supplementary information. 

Eighty simulations were run for each of 100 randomly generated cluster allocation 
sequences corresponding to the random, oil drop, and hierarchical designs for 45 
parameterizations comprised of five levels of initial pathogen incidence (10%, 20%, 
30%, 50%, and 80%), three levels of neighbourhood radius (0.5, 1.0, and 1.5 km ), 
and three levels of intervention efficacy (0%, 30%, and 80%) across ten randomly 
generated landscapes, where each landscape was a set of 1000 randomly distributed 
households across the island, with a total population of 4000 inhabitants. 

Simulated trials for non-uniform population densities and initial incidence 
If there are underlying spatial trends in the disease, correlated with the spatial pattern 
of the roll-out, this makes it difficult to interpret the results of a SWCRT. To evaluate 
the performance of the different designs in such situations, simulations were run 
assuming spatial heterogeneity in initial incidence, with a smooth spatial pattern in 

initial incidence described by bivariate probit distributions 𝑁(𝜇1, 𝜇2, [
1 𝜌
𝜌 1

]) and with 

the maximum incidence at a random location on the 9 km × 9 km grid. These spatial 
distributions of infection were simulated with a range of different spatial patterns of 
the roll-out of the intervention. 

Similarly, heterogeneity in host population density might also affect the efficiency of 
different designs. To evaluate this, simulations were run assuming a population 
concentrated at the grid edges, a distribution e.g. typical of many islands. Half of the 
households initially assigned to the 21 most central grid squares were reallocated to 
randomly sampled locations (and clusters) further from the centre than this, thereby 
depleting the population in the core region. For these simulations, 700 randomization 
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sequences corresponding to the three design structures were evaluated at one level 
of initial incidence of 20%, two levels of efficacy (30%, and 80%), one level of 
community radius (1 km) and a total population, 𝑁(𝑇), of 4000 individuals. Eight 
hundred simulations were carried out for each randomization sequence. 

Intervention effectiveness measures  
Following Halloran, Longini, and Struchiner (Halloran, Longini & Struchiner, 2010), a 
series of effectiveness measures 𝑒̂1(t), 𝑒̂2(t), ... 𝑒̂6(t), were computed from the results 
of the simulated trials. These include estimates of direct, indirect, and overall effects, 
and two novel measures, 𝑒̂5(t) and 𝑒̂6(t), that distinguish non-intervened individuals 
according to whether they are considered to be close to, or remote from the 
intervention at time t. These measures, on which we propose to base inferences 
about intervention effects are given in Table 4.1. To calculate these measures at each 
time step the population was classified into intervened, remote from the interventions, 
and neighbouring the intervention, but not yet intervened categories (see 
Supplementary Information Figure 4.1). Three of the effectiveness measures, 
𝑒̂1(t),𝑒̂2(t), and 𝑒̂3(t), involve comparisons with the baseline mean outcome at each 
time step, which is the incidence at the time step before the first introduction of the 
intervention to the island computed as: 

    𝑌𝑏 =
∑ ∑ 𝑦𝑖
𝜏=−1
𝜏=−𝑏 (𝑖,𝜏)

𝑏𝑁(𝑇)
    (5) 

where b is the number of time steps included in the baseline, 𝑦(𝑖, 𝑡) is the observed 
value of the outcome, (i.e., presenting with the disease or not), and 𝑁(𝑇) is the total 
population at risk 𝑒̂4(t), 𝑒̂5(t) and 𝑒̂6(t) are contemporaneous measures of effect that 
depend on the randomized assignments of clusters, and so are particularly relevant 
for causal inference. The standard contemporaneous direct effectiveness measure 
𝑒̂4(𝑡), directly compares the clinical case rate in the intervened and non-intervened 
populations at each time step. We propose a new direct effectiveness measure, 𝑒̂5(t) 
in Table 4.1, which restricts the contemporaneous comparator group to those hosts 
located remotely from the intervention. While 𝑒̂5(𝑡) estimates the direct effect of the 
intervention, as the trial proceeds this becomes the cumulated effect of many 
transmission events (so it is not an estimate of the efficacy 𝐸𝑠 used in the generation 
of the simulated trials). We also define a new indirect effectiveness measure, 𝑒̂6(𝑡), 
applying the same contemporaneous comparator group as 𝑒̂5(𝑡) in order to measure 
the influence of the intervention in the non-intervened group (i.e., the community 
effect). As before, remote is strictly defined as all members of the non-intervened 
group who have no neighbours in the opposite arm of the trial at a given time step; 
where neighbour status is determined from the given community radius, 𝑟, beyond 
which the spill-over effect of the intervention is anticipated to be negligible. 
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In practice, the community radius must be defined on the basis of observations from 
previous trials, or the biology of the pathogen. Randomness in the infection process 
cannot be separated from sampling variation. To enable comparison among 
effectiveness measures for the purpose of these simulations the population at risk 
was equivalent to the total simulated population 𝑁(𝑇), fixed at a value of 4000, and 
the data from all simulated individuals contributed to the effectiveness calculations. 
We further considered a range of 𝑟 values, where community membership for each 
individual is defined at each time step, 𝐼∗(𝑖, 𝑡) is an indicator, taking the value 1 if 
𝑥(𝑖, 𝑡) ≤ 𝑟 and 0 if 𝑥(𝑖, 𝑡) > 𝑟. 

Each of these six time-specific effectiveness estimates, evaluated at each time step 
during the simulation is of the form: 𝑒̂(𝑡)  =  1 −

𝑌1(𝑡)

𝑌0(𝑡)
 where 𝑌0(𝑡) and 𝑌1(𝑡) are risks or 

rates in the comparator and intervention group respectively. Corresponding to each of 
these measures, cumulative effectiveness measures can be computed as: 𝐸̂(𝑡) = 1 −

∑ 𝑌1(𝜏)
𝜏=𝑡
𝜏=0 /∑ 𝑌0(𝜏)

𝜏=𝑡
𝜏=0  where both the numerator and denominator are summed over 

all time points up to t. An overall value for each effectiveness measure is obtained by 
cumulating up to the end of the trial. 

Confidence intervals 
In a real trial ∑ 𝑌1(𝜏)

𝜏=𝑡
𝜏=0  and ∑ 𝑌1(𝜏)

𝜏=𝑡
𝜏=0  are estimated from proportions of tested 

individuals positive for the infection or disease. Estimates of the ratio of these two 
proportions, and hence of the cumulated, or overall effectiveness, 𝐸̂(𝑡) = 1 −

∑ 𝑌1(𝜏)
𝜏=𝑡
𝜏=0 /∑ 𝑌0(𝜏)

𝜏=𝑡
𝜏=0  (see above), can thus be made using logistic regression 

models, with random effect terms to allow for temporal variation, cluster differences in 
incidence, and if necessary for re-testing of the same individuals at repeated time-
points. Approximate model-based confidence intervals for the ratio of the two 
proportions and hence for the effectiveness, can then be made using the delta 
method (Oehlert, 1992). 

For comparison of simulated trials, the distribution of effectiveness measures and 
their confidence intervals were calculated by carrying out 1,000 independent 
simulations of each trial and analysing the empirical distributions of the outcomes. 

Power, design and sequence evaluation 
A characteristic of the SWCRT design is that, as the membership of the populations 
shifts from non-intervened to intervened at each time step, so does the power of the 
chosen effectiveness measure. Point estimates were made from the simulations for 
each of the six effectiveness measures, and the power of each design was estimated 
for each time step. In each case the same radius, 𝑟, was used for defining neighbors 
in the calculation of effectiveness measures 𝑒̂5(𝑡) and 𝑒̂6(𝑡) as was used in 
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generating the simulations(in an actual field trial, the effects of using different radii to 
define neighbours will be analysed in order to estimate the best fitting 𝑟). Empirical 
two-sided 90% confidence intervals of direct comparisons with baseline 𝑒̂1(𝑡), 𝑒̂2(𝑡), 
and indirect comparison with baseline 𝑒̂3(𝑡) , and contemporaneous 𝑒̂4(t) 𝑒̂5(t) and 
𝑒̂6(t) effectiveness measures were drawn at each time step across all simulations. 
Results for the randomly generated sequences corresponding to the three different 
types of designs are ranked inversely by confidence interval half-width. 

We derived the power estimates by comparing simulation results run under the null 
(𝐻𝑜 : 𝐸𝑠 =0) and two alternative hypotheses (𝐻𝑜 : 𝐸𝑠 = 0.30 and 𝐻𝑜 : 𝐸𝑠 = 0.80). 
Specifically, the 95% quantile of the empirical null distribution was taken as an 
estimate of the critical value corresponding to a type I error of ten percent (𝛼 = 10%). 
This value directly corresponds to 𝛽𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 under the alternative hypothesis. In addition 
to the overall power of a design structure, the value of β for each effectiveness 
measure and time step was calculated as the area-under-the-curve to the left of 
𝛽𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 under the alternative (empirical) distribution. The power for each effectiveness 
measure at each time step was then calculated as 1- 𝛽. 

All simulations were carried out at the High Performance Computing Core at the 
University of Basel in R version 3.02. 

Simulated trial design for the SolarMal trial 
A baseline health and demographic surveillance survey [HDSS] was carried out from 
May - July 2012 on Rusinga Island. Four thousand-sixty-two households with a total 
membership of 23,337 inhabitants were enumerated. Approximately 22% of the 
residents were diagnosed via rapid diagnostic tests as infected with P. falciparum. 

The cluster size for the trial was matched to the logistical limit of the number of 
households that could receive the intervention within a week (i.e., 50). Thus, in 
contrast to the simulations of regular grids, in the application the clusters were of 
approximately equal population but not equal geographic size. A minimal spanning 
tree algorithm (Hahsler et al., 2007), used to solve the classical travelling salesman 
problem, provided an optimal one-way path among households across Rusinga. The 
4062 households along the path defined by the minimal spanning tree were then 
counted off along the path into 81 clusters; 12 of which are randomly selected to be 
assigned a total of 51 households, the remainder having 50 households assigned. A 
large number of randomizations, each consisting of an ordering of the 81 clusters 
thus defined, were randomly generated, corresponding to either hierarchical, oil drop 
or random SWCRT designs. For the hierarchical designs, contiguous sets of nine 
clusters were amalgamated into single meta-clusters (see Supplementary Information 
Figure 4.2). A trial, involving roll-out of one cluster per week, and based on each 
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randomization was simulated, with each of the 23,337 individuals on the island 
modelled as a single stochastic element. At each time step, individuals were identified 
within one of three groups: intervened, non-intervened but within the community 
radius of at least one intervened individual, or non-intervened beyond the community 
radius of any intervened individual, and each of the effectiveness measures listed in 
Table 4.1 was computed. 

To classify individuals into these groups, pairwise great-circle distances among all 
households were calculated, and used as a basis for identifying all the neighbours 
within the community radius, 𝑟, for each individual within each household. A value of 
1 km for 𝑟 was used, based on the approximate scale of the effects in the trials of 
ITNs (Binka et al., 1998; Hawley et al., 2003). The percentage of infections 𝐼𝑟(𝑖, 𝑗) 
averaged across the individuals neighbourhood were fed into the calculation for the 
infective reservoir at each time step. Likewise, intervention coverage rates 𝐶𝑟(𝑖, 𝑡) for 
the neighborhood of each house were calculated for each time step and fed into the 
effectiveness calculation (Equation (4)). 

Analysis of effectiveness for the simulated trial design for SolarMal and 
sequence selection 
Point estimates and empirical 95% confidence intervals of the six direct and indirect 
effectiveness measures were drawn for each time step from a set of 1000 
independent replications of the simulated trial. The duration of utility of a given 
effectiveness measure is also of interest and is defined as the number of weeks from 
the start of introduction of the OBTs until the CI-width of an effectiveness measure 
increased to 10%. A further ranking was made in order of total area under the CI-
width versus time step curve until from the 18th to 65th week of the 81-week rollout 
(complete coverage). For this ranking procedure, confidence interval [CI] widths from 
the first and last two months were discarded as either the treatment or comparison 
groups were tending to zero and the effectiveness measures began to fluctuate 
wildly. Among those sequences with good statistical properties, additional sociological 
constraints were applied to select a group of sequences acceptable to a community 
stakeholder council; in particular, the intervention schedule should be constrained so 
that entire villages, receive the intervention within six months. 

Results 

Model confirmation and explanation of the interrelationship between 
effectiveness measures 
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Figure 4.2: Example single random SWCRT sequence runs of the transmission 
simulator. Incidence of clinical events in intervened (red) and non-intervened (blue) 
populations as modelled by the transmission simulator for three levels of community 
radius, (A) 0.5 km, (B) 1.0 km, (C) 1.5 km. The cluster width is held constant at 1 km, 
corresponding to an area of 1km². The transmission model input efficacy is 80%. During 
the first 40 time steps of each simulation the incidence of clinical events is an ARMA 
(auto-regressive moving average) process that oscillates around the initial incidence 
value of 20%. The intervention commences at time step 41 and from time steps 41 to 
121, the incidence of the pathogen decreases sharply in both arms due to the direct 
effect of the intervention and the community effect. The community effect 
  has more impact at greater radii. 

 

Comparison of the average incidence in the intervention arm with that in the non-
intervention arm in illustrative simulations (Figure 4.2) clearly indicate that the 
transmission simulator can capture the main features that we would expect of a trial 
that succeeds in interrupting, or near-interrupting transmission of a pathogen. There 
was considerable variation in the incidence in the control arm in the first part of the 
intervention period (following time step 40). Only a very small number of individuals  
were initially included in the intervention arm. The decrease in incidence in the  
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intervention arm was then rapid, and only after about 20 further time points was an 
effect on the non-intervention arm evident. As the intervention was rolled-out further, 
the infection was almost eliminated from the intervention arm, while the incidence in 
the control arm became highly variable between time points, presumably as a result 
of the reduced sample size in this arm. Incidence in the intervention arm continued to 
decrease, even once 100% coverage was achieved, eventually reaching zero. This 
reflected the delay in the system resulting from the assumed generation time of the 
infection, together with the fact that the final extinction event was stochastic. 

The effectiveness measures, computed time-specifically from a single theoretical 
random design simulation in which 𝑦(0)  =  0.2, 𝐸𝑠  =  0.8, and 𝑟 =  1km are shown in 
Figure 4.3. During the initial ten time steps after the intervention introduction, the 
direct effectiveness measures 𝑒̂1(𝑡), 𝑒̂4(𝑡) and 𝑒̂5(𝑡) were much lower than the 
efficacy in preventing infection since many of the infections at the start of the 
implementation were received before the hosts joined the intervention arm. These 
infections were initially pre-patent, that is, pre-symptomatic). Once the pre-patent 
period was exceeded, the direct effectiveness estimates rapidly reached and then 
exceeded the efficacy against infection, reflecting the cumulative effect on multiple 
generations of parasites. 

The indirect baseline 𝑒̂2(𝑡) and direct contemporaneous 𝑒̂4(𝑡) effectiveness measures 
diverged quickly at the beginning of the simulation and converged at the end the 
simulation run. The baseline measure 𝑒̂2(𝑡) was initially much lower than the direct 
effectiveness, and first climbed steeply towards the end of the simulation, when most 
residual non-intervention areas were close to the intervened clusters. Reflecting the 
fact that the non-intervention zones were relatively infrequent at the start (when there 
was a low indirect effect) but were frequent at the end (when there were few 
infections to avert), the addition of the indirect effect into the effectiveness calculation 
made little difference, so that when direct and indirect effects (computed by 
comparison with baseline) were added together, the effectiveness profile was similar 
to that for the direct effect alone. Proposed contemporaneous indirect 𝑒̂6(𝑡) 
effectiveness measure initially climbed quickly (within the first two months of rollout) 
to its maximum value and then oscillated due to sample size fluctuations as new 
clusters were brought into the intervention arm.  

The overall effect 𝑒̂3(𝑡), computed by comparison with baseline, was dominated by 
the effect of scale-up of the intervention and therefore increased approximately 
linearly with time. Cumulation of the numerators and denominators of the 
effectiveness estimates led to smoother curves than those in Figure 4.3, each of them 
tending towards a clear value at the end of the intervention. Cumulation did not 
change the inferences to be made by examining each measure independently. 
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Results from design and landscape simulations 
In the simulated trials, regardless of initial parameterization or landscape (uniform or 
random hotspot, random geography or central depletion geography), the simulated 
interventions in all cases had a cumulative impact of eliminating the pathogen by the 
end of the roll-out. Details of the effectiveness measures and power computed from 
the simulations are given in the Supplementary Tables. In all cases, the efficacy 
estimates and power of comparisons against baseline measures is high because the 
sample size of the comparator group is the largest possible - i.e. the entire study 
population. 

For all design structures and radii of effect, 𝑟, values of initial incidence, 𝜖5 are higher 
than the other measures of contemporaneous effectiveness (i.e., the gold line is 
always above the light green and dark green lines in Figure 4.4). This is because 𝜖5 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 4.3: The relationship between the six effectiveness measures from Table 4.1 
during a single random SWCRT sequence run of the transmission simulator. 𝑒̂1(𝑡) 
(filled green circle) is a direct comparison between outcomes in the intervened group 
versus the status at baseline, 𝑒̂2(𝑡) (filled pink triangle) is a direct comparison between 
outcomes in the non-intervened group versus the status at baseline, and 𝑒̂3(𝑡) (filled 
blue square) is an overall comparison of the entire study area versus baseline. 
𝑒̂4(𝑡) (bright green square) is a direct comparison between the intervened and all non-
intervened, 𝑒̂5(𝑡) (gold circle) is a direct comparison between the intervened and those 
remote from the intervention, 𝑒̂6(𝑡) (dark green triangle) is a direct comparison    
 between non-intervened populations close to and remote from the intervention. 
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compares intervened individuals with only those naive individuals remote from any 
contamination effects, and for whom therefore the intervention effects are minimal. In 
contrast, the comparator group for 𝜖4, the conventional CRT effectiveness measure, 
contains individuals influenced by the spatial effect of the intervention and so 
measures an effect diluted by contamination. 𝜖6, measures the magnitude of this 
contamination effect, and so increases in the cases where 𝜖4 and 𝜖5 diverge. Similar 
trajectories of these measures over the time were observed for each of the three 
designs, but the effectiveness increased much more steeply over time when the initial 
incidence was low, and increased only gradually with 𝑦0 = 80%. 

The optimal cluster size is one in which the direct and contamination effects are 
clearly separable, so an appropriate cluster size achieves high values of 𝜖6 and large 
differences between 𝜖4, and 𝜖5. In our simulations this corresponds most closely to 
clusters of width equal to the radius of the contamination, 𝑟. With clusters larger than 
this (i.e. the analyses with 𝑟=0.5 km, equivalent to half the cluster width) 𝜖6, remains 
low, because there is relatively little contamination effect. With small clusters relative 
to the radius(i.e. the analyses with 𝑟=1.5 km) the estimated direct effect of the 
intervention 𝜖4, corresponding to the conventional result, is much lower than 𝜖5 in 
most of the simulations (Figure 4.4), because the effect of the intervention spreads 
out across the whole surface. 

Particular interest lies in the statistical power of the contemporaneous comparisons 
during the roll-out, where the results are not easy to predict heuristically, because the 
relative power of the measures is constantly varying. Analyses considering a single 
time point at time step 60 (Table 4.2), indicate that among the contemporaneous 
measures, the one employing the remote comparator, 𝑒̂5(𝑡), is generally of higher 
power than the direct comparison of intervened and non-intervened naïve clusters 
𝑒 4(𝑡) (Table 4.2 At 𝑟 equal to the cluster width, 𝑒̂4(𝑡) is the most powerful out-come, 
followed by 𝑒̂5(𝑡), then 𝑒̂6(𝑡).  

At higher 𝑟 (corresponding to a greater degree of spatial smoothing of the intervention 
effects), 𝑒̂4(𝑡) generally has lowest power. In general, power decreases with 
increasing baseline incidence, 𝑦𝑟0  and correlates positively with intervention efficacy. 
While the power of outcome 𝑒̂6(𝑡) does not show a clear relationship with the design 
type, the power of 𝑒̂4(𝑡) and 𝑒̂5(𝑡) is generally somewhat higher with the oil-drop 
design, followed by the hierarchical, and then the random order, though the 
differences are small. 
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  Figure 4.4: The three contemporaneous effectiveness measures over time: 𝜖4 (bright green      
  square), 𝜖5 (gold circle), 𝜖6 (dark green triangle). The horizontal lines correspond to the simulated  
  efficacy 𝐸𝑠 equal to 30% 
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H 
i 
e 
r 
a 
r 
c 
h 
i 
c 
a 
l 
 

𝑟 𝑦𝑟(0) 𝑒 4(𝑡) 𝑒 5(𝑡) 𝑒 6(𝑡) 
0.5 0.10 0.99 0.90 0.51 

 
0.20 0.99 0.90 0.52 

 
0.50 0.98 0.83 0.41 

 
0.80 0.85 0.59 0.18 

1 0.10 0.83 0.82 0.67 

 
0.20 0.87 0.74 0.56 

 
0.50 0.81 0.64 0.45 

 
0.80 0.53 0.45 0.29 

1.5 0.10 0.58 0.95 0.91 

 
0.20 0.59 0.86 0.78 

 
0.50 0.50 0.62 0.51 

 
0.80 0.28 0.45 0.37 

O 
i 
l 
d 
r 
o 
p 

 

𝑟 𝑦𝑟(0) e 4(t) 𝑒 5(𝑡) 𝑒 6(𝑡) 
0.5 0.10 0.99 0.93 0.53 

 
0.20 0.99 0.94 0.54 

 
0.50 0.98 0.88 0.41 

 
0.80 0.86 0.64 0.18 

1 0.10 0.91 0.84 0.64 

 
0.20 0.93 0.82 0.59 

 
0.50 0.88 0.74 0.48 

 
0.80 0.60 0.52 0.28 

1.5 0.10 0.75 0.84 0.63 

 
0.20 0.77 0.82 0.61 

 
0.50 0.69 0.76 0.51 

 
0.80 0.41 0.52 0.31 

R 
a 
n 
d 
o 
m  
 

 

𝑟 𝑦𝑟(0) e 4(t) 𝑒 5(𝑡) 𝑒 6(𝑡) 
0.5 0.10 0.98 0.89 0.52 

 
0.20 0.99 0.90 0.52 

 
0.50 0.97 0.83 0.40 

 
0.80 0.84 0.58 0.18 

1 0.10 0.80 0.80 0.66 

 
0.20 0.84 0.73 0.58 

 
0.50 0.79 0.63 0.45 

 
0.80 0.50 0.44 0.29 

1.5 0.10 0.54 0.94 0.88 

 
0.20 0.54 0.79 0.74 

 
0.50 0.45 0.56 0.48 

 
0.80 0.25 0.41 0.36 

 

Table 4.2: Power of three contemporaneous 
effectiveness measures at week 60, midway through 
the intervention rollout, type I error = 10 % and 
efficacy 𝐸𝑠 of 30%. 

The power of both 𝑒̂5(𝑡) and 𝑒̂6(𝑡) both 
increase throughout the roll-out in most of 
the settings shown in Figure 4.5 and 
Figure 4.6, though in some cases there is 
a loss of power towards the end, when the 
comparator groups become small. The 
primary drivers of a measure’s power are 
thus the efficacy, the initial incidence and 
community study radius, regardless of 
design, with results becoming less 
consistent at community radii of greater 
than half the cluster diameter. 

Results of simulations for the SolarMal 
project 
All three study design structures were 
simulated across the SolarMal landscape, 
with similar relationships seen among the 
designs simulated across the theoretical 
grid. The overall evaluation with the 
project team of both operational and 
statistical considerations led us to 
conclude that the best design for the 
SolarMal project would be the hierarchical 
SWCRT. The logistics of the SolarMal 
project were such that one meta-cluster, 
comprising nine clusters, could be 
completed on average every three months 

Hierarchical sequences were ranked 
inversely on the basis of the maximum 
confidence interval width for 𝑒̂5(𝑡) 
between simulation time steps 60 and 
100. Approximately 1/3 of the hierarchical 
sequences examined met this minimal 
criteria.  
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A further sociological constraint, that members within a single village receive the 
intervention within a six month time frame was considerably more restrictive. From a 
total of 10,000 sequences evaluated, 55 met this requirement; Furthermore, each 
meta-cluster was to have equal chances of being selected first for the intervention 
lottery; this restraint reduced the final set of acceptable sequences to 27. Examination 
of the CI-width-vs-time graphs showed wide variation among sequences that can be 
directly related to the geography of Rusinga. Certain geographic features reappear 
consistently in the effectiveness graphs as the design is rolled out. For example, 
when meta-cluster VIII, located at the base of the peninsula in the north east corner of 
the island, appears in the last half of a randomization sequence, the precision of the 
estimated effectiveness rapidly decreases, see Figure 4.7. One should expect similar 
geographic signatures to be found in future geographically informed trial designs. 

Discussion 
CRTs are widely used to evaluate interventions against infectious agents (such as 
hygiene or vector control measures) because of well-known ethical and logistic 
limitations of individually randomized RCTs in evaluating health interventions that are 
applied at the level of the population or group (Hussey et al., 2007). The present 
study proposes two extensions to the usual CRT design. 

Firstly, we propose that the collection of outcome data should include zones where 
contamination is likely to occur. Contamination between intervention and control arms 
is generally seen as something to avoid in CRTs, leading to attempts to separate the 
study arms with buffer zones (Hayes & Moulton, 2009). However CRTs with buffer 
zones provide information only about the effects of a fixed level of coverage and of a 
single cluster geometry. It can be difficult to exclude the possibility that contamination 
substantially biases estimates of effect, since this bias, in the general case, cannot be 
estimated from the trial data. Rather than struggling to avoid the impact of such 
unknown community effects, we propose that explicit measurement of the treatment 
effectiveness in the boundary zones between intervention and control areas should 
be used to estimate these effects in space and time. Zones of imperfect coverage are 
needed if inferences are to be made about the radius of effect, the relative 
magnitudes of individual and community level effects, or the temporal dynamics of 
spill-over effects. 

Secondly, we note that local elimination of a pathogen is a single all-or-nothing 
outcome at the level of whole area, so an empirical refutation of its feasibility requires 
scale-up to universal coverage and cannot be achieved if there are untreated control  



 
Chapter 4 

80 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 

 

 

 
Figure 4.7: Sequence Selection. Three hierarchical sequences applied across Rusinga Island for two 
levels of intervention efficacy, 30% and 80%. Results are colour coded by the meta-cluster 
membership. Reading from the left the meta-cluster sequences are [V, II, VII, III, IV, VIII, I, VI, IX], [V, 
IV, IX, III, VI, I, VIII, V, II], and [IV, VII, II, IX, III, VIII, I, V, VI]. Coverage intervals widen upon 
introduction of the intervention to meta-cluster VIII, located at the base of the peninsula in the north 
east of the island, in the right two sequences. Coverage intervals were off the scale for the last meta-
cluster of sequence 298. Of the three cluster sequences presented, only sequence 296 met the 
criteria for entry into the pool for the SolarMal randomization sequence selection lottery (coverage 
intervals of the primary effectiveness measure,𝜖5, less than 10% from time points 60 to       
   100 and no single village roll-out  greater than six months’ duration). 
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clusters. If elimination proves not to be achievable, it is important to be able to 
estimate how near was the attempt to success. Conversely, elimination may be 
achievable at some coverage less than the maximum that can be reached, in which 
case there is a need to identify this coverage, and to understand what would be 
needed elsewhere. This specific requirement to consider the impact of maximal 
coverage over a wide area provides a strong rationale for adopting SWCRT designs 
for addressing the feasibility of pathogen elimination, additional to the questions of 
power, bias and efficiency usually considered in the debate between proponents of 
parallel designs and of SWCRTs (Hemming et al., 2013; Hemming et al., 2015; Kotz 
et al., 2012a, 2012b, 2013). 

It is often difficult to gain acceptance for CRTs in operational settings because 
program managers generally aim for complete coverage (Hemming et al., 2013) and 
hence tend to evaluate programs using simple before and after designs. SWCRT 
designs are under-exploited because program implementers often do not appreciate 
the importance of randomization, which is critical for inferring causality. They have 
more immediate concerns in getting programs off the ground, and only appreciate the 
need for inference about the effects of the intervention after the event (Pearson et al., 
2010). The SolarMal trial is one situation where this is not the case, and provided an 
opportunity to implement a widespread intervention trial with careful attention to 
design. 

The evaluation of the distances over which community effects operate in the ITN trials 
(Binka et al., 1998; Howard et al., 2000) provides a basis for evaluating the sizes for 
estimated community radii for the SolarMal trial, since we assume that community 
effects of OBTs and of ITNs result from the same phenomena of mosquito dispersion 
while foraging for food (nectar and blood) and oviposition sites. In a larger malaria 
control trial in Asembo, close to the SolarMal site, effects were found for distances up 
to 900 m from cluster boundaries (Hawley et al., 2003), while on the Kenyan coast 
significant effects persisted for distances up to 1.5 km (Howard et al., 2000). Our 
simulations suggest the precision of the effectiveness measures is robust to 
variations in community radius above 1 km and that clusters with radii greater 1 km 
should be used in such trials. Rusinga Island is, however, large enough for only about 
nine clusters of this size, and nine clusters would not provide a sufficient degree of 
replication for a standard CRT. 

The use of a stepped wedge means that much smaller individual clusters can be used 
than in a conventional parallel design of CRT, since as the intervention is rolled out, 
adjoining clusters are assigned to the intervention, and the radius of intervened areas 
grows. This also motivated us to consider the oil-drop design, in which the 
intervention spreads out across the whole area from a single randomly chosen point. 
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While this approach is unbiased over repeated sampling, correlation between the 
geographical pattern in disease incidence and the roll-out pattern is likely to make 
such a design difficult to interpret. Conversely, for the SolarMal trial a completely 
random order of assignment of the 81 clusters would have led to intervened areas 
that are too fragmented for much of the period of scale-up (and also violated the 
community’s desire to limit asynchronicity of introduction within a village). The 
hierarchical SWCRT with nine metaclusters each divided into nine clusters, 
represents a compromise that may increase the information obtainable from analyses 
of the spatial effects of the OBTs across cluster-boundaries, while reducing the risk of 
a strong correlation between baseline disease incidence and roll-out pattern. 

Further analysis is needed to determine how to optimize such designs given this 
trade-off between the benefits of independent allocation of clusters and optimal 
geometry of the intervened areas. It is not obvious how to assess the implications for 
causal inference of the dependent assignment of clusters in the hierarchical and oil-
drop designs. Since the geometry of the intervened areas is time-dependent, the 
seasonality of the disease is also relevant, and although our limited analysis did not 
find substantial effects of spatial heterogeneity in population density or disease 
transmission on the precision of the effectiveness measures, these remain factors 
that should be considered. For the SolarMal study, we did not aspire to achieve 
optimality and a number of possible designs and sequences were simulated. Various 
metrics of the power of each effectiveness measure to estimate the spatial effect of 
the intervention on clinical malaria incidence were assessed, and a set of the 
preferred sequences of the hierarchical design was presented to community 
representatives as alternatives, and the one to be implemented was drawn by lot. 

The new effectiveness measures that we propose for quantification of both individual 
and community level effects at different levels of proximity to the intervention will form 
the basis of statistical models of the effects of varying coverage in space and time. An 
extension of such empirical time- space- models will be to include time-weighted lags 
in the effects of coverage, akin to the modelling of SWCRT proposed by Hussey and 
Hughes (Hussey et al., 2007). This will allow generalized prediction of the likely 
impact of different patterns of coverage of OBTs in space and time. The broad 
principles of the analysis will be similar for different outcomes: densities of host-
seeking mosquitoes (as measured by sentinel OBTs), parasite positivity (by rapid 
diagnostic test), malaria fever incidence, and all-cause mortality. Another extension of 
this work would be to develop analytical formulae for interval estimation of the novel 
outcome measures, and to assess their nominal coverage against intervals obtained 
5as in this paper) from repeated simulations, however in practice, the model-based 
confidence intervals described above, or sampling-based approaches such as 
bootstrapping or Bayesian Markov chain Monte Carlo provide alternatives to the 
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development of such bespoke methods. Sampling-based approaches are especially 
attractive since they can easily be applied to extended models incorporating lags and 
covariates. A program in R that can be used to simulate trials with different values of  
𝑦(0), 𝐸𝑠, 𝑟, and 𝑁(𝑇) appears in the supplementary material. This program could be 
adapted both to consider further effects of spatial and temporal heterogeneity in risk, 
and also for the design of other trials with different geographies. 

Conclusion 
Contamination between arms in CRTs can be a source of information about the 
effects of incomplete coverage, and can provide supporting evidence for causal 
inference. It follows that trials should be designed with such analyses in mind, and 
contamination should not be seen simply as a problem to be avoided. Where scale-up 
to complete coverage is required, as in assessments of the feasibility of local 
elimination of a pathogen, the SWCRT is an appropriate design. This leads to 
temporal changes in which zones are affected by contamination. The SolarMal 
example illustrates how generic transmission models incorporating spatial smoothing 
can be used to simulate such trials for purposes of power calculation and optimization 
of cluster size and randomization strategies. The approach is applicable to a range of 
infectious diseases transmitted via environmental reservoirs or via arthropod vectors. 
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Abstract 

The health and demographic surveillance system on Rusinga Island, Western 

Kenya, was initiated in 2012 to facilitate a malaria intervention trial: The SolarMal 

project. The project aims to eliminate malaria from Rusinga Island using the 

nationwide adopted strategy for malaria control (insecticide-treated bed nets and 

case management) augmented with mass trapping of anopheline mosquitoes. The 

main purpose of the health and demographic surveillance is to measure the 

effectiveness of the trial on clinical malaria incidence, and to monitor 

demographic, environmental and malaria-related data variables. By the end of 

2014, the 44 km² island had a population of approximately 25,000 individuals 

living in 8746 residential structures. Three times per year all individuals are 

followed up and surveyed for clinical malaria. Following each round of surveillance 

a randomly selected cross section of the population is subject to a rapid diagnostic 

test to measure malaria. Additionally, extensive monitoring of malaria vectors is 

performed. Data collection and management is conducted using the OpenHDS 

platform, with tablet computers and applications with advanced software 

connected to a centralised database. Besides the general demographic 

information, other health related data is collected that can be used to facilitate a 

range of other studies within and outside the current project. Access to the core 

dataset can be obtained through the INDEPTH Network or the corresponding 

author.  
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Why was the HDSS set up? 
A malaria intervention study based on removal trapping of anopheline mosquitoes in 
addition to the Roll Back Malaria [RBM] control strategy (RBM, 2013) was initiated on 
Rusinga Island, Western Kenya in 2012. Mosquito traps baited with a synthetic lure 
that mimics human odour are placed at the household level to reduce mosquito 
population density and, as a consequence, lower the intensity of malaria transmission 
(Hiscox et al., 2012). Traps are powered by solar energy, which is also used to 
provide electric light and mobile phone charging points for the household members. 
The combination of solar energy with malaria control led to the project being named 
SolarMal. A health and demographic surveillance system [HDSS] was established to 
facilitate continued monitoring of demographic, and particularly malaria-related, 
variables. In addition, the complex roll-out logistics of the SolarMal intervention 
required accurate and up-to-date information about the population and their housing. 
Although the main objective of the HDSS is to measure the effectiveness of the vector 
control intervention on health and population outcomes, the collected demographic 
and malaria specific data may be used for validation of epidemiological models as 
well as entomological and parasitological research. The most prominent objectives 
facilitated by the HDSS are: 

(i) Longitudinal monitoring of demographic dynamics to provide a 
robust framework for research. 

(ii) Studying the epidemiology of malaria, 
(iii) Analysing the effect of the SolarMal intervention on malaria 

prevalence, transmission and mosquito abundance.  
(iv) Measuring the interaction between the intervention and existing 

approaches to malaria control, and environmental and socio-
economic variables. 
 

The SolarMal HDSS collects demographic information, malaria related variables and 
other information on factors that are likely to influence malaria epidemiology and 
malaria mosquito ecology. The HDSS provides different disciplines within the project 
with an up-to-date population database. The entomological and parasitological 
experimental designs, as well as the logistics for rolling out the intervention, rely on 
the continued updating of the study population (WT, personal communication.). An 
important component of SolarMal is the inclusion of sociological studies and the 
population database enables social scientists to conduct targeted sociological 
research. Since 2012 an extensive baseline survey and 8 subsequent follow up 
rounds have been conducted. The roll out of the intervention traps started in June 
2013 and was completed in May 2015, at that point covering all households on the 
island. 
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Figure 5.1: The upper Figure shows Africa with 
Kenya highlighted dark grey in the middle, Kenya 
with Homa Bay County highlighted; lower Figure 
depicts Homa Bay County with Rusinga Island in 
dark grey. 
 

Where is the HDSS area? 
Homa Bay County is located in 
Western Kenya at Lake Victoria, within 
the former province of Nyanza, 
exposed to the south of the Winam 
Gulf. Rusinga Island is situated 
between latitudes 0°21′ and 0°26 
South, and longitudes 34°13′ and 
34°07’ East (Figure 5.1). A causeway 
connects the island with the mainland. 
Rusinga Island stretches over 44 sq. 
km with an elevation between 1100 m 
and 1300 m above sea level. Mean 
daily temperatures vary from 16 to 34 
degrees Celsius with higher 
temperatures in the dry seasons that 
occur between June-October and late 
December-February. Seasonality in 
precipitation is experienced as one 
long rainy season ranging from March 
into May (average of 198 mm per 
month in the period 2012-2014) and a 
short rainy season from October to 
early December (average of 132 mm 
per month). The local administration 
comprises of two chiefs, each 
governing one part of the island; 
Rusinga East and Rusinga West.  

The local authority divided the island 
into eight subzones containing a total 
of 36 villages and about 10 beach 
communities (Figure 5.2). For the 
purpose of the SolarMal trial and to    

   measure the impact of the intervention 
most effectively, the island was divided into nine metaclusters each consisting of nine 
clusters. Each cluster comprises of 50 or 51 households. The HDSS operates from 
the International Centre of Insect Physiology and Ecology [icipe] at the village of 
Mbita Point at the mainland side of the causeway. 
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Who is covered by the HDSS and how often have they been followed up? 
The population of Rusinga Island belongs to the Luo ethnic group and DhoLuo is the 
main spoken language. The national languages (English and Swahili) are also used. 
Fishing and farming are the principal occupations, with people typically harvesting 
millet, sorghum and maize and fishing tilapia and Nile perch. Christianity is the 
predominant religion (84%) in this area; the Muslim community (12%) forms a 
minority. 

Most houses on the island are made of mud or cement walls with iron sheet roofs. 
Connection to the electrical grid is rare and there is little to no supply of piped potable 
water. There are several health facilities on the island; one governmental health 
centre, one government clinic, two private clinics and one drug dispensary. Non-
governmental organisations have established a further two clinics. A district hospital 
is found at Mbita point village. All members of the population are visited three times a 
year. By August 2015, each location had been visited eight times, including the 
baseline enumeration. With the baseline conducted in 2012, and the latest update 
round completed in mid-2015, currently eight rounds of surveillance have been 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.2: Rusinga Island with an uninhabited hill in the middle. Boundaries of meta-
clusters (thick black lines); villages (indicated with dots); roads (dashed lines). 
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carried out in the course of the first two complete years of health and demographic 
surveillance. During this period, a total of 33,283 people were registered in the 
database, with residences divided over 8746 houses, and belonging to 5457 
households. The actual number of people living on Rusinga island mid-2015 was 
24,643. 

The leading causes of death in this area are HIV/AIDS related, with an HIV 
prevalence of 26% (Ministry of Health Kenya: HIV estimates, 2014). Malaria is hyper-
endemic and existent in this region throughout the year, with peaks in transmission at 
the end and just after the rainy seasons, where Plasmodium parasite prevalence of 
around 30% is reported (WHO Country Profile 2014: Kenya, Malaria). The population 
is characterised by a seasonal influx of labourers searching for jobs in the fishing 
industry. Temporary in and out migrations are distinguished from permanent 
migration within the Rusinga HDSS. Households are recorded following the Luo 
description of a dhala: any set of houses that share a head of household and/or are 
economically dependent. 
The age distribution of Rusinga has a typical East-African profile. Baseline studies 
(2012) and 2 years of data collection (2013 and 2014) demonstrate that 
approximately 40% of the population is under the age of 25 and almost 90% of the 
population is under the age of 45 (Figure 5.3). All consenting individuals living on the 
island are subject to the HDSS to monitor demographic and malaria-related variables. 
The HDSS, local population and the intervention programme are strongly connected 
by means of a community advisory board [CAB] which, together with project staff, 
regularly evaluates the progress of the project and matters encountered during 
fieldwork. 

 

 
Figure 5.3: Population pyramid of Rusinga Island with the percent of people illustrated per 
age category. 
 
 
 
 
 
 
 
 
 
 
 
 

http://www.pepfar.gov/pepfar/press/81596.htm
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What has been measured and how have the HDSS databases been 
constructed? 
The baseline enumeration was carried out from June to September 2012, recording 
all households, houses and individuals on the island. All households were provided 
with an odour-baited malaria mosquito trap to attract and kill mosquitoes using a 
stepped-wedge cluster randomized trial design. The hypothesis is that mass trapping 

Table 5.1: Content of questionnaires administered during the census and each follow up survey.  

Visit form: scanning bar code on house to confirm follow up visit and set date of 
interview 
Household (*): new household ID, number of houses in the household, name and ID 
of household head ID and name 
House (*): new house ID, longitude and latitude, household head ID and name, photo 
of the house, number of individuals 
Individual (*) : new individual ID, names, date of birth, sex, level of education, 
occupation, relation to the household head  
Household characteristics (**): ownership of dwelling, # of rooms, # of bedrooms, 
location of kitchen, source of electricity, source of light, agricultural land ownership, 
wall construction, floor construction, roof construction, whether eaves are screened, 
whether IRS has been applied during the past year, bed nets reported, bed nets 
observed, # of bed nets, when were bed nets obtained, condition of bed nets, other 
mosquito control methods used by household members 
Death registration: individual ID, name, date of death, outcome of verbal autopsy,  
verbal autopsy performed by, cause of death, place of death 
Pregnancy observation: mother ID, # of months pregnant, attended health facility 
during pregnancy, received tt-injection(RBM, 2013), other medicines, estimated date 
of birth, woman’s first pregnancy 
Pregnancy outcome: delivery outcome, name of child, date of birth of child, sex, 
creation of  new individual ID, house ID, household ID, link to parents ID 
Migration-Out: individual ID, house ID, household ID, date of migration, within 
Rusinga, to which village/zone,  out of Rusinga, reason for migration 
Migration-In: previously registered by SolarMal, village/zone, new individual ID, 
names, date of birth, sex, highest level of education, primary occupation, relationship 
to the household, house ID, household ID, date of migration, reason of migration, 
moved from 
Individual health: individual ID, any illness during the past 2 weeks, current fever 
reported, under malaria treatment at the time of the visit, temperature (if indicated 
illness), RDT(2012) result (tested if > 37.3 ° C), any respiratory symptoms, medical 
attention, what medical attention, drugs against fever, which drugs 

file:///D:/SOLARMAL_10.02.16/Chapters/Thesis/Book%20version/Book%20docs/Thesis_boekversie_total_V2_WORD.docx%23_ENREF_186
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of malaria vectors leads to reduced malaria transmission, incidence and prevalence. 
All structures with residents were mapped using the Global Positioning System [GPS]  
function on a tablet computer Households, houses and individuals are assigned 
unique identification codes. All inhabitants were requested to provide their full name, 
sex, date of birth, main occupation and their relation to parents and the head of  
household. During the census round, fieldworkers [FWs] were assisted in locating all 
houses and individuals by a local community based organisation, the Rusinga Malaria 
Project [RMP], which has been involved in malaria control practices on the island for 
over a decade. From January 2013, collection and updating of demographic and 
malaria and health related data started. The HDSS operates by house-to-house 
interviews, visiting on average 120 houses per day equally distributed across the nine 
metaclusters. Interviews take approximately 30 min. depending on the size of the 
household. Each HDSS round is completed in approximately three months. During 
household visits, observed pregnancies, new births, deaths and migrations which 
have occurred since the previous visit are recorded and updated (Table 5.1). 
 
Clinical malaria is recorded during HDSS rounds based on fever recalls and a 
conditional RDT, and at the end of each round the team performs blood collections on 
a random sample of the population. Digital questionnaires on demography are 
consistent with the HDSS questionnaire format of the principal HDSS association 
globally; INDEPTH network (Sankoh et al., 2005; Sankoh et al., 2012). These 
standardised questionnaire formats are widely used in East Africa, including Kenya, 
and therefore apply well to our study site. The HDSS uses tablet computers and the 
OpenHDS system, which allows for rapid centralization of the data without a need for 
processing paper forms. This reduces data management overhead and allows for 
rigorous and timely quality control. A detailed description of this system can be found 
elsewhere (Homan et al., 2015). The HDSS team consists of 10 FWs, a fieldworker 
manager [FWM] and a data manager. The local team has access to a senior software 
manager. A server running the OpenHDS software is hosted at the icipe field station 
in Mbita. OpenHDS, a software platform that is based on a centralised database, a 
web application for data management , is linked to a tablet computer-based mobile 
component which allows digitisation of data at the point of  
capture, and wireless synchronization to the central data store based on the Open 
Data Kit [ODK] platform (Asangansi et al., 2013; Hartung et al., 2010). Samsung 
Galaxy Tab 2 tablet computers were used from the start for data collection, and 
upgraded after years to the successor Galaxy Tab 3. Data entry errors are minimised 
through basic range checks and the integration of different questionnaires through 
system-wide IDs in a guided workflow. The ODK and OpenHDS platforms allow the 
FWM and data manager to use a range of data cleaning options, many of which are 
guided by reports generated automatically on a nightly basis. This process enables 
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Figure 5.4: Distribution of population density on 
Rusinga Island for the year 2013.  
 
 
 
 
 
 
 
 
 
 
 
 

scientists to use the clean data for analysis with minimal delay. Furthermore, to 
monitor the performance of FWs a web-based tool was developed that monitors 
progress of the work FWs conduct over time, allowing the project to optimize the 
quality and effectiveness of data collection. Finally the data of all sub-disciplines of 
SolarMal are connected to each other by one of the three levels of unique codes and 
kept in a MySQL relational database. Calculation of demographic rates and further 
quality assurance is conducted using the iShare2 software (http://www.indepth-
ishare.org). 

Key findings 
The demographic data collected during the census survey in 2012 up until May 2015 
is the basis for Table 5.2. Reported demographic figures are calculated for the 
complete years of 2013 and 2014. To place the reported rates in context, the same 
measurements calculated by other HDSSs operating close to Rusinga in the years 
2007 and 2010 are also reported in Table 5.2. Kaneko et al. (Kaneko et al., 2012) 
published demographic information on the basis of the Mbita HDSS covering Rusinga 
and neighbouring areas in 2011. An HDSS at Kisian and surrounding areas operated 
by the KEMRI/CDC some 150 km North-East of Rusinga reported rates for 2007 
(Odhiambo FO, 2012). In calculating person-time at risk we defined residents as 
those who stayed in the HDSS area 60 days (two months) or longer. Registered 
individuals who stayed less than 60 days during a year were removed for the 
calculation of total person-years. Table 5.2 shows the key demographic indicators of 
the Rusinga HDSS for the years 2013 and 2014. The total population that was 
registered in the database by the end of 2013 was 29,206 and the total contributed 
person-years in 2013 was 24,350. The total number of individuals enumerated by the 
end of 2014 was 33,283.  
By December 2014 the HDSS had 
registered a total of 8746 residential 
structures divided over 5457 
households. The sex ratio is skewed 
towards females with 91 men for 
every 100 women. 
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The average population density was 553 (2013) and 577 (2014) person-years per 
square kilometre calculated on basis of 44 km² of landmass. However, as shown in 
Figure 5.4, the population is not evenly distributed and there are densely populated 
fishing beaches and a large village in the southeast; the hill in the centre of the island 
is uninhabited. The total fertility rate [TFR] is calculated as the average number of 
children that would be born per woman if all women lived to the end of their 
childbearing years (15-49 years) yielding a TFR 2.1 for both years. 
The crude birth rate [CBR] and death rate [CDR] are presented as the number of live 
births or deaths per 1000 residents. We found a CBR of 18.7 (2013) and 18.5 (2014), 
and CDRs of 6.3 and 5.8 were determined for 2013 and 2014. Compared with the 
HDSS of KEMRI/CDC at Kisian, both the Mbita and the Rusinga HDSS report a lower 
CDR. The life expectancy [LE] at birth for females and males is calculated as the total  
number of person-years lived in all age intervals of the static population divided by the 
number of alive individuals at the start of every 5year age interval. For males in 2014 
the LE at birth was 68 years, for females the LE at birth was 68.6 years.  
The infant mortality ratio was 17 in 2013 and 11 in 2014 (number of infant deaths, <1 
year, per 1000 live births). This relatively large difference may be explained by the 
protective effect of the malaria vector intervention. The child mortality ratios in 
consecutive years were remained 27 (number of deaths between 1-4 years per 1000 
children) and the under-five mortality ratios are presented as the number of deaths in 
that age category per 1000 live births was 45 and 37.  
Calculation of all mortality rates as well as the CDR yield lower rates and ratios than 
the KEMRI/CDC HDSS. Our findings are comparable with the results of the Mbita 
HDSS (Kaneko et al., 2012). Unlike the Mbita and the Rusinga HDSSs, the KEMRI 
HDSS worked together with at least two health clinics in recording deaths, which most 
likely resulted in a more sensitive death registration system. In addition, it is common 
in Luo culture, to return to the place of birth at the time of death. As there are many 
working immigrants residing on Rusinga Island, this could explain the lower number 
of recorded deaths taking place on the island. The in-migration and out-migration 
rates are also calculated using person-years. The analysis of the migration rates for 
the year 2014 show a crude in-migration rate of 12.9 per 1000 person years and a 
crude out-migration rate of 148.9 (Odhiambo et al., 2012). Table 5.3 summarises 
characteristics of 6640 inhabited houses of which information about the house was 
collected. These results are comparable to other HDSSs in Western Kenya, such as 
Asembo and Gem (Odhiambo et al., 2012) and around Mbita (Kaneko et al., 2012; 
Wanyua et al., 2013). On Rusinga a typical house is made from mud walls, a roof of 
iron sheeting with a cement floor. Most houses have bed nets, but are not protected 
against mosquitoes flying into the house through the open eaves (Lindsay et al., 
1988). Only a fraction of the population has access to the electrical grid and the main  
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Table 5.3: Summary of house information collected over the year 2013 
Indicator No.  % Indicator No. % 
I) Ownership of house   VIII) Wall structure   
    Owner 4955 74.6      Wood and mud 4327 65.2  
    Rent  1327 20      Bricks and/or blocks 1161 17.5  
    Other 358 5.4      Mud and cement 489 7.4  
II) Number of rooms       Iron and sheet 565 8.5  
    1 1725 26      Other 98 1.4  
    2 2090 31.5  IX) Floor structure   
    3 2142 32.3      Carpet 3694 55.6  
    4 417 6.3      Cement 2480 37.3  
    5 152 2.3      Earth, dung or sand 442 6.7  
    >5 114 2      Other 24 0.4  
III) Location of kitchen   X) Roof structure   
    Outside the house 2217 33.4      Iron sheets 6559 98.8  
    Main living area indoors 1413 21.3     Thatch 52 0.8  
    Separate kitchen building 1271 19.1      Asbestos 25 0.4  
    Separate room in the house 209 3.1     Other   4 0.1  
    In another house 1065 16  XI) Screened eaves   
    Daytime outside; night inside 465 7      Yes 441 6.6  
IV) Source of electricity       No 6199 93.4  
    None 6137 92.4 XII) IRS sprayed 12 months prior to visit 
    Connected to power grid 162 2.4      Yes 2709 40.8  
    Generator 58 0.9      No 3604 54.3  
    Battery 65 1     Unknown 327 4.9  
    Solar power 218 3.3  XIII) Bed nets reported   
V) Source of light        Yes 6215 93.6  
    Kerosene powered 6356 93      No 425 6.4  
    Candle light 16 0.2  XIV) Bed nets observed   
    Electric light 392 5.7      Yes 4830 72.7  
    None/other 64 0.9      No 1810 27.3  
VI) Level of education of head household XVI) Condition of nets   
    Pre school 76 1.1      Undamaged or new 3929 59.2  
    Primary 4078 61.4      At least one breach 2301 34.7  
    Secondary 1814 27.3      Unknown 410 6.2  
    Higher 459 6.9  XVII) Other mosquito control   
    Non-standard 174 2.6      Burning a mosquito coil  125 1.8  
    Unknown 39 0.06      None 6257 94.3  
VII) Land for farming       Other  261 3.9  
   Yes 1480 22.3  Total 6640 100 
    No 5160 77.7     



 
Profile: The Rusinga HDSS 

97 
 

5 

 

sources of indoor light were kerosene lamps at the time when the SolarMal 
intervention was rolled out. 
Finally, the average the island-wide malaria prevalence and the average number of 
malaria mosquitoes caught per trapping night for the rainy seasons in 2013 and 2014 
are reported in Table 5.2. The malaria prevalence is established on basis of a cross 
sectional survey of 10 percent randomly selected people tested with a RDT. Malaria 
mosquito abundance is established on basis of three surveys of mosquito monitoring 
at 80 randomly selected households. Ignoring intervention arms, malaria prevalence 
did not differ much island wide between both years with 27.1% and 28.1% 
prevalence, respectively. However, we found a significant difference in malaria 
mosquito abundance with an average of 0.30 mosquitoes per trapping night in 2013 
versus 0.21 in 2014. 

Future analysis plan 
The HDSS data are a valuable resource when studying the parasitological, 
entomological and sociological (Oria et al., 2015) aspects of the malaria interventions. 
For example, the spatial and temporal distribution of malaria, and its vectors, in 
combination with environmental data, will be used to measure the effect of the 
introduction of odour-baited traps in combination with pre-existing widespread use of 
LLINs and case management. Other topics being studied are the emergence of 
malaria hot spots, models of the interaction between vector presences, and the 
spatial analysis of malaria. Data from the HDSS and the trial are used to 
parameterise mathematical models of malaria. However, this HDSS provides a 
platform not only to study and analyse malaria related outcomes within the SolarMal 
project, but also for other public health related research on Rusinga Island. From 
2016 we establish prolonged monitoring of the intervention, and we strive to introduce 
eave screening to enhance the possible effect of odour-baited traps on malaria 
transmission. Furthermore, we will introduce verbal autopsy and various other 
standardised types of health related data. Knowledge, resources and objectives will 
be combined to equip the Rusinga HDSS with a broader scope of health-related 
subjects after the SolarMal project comes to an end. 

What are the main strengths and weaknesses of the Rusinga HDSS? 
A major strength of this HDSS is the innovative process for data collection in the field 
(OpenHDS and ODK) using tablet computers which simplifies the management of 
system-wide unique identifiers for individuals and houses and their linking to health- 
or intervention-related data. Point-of-capture digitization and the client-server 
architecture of the data management system saves time and money in terms of 
entering, accumulating, managing and processing data compared to its predecessor 
Household Registration System 2 (Phillips et al., 2000). Data quality is of great 
importance in a HDSS, and due to a digital data collection organization rather than a 
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paper based system, the error rate of the collected data in the Rusinga HDSS is well 
below 1% according the quality metrics of iShare2. A weakness of the pioneering 
system in this phase is that support of a skilled software developer and data manager 
is required. Other applications with web interfaces that make this HDSS distinct are 
the real-time monitoring of demographic and health related events, keeping track of 
the performance of FWs and the use of geographical information systems to assist in 
precise navigation, and spatial research and analysis. Data can thus immediately be 
processed and used to facilitate all scientific disciplines in the project. Another 
strength of the Rusinga HDSS is the fact that it closely works together with the 
interest groups in the study area. By communicating with community health workers, 
and delegates from different segments on the island, a sustaining cooperation and 
interaction has been created. In the future it would be possible to expand the system 
to capture information on other health outcomes. A priority and an important 
improvement for the near future is the integration of verbal autopsies as part of the 
demographic surveillance.  
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Key messages 

 The Rusinga HDSS covers an island in Lake Victoria, Kenya.  Living 
conditions and health indicators on Rusinga suggest to be better 
compared to HDSSs nearby. 

 The Rusinga HDSS facilitates in-depth studies into the transmission of 
malaria. A trans-disciplinary intervention trial aiming for the elimination of 
malaria transmission is the core driver behind this surveillance. 

 The HDSS uses the OpenHDS system which provides a cost-effective 
way to collect, store and manage data, as well as to safeguard quality 
assurance. 

 The HDSS provide a robust foundation to conduct not only malaria 
research; future collaboration with local and international institutes will 
enable researchers to combine resources and interests.  
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Abstract 

Background: Large reductions in malaria transmission and mortality have been 

achieved over the last decade. Despite these gains considerable residual, 

spatially heterogeneous, transmission remains. To reduce transmission in these 

foci, researchers need to consider the local demographical, environmental and 

social context, and design an appropriate set of interventions. Exploring spatially 

variable risk factors for malaria can give insight into which human and 

environmental characteristics play important roles in sustaining malaria 

transmission. Methods: On Rusinga Island malaria infection was tested by rapid 

diagnostic tests in 3,632 individuals from 790 households. Demographic and 

environmental data was collected. Analyses were performed on 81 project 

clusters. A standard linear regression model was fitted containing multiple 

variables to determine how much of the spatial variation in malaria prevalence 

could be explained by the demographic and environmental data. Subsequently, a 

geographically-weighted regression was performed assuming non-stationarity of 

risk factors. Results: Scan statistics revealed two clusters which had significantly 

elevated numbers of malaria cases compared to the background prevalence 

across the rest of the study area. A multivariable linear model including 

environmental and household factors revealed that higher socioeconomic status, 

outdoor occupation and population density were associated with increased 

malaria risk. The local GWR model improved the model fit considerably and the 

relationship of malaria with risk factors was found to vary spatially over the island. 

Discussion: Identification of risk factors for malaria that vary geographically can 

provide insight into the local epidemiology of malaria. Examining spatially variable 

relationships can be a helpful tool in exploring which set of targeted interventions 

could locally be implemented. Supplementary malaria control may be directed at 

areas, which are identified as at risk.  
Keywords: Malaria, spatial heterogeneity, geographically weighted regression,      

   spatially variable risk factors, Kenya 
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Background 
Across sub-Saharan Africa, malaria remains one of the leading causes of morbidity 
and mortality with up to 200 million symptomatic cases every year (World Health 
Organization, 2015). In Kenya, 75% of the population is at risk of malaria infection, 
but due to intensified control efforts the number of malaria cases has decreased two 
fold in one decade to well under five million annually. Interventions which have 
contributed to the decline of malaria transmission and mortality are the use of 
insecticide-treated nets [ITNs], long-lasting insecticidal nets [LLINs], indoor residual 
spraying [IRS] and treatment of patients with artemisinin-based combination therapy 
[ACT] (Murray et al., 2012; Okiro et al., 2010). The goal of WHO and Roll Back 
Malaria [RBM] is to continue the efforts to fight malaria until local elimination and 
eventually eradication is achieved (Alonso et al., 2011c; RBM, 2013; Tanner et al., 
2008). 
 
Since large successes have been realized and many areas have moved into a pre-
elimination phase, the epidemiology of malaria is changing (Cotter et al., 2013). 
Although malaria transmission has always been geographically heterogeneous, under 
pressure of current interventions the spatial heterogeneity of malaria becomes more 
pronounced, typically characterized by areas or clusters of households that 
persistently have higher proportions of infected individuals compared with the 
population average. In order to aid the malaria elimination phase, a better 
understanding of the epidemiology of malaria, considering geographical 
heterogeneity, is needed (Snow, 2015). Heterogeneity in malaria transmission is not a 
new phenomenon (Greenwood, 1989), but because of improved research methods 
and the enhanced capacity of information technology, recent studies have more 
frequently shed light on the smaller-scale geographical heterogeneity of malaria 
(Clark et al., 2008; Ernst et al., 2006; Wanjala et al., 2011). Studies suggest that 
factors associated with the spatial clustering of malaria include: house structure, 
human behaviour, environmental, geographical and demographical variables (Bi et 
al., 2013; Bousema et al., 2011; Mosha et al., 2014; Srivastava et al., 2009; Toty et 
al., 2010). Many studies have investigated clustering and the spatial heterogeneity of 
malaria risk (Bejon et al., 2014; Brooker et al., 2004; Kreuels et al., 2008; Smith et al., 
2004) but fewer studies have investigated ways in which relationships of factors 
influencing this heterogeneity vary over space. Lessons can be learnt from studies 
that investigated the geographically varying nature of factors on agricultural (Feuillet 
et al., 2014) and environmental (Luo et al., 2009; Rodrigues et al., 2014) outcomes. 
Relatively few studies have addressed the questions of causes of spatial 
heterogeneity in health outcomes (Comber et al., 2011; Gilbert et al., 2011) like 
malaria (Ehlkes et al., 2014; Giardina et al., 2014; Grillet et al., 2010; Haque et al., 
2012). 
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In the present study, it is explored whether risk factors for malaria also vary over 
space. Household and environmental risk factors contributing to malaria prevalence 
were studied by means of a frequentist non-spatial risk model and clusters of 
elevated malaria risk were identified through scan statistics. The final aim of this study 
was to investigate the spatial heterogeneity in relationships between malaria 
prevalence and associated risk factors by Geographically Weighted Regression 
[GWR]. The added value of using this geostatistical model is explored, and the 
advantage compared to a standard linear regression model is evaluated.   
The study is embedded as part of a baseline study in a large malaria vector control 
trial [SolarMal] on Rusinga Island, western Kenya (Hiscox et al., 2012). The SolarMal 
trial aims to reduce malaria transmission on Rusinga Island by mass trapping of 
malaria vectors with odour-baited traps [OBTs], which contain a blend of organic 
volatiles that mimic a human odour (Menger et al., 2014a). Through daily removal 
trapping the project aims to reduce malaria vector populations and eventually 
decrease malaria transmission. The analysis of spatial heterogeneity of risk factors 
for malaria can give a better understanding of malaria epidemiology and can be of 
value for programme managers who want explore targeting interventions to specific 
geographical locations.  

 

Methods 
Study site and population 

Rusinga Island is located in Lake Victoria off the shore of western Kenya (between 
0°20′51.53” - 0°26’33.73” south, and 34°13′43.19” - 34°07’23.78” east). The island is 
located in Mbita sub-county, under the administration of Homa Bay County in western  
Kenya (Figure 6.1) and is connected to Mbita Point on the mainland by a causeway. 
Rusinga Island has a land surface of nearly 44 km2 with most of the residential areas 
situated between 1,100 and 1,200 metres above sea level around the lakeshore of 
the island. This region experiences a bimodal pattern of rainfall, with the longer rains 
usually starting in March and ending in June and a shorter rainy season from 
November to December. Average temperatures range from 20 to 29° C in the rainy 
season and from 25 to 34° C in the dry season. On Rusinga Island, the population is 
traditionally part of the Luo tribe. The principal occupation is fishing and labour 
associated with fishing, otherwise many of the inhabitants are involved in rain-fed 
subsistence agriculture. Malaria transmission occurs throughout the year, with peaks 
in transmission late in the rainy seasons when parasite prevalence is approximately 
30% across the population (WHO, 2015b) 
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Plasmodium falciparum is the most prevalent species of malaria in western Kenya 
accounting for 98% of the cases and the malaria transmitting vectors are Anopheles 
funestus and to a lesser extent Anopheles gambiae s.s. and Anopheles arabiensis 
(Bayoh et al., 2010; Olanga et al., 2015). 

Field set up  
The SolarMal project is based at the Thomas Odhiambo Campus of the International 
Centre of Insect Physiology and Ecology (TOC-icipe) in the village of Mbita Point, one 
kilometre from the causeway which connects the island to the mainland. 
Meteorological data such as daily temperature and precipitation were obtained from 
the Suba meteorological field station at Rusinga Island (0°24′19.28” south and 
34°08’51.94” east). A health and demographic surveillance system [HDSS] was set 
up to visit every individual living on Rusinga Island three times per year. A census 
enumeration survey, conducted from May to July 2012 recorded 23,337 individuals 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.1: Kenya with the Homa Bay County highlighted where the study site is located. Rusinga 
Island is mapped showing population density per 250 m2 with the boundaries of 81 clusters with equal 
numbers of households. The blank space in the centre of the map is an uninhabited hill and the    
  densely populated south-east is magnified – depicted in the bottom right of the figure. 
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residing in 6,954 residential structures (henceforth termed houses) divided into 4,063 
economically independent households. During the census HDSS round, the 
coordinates of all residential structures, as well as public buildings, were recorded. 
Fieldworkers were equipped with mobile tablet computer devices (Samsung Galaxy 
Tab 2, 10.1) with in inbuilt global positioning system [GPS] receiver for the data 
collection. All individuals were asked to provide their full name, sex, date of birth, 
main occupation and their relationship to the head of household. An individual was 
considered eligible for participation in the study when he or she intended to live for at 
least six months on the island. Data collection and handling was conducted using 
general structured questionnaires in the OpenHDS data collection and management 
platform. Data were transferred on a daily basis to a secured local server enabling 
researchers to work with a completely digital near real time database. Clean data 
were deposited in a MySQL database. During baseline studies one HDSS update 
survey was conducted from January to June 2013. For the rollout of the intervention 
the island was divided into 81 geographically contiguous clusters with 50 to 51 
households per cluster. The households were allocated to clusters according to a 
travelling salesman algorithm by which the shortest imaginary route connecting every 
household on the island was identified. A new cluster was created after every 50 – 51 
households (Day, 1988) (Figure 6.1). 81 clusters is a sufficient number of units to 
carry out regression while a sample from approximately 50 households provides 
enough statistical power to estimate the true value for a cluster. 

Malaria surveillance 
During the baseline period before rollout of the intervention commenced, two 
parasitological prevalence surveys were conducted in a cross section of the study 
population. Households were randomly selected for inclusion in each prevalence 
survey to the point where 10% of the population was included. All members of 
selected households were informed in advance of the date and time of the survey and 
were invited to assemble at a public place such as a church or a school near their 
home for malaria testing. In total, residents of 790 randomly selected households 
were sampled, covering 1,223 houses. The first survey examined 1,822 individuals 
(7.8% of the total island population) and was carried out during the start of the short 
rainy season starting from September and finishing in November 2012. A second 
prevalence survey examined 1,810 individuals (7.7% of the total population) and was 
conducted from February to April 2013. Individual body temperature was measured 
by means of a Braun™ IRT 3020 ear thermometer. A drop of blood was obtained 
through a finger prick and directly tested for antigens of malaria parasites using 
an SD BIOLINE™ Malaria Ag P.f/Pan [HRP-II/pLDH] Rapid Diagnostic Test [RDT]. 
The SD Bioline RDT kit results distinguish between infection with Plasmodium 
falciparum and other Plasmodium species. However, tests results with more than one 
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positive reading or indicating multiple species of Plasmodium were pooled. If the 
individual tested positive for malaria antigens, an appropriate dose of Coartem®  
(Artemether/lumefantrine) was provided free of charge. 

Household information 
Besides the demographic information, Table 6.1 lists variables recorded concerning 
the house structure and existing malaria prevention behaviour and whether they were 
derived from the level of the individual or the household. An index of socioeconomic 
status [SES] was constructed by means of a principal component analysis producing 
tertiles of socioeconomic status on basis of six variables, (Vyas et al., 2006) as used 
in the Kenyan national malaria indicator survey (KNBS, 2012). The variables used 
were: whether the dwelling was owned or rented, whether agricultural land was 
owned, highest education level of the head of household, location of the kitchen, the 
wall structure and the floor cover. Every individual was categorized in to one of the 

three SES classes: high, intermediate and low. Data were transformed into 
continuous variables with means calculated per cluster. Means of variables per 
cluster were constructed either on basis of individual level data or household level 
data (Table 6.1). Sex was expressed as the proportion of males per cluster; age was 

Table 6.1: Variables considered for the global regression model of malaria prevalence. 

Variable Description for GWR per project cluster 
Sex % males 
Age1 % of children under 5 years old 
Age2 % of children between 5 and 15 years old 
Age3 % of people above the age of 15 
Occupation % outdoor occupation 
People per sleeping room Mean people per sleeping room 
People per house Mean people per house 
Screened eaves % houses with open eaves 
Condition of bed nets % bed nets without damages 
House sprayed last 12 months % sprayed houses in last 12 months 
Nets per person Mean number of nets per person 
Socio economic status1 % of people with highest SES* 
Socio economic status2 % of people with lowest SES 
House ownership % of houses owned 
Population density Mean population density 
Mosquito exposure Mean malaria mosquito catches per house 
NDVI Mean NDVI ** 
TWI Mean TWI *** 
Distance to lake Mean distance to the lake 
Elevation from lake Mean elevation from lake 
Distance to clinic Mean distance to nearest health clinic 
*SES = socio economic status, **NDVI = normalized difference vegetation  
index, ***TWI = topographic wetness index 
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divided into three dummy variables, the proportion of children under five years old, 
between five and 15 years and above 15 years; occupation was categorized as the 
proportion of people in a cluster having an outdoor occupation; house ownership is 
the proportion of houses that are owner-occupied rather than rented; for SES the two 
lowest categories were pooled so a dummy variable remained for high SES and not a 
high SES, the percentage of people having the highest and the lowest socio-
economic status; eaves as the percentage of houses with open eaves; and condition 
of nets is the proportion of people sleeping under an intact net. 

Entomological monitoring 
Monitoring of mosquitoes took place across five consecutive rounds from September 
2012 until June 2013, selecting 80 households per round. Each time by means of a 
simple random sample, with replacement, of all households on the island. Mosquitoes 
were collected inside and outside selected households using odour-baited MM-X 
traps (American Biophysics Corporation, RI, USA) (Menger et al., 2014b). Data from 
the first, second, fourth and fifth rounds of surveillance (September to November 
2012 and March to June 2013) were pooled as they corresponded temporally with the 
two baseline malaria prevalence surveys. In total entomological data from 353 
households were included in this study. The total number of female anophelines 
caught inside and outside each household was pooled as a single observation for that 
particular household.  

Geographical variables 
A multispectral QuickBird image, taken on 17/03/2010 with a spatial resolution of 2.4 
m, was obtained through DigitalGlobe®. Initially, the image was used for geo-
referencing of residential and public structures and infrastructure. The image was 
geo-referenced, radio-metrically corrected, corrected for sensor and platform-induced 
distortions, and was ready for orthorectification. Orthorectification was performed 
using a Digital Elevation Model [DEM]. The DEM used was an ASTER GDEM 2, the 
geographical coordinate system was referenced to the 1984 World Geodetic System 
[WGS84]. Several geographic variables were derived for each household using the 
image and DEM: elevation relative to lake, distance to lake, distance to nearest clinic, 
population density, the Normalized Difference Vegetation Index [NDVI] and the 
Topographic Wetness Index [TWI]. The NDVI is a commonly used indication of 
greenness and is calculated based on the values of the red and near infrared spectral 
bands within a radius of 250 metres. The TWI defines the wetness of an area and 
combines the upstream area with the local slope expressed as the number of cells 
'upstream' of cells measuring 30x30m (900 m2). Population density measures were 
calculated within a radius of 250 metres. All the geographical variables per household 
were averaged per project cluster for data analysis and the analysis was at cluster-
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level. Geographic data and variables were pre-processed, compiled and displayed 
using ArcGIS (ArcGIS 10.2.1, ESRI Inc., Redlands, CA, USA).  

Statistical analysis 
For this analysis the measurements of both prevalence surveys were pooled and the 
mean malaria prevalence per project cluster on basis of individual RDT outcomes 
was analysed and mapped with smoothing using the areal interpolation technique. 
Areal interpolation is a kriging-based interpolation method that considers involvement 
of polygons of different shapes (Hawley & Mollering, 2005). A Gaussian distribution 
for data averaged over polygons was used to produce semivariograms. 
Semivariograms were then used to investigate the degree of spatial variation; the 
model function was chosen which captured the most empirical data points within its 
confidence intervals.  
Unlike the regression analyses that are based on continuous household or individual 
data of project clusters (Table 6.1), the detection of potential ‘hot spots’ of malaria 
cases were analysed with a binomial distribution on an individual level, with the 
outcome variable malaria positive or negative. Kuldorff spatial scan statistic analyses 
were performed (SaTScan, v9.1.1) (Jung et al., 2007; Kulldorff et al., 1995) using a 
circular window that gradually scans the map of the island, quantifying the number of 
observed and expected observations within the window for every house. Within each 
circle, values in a radius around each household were compared to the expected 
values and a likelihood ratio test was subsequently performed. P-values were 
obtained by 999 Monte Carlo replications and when p-values were ≤ 0.05, houses in 
this circle were considered to be part of a significant hot spot of elevated malaria 
prevalence. The maximum scan window was set at 1.5 km and a maximum of 50% of 
the population was allowed in one possible hot spot. 
 
Stationary epidemiological risk models assume that observations are geographically 
independent. These ‘global’ models assume that malaria and the coefficients of 
predictor variables apply to the whole island (Lopez et al., 2006). Outcomes can be 
biased because the models do not account for spatial dependence considering that 
the relationship of risk factors for malaria can vary over space, such as 
demographical and environmental features. (Anselin, 1995). In order to gain an 
enhanced insight in to variation in malaria outcomes, incorporating potential spatial 
dependence of predictor and dependent variables is vital where disease patterns are 
spatially heterogeneous. Moreover, to effectively capture spatially variable 
associations between risk factors and malaria outcomes, regression coefficients may 
vary locally as well. To include these considerations of spatial non-stationarity a 
geographically weighted regression [GWR] model was deployed (Brunsdon et al., 
1996). A log transformation was performed to normalize the slightly positively skewed 
malaria prevalence data on cluster level. 
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To explore which predictor variables to include in the GWR model, a global 
multivariable regression (stationary model) was initially performed. In adopting the 
best model for explaining log transformed risk several other model features other than 
the best goodness-of-fit or statistical significance of predictors were looked at. Next, 
the assumption of normally distributed residuals of the estimated outcome (tested by 
the Jarque-Bera test) was tested as the model prediction function relies on normally 
distributed unexplained variance. The predictor variables that were included cannot 
have any multicollinearity in order to prevent duplication of capturing any predictive 
effect (indicated by a Variance Inflation Factor of <7.5). Moreover, regression 
residuals need to be randomly distributed to make sure that observed relationships 
are not inflated because the observed minus the predicted values are not 
independent from each other (Anselin, 2002). Regression residuals were examined 
for residual spatial autocorrelation [RSA]. Furthermore, a test to detect 
heteroscedasticity was carried out to get an idea of heterogeneity in the relationship 
between the predictor and dependent variables (Breusch-Pagan statistic). The model 
that satisfied all these requirements and had the highest R² was selected for further 
analysis in a GWR model. The model did not control for possible correlated 
observations. 
 
In relationships between dependent and independent variables the GWR produces 
local linear regression models. The coefficients in a standard linear regression model 
are assumed to be the same at every location, whereas regression coefficients of a 
GWR model are attached to each individual location, in this case the location of a 
central point of a cluster (Fotheringham et al., 1998). Coordinates of project clusters 
were determined by taking the centroids of the polygon features. The GWR 
regression model is thus: 

𝑦𝑖  =  𝛽0 + ∑ 𝛽𝑘𝑥𝑘𝑖
𝑝−1
𝑘=1 +  𝜀𝑖                   (1) 

where every observation i has its own set of coordinates, 𝑦𝑖 is the cluster prevalence 
and 𝑥𝑘𝑖 is the value for a covariate k for observation i, 𝛽0 is the intercept, 𝛽𝑘 is the 
coefficient estimate for a covariate k, and 𝜀𝑖 is the random error for observation i, and 
p is the number of regression coefficients to be estimated. Estimations of predictor 
variables were obtained using subsets of data in a radius around observed 
geographical data points. Weights were applied to the subsets of observations, with a 
Gaussian decaying influence as distance increases. The radius determining the 
distance at which neighbouring data points influence the local models is known as the 
kernel bandwidth. For this analysis an adaptive kernel function (bi-square) was 
chosen instead of using a fixed radius; it considers a number of neighbouring data 
points leading to weights: 

                                                                      𝑊𝑖𝑗 =  {
[1 − (

𝑑𝑖𝑗

𝑑𝑖𝑁
)²] ²

0
                            (2) 
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where 𝑊𝑖𝑗 is the weight of data at location j estimated for location i, 𝑑𝑖𝑗 is the distance 
between locations i and j, 𝑑𝑖𝑁 is the distance to the spatial neighbours of location i 
and N is the number of neighbours considered Wij takes zero for locations that are 
farther away from location i than the kernel bandwidth set. The optimal bandwidth and 
the associated weighting function were obtained by choosing the lowest score of the 
corrected Akaike information criterion [AICc]. It seeks parsimony, finding a balance 
between model fit and amount of parameters in the model. The AICc was obtained by 
reducing the estimation error of our dependent outcome to a minimum and is:  
                                     AIC𝑐 = 2𝑛 log 𝑒 (𝜎̂) +  𝑛 log 𝑒(2𝜋) +  {

𝑛+𝑡𝑟(𝑆)

𝑛−2−𝑡𝑟(𝑆)
}                               (3) 

where 𝜎̂ is the estimated standard deviation of the error, and tr(S) is the trace of the 
matrix of covariates.  
A set of local goodness-of-fit statistics was derived by plotting the local R² per cluster. 
Furthermore, local coefficients and p-values belonging to predictor variables yielded 
were plotted to explore the geographically varying relationships with malaria 
prevalence. A semivariogram of regression residuals is constructed to explore the 
spatial structure of the model. To examine the final GWR model for possible spatial 
autocorrelation in the residuals [RSA], a Moran’s I test was performed on the 
residuals between observed and predicted values of malaria prevalence. Finally the 
model predictions were validated by means of exhaustive cross validation. Many 
different samples of training and a validation sets were considered to validate 
predictions in every cluster. 
Special attention is given to the issue of local multicollinearity because GWR 
outcomes can be heavily biased, and local coefficients can become inflated if different 
predictor variables have similar geographical patterns (Wheeler, 2007). Local 
multicollinearity is assessed by the condition number. This number increases if 
predictor variables show similar patterns, and when this number is above 30, the 
model is assumed to be unstable and unreliable. 
Statistical analysis and model building were performed using R software (RStudio, 
Inc.© version 0.98.1102 package spgwr) , GWR4© (Newcastle University, England, 
UK) and ArcGIS (10.2.1, ESRI Inc., Redlands, CA, USA).  

Ethical clearance 
Ethical approval was obtained from the Kenyan Medical Research Institute [KEMRI]; 
non-SSC Protocol No. 350. All participants were provided with written and oral 
information regarding the project aims, the ongoing demographic and entomological 
surveillance activities, the implementation of the intervention, and the collection and 
use of blood samples. Adults, mature minors and caregivers of children provided 
written informed consent in the local language agreeing to participation in the 
SolarMal project activities. 
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Results 
Possible hot spots of elevated malaria risk were identified by plotting the malaria 
prevalence per project cluster and smoothed with the areal interpolation technique 
(Figure 6.2A). The island-wide malaria prevalence was 24% and the prevalence per 
cluster varied between 9% and 75%. Subsequently a SatScan analysis was 
conducted revealing two significant hot spots of malaria; one in the west and one in 
the central north of the island (see Figure 6.2B). The primary hot spot of malaria is 
located in the central north of the island; the observed number of cases here was 
significantly higher than predicted from island-wide values (Table 6.2). The risk of 
malaria in this hot spot is almost three times higher than for areas outside this hot 
spot (RR = 2.65, LLratio = 42.509, p-value = <0.0001). Furthermore, a secondary hot 
spot of malaria was identified in the west of the island with more than twice the risk for 
malaria infection (RR = 2.12, LLratio = 20.399, p-value = 0.001).  

Global linear regression 
The multivariable global linear regression [GLR] model explains 26.8% (R²) of the 
total variation between project clusters in malaria prevalence. The model and 
statistics on model assumptions are summarized in Table 6.3. The null-hypothesis of 
no residual spatial autocorrelation [RSA] in the model is maintained with the Moran’s I 
statistic not being significant, showing that the regression residuals are randomly 
distributed and not missing key explanatory variable. The Breusch-Pagan statistic 
examines whether the relationship of predictor variables with malaria prevalence is 
similar around the island; heteroscedasticity is clearly present (with a p-value of 0.03). 
Furthermore, the residuals of the outcome variable are approximately normally 
distributed indicating no deviation from the distributional assumptions of the model. 
Because heteroscedasticity is significantly present in the GLR model, the robust p-
value and standard errors were used to assess the relationships of the predictor 
variables with malaria prevalence. Outdoor occupation is the strongest significant 
predictor in the model with a coefficient of 0.57 (and a p-value of <0.0001). 

 

Table 6.2: Summary results of hot spots detected by SatScan 

Cluster  Relative 
Risk 

LLratio P-value Number of  
individuals 

Expected 
infected  
individuals 
 
 
 
individuals 

Infected 
individuals 

1 2.65 42.51 <0.0001 298 29 69 
2 2.12 20.40 0.001 212 23 46 
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Figure 6.2: A) Mean malaria prevalence per cluster on 
the basis of sampled individuals across Rusinga Island 
using Aerial interpolation. B) Map of Rusinga Island 
showing two clusters of households (orange dots) with 
significantly elevated levels of malaria prevalence. The 
primary cluster is located at the central north of the 
island; a secondary cluster is covering an area to the 
west. Figure 6.2A would suggest another cluster of 
malaria in the south-east, however prevalence in this 
area is not significantly greater than in neighbouring 
areas. The grey dots (Figure 6.2B) with black outlines 
are the sampled houses in the prevalence surveys; the    
  paler grey dots indicate all houses on the island.  
 
 
 
 
 
 
 
 
 
 
 

 Furthermore, belonging to a 
household with a high SES is 
positively associated with malaria 
prevalence with a significant 
coefficient of 0.24 (and a p-value of 
0.02). A third significant predictor 
variable is population density, 
although the coefficient was only -
0.004 (p-value of 0.001). All 
predictor variables in the final 
global model were tested for 
multicollinearity, and all are well 
below the threshold of 7.5 (Table 

6.3).  

Geographically weighted 
regression model 
The predictor variables of the GLR 
model (outdoor occupation, SES 
and population density) were 
incorporated into a geographically 
weighted regression model. To 
determine the number of 
neighbouring clusters for local 
regression the bandwidth with the 
lowest AICc was chosen. The bi-
square adaptive kernel function 
looks at an adaptive number 
neighbours and the influence of 
these neighbours decays following 
a Gaussian distribution so that 
closer observations have most 
weight. So local regression for 
clusters that have few data points 
adjacent, will include clusters 

farther away. Comparing the global 
and the local model shows that the GWR model performs better than the GLR model 
with an AIC (a measure to compare model quality) value of -43.8 versus -40.2 (Table 
6.4).Moreover, the GWR model fits considerably better taking into account non-
stationarity. The capability of the GWR model to predict malaria prevalence on basis  

A 
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Figure 6.3: Semivariogram of the residuals of the final GWR 
model, with the dotted line showing the fitted value. The 
semivariance is shown on the y-axis. The semivariance of the 
residuals between households starts at 0.61 (nugget) 
demonstrating some spatial autocorrelation on distances up 
to 2.7 kilometres (range). Beyond this threshold the 
semivariance is high and stabilizes at 0.825 (sill) indicating 
minimal RSA. 
 
 
 
 
 
 
 
 
 
 

of the selected predictors is best expressed by looking at the R², improving the model 
fit from 27% to 69%. Other indications that show a better fitting and predicting model 
are the residual sum of squares and the -2 Log Likelihood, both statistics are less 
than half compared to the local model. Exploring the spatial structure of the model 
residuals with an anisotropic averaged semivariogram shows that the distance up to 
which RSA occurs (the range) is 2.7 kilometres (Figure 6.3). The sill has a value of 
0.825, indicating that the variance of residuals between households beyond the value 

of the RSA range is fairly high. 
Within the range the variance 
starts from 0.61 (the nugget), 
demonstrating that the degree 
of RSA is not pronounced.  
Spatial autocorrelation in the 
residuals of the final GWR 
model was then assessed by 
a Moran’s I test and this 
actually directed to some 
RSA. Nevertheless this 
yielded a p-value of 0.25, thus 
the null hypothesis of no 
significant RSA was 
maintained. R² values per 
cluster vary between 32% and 
87 % with a mean of 63% 
(Figure 6.4A).  
 

Table 6.3: Summary results for best non-spatial linear regression model for malaria prevalence 

Variable Coefficient Std 
error 

P-value Robust  
Std error 

Robust  
P-value 

VIF*
* 

Intercept -0.827 0.059 <0.0001 0.061 <0.0001 - 
Outdoor occupation 0.566 0.195 0.005 0.200 0.006 1.16 
Highest SES* 0.240 0.098 0.017 0.101 0.020 1.55 
Population density -0.004 0.001 <0.0001 0.001 0.001 1.38 
Statistic Value      
Joint Wald Statistic 18.75; p = 0.001      
Moran’s I   0.45; p = 0.21       
Breusch-Pagan statistic  8.86; p = 0.03       

Jarque-Bera statistic 4.05; p = 0.13       
*SES = socio economic status, **VIF = variance inflation factor 
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Figure 6.4: A) Goodness-of-fit statistics indicate how 
well the GWR model fits per cluster, expressed by R² 
and B) Multicollinearity per cluster, expressed by the 
condition number. A higher condition number indicates 
an increased degree of multicollinearity.  
 
 
 
 
 
 
 
 
 
 
 

The local multi- 
collinearity assessed 
by the condition 
number yields values 
between 6.7 and 19.2 
with a mean of 12.9, 
indicating that the 
model is marginally 
affected by multi- 
collinearity (Figure 
6.4A).  

Cross validation of the predicted 
malaria values with the measured 
values yielded predictions for 74 of 
81 project clusters that were 
statistically significant. 
Geographically varying effects of 
outdoor occupation, SES and 
population density in the GWR 
model are illustrated in Figure 6.5. 
Regression coefficients were 
back-transformed after the initial 
log transformation of malaria 
prevalence in the model, and 
reported as exponent-
iated coefficients.  
This is interpreted for the highest 
SES category as the relative 
malaria risk compared to being in 
a lower SES category or having 
another occupation. The same 
interpretation applies to the 
outdoor occupation variable. For 
average population density the 
interpretation of the coefficient is 
best expressed as the increase in 
malaria risk for every one person 
increase in the average number of 
individuals per 250m2. Population 
density, outdoor occupation and 

Table 6.4: Comparison between global regression and GWR model. 

Variable GLR GWR 
AIC -40.86 -43.18 
Moran’s I 0.45; p = 0.21 0.23; p = 0.25 
R² 0.268 0.694 
Residual sum of squares 2.53 0.985 
-2 Log Likelihood -50.86 -127.26 
Model fit is compared with AIC, explanatory power of the models is  
compared by R² and the Moran’s I of residuals indicates the degree of 
spatial autocorrelation. 
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Figure 6.5: Geographically varying coefficients 
expressed as the relative risk per cluster for predictor 
variables of prevalence in the GWR model. A) Outdoor  
  occupation, B) Highest SES, C) Population density 
   
 

highest SES differ in having a 
positive or negative association with 
malaria prevalence. Coefficients of 
each variable can have a positive or 
negative association and the 
direction of the association varies 
depending on the local value of those 
explanatory variables. Coefficients 
that are equal to one indicate a 
similar malaria risk for the risk factor 
categories, whereas coefficients risks 
above one demonstrate an increased 
risk for malaria. The coefficients of 
malaria for population density varied 
between 0.268 and 2.569 indicating 
that the association between malaria 
and population density could be 
positive or negative depending on 
the area of the island. The variation 
in coefficients of malaria for those in 
the highest SES group ranged 
between 0.841 and 1.334, also 
indicative of a negative association in 
some areas of the island but a 
positive association in other areas. 
Outdoor occupation also had a 
spatially variable association with 
malaria, with exponentiated 
coefficients ranging between 0.807 
and 1.320. P-values of regression 
coefficients of all three explanatory 
variables also vary over space 
(Figure 6.6), indicating that the 
statistically significant relationships 
were not equally strong everywhere 
on the island. 

B 

A 
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Figure 6.6: Geographically varying values of 
significance per cluster for predictor variables of 
malaria prevalence in the final GWR model. A) Outdoor   
  occupation, B) Highest SES, C) Population density  
 

Discussion 
Over the past decade large 
reductions in malaria have been 
achieved, yet the current 
distribution of malaria is still 
spatially heterogeneous (Cotter et 
al., 2013; Noor et al., 2014). 
Considerable research is currently 
being conducted to find tools for 
malaria control that are able to 
target residual malaria 
transmission, in order to reach the 
goals set by the RBM initiative to 
eliminate malaria where possible, 
or reduce it to a minimum (Killeen, 
2014; Owens, 2015). Established 
interventions such as LLINs, IRS 
and case management have 
proven to be effective but this one 
size fits all strategy is not 
appropriate when moving into the 
elimination phase (Snow, 2015). 
These existing methods will need 
to be complemented by novel tools, 
which may entail interventions 
targeting local geography, 
demography and societal context 
(Alonso et al., 2011c). Exploring 
locally varying relationships of risk 
factors for malaria may aid in 
exploring and eventually targeting 
appropriate interventions. 
Traditional descriptions and models 
report on the progressively 
heterogeneous nature of malaria 
transmission, but analyses 
reporting on risk factors for malaria 
and disease usually ignore spatial 
heterogeneity of the underlying risk 
factors of disease (Pullan et al., 
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2012).  
In exploring spatially varying relationships of risk factors for malaria, factors that are 
directly related to malaria risk as well as proxy factors were used. Socioeconomic 
status, screened eaves and condition of bed nets are examples of factors directly 
influencing malaria risk, whereas distance to nearest clinic and environmental 
variables as TWI and NDVI can have an indirect effect because of access to anti-
malarials or proximity to possible breeding sites for malaria vectors. The GLR model 
explained 27% of the spatial variance in malaria prevalence, however GWR analysis 
greatly improved model fit to 69%. A better fit by the GWR model is confirmed by a 
reduction in the residual sum of squares as well as an increased likelihood when 
comparing the global and the local model (Table 6.4). Local estimations of model fit 
did vary somewhat over the island (Figure 6.4A), and whilst there are several areas 
where the model does not fit more than 50%, in all study clusters an improved fit 
using the GWR was observed compared with the global model.  
Outdoor occupation and activity at night have previously been associated with higher 
risk for malaria (Dunn et al., 2011; Monroe et al., 2015). In the case of Rusinga 
Island, many people are involved in fishing and labour related to fishing, and these 
activities are generally performed in shifts during the night. It is known that in between 
shifts, fishermen spend their time around fishing beaches close to their home with 
little or no protection against biting malaria mosquitoes. It is during the night that 
Anopheles gambiae s.l. and An. funestus mosquitoes exhibit their peak host-seeking 
behaviour, biting mostly indoors but also outdoors (Govella et al., 2012), thus people 
who are active at night are expected to be at increased risk for receiving infective 
mosquito bites. Spatial heterogeneity of outdoor occupation in the south-east of the 
island is characterized by a large area where having an outdoor occupation leads to 
increased risk of malaria. This is the area of Rusinga with the highest proportion of 
fishermen. Malaria infections could be acquired there, subsequently fuelling the 
malaria reservoir and infection risk for others in these areas, a concept that has been 
proposed previously (Prosper et al., 2012). Study clusters that include fishing 
beaches almost all appear to have higher risk because of outdoor occupations. For 
example the small cluster in the north and the smaller clusters west of the island, 
which fall within a malaria hot spot (Figure 6.2B). In the northern part of the island 
there are also clusters with a reduced risk of malaria for outdoor occupation; these 
clusters lie in one of the malaria hot spots. The effect is not as large and is also less 
significant, but possibly an explanation here can be that in this area farming, also an 
outdoor occupation, is the dominant occupation, usually performed during the day 
when mosquitoes are less active. Nevertheless working outside at dawn and dusk 
becomes increasingly more important as a predictor of malaria risk as the mosquito 
vectors are recurrently reported to bite after sunrise and before sunset (Bayoh et al., 
2010).  
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Socioeconomic status has often been linked with risk of malaria. Better schooling, 
improved housing and a higher income are commonly associated with reduced 
malaria risk (Tusting et al., 2013). On Rusinga, areas with a higher risk as well as 
areas with a lower risk for malaria when residing in the highest SES category are 
identified. The local patterns of SES show that a positive association with malaria 
mostly affects the central western part of the island and the tip in the north-east 
(orange clusters), with an increased risk of malaria. The south-eastern part (green 
clusters) of the island, by contrast, yield clusters that show a reduced risk of malaria 
among those with the highest SES.  
SES itself does not affect malaria directly; hence the components of SES were further 
explored. It was found that in most of the clusters where high SES is associated with 
increased malaria risk, most farmland and dwellings are owned by the occupants 
while house structure is predominantly poor. This could suggest that variables as 
owning land and a house, indicators for being in a high SES class, do not necessarily 
directly relate to reduced malaria risk. Thus even though people are in the highest 
SES class, the house structure could allow for considerable malaria risk because 
there is poor protection against mosquitoes entering the house. A higher education 
level of the head of household could indicate that there is more financial freedom 
within the family. This can possibly result in a higher expenditure on health care and 
malaria prevention, which would presumably lead to reduced malaria risk. The 
components of location of kitchen and wall structure in this SES PCA are proxies of 
exposure to mosquitoes. When people cook outside during sunset and at night-time 
they may be exposed to outdoor-biting mosquitoes. Finally and interestingly SES did 
not have a strong (Figure 6.5B) or significant relationship (Figure 6.6B) with malaria in 
the hot spots (Figure 6.2B). Thus, residing in a malaria hot spot was independent of 
house ownership, educational level or other SES factors.  
A higher population density was associated with a slightly reduced risk of malaria in 
the GLR model, in keeping with previous findings from various studies in both urban 
and rural settings in Africa (Hay et al., 2005). Higher population density has a large 
protective effect in some clusters farther from the lake and further from potential 
breeding sites, whereas the association between population density and malaria risk 
was positive in some clusters closer to the lake. It appears that the effect of a higher 
population density depended on proximity to possible breeding sites of malaria 
vectors near the lake shore. In a large simulation study (Smith et al., 2004) the 
dynamics of a spatially heterogeneous human and mosquito population was modelled 
and it was suggested that where there are few mosquitoes or breeding sites, the 
chance of receiving an infective bite is reduced in densely populated areas whereas 
the chance or receiving an infective bite is not reduced in sparsely populated areas. 
On the other hand, if there are many breeding sites and many mosquitoes close to a 
densely populated area, the chance of malaria transmission increases considerably 
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compared to areas that are less densely populated where the chance or malaria 
transmission does not increase further with increasing mosquito numbers. 
Other risk factors considered in the GLR model have all been suggested in previous 
literature as predictive for malaria risk. Remarkably, human age and mosquito counts 
as a proxy for exposure did not enter the final model. Young children (0-5 years) and 
adolescents typically have a higher risk of malaria because of different behaviour 
regarding malaria prevention and less well developed immune systems (Carneiro et 
al., 2010). However, on Rusinga age was not significantly related to malaria, and 
there was no spatial heterogeneity in the effect of age on malaria. Furthermore, 
increased numbers of mosquitoes caught in some clusters were not accompanied by 
higher local prevalence. Screened eaves was not a significant predictor, but this can 
be explained by the fact that more than 90% of the households did not have screened 
eaves and therefore there was insufficient information relating to the impact of this 
variable. There was a fairly homogenous coverage of bed nets and IRS activities 
across the island in the year prior to the present study. Bed nets continued to be 
used, but no further IRS treatments took place. This lack of variability could explain 
why number of bed nets and IRS coverage were not significantly associated with 
malaria. NDVI and TWI were also rather homogeneous over the island and therefore 
not important predictors for malaria. Finally, the average distance to a clinic did not 
play a role in this model. On this relatively small island, there are five health clinics or 
dispensaries, and even the households furthest away from a health clinic are at a 
walking distance of only three km. 
An advantage of this study is firstly the assumption that non-stationarity of underlying 
risk factors for malaria can improve model fit considerably and can subsequently be 
used to explore geographically varying factors responsible for spatial patterns of 
malaria. Local outcomes and relationships can shed light on why malaria persists in 
certain areas. Secondly, as the data collected for this analysis serves as the baseline 
survey for a large vector control study, this analysis can assist in exploring further 
research and explain why the interventions may ultimately perform better in some 
areas than in others. One could consider increasing the intensity of available malaria 
interventions near fishing beaches at night, account for poor housing structures and 
reduce the number of traps in a densely populated area where high population 
density is associated with lower risk of malaria. 
It is essential to understand the degree by which the results could be influenced by 
the unit of analysis. The use of discrete zones to perform spatial analysis is very 
common (Fotheringham et al., 2001), but rather contradictory because geographical 
variation is a continuous process. Project clusters were defined and used to perform 
the intervention study, with the baseline malaria data described here. The number of 
clusters and population size per cluster were optimized and adopted for the rollout of 
the vector control intervention with optimal statistical power as well as community 
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acceptance (Oria et al., 2014). Creation of 81 clusters with an even number of 
households per cluster was calculated to provide sufficient generalizability and 
randomness to detect a possible difference in malaria incidence (T. Smith, personal 
communication). As the intervention trial is analysed on basis of geographical 
divisions it was logical to use the same clusters for analysis of baseline data, which 
gave rise to this work. Spatial analyses are often performed on a similar scale at 
which this data was collected, for instance on village or county level (Wheeler,  2014). 
Published work stresses that a societal or biological rationale is important when 
constructing discrete geographical zones. The rationale behind using the project 
clusters in this study is because it will be valuable to know what factors will have 
influenced the outcome of the vector intervention study which was conducted on this 
cluster scale. However, using different discrete clusters or cluster sizes or individual 
level data may yield slightly different outcomes. More detailed variation in coefficients 
is yielded when using smaller units and vice versa (Fotheringham et al., 1998). 
Additionally, when using an adaptive kernel function the radius of data included of 
local regression is variable. Also here it applies that smaller scale local regression 
usually leads to more variation in coefficients (Guo et al., 2008), and this mostly leads 
to weaker or stronger local relationships rather than reversed relationships. 
Nonetheless, when first performing a global linear regression, one can be confident 
that the risk factors obtained are important predictors of malaria and that 
subsequently the local coefficients of GWR are justified, despite of varying strengths 
of the relationships being influenced by the scale chosen (Fotheringham et al., 2001). 
Further limitations of this analysis are linked with the statistical methods used by 
GWR (Paez et al., 2011). GWR has been criticized for lacking an integrated statistical 
framework because it represents a collective of local spatial regressions and a 
precise inference becomes imperfect. In understanding the varying coefficients one 
has to bear in mind that the coefficients that were estimated can be interpreted as an 
exploration and not as exact inference (Wheeler, 2014). Since this issue was raised, 
significance tests have been developed to reduce uncertainty about the relationships 
identified using this approach. These local tests were incorporated in our analysis, 
showing areas where relationships were more significant than in other areas. Another 
concern raised regarding GWR is that the technique yields local effects that can be 
inflated because of residual spatial autocorrelation and multicollinearity. Residual 
spatial autocorrelation occurs when regression residuals cluster spatially, violating the 
assumption of independence in a linear regression model. Even though GWR 
accounts for this by adding a random error term for observations, coefficients can 
become inflated due to clustering of residuals. In this analysis much care was 
invested in examining and testing for RSA, minimizing possible uncertainty in 
coefficients resulting from RSA. Finally, in recent years another limitation of GWR 
was put forward; inflation of local coefficients because of local multicollinearity 
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(Wheeler & Tiefelsdorf, 2005). If predictor variables locally indicate the same patterns, 
their effect on the outcome variable can be overestimated. Since this problem was 
raised several tools have been developed to assess the extent of local 
multicollinearity (Wheeler, 2007). In this analysis a measure of local multicollinearity 
by means of the condition number was incorporated, but it is concluded that this issue 
caused a negligible distorting effect on the local coefficients.  

Conclusion 
In this study, geographically-varying risk factors for malaria were modelled. The 
spatial heterogeneity of malaria risk factors is explored rather than concluding upon 
perfect inferences. The study reveals that predictor variables for malaria vary 
geographically even over small distances of several kilometres. The exploration 
demonstrates that assuming stationarity of risk factors by means of a global statistical 
model ignores spatial components that can yield useful information and improve 
model fit. Being part of the highest SES, working outdoors (during night time) and 
population density were most predictive for malaria patterns on Rusinga Island. When 
considering SES as a risk factor for malaria one has to bear in mind that this depends 
on the local setting and the components included, hence results need to be 
interpreted with caution. All relationships with risk factors were spatially 
heterogeneous and these varying effects can be used to explore for what reasons 
vector intervention at the island possibly may have dissimilar effects in different 
areas. 
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Abstract 
Background: Odour-baits can attract Anopheles mosquitoes indoors and 

outdoors. Here, we describe a large-scale trial of impacts of mass deployment of 

odour-baited traps [OBTs] on malaria transmission and disease burden. Methods: 

4,358 households were provided with solar-powered mosquito trapping systems 

[SMoTS] on Rusinga Island, Lake Victoria, western Kenya (average population 

24,879), using a stepped wedge cluster-randomised design. Fever and clinical 

malaria were monitored through repeated household visits six months prior to and 

throughout the two year roll-out period to the entire population. Random samples 

of households were monitored for Plasmodium parasite prevalence (three times 

per year) and mosquito densities (22 rounds). Findings: Clinical malaria incidence 

declined steeply during the first four months of intervention roll-out, leading to a 

reduction of 92.5% (95%CI: 89.6-94.5), compared to baseline. The unexpectedly 

low clinical incidence during roll-out precluded the pre-specified inference of 

effectiveness from clinical incidence data. Malaria prevalence measured by rapid 

diagnostic test [RDT] was 29.8% lower (95% CI: 20.9-38.0) in clusters with 

SMoTS compared to those without over the course of the roll-out. Densities of the 

major malaria vector, Anopheles funestus, declined precipitously, and were 69.2% 

(95% CI: 29.1-87.4) lower in clusters with SMoTS than in clusters without SMoTS. 

There was neglible effect on densities of An. gambiae s.l.. Interpretation: The 

substantial reduction in densities of An. funestus can account for the reduction in 

malaria prevalence in intervened areas compared with non-intervened areas. 

Odour-baited traps can be an effective malaria intervention comparable in 

potential impact to insecticide-treated nets. 
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Introduction 
Long-lasting insecticidal nets [LLINs] and use of artemisinin combination therapies 
[ACTs] have substantially reduced malaria burden in the last decade (Bhatt et al., 
2015; Killeen, 2014). However additional vector-control interventions are needed 
because Anopheles mosquitoes biting at times and in places without LLINs, sustain 
residual transmission (Durnez & Coosemans, 2013). Existing tools are also 
threatened by insecticide and drug resistance (Das, 2015; Ranson et al., 2011; WHO, 
2015b) 

Blends of synthetic chemical attractants can attract more vectors than a human 
(Mukabana et al., 2012b; Okumu et al., 2010b), motivating development of mass 
mosquito-trapping systems for malaria control (Hiscox et al., 2012). This paper 
reports the first trial of odour-baited traps [OBTs] as a malaria control intervention. 
The study aimed to evaluate proof of principle for the elimination of malaria from 
Rusinga Island in Lake Victoria, western Kenya, by augmenting the existing strategies 
of the National Malaria Control Programme of the Government of Kenya (free LLINs 
and ACTs provided through public health centres) with mass trapping (Okumu et al., 
2010a). Rigorous testing of whether this can make elimination feasible required 
universal coverage with electrically-powered OBTs. Most households on Rusinga 
initially lacked electricity, so solar-powered mosquito trapping systems [SMoTS] were 
installed, providing lighting and mobile-phone charging alongside OBTs. A stepped 
wedge cluster-randomised design was used, in which the island population was 
assigned to 81 clusters of geographically contiguous households, and SMoTS were 
installed cluster-by-cluster. 4,358 households received SMoTS over a two year 
period.    

The primary outcome of incidence of clinical malaria was assessed via active 
surveillance, with household visits to the entire population every four months. Effects 
on parasite prevalence and densities of host-seeking mosquitoes were also evaluated 
in sample surveys. 
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Methods 
All residents of Rusinga Island (0°24′S 34°10′E), as enumerated in a Health and 
Demographic Surveillance System (HDSS) (Homan et al., 2015) were eligible for 
participation. The standardised SMoTS included a solar panel mounted on the roof to 
power the OBT (Hiscox et al., 2016), two light bulbs, and a connection for charging 
mobile telephones (Figure 7.1). Traps ran automatically between dusk and dawn 
every night and were baited with a blend of synthetic organic attractants that mimic 
human odour along with the carbon-dioxide substitute 2-butanone (van Loon et al.,  
2015). One SMoTS was installed for each household. Where there were two adjacent  
single-roomed households, one SMoTS was shared. Households were allocated to 
81 clusters, each containing 50-51 households corresponding to the number of 
SMoTS that could be installed within one week. Groups of nine contiguous clusters 
formed a single metacluster, so that there were nine metaclusters covering the entire 
island (Figure 7.2). Metaclusters were large enough to limit dispersal of mosquitoes 
from neighbouring non-intervened areas into intervened areas (Guerra et al., 2014), 

 
whilst allowing measurements of possible spillover effects to neighbouring non-
intervened areas. SMoTS installation lasted from June 2013 until June 2015, and was 
combined with and facilitated by a social science action research and communication 
strategy aimed at enhancing community support. This improved recipient 
understanding of the intervention and fostered programme learning during 
implementation (Oria et al., 2015). Clinical data were collected during one complete 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.1: Solar-powered mosquito trapping system (SMoTS) in a house that is provided with a LLIN  
as well. (source: Oria, PA, Alaii J, Ayugi M, et al. Trop Med Int Hlth 2015; 20: 1048–1056) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

file:///D:/SOLARMAL_10.02.16/Chapters/Thesis/Book%20version/Book%20docs/Thesis_boekversie_total_V2_WORD.docx%23_ENREF_101
file:///D:/SOLARMAL_10.02.16/Chapters/Thesis/Book%20version/Book%20docs/Thesis_boekversie_total_V2_WORD.docx%23_ENREF_98
file:///D:/SOLARMAL_10.02.16/Chapters/Thesis/Book%20version/Book%20docs/Thesis_boekversie_total_V2_WORD.docx%23_ENREF_230
file:///D:/SOLARMAL_10.02.16/Chapters/Thesis/Book%20version/Book%20docs/Thesis_boekversie_total_V2_WORD.docx%23_ENREF_230
file:///D:/SOLARMAL_10.02.16/Chapters/Thesis/Book%20version/Book%20docs/Thesis_boekversie_total_V2_WORD.docx%23_ENREF_168


 
Impact of mass mosquito trapping on malaria 

129 
 

7 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.2: Map showing Rusinga Island with clusters 
(black boundaries, numbered 1-81 in the sequence of 
the roll-out) and metacluster boundaries (light blue). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.3: Project timeline showing the change in intervention coverage and key sampling activities 
taking place during each calendar month between 2012 and 2015. 
 
 
 
 
 
 
 
 
 
 

round of HDSS prior to the 
commencement of the roll-out 
(January-June 2013). 
Parasitological and entomological 
surveys of randomly sampled 
households were conducted 
during a baseline period of 10 
months (Sept 2012-June 2013) 
and over the roll-out period (Figure 
7.3 and Supplementary Figures 
S7.1 and S7.2). Individual written 
consent for participation was 
requested from adults aged ≥18 
years at the initial enumeration of 
the households and prior to 
collection of blood samples. For 
persons aged 13-17 years, 

individual assent alongside written consent of an adult was requested, and for those 
under 13 years of age written parental consent was solicited. The few people who 
declined to participate in this study were excluded from the enumeration and all 
analyses. Consent forms were signed by the recruiter and a witness. Informed verbal 
consent was provided by heads of household before participation in entomological 
studies. All participants were free to withdraw at any time without giving a reason. 
This study was approved by the Ethics Review Committee of the Kenya Medical 
Research Institute [KEMRI] as NON- SSC PROTOCOL NO. 350. 
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Outcomes 
Clinical malaria - The primary outcome was clinical malaria, diagnosed during 
continuous active HDSS surveillance of all individuals, with one round of household 
visits before the roll-out started and six further rounds during the two-year roll-out 
period. All individuals visited were asked about illness during the preceding two 
weeks. Temperatures were measured using an in-ear thermometer (Braun™ IRT 
3020) in those reporting illness. Rapid Diagnostic Test [RDT] (SD BIOLINE™ Malaria 
Ag P.f/Pan HRP-II/pLDH) for Plasmodium were applied when temperatures ≥ 37.4°C. 
RDT positives were diagnosed with clinical malaria and provided with appropriate 
doses of Artemether–Lumefantrine (Coartem) or, in cases of pregnancy, age less 
than six months or severe symptoms, referred to a local health clinic (Shah et al., 
2015). 

Malaria prevalence – The proportion of people harbouring Plasmodium parasites 
(prevalence) was recorded in surveys targeting 10% random samples of households 
(selected with replacement), with two surveys prior to the start of SMoTS roll-out and 
five more at approximately three-month intervals during roll-out. Each consenting 
individual in sampled households was tested by RDT and RDT-positives were treated 
with appropriate doses of Coartem or referred to a local health clinic. 
Mosquito densities – Entomological surveys were carried out at 6-8 week intervals 
from September 2012 until study end. 80 households were randomly sampled with 
replacement from the active HDSS database for each round. Each house was 
sampled for one night indoors and one night outdoors using a Mosquito Magnet-X® 
trap (American Biophysics corporation, North Kingstown, RI) baited with the MB5 
blend and CO2 produced by yeast and molasses fermentation (Mweresa et al., 
2014).Mosquitoes were sorted morphologically and members of the Anopheles 
gambiae sensu lato complex and An. funestus group were then identified to species 
level using PCR.     

Sample size and randomisation 
The stepped wedge randomised intervention schedule included the entire population 
of Rusinga in order to achieve mass coverage (Hiscox et al., 2016). 

Intra-cluster correlation coefficients, estimated from 15,707 individuals visited during 
the baseline (pre-intervention) period, are given in Table S7.1. Based on these 
values, approximating the trial to a parallel Cluster Randomised Trial and assuming 
no change in the outcomes in the non-intervention arm (Hemming et al., 2011), the 
trial had an 80% power to show a 23% reduction in clinical malaria over six surveys.  

A large number of cluster randomisations was generated, each consisting of a distinct 
ordering of the 81 clusters. 27 of these randomisations complied with a series of 
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constraints relating both to statistical power and requirements of the community 
(which imposed some correlation structure on the orderings). One such 
randomisation (Hiscox et al., 2012; Silkey et al., 2016) was selected in a public draw 
on the island (Oria et al., 2014) (Figure 7.2). The nature of the intervention made 
masking of the allocation from participants or field workers impossible.  

Statistical methods 
The analytical plan finalised in September 2014 specified the inclusion of data of 
clinical and parasitological surveys and routine monitoring of mosquitoes up to the 
end of the next month after all SMoTS were installed (Silkey et al., 2016). 

Intervention status (installation of traps) was classified week by week on an intention 
to treat basis (i.e., the whole cluster was classified as “intervened” or “not intervened” 
based on whether installation was completed in that cluster during that week). 
Clusters were excluded from analysis for weeks when SMoTS were being installed. 
There was no allowance for faulty solar panels or traps, or for delayed installation. 

For the primary outcome of clinical malaria incidence and the secondary outcome of 
prevalence by RDT, several different effectiveness measures were calculated, in 
each case defined as: 

e = 1 −
𝑝1

𝑝0

 

where 𝑝1 is the proportion testing positive in the intervention group, and 𝑝0 is the 
proportion in the comparator group. The primary analysis of protection is the 
contemporaneous comparison of intervention vs pre-intervention clusters, based on 
values of 𝑝1 and 𝑝0 computed from the entire roll-out period. Likelihood ratio tests 
were used for significance testing, using random effects logistic regression to allow 
for effects of intervention clustering and time period. Comparisons of clinical 
incidence (or prevalence) in the intervened population (June 2013–June 2014) with 
baseline (Oct 2012-June 2013) provided further evidence of overall programme 
impact. Random effects logistic models were again used to allow for intervention 
clustering. Further random effects models tested effects of individual level 
correlations in the outcomes, and modifying effects of sex, age LLIN use (Table 
S7.2), and any factors (among those listed in Table 7.1) that showed substantial 
imbalances.  Akaike’s Information Criterion [AIC] was used to compare model fit.  

Logistic models were fitted using the R package lme4. The delta method (Oehlert, 
1992) provided approximate model-based confidence intervals for the ratios  
𝑝1 𝑝0⁄  and hence for each effectiveness measure.  
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Analogous analyses comparing mosquito densities used random-effects Poisson 
models, with effectiveness estimated as the ratio of numbers of mosquitoes caught in 
surveillance traps:  

e = 1 −
𝑑1

𝑑0

 

where 𝑑1 and 𝑑0 are numbers of mosquitoes caught per surveillance trap. 

Role of the funding source 
The funders had no role in study design, data collection and analysis, decision to 
publish, or preparation of the manuscript.   

Findings 

Data included 
The analyses refer to 138 project weeks; the baseline comprised the first 38 project 
weeks, and the remainder spanned the period of SMoTS installation (June 2013-June 
2015) (Figure 7.3). 34,041 distinct enrolled individuals, assigned to 4,847 households, 
consented to participate over this period (Figure S7.1).   

Details of participation in each sample survey are in the Supplementary Appendix. 

Comparability of groups 
The roll-out resulted in very similar time-at-risk in intervention and pre-intervention 
arms (Table 7.2), and in similar intensities of entomological sampling in the two arms 
(Table 7.2). The trial was also well-balanced for most potential confounders. Further 
details of comparability are in the Supplementary Appendix. 

Impact on clinical malaria 
The overall incidence of clinical malaria decreased from an average of 0.17 clinical 
events per person-year of recall (103/15,707 interviews) during the 38-week baseline 
studies to 0.013 clinical events per person-year during the roll-out (56/113,186 
interviews), corresponding to a 92.5% decline (95%CI: 89.6-94.5) (Table 7.2). Most of 
the decline occurred in the first few weeks of roll-out (Supplementary Appendix Table 
S7.4). A consequence of this decline in incidence during the baseline period was 
much lower power to detect a difference between intervened and non-intervened 
groups than anticipated. Although the contemporaneous comparison of incidence 
between the two arms indicated a substantial benefit of intervention, with only 23 
episodes recorded in clusters with SMoTS and 33 episodes in non-intervened 
clusters, confidence intervals were broad and this difference was not statistically  
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significant (adjusted effectiveness: 40.8%, 95% CI: -172.8-87.1, Likelihood Ratio 
𝜒2=0.46, 1 degree of freedom (d.f.), P=0.5 Table 7.2). Correspondingly, the 
unadjusted comparison of the intervened clusters with baseline gave a highly 
statistically significant effectiveness of 93.8% (95% CI: 90.2-96.0, Pearson 𝜒2=306.7, 
1 d.f., P<0.0001, Table 7.2) but sparsity of data prevented allowance for cluster and 
survey effects in this analysis.  

Incidence of all reported illness also strongly decreased over time (adjusted 
effectiveness: 65.2%, 95%CI: 60.6-69.2, Likelihood Ratio 𝜒2=257.7, 1 degree of 
freedom, P<0.0001, Table 7.2), and incidence in reported illness in the control 
clusters compared with baseline also declined comparably (24.8% reduced to 9.1%, 
Table 7.2), indicating that the reductions in reported illness were not direct effects of 
the SMoTS intervention.  

Table 7.1: Comparison of potential continuous and discrete confounding factors between individuals at 
baseline, and individuals in intervened and non-intervened clusters. Data from individuals tested for malaria 
during prevalence surveys.  

Variable 
Average baseline 
(±SD) (N=3,164 
people) 

Average 
intervened (±SD) 
(N=6,550 people) 

Average not 
intervened (±SD) 
(N=5,813 people) 

Persons per sleeping 
room 2.2 (1.5) 2.2 (1.4) 1.9 (1.4) 

LLINs per person 
(observed during 
HDSS) 

0.6 (0.4) 0.5 (0.3) 0.5 (0.3) 

Population density 
(people per 250 m2) 12.9 (16) 14.1 (17.4) 14.6 (16.8) 

TWI 7.4 (0.5) 7.4 (0.5) 7.3 (0.5) 
NDVI 0.5 (0.1) 0.5 (0.1) 0.5 (0.1) 
Distance to lake (m) 540 (349.9) 516.9 (335.8) 531.8 (350.1) 

 
Proportion of 
population 
baseline 

Proportion of 
population 
intervened 

Proportion of 
population not  
intervened 

Children < 5 years (%) 17.1  14.6  13.6  
Children 5-15 years (%) 33.3  33.1  33.6  
People > 15 years (%) 49.6  52.3  52.8  
Reported ownership of 
nets (%) (during malaria 
testing) 

72.6  79  61.2  

TWI = topographic wetness index, NDVI = normalised difference vegetation index. 
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Figure 7.4: Graph showing malaria prevalence during each cross parasitology survey as an average of 
the whole study population (blue dashed line), of people with SMoTS (green dashed line) and of non-
intervened people (solid red line). The dashed vertical line at week 0 indicates the commencement of 
the SMoTS roll-out. Error bars indicate 95% confidence intervals of the mean. Towards the end of the 
roll-out the confidence intervals of the non-intervened group become wide as mass coverage is    
  reached and a small number of households are in the non-intervention arm. 

Impact on malaria prevalence 
In contrast to clinical malaria, average prevalence in the intervention period was 
similar to baseline (Table S7.2). In the non-intervention arm prevalence was higher 
during much of the intervention period than at baseline, in particular at survey four 
(around week 48) which was associated with a temporary increase in average 
mosquito biting intensity (Figure 7.5A, 7.5B). There was no increase in prevalence in 
intervened areas (Figure 7.4). 

Average prevalence in intervened clusters over the entire roll-out period was similar 
to the baseline prevalence of 23.9% (adjusted effectiveness: 3.7%, 95%CI: -9.5-15.5, 
Likelihood Ratio 𝜒2=1, 1 d.f., P=0.6, Table 7.2). There were consequently more data 
for malaria prevalence during the follow-up period than for clinical malaria.  

The contemporaneous comparison of parasite positivity indicated a highly statistically 
significant effect of SMoTS (effectiveness estimate from random effects model: 
29.8%, 95%CI: 20.9-38.0, Likelihood Ratio 𝜒2=30.6, 1 d.f., P<0.0001). Prevalence 
was lower in areas with SMoTS compared with non-intervention areas at each time 
point up to the final survey (by which time, coverage was almost complete). Low 
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prevalence values were measured in the first intervention clusters even when 
measured after just a few weeks of SMoTS usage (Figure 7.4; Table S7.5A). 

Impact on mosquito densities 
Overall, 3,528 trap-nights of mosquito monitoring recorded 1,073 female Anopheles 
mosquitoes. Anopheles funestus was the most abundant malaria vector during   
baseline (348/422=82%) with the remainder assigned morphologically to An. gambiae 
sensu lato. 

Table 7.3: Intervention effectiveness measures on mosquito densities. 

 All Anopheles An. funestus  An. gambiae s.l . 
Clusters with SMoTS    
    Mosquitoes caught  212 52 160 
    Number of trapping nights 1290 1290 1290 
    Mean number of mosquitoes 
per trap 

0.16 0.04 0.12 

Control clusters    
    Mosquitoes caught  439 258 181 
    Number of trapping nights 1370 1370 1370 
    Mean number of mosquitoes 
per trap 

0.32 0.19 0.13 

All clusters at baseline    
    Mosquitoes caught  422 348 74 
    Number of trapping nights 868 868 868 
    Mean number of mosquitoes 
per trap 

0.48 0.40 0.09 

Contemporaneous comparison    
    Unadjusted estimate of 
effectiveness (95% CI) 

48.7%  
(39.7, 56.5) 

78.6%  
(71.4, 84.3) 

-6.1% 
(-16.1, 24.2) 

    Adjusted* estimate of 
effectiveness (95% CI) 

42.2%  
(15, 61) 

69.2%  
(29.1, 87.4) 

10.8%  
(-43.5, 44.6) 

Comparison of baseline with 
intervened clusters 

   

    Unadjusted estimate of (95% 
CI) 

66.2% (60.2, 
71.2) 

89.9%  
(86.6, 92.5) 

-45.5%  
(-92.6,-10.9) 

    Adjusted* estimate of 
effectiveness (95% CI) 

72%  
(59, 81.2) 

92.1%  
(85.8, 95.8) 

-18.8%  
(30, -102.9) 

*Adjusted estimates are derived from Poisson models with random effects for the cluster and survey 
round  
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Far fewer An. funestus were caught in monitoring traps during roll-out than during 
baseline (Figure 7.5A, Table 7.3). The random-effects models indicated that An. 
funestus densities in the intervened clusters were reduced relative to those at 
baseline (point estimate 92.1%, 95%CI: 85.8-95.8, Likelihood Ratio 𝜒2=61.1, 1 d.f., 
P<0.0001 Table 7.3) with a smaller reduction in the non-intervened arm compared 
with baseline also observed (adjusted estimate 72.9%, see supplementary 
information Table S7.5B). The An. funestus density was significantly lower in the 
intervention arm compared with the non-intervention arm (adjusted effectiveness: 
69.2%, 95%CI: 29.1-87.4, Likelihood Ratio 𝜒2=7.6, 1 d.f., P=0.005, Table 7.3). During 
the roll-out period only 47.6% of the anophelines (310/651) caught were An. funestus. 

There was a negligible effect on An. gambiae s.l. densities in the comparison with 
baseline (adjusted effectiveness: -18.8%, 95%CI: -102.9-30.0, Likelihood Ratio 
𝜒2=0.4, 1 d.f., P=0.5, Table 7.3) and by contemporaneous comparison (adjusted 
effectiveness: -6.1%, 95%CI: -16.1-24.2, Likelihood Ratio 𝜒2=0.2, 1 d.f., P=0.6, Table 
7.3). The relative abundance of An. gambiae s.s. (15/70 An. gambiae s.l. at baseline 
(21.4%) and 63/311 (20.3%) subsequently) and An. arabiensis (78.6% at baseline 
and 79.7% subsequently) remained constant throughout the study.  
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Figure 7.5: Mosquito populations over the course of the study A) Average number of An. funestus 
caught in sentinel traps during each round of entomological surveillance according to the intervention 
status of the household where sampling took place (blue dashed line indicates all households, green 
dashed line indicates households with SMoTS, solid red line indicates non-intervened households); B) 
Average number of An. gambiae s.l. represented in the same way as An. funestus. For both species 
mean values for each sampling round are plotted at the mid-way point of the round. Error bars indicate  
   95% confidence intervals of the mean. 
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Discussion 
In this first trial of mass-mosquito trapping for malaria control the areas with SMoTS 
had significantly lower malaria prevalence than those without SMoTS. Malaria 
transmission, especially by An. funestus, declined more in intervened than in non-
intervened areas. The stepped wedge roll-out design allowed for contemporaneous 
comparison between intervened and non-intervened clusters during the roll-out and 
showed sustained transmission reductions in intervened areas despite increased 
malaria prevalence in the control arm midway through roll-out. 

The steep decline in clinical malaria incidence during the first few months is unlikely 
to be due to the intervention, as this reduction is already seen during the baseline 
period and even areas very remote from the SMoTS experienced a similar decrease. 
Moreover, the peak in prevalence in the non-intervened areas recorded during the 
middle of the intervention phase was not reflected in any resurgence in clinical 
incidence. Very possibly, there was a general increase in awareness of malaria on 
the island leading to improvement in treatment seeking and/or LLIN use, leading to 
the steep decline in clinical incidence. The parallel reduction in An. funestus 
populations observed in the non-intervened arm compared with baseline also 
corresponds with the reduction in clinical malaria, suggesting that seasonal effects on 
mosquito populations may also have contributed to the decline in clinical malaria 
during the first few months. 

Attribution of the impact of the intervention on malaria to mass mosquito trapping thus 
hangs on the contemporaneous comparisons between trial arms. Although the power 
for the comparison of clinical incidence in intervened versus non-intervened clusters 
was lower than anticipated, and the efficacy estimate consequently not statistically 
significant, the point estimate of 41% was consistent with the measured effects on 
parasite prevalence and on mosquito densities. Together these data indicate that 
SMoTS introduction may have had a very rapid specific effect locally on malaria, 
which cumulated only gradually across the island during the roll-out.   

The best estimate of effect on prevalence is of an overall reduction of 29.8% (95%CI: 
20.9-38); similar in magnitude to the effects observed in insecticide-treated net trials 
(Hawley et al., 2003; Lengeler, 2009). Untreated malaria infections last on average 
about eight months (Bretscher et al., 2015) and many of the infections in the SMoTS 
arm must therefore have pre-existed the installation of the traps, and so could not be 
averted by the intervention. This implies a considerably larger effect of the SMoTS in 
averting new infections than in reducing prevalence, consistent with the point 
estimates of impact on clinical incidence or mosquito densities. The temporal trends 
in prevalence need interpretation in this context. Very low prevalences were observed 
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in the intervened clusters during the first survey after the start of roll-out, suggesting 
that the impact on new infections was rapid. 

The reduction in densities of An. funestus (contemporaneous comparison of 
effectiveness 69.2%, 95%CI: 29.1-87.4) provides the strongest evidence that the 
SMoTS substantially reduced malaria transmission in a highly specific manner. While 
the An. funestus population crashed, An. gambiae s.l. (comprising both An. arabiensis 
and An. gambiae s.s.) continued to support some residual transmission; this may be 
ascribed to the more exophilic behaviour of An. arabiensis, which was dominant 
among the two An. gambiae s.l. species. This species may have been responsible for 
the continued transmission of malaria on the island. Continued entomological 
surveillance alongside maintenance of the traps and replacement of expired lures 
should indicate whether elimination can be achieved by sustaining the programme. 
The range of anophelines against which the baits are effective is not yet known, and 
there is an urgent need to evaluate potential impact in other settings.   

In principle, effectiveness of SMoTS can also be incrementally improved, for instance 
by eave screening of houses to divert more mosquitoes into the traps (Kirby et al., 
2009), by improving the baits to capture more An. arabiensis and An. gambiae s.s. 
(Okumu et al., 2010b), or through the combination of repellents and attractants in 
push-pull systems. Simulation modelling is being used to identify both the most 
promising avenues for continuing the Rusinga programme, and the characteristics of 
other settings and integrated programmes where OBTs will have most impact. OBTs 
are likely to be complementary to other novel intervention strategies such as 
intensified surveillance-response or mass vaccination.  
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With more than half of the world at risk of infection and more than 400,000 confirmed 
deaths each year, infection with the Plasmodium parasite transmitted by Anopheles 
mosquitoes is still a major health burden, predominantly in low and middle income 
countries (WHO, 2015b). By the middle of the 20th century malaria was eliminated or 
controlled in many parts of the world, but the control methods used were not able to 
permanently disrupt transmission and eradicate the disease (Snow, 2015). The 
control efforts were not sufficiently effective and were not applied effectively in many 
tropical countries, mostly for lack of funds. The health burden was acknowledged, and 
disruption of transmission by preventing malaria mosquitoes from biting humans 
using long lasting insecticidal nets [LLIN] and indoor residual spraying [IRS] with 
insecticides have been the foremost contributors to significant reductions in malaria 
burden since the year the turn of the millennium (Bhatt et al., 2015; Murray et al., 
2012). Additionally, much progress has been made to control the disease through 
improved diagnosis and effective case management. Following these achievements 
malaria eradication is back on the table (Alonso et al., 2011c). 

However, the goal of malaria eradication and even maintaining the current level of 
control is under pressure as the current tools are severely threatened (Alonso et al., 
2013). Effective drugs to cure malaria are subject to increasing levels of parasite 
resistance (Ashley et al., 2014). Furthermore, many malarious areas develop into low 
transmission settings whereby targeting the asymptomatic reservoir may become 
increasingly important in the attaining local elimination (Bousema et al., 2014). 
Scientists are therefore urged to develop new effective and more sensitive diagnostic 
and monitoring tools for detection. 

Moreover, vector control tools responsible for the prevention of infections are 
experiencing decreases in efficacy. Malaria mosquitoes are reported to become 
resistant to several insecticides used for IRS and on LLINs (Ranson et al., 2011). 
Besides these physiological changes, in some regions mosquito feeding behaviour is 
changing due to selection pressure driven by vector control (Reddy et al., 2011). This 
pressure fuels malaria transmission to occur earlier at the night and more often 
outdoors (Lwetoijera et al., 2014; Russell et al., 2013). Current malaria vector control 
in Sub Saharan Africa [SSA] is targeted at mosquitoes which express the typical 
nocturnal and endophilic feeding behaviour. In the face of malaria eradication, new 
effective vector control is urgently needed to further reduce malaria transmission 
(Alonso et al., 2011b; Govella et al., 2012). 

This thesis describes the development and the outcomes of the first trial (SolarMal) of 
the impact on malaria by mass trapping of malaria vectors using an odour-baited 
mosquito trap [OBT] (Hiscox et al., 2014). The proof of principle study aimed to trap 
host-seeking malaria mosquitoes to systematically shrink vector populations, disrupt 
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transmission and subsequently reduce malaria incidence and prevalence. To better 
understand the process of malaria reduction, the study was conducted on a naturally-
isolated geographic area, Rusinga Island, Kenya. The mass trapping of vectors could 
be a sustainable way to augment present malaria control measures as it acts upon 
the host-seeking drive of the mosquito, the olfactory sense. The development of a 
detailed study protocol is described. An appropriate statistical design calibrated for 
the geography of the study area is presented and two new outcomes measures with 
respect for spatial contamination effects are proposed. A novel method of data 
collection and the implementation of a health and demographic surveillance are 
presented. The geographical heterogeneity of malaria prevalence and risk factors for 
malaria parasitaemia are studied. Finally the outcomes of mass trapping of vectors on 
vector populations and malaria prevalence and incidence are reported.   

The key conclusion of this thesis is that OBTs are effective in trapping the dominant 
malaria transmitting vector on Rusinga Island. Transmission of malaria is anticipated 
to be disrupted as the effect prevalence of malaria in intervened areas was reduced 
by a magnitude similar to LLINs. It is concluded that the implementation of a stepped-
wedge cluster randomized trial design, allowing for contemporaneous comparison 
between intervened and non-intervened areas, is an appropriate method to capture 
differences in disease outcomes when considering spill-over effects and universal 
coverage of the intervention. Furthermore, the adoption of computer tablets and 
OpenHDS, a digital data collection and management system, can be cost-effective, 
increase organisational efficiency and improve data quality when monitoring health 
and demography in low and middle income countries. Lastly, exploring varying risk 
factors for malaria can aid in strategically implementing malaria control measures. 

As the first trial to report on the effect of mass trapping of mosquitoes on malaria, 
there are various aspects to be considered so that recommendations can be made to 
further explore the effects and mechanisms underlying such a malaria control 
intervention. Considering how OBTs can contribute to malaria control can best be 
illustrated using an epidemiological theoretical framework. The basic original 
reproductive number [R0] and the entomologic inoculation rate [EIR] are quantities 
that can be used to explore whether an intervention may cause an effect on the 
transmission (Feachem et al., 2009). Malaria mosquitoes are needed to transmit the 
parasite to another person and it is this transmission that determines whether the 
transmission level is decreasing or increasing (Kelly-Hope et al., 2009). R0 is the 
number of new infections arising from one particular infected individual in an entirely 
susceptible population and, for malaria, the value of R0 depends on: a = human biting 
habit, m = mosquito density relative to humans, b = susceptibility of mosquito to 
parasite infection, p = daily mosquito survival, n = incubation period of parasite in 
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mosquito, r = human recovery rate from infection, s = sporozoite rate (proportion of 
mosquitoes infective) (Chitnis et al., 2008; Dietz, 1993). 

 

𝑅0 =
𝑚𝑎2𝑏𝑝𝑛

−𝑟(ln 𝑝)
 

The EIR is the number of bites per person per unit time and is obtained by multiplying 
the sporozoite rate (s) by the number of bites by malaria vectors, the human biting 
rate (MacDonald, 1957). 

EIR = 𝑚𝑎𝑠 

 

R0 < 1 indicates a non-sustainable level of transmission ultimately resulting in the 
elimination of the pathogen. The relative number of mosquitoes is one of the most 
important predictors for whether malaria transmission can be sustained. OBTs can 
have a direct impact on R0 by targeting several parts of the equation: the mosquito 
survival rate and subsequently the mosquito density relative to humans (Okumu et al., 
2010a). Also half of the parameters in the EIR equation are targeted when mass 
trapping mosquitoes effectively.  

This thesis suggests that by complementing LLINs and case management, OBTs can 
have a significant effect on vectors and malaria as prevalence was lower in houses 
with the intervention compared to those without traps. However, it is not clear how 
exactly the addition of OBTs impacts mosquito populations and malaria epidemiology. 
Model-based estimates of R0 and EIR are simplified theoretical equations that are 
practical for a broad understanding of malaria epidemiology, but we remain with 
various unanswered questions regarding the added value of mass trapping with OBTs 
to current malaria control. 

An important hypothesis is that OBTs can aid in targeting the changing dynamics in 
vector behaviour by targeting outdoor biting and/or early evening biting mosquitoes 
because they can be positioned outside the house and could operate at whatever 
times of day are locally appropriate (Okumu et al., 2010a). The selection pressure of 
current vector control methods on malaria mosquitoes increases the proportion 
transmission occurring outdoors, but until now no intervention tools are available to 
target these outdoor biting mosquitoes (Govella et al., 2012). 

During our baseline studies in the study area of Rusinga Island, most of the vector 
population was endophilic, endophagic and chiefly anthropophilic, An. funestus 
(Chapter 7). Surprisingly, few An. gambiae s.s. were collected, which species 
historically was more abundant than An. funestus (Bayoh et al., 2010). A large effect 
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of the intervention was achieved on the population of this mosquito species, yet there 
is not enough evidence to assert that there was an effect on exophilic and exophagic 
mosquitoes (An. arabiensis (Mwangangi et al., 2013)).  Despite the lack of evidence 
of the impact on exophilic mosquitoes (i.e. An. arabiensis), a reduction of 60% in the 
major malaria vector (An. funestus) and 30% in malaria prevalence was achieved.  

Prior to this study and after a decade of LLINs and IRS coverage in the study area, 
the prevalence of malaria halved to a prevalence between 30 and 40% (Olanga et al., 
2015). In areas where the effects of LLINs and IRS on malaria subsequently 
stabilised (WHO, 2015b), we conclude that the introduction of mass trapping using 
OBTs can further reduce transmission and prevalence. This may suggest that other 
parts of the mosquito life cycle and the model equations are targeted, reducing 
transmission where the current intervention tools have reached their maximal effect. 
Several studies emphasize that due to the development of insecticide resistance, An. 
funestus populations remerge, decreasing the efficacy of LLINs and IRS on indoor 
transmission (Lwetoijera et al., 2014; McCann et al., 2014). OBTs may assist in 
overcoming this concern, however, further research would be necessary to quantify 
how this intervention contributes to the reduction of transmission inside and outside of 
the residential extend. 

In this thesis it is concluded that a large reduction in malaria vector densities must 
have led to the measured reduction in prevalence. Preliminary results indicate a 
dramatic decrease in the entomological inoculation rate (A. Hiscox, personal 
communication), confirming that the drop in malaria vector abundance and 
prevalence are most likely due to the intervention.  

However, even though the SolarMal project monitored the parasitological and 
entomological outcomes very comprehensively and longitudinally, the results on the 
incidence of confirmed clinical malaria were ambiguous. Few clinical cases were 
detected in total, and during the baseline period the number of clinical cases already 
dropped toward near zero (Chapter 7). An explanation for this could lie in the fact that 
the epidemiology of malaria and vector composition in western Kenya has changed 
due to the effects of IRS and LLINs, leading to a strong decline in the An. gambiae 
s.s. population (Zhou et al., 2011). A substantial prevalence may still be present, 
mostly as asymptomatic cases, but the number of individuals with clinical symptoms 
tends to drop as the transmission pressure decreases (Cotter et al., 2013). 
Nevertheless, the asymptomatic carriers are often harbouring gametocytes and 
infectious (Bousema et al., 2014), causing a low but continuous level of transmission. 
That is explained by the levels of malaria prevalence, as observed in this study. From 
the asymptomatic reservoir people will seek out treatment when they are sick, but will 
often be asymptomatic when visited at home (Sturrock et al., 2013). The monitoring of 
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clinical malaria in our health and demographic surveillance system relied on these 
house visits, but did not consider the information collected by the local clinics. Making 
sure that sound data is obtained from these clinics requires an intense effort, but may 
have improved our estimates of clinical incidence (Zhou et al., 2015). Another 
explanation for the low number of detected clinical events may lie in how strict the 
criteria were. This study required reported malaria symptoms accompanied by a body 
temperature of 37.4 or higher before testing for malaria with a RDT. Finally, the 
almost daily presence of project staff on the island, accompanied by regular malaria 
surveillance and house visits, may have induced a “Hawthorne effect”, leading to 
unintended health seeking behaviour and LLIN use, resulting in non-specific but 
effective reductions in malaria incidence.  

Notwithstanding the issue regarding the surveillance of the incidence of malaria, our 
HDSS has proven to be a strong instrument to monitor the outcomes of such a large 
field study. The quality and management of our data collection has been based on a 
completely digitized system (Chapter 3 and 5). Our HDSS is one of the first to operate 
using computer tablets to collect data and incorporates a near real time database with 
integrated quality checks. The data management platform used, OpenHDS, has been 
adopted to be the system of choice for all HDSSs by the overarching HDSS 
organization INDEPTH due to its cost effectiveness and organizational efficiency. 
Nevertheless, the piloting of OpenHDS yielded many questions and issues that 
should be addressed; mainly the empirical proof of its advantages over a paper-
based method is still lacking. Some of the general key challenges of such HDSSs are 
the sharing of data (Sankoh et al., 2011), the harmonization and generalizability of 
health data collection methods (Sankoh et al., 2013) and the logistical management 
(Sankoh et al., 2005). Ultimately, it is of great importance that HDSSs are further 
developed to accurately assess (malaria) health interventions, for their quality may be 
of comparable importance to the contribution of state of the art medicinal and 
analytical aspects.  

These analytical aspects brought together into an experimental design, were most 
significant for SolarMal to successfully measure any possible difference. The use of a 
stepped wedge cluster-randomised trial [SWCRT] subtly incorporates the merits of a 
cluster randomised trial while allowing the complete study area to be covered by the 
intervention (Chapter 4). The design is appropriate to assess the achievability of local 
elimination of a vector borne disease. Estimates of the effects of incomplete coverage 
may be made by quantifying the degree of contamination of one trial arm to another. 
Simulations of possible experimental designs of this trial showed how generic 
transmission models can be used to for purposes of randomization strategies and 
optimization of cluster size. The use of a SWCRT as demonstrated here may be 
applied to a variety of infectious diseases transmitted via environmental reservoirs or 
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via arthropod vectors. After carrying out the most optimal experimental design, there 
were some issues important to mention for follow up trials. First of all, the SolarMal 
trial was designed to test the effect of OBTs on the incidence of malaria. To our 
surprise, this outcome returned fewer cases than expected and cases were too few to 
carry out a proper analysis. Preparing for an alternative outcome measure, should the 
primary parameter be unmeasurable, needs to be considered in a future study 
design. Additionally, when creating clusters for the experimental design, the arbitrary 
geographical borders do not account for social borders from for instance villages 
(Chapter 4). We found out that this can lead to some tension within the study 
population. Although we accounted for this in a later stage, it would be 
recommendable to consider this issue early on in the development of the SWCRT. 

There are other challenges directly relating to the intervention tool used for this trial, 
the odour-baited trap. The number of mosquitoes relative to humans and the 
mosquito survival rate depend on several aspects; in the first case the relative 
attractiveness of the OBT compared to a human (Okumu et al., 2010a; Okumu et al., 
2010c). The blend [MB5] of attractants used in this intervention (Mukabana et al., 
2012b; Verhulst et al., 2009) was reported to be more attractive than a human odour 
(Okumu et al., 2010b), however, the same level of efficacy is yet to be confirmed in 
field settings. Besides, there is some uncertainty about whether mosquitoes tend to 
directly prefer the trap over a human. Investigating to what degree mosquitoes are 
trapped by an OBT after being diverted from a human protected by a LLIN would 
reveal more about the efficacy of the OBT. Furthermore, research should be 
conducted into the relative attractiveness of the traps compared to a residence with 
several individuals. This natural source of human odour could possibly also assist in 
future developments of OBTs (Matowo et al., 2013). 

The attractiveness of an OBT does not depend on the blend alone as CO2 has 
traditionally been considered essential in the host-seeking behaviour of malaria 
vectors (Takken et al., 1999). Due to logistical constraints it would have been too 
labour intensive and costly to continuously provide all traps on the island with a 
natural CO2 source like fermented yeast and molasses or gas cylinders with CO2  

.(Mweresa et al., 2014) Therefore a pragmatic replacement was used, 2-butanone. 
Even though the efficacy of this CO2 replacement is not as high as a natural CO2 
source, there is evidence that it its efficacy is substantial (Mburu, 2013; van Loon et 
al., 2015). Improvement of such a CO2 replacement should increase the relative 
attractiveness of the odour blend and with that the effectiveness of OBTs. 
Additionally, the OBT with the MB5 blend and 2-butanone were optimized and tested 
for only one species of malaria transmitting mosquitoes, An. gambiae s.s.. This thesis 
suggests that the effect of OBTs on An. gambiae s.l. on Rusinga, was insignificant 
(presumably because this comprised mainly An. arabiensis), whereas the most 
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prominent vector species on the Island, An. funestus, was critically affected by the 
intervention. The attractiveness of OBTs as intervention tool thus depends strongly on 
the vector species, and there is an urgent need to develop blends that are compatible 
with other major malaria transmitting mosquito species. Finally, there are indications 
that improvement of the physical design of the Suna trap can enhance trap catches 
by increasing its radius of effect and by improving its air flow mechanisms to prevent 
mosquitoes sensing the sucking power.  

Putting this trial in a wider context evokes the question to what extent the addition of 
OBTs can contribute to the currently available tools for malaria control. Studies are 
being carried out to investigate the combined effect of IRS and LLINs (Okumu et al., 
2011).  Although both LLINs and IRS target malaria mosquitoes within the home, they 
have shown significant effects when used as a stand-alone tool. However, it becomes 
clear that these two major interventions against malaria do not yield an extra 
protective effect when applied together (Pinder et al., 2015). As OBTs have not been 
applied as a malaria control tool until the current trial, further investigation would be 
essential to elucidate what the relationships between OBTs and the existing malaria 
control interventions are. In the current trial on Rusinga LLINs were present in most 
households, and OBTs should be considered as an additional intervention tool. The 
study was, however, not designed to investigate the impact of OBTs in addition to that 
of LLINs.  

Recently, the concept of a push-pull strategy has been studied in a field setting 
(Menger et al., 2014b). This new research looks at the protective effect of “pushing” 
mosquitoes away from human occupied houses in combination with “pulling” or 
trapping them by means of OBTs (Menger et al., 2015). The push is based on 
reducing mosquito house entry by screening the eaves between the walls and the 
roof with netting containing spatial repellents. In line with this concept, another study 
has revealed that screened eaves provided with air tubes covered in insecticides can 
act as an effective vector control method (Knols, 2015). The effectiveness of OBTs as 
control tool may complement and be even synergistic with these other existing or 
novel vector control measures.   

Ultimately the question arises whether it would be possible to eliminate malaria by 
adding OBTs to the LLINs and case management. Elimination was the goal of 
SolarMal, and although the results point toward a partial disruption of transmission, 
substantial malaria prevalence is still present. Preliminary evidence of follow up 
surveys carries out after Island wide coverage indicate a rapidly decreasing malaria 
prevalence (W. Takken, personal communication). However, considering the 
persistent nature of the asymptomatic reservoir, it may not be feasible to attain 
elimination with only OBTs and the existing national control measures. A mass drug 
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administration may target most of the residual cases. Conversely, if due to the 
asymptomatic reservoir and or imported malaria cases elimination with OBTs in areas 
in SSA is not feasible, reduction to low transmission and hypo-endemicity may be 
possible.  How subsequently the epidemiology of malaria would be affected by up-
scaling of OBTs is an interesting topic of discussion. Selection pressure may even 
further change the mosquito populations to be essentially outdoor biting, further from 
the residential extend and during the day. It could also be plausible that transmission 
moves to hot spots of unprotected people.  Mathematical models of malaria may 
further explore the effect of OBTs on transmission. Predictions of such models are of 
great importance; so that program managers can take into account what issues may 
arise after implementation.   

More research must be conducted to ascertain the efficacy of OBTs alone as well as 
in combination with other malaria control tools. But not only should research be 
expanded to investigate variations within this spectrum, much value would lie in 
piloting similar field studies to evaluate the efficacy of OBTs in different settings. 
When transmission intensity is dropping continuously due to the interception of host-
seeking mosquitoes by malaria control and potentially odour-baited traps, studying 
the heterogeneity of malaria epidemiology becomes more important (Snow, 2015). 
Malaria vectors, species of malaria, age categories at risk, climatological and 
environmental conditions are some of the important factors behind the complexity of 
local malaria epidemiology (Beck-Johnson et al., 2013; Bousema et al., 2012; Walker 
et al., 2013). Over the last few years much emphasis has been put on the 
geographical distribution of malaria and its drivers. It becomes clearer that a one size 
fits all strategy is not enough to eliminate malaria from all these diverse 
epidemiological settings (Alonso et al., 2011c). Carefully studying the local 
geographical distribution of the factors that play a role in malaria transmission may 
aid in deploying successful combinations of targeted interventions (Chapter 6). For 
instance, poor communities may be helped by different strategies than are being used 
in the somewhat richer communities; urban areas will need different approaches than 
rural regions; and high transmission settings may require another strategy than low 
transmission settings (Alonso et al., 2013). In the SolarMal trial, all households 
received the intervention, but in future follow up studies a more cost-effective 
approach could lie in identifying areas where such vector control will have the largest 
impact (Woolhouse et al., 1997). 

These tailor made malaria control schemes involve detailed information about the 
area in question. Strategies to trial and implement novel malaria control methods 
require full understanding of and good communication with the population in such an 
area (Tindana et al., 2007). The study described in this thesis is an example of a 
successful trial of a malaria control where community engagement was an essential 
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aspect (Oria et al., 2014). Traps were provided to families in households who were 
then given responsibility and ownership over them. However, in contrast with LLINs, a 
complementary system to power the trap was needed. In each household a solar 
panel was installed linked to a battery which in turn provided electricity for the trap. 
The system was also equipped with two electric light bulbs and an outlet for charging 
mobile phones. Education and information about the project, the solar-powered 
mosquito trapping system [SMoTS], and the design of the experiment were important 
aspects for the community to cooperate with, understand and eventually to accept the 
trial (Oria et al., 2015). In collaboration with representatives of the study site (key 
persons of stakeholder groups united into a community advisory board) the 
deployment of the trial was discussed and feedback gained from the community. In 
this way the community was comprehensively involved in the implementation of the 
project. Suggestions, ideas and interests of the population were communicated, and 
conversely, they were continuously informed about the ongoing work. Engagement of 
the community and a bottom-up approach in health promotion is generally understood 
to be an important aspect to create a platform to increase awareness about how the 
disease affects the community and how one can actively think of and create ideas 
about how to get rid of malaria (Tindana et al., 2007; Whittaker et al., 2015).  

Finally, besides emphasizing the significance of community engagement for the 
successful implementation of malaria control, I want to further stress the importance 
of understanding the features and construction of such local environments. Primarily, 
preventable and curable diseases like malaria can only exist in low and middle 
income countries (Fosu et al., 2007; Worrall et al., 2005). The general socioeconomic 
state of such countries often prevents people from obtaining access to basic needs 
like health care, appropriate nutrition, education and good housing conditions 
(Owens, 2015; Teklehaimanot et al., 2008). Endemic infectious diseases with a high 
morbidity are characteristics for an underprivileged situation (Deaton, 2014). Many 
billions of dollars are invested each year into the research and development of health 
systems and interventions, but despite acknowledging the situation, coordinated 
efforts to target the overlapping health goals are unexplored or unfruitful (Blas, 2013). 
Nevertheless, integrated vector management is a good example of an initiative that 
strives to involve common goals and resources to develop sustainable vector control 
(Beier et al., 2008; WHO, 2011). I reason that this way of thinking could be expanded 
to not only bearing in mind developments in vector control, or even only considering 
the general discipline of health, but to ensure cooperation of all parts of society that 
are in need of development. A more holistic framework led by progressive policy 
makers may take to heart the socioeconomic developments in society (Utzinger et al., 
2013). At a small scale the SolarMal trial managed to achieve such an approach. 
Over 25,000 individuals were provided with a novel malaria control tool, but 
simultaneously, they were provided with sustainable energy from solar panels that 
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also enabled them to use electricity for other purposes (i.e. electric LED lights and 
phone charging). Most importantly, the provision of LED lights allows people to read 
and see at night without using polluting kerosene lamps. The introduction of mobile 
phone chargers may have empowered people to have better communication and 
access to information. In conclusion, multisectoral approaches, community 
involvement and transdisciplinary research are key notions for a more equal, 
sustainable, healthy and effective development of low and middle income countries. 
To beat the challenges in malaria control of this time, the combining of knowledge 
regarding the mosquito life cycle, the epidemiology of malaria and societal areas, are 
key in developing robust and environmentally sustainable interventions that are 
embraced and sustained by the people affected.  
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The parasites belonging to the genus Plasmodium are the cause of the second 
deadliest infectious disease in the world, malaria. Sub Saharan Africa harbours more 
than 90% of malaria attributable mortality and morbidity, and most deaths occur in 
children under 18 years old. Malaria is transmitted to humans by a bite of a 
Plasmodium infected arthropod vector from the genus Anopheles. Halfway the 20th 
century malaria was successfully eliminated from most developed countries, 
nonetheless in the third world effective control remains a laborious challenge. 
Intensive efforts undertaken to control and eventually eradicate malaria during the 
past decade have led to substantial reductions in morbidity and mortality. Conversely, 
scientists became increasingly aware that with the current preventative and curative 
tools against malaria successful eradication seems unlikely. Not only do current tools 
not suffice to attain that goal, their efficacy to control malaria as it is, maybe severely 
threatened. Proper treatment and diagnosis are becoming increasingly less effective 
because of the adaptive nature of the parasite. Parasites get resistance against drugs 
and carriers are more often found to have subclinical infections. Likewise prevention 
of malaria, by vector control, becomes less effective. Malaria vectors become 
resistant to insecticides and transmission patterns are shifting away from where 
preventive measures are functional: outside and during the day. It this gap where the 
SolarMal project experimented with a novel malaria vector control tool, complimentary 
to existing malaria control methods: odour-baited mosquito traps that mimic human 
beings to lure and kill mosquitoes to eventually reduce malaria. The ultimate aim of 
this thesis was to seek proof of principle of the effect of mass trapping of malaria 
vectors on malaria and mosquito densities by rolling out over 4000 odour-baited 
mosquito traps at household level on Rusinga Island, Kenya. 

Chapter 2 is a study protocol of the SolarMal project and provides a general 
understanding of how the objectives of the project are translated into a research 
design. The study comprises of a medical, an entomological and a sociological 
discipline. A multidisciplinary strategy is presented in which the intervention is 
explained. Experimental designs of all disciplines are introduced including time 
frames, participant eligibility, and randomisation. Furthermore, a general overview of 
the data collected and how it is evaluated and analysed using health and 
demographic surveillance and monitoring is provided. 

In chapter 3 a novel data collection and management platform is presented. The 
health and demographic surveillance as well as other disciplines in the project are an 
example of one of the first fully digital data collection systems in a low and middle 
income country. The development of digital questionnaires and the conducting of 
these by means of Open Data Kit software enabled the project to efficiently collect 
data. All residential structures were documented by GPS, and data of individuals 
attached. Converting the geo-located data to a geodatabase and displayed with 
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Google Earth mobile made navigating from house to house an easy task. By daily 
uploading of data to the server at the project campus, scientists have access to a 
near real time database. Once uploaded to the server, data is transferred to the 
OpenHDS database in which the demography of the study population is updated 
accordingly. Data quality was further increased by a tool that looked for 
inconsistencies.  

In chapter 4 we explore what experimental design would fit the SolarMal project best. 
A stepped wedge cluster-randomized trial [SWCRT] design was chosen to make sure 
that the whole area would cross over from the control to the intervention arm over a 
period of two years. As elimination was the goal, universal coverage was required. 
Subsequently, strategies for randomization and crossover of clusters that could 
measure a possible intervention effect best were simulated with a generic model of 
disease transmission. Considering sufficient numbers and sizes of clusters a 
hierarchical SWCRT would best measure a possible effect of OBTs on Rusinga 
Island. Special care was given to quantifying spill over effects into the control arm. 
Finally, two new measures of intervention effectiveness are proposed.  

Chapter 5 reports on the outcomes of the health and demographic surveillance 
system on Rusinga Island. Running an HDSS is a thorough but complex method to 
monitor intervention effects in an area where health surveillance is minimal. As part of 
the overarching HDSS institution, INDEPTH, data collection methods and reporting 
are harmonious with many other HDSSs around the world. Demographic parameters 
are calculated and the HDSS practices are described. 

Chapter 6 uses the baseline cross sectional prevalence surveys to elucidate how the 
epidemiology of malaria on Rusinga Island. Firstly, the malaria distribution and hot 
spots are identified. Consequently, a standard epidemiological model and a 
geographically weighted regression are compared, and used to identify risk factors for 
malaria. The latter model, taking into account non-stationarity, performs better and is 
able to produce geographically varying risk factors. The strength of the relationship of 
risk factors for malaria are heterogeneous over the whole island, and for instance 
social economic status and occupation are strong predictors of malaria in some areas 
but less in other areas. Considering these risk factor distributions can aid in guiding 
the implementation of malaria intervention methods. 

Chapter 7 presents the main outcomes of the SolarMal project. The impact of OBTs 
on the prevalence of malaria is pronounced in the contemporaneous comparison 
between the intervened and the intervened arm. Comparison of baseline data with the 
intervened clusters does not yield significant effects. A strong decline in cases of 
clinical malaria was observed starting already in the baseline period, and therefore we 
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cannot attribute this decline to the intervention. Effects on the most prominent malaria 
vector were large, whereas other vectors did not suffer under the intervention. 

Chapter 8 is a general discussion of the work provided. The most important 
implications of the thesis are discussed underscoring the societal and scientific 
relevance, and putting the research in a wider perspective. Unaddressed issues are 
raised and recommendations for further research are provided.  
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Table  S4.1:  Power at rollout week 60 (simulation week 100) for the hierarchical design 

Simulated effectiveness: 𝑒̂𝑖 = 30%, significance level 𝑎 = 0.1% 
r 𝑦𝑟(0) 𝑒̂1(𝑡) 𝑒̂2(𝑡) 𝑒̂3(𝑡) 𝑒̂4(𝑡) 𝑒̂5(𝑡) 𝑒̂6(𝑡) 
0.5 0.1 1 0.94 1 0.98 0.89 0.52 
0.5 0.2 1 0.93 1 0.99 0.9 0.52 
0.5 0.5 0.99 0.8 1 0.97 0.83 0.4 
0.5 0.8 0.95 0.41 0.99 0.84 0.58 0.18 
1 0.1 1 0.99 1 0.8 0.8 0.66 
1 0.2 1 0.98 1 0.84 0.73 0.58 
1 0.5 0.99 0.95 1 0.79 0.63 0.45 
1 0.8 0.91 0.66 0.99 0.5 0.44 0.29 
1.5 0.1 1 0.99 1 0.54 0.94 0.88 
1.5 0.2 0.99 0.99 1 0.54 0.79 0.74 
1.5 0.5 0.98 0.97 1 0.45 0.56 0.48 
1.5 0.8 0.88 0.78 0.99 0.25 0.41 0.36 
Simulated effectiveness: 𝑒̂𝑖 = 80%, 𝑎 = 0.1%  
r 𝑦𝑟(0) 𝑒̂1(𝑡) 𝑒̂2(𝑡) 𝑒̂3(𝑡) 𝑒̂4(𝑡) 𝑒̂5(𝑡) 𝑒̂6(𝑡) 
0.5 0.1 1 0.99 1 1 1 0.82 
0.5 0.2 1 0.99 1 1 1 0.84 
0.5 0.5 1 0.98 1 1 1 0.81 
0.5 0.8 1 0.91 1 1 1 0.67 
1 0.1 1 1 1 0.99 1 0.92 
1 0.2 1 1 1 1 1 0.87 
1 0.5 1 1 1 1 0.99 0.8 
1 0.8 1 0.99 1 1 0.97 0.72 
1.5 0.1 1 1 1 0.86 1 1 
1.5 0.2 1 1 1 0.93 1 0.99 
1.5 0.5 1 1 1 0.97 0.99 0.87 
1.5 0.8 1 0.99 1 0.97 0.94 0.77 
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Table  S4.2:  Power at rollout week 60 (simulation week 100) for the oil drop design. 

Simulated effectiveness: 𝑒̂𝑖 = 30%, significance level 𝑎 = 0.1% 
r 𝑦𝑟(0) 𝑒̂1(𝑡) 𝑒̂2(𝑡) 𝑒̂3(𝑡) 𝑒̂4(𝑡) 𝑒̂5(𝑡) 𝑒̂6(𝑡) 
0.5 0.1 1 0.90 1 0.99 0.93 0.53 
0.5 0.2 1 0.89 1 0.99 0.94 0.54 
0.5 0.5 0.99 0.72 1 0.98 0.88 0.41 
0.5 0.8 0.95 0.37 1 0.86 0.64 0.18 
1 0.1 1 0.97 1 0.91 0.84 0.64 
1 0.2 1 0.97 1 0.93 0.82 0.59 
1 0.5 0.99 0.92 1 0.88 0.74 0.48 
1 0.8 0.93 0.6 0.99 0.6 0.52 0.28 
1.5 0.1 1 0.98 1 0.75 0.84 0.63 
1.5 0.2 1 0.98 1 0.77 0.82 0.61 
1.5 0.5 0.99 0.95 1 0.69 0.76 0.51 
1.5 0.8 0.91 0.71 0.99 0.41 0.52 0.31 

Simulated effectiveness: 𝑒̂𝑖 = 80%, 𝑎 = 0.1%  
r 𝑦𝑟(0) 𝑒̂1(𝑡) 𝑒̂2(𝑡) 𝑒̂3(𝑡) 𝑒̂4(𝑡) 𝑒̂5(𝑡) 𝑒̂6(𝑡) 
0.5 0.1 1 0.98 1 1 1 0.84 
0.5 0.2 1 0.98 1 1 1 0.87 
0.5 0.5 1 0.97 1 1 1 0.84 
0.5 0.8 1 0.86 1 1 1 0.68 
1 0.1 1 1 1 0.99 1 0.88 
1 0.2 1 1 1 1 1 0.87 
1 0.5 1 0.99 1 1 0.99 0.84 
1 0.8 1 0.97 1 1 0.99 0.75 
1.5 0.1 1 1 1 0.94 1 0.88 
1.5 0.2 1 1 1 0.97 1 0.88 
1.5 0.5 1 1 1 0.99 1 0.9 
1.5 0.8 1 0.99 1 0.98 0.99 0.82 
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Table S4.3:  Power at rollout week 60 (simulation week 100) for the random design 

Simulated effectiveness: 𝑒̂𝑖 = 30%, significance level 𝑎 = 0.1% 
r 𝑦𝑟(0) 𝑒̂1(𝑡) 𝑒̂2(𝑡) 𝑒̂3(𝑡) 𝑒̂4(𝑡) 𝑒̂5(𝑡) 𝑒̂6(𝑡) 
0.5 0.1 1 0.93 1 0.99 0.90 0.51 
0.5 0.2 1 0.93 1 0.99 0.9 0.52 
0.5 0.5 0.99 0.79 1 0.98 0.83 0.41 
0.5 0.8 0.95 0.41 1 0.85 0.59 0.18 
0 0.1 1 0.99 1 0.83 0.82 0.67 
0 0.2 1 0.98 1 0.87 0.74 0.56 
0 0.5 0.99 0.95 1 0.81 0.64 0.45 
0 0.8 0.92 0.66 0.99 0.53 0.45 0.29 
0.5 0.1 1 0.99 1 0.58 0.95 0.91 
0.5 0.2 1 0.99 1 0.59 0.86 0.78 
0.5 0.5 0.99 0.97 1 0.5 0.62 0.51 
0.5 0.8 0.9 0.78 0.99 0.28 0.45 0.37 
Simulated effectiveness: 𝑒̂𝑖 = 80%, 𝑎 = 0.1%  
r 𝑦𝑟(0) 𝑒̂1(𝑡) 𝑒̂2(𝑡) 𝑒̂3(𝑡) 𝑒̂4(𝑡) 𝑒̂5(𝑡) 𝑒̂6(𝑡) 
0.5 0.1 1 0.99 1 1 1 0.82 
0.5 0.2 1 0.99 1 1 1 0.84 
0.5 0.5 1 0.98 1 1 1 0.81 
0.5 0.8 1 0.91 1 1 1 0.67 
0 0.1 1 1 1 0.99 1 0.92 
0 0.2 1 1 1 1 1 0.87 
0 0.5 1 1 1 1 0.99 0.8 
0 0.8 1 0.99 1 1 0.97 0.72 
0.5 0.1 1 1 1 0.86 1 1 
0.5 0.2 1 1 1 0.93 1 0.99 
0.5 0.5 1 1 1 0.97 0.99 0.87 
0.5 0.8 1 0.99 1 0.97 0.94 0.77 
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Table  S4.5: Bias defined as the difference between median estimates and median 𝑒̂𝑖, hierarchical 
design, summarized over 80 replicates and 10 geographies 

r Es 𝑦𝑟(0) Bias 𝑒̂2(𝑡) Bias 𝑒̂3(𝑡) Bias 𝑒̂4(𝑡) Bias 𝑒̂5(𝑡) Bias 𝑒̂6(𝑡) 
0.5 0.3 0.1 0.28 0.21 0.05 0.03 0.24 
0.5 0.3 0.2 0.26 0.2 0.05 0.02 0.22 
0.5 0.3 0.5 0.22 0.16 0.03 0.01 0.17 
0.5 0.3 0.8 0.13 0.1 0.01 0 0.1 
0.5 0.8 0.1 0.6 0.45 0.04 0.01 0.45 
0.5 0.8 0.2 0.6 0.45 0.04 0.01 0.45 
0.5 0.8 0.5 0.58 0.44 0.03 0.01 0.44 
0.5 0.8 0.8 0.5 0.38 0.02 0 0.41 
1 0.3 0.1 0.14 0.11 0.08 0.02 0.14 
1 0.3 0.2 0.13 0.1 0.07 0.01 0.12 
1 0.3 0.5 0.11 0.08 0.05 0.01 0.09 
1 0.3 0.8 0.06 0.05 0.03 0 0.05 
1 0.8 0.1 0.33 0.25 0.12 0.02 0.29 
1 0.8 0.2 0.32 0.24 0.12 0.02 0.28 
1 0.8 0.5 0.29 0.22 0.1 0.01 0.26 
1 0.8 0.8 0.22 0.17 0.07 0 0.2 
1.5 0.3 0.1 0.07 0.05 0.1 0.02 0.08 
1.5 0.3 0.2 0.06 0.05 0.09 0.02 0.07 
1.5 0.3 0.5 0.05 0.04 0.06 0.01 0.05 
1.5 0.3 0.8 0.03 0.02 0.03 0 0.03 
1.5 0.8 0.1 0.16 0.12 0.2 0.03 0.17 
1.5 0.8 0.2 0.16 0.12 0.19 0.03 0.17 
1.5 0.8 0.5 0.14 0.1 0.15 0.01 0.13 
1.5 0.8 0.8 0.09 0.07 0.1 0 0.09 
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Table  S4.7: Bias defined as the difference between median effectiveness estimates and median 𝑒̂𝑖, oil 
drop design, summarized over 80 replicates and 10 geographies 

r Es 𝑦𝑟(0) Bias 𝑒̂2(𝑡) Bias 𝑒̂3(𝑡) Bias 𝑒̂4(𝑡) Bias 𝑒̂5(𝑡) Bias 𝑒̂6(𝑡) 
0.5 0.3 0.1 0.29 0.22 0.05 0.03 0.25 
0.5 0.3 0.2 0.28 0.21 0.04 0.02 0.23 
0.5 0.3 0.5 0.23 0.17 0.02 0.01 0.18 
0.5 0.3 0.8 0.14 0.1 0.01 0 0.11 
0.5 0.8 0.1 0.63 0.47 0.04 0.01 0.46 
0.5 0.8 0.2 0.63 0.48 0.03 0.01 0.46 
0.5 0.8 0.5 0.61 0.46 0.03 0 0.46 
0.5 0.8 0.8 0.53 0.4 0.02 0 0.43 
1 0.3 0.1 0.17 0.13 0.07 0.01 0.15 
1 0.3 0.2 0.16 0.12 0.06 0.01 0.14 
1 0.3 0.5 0.13 0.1 0.04 0 0.11 
1 0.3 0.8 0.08 0.06 0.02 0 0.06 
1 0.8 0.1 0.4 0.3 0.1 0.01 0.32 
1 0.8 0.2 0.39 0.29 0.09 0.01 0.31 
1 0.8 0.5 0.35 0.26 0.08 0.01 0.29 
1 0.8 0.8 0.27 0.2 0.06 0 0.23 
1.5 0.3 0.1 0.11 0.08 0.08 0.01 0.11 
1.5 0.3 0.2 0.1 0.07 0.08 0.01 0.09 
1.5 0.3 0.5 0.08 0.06 0.06 0 0.07 
1.5 0.3 0.8 0.04 0.03 0.03 0 0.04 
1.5 0.8 0.1 0.24 0.18 0.16 0.01 0.21 
1.5 0.8 0.2 0.24 0.18 0.15 0.01 0.21 
1.5 0.8 0.5 0.21 0.15 0.13 0 0.18 
1.5 0.8 0.8 0.15 0.11 0.09 0 0.13 
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Table  S4.9: Bias defined as the difference between median 𝑒̂𝑖 and median effectiveness, random 
design, summarized over 80 replicates and 10 geographies 

r Es 𝑦𝑟(0) Bias 𝑒̂2(𝑡) Bias 𝑒̂3(𝑡) Bias 𝑒̂4(𝑡) Bias 𝑒̂5(𝑡) Bias 𝑒̂6(𝑡) 
0.5 0.3 0.1 0.27 0.21 0.05 0.03 0.23 
0.5 0.3 0.2 0.26 0.2 0.05 0.02 0.22 
0.5 0.3 0.5 0.22 0.16 0.03 0.01 0.17 
0.5 0.3 0.8 0.13 0.1 0.01 0 0.11 
0.5 0.8 0.1 0.6 0.45 0.04 0.01 0.45 
0.5 0.8 0.2 0.6 0.45 0.04 0.01 0.45 
0.5 0.8 0.5 0.58 0.44 0.03 0.01 0.44 
0.5 0.8 0.8 0.5 0.38 0.02 0 0.41 
1 0.3 0.1 0.15 0.11 0.08 0.02 0.14 
1 0.3 0.2 0.14 0.1 0.07 0.01 0.13 
1 0.3 0.5 0.11 0.08 0.05 0.01 0.1 
1 0.3 0.8 0.06 0.05 0.03 0 0.06 
1 0.8 0.1 0.34 0.25 0.12 0.02 0.3 
1 0.8 0.2 0.33 0.25 0.12 0.02 0.29 
1 0.8 0.5 0.3 0.22 0.1 0.01 0.26 
1 0.8 0.8 0.23 0.17 0.07 0 0.2 
1.5 0.3 0.1 0.07 0.05 0.1 0.02 0.08 
1.5 0.3 0.2 0.07 0.05 0.09 0.01 0.07 
1.5 0.3 0.5 0.05 0.04 0.06 0.01 0.05 
1.5 0.3 0.8 0.03 0.02 0.03 0 0.03 
1.5 0.8 0.1 0.17 0.13 0.2 0.03 0.18 
1.5 0.8 0.2 0.16 0.12 0.19 0.02 0.17 
1.5 0.8 0.5 0.14 0.11 0.15 0.01 0.14 
1.5 0.8 0.8 0.1 0.07 0.1 0 0.09 
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Figure S2.1: Household assignments during an intermediate time-step of the simulation for a 
small proportion of the surface illustrating how the intervened, neighbour and remote zones are 
assigned 
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A 

B 

Figure S2.2: A: minimal spanning tree algorithm applied across the geographic locations of 
households of Rusinga Island to find an efficient (minimum distance) one-way path connecting all 
households. B: households were counted off in groups of 50 from a starting point on the south-
west corner of the island along the one-way path to construct a total of 81 clusters. Each group of 
nine clusters is further combined into a metacluster, here denoted from I-IX. 
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Supplementary material chapter 7 
 

Introduction 
This document reports analyses carried out in order to estimate the effect of the 

introduction of odour-baited traps [OBTs] for trapping malaria mosquitoes on Rusinga 

Island, western Kenya. Outcomes analysed are parasite positivity in humans 

(measured using RDTs), clinical malaria, and mosquito densities. These analyses are 

complementary to those reported in the main paper entitled “Stepped wedge cluster-

randomised trial of the impact of mass mosquito trapping on malaria (SolarMal)” 

(Homan et al., 2016).  Together these two documents correspond to the analyses 

prescribed in the analytical plan of the Solarmal trial (Hiscox et al., 2016) , with the 

exception of certain planned analyses that are excluded for the reasons given below. 

Numbers of participants in the trial 
The numbers of participants in the trial at each survey round are given in Figures 

S7.1 and S7.2. 

Characteristics of trial participants at baseline and during roll-out 
The parasite positivity in humans (measured using RDTs), and clinical malaria for the 

baseline period are summarised in Table 7.1 and baseline mosquito densities in 

Table 7.2 of the main paper (Homan  et al., 2016). The averages of other potential 

modifying factors at baseline are tabulated in Table 7.3.  

A more complete set of potentially modifying factors is listed in Table S7.3, along with 

the proportions of responses in each category, both at baseline, and at the five 

subsequent parasitological surveys, at each of which a 10% random sample of 

households were included. The values tabulated are counts of responses in the 

categories indicated and percentages of the total number of responses aggregated 

over all surveys included.    

file:///D:/SOLARMAL_10.02.16/Chapters/Thesis/Book%20version/Book%20docs/Thesis_boekversie_total_V2_WORD.docx%23_ENREF_102
file:///D:/SOLARMAL_10.02.16/Chapters/Thesis/Book%20version/Book%20docs/Thesis_boekversie_total_V2_WORD.docx%23_ENREF_98
file:///D:/SOLARMAL_10.02.16/Chapters/Thesis/Book%20version/Book%20docs/Thesis_boekversie_total_V2_WORD.docx%23_ENREF_102
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Power and sample size rationale 
Table S7.1 gives the intra-cluster correlation coefficients for both malaria prevalence 

and clinical malaria based on the data of the baseline studies. The power depended 

on the correlation between observations on the same individuals at sequential HDSS 

visits. We could not determine this level of correlation from the single baseline 

enumeration visit. A lower bound for the minimum detectable effect size is given by 

the value that would be achieved by a single visit per person, occurring halfway 

through the rollout. Using previously published formulae, this implied that the design 

had at least 80% power to detect approximately 52% reduction in clinical incidence 

(Hemming et al., 2013). Conversely, a parallel CRT with six repeated visits and 

independent outcomes for each visit should have had power to detect (in the worst 

case of complete correlation between successive visits) an approximately 23% 

reduction in clinical incidence. Analogous calculations for prevalence, using a 

baseline malaria prevalence of 23.9% (RDT prevalence rate during the baseline 

survey for this project) and sample size of around 1,860 persons (10% of the 

population that was initially enumerated for this project) suggest that a single 

prevalence survey should have had 80% power to detect a 27% reduction in 

prevalence. Six repeated surveys carried out, might have power to detect effects as 

small as an 11% reduction in prevalence, assuming that correlations between 

repeated observations were small. 

Analyses of effectiveness  
Analyses of effectiveness of the SMoTS against parasite positivity in humans 

(measured using RDTs), clinical malaria, and mosquito densities are also reported in 

Tables 7.1 and 7.2 of the paper. These tables consider comparisons between the 

intervened clusters and (i) the status of the population prior to the intervention 

(baseline): this is a before-and-after comparison of the direct effect of the intervention; 

(ii) the non-intervened clusters during the roll-out of the intervention: this is a 

contemporaneous comparison of the direct effect of the intervention.   

 

  

file:///D:/SOLARMAL_10.02.16/Chapters/Thesis/Book%20version/Book%20docs/Thesis_boekversie_total_V2_WORD.docx%23_ENREF_95
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This document contains analyses that are complementary to those presented in the 

main paper as follows:  

  

(a) Analysis of modifying effects of potential confounders 

The analyses presenting in Tables 7.1 and 7.2 do not include any adjustment for 

potential confounders.  For the outcome of clinical malaria incidence, for which the 

data are extremely sparse, no additional adjusted analyses were carried out. Adjusted 

analysis of parasite prevalence by RDT are presented below in Table S7.2; the 

adjusted estimates of effectiveness are similar to the unadjusted estimates. 

 

(b) Temporal pattern of clinical malaria incidence 

Because clinical malaria was infrequent during the follow-up period and hence the 

data are sparse the temporal pattern of clinical malaria is not given in the paper. 

Table S7.4 provides additional information on the temporal pattern of clinical malaria 

in both trial arms.   

Planned analyses not included in these reports. 
In addition to analyses of the outcomes reported in the main paper and in this 

document, the analytical plan envisaged: 

 Corresponding analyses of all-cause human mortality: analyses of all-cause 

mortality are not included here because the relatively high levels of migration 

(>10% annually) would lead to underestimates or overestimates of cases of 

death, given that the older people are likely to return to their “ancestral home” 

at the time of death. 

 Analysis of sporozoite positivity in mosquitoes and of mosquito survival. 

These analyses will be reported elsewhere.  

 

(c) Analysis of effects on additional outcome measures 

Additional outcomes were analysed for the outcomes of parasite positivity by RDT, 

and mosquito densities. These comprise comparisons between: (i) the non-intervened 

clusters during the intervention and the baseline: (a before-and-after comparison of 
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the indirect effect of the intervention); (ii) the overall population during the intervention 

and the baseline: this is a before-and-after comparison of the overall effect of the 

intervention (Halloran et al., 1997); (iii) the non-intervened households close to 

SMoTS with non-intervened households further away, using several different distance 

cutpoints (Table S7.5A, S7.5B): this provides an estimate of the spill-over effect of the 

intervention; (iv) the intervened clusters, with non-intervened clusters remote from the 

nearest SMoT: this provides an estimate of the direct effect of the intervention, with 

adjustment for the diluting effect of spill-over from the intervention into neighbouring 

areas. 

Table S7.5A reports these complementary analyses for the outcome of parasite 

positivity by RDT.  Table S7.5B reports these analyses for mosquito densities 

(disaggregated by mosquito species complex) (Halloran et al., 1997). 

Participation: Demographic surveillance and clinical incidence surveillance 
A total of 34,538 individuals were enrolled at some point during the trial. Figure S7.1 

gives the active number of enrolled individuals in the HDSS at the beginning of each 

round, the numbers of immigrants/emigrants or enumerated (later), they were also 

subject to the active case detection. 15-20 % of the enrolled individuals were not 

sampled because they migrated out, passed away or were not available at the time of 

survey. The analyses refer to 138 project weeks; the baseline comprised the first 38 

project weeks, and the remainder spanned the period of SMoTS installation (June 

2013 until June 2015) (Figure 7.2). 34,041 distinct enrolled individuals, assigned to 

4,847 households, consented to participate over this period (Figure S7.1).   

file:///D:/SOLARMAL_10.02.16/Chapters/Thesis/Book%20version/Book%20docs/Thesis_boekversie_total_V2_WORD.docx%23_ENREF_85
file:///D:/SOLARMAL_10.02.16/Chapters/Thesis/Book%20version/Book%20docs/Thesis_boekversie_total_V2_WORD.docx%23_ENREF_85
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Survey 6: January to April 2015 
24.934 individuals enrolled 

SMoTS intervened area:  
19,921 individuals Not-intervened area: 

 4271 individuals 

Individuals not 
sampled*: 676 

Individuals sampled during SMoTS installation: 
229 

Immigrated or 
enumerated during S6: 
163 

Survey 5: September to December 2014  
25,388 individuals enrolled 

SMoTS intervened area: 
15,333 individuals Not-intervened area: 

8433 individuals 

Individuals not 
sampled*: 1927 

Individuals sampled during SMoTS installation: 
258 

Immigrated or 
enumerated during S5: 
563 

Survey 4: May to August 2014  
25,505 individuals enrolled 

SMoTS intervened area:  
11,340 individuals Not-intervened area:  

11,170 individuals 

Individuals not 
sampled*: 3736 

Individuals sampled during SMoTS installation: 
324 

Immigrated or 
enumerated during S4: 
1065 

Survey 3: January to April 2014  
25,542 individuals enrolled 

SMoTS intervened area: 7199 individuals Not-intervened area: 14,905 individuals 

Individuals not 
sampled*: 3064 

Individuals sampled during SMoTS installation: 
114 

Immigrated or 
enumerated during S3: 
540 

Survey 2: July to December 2013  
25,494 individuals enrolled 

SMoTS intervened area:  
2639 individuals Not-intervened area: 

17,867 individuals 

Individuals not 
sampled*: 4715 

Individuals sampled during SMoTS installation: 
371 

Immigrated or 
enumerated during S2: 98 

Survey 1: January to June 2013  
22,603 individuals enrolled 

SMoTS intervened area: 
0 individuals Not-intervened area: 

15,707 individuals 

Individuals not 
sampled*: 9410 

Individuals sampled during SMoTS installation: 
0 

Immigrated or 
enumerated during S1: 
2514 

Figure S7.1:  Participation diagram; demographic and clinical malaria surveillance 



 

 
200 
 

Participation: Demographic surveillance and clinical incidence surveillance 
A total of 12,187 individuals were randomly selected to participate in one or more of 

the seven cross-sectional surveys (16,029 RDTs). 11,970 individuals were tested by 

RDT resulting in 15,627 RDT test results available for analysis. On 1402 occasions 

an individual that was randomised to be sampled* could not be found, had migrated 

out or had passed away. 2516 individuals were sampled twice, 442 individuals three 

times, and 84 individuals more than three times. The first two surveys served as 

baseline. 
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Survey 3: October/November 2013 – 81 clusters eligible 
25.056 individuals enrolled; 2355 individuals randomized 

SMoTS intervened: 18 clusters 
321 individuals Not-intervened: 62 clusters 

1735 individuals 

Individuals not 
sampled*: 283 

Individuals sampled during SMoTS installation: 
16 

Survey 4: April/May 2014 – 81 clusters eligible 
25.280 individuals enrolled; 2527 individuals randomized 

SMoTS intervened: 37 clusters 
884 individuals Not-intervened: 43 clusters 

1357individuals 

Individuals not 
sampled*: 249 

Individuals sampled during SMoTS installation: 
37 

Survey 5: August/September 2014 – 81 clusters eligible 
24.998 individuals enrolled; 2500 individuals randomized 

SMoTS intervened: 50 clusters 
1249 individuals Not-intervened: 30 clusters 

1043 individuals 

Individuals not 
sampled*: 150 

Individuals sampled during SMoTS installation: 
58 

Survey 6: December 2014 – 81 clusters eligible 
24.987 individuals enrolled; 2499 individuals randomized 

SMoTS intervened: 60 clusters 
1801 individuals Not-intervened: 19 clusters 

688 individuals 

Individuals not 
sampled*: 10 

Individuals sampled during SMoTS installation: 
0 

Survey 7: April/May 2015 – 81 clusters eligible 
25.016 individuals enrolled; 2505 individuals randomized 

SMoTS intervened: 77 clusters 
2295 individuals Not-intervened: 4 clusters 

57 individuals 

Individuals not 
sampled*: 98 

Individuals sampled during SMoTS installation: 
55 

Survey 2: March to June 2013 – 81 clusters eligible 
23,895 individuals enrolled; 2390 individuals randomized 

SMoTS intervened: 0 clusters 
0 individuals Not-intervened: 81 clusters 

1783 individuals 

Individuals not 
sampled*: 583 

Individuals sampled during SMoTS installation: 
24 

Survey 1: September/October 2012 – 81 clusters eligible 
23.337 individuals enrolled; 2321 individuals randomized 

SMoTS intervened: 0 clusters 
0 individuals 

Not-intervened: 81 clusters 
2214 individuals 

Individuals not 
sampled*: 107 

Individuals sampled during SMoTS installation: 
0 

Figure S7.2: Participation diagram; prevalence surveys 

 



 

 
202 
 

A mean of 24,879 individuals were enumerated at each of the seven survey rounds, 

with the difference between the total enrolled population and mean population 

reflecting high rates of local movement of fishermen. SMoTS were allocated to 4,358 

households. The difference in total number of households enrolled compared to 

number of households receiving SMoTS was due to an increasing number of 

households on the island during the course of the study. A total of 12,187 individuals 

were randomised in at least one of the seven cross sectional parasitological surveys 

during this whole period, resulting in 15,627 RDT test results prior to the exclusion of 

RDT results from those whose household was undergoing SMoTS installation during 

the week when the RDT was taken (Figure S7.2). Of this total 2,516 individuals were 

sampled twice (20.6%), 442 individuals three times (3.6%), and 84 individuals more 

than three times (0.7%). 

Comparability of groups 
The roll-out resulted in approximately the same time-at-risk in both the intervention 

and pre-intervention arms of the trial (Table 7.1), and in similar intensities of 

entomological sampling in the two arms (Table 7.2). The trial was also reasonably 

balanced for most potential confounders, including age (Table 7.3), occupancy, 

Topographic wetness index (TWI, a measure of potential water accumulation), 

Normalised Difference Vegetation Index (NDVI), and distance to the lake (a proxy for 

distance to mosquito breeding sites). Population density was slightly higher in the 

intervened and non-intervened arms after baseline. Comparisons for other potentially 

relevant factors are presented as supplementary information (Table S7.3). 

Reported LLIN ownership among people tested for malaria in 10% cross-sectional 

surveys changed from 73% during baseline, to 79% in the intervened arm and 61% in 

the not-intervened arm during the rollout. These differences may reflect reporting 

bias, since observations by the field team of LLIN use (Table 7.3) found no difference 

between arms. Controlling for reported LLIN use also made little difference to 

estimated effects of SMoTS on RDT positivity (Table S7.2).  
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Table S7.1: Intra-cluster correlation and power calculations 
 Clinical malaria Parasitaemia 
Sampled during baseline 15,707 3093 
RDT+ during baseline 103 (0.01%) 733 (23.69%) 
Intra-cluster correlation 0.006 0.0655 
Effective sample size  7914 907 
Power 80% 80% 
Minimal detectable effect size, 1 
survey 

52% 27% 

Minimal detectable effect size, 6 
surveys 

23% 11% 

Table S7.2:  Estimates of effect of the intervention on parasitaemia, adjusted for potential 
confounding factors 
 Effectiveness 
Contemporaneous comparison  
    Estimate* of effectiveness (95% CI) 29.3% (25.4, 33.1)  
    Estimate** of effectiveness (95% CI) 28.1% (19.6, 35.8) 
Comparison of baseline with intervened 
clusters 

 

    Estimate* of  effectiveness  (95% CI) 1% (-6.3, 7.4)  
    Estimate**of effectiveness (95% CI)      4.6% (-8.7, 16.3) 
*Adjusted estimates derived from binomial models controlling for age, gender, occupation 
and bed nets reported. 
**Adjusted estimates derived from binomial models with random effects for the cluster 
and survey round; controlling for age, gender, occupation and bed nets reported 
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Table S7.3:  Potential risk factors by trial arm 

 Baselin
e (%) 

Number 
positive:  
Baseline 

Intervene
d (%) 

Number 
positive: 
(Inter-
vened) 

Non-
intervened 
(%) 

Number 
positive: 
non-
intervened 

Sex distribution       
   Males 46.6 1441 46.8 3068 47.5 2751 
Location of kitchen       
   Kitchen outside,   
   in the open    

35.5 1098 37.2 2439 41.5 2402 

   Kitchen in main  
   living area      

15.9 491 16.8 1099 20.4 1184 

   Separate kitchen  
   building 

23.9 740 20.6 1352 20 1157 

   Separate kitchen     
   room in house 

3.3 101 3.1 205 2.6 152 

   In another house 11.3 348 11.3 738 9.6 556 
   Outside at day,  
   inside at night 

5.7 175 9.8 642 4.7 273 

   Unknown 4.5 140 1.1 75 1.2 70 
Dwelling       
   Own dwelling 76 2351 76.6 5018 76.7 4446 
   Rent dwelling 15.8 488 17.6 1151 19 1099 
   Other 3.7 114 4.7 306 3.1 179 
   Unknown 4.5 140 1.1 75 1.2 70 
Source of 
electricity 

      

   No electricity 85.2 2635 55.5 3638 88.8 5147 
   Connected to main  
   power supply 

2.5 76 2.3 152 2.8 163 

   Generator 0.6 20 0.4 24 0.6 35 
   Battery 0.9 28 1 66 1 59 
   Solar power 6.3 194 39.6 2595 5.5 320 
   Unknown 4.5 140 1.1 75 1.2 70 
Source of light       
   1. Kerosene  
   powered light  

86.8 2686 56.3 3688 89.3 5172 

   2. Candle light 0.1 2 0 3 0.2 10 
   3. Electric light 5.7 177 38.5 2524 4.8 281 
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   4. Other 0.9 27 0.6 39 0.5 29 
   1 and 2 0 1 0.1 9 0.6 35 
   1 and 3 1.9 60 3.2 211 3.3 192 
   2 and 3 0 0 0 1 0.1 5 
   Unknown 4.5 140 1.1 75 1.2 70 
Level of education head of 
household 

     

   Pre-school   
   education 

1 30 0.8 55 1.6 92 

   Primary school 59.7 1846 62.9 4120 61.9 3588 
   Secondary school 26 804 24.5 1602 27.6 1597 
   Higher education 4.6 143 6.7 440 6.2 360 
   Non-standard 3.6 111 3.5 228 1.1 63 
   Other 0.6 19 0.5 30 0.4 24 
   Unknown 4.5 140 1.1 75 1.2 70 
Wall structure of 
house 

      

   Stone  0.7 21 1.4 90 0.3 20 
   Wood and mud  
    

62.7 1940 62.8 4114 65 3765 

   Brick and block  17 526 17.4 1141 18.8 1088 
   Mud and cement  
    

8.8 271 9.3 607 6.5 377 

   Iron and sheet  6.3 195 7.8 511 8.1 467 
   Wood  0 0 0.1 6 0 0 
   Other 0 0 0.1 6 0.1 7 
   Unknown 4.5 140 1.1 75 1.2 70 
Floor structure of 
house 

      

   Earth, dung or  
   sand     

10.7 332 49.4 3233 30.5 1768 

   Carpet 47.9 1481 11 718 30.7 1781 
   Cement  36.5 1130 38.1 2496 37.2 2158 
   Tiles or linoleum  0.3 10 0.3 17 0.2 14 
   Other 0 0 0.2 11 0.1 3 
   Unknown 4.5 140 1.1 75 1.2 70 
Mosquito house 
entry 

      

   Open Eaves 85 2629 86.7 5677 88.5 5129 
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   Openings in the  
   house  

3.3 103 4.3 284 4.7 271 

   Open eaves and  
   openings in house 

0.7 21 0.7 47 0.5 28 

   Screened eaves 5.8 179 6.5 426 4.4 254 
   Screened eaves,    
   openings in house 

0.7 21 0.6 41 0.7 42 

   Unknown 4.5 140 1.1 75 1.2 70 
When were bed 
nets acquired 

      

   1-3 months ago 2.1 66 5.2 342 4.7 275 
   3-6 months ago 8.7 269 8.7 573 10.1 587 
   >6 months ago 68.7 2126 60.9 3991 69 3997 
   Bed nets of mixed  
   Age 

11 340 17.6 1150 9 522 

   No bed nets 0.3 10 0.3 20 0.7 40 
   Unknown 9.1 282 7.2 474 6.4 373 
Bed nets reported       
   Bed net(s) in  
   House 

72.6 2247 79 5174 61.2 3545 

   No Bed net(s) in  
   House 

22.8 706 19.9 1301 37.6 2179 

   Unknown 4.5 140 1.1 75 1.2 70 
Occupation       
   Fishing 8.5 263 8.4 551 10.2 592 
   Farming 3.2 99 2.1 139 2.5 146 
   Construction 0.7 23 0.7 45 0.7 43 
   Other outdoor 15.6 483 19.2 1258 17.0 984 
   Clerical, other  
   Indoor 

2.5 77 2.5 167 2.7 157 

   Housewife 5.4 168 3.7 242 5.0 287 
   Students and   
   school children 

44.4 1372 45.6 2987 42.4 2457 

   Children under 5 15.2 469 13.5 885 15.3 889 
   Jobless 3.7 113 2.9 189 3.2 184 
   Retired 0.8 26 0.9 60 0.5 30 
   Unknown 0.0 0 0.4 27 0.4 25 
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Table S7.4: Clinical events by round 
SMoTS No SMoTS Total population 

Round Person 
/years 

Clinical 
events 
per p/y 

RDT+ Person 
/years 

Clinical 
events 
per p/y 

RDT+ Person 
/years 

Clinical 
events 
per p/y 

RDT
+ 

1 0.0 -  597.2 0.173 103 597.2 0.173 103 
2 101.0 0.049 5 685.0 0.045 26 807.2 0.038 31 
3 275.7 0.040 11 571.4 0.014 6 861.8 0.020 17 
4 434.7 0.002 1 428.3 0.000 0 877.5 0.001 1 
5 587.7 0.007 4 323.5 0.006 1 923.7 0.005 5 
6 763.9 0.003 2 163.8 0.000 0 938.0 0.002 2 
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Table S7.5A: Complementary analyses of effectiveness in reducing parasite prevalence by RDT.   
 
 Clinical 

malaria 
RDT+/N 
(%) 

Parasitae
mia  

RDT+/N 
(%) 

Reported 
illness 
previous two 
weeks  

RDT
+/N 
(%) 

Comparison of baseline 
with non-intervened 
clusters 

      

    Unadjusted estimate of 
effectiveness (95% CI) 

91.1%  
(86.9, 
94) 

103/1570
7 (0.66),  
 
33/56,793 
(0.06) 

-45.8%  
(36.2, 
56.1) 

733/309
3 (23.7),  
 
2002/57
95 
(34.6) 

62.4% (60.9, 
63.8) 

3914
/15,7
07 
(24.9
),  
 
5326
/56,7
93 
(9.4) 

    Adjusted estimate of 
effectiveness (95% CI) 

93%  
(87.3, 
96.2)  

 -38.3%  
(-20.3, -
59)  

 66.4% (62.9, 
69.6) 

 

 
Comparison of baseline 
with all clusters during 
roll-out  

      

    Unadjusted estimate of 
effectiveness (95% CI) 

93.4%  
(90.7, 
95.2) 

103/1570
7 (0.66), 
56/11318 
(0.05) 

-21.5%  
(-13.7, -
29.8) 

733/309
3 (23.7),  
3556/12,
345 
(28.8) 

73.6% (72.7, 
74.5) 

3914
/15,7
07 
(24.9
),  
 
11,3
38/1
13,1
86 
(10) 

    Adjusted estimate of 
effectiveness (95% CI) 

95.2%  
(90.1, 
97.7)  

 -15.2%  
(-18.1, -
30.3)  

 81.3% (79.3, 
83)  

 

Comparison of intervened 
clusters, with non-
intervened clusters 
>100m from nearest SMoT 

      

    Unadjusted estimate of 
effectiveness (95% CI) 

  33.9%  
(29.9, 

3556/12,
345 
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37.7) (28.8), 
1673/46
67 
(35.8) 

    Adjusted estimate of 
effectiveness (95% CI) 

  32.4%  
(22.9, 
40.7) 

   

 
Comparison of intervened 
clusters, with non-
intervened clusters 
>300m from nearest SMoT 

      

    Unadjusted estimate of 
effectiveness (95% CI) 

  34.4% 
(30.3, 
38.3) 

3556/12,
345 
(28.8), 
1478/40
92 
(36.1) 

  

    Adjusted estimate of 
effectiveness (95% CI) 

  33.1% 
(23.4, 
41.5) 

   

 
Comparison of intervened 
clusters, with non-
intervened clusters 
>500m from nearest SMoT 

      

    Unadjusted estimate of 
effectiveness (95% CI) 

  35.1% 
(30.9, 
39.1) 

3556/12,
345 
(28.8), 
1330/36
43 
(36.5) 

  

    Adjusted estimate of 
effectiveness (95% CI) 

  33.6% 
(23.5, 
42.3) 

   

 
Comparison of intervened 
clusters, with non-
intervened clusters 
>700m from nearest SMoT 

      

    Unadjusted estimate of 
effectiveness (95% CI) 

  32.7% 
(30, 37.1) 

3556/12,
345 
(28.8), 
1084/30
84 
(35.1) 
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    Adjusted estimate of 
effectiveness (95% CI) 

  31.5% 
(20.8, 
40.7) 

   

 
Comparison of intervened 
clusters, with non-
intervened clusters 
>900m from nearest SMoT 

      

    Unadjusted estimate of 
effectiveness (95% CI) 

  29.5% 
(24.2, 
34.3) 

3556/12,
345 
(28.8), 
917/273
0 (33.6) 

  

    Adjusted estimate of 
effectiveness (95% CI) 

  27.9% 
(16.3, 
37.9) 

   

 
Comparison of non-
intervened clusters 
≤100m from nearest 
SMoT, with non-
intervened clusters 
>100m from nearest SMoT 

      

    Unadjusted estimate of 
effectiveness (95% CI) 

  -8.3% (-
25.6, 6.7) 

125/322 
(38.8), 
1673/46
66 
(35.9) 

  

    Adjusted estimate of 
effectiveness (95% CI) 

  -5.7% (-
37.2, 
18.5) 

   

 
Comparison of non-
intervened clusters 
≤300m from nearest 
SMoT, with non-
intervened clusters 
>300m from nearest SMoT 

      

    Unadjusted estimate of 
effectiveness (95% CI) 

  1.1% (-
8.9, 10.2) 

320/896 
(35.7), 
1478/40
92 
(36.2) 

  

    Adjusted estimate of 
effectiveness (95% CI) 

  2.8% (-
18.5, 
20.2) 
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Comparison of non-
intervened clusters 
≤500m from nearest 
SMoT, with non-
intervened clusters 
>500m from nearest SMoT 

      

    Unadjusted estimate of 
effectiveness (95% CI) 

  5.7% (-
3.6, 12.3) 

468/134
5 (34.8), 
1330/36
43 
(36.5) 

  

    Adjusted estimate of 
effectiveness (95% CI) 

  7.7% (-
10.8, 23) 

   

 
Comparison of non-
intervened clusters 
≤700m from nearest 
SMoT, with non-
intervened clusters 
>700m from nearest SMoT 

      

    Unadjusted estimate of 
effectiveness (95% CI) 

  -6.3% (-
14.7, 1.4) 

714/190
8 (37.4), 
1084/30
80 
(35.2) 

  

    Adjusted estimate of 
effectiveness (95% CI) 

  -6.1% (-
24.8, 9.8) 

   

 
Comparison of non-
intervened clusters 
≤900m from nearest 
SMoT, with non-
intervened clusters 
>900m from nearest SMoT 

      

    Unadjusted estimate of 
effectiveness (95% CI) 

  -16.1% (-
25.1, -
7.9) 

881/225
8 (39), 
917/273
0 (33.6) 

  

    Adjusted estimate of 
effectiveness (95% CI) 

  -19.5% (-
40.9, -
1.3) 

   

n.a. this random effects model could not be fitted owing to sparse data. Adjusted estimates are derived 
from binomial models with random effects for the cluster and survey round. 
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Table S7.5B: Effects on entomological outcomes, comparison of baseline with non-
intervened clusters and the total population during intervention. And spatial effects for 
different radii.   
 All 

Anophe
les 

Mosquito
es/ 
trapping 
nights  

An. 
funestus  

Mosquito
es/ 
trapping 
nights  

An. 
gambiae 
s.l . 

Mosquit
oes/ 
trapping 
nights  

Comparison of baseline 
with non-intervened 
clusters 

      

    Unadjusted estimate of 
effectiveness (95% CI) 

34.1% 
(24.7, 
42.3) 

422/868, 
439/1370 

53% ( 
44.9, 
60.0) 

348/868, 
258/1370 

-55% (-
18.8, -
104.2) 

74/868, 
181/137
0 

    Adjusted estimate of 
effectiveness (95% CI) 

52.3% 
(31.9, 
66.9)  

 72.9% 
(56.3, 
83.4)  

 -33.2% 
(22.5, -
130.5)  

 

Comparison of baseline 
with all clusters during 
roll-out  

      

    Unadjusted estimate of 
effectiveness (95% CI) 

49.7% 
(43.1, 
55.4)  

422/868, 
651/2660 

70.9% 
(66.1, 
75.1) 

348/868, 
310/2660 

-50.4% (-
17.7, -
94.7) 

74/868, 
341/266
0 

    Adjusted estimate of 
effectiveness (95% CI) 

63.2% 
(48.3, 
63.2)  

 84.2% 
(73.5, 
90.6)  

 -26.2% (-
107.4, 
22.3) 

 

Comparison of intervened 
clusters, with non-
intervened clusters >100m 
from nearest SMoT 

      

    Unadjusted estimate of 
effectiveness (95% CI) 

51.5% 
(42.8, 
58.9) 

212/1290
, 
413/1220 

79.9% 
(73.2, 
85.3) 

52/1290, 
245/1220 

9.9% (-
11.8, 27.5) 

160/129
0, 
168/122
0 

    Adjusted estimate of 
effectiveness (95% CI) 

43.4% 
(15.2, 
62.3) 

 69.6% 
(27.7, 
87.9) 

 12.2 (-44, 
46.4) 

 

Comparison of intervened 
clusters, with non-
intervened clusters >300m 
from nearest SMoT 

      

    Unadjusted estimate of 
effectiveness (95% CI) 

51.9% 
(43.2, 
59.5) 

212/1290
,372/108
8 

80.5% 
(73.9, 
85.7)  

52/1290, 
225/1088 

8.2% (-
14.9, 26.6) 

160/129
0, 
147/108
8 

    Adjusted estimate of 
effectiveness (95% CI) 

43.4% 
(14.9, 

 71.% 
(31.2, 

 10.7% (-
48.8, 46.2) 
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62.5) 88.3) 
Comparison of intervened 
clusters, with non-
intervened clusters >500m 
from nearest SMoT 

      

    Unadjusted estimate of 
effectiveness (95% CI) 

51.5% 
(42.4, 
59.3) 

212/1290
, 314/926 

80.8% 
(74.1, 
86) 

52/1290, 
194/926 

4.3% (-
21.5, 24.4) 

160/129
0, 
120/926 

    Adjusted estimate of 
effectiveness (95% CI) 

39.6% 
(6, 
61.3) 

 67.6% 
(16.1, 
88) 

 7.4% 
(60.7, 
46.3) 

 

Comparison of intervened 
clusters, with non-
intervened clusters >700m 
from nearest SMoT 

      

    Unadjusted estimate of 
effectiveness (95% CI) 

36.8% 
(23.4, 
47.8) 

212/1290
, 206/792 

69.9% 
(58.3, 
78.5) 

52/1290, 
106/792 

1.8% (-
26.5, 23.3) 

160/129
0, 
100/792 

    Adjusted estimate of 
effectiveness (95% CI) 

35.3% 
(-1.3, 
58.9) 

 65.1% 
(6.1, 
87.4) 

 3.9% (-
72.3, 45.8) 

 

Comparison of intervened 
clusters, with non-
intervened clusters >900m 
from nearest SMoT 

      

    Unadjusted estimate of 
effectiveness (95% CI) 

32.8% 
(17.8, 
44.9) 

212/1290
, 174/712 

69.8% 
(57.8, 
78.6) 

52/1290, 
95/712 

11.8% (47, 
14.3) 

 
160/129
0, 
79/712 

    Adjusted estimate of 
effectiveness (95% CI) 

31% (-
9.6, 
56.8) 

 62.6% (-
8.3, 87.3) 

 -1.6% 
(81.6, 
42.6) 

 

Comparison of non-
intervened clusters ≤100m 
from nearest SMoT, with 
non-intervened clusters 
>100m from nearest SMoT 

      

    Unadjusted estimate of 
effectiveness (95% CI) 

70.5% 
(42.4, 
87.4) 

70/7, 
413/1220 

57.3% 
(12.4, 
83.2) 

6/71, 
245/1220 

89.6% 
(53.9, 
99.4) 

70/1, 
168/122
0 

    Adjusted estimate of 
effectiveness (95% CI) 

64.4% 
(22.6, 
91.7) 

 35.5% (-
310.3, 
95) 

 86.5% (-
17.5, 99.7) 

 

Comparison of non-
intervened clusters ≤300m 
from nearest SMoT, with 
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non-intervened clusters 
>300m from nearest SMoT 
    Unadjusted estimate of 
effectiveness (95% CI) 

30.5% 
(7.2, 
49.2) 

48/202, 
372/1088 

37.8% 
(8.5, 
59.5) 

26/202, 
225/1088 

19.4% (-
23.3, 49.9) 

22/202, 
147/108
8 

    Adjusted estimate of 
effectiveness (95% CI) 

1% (-
72.8, 
44) 

 -162.6% 
(-549, -
10) 

 54.7% (-
0.8, 81.7) 

 

Comparison of non-
intervened clusters ≤500m 
from nearest SMoT, with 
non-intervened clusters 
>500m from nearest SMoT 

      

    Unadjusted estimate of 
effectiveness (95% CI) 

14.1% 
(-6.6, 
31.4) 

106/364, 
314/926 

25.3% 
(0.3, 
44.8) 

57/364, 
194/926 

3.9% (-
43.8, 26.1) 

49/364, 
120/926 

    Adjusted estimate of 
effectiveness (95% CI) 

75% 
(61.8, 
84.3) 

 83.5% 
(71.1, 
91.4) 

 53.5% 
(3.7, 80.6) 

 

Comparison of non-
intervened clusters ≤700m 
from nearest SMoT, with 
non-intervened clusters 
>700m from nearest SMoT 

      

    Unadjusted estimate of 
effectiveness (95% CI) 

-65.2% 
(-100, -
36.4) 

214/498, 
206/792 

-117.6% 
(-180, -
69.6) 

145/498, 
106/792 

-9.7% (-
48.8, 19.5) 

69/498,1
00/792 

    Adjusted estimate of 
effectiveness (95% CI) 

28.9% 
(-11.1, 
55.7) 

 4.1% 
(71.1, 
91.4) 

 49% (6.3, 
74.5) 

 

Comparison of non-
intervened clusters ≤900m 
from nearest SMoT, with 
non-intervened clusters 
>900m from nearest SMoT 

      

    Unadjusted estimate of 
effectiveness (95% CI) 

-74.2% 
(-111.7, 
43.6) 

246/578, 
174/712 

-102.3% 
(-161.2, -
57.1) 

156/578, 
95/712 

-40.3% (-
90.1, -3.8) 

90/578, 
79/712 

    Adjusted estimate of 
effectiveness (95% CI) 

-24.6% 
(-106.3, 
25.3) 

 -22.7% (-
164.4, 
0.44.6) 

 -11% (-
129.6, 
47.6) 

 

Adjusted estimates are derived from Poisson models with random effects for the cluster and survey round. 
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Wat als malariamuggen  
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wat als ze niet konden bijten, 

fluisterend zoemen, fier 

mooi prooi wezen – 

 

was de wereld dan rond? 
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