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Fig. 2.1. Schematic of transient net photosynthesis phenomena upon increase and decrease in 

irradiance: Photosynthetic induction in a dark-adapted leaf during lightfleck (high irradiance,  

e.g. 1000 µmol m-2 s-1, white bar), followed by post-illumination CO2 fixation and post-illumination  
CO2 burst after lightfleck (low irradiance, e.g. 200 µmol m-2 s-1, grey bar). t50, t90: time required to 

reach 50 and 90% of full photosynthetic induction, respectively. Fig. 2.1, inset: a) post-illumination  
CO2 fixation, b) post-illumination CO2 burst and c) new steady-state photosynthesis after lightfleck 
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Fig. 2.2. Depiction of major components and processes of dynamic photosynthesis (grey circles), and 

main effects of environmental factors (blue clouds). Material flows are shown as green solid arrows, 

information flows between processes as dotted arrows and information flows from environmental 
factors towards processes as blue, dashed arrows. Depending on its location, CO2 is named either  

Ca (ambient CO2 concentration), Ci (substomatal cavity CO2 concentration) or Cc (chloroplast CO2 
concentration). Further abbreviations: ADP, adenosine diphosphate; ATP, adenosine triphosphate; 

ETC, electron transport chain; Fd, ferredoxin; gm, mesophyll conductance; gs, stomatal conductance; 

I, irradiance; NADPH, nicotinamide adenine dinucleotide phosphate; NPQ, non-photochemical 
quenching; O2, oxygen; PGA, 3-phosphoglycerate; PGCA, 2-phosphoglycolate; Rca, Rubisco activase; 

Rubisco, ribulose-1,5-bisphosphate carboxylase oxygenase; RuBP, ribulose-1,5-bisphosphate;  
T, temperature; VPD, leaf-to-air vapour pressure deficit 
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Post-illumination CO2 fixation 

Post-illumination CO2 burst 
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Control of CO2 supply to Rubisco 
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Environmental factors influencing dynamic photosynthesis 
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CO2 concentration 

 

Table 2.1. Effects of environmental factors on processes controlling dynamic photosynthesis after 

increases or decreases in irradiance. Environmental factors considered are: ambient  
CO2 concentration ([CO2]), leaf temperature and leaf-to-air vapour pressure deficit (VPDleaf-air) 

       
    Environmental factor 

  

[CO2] Temperature VPDleaf-air 

Change  

in irradiance 
Process   Mediuma Highb   

Increase RuBP-regeneration activation - c ⬆ ⤴ - 

 
Rubisco activation ~ ⬆ ⬇ ⤵ 

 
Stomatal opening ~ ~ ~ ⬇ 

 
qE buildup ⤵ ⤵ ⤵ - 

 
Mesophyll conductance increase ? ⬆ ~ ~ 

      
Decrease RuBP-regeneration deactivation - ? ? - 

 
Rubisco deactivation ⬇ ? ⬆ ⤴ 

 
Stomatal closure ⬆ ? ? ⬆ 

 
Post-illumination CO2 fixation ⬇ ⬆ ⬇ ? 

  Post-illumination CO2 burst ⬇ ⬆ ⬆ ? 
a Temperature range: 5 to approx. 30 °C 
b Temperature range: >30 °C      
c Symbols:⬆, ⬇: increase or decrease in rate of the process when environmental factor 

increases;  ⤴, ⤵: hypothesized increase and decrease; - : no effect; ~ : conflicting relationship 

throughout literature; ?: unknown relationship 
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Fig. 2.3. Time (minutes) required to reach 50% (t50, open symbols) and 90% (t90, closed symbols) of 

full photosynthetic induction after a step increase in irradiance, as affected by ambient  
CO2 concentration (μmol mol-1). Data by Chazdon and Pearcy, 1986 (circles); Leakey et al., 2002 

(squares) and Tomimatsu and Tang, 2012 (triangles). Species included Alocasia macrorriza (circles), 

Shorea leprosula (squares) and Populus koreana x trichocarpa as well as Populus euramericana 
(triangles). Error bars (±SE) are shown if supplied in the original publication. The negative exponential 

relationship (R2 = 0.51) between t90 and [CO2] is described by: t90 = 22.7e-7E-04[CO2]. No relationship 
between t50 and [CO2] was found 
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Fig. 2.4. Time (min) required to reach 50% (t50, open symbols) and 90% (t90, closed symbols) of full 

photosynthetic induction after a step increase in irradiance, as affected by leaf temperature (T, °C). 

Data by Küppers and Schneider, 1993 (circles); Pepin and Livingston, 1997 (squares); Leakey et al., 
2003 (triangles); Yamori et al., 2012 (diamonds) and Carmo-Silva and Salvucci, 2013 (bars).  

Species included F. sylvatica (circles), Thuja plicata (squares), Shorea leprosula (triangles),  
Oryza sativa (diamonds) and Arabidopsis thaliana (bars). Error bars (±SE) are shown if supplied in the 

original publication. 2nd order polynomials were fitted.  t90 = 0.06T2 – 3.55T + 60.19; R2 = 0.34 and 

t50 = 0.023T2 – 1.47T + 25.41; R2 = 0.19 
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Calculations 

𝑃ℎ𝑜𝑡𝑜𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 𝑖𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛 =  
𝐴𝑛(𝑡)−𝐴𝑛(𝑡0)

𝐴𝑛(𝑡𝑓)−𝐴𝑛(𝑡0)
∗ 100

𝐴𝑛(𝑡)𝐶𝑎

𝐴𝑛(𝑡)𝐶𝑎 = 𝐴𝑛(𝑡) ∗
𝑚𝑖𝑛 {𝐴𝑛(𝑐)(𝐶𝑎),   𝐴𝑛(𝑗)(𝐶𝑎), 𝐴𝑛(𝑇𝑃𝑈)(𝐶𝑎)}

𝑚𝑖𝑛 {𝐴𝑛(𝑐)(𝐶𝑖(𝑡)), 𝐴𝑛(𝑗)(𝐶𝑖(𝑡)), 𝐴𝑛(𝑇𝑃𝑈)(𝐶𝑖(𝑡))}

𝐴𝑛(𝑐) =𝑉𝐶𝑚𝑎𝑥 (
𝐶𝑎−Γ

∗

𝐶𝑎+𝐾𝑐∗(1+
𝑂
𝐾𝑜

)
)−𝑅𝑑

𝐴𝑛(𝑗) =𝐸𝑇𝑅 (
𝐶𝑎−Γ

∗

4∗𝐶𝑎+8∗Γ
∗)−𝑅𝑑

𝐴𝑛(𝑇𝑃𝑈) = 3∗𝑇𝑃𝑈−𝑅𝑑

Γ

Γ
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𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛𝑎𝑙 𝑙𝑖𝑚𝑖𝑡𝑎𝑡𝑖𝑜𝑛 =  
𝐴𝑛(𝑡)𝐶𝑎− 𝐴𝑛(𝑡)

𝐴𝑛(𝑡𝑓)− 𝐴𝑛(𝑡0)
∗ 100

𝐴𝑛(𝑡)𝐶𝑖

𝐵𝑖𝑜𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙 𝑙𝑖𝑚𝑖𝑡𝑎𝑡𝑖𝑜𝑛 =  
𝐴𝑛(𝑡𝑓)−𝐴𝑛(𝑡)𝐶𝑖
𝐴𝑛(𝑡𝑓)−𝐴𝑛(𝑡0)

∗ 100

𝜏𝑅

𝜏𝑅 =
Δ𝑡𝑖𝑚𝑒

Δln (𝐴𝑛(𝑡𝑓)−𝐴𝑛(𝑡)𝐶𝑖
)

μ

𝑊𝑈𝐸𝑖 =
𝐴𝑛(𝑡)
𝑔𝑠(𝑡)

 
Table 3.1. Parameters used in the calculations of diffusional limitation (Eqns. 3.3-3.5) and of 

mesophyll conductance (Eqn. 10). Parameters J, TPU and VCmax were determined from An/Ci curves 
after Sharkey et al. (2007), Kc and Ko were taken from Sharkey et al. (2007), Rd and Γ* were 

determined from An/PAR and An/Ci curves after Yin et al. (2009). All parameters were temperature-

adjusted after Bernacchi et al. (2001) 
 

Parameter Unit Temperature 

    15.5 °C 22.8 °C 30.5 °C 

J 
µmol electrons m-2 

s-1 
94.33 148.16 232.97 

Kc Pa 9.29 21.36 49.25 

Ko kPa 12.04 15.37 19.63 

Rd µmol CO2 m
-2 s-1 0.77 1.23 2.00 

TPU µmol CO2 m
-2 s-1 5.98 10.32 17.84 

VCmax µmol CO2 m
-2 s-1 43.35 84.86 166.44 

Γ* µmol CO2 mol-1 air 36.17 53.37 78.83 
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Φ

𝐶𝑐(𝑡) =
Γ
∗
∗(𝐸𝑇𝑅(𝑡)+8∗(𝐴𝑛(𝑡)+ 𝑅𝑑))

𝐸𝑇𝑅(𝑡)−4∗(𝐴𝑛(𝑡)+ 𝑅𝑑)

𝐸𝑇𝑅(𝑡) =Φ𝑃𝑆𝐼𝐼 ∗𝑃𝐴𝑅∗ 𝑠

Φ

𝑔𝑚(𝑡) =
𝐴𝑛(𝑡)

𝐶𝑖(𝑡)−𝐶𝑐(𝑡)

𝑑𝐶𝑐
𝑑𝐴𝑔𝑟

=
12∗Γ

∗
∗𝐸𝑇𝑅(𝑡)

(𝐸𝑇𝑅(𝑡)−4∗(𝐴𝑛(𝑡)+𝑅𝑑))
2

Statistical analysis 

http://www.r-project.org/
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Results 

Induction of photosynthetic CO2 fixation 

Stomatal conductance 

Intrinsic water use efficiency (WUEi) 
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Fig. 3.1. Photosynthetic induction (A, C, E) and stomatal conductance (B, D, F) in dark-adapted 

tomato leaves, as affected by Ca (A, B), Tleaf (C, D) and VPDleaf-air (E, F). Irradiance was raised from  
0 to 1000 µmol m-2 s-1 at time = 0 and kept steady for 60 minutes. In panels A, C and E, the first  

30 minutes of induction are shown. Average ± SE (n = 5) 

Diffusional and biochemical limitations during photosynthetic induction 
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Fig. 3.2. Intrinsic water use efficiency (WUEi) during photosynthetic induction, as affected by Ca (A), 

Tleaf (B) and VPDleaf-air (C). Average ± SE (n = 5) 
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Fig. 3.3. Diffusional limitation (A, C, E) and biochemical limitation (B, D, F) during photosynthetic 

induction, as affected by Ca (A, B), Tleaf (C,D) and VPDleaf-air (E, F). In panels B, D and F, the first 30 

minutes of induction are shown. Average ± SE (n = 5) 
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Time constants of Rubisco activation 

𝜏𝑅

𝜏𝑅 𝜏𝑅

 

Fig. 3.4. Time constants of Rubisco activation (𝜏𝑅) during photosynthetic induction, as affected by Ca 

(A), VPDleaf-air (B) and leaf temperature (C). Small letters denote significant differences between 

treatments, error bars denote ± SE (n = 5) 
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𝜏𝑅 𝜏𝑅

𝜏𝑅

𝜏𝑅

𝜏𝑅

 

 
Fig. 3.5. Relationships between 𝜏𝑅 in the VPDleaf-air and Ca treatments and A) the rate of Ci depletion 

(
Δ𝐶𝑖/Δ𝑡

𝐶𝑖(𝑡0)
∗ (−100)), normalised by Ci in darkness (Ci(t0)) during the first 5 minutes of induction and B) the 

lowest value of Cc during induction, using the lowest value of Ci during induction and corresponding 

values of An and gm, then calculating 𝐶𝑐 = 𝐶𝑖 −
𝐴𝑛

𝑔𝑚
. Average ± SE (n = 5) 
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Mesophyll conductance 

 

ΦPSII and NPQ 

Φ

Φ

 

Fig. 3.6. Changes in mesophyll conductance (gm) during photosynthetic induction (A, C) and the 

sensitivity of gm to parameter estimations (B, D), affected by Ca (A, B) and Tleaf (C, D). Unshaded 
areas in B and D indicate gm data with a dCc/dAgr between 10 and 50, which refer to reliable gm 

estimates according to Harley et al. (1992) 
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Φ

Φ Φ

 

Fig. 3.7. Changes in ΦPSII (A, B) and NPQ (C, D) during photosynthetic induction, as affected by Ca (A, 
C) and Tleaf (B, D). Average ± SE (n = 5) 
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Φ

Φ

Electron transport and gross photosynthesis rates 

 
Fig. 3.8. Relationship between ETR and gross photosynthesis rate (An + Rd) during photosynthetic 

induction, as affected by Ca (A) and Tleaf (B). Arrows indicate the direction of change over time. 

Average ± SE (n = 5)
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Discussion 

Environmental factor effects: comparison with other species 
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Methodological considerations 

𝜏𝑅
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Mesophyll conductance 
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Rubisco activation 
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Combined gas exchange and chlorophyll fluorescence during photosynthetic 

induction: insights 

Φ

Φ

Φ
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VPDleaf-air effects on stomatal conductance  
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Improving crop photosynthesis in fluctuating irradiance: why and how? 

Table 3.3. Maximum gains in photosynthesis rates or intrinsic water use efficiency (WUEi) that an 

instantaneous increase in Rubisco activation or stomatal opening to their respective steady-states 

would have. Values are averaged over whole (60 minutes) induction curves. Average ± SE (n = 5) 
 

Treatment Photosynthesis rates WUEi 

Rubisco 

kinetics 

Stomatal 

opening 

Rubisco 

kinetics 

Stomatal 

opening 

200 ppm 9.4 ± 1.5 4.4 ± 0.5 30.6 ± 2.1 -31.4 ± 2.0 

400 ppm 7.4 ± 0.4 1.4 ± 0.2 16.3 ± 1.1 -20.3 ± 1.4 

800 ppm 4.3 ± 0.6 0.6 ± 0.1 9.5 ± 0.9 -19.6 ± 2.2 

15.5 °C 7.1 ± 0.6 1.6 ± 0.2 15.3 ± 2.2 -24.3 ± 6.2 

22.8 °C 7.4 ± 0.4 1.4 ± 0.2 16.3 ± 1.1 -20.3 ± 1.4 

30.5 °C 5.9 ± 0.8 3.4 ± 1.3 15.0 ± 1.5 -13.7 ± 2.6 

0.5 kPa 6.8 ± 0.4 1.7 ± 0.5 16.0 ± 1.6 -23.0 ± 3.6 

0.8 kPa 7.4 ± 0.4 1.4 ± 0.2 16.3 ± 1.1 -20.3 ± 1.4 

1.6 kPa 9.5 ± 0.6 1.1 ± 0.4 24.2 ± 2.4 -15.5 ± 2.5 

2.3 kPa 9.8 ± 0.8 1.0 ± 0.4 22.6 ± 2.4 -13.6 ± 2.0 
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Supplementary material 3.1: additional figures 

 
Fig. S3.1. Measured Fm’ underestimates true Fm’ in light-adapted, but not in dark-adapted leaves 

 

Fig. S3.2. An/Ci relationship in 21% (closed circles) and 2% oxygen (open circles). Regression lines 
highlight the values used for calculation of the chloroplast CO2 compensation point in the absence of 

day respiration (Yin et al., 2009). Average ± SE (n = 3-5) 
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Fig. S3.3. Relationship between net photosynthesis and irradiance * ΦPSII * 0.25, as in Yin et al. 
(2009), measured in 2% O2. Average ± SE (n = 4). The slope equals a calibration factor (s), which is 

used to scale ΦPSII to ETR 
 

 

Fig. S3.4. qP (A,B) and Fv’/Fm’ (C,D) during photosynthetic induction and as affected by Ca (A, C) and 

Tleaf (B, D) 
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Fig. S3.5. Sensitivity of gm to changes in Γ*, and as affected by Ca 

 
Fig. S3.6. Sensitivity of gm to changes in Γ*, and as affected by Tleaf 
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Supplementary material 3.2: Implications of using curvilinear instead of 

linear An/Ci relationships 

 

𝐴𝑛(𝑡)𝐶𝑖

𝐴𝑛(𝑡)𝐶𝑖 = 𝐴𝑛(𝑡) ∗
𝐶𝑖(𝑡𝑓)

𝐶𝑖(𝑡)

 

Fig. S3.7. Stomatal limitation during induction at 200 ppm Ca, as calculated assuming a linear (solid 

line) or a curvilinear An/Ci relationship (dotted line) 

 

Fig. S3.8. Stomatal limitation during induction at 400 ppm Ca, as calculated assuming a linear (solid 

line) or a curvilinear An/Ci relationship (dotted line) 
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Fig. S3.9 Stomatal limitation during induction at 800 ppm Ca, as calculated assuming a linear (solid 
line) or a curvilinear An/Ci relationship (dotted line) 
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Calculations  

𝑅𝐼 =  
𝐴𝑛(𝑡)−𝐴𝑛(𝑡0)

𝐴𝑛(𝑡𝑓)−𝐴𝑛(𝑡0)
∗ 100

μ

𝑥 =
𝑋𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑋𝑓𝑖𝑛𝑎𝑙

1+(𝑡/𝑖)𝑠
+ 𝑓𝑖𝑛𝑎𝑙
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𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)2
𝑛
𝑖=1

𝑦𝑖

𝑦̂

𝐴𝑛(𝑡)𝐶𝑎

𝐴𝑛(𝑡)𝐶𝑎 = 𝐴𝑛(𝑡) ∗
𝑚𝑖𝑛 {𝐴𝑛(𝑐)(𝐶𝑎),   𝐴𝑛(𝑗)(𝐶𝑎), 𝐴𝑛(𝑇𝑃𝑈)(𝐶𝑎)}

𝑚𝑖𝑛 {𝐴𝑛(𝑐)(𝐶𝑖(𝑡)), 𝐴𝑛(𝑗)(𝐶𝑖(𝑡)), 𝐴𝑛(𝑇𝑃𝑈)(𝐶𝑖(𝑡))}

𝐴𝑛(𝑐) = 𝑉𝐶𝑚𝑎𝑥 (
𝐶𝑖−Γ

∗

𝐶𝑖+𝐾𝑐∗(1+
𝑂

𝐾𝑜
)
) − 𝑅𝑑

𝐴𝑛(𝑗) = 𝐽𝑚𝑎𝑥 (
𝐶𝑖−Γ

∗

4∗𝐶𝑖+8∗Γ
∗
) − 𝑅𝑑

𝐴𝑛(𝑇𝑃𝑈) = 3 ∗ 𝑇𝑃𝑈 − 𝑅𝑑

Γ

Γ
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𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛𝑎𝑙 𝑙𝑖𝑚𝑖𝑡𝑎𝑡𝑖𝑜𝑛 =  
𝐴𝑛(𝑡)𝐶𝑎− 𝐴𝑛(𝑡)

𝐴𝑛(𝑡𝑓)−𝐴𝑛(𝑡0)
∗ 100

𝐴𝑛(𝑡)𝐶𝑖

𝐵𝑖𝑜𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙 𝑙𝑖𝑚𝑖𝑡𝑎𝑡𝑖𝑜𝑛 =  
𝐴𝑛(𝑡𝑓)−𝐴𝑛(𝑡)𝐶𝑖
𝐴𝑛(𝑡𝑓)−𝐴𝑛(𝑡0)

∗ 100

𝐴𝑛(𝑡)𝐶𝑖 𝜏𝑅

𝜏𝑅 =
Δ𝑡𝑖𝑚𝑒

Δln (𝐴𝑛(𝑡𝑓)−𝐴𝑛(𝑡)𝐶𝑖)

Δ 𝜏𝑅

𝐴𝑛(𝑡𝑓) 𝐴𝑛(𝑡)𝐶𝑖

Statistical analysis 
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Table 4.1. Effects of background irradiance, CO2 concentration and their interaction on parameters of 

sigmoidal fits. The sigmoidal function was fitted to data describing the gain and loss of photosynthetic 
induction (Eqn. 2). Symbols: *** = P<0.001, ** = P<0.01,* = P<0.05. Lack of symbol denotes lack 

of statistically significant effect 
 

Irradiance 

change 

Index Parameter Background 

irradiance 

CO2 

concentration 

Background 

irradiance X 
CO2 

concentration 

Step 
increase 

Relative 
increase in net 

photosynthesis 
rate (%) 

initial       

final   **   

inflection *** ***   

shape ** ***   

Step 
decrease 

Relative 
increase in net 

photosynthesis 
rate 60 s after 

re-illumination 

(%) 

initial       

final *** ***   

inflection **     

shape   **   
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Results 

Effects of [CO2] and background irradiance on photosynthetic induction and loss of 

photosynthetic induction 

 

μ

μ

Relative increases in photosynthesis and its limitations 

μ
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Fig. 4.1. Average effects of CO2 concentration (A, B) and background irradiance (C, D) on the relative 

increase in photosynthesis rate after a step increase in irradiance (A, C) and on loss of photosynthetic 

induction, depicted as relative increase in photosynthesis rate 60 seconds after re-illumination (B, D). 
Shown are averages ± 95% confidence interval. Simulations were conducted by using a sigmoidal 

model (Eqn. 4.2) and by varying the parameters that were significantly affected by CO2 concentration 
or background irradiance, while keeping the other parameters constant. A) initial (0), final (100), 

inflection (200 ppm = 2.4; 400 ppm = 1.8; 800 ppm = 1.1), shape (200 ppm = 1.0; 400 ppm = 1.1; 

800 ppm  = 1.7). B) initial (0), final (100), inflection (0 PAR = 1.5; 50 and 100 PAR = 1.1;  
200 PAR = 0.9), shape (0 PAR = 1.5; 50, 100 and 200 PAR = 1.1). C) initial (100), final  

(200 ppm = 42.4; 400 ppm = 46.6; 800 ppm = 66.4), inflection (7.9), shape (200 ppm = 1.3;  
400 ppm = 2.5; 800 ppm = 7.7). D) initial (100), final (0 PAR = 31.4; 50 PAR = 58.3;  

100 PAR = 55.8; 200 PAR = 62.1), inflection (8.0), shape (3.9)  

 

μ

μ
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Table 4.2. Time (minutes) to reach 50% (t50) or 90% (t90) of final net photosynthesis rates after a 

step increase in irradiance, as affected by CO2 concentration and background irradiance. Different 

letters denote statistically significant differences (P<0.05) within either CO2 concentration or 
background irradiance treatments, as determined by Fisher’s protected least significant difference 

(L.S.D.) tests. L.S.D. values (in italics) are also supplied for comparison 
 

Factor Level t50 t90 

CO2 

concentration 
(ppm) 

200 1.91 c 14.7 c 

400 1.62 b 10.0 b 

800 1.02 a 3.9 a 

L.S.D. 0.27   3.1   

Background 

irradiance        
(μmol m-2 s-1) 

0 2.72 c 13.1 b 

50 1.03 b 7.6 a 

100 0.89 ab 7.0 a 

200 0.64 a 8.0 a 

L.S.D. 0.33   3.9   
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Fig. 4.2. Relative increase in photosynthesis rate after a step increase in irradiance at three  

CO2 concentrations. Background irradiance was 0 (A), 50 (B), 100 (C) or 200 μmol m-2 s-1 (D); 
inducing irradiance was 1000 μmol m-2 s-1. Lines denote sigmoidal fits (Eqn. 4.2), symbols denote 

average ± SEM, n = 3-5 
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Fig. 4.3. Loss of photosynthetic induction after step decreases in irradiance at three  
CO2 concentrations. Background irradiance was 0 (A), 50 (B), 100 (C) or 200 μmol m-2 s-1 (D); 

inducing irradiance was 1000 μmol m-2 s-1. Loss of photosynthetic induction is depicted as the relative 

increase in net photosynthesis rate 60 s after re-illumination (RI60). Lines denote sigmoidal fits  
(Eqn. 4.2), symbols denote average ± SEM, n = 3-4 
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Fig. 4.4. Changes in diffusional (left panel) and biochemical limitation (right panel) after a step 
increase in irradiance at three CO2 concentrations. Background irradiance was 0 (A, B), 50 (C, D),  

100 (E, F) or 200 μmol m-2 s-1 (G, H); inducing irradiance was 1000 μmol m-2 s-1. The shaded area in 

A) depicts the transient additional increase in diffusional limitation above steady-state levels. Lines 
and symbols denote average, error bars denote ± SEM, n = 3-5 
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Photosynthetic responses to sine waves 

μ μ

μ

μ
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Table 4.3. Average biochemical limitation (%) after stepwise increases in irradiance, as affected by 

CO2 concentration and background irradiance. Letters denote statistically significant differences 

(P<0.05) within rows as determined by Fisher’s protected least significant difference (LSD) tests.  

LSD values (in italics) are also supplied for comparison 

 

Background 
irradiance  
(μmol m-2 s-1) 

CO2 concentration (ppm) 

200   400   800   L.S.D. 

0 10.3 a 7.6 b 3.5 c 1.5 

50 4.4 b 3.0 ab 1.7 a 1.9 

100 2.8 b 2.0 b -0.1 a 1.9 

200 1.9 a 0.9 a 0.7 a 1.9 

 

 

Fig. 4.5. Apparent time constant of Rubisco activation after a step increase in irradiance, as affected 
by CO2 concentration (A) and background irradiance (B). Different letters denote statistically 

significant (P<0.05) differences between treatment levels, symbols denote average ± SEM, n = 3-5 
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Fig. 4.6. Response of net photosynthesis rate to sinusoidal changes in irradiance, as affected by 

period of irradiance changes and [CO2]. Sine wave periods (minutes) are shown in the bottom right 
corner of every figure. Lines depict average values, error bars depict ± SEM at selected time points,  

n = 12-15 

 

Enhancement effects of elevated [CO2] 
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Fig. 4.7. Average net photosynthesis rate during sinusoidal changes in irradiance, plotted against 

irradiance, at 200 (A), 400 (B) and 800 ppm (C). Responses to three periods of sine wave (1, 3 and  

5 minutes) are shown. Note the different scales of y-axes between subplots. Insets: bar charts depict 

relative net photosynthesis rate, averaged over the complete dynamic irradiance response and 

expressed relative to the response at 5 minutes sine wave period (set to 100%) 
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Table 4.4. Enhancement effects (%) of elevated (800 ppm) over ambient (400 ppm)  

CO2 concentration, 15-60 minutes after stepwise increases or decreases in irradiance  
 

Direction of 
irradiance 

change 

No. of minutes after irradiance 
change 

15 30 60 

Increase 12.1 7.1 3.8 

Decrease 20.6 22.8 25.4 

 



Chapter 4 

85 
 

Discussion 

Elevated [CO2] speeds up photosynthetic induction, and decreases the loss of 

photosynthetic induction, regardless of background irradiance 

 

 



[CO2] effects on dynamic photosynthesis 

86 
 

Elevated [CO2] alleviates transient limitations more quickly 

[CO2] affects Rubisco activation rates irrespective of initial photosynthetic induction 

state 

τ

τ

μ

τ

τ

μ

τ

μ τ

τ

μ
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Differences in dark- vs. shade-adapted leaves: Hypotheses 

μ

μ

μ

μ
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μ

μ

Conclusions  
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Supplementary material 4.1 

 

Table S4.1. To exclude the possibility that saturating flashes affected photosynthetic induction or rates 
of stomatal opening, parameters from gas exchange responses (after a 0→1000 μmol m-2 s-1 step 

increase) with and without the regular application of saturating flashes were compared. Only two 

parameters were significantly different between data sets: initial gs in darkness in 400 ppm (which 
was unaffected by saturating flashes, since they were applied after dark adaptation), and final gs in 

light in 200 ppm, where gs was 0.1 mol m-2 s-1 lower in the data set where saturating flashes had 

been applied. All other parameters being the same, this difference seemed small enough to carry on 
with the analysis of gas exchange data. 

 
Effects of application of saturating flashes on parameters of photosynthetic induction and stomatal 

conductance, average ± SEM (n = 5). Parameters were derived from gas exchange measurements on 

dark-adapted leaves after 0→1000 μmol m-2 s-1 step increases. Parameters from induction curves 

without flashes (“No Flashes”) have been derived from an Chapter 3, while parameters derived from 
induction curves with periodic (every 1-2 minutes during 60 minutes) application of saturating flashes 

(“Flashes”) are derived from the current Chapter. Stars (* = P<0.05) denote statistically significant 
difference between Flashes and No Flashes, absence of stars denotes lack of significant difference. 

Abbreviations: IS60; induction state (%) 60 seconds after illumination, tIS50 and tIS90; time (minutes) to 

reach 50 and 90% of full photosynthetic induction, respectively, tgs50 and tgs90; time (minutes) to reach 
50 and 90% of final stomatal conductance, respectively, An(0) and  An(tf), steady-state photosynthesis 

rate (μmol m-2 s-1) in darkness and in 1000 μmol m-2 s-1, respectively, gs(0) and gs(tf); steady-state 
stomatal conductance in darkness and in 1000 μmol m-2 s-1, respectively, τR; apparent time constant 

of Rubisco activation (minutes)  
 

  CO2 concentration 

 
200 ppm 400 ppm 800 ppm 

  No Flashes Flashes No Flashes Flashes No Flashes Flashes 

IS60 25.7 ± 1.4 22.6 ± 1.9   21.6 ± 1.2 21.2 ± 1.0   21.9 ± 1.9 27.5 ± 2.7   

tA50 3.2 ± 0.3 3.4 ± 0.3   2.6 ± 0.1 2.6 ± 0.2   2.2 ± 0.1 1.8 ± 0.1   

tA90  18.5 ± 1.8 18.7 ± 1.3   10.8 ± 0.6 13.7 ± 1.6   6.2 ± 0.1 5.9 ± 0.3   

tgs50 19.8 ± 0.5 19.0 ± 1.3   18.7 ± 1.4 17.5 ± 1.0   18.2 ± 1.0 15.8 ± 0.5   

tgs90 46.7 ± 0.6 45.0 ± 1.9   38.2 ± 2.5 36.7 ± 2.2   39.9 ± 2.1 34.8 ± 1.9   

An(0)  -1.1 ± 0.2 -1.6 ± 0.2   -1.6 ± 0.1 -1.2 ± 0.2   -1.3 ± 0.3 -1.3 ± 0.2   

An(tf)  11.7 ± 0.6 12.2 ± 0.4   22.2 ± 0.6 22.0 ± 0.4   27.1 ± 1.0 25.5 ± 0.9   

gs(0)  0.2 ± 0.0 0.2 ± 0.0   0.3 ± 0.0 0.2 ± 0.0 * 0.2 ± 0.0 0.2 ± 0.0   

gs(tf) 0.7 ± 0.0 0.6 ± 0.0 * 0.6 ± 0.0 0.5 ± 0.1   0.5 ± 0.0 0.4 ± 0.0   

τR 5.1 ± 0.7 6.1 ± 0.6   4.1 ± 0.2 3.8 ± 0.3   2.7 ± 0.1 2.2 ± 0.2   
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Table S4.2. Goodness of fit of sigmoidal function, as illustrated by the root mean squared error 

(RMSE, Eqn. 4.3). The sigmoidal function was fitted to the index RI (relative increase in net 

photosynthesis rate) during a period of 60 minutes after a stepwise increase in irradiance, and to the 
index RI60 (relative increase in net photosynthesis rate 60 seconds after re-illumination) as a function 

of time since the stepwise decrease in irradiance. Displayed are the averages, plus the 1st and 3rd 
percentile of single-replicate values, across [CO2] and background irradiance treatments (n = 38-42)  

 
Irradiance 
change 

Index Root mean squared error (%) 

Average 1st percentile 3rd percentile 

Step increase Relative increase in net photosynthesis 
rate (%) 

1.9 1.3 2.4 

Step decrease Relative increase in net photosynthesis 
rate 60 s after re-illumination (%) 

3.6 2.4 4.2 

 

 
Table S4.3. Parameters describing the correlations between ln(𝐴𝑛(𝑡𝑓) – 𝐴𝑛(𝑡)𝐶𝑖) and time after a step 

increase in irradiance to determine the apparent time constant of Rubisco activation (τR).  

Average ± SEM (n = 3-5). Start and end (and therefore duration) of correlations was varied with time 
(see Fig. S4.3), in order to obtain highly linear correlations (signified by R2)  

 
Background 
irradiance  
(μmol m-2 s-1) 

CO2 
concentration 
(ppm) Start (min.) End (min.) Duration (min.) R2 

0 200 1.13 ± 0.05 3.87 ± 0.38 2.74 ± 0.34 0.98 ± 0.01 

0 400 1.19 ± 0.04 4.57 ± 0.12 3.38 ± 0.08 0.98 ± 0.00 

0 800 1.15 ± 0.00 4.45 ± 0.00 3.30 ± 0.00 0.99 ± 0.00 

50 200 0.50 ± 0.00 4.45 ± 0.00 3.95 ± 0.00 0.97 ± 0.01 

50 400 0.50 ± 0.00 4.45 ± 0.00 3.95 ± 0.00 0.98 ± 0.00 

50 800 0.12 ± 0.07 1.23 ± 0.07 1.12 ± 0.09 0.98 ± 0.01 

100 200 0.78 ± 0.17 4.95 ± 0.00 4.17 ± 0.17 0.95 ± 0.01 

100 400 0.10 ± 0.00 1.72 ± 0.12 1.62 ± 0.12 0.99 ± 0.00 

100 800 0.22 ± 0.06 0.97 ± 0.02 0.75 ± 0.06 0.97 ± 0.01 

200 200 0.20 ± 0.06 2.45 ± 1.01 2.25 ± 1.04 0.91 ± 0.01 

200 400 0.03 ± 0.02 1.55 ± 0.34 1.52 ± 0.34 0.98 ± 0.00 

200 800 0.00 ± 0.00 0.83 ± 0.17 0.83 ± 0.17 0.97 ± 0.01 
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Fig. S4.1. Data used for determination of the parameters VCmax, Jmax, TPU and Γ*. An/Ci relationships in 
21% (closed circles) and 2% oxygen (open circles). Leaves were exposed to 11 different [CO2] values 

between 50 and 1500 ppm. Data were logged every 5 seconds, and averages of 10 values at each 
[CO2] step, after steady-state photosynthesis had visibly been reached, were used. Other cuvette 

conditions were: 1000 µmol m-2 s-1 PAR, 0.8 kPa VPDleaf-air and 23 °C Tleaf. Parameters VCmax, Jmax and 
TPU were estimated using the curve-fitting procedure by Sharkey et al. (2007). The chloroplast  

CO2 compensation point in the absence of day respiration, Γ*, was calculated using the slopes of the 

regression lines depicted in the figure, after Yin et al.  (2009). Average ± SEM (n = 3-5) 
 

 

 
Fig. S4.2. Data used for the determination of the rate of day respiration (Rd). Relationship between 

net photosynthesis rates and irradiance * ΦPSII * 0.25, as in Yin et al. (2009), measured in 2% O2. 

Leaves were adapted to 200 µmol m-2 s-1, until An and gs were stable. Then, leaves were exposed to a 
range of PAR values between 0 and 200 µmol m-2 s-1. Data were logged every 5 seconds, and 

averages of 10 values at each irradiance step, after steady-state photosynthesis had visibly been 
reached, were used. Other cuvette conditions were: 400 ppm [CO2], 0.8 kPa VPDleaf-air and 22 °C Tleaf. 

The intercept of the resulting relationship was assumed to equal Rd (Yin et al., 2009). Average ± SEM 
(n = 4)  

y = 0.1121x - 5.5508 
R² = 0.99 

y = 0.1414x + 0.6403 
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Fig. S4.3. Examples of determination of the apparent time constant of Rubisco activation (τR), in four 

induction curves (at 400 ppm CO2), as affected by background irradiance. Data were calculated as the 

natural logarithm (ln) of the difference of steady-state net photosynthesis rate in inducing irradiance 
(An(tf)) and transient net photosynthesis rate after a step increase in irradiance, corrected for changes 
in leaf internal CO2 concentration (𝐴𝑛(𝑡)𝐶𝑖). Black-and-white symbols show the complete range of data 

in the first 5 minutes after a step increase in irradiance, color symbols show the range chosen for a 
linear correlation between ln(𝐴𝑛(𝑡𝑓) – 𝐴𝑛(𝑡)𝐶𝑖) and time. Black and red symbols: 0→1000 μmol m-2 s-1, 

dark grey and green symbols: 50→1000 μmol m-2 s-1, light grey and blue symbols: 100→1000  

μmol m-2 s-1, white and yellow symbols: 200→1000 μmol m-2 s-1 

 

 

 
Fig. S4.4. Effect of CO2 concentration on the steady-state response of net photosynthesis rate to 

irradiance. Symbols denote average ± SEM, n= 27-126  
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Fig. S4.5. Changes in stomatal conductance (mol m-2 s-1) after step increases (A, C, E, G) and 
decreases (B, D, F, H) in irradiance, and as affected by 0 (A, B), 50 (C, D), 100 (E, F) or  

200 μmol m-2 s-1 (G, H) background irradiance and [CO2]. Lines denote sigmoidal fits (Eqn. 2), symbols 

denote data (average ± SEM, n = 3-5) 
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Fig. S4.6. Relationships between steady-state diffusional limitation, irradiance (A), steady-state net 

photosynthesis rates (B) and steady-state stomatal conductance (C). Symbols depict average ± SEM, 
n = 3-14  
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Fig. S4.7. Dynamic irradiance response of photosynthesis rate to sinusoidal changes in irradiance, as 
affected by periods of irradiance changes, direction of irradiance changes (increasing or decreasing) 

and CO2 concentrations. Symbols denote average ± SEM, n = 3  
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Fig. S4.8. Relative gain of net photosynthesis rate during sinusoidal changes in irradiance (integrated 

over time), as affected by sine wave frequency (inverse of sine wave period) and CO2 concentration. 
Calculated as Relative gain = (An_decr/An_incr) * 100, where An_decr is integrated net photosynthesis rate 

during half-cycles of decreasing irradiance, and An_incr is average net photosynthesis rate during  
half-cycles of increasing irradiance. Symbols denote average ± SEM, n = 3 

  



[CO2] effects on dynamic photosynthesis 

98 
 

 



Chapter 5 

99 
 

 

 

 

CHAPTER 5 

 

 

Strongly increased stomatal conductance in tomato 

does not speed up photosynthetic induction in 

ambient CO2 concentration 

 

 
Authors: 

Elias Kaiser 

Jeremy Harbinson 

Ep Heuvelink 

Leo F.M. Marcelis 

 

 

 

 

 

 

 

 

 

 

 

To be submitted  



Lack of stomatal limitations in tomato 

100 
 

Abstract 



Chapter 5 

101 
 

Introduction 



Lack of stomatal limitations in tomato 

102 
 



Chapter 5 

103 
 

Materials and Methods 

Plant material 

μ

μ μ μ μ μ

μ

Measurements 

Photosynthetic induction 



Lack of stomatal limitations in tomato 

104 
 

CO2 response curves 

Calculations 

μ

𝐼𝑆 =  
𝐴𝑛(𝑡)−𝐴𝑛(𝑡0)

𝐴𝑛(𝑡𝑓)−𝐴𝑛(𝑡0)
∗ 100

𝐴𝑛(𝑡)𝐶𝑖

𝐴𝑛(𝑡)𝐶𝑖 = 𝐴𝑛(𝑡) ∗
𝑚𝑖𝑛 {𝐴𝑛(𝑐)(𝐶𝑖(𝑡𝑓)),   𝐴𝑛(𝑗)(𝐶𝑖(𝑡𝑓)), 𝐴𝑛(𝑇𝑃𝑈)(𝐶𝑖(𝑡𝑓))}

𝑚𝑖𝑛 {𝐴𝑛(𝑐)(𝐶𝑖(𝑡)), 𝐴𝑛(𝑗)(𝐶𝑖(𝑡)), 𝐴𝑛(𝑇𝑃𝑈)(𝐶𝑖(𝑡))}

𝐴𝑛(𝑐) = 𝑉𝐶𝑚𝑎𝑥 (
𝐶𝑖−Γ

∗

𝐶𝑖+𝐾𝑐∗(1+
𝑂

𝐾𝑜
)
) − 𝑅𝑑
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𝐴𝑛(𝑗) = 𝐽𝑚𝑎𝑥 (
𝐶𝑖−Γ

∗

4∗𝐶𝑖+8∗Γ
∗) − 𝑅𝑑

𝐴𝑛(𝑇𝑃𝑈) = 3 ∗ 𝑇𝑃𝑈 − 𝑅𝑑

Γ

Γ

𝑆𝑡𝑜𝑚𝑎𝑡𝑎𝑙 𝑙𝑖𝑚𝑖𝑡𝑎𝑡𝑖𝑜𝑛 =  
𝐴𝑛(𝑡)𝐶𝑖−𝐴𝑛(𝑡)

𝐴𝑛(𝑡𝑓)−𝐴𝑛(𝑡0)
∗ 100

𝜏𝑅

𝐴𝑛(𝑡)𝐶𝑖

𝜏𝑅 =
Δ𝑡

Δln (𝐴𝑛(𝑡𝑓)−𝐴𝑛(𝑡)𝐶𝑖)

Δ 𝜏𝑅

𝜏𝑅
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Results 

Steady-state responses of photosynthesis and stomatal conductance to CO2 

concentration and irradiance 

μ

μ

Photosynthetic induction at ambient, reduced and elevated CO2 concentrations 

 

Fig. 5.1. Steady-state relationship between net photosynthesis rate (An) and leaf internal  

CO2 concentration (Ci) in wildtype (WT) and flacca leaves of tomato. Irradiance was 1000  
μmol m-2 s-1. Symbols denote average, error bars denote ± SEM, n = 3 

 
Table 5.1. Steady-state values of net photosynthesis rate (An) and stomatal conductance (gs) in 

wildtype (WT) and flacca leaves of tomato, as affected by irradiance and CO2 concentration. Averages 

± standard error of the mean (SEM), n = 3. Stars within rows denote a significant difference between 
genotypes: *** = P<0.001, ** = P<0.01, * = P<0.05, n.s. = not significant 

 

0 200 -1.5 ± 0.1 -2.5 ± 0.2 * 0.25 ± 0.03 0.96 ± 0.02 ***

400 -1.7 ± 0.4 -3.9 ± 0.3 * 0.26 ± 0.03 0.90 ± 0.01 ***

800 -0.9 ± 0.4 -2.7 ± 0.1 * 0.20 ± 0.04 0.93 ± 0.04 ***

1000 200 11.1 ± 0.1 13.5 ± 0.9 n.s. 0.56 ± 0.02 1.21 ± 0.04 ***

400 20.7 ± 0.4 23.5 ± 0.4 ** 0.51 ± 0.05 1.18 ± 0.07 **

800 24.0 ± 1.4 27.5 ± 1.3 n.s. 0.40 ± 0.02 1.06 ± 0.04 ***

Irradiance (μmol m-2 s-1) CO2 concentration (ppm) An (μmol m-2 s-1) gs (mol m-2 s-1)

WT flacca WT flacca
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Fig. 5.2. Photosynthetic induction after a single-step increase in irradiance (0→1000 μmol m-2 s-1) in 

wildtype (WT) and flacca leaves of tomato, as affected by CO2 concentration: 200 (A), 400 (B) and 
800 ppm (C). Lines and symbols denote average, error bars denote ± SEM, n = 3 

 

 

Comparison of indices of transient stomatal limitation 
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Table 5.2. Indices describing photosynthetic induction rate after a stepwise increase in irradiance 

(0→1000 μmol m-2 s-1) in wildtype (WT) and flacca leaves of tomato, as affected by  

CO2 concentration. IS60, induction state 60 seconds after irradiance increase; t50 and t90, time to reach 

50 and 90% of full photosynthetic induction, respectively. Averages ± SEM, n = 3. Stars within rows 
denote a significant difference between genotypes: *** = P<0.001, ** = P<0.01, * = P<0.05,  

n.s. = not significant 

CO2 concentration 
(ppm) 

Index WT flacca   

200 IS60 (%) 19.11 ± 4.80 35.21 ± 2.39 * 

  t50 (min) 3.14 ± 0.50 1.78 ± 0.22 n.s. 

  t90 (min) 19.42 ± 3.70 8.49 ± 0.66 * 

400 IS60 (%) 24.40 ± 3.26 16.21 ± 1.73 n.s. 

  t50 (min) 2.18 ± 0.10 2.69 ± 0.17 n.s. 

  t90 (min) 14.01 ± 1.34 10.17 ± 1.38 n.s. 

800 IS60 (%) 16.47 ± 4.28 20.11 ± 1.06 n.s. 

  t50 (min) 2.17 ± 0.21 1.99 ± 0.00 n.s. 

  t90 (min) 5.56 ± 0.60 8.04 ± 0.98 n.s. 

 

 

 

 

Fig. 5.3. Apparent time constant of Rubisco activation after a single-step increase in irradiance 

(0→1000 μmol m-2 s-1) in wildtype (WT) and flacca leaves of tomato, as affected by  

CO2 concentration. The star denotes a significant difference (P<0.05) between genotypes at 200 ppm. 
Symbols denote average, error bars denote ± SEM, n = 3 
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Fig. 5.4. Diffusional limitation after a single-step increase in irradiance (0→1000 μmol m-2 s-1) in 

wildtype (WT) and flacca leaves of tomato, as affected by CO2 concentration: 200 (A) and 400 (B). 

Diffusional limitation was absent in both genotypes in 800 ppm (due to triose phosphate utilisation 

limitation) and is therefore omitted here. Lines and symbols denote average, error bars  
denote ± SEM, n = 3. Stars above single time points denote a significantly higher value (P<0.05) 

compared to the time point at the end of induction; this last time point is marked by an arrow 
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Fig. 5.5. Stomatal limitation after a single-step increase in irradiance (0→1000 μmol m-2 s-1) in 

wildtype (WT) and flacca leaves of tomato, as affected by CO2 concentration: 200 (A) and 400 (B). 

Stomatal limitation was absent in both genotypes in 800 ppm (due to triose phosphate utilisation 

limitation) and is therefore omitted here. Lines and symbols denote average, error bars  
denote ± SEM, n = 3. Stars above single time points denote a significantly higher value (P<0.05) 

compared to the time point at the end of induction, marked by an arrow 
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Fig. 5.6. Relationship between transient net photosynthesis rate (An) and leaf internal  

CO2 concentration (Ci) in wildtype (WT) and flacca leaves of tomato during photosynthetic induction 

after a single-step increase in irradiance (0→1000 μmol m-2 s-1), in 200 (A), 400 (B) and 800 ppm (C) 

leaf external CO2 concentration. Grey lines represent the steady-state An/Ci relationship (as in  
Fig. 5.1). Note the different scales of X-axes in subplots. Arrows in A) are an example of time courses 

of An and Ci during induction. Symbols denote average, error bars denote ± SEM, n = 3
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Supplementary material 5.1 
 

 
Figure S5.1. An/Ci response of tomato leaves: cv. Cappricia, cv. Rheinlands Ruhm wildtype (WT), and 

cv. Rheinlands Ruhm flacca. Symbols denote average, error bars denote ± SEM, n = 3-5 
 

 
Figure S5.2. Dynamic An/Ci relationship in elevated [CO2], plotted without error bars, to emphasize the 

increase in Ci without an increase in An in the wildtype   
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Figure S5.3. Time course of stomatal conductance after a stepwise increase in irradiance  
(0→1000 μmol m-2 s-1) in wildtype (WT) and flacca leaves, as affected by CO2 concentration. Symbols 

denote average, error bars denote ± SEM, n = 3  
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Figure S5.4. Relationships between initial (dark-adapted) stomatal conductance and the time required 

to reach 90% of full photosynthetic induction state in single replicates of wildtype and flacca leaves, 
as affected by [CO2] 
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Lightfleck use efficiency 

Irradiance response curves 

Fig. 6.1. Example of net photosynthesis rates (continuous line) and irradiance (dotted line) during a 
series of lightflecks (300 ± 250 μmol m-2 s-1) 
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Fig. 6.2. Irradiance (A, C, E, G) and CO2 response (B, D, F, H) of net photosynthesis rates in rca-2 and 

rwt43 (A, B), aba2-1 and C24 (C, D), npq1-2 and npq4-1 (E, F) and spsa1 (G, H). Col-0 is included in 
each subplot for ease of comparison. In D), supply lines (Farquhar & Sharkey, 1982) between  

Ca = 500 and the corresponding An/Ci relationships are shown to emphasize stomatal effects of  
aba2-1, C24 and Col-0 on Ci. Averages ± SEM, n = 5-15 
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Table 6.1. Parameters derived from An/Ci curves. Vcmax, maximum caboxylation rate by Rubisco  

(μmol CO2 m-2 s-1); Jmax, maximum rate of electron transport in the absence of regulation  
(μmol electrons m-2 s-1); TPU, maximum rate of triose phosphate utilisation (μmol CO2 m

-2 s-1). The 

sum of squares of the differences between measurement and model during curve fitting (Sharkey et 
al., 2007) is shown as an estimation of the overall goodness of fit. Averages ± SEM, n = 5-15. Stars 

within columns denote significance levels compared to Col-0: *** = P<0.0001, ** = P<0.01,  

* = P<0.05. Absence of stars denotes lack of significant difference with Col-0 
 

  Vcmax Jmax TPU Sum of squares 

Col-0 54 ± 1   103 ± 2   7.3 ± 0.1   4.2 ± 0.4   

rca-2 41 ± 2 *** 88 ± 2 *** 6.8 ± 0.1 * 4.1 ± 1.0 

 rwt43 60 ± 3 

 

111 ± 3 * 7.7 ± 0.2 

 

5.2 ± 0.3 

 aba2-1 61 ± 3 * 123 ± 7 *** 8.8 ± 0.6 ** 6.8 ± 1.3 * 

C24 45 ± 2 ** 81 ± 5 *** 5.6 ± 0.4 *** 2.4 ± 0.5 * 

npq1-2 55 ± 3 

 

106 ± 6 

 

7.6 ± 0.4 

 

8.1 ± 1.3 ** 

npq4-1 55 ± 1 

 

96 ± 2 

 

7.1 ± 0.2 

 

5.2 ± 0.7 

 spsa1 57 ± 5 

 

89 ± 5 ** 5.7 ± 0.3 *** 3.8 ± 0.5 

  

→ →

μ → μ

→ μ

→ μ
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Φ → μ

Fig. 6.3. Relative response of photosynthesis to a step increase in irradiance from 0 to 1000  

μmol m-2 s-1 in rca-2 and rwt43 (A), aba2-1 and C24 (B), npq1-2 and npq4-1 (C) and spsa1 (D). Col-0 
is included in each subplot for ease of comparison. Averages ± SEM, n = 5-15 
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Table 6.2. Time (minutes) to reach 50 and 90% of steady-state photosynthesis rates (tA50, tA90) after 

step increases in irradiance. Averages ± SEM, n = 5-15. Stars within columns denote significance 

levels compared to Col-0: *** = P<0.0001, ** = P<0.01, * = P<0.05. Absence of stars denotes lack 
of significant difference with Col-0 

 

Fig. 6.4. Leaf internal CO2 concentration (Ci), diffusional limitation and biochemical limitation after a 
step increase in irradiance from 0 to 1000 μmol m-2 s-1 in Col-0, rca-2 and rwt43 (A, C, E) and Col-0, 
aba2-1 and C24 (B, D, F). Averages ± SEM, n = 5-15 

Genotype

Col-0 1.6 ± 0.1 14.7 ± 1.2 1.3 ± 0.1 10.2 ± 1.1 0.6 ± 0.0 9.0 ± 2.2

rca-2 1.5 ± 0.2 25.5 ± 1.5 *** 6.3 ± 0.4 *** 30.9 ± 2.0 *** 4.0 ± 0.7 *** 29.8 ± 1.7 ***

rwt43 1.2 ± 0.1 ** 14.2 ± 2.6 0.5 ± 0.0 *** 16.2 ± 6.1 0.3 ± 0.0 *** 18.8 ± 6.1

aba2-1 1.4 ± 0.1 7.3 ± 0.5 ** 1.3 ± 0.1 7.7 ± 2.6 0.8 ± 0.1 15.1 ± 5.8

C24 1.9 ± 0.1 15.0 ± 3.2 1.7 ± 0.3 * 13.3 ± 2.7 0.9 ± 0.2 * 29.4 ± 5.1 ***

npq1-2 1.4 ± 0.1 11.7 ± 1.7 1.3 ± 0.1 10.7 ± 2.9 0.7 ± 0.0 14.6 ± 8.6

npq4-1 1.5 ± 0.1 14.8 ± 2.6 1.1 ± 0.1 6.1 ± 0.7 0.6 ± 0.0 15.3 ± 11.0

spsa1 1.6 ± 0.1 19.5 ± 1.3 * 1.3 ± 0.1 14.1 ± 7.2 0.6 ± 0.1 13.7 ± 6.9

tA50 tA90

0→1000 μmol m-2 s-1

tA50 tA90

70→800 μmol m-2 s-1 130→600 μmol m-2 s-1

tA50 tA90
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Φ

Φ

Φ

Φ
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Apparent time constants of Rubisco activation  

𝜏𝑅

𝜏𝑅
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Fig. 6.5. Quantum yield of photosystem II (ΦPSII) and non-photochemical quenching (NPQ) after a 

step increase in irradiance from 0 to 1000 μmol m-2 s-1 in rca-2 and rwt43 (A, B), aba2-1 and C24 (C, 

D), npq1-2 and npq4-1 (E, F) and spsa1 (G, H). Col-0 is included in each subplot for ease of 
comparison.  Averages ± SEM, n = 5-15 
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Fig. 6.6. Apparent time constant of Rubisco activation in rca-2 (A) and rwt43 (B), compared to Col-0. 

Note the different scales of Y-axes in A) and B). Averages ± SEM, n = 5-15. Bars in B) at 30  

μmol m-2 s-1 background irradiance included from Carmo-Silva and Salvucci (2013). Stars denote 
significance levels of single genotypes compared to Col-0: *** = P<0.001 

Stomatal limitations after irradiance increases 

μ

→ μ

μ
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Fig. 6.7. Relationship between initial gs and the time to reach 90% of final photosynthesis rates after a 

step increase in irradiance (0-1000 μmol m-2 s-1) in single replicates of Col-0, aba2-1 and C24 
 

Fig. 6.8. Results of split-line regression analysis between initial gs and time to reach 10 to 90% of 

steady-state photosynthesis rates of leaves in 0, 70 and 130 μmol m-2 s-1 background irradiance.  

A) Percentage of variance accounted for by the split-line regression, versus the percentage increase in 
final photosynthesis rate. The shaded area represents the range that was deemed unreliable for 

calculations of parameters. B) Intersection point between the horizontal and non-horizontal line on the 
X-axis (gs)  

→ μ
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Fig. 6.9. Relationship between the increase in gs and the time to reach 90% of final photosynthesis 

rates after a step increase in irradiance (0-1000 μmol m-2 s-1) in single replicates of Col-0 and C24  

(R2 = 0.75) 

Responses to stepwise decreases in irradiance 

→ → μ

Lightfleck use efficiency (LFUE) 

μ

 

μ

μ

μ
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Fig. 6.10. Relative post-illumination CO2 fixation in Col-0, npq1-2 and npq4-1. Values are expressed 

relative to Col-0, which was 52 ± 5 μmol m-2 after 600→200 μmol m-2 s-1 step decreases (white bars) 

and 76 ± 3 μmol m-2 after 800→130 μmol m-2 s-1 step decreases (black bars). Averages ± SEM,  

n = 5-15 
 

 
Table 6.3. Lightfleck use efficiency (LFUE, %) of Col-0, rca-2 and aba2-1. Averages ± SEM, n = 5-15. 

Stars denote significance levels within rows compared to Col-0: *** = P<0.0001, ** = P<0.01,  

* = P<0.05. Absence of stars denotes lack of significant difference with Col-0 
 

  Amplitude Duration                 
  (PAR) (s) Col-0 rca-2 aba2-1 
Full 

lightfleck 

50 10 100.9 ± 0.3 104.2 ± 2.5 * 101.9 ± 0.9   

50 60 99.3 ± 0.3 102.7 ± 2.0 * 100.6 ± 0.7   
  50 120 98.7 ± 0.2 101.2 ± 1.6 * 100.0 ± 0.5 ** 

  100 10 98.4 ± 0.4 102.6 ± 3.2 * 97.9 ± 0.7   

  100 60 94.7 ± 0.3 98.8 ± 2.3 ** 94.2 ± 0.7   
  100 120 94.3 ± 0.3 97.7 ± 2.0 ** 93.5 ± 0.7   

  250 10 80.5 ± 0.7 77.6 ± 0.6 * 80.6 ± 1.0   
  250 60 65.5 ± 0.6 60.4 ± 0.6 *** 67.2 ± 1.7   

  250 120 61.7 ± 0.5 60.6 ± 0.7   63.5 ± 1.5   

      Col-0 rca-2 aba2-1 

Half 
lightfleck: 

PAR 

increases 

50 10 100.3 ± 0.3 103.8 ± 2.4 * 101.4 ± 1.0   
50 60 100.6 ± 0.3 103.5 ± 1.9 * 101.9 ± 0.7   

50 120 102.8 ± 0.2 103.1 ± 1.7   105.9 ± 0.4 *** 

100 10 97.3 ± 0.4 101.4 ± 3.0 * 96.3 ± 0.7   
  100 60 97.6 ± 0.3 100.9 ± 2.4 * 97.3 ± 1.0   

  100 120 103.0 ± 0.3 102.3 ± 1.8   105.4 ± 1.7 * 
  250 10 77.0 ± 0.7 74.5 ± 0.5   76.7 ± 0.8   

  250 60 76.4 ± 0.7 66.5 ± 0.6 *** 78.6 ± 2.9   
  250 120 90.3 ± 0.5 83.2 ± 0.8 *** 94.7 ± 3.3 * 

      Col-0 rca-2 aba2-1 

Half 

lightfleck: 

PAR 
decreases 

50 10 101.3 ± 0.3 105.0 ± 2.5 * 102.6 ± 0.9   

50 60 98.0 ± 0.3 101.9 ± 2.0 ** 99.2 ± 0.8   

50 120 94.7 ± 0.3 99.3 ± 1.6 *** 94.2 ± 1.1   
100 10 99.5 ± 0.4 103.9 ± 3.0 * 99.0 ± 0.7   

  100 60 91.7 ± 0.4 96.7 ± 2.3 ** 91.2 ± 0.6   
  100 120 85.6 ± 0.4 93.1 ± 2.2 *** 81.6 ± 1.2 *** 

  250 10 83.9 ± 0.6 79.6 ± 0.6 ** 83.9 ± 1.3   
  250 60 54.6 ± 0.6 54.3 ± 0.7   55.9 ± 0.7   

  250 120 33.2 ± 0.7 38.1 ± 1.0 ** 32.2 ± 0.8   
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Discussion 

Rubisco activase concentration and isoform affect dynamic photosynthesis 

𝜏𝑅
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High initial gs increases dynamic photosynthesis 
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Reduced NPQ does not affect photosynthesis in fluctuating irradiance 
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Reduced SPS has negligible effects on photosynthesis in fluctuating irradiance 

Absence of RuBP-regeneration limitation in ΦPSII /Ci data 
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Φ
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Supplementary material 6.1 

 
Fig. S6.1. Irradiance spectrum in the growth chamber. Average ± SEM, n = 4 

 

 
Fig. S6.2. CO2 response (A), irradiance response (B) and photosynthetic induction (C) in three batches 

of Col-0, grown sequentially in the same growth system. Batch 1, blue symbols; batch 2, orange 

symbols; batch 3, black symbols. Average ± SEM, n = 5  
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Fig. S6.3. Example of data used to calculate the apparent time constant of Rubisco activation (𝜏𝑅) 

after step increases in irradiance A) 0→1000, B) 70→800 and C) 130→600 μmol m-2 s-1. Red dots 

indicate the data points used to calculate 𝜏𝑅, which is equal to the inverse of the slope of the green 

line. Explanation of abbreviations on Y-axis: log, natural logarithm; A*
f, steady-state net 

photosynthesis rate at full photosynthetic induction; A*, transient net photosynthesis rate after 

irradiance increase, corrected for changes in substomatal CO2 concentration  
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Fig. S6.4. CO2 response of ΦPSII in Arabidopsis genotypes. Averages ± SEM, n = 5-15  
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Fig. S6.5. Relative responses of net photosynthesis rates to increases in irradiance, from 70 to 800 
(left panel: A, C, E, G) and from 130 to 600 μmol m-2 s-1 (right panel: B, D, F, H). Averages ± SEM,  

n = 5-15  
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Fig. S6.6. Dark-adapted Fv/Fm in Arabidopsis genotypes after 60 dark adaptation. Stars denote 

significant difference from Col-0, as P<0.05 (*) and P<0.01 (**). Averages ± SEM, n = 5-15  
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Fig. S6.7. Gross photosynthesis rate (An + dark respiration) as affected by electron transport rate 

through photosystem II (ETR) during photosynthetic induction after a 0→1000 μmol m-2 s-1 irradiance 

increase. ETR was calculated as ETR = PAR * ΦPSII * 0.84 * 0.5 (e.g. Hubbart et al., 2012). Averages 

± SEM, n = 5-15  
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Fig. S6.8. Increases in stomatal conductance in Col-0, aba2-1 and C24 after step increases in 

irradiance, A) 0→1000, (B) 70→800 and C) 130→600 μmol m-2 s-1. Averages ± SEM, n = 5-15  
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Fig. S6.9. Responses of net photosynthesis rates to step decreases in irradiance, from 600 to 200 (left 

panel: A, C, E, G) and from 800 to 130 μmol m-2 s-1 (right panel: B, D, F, H). Averages ± SEM,  
n = 5-15 
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Materials and Methods 

General description of the model 

μ

𝑉𝐶 = min(𝑉𝐶,𝐽2, 𝑉𝐶,𝑅𝐵, 𝑉𝐶,𝑅 , 𝑉𝐶,𝑇𝑃𝑈)

 

Fig. 7.1. Conceptual diagram of the model. The rate of carboxylation is limited by Rubisco kinetics 

(RB), activity of enzymes in the regeneration phase of the Calvin cycle (R), triose phosphate utilisation 
(TPU) and potential rate of electron transport (J2). NPQ is calculated from irradiance (I) and actual 

electron transport. CO2 diffuses from the air (Ca), into the chloroplast (Cc) as mediated by stomatal 

and mesophyll conductance (gsw and gm, respectively). CO2 emitted due to photorespiration (PR) is 
assumed to be delayed with respect to oxygenation 
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μ

μ

μ

𝐴 = 𝑉𝐶 − 0.5𝑃𝑅 ⋅ 𝐾𝑃𝑅 − 𝑅𝑑

Dynamic regulation of the electron transport chain 



Modelling dynamic photosynthesis 

158 
 

Dynamic regulation of Rubisco activity 

 

Regeneration of RuBP 

Parameter estimation  



Chapter 7 

159 
 

- 

μ μ



Modelling dynamic photosynthesis 

160 
 

- 

μ μ

- 

μ

μ

Photosynthesis in fluctuating light 
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Results and Discussion

Comparison of simulations and data 
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Fig. 7.2. Measured (black line) and simulated (grey line) photosynthesis during the different light 

transients (start and final irradiance indicated in subplots) in col-0 (A), npq4-1 (B), aba2-1 (C),  
rca-2 (D) and spsa1 (E). Error bars indicate 95% confidence interval of the mean across replicates 

μ

μ μ
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Fig. 7.3. Total measured (symbols) and simulated (lines) NPQ in the 0-1000 light transient. NPQ was 

calculated as Fm/Fm' −1. Error bars indicate 95% confidence interval of the mean across replicates 

 
Fig. 7.4. Measured (symbols) and simulated (lines) response of steady-state photosynthesis to CO2. 

Error bars represent the 95% confidence interval of the mean across replicates 

μ
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Fig. 7.5. Measured and simulated average photosynthesis under fluctuating light conditions for all 
amplitudes (100, 200 and 500 μmol m–2 s–1) and periods of the square wave and genotypes. Each 

symbol represents the value for a specific cycle of the square wave, averaged over all replicates. The 
solid line represents the 1:1 line. The dashed line is the linear regression between simulated and 

measured average photosynthesis 

 

Components of non-photochemical quenching 

 



Modelling dynamic photosynthesis 

166 
 

 
Fig. 7.6. Simulated components of NPQ during the 0 – 1000 light transient. Irradiance was varied in  

2 s steps at the beginning of the experiment between 0 and 1000 μmol m–2 s–1. qDf (A) and qDs (B) 
represent the fast and slow mechanisms of heat dissipation, qA (C) is NPQ due to chloroplast 

movement and qI (D) is the contribution to NPQ of photoinhibition 
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Limiting factors during dynamic photosynthesis 
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Photosynthesis in fluctuating light conditions 
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μ

 

 

Fig. 7.7. Lightfleck use efficiency (LFUE) for each combination of genotype and period of the square 

wave for amplitudes of 100 (A), 200 (B) and 500 (C) μmol m–2 s–1, averaged over all replicates. The 
error bars represent 95% confidence intervals of the mean across replicates. The variation across 

replicates was due to variations in stomatal conductance and leaf temperature 
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Fig. 7.8. Example of simulated and measured time series of photosynthesis during consecutive 

lightflecks at an amplitude of 500 μmol m–2 s–1 and period of 120 s for col-0 (A) and rca-2 (B). The 
symbols represent measurements, the dashed line is modelled photosynthesis, whereas the solid line 

is modelled photosynthesis affected by the smoothing effects of the gas exchange system 
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Supplementary Material 7.1: Model Description

1 Introduction 
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2 Limiting factors to dynamic photosynthesis 
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𝑉𝐶 = min(𝑉𝐶,𝑁𝐴𝐷𝑃𝐻, 𝑉𝐶,𝑅𝐵, 𝑉𝐶,𝑅 , 𝑉𝐶,𝑇𝑃𝑈) 

2.1 Kinetics of carboxylation and oxygenation 

2.1.1 Potential rate of carboxylation 

μ

𝑉𝐶,𝑅𝐵 =
𝑅𝐵⋅𝑓𝑅𝐵⋅𝐾𝐶⋅𝐶𝐶

𝐶𝐶+𝐾𝑀
𝐶 (1+

𝑂2

𝐾𝑀
𝑂 )

 

μ

μ

μ

μ

μ

𝑉𝑂 = 𝑉𝐶𝜙 

𝜙

𝜙 =
𝐾𝑀
𝐶 𝑅𝑜𝑐𝑂2

𝐾𝑀
𝑂𝐶𝐶

 

2.1.2 Regulation of Rubisco activity 

𝑑𝑓𝑅𝐵

𝑑𝑡
= {

(𝑓𝑅𝐵
𝑠𝑠 − 𝑓𝑅𝐵)𝐾𝑅𝐶𝐴𝑅𝐶𝐴 if 𝑓𝑅𝐵

𝑠𝑠 > 𝑓𝑅𝐵
(𝑓𝑅𝐵

𝑠𝑠 − 𝑓𝑅𝐵)𝐾𝑑
𝑅𝐵 if 𝑓𝑅𝐵

𝑠𝑠 ≤ 𝑓𝑅𝐵 
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𝑓𝑅𝐵
𝑠𝑠

𝐾𝑑
𝑅𝐵

𝑓𝑅𝐵
𝑠𝑠

𝑓𝑅𝐵
𝑠𝑠 = {

𝑓𝑅𝐵,𝑚 if 𝐼0 = 0

𝑓𝑅𝐵,𝑛𝑟
𝑠𝑠  if 𝑓𝑅𝐵,𝑛𝑟

𝑠𝑠 < 𝑓𝑅𝐵,𝑟
𝑠𝑠  and 𝐼0 > 0  

min(𝑓𝑅𝐵,𝑟
𝑠𝑠 , 𝑓𝑅𝐵,𝑀) if 𝑓𝑅𝐵,𝑛𝑟

𝑠𝑠 ≥ 𝑓𝑅𝐵,𝑟
𝑠𝑠  and 𝐼0 > 0 

μ 𝑓𝑅𝐵,𝑛𝑟
𝑠𝑠

𝑓𝑅𝐵,𝑟
𝑠𝑠

𝑓𝑅𝐵,𝑀

𝑓𝑅𝐵,𝑀 =
𝑅𝐶𝐴

𝑅𝐶𝐴+𝐾𝐴
𝑅𝐶𝐴 

𝐾𝐴
𝑅𝐶𝐴

𝑓𝑅𝐵,𝑟
𝑠𝑠

𝑓𝑅𝐵,𝑟
𝑠𝑠 =

min(𝑉𝐶,𝑁𝐴𝐷𝑃𝐻,𝑉𝐶,𝑅,𝑉𝐶,𝑇𝑃𝑈)(𝐶𝐶+𝐾𝑀
𝐶 (1+

𝑂2

𝐾𝑀
𝑂 ))

𝑅𝐵⋅𝐾𝐶⋅𝐶𝐶

𝑓𝑅𝐵,𝑛𝑟
𝑠𝑠

𝑓𝑅𝐵,𝑛𝑟
𝑠𝑠 =

𝐶𝐶

𝐶𝐶+𝐾𝑎
𝐶 

𝐾𝑎
𝐶 μ

2.1.3 Effect of temperature on Rubisco 

𝑉𝑐𝑚𝑎𝑥 = 𝑉𝑐𝑚𝑎𝑥,25𝑒
(𝐶𝑉𝑐𝑚𝑎𝑥− 

Δ𝐻𝐴
𝑉𝑐𝑚𝑎𝑥

𝑅𝑇𝐿
)

𝐾𝑀
𝐶 = 1Pa ⋅ 𝑒

(𝐶𝐾𝑚𝑐− 
Δ𝐻𝐴

𝐾𝑚𝑐

𝑅𝑇𝐿
)
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𝐾𝑀
𝑂 = 1𝑘Pa ⋅ 𝑒

(𝐶𝐾𝑚𝑜−  
 Δ𝐻𝐴

𝐾𝑚𝑜

𝑅𝑇𝐿
)

Δ𝐻𝐴
𝑉𝑐𝑚𝑎𝑥 Δ𝐻𝐴

𝐾𝑚𝑐 Δ𝐻𝐴
𝐾𝑚𝑜

𝐾𝑀
𝐶 𝐾𝑀

𝑂 𝑉𝑐𝑚𝑎𝑥,25 μ

𝐾𝑀
𝐶 𝐾𝑀

𝑂

2.2 NADPH production 

2.2.1 Potential rate of electron transport 

𝜃𝐽2
𝑝2 − (𝐼2 + 𝐽2𝑚𝑎𝑥)𝐽2

𝑝 + 𝐼2𝐽2𝑚𝑎𝑥 = 0 

𝐽2
𝑝

μ

μ θ

μ

θ

𝐼2 = 𝐼0𝛽𝜎2𝜙𝐼𝐼
𝑝  

μ β

σ

𝜙𝐼𝐼
𝑝
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2.2.2 Dissipation of energy as heat 

2.2.2.1 Teleonomic model of regulated heat dissipation 

𝑞𝑃 =
min(𝐽2

𝑝
,𝐽2
𝑚)

𝜙𝐼𝐼
𝑝
𝐼2

 

𝐽2
𝑚 μ
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𝑞𝑃𝑠𝑠 = qP+𝑓𝑞𝐷(1 − qP) 

𝑞𝑃𝑠𝑠

𝜙𝐼𝐼𝑜
𝑠𝑠 =

min(𝐽2
𝑝
,𝐽2
𝑚)

𝑞𝑃𝑠𝑠𝐼2
 

𝜙𝑞𝐸
𝑠𝑠 = min (𝜙𝐼𝐼

𝑑 −
𝜙𝐼𝐼
𝑠𝑠

(1−𝑓𝐼𝐼𝑑)
, 𝜙𝑞𝐷,𝑚) 

𝜙𝐼𝐼
𝑑

ϕ

𝑓𝑞𝐷 = 𝑓𝑞𝐷
𝑠 + 𝑓𝑞𝐷

𝑓

𝑓𝑞𝐷
𝑠 𝑓𝑞𝐷

𝑓

𝑑𝜙𝑞𝐷
𝑓

𝑑𝑡
=

{
 
 

 
 (𝜙𝑞𝐸

𝑠𝑠 ⋅
𝑓𝑞𝐷
𝑓

𝑓𝑞𝐷
 − 𝜙𝑞𝐷

𝑓
)𝐾𝑖

𝑞𝐷𝑓
if 𝜙𝑞𝐸

𝑠𝑠
𝑓𝑞𝐷
𝑓

𝑓𝑞𝐷
> 𝜙𝑞𝐷

𝑓

(𝜙𝑞𝐸
𝑠𝑠 ⋅

𝑓𝑞𝐷
𝑓

𝑓𝑞𝐷
− 𝜙𝑞𝐷

𝑓
)𝐾𝑑

𝑞𝐷𝑓
if 𝜙𝑞𝐸

𝑠𝑠
𝑓𝑞𝐷
𝑓

𝑓𝑞𝐷
≤ 𝜙𝑞𝐷

𝑓

𝐾𝑖
𝑞𝐷𝑓

𝐾𝑑
𝑞𝐷𝑓
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𝑑𝜙𝑞𝐷
𝑠

𝑑𝑡
= {

(𝜙𝑞𝐸
𝑠𝑠 ⋅

𝑓𝑞𝐷
𝑠

𝑓𝑞𝐷
 − 𝜙𝑞𝐷

𝑠 )𝐾𝑖
𝑞𝐷𝑠 if 𝜙𝑞𝐸

𝑠𝑠 𝑓𝑞𝐷
𝑠

𝑓𝑞𝐷
> 𝜙𝑞𝐷

𝑠

(𝜙𝑞𝐸
𝑠𝑠 ⋅  

𝑓𝑞𝐷
𝑠

𝑓𝑞𝐷
− 𝜙𝑞𝐷

𝑠 )𝐾𝑑
𝑞𝐷𝑠 if 𝜙𝑞𝐸

𝑠𝑠 𝑓𝑞𝐷
𝑠

𝑓𝑞𝐷
≤ 𝜙𝑞𝐷

𝑠
 

𝐾𝑖
𝑞𝐷𝑠 𝐾𝑑

𝑞𝐷𝑠

𝜙𝐼𝐼 = (𝜙𝐼𝐼
𝑑 −𝜙𝑞𝐷

𝑠 − 𝜙𝑞𝐷
𝑓
)(1 − 𝑓𝐼𝐼𝑑) 

2.2.2.2 Transient limitations to photosynthesis 

𝐽2
𝑝 = {

𝐽2
𝑝 if 𝜙𝐼𝐼

𝑠𝑠 > 𝜙𝐼𝐼
𝜙𝐼𝐼

𝜙𝐼𝐼
𝑠𝑠 𝐽2

𝑝 if 𝜙𝐼𝐼
𝑠𝑠 ≤ 𝜙𝐼𝐼

 

𝜙𝐼𝐼
𝑠𝑠 > 𝜙𝐼𝐼

2.2.3 Chloroplast avoidance movement 

𝛽
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𝛽𝑠𝑠 = max (𝛽0 − 𝛽𝑚
𝐼0

𝐼𝑚
𝛽 , 𝛽𝑚) 

𝛽 𝛽 𝛽𝑚 𝛽

𝐼𝑚
𝛽

μ

𝑑𝛽

𝑑𝑡
= {

(𝛽𝑠𝑠 − 𝛽)𝐾𝑖
𝛽

if 𝛽𝑠𝑠 > 𝛽

(𝛽𝑠𝑠 − 𝛽)𝐾𝑑
𝛽

if 𝛽𝑠𝑠 ≤ 𝛽
 

𝐾𝑖
𝛽

𝐾𝑑
𝛽

 

2.2.4 Photoinhibition 

𝐾𝑖
𝑞𝐼

μ

𝐾𝑑
𝑞𝐼

𝑑𝑓𝐼𝐼𝑑

𝑑𝑡
= (1 − 𝑓𝐼𝐼𝑑)𝐼0𝛽𝐾𝑖

𝑞𝐼 − 𝑓𝐼𝐼𝑑𝐾𝑑
𝑞𝐼 

𝜙𝐼𝐼𝑜
𝑝

𝜙𝐼𝐼
𝑝 = 𝜙𝐼𝐼

𝑑 (1 − 𝑓𝐼𝐼𝑑) 

𝜙𝐼𝐼
𝑑
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2.2.5 Carboxylation limited by NADPH production 

μ

𝑉𝐶,𝑁𝐴𝐷𝑃𝐻 =
min(𝐽2

𝑝
,𝐽2
𝑞𝐷
)(1−

𝑓𝑝𝑠𝑒𝑢𝑑𝑜

1−𝑓𝑐𝑦𝑐
)

4(1+𝜙)

μ

2.2.6 Electron transport limited by metabolism 

μ

𝐽2
𝑚 =

min(𝑉𝐶,𝑅𝐵,𝑉𝐶,𝑅,𝑉𝐶,𝑇𝑃𝑈)4(1+𝜙)

(1−
𝑓𝑝𝑠𝑒𝑢𝑑𝑜

1−𝑓𝑐𝑦𝑐
)

  

2.2.7 Fluorescence coefficients 

𝐽2 = min(𝐽2
𝑝, 𝐽2

𝑞𝐷 , 𝐽2
𝑚) = min(𝐽2

𝑞𝐷 , 𝐽2
𝑚)  

𝐽2
𝑞𝐷 𝐽2

𝑝 𝐽2
𝑞𝐷

𝐽2
𝑚
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𝜙𝐼𝐼
𝑑 =

𝐹𝑚

𝐹𝑚−𝐹𝑜
  

𝐹𝑚 =
𝛽0𝑘𝑓

𝑘𝑓+𝑘𝐷
0+𝑘𝐷

𝑟𝑒𝑑

𝐹𝑜 =
𝛽0𝑘𝑓

𝑘𝑓+𝑘𝐷
0+𝑘𝑝

𝑘𝐷
0

𝑘𝐷
𝑟𝑒𝑑

𝐹𝑚′

𝐹𝑜′

𝐹𝑚𝑎
′ =

𝛽𝑘𝑓

𝑘𝑓+𝑘𝐷+𝑘𝐷
𝑟𝑒𝑑  

𝐹𝑜𝑎
′ =

𝛽𝑘𝑓

𝑘𝑓+𝑘𝐷+𝑘𝑝
  

𝜙𝐼𝐼
𝑑 − 𝜙𝑞𝐷

𝑠 −𝜙𝑞𝐷
𝑓

𝑘𝐷 =
𝑘𝑝−𝑘𝐷

𝑟𝑒𝑑

𝜙𝐼𝐼
𝑑−𝜙𝑞𝐷

𝑠 −𝜙𝑞𝐷
𝑓 − 𝑘𝑓 − 𝑘𝑝  

𝐹𝑚𝑑
′ = 𝐹𝑜𝑎

′  

𝐹𝑜𝑑
′ = 𝐹𝑜𝑎

′   

𝐹𝑜𝑎′
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𝐹𝑚
′ = (1 − 𝑓𝐼𝐼𝑑)𝐹𝑚𝑎

′ + 𝑓𝐼𝐼𝑑𝐹𝑚𝑑
′ = (1 − 𝑓𝐼𝐼𝑑)𝐹𝑚𝑎

′ + 𝑓𝐼𝐼𝑑𝐹𝑜𝑎
′   

𝐹𝑜
′ = (1 − 𝑓𝐼𝐼𝑑)𝐹𝑜𝑎

′ + 𝑓𝐼𝐼𝑑𝐹𝑚𝑑
′ = 𝐹𝑜𝑎

′

𝐹𝑚
′ 𝐹𝑜

′

𝐹𝑚
′

𝑁𝑃𝑄 =
𝐹𝑚

𝐹𝑚′
− 1

𝑞𝐼 =
𝐹𝑚

(1−𝑓𝐼𝐼𝑑)𝐹𝑚+𝑓𝐼𝐼𝑑𝐹𝑜
− 1  

𝑞𝐷𝑠 = (𝑁𝑃𝑄 − 𝑞𝐼 − 𝑞𝐴)
𝜙𝑞𝐷
𝑠

𝜙𝑞𝐷
𝑠 +𝜙𝑞𝐷

𝑓    

𝑞𝐷𝑓 = (𝑁𝑃𝑄 − 𝑞𝐼 − 𝑞𝐴)
𝜙𝑞𝐷
𝑓

𝜙𝑞𝐷
𝑠 +𝜙𝑞𝐷

𝑓  

𝑞𝐴 = 𝑁𝑃𝑄 − (
𝐹𝑚

𝐹𝑚𝑎′

𝛽

𝛽0
− 1)  

2.2.8 Effect of temperature on electron transport rates 

𝐽𝑚𝑎𝑥 = 𝐽𝑚𝑎𝑥,25
𝑒

(𝐶𝐽𝑚𝑎𝑥−
Δ𝐻𝐴

𝐽𝑚𝑎𝑥

𝑅𝑇𝐿
)

1+𝑒

(
𝑇𝐿Δ𝑆

𝐽𝑚𝑎𝑥
−Δ𝐻

𝑑
𝐽𝑚𝑎𝑥

𝑅𝑇𝐿
)

  

𝐽𝑚𝑎𝑥,25 Δ𝐻𝐴
𝐽𝑚𝑎𝑥

Δ𝑆𝐽𝑚𝑎𝑥

Δ𝐻𝑑
𝐽𝑚𝑎𝑥

2.3 Triose phosphate utilisation 

𝑉𝐶,𝑇𝑃𝑈 =
3𝑇𝑃𝑈

1−
(1+3𝛼)𝜙

2

  

μ α

α
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𝑇𝑃𝑈 = 𝑇𝑃𝑈25
𝑒
(𝐶𝑇𝑃𝑈−

Δ𝐻𝐴
𝑇𝑃𝑈

𝑅𝑇𝐿
)

1+𝑒
(
𝑇𝐿Δ𝑆

𝑇𝑃𝑈−Δ𝐻𝑑
𝑇𝑃𝑈

𝑅𝑇𝐿
)

 

Δ𝐻𝐴
𝑇𝑃𝑈

Δ𝑆𝑇𝑃𝑈

Δ𝐻𝑑
𝑇𝑃𝑈

2.4 Regeneration of RuBP 

𝑉𝐶,𝑅 =
𝑓𝑅𝑉𝑟𝑚𝑎𝑥

1+𝜙
 

μ

𝑓𝑅
𝑠𝑠 = min (1,

𝐼0

𝐼𝑚
𝑅) 

𝐼𝑚
𝑅 μ

𝑑𝑓𝑅

𝑑𝑡
= {

(𝑓𝑅
𝑠𝑠 − 𝑓𝑅)𝐾𝑖

𝑅 if 𝑓𝑅
𝑠𝑠 > 𝑓𝑅  

(𝑓𝑅
𝑠𝑠 − 𝑓𝑅)𝐾𝑑

𝑅 if 𝑓𝑅
𝑠𝑠 ≤ 𝑓𝑅 

𝐾𝑖
𝑅 𝐾𝑑

𝑅

3 CO2 diffusion 

3.1 (Photo)respiration 

μ

μ
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𝑑𝑃𝑅

𝑑𝑡
= 𝑉𝐶𝜙 − 𝑃𝑅 ⋅ 𝐾𝑃𝑅 

3.2 CO2 exchange 

𝐴 = 𝑉𝐶 − 0.5𝑃𝑅 ⋅ 𝐾𝑃𝑅 − 𝑅𝑑  

𝑑𝐶𝐶

𝑑𝑡
=

[(𝐶𝑖−𝐶𝐶)𝑔𝑚−𝐴]𝑇𝐿𝑅

𝑉𝑟𝑃
   

μ

𝑑𝐶𝑖

𝑑𝑡
=

[
𝐶𝑠−𝐶𝑖

1.6/𝑔𝑠𝑤+1.37/𝑔𝑏𝑤
−(𝐶𝑖−𝐶𝐶)𝑔𝑚]𝑇𝐿𝑅

𝑉𝑟𝑃
  

3.3 Effect of temperature on gm 

𝑔𝑚 = 𝑔𝑚,25
𝑒

(𝐶𝑔𝑚−
Δ𝐻𝐴

𝑔𝑚

𝑅𝑇𝐿
)

1+𝑒

(
𝑇𝐿Δ𝑆

𝑔𝑚
−Δ𝐻

𝑑
𝑔𝑚

𝑅𝑇𝐿
)

 

Δ𝐻𝐴
𝑔𝑚

Δ𝑆𝑔𝑚 Δ𝐻𝑑
𝑔𝑚

4 Corrections due to open gas exchange system 

μ
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μ

μ

𝑃ℎ𝑜𝑡𝑜 =
𝐹𝐿𝐶𝑅−(𝐹𝐿+𝑠𝐿𝐸)𝐶𝑆

𝑠𝐿
  

μ

𝑑𝐶𝑠

𝑑𝑡
=

(−(𝐹𝐿+𝑠𝐿𝐸)𝐶𝑆+𝐹𝐿𝐶𝑟+𝑠𝐿𝐴𝑛)𝑅𝑇𝑎

𝑉𝑐ℎ𝑃
  

μ
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Supplementary Material 7.2 

 
Fig. S7.1. Average CO2 response curve (circles) and average photosynthesis at the end of the 

induction curve at 1000 µmol m−2 s−1 (triangles). Data were derived from measurements. The 
averaging was performed over all replicates. The solid line represents the linear interpolation of the 

CO2 response curve. All error bars represent 95% confidence intervals of the mean across replicates, 

and dashed lines represent their linear interpolation 
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Fig. S7.2. Simulated photosynthesis (A), amount of photorespiration intermediates (B) and fast 

mechanism of heat dissipation (C) during a light transient were irradiance was decreased from 600 to 

200 µmol m−2 s−1 
 

Table S7.1. Model parameters. When a parameter was not fitted to experimental data obtained from 
Kaiser et al. (Chapter 6), the source indicates the publications from where the parameters were taken 

or calculated. In some cases, the parameters were settings of the measurements (indicated as 

“known”). The fitted parameters refer to Col-0 (see Table S7.4 for the values associated to the 
mutants). All equations can be found in Supplementary Material 7.1. When a parameter appears in 

multiple equations, only the first equation is referenced 

Parameter Definition Units Value Source Equation 

cVcmax 

Scaling constant of the 

temperature response 
of Vcmax 

 16.6 
Walker et al. 

(2013) 
S7.10 

cKmc 
Scaling constant of the 

temperature response 
of 𝐾𝑀

𝐶  
 23.2 

Walker et al. 

(2013) 
S7.11 

cKmo 
Scaling constant of the 

temperature response 
 14.7 

Walker et al. 

(2013) 
S7.12 
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of 𝐾𝑀
𝑜  

cJmax 
Scaling constant of the 
temperature response 

of Jmax 

 17.7 
Walker et al. 

(2013) 
S7.46 

cTPU 
Scaling constant of the 
temperature response 

of TPU 

 21.5 
Sharkey et al. 

(2007) 
S7.48 

cgm 
Scaling constant of the 

temperature response 

of gm 

 3.0 
Walker et al. 

(2013) 
S7.56 

Δ𝐻𝐴
𝑉𝑐𝑚𝑎𝑥 

Activation energy of 

Vcmax 
kJ mol–1 41.4 

Walker et al. 

(2013) 
S7.10 

Δ𝐻𝐴
𝐾𝑚𝑐 

Activation energy of 
𝐾𝑀
𝐶  

kJ mol–1 49.7 
Walker et al. 

(2013) 
S7.11 

Δ𝐻𝐴
𝐾𝑚𝑜 

Activation energy of 
𝐾𝑀
𝑜  

kJ mol–1 29.1 
Walker et al. 

(2013) 
S7.12 

Δ𝐻𝐴
𝐽𝑚𝑎𝑥 

Activation energy of 

Jmax 
kJ mol–1 43.9 

Bernacchi et al 

(2003) 
S7.46 

Δ𝐻𝐴
𝑇𝑃𝑈 

Activation energy of 
TPU 

kJ mol–1 53.1 
Sharkey et al 

(2007) 
S7.48 

Δ𝐻𝐴
𝑔𝑚

 Activation energy of gm kJ mol–1 7.4 
Walker et al. 

(2013) 
S7.56 

Δ𝑆𝐽𝑚𝑎𝑥 Entropy of Jmax 
kJ mol–1 

K–1 
1.4 

Bernacchi et al 

(2003) 
S7.46 

Δ𝑆𝑇𝑃𝑈 Entropy of TPU 
kJ mol–1 

K–1 
0.65 

Sharkey et al 
(2007) 

S7.48 

Δ𝑆𝑔𝑚 Entropy of gm 
kJ mol–1 

K–1 
1.4 

Walker et al. 

(2013) 
S7.56 

Δ𝐻𝑑
𝐽𝑚𝑎𝑥 

Deactivation energy of 

Jmax 
kJ mol–1 439.8 

Bernacchi et al 

(2003) 
S7.46 

Δ𝐻𝑑
𝑇𝑃𝑈 

Deactivation energy of 
TPU 

kJ mol–1 201.8 
Sharkey et al 

(2007) 
S7.48 

Δ𝐻𝑑
𝑔𝑚

 
Deactivation energy of 

gm 
kJ mol–1 434.0 

Walker et al. 

(2013) 
S7.56 

fcyc 

Fraction of electron 

transport through PSI 

that goes into the 
cyclic pathway 

 0.05 
Yin and Struik 

(2009) 
S7.28 

FL 
Air flow in the open 

gas exchange system 
μmol s–1 500 Known S7.57 

fpseudo 

Fraction of electron 

transport through PSI 
that goes into the 

pseudocyclic pathway 

 0.1 
Yin and Struik 

(2009) 
S7.28 

𝑓𝑞𝐷
𝑓   

Photoprotective 
efficiency of the fast 

mechanism of 

enhanced heat 
dissipation 

 1.93∙10−2 Fitted S7.19 

𝑓𝑞𝐷
𝑠   

Photoprotective 

efficiency of the slow 
mechanism of 

enhanced heat 
dissipation 

 2.68∙10−2 Fitted S7.19 

fRB,m 

Fraction of Rubisco 

that remains active in 
darkness 

 2.55∙10−1 Fitted S7.6 
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gbw 

Boundary layer 
conductance to fluxes 

of water vapour 

mol m–2 s–

1 
9.29 Known S7.55 

gm,25 
Bulk mesophyll 

conductance at 25 °C 
mol m–2 s–

1 
0.2 Flexas et al. (2007) S7.56 

𝐼𝑚
𝑅   

Irradiance at which 
maximum activity of 

enzymes in the 

regeneration phase of 
Calvin cycle is 

achieved 

μmol m–2 

s–1 
300 

Sassenrath-Cole et 

al. (1994) 
S7.50 

𝐼𝑚
𝛽

  

Irradiance at which 
minimum leaf 

absorbance is achieved 

μmol m–2 
s–1 

500 
Kasahara et al. 

(2002) 
S7.24 

Jmax,25 

Maximum rate of 

electron transport 

through PSII 

μmol m–2 
s–1 119.17 Fitted S7.13 

𝐾𝑎
𝐶  

Half-saturation 

constant of Rubisco 

activation with respect 
to CO2 

Pa 0.71 
von Caemmerer 
and Edmonson 

(1986) 

S7.9 

𝐾𝐴
𝑅𝐶𝐴  

Amount of Rubisco 
activase at which 

maximum Rubisco 

activation is 50% of 
total Rubisco 

mg m–2 12.3 
Mott and Woodrow 

(2000) 
S7.7 

KC 
Rate constant of 

carboxylation 
s–1 4.4 

Walker et al. 

(2013) 
S7.2 

𝑘𝐷
0   

Basal rate of energy 

dissipation as heat in 
LHCII 

s–1 2.2∙109 
Loriaux et al. 

(2013) 
S7.32 

𝐾𝑑
𝑞𝐷𝑓

  

Rate constant of 

relaxation of the fast 
mechanism of 

enhanced heat 

dissipation 

s–1 2.0∙10−2 
Nilkens et al. 

(2010) 
S7.20 

𝐾𝑑
𝑞𝐷𝑠

  

Rate constant of 

relaxation of the slow 

mechanism of 
enhanced heat 

dissipation 

s–1 1.1∙10−3 
Nilkens et al. 

(2010) 
S7.21 

𝐾𝑑
𝑞𝐼

  
Rate constant of 

protein D1 repair 
s–1 1.3∙10−4 

Kasahara et al. 

(2002) 
S7.26 

𝐾𝑑
𝑅𝐵  

Apparent rate constant 
of Rubisco deactivation 

s–1 4.2∙10−4 
Kirschbaum et al. 

(1998) 
S7.5 

𝑘𝐷
𝑟𝑒𝑑  

Rate constant of other 

forms of non-radiative 
energy losses in closed 

PSII units 

s–1 2.3∙108 
Loriaux et al. 

(2013) 
S7.32 

𝐾𝑑
𝛽
  

Rate constant of 
decrease in leaf 

absorbance 

s–1 1.7∙10−3 
Dall’Osto et al. 

(2014) 
S7.25 

kf 
Rate of energy 
dissipation as 

fluorescence in LHCII 

s–1 5.6∙107 
Loriaux et al. 

(2013) 
S7.32 

𝐾𝑖
𝑞𝐷𝑓

  
Rate constant of 

induction of the fast 
s–1 4.0∙10−2 

Nilkens et al. 

(2010) 
S7.20 
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mechanism of 
enhanced heat 

dissipation 

𝐾𝑖
𝑞𝐷𝑠

  

Rate constant of 
induction of the slow 

mechanism of 
enhanced heat 

dissipation 

s–1 1.7∙10−3 
Nilkens et al. 

(2010) 
S7.21 

𝐾𝑖
𝑞𝐼

  
Quantum efficiency of 

photodamage 
m2 μmol–1 7.410−8 

Kasahara et al. 
(2002) 

S7.26 

𝐾𝑖
𝑅  

Rate constant of 

activation of enzymes 
in the regeneration 

phase of Calvin cycle 

s–1 1.67∙10−3 Fitted S7.51 

𝐾𝑖
𝛽
  

Rate constant of 

increase in leaf 

absorbance 

s–1 5.9∙10−4 
Dall’Osto et al. 

(2014) 
S7.25 

𝐾𝑀
𝐶   

Rubisco Michaelis-

Menten constant with 

respect to CO2 

μM 8.9 
Walker et al. 

(2013) 
S7.2 

𝐾𝑀
𝑂  

Rubisco Michaelis-

Menten constant with 
respect to O2 

mM 2.6∙10−1 
Walker et al. 

(2013) 
S7.2 

kp 
Rate constant of 

charge separation 
s–1 2.6∙109 

Loriaux et al. 

(2013) 
S7.33 

KPR 

Apparent rate constant 
at which 

photorespiration 
intermediates are 

consumed 

s–1 0.01 Pearcy et al. (1997) S7.52 

KRCA 

Second order rate 
constant of Rubisco 

activation by Rubisco 
activase 

m2 mg–1 

s–1 
6.42∙10−5 Fitted S7.5 

𝐾𝑑
𝑅  

Rate constant of 

deactivation of 
enzymes in the 

regeneration phase of 

Calvin cycle 

s–1 3.0∙10−3 
Kirschbaum et al. 

(1998) 
S7.51 

O2 Oxygen molar fraction 
mmol 

mol–1 
210 Known S7.2 

P Air pressure kPa 101 Known S7.54 

𝜙𝑞𝐷𝑠,𝑚  

Maximum loss of PSII 

quantum yield that can 

be achieved by slow 
mechanism of heat 

dissipation 

 4.31∙10−2 Fitted S7.18 

𝜙𝑞𝐷𝑓,𝑚  

Maximum loss of PSII 

quantum yield that can 

be achieved by fast 
mechanism of heat 

dissipation 

 1.77∙10−1 Fitted S7.18 

R Universal gas constant 
J mol–1 K–

1 
8.31 

NIST Physical 
Measurement 

Laboratory (2015) 

S7.54 

RB 
Amount of Rubisco 

catalytic sites per unit 
μmol m–2 12.03 Fitted S7.2 
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of leaf area 

RCA 
Amount of Rubisco 
activase per unit of 

leaf area 

mg m–2 124.4 

Mott and Woodrow 

(2000); Carmo-

Silva & Salvucci 
(2013) 

S7.5 

Rd,25 
Rate of mitochondrial 

respiration 
μmol m–2 

s–1 
0.76 Fitted S7.53 

Roc 

Ratio between 

maximum rates of 
oxygenation and 

carboxylation 

 0.24 
Walker et al. 

(2013) 
S7.4 

sL 
The surface of leaf 

exposed to the cuvette 
cm2 2 Li-Cor (2012) S7.57 

TPU25 
Maximum rate of triose 

phosphate utilization 

μmol m–2 

s–1 
10.0 Fitted S7.47 

Vch 

Total mixing volume 

between the leaf 

surface and the IRGA 
sensors 

cm3 80 LI-COR, Inc. (2012) S7.58 

Vr 
Leaf volume per unit 

of surface 
m 1.5∙10−4 

Weraduwage et al. 
(2015) 

S7.54 

Vrmax 

Maximum rate of RuBP 

regeneration limited by 
the kinetics of 

enzymes in the 

regeneration phase 

μmol m–2 

s–1 
46.47 Assumed S7.49 

β0 

Maximum leaf 

absorbance by 
photosynthetic 

pigments 

 0.85 Davis et al. (2011) S7.24 

βm 
Minimum leaf 
absorbance 

 0.78 Davis et al. (2011) S7.24 

θ 

Empirical parameter 

that characterizes the 
curvature of the 

relationship between 

irradiance and 
potential electron 

transport 

 0.745 Fitted S7.13 

σ2 

Fraction of absorbed 

irradiance that is 

absorbed by pigments 
in LHCII 

 0.5 
Yin and Struik 

(2009) 
S7.14 

 

Table S7.2. State variables of the model 

Variable Definition Unit 

CC CO2 molar fraction inside the chloroplast μmol mol–1 

Cs CO2 molar fraction in the sample air of the gas exchange system μmol mol–1 

fIId Fraction of PSII units that are damaged  

fR Fraction of enzyme that potentially limits RuBP regeneration that is 

active 

 

fRB Fraction of Rubisco that is active  

𝜙𝑞𝐷
𝑓   Loss of quantum yield of PSII due to fast mechanisms of heat 

dissipation 

 

𝜙𝑞𝐷
𝑠   Loss of quantum yield of PSII due to slow mechanisms of heat 

dissipation 
 

PR Amount of photorespiratory intermediates μmol m–2 
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Table S7.3. Dynamic inputs of the model 

Variable Definition Unit 

gsw Stomatal conductance to water vapour mol m–2 s–1 

I0 Irradiance incident on the leaf μmol m–2 s–1 

Cr CO2 molar fraction in the reference air of the open gas exchange 

system 

μmol mol–1 

E Rate of transpiration mol m–2 s–1 

Ta Air temperature K 

TL Leaf temperature K 

 

Table S7.4. Parameters that differ with respect to wildtype for each mutant. All values were obtained 
by fitting to experimental data 

Parameter Mutant Definition Unit Value 

gm aba2-1 Bulk mesophyll conductance mol m–2 s–1 0.33 

Jmax,25 aba2-1 
Maximum rate of electron transport 

through PSII 
μmol m–2 s–1 146.53 

βm aba2-1 Minimum leaf-level light absorbance  0.85 

Vrmax aba2-1 
Maximum rate of RuBP regeneration 

limited by the kinetics of enzymes in the 

regeneration phase 

μmol m–2 s–1 62.66 

RB aba2-1 
Amount of Rubisco catalytic sites per unit 

of leaf area 
μmol m–2 12.68 

RCA rca-2 
Amount of Rubisco activase per unit of 

leaf area 
mg m–2 25.52 

𝑓𝑞𝐷
𝑓

 npq4-1 
Photoprotective efficiency of the fast 

mechanism of enhanced heat dissipation 
 0 

𝑓𝑞𝐷
𝑠  npq4-1 

Photoprotective efficiency of the slow 

mechanism of enhanced heat dissipation 
 2.88∙10−2 

𝜙𝑞𝐷𝑠,𝑚 npq4-1 
Maximum loss of PSII quantum yield that 
can be achieved by slow mechanism of 

heat dissipation 

 6.75∙10−2 

𝐾𝑖
𝑞𝐼

 npq4-1 Quantum efficiency of photodamage m2 μmol–1 1.13∙10−7 

𝑓𝑞𝐷
𝑠  npq4-1 

Photoprotective efficiency of the slow 
mechanism of enhanced heat dissipation 

 3.10∙10−3 

TPU25 spsa1 
Maximum rate of triose phosphate 

utilization 
μmol m–2 s–1 5.36 
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Fig. 8.1. Scheme describing how ΔDL is calculated from time courses of DL. ΔDL is the difference 

between average, steady-state diffusional limitation (avg. DL; %) and maximum DL (max. DL). At the 

time of reaching maximum DL (tmax; minutes), transient net photosynthesis rate and stomatal 
conductance were determined. Furthermore, the difference between initial gs (gs at time = 0) and gs 

at tmax was determined as stomatal opening until tmax 
 

Δ

Δ

Δ

Δ

Δ

Non-photochemical quenching 
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Fig. 8.2. Relationships of ΔDL with A) net photosynthesis rate at tmax (An, μmol m-2 s-1); B) stomatal 
conductance at tmax (gs, mol m-2 s-1); and C) stomatal opening until tmax (mol m-2 s-1) after stepwise 

increases in irradiance (for explanation see Fig. 8.1). Data represent single replicates of several 

Arabidopsis thaliana (circles; n = 75) and tomato (squares; n = 25) genotypes/cultivars, including  
Col-0, C24 and aba2-1 in A. thaliana and cv. Cappricia, Rheinlands Ruhm wildtype and Rheinlands 

Ruhm flacca. Leaves were adapted to several background irradiances (0-200 μmol m-2 s-1) and then 
exposed to near-saturating irradiance (600-1000 μmol m-2 s-1 in A. thaliana, 1000 μmol m-2 s-1 in 

tomato). Other conditions were: 70% relative humidity, 400 ppm leaf external CO2 concentration and 

22 °C cuvette temperature 
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