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Abstract 

Duchemin, S.I. (2016). Mapping and fine-mapping of genetic factors affecting bovine 

milk composition. Joint PhD thesis, between Swedish University of Agricultural 

Sciences, Sweden and Wageningen University, the Netherlands 

 

Bovine milk is an important source of nutrients in Western diets. Unraveling the 

genetic background of bovine milk composition by finding genes associated with 

milk-fat composition and non-coagulation of milk were the main goals of this thesis. 

In Chapter 1, a brief description of phenotypes and genotypes used throughout the 

thesis is given. In Chapter 2, I calculated the genetic parameters for winter and 

summer milk-fat composition from ~2,000 Holstein-Friesian cows, and concluded 

that most of the fatty acids (FA) can be treated as genetically the same trait. The 

main differences between milk-fat composition between winter and summer milk 

samples are most likely due to differences in diets. In Chapter 3, I performed 

genome-wide association studies (GWAS) with imputed 777,000 single nucleotide 

polymorphism (SNP) genotypes. I targeted a quantitative trait locus (QTL) region on 

Bos taurus autosome (BTA) 17 previously identified with 50,000 SNP genotypes, and 

identified a region covering 5 mega-base pairs on BTA17 that explained a large 

proportion of the genetic variation in de novo synthesized milk FA. In Chapter 4, the 

availability of whole-genome sequences of keys ancestors of our population of cows 

allowed to fine-mapped BTA17 with imputed sequences. The resolution of the 5 

mega base-pairs region substantially improved, which allowed the identification of 

the LA ribonucleoprotein domain family, member 1B (LARP1B) gene as the most 

likely candidate gene associated with de novo synthesized milk FA on BTA17. The 

LARP1B gene has not been associated with milk-fat composition before. In Chapter 

5, I explored the genetic background of non-coagulation of bovine milk. I performed 

a GWAS with 777,000 SNP genotypes in 382 Swedish Red cows, and identified a 

region covering 7 mega base-pairs on BTA18 strongly associated with non-

coagulation of milk. This region was further characterized by means of fine-mapping 

with imputed sequences. In addition, haplotypes were built, genetically 

differentiated by means of a phylogenetic tree, and tested in phenotype-genotype 

association studies. As a result, I identified the vacuolar protein sorting 35 homolog, 

mRNA (VPS35) gene, as candidate. The VPS35 gene has not been associated to milk 

composition before. In Chapter 6, the general discussion is presented. I start 

discussing the challenges with respect to high-density genotypes for gene discovery, 

and I continue discussing future possibilities to expand gene discovery studies, with 

which I propose some alternatives to identify causal variants underlying complex 

traits in cattle. 
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1.1 Milk 

 

Milk has fascinated mankind since the beginning of the ages. A clear example of this 

fascination is the Milky Way galaxy, which contains our Planet Earth. The Milky Way 

galaxy has its roots in the Greek-Roman Mythology. The word galaxy originates from 

galas, which is a synonym for milk in Greek language. According to the Mythology, 

the Milky Way galaxy was “drops of milk” spelt by goddess Hera, when breastfeeding 

Hercules, the bastard son of Zeus (Larousse encyclopedia, 2015). “The origin of the 

Milky Way” has been immortalized by the renaissance artist Jacopo Tintoretto circa 

1575-1580 (National Gallery, London, UK; Figure 1.1), and the “Birth of the Milky 

Way” by the Flemish artist Peter Paul Rubens in 1637 (Museo del Prado, Madrid, 

Spain). In many civilizations, the Milky Way galaxy has been used as a metaphor for 

a splash of milk in the dark skies of our Universe. Essentially, this metaphor is a way 

of expressing the importance of milk for mankind. It is so important that from the 

very beginning of life, an infant receives milk as the primary source of nutrients.  

 

 
Figure 1.1 – “The origin of the Milky Way” by Jacopo Tintoretto circa 1575-1580 (exposed in 
the National Gallery, London, UK)  

 

The fascination exerted by Universe on mankind is understandable. By 

contemplating stars, mankind loses notion of time allowing deeper lessons to be 

learnt. When G. Galilei (in: Galilei and Van Helden, 1989) first observed the Milky 

Way galaxy through his telescope in 1610, he discovered that it was formed by many 

smaller groups of stars. Following the steps of G. Galilei (in: Galilei and Van Helden, 

1989) a deeper look into the splash of milk in the dark skies might give us insights 
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into the composition of milk. The splash might represent the fluid part of milk. The 

small groups of stars composing this splash might represent the main components 

in milk, such as proteins and fatty acids. The interstellar dust accompanying these 

stars might represent the minerals in milk. In just a few instants, the composition of 

milk is described as an (scientific) idea that has been transmitted throughout 

centuries by a simple metaphor. 

 

Metaphors with our Universe do not stop at the Milky Way galaxy. Mankind named 

constellations after species of animals (e.g., Taurus, Aries, and Pisces), just like cave 

men have represented wild animals in their cave drawings.  From stone-age to 

modern times, domestication of animals has been one of the drivers for men’s 

transition from hunters to farmers. During this process, the role of cattle was 

undeniable. By domesticating cows, mankind preserved through time important 

resources, such as the genetic variation of bovine species. The preservation of this 

genetic variation has important consequences for the current technological 

development of mankind. It is so important that from the beginning of every life, 

genetic variation will determine the future of all species. 

 

By using metaphors, such as Milky Way galaxy and names of constellations, mankind 

transmitted more than just a simple image from cave to modern men. As intrinsic 

parts of the Milky Way galaxy, cave and modern men would be united forever as one 

student. For mankind, these metaphors have engraved in our collective memories a 

deep respect for our Planet Earth and its scarce resources. Resources beyond genetic 

variation have been translated. In our modern times, this deep respect is taught by 

uniting human needs (milk as a nutrient) and animal resources (genes affecting 

bovine milk composition) through Animal Breeding and Genetics. 

 

The scope of my thesis was to investigate the genetic background of bovine milk 

composition. More specifically, my thesis focuses on the composition of milk-fat, and 

on non-coagulation of milk. 

 

1.2 Milk-fat composition  

 

Bovine milk fat is an important source of energy for mankind. The main bioactive 

lipids in bovine milk are fatty acids (FA). According to Jensen (2002), bovine milk-fat 

is composed of more than 400 individual FA, most occurring in amounts less than 

1%. The individual FA in bovine milk-fat are organized in chain of carbons that vary 

in length from 4 to 22 carbons. According to their chain-lengths, these individual FA 
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are grouped as short-chain (C4:0 – C12:0), medium-chain (C14:0 – C16:0) and long-

chain (C18:0 – C22:0) FA. In addition, individual FA can be either saturated or 

unsaturated. FA are saturated when a carbon is connected by a single bond to an 

adjacent carbon in the chain, and FA are unsaturated when a carbon is connected to 

an adjacent carbon in the chain by double or triple bonds. Differences in FA regarding 

their saturation are shown in Figure 1.2. 

 

Figure 1.2 – Representation of fatty acids (FA). Butyric acid representing saturated FA, and 

conjugated linoleic acid representing unsaturated FA. Arrows in red point out the double 

bonds between adjacent carbons. 

 

The biosynthesis of milk-fat occurs in the mammary gland of a cow. Individual FA in 

the mammary gland arise from circulating blood lipids and de novo synthesis. 

Circulating blood lipids originate from the feed of the cow or from the cow’s body 

fat. Through the de novo synthesis, FA are elongated from precursors by adding C2:0. 

These precursors can be either acetate (C2:0), propionate (C3:0) or butyrate (C4:0). 

C2:0 and C3:0 originate from lipids in circulating blood, while C4:0 may either 

originate from blood lipids or the de novo synthesis itself (e.g., Craninx et al., 2008). 

Depending on the precursor, FA synthesized de novo may terminate at either C16:0 

or C17:0. It is assumed that de novo synthesis produces the short-chain FA, C14:0 

and 50% of C16:0 in milk, whereas the remaining 50% of C16:0 and the long-chain 

FA come from the lipids in circulating blood.  

 

FA in bovine milk are relevant for human health. According to Calder et al. (2015), 

FA are essential for the well-being of humans, and they have important biological 

activities regarding the cell and tissue metabolism, as well as responsiveness to 

hormones and other signals in human cells. Stoop et al. (2008) indicated that FA in 

bovine milk are heritable, with heritability estimates between 0.22 and 0.71. These 

heritability estimates suggest that milk-fat composition can be improved by 
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breeding. In addition, Tzompa-Sosa et al. (2014) showed that increases in long-chain 

saturated FA can influence the thermal properties of milk-fat, which can lead to 

important changes in the quality of milk-fat derived products. Moreover, breeding 

could be used to reduce the concentration of certain FA in bovine milk-fat. For 

instance, low concentrations of C16:0 in bovine milk-fat would best meet infant 

requirements regarding the consumption of milk-fat derived products (e.g., Tzompa-

Sosa et al., 2014). Therefore, increasing the biological knowledge regarding bovine 

milk-fat composition can be of great interest to the dairy industry.  

 

1.3 Non-coagulation of milk 

 

In addition to FA, bovine milk is an important source of proteins for mankind. The 

main proteins in bovine milk are the caseins, which account for almost 80% of the 

proteins in milk. There are four caseins in bovine milk: 𝛼𝑠1-,𝛼𝑠2-, β-, and κ-casein. 

Most of these caseins are organized in micelles. These micelles are not soluble in 

water and can precipitate in the presence of rennet. This property is used in cheese 

production to induce coagulation of milk. In 2013, almost 30% of the total production 

of bovine milk in Sweden was destined to cheese production (LRF Dairy Sweden, 

2015). 

 

Besides the caseins, whey proteins account for the remaining 20% of the proteins in 

milk, of which β-lactoglobubin and α-lactalbumin are the most important ones. The 

whey proteins are considered by-products of cheese production. In contrast to 

caseins, whey proteins are soluble in water, and can only be denatured by heat. 

When heated, whey proteins can produce products such as ricotta and whey butter. 

 

It is economically relevant for the cheese industry to reduce time and losses while 

producing cheese. In this sense, if caseins in bovine milk do not coagulate after 

rennet addition, the entire chain of cheese production is delayed, generating losses 

for this industry. Consequently, non-coagulation of milk can be considered as a new 

phenotype that accounts for the needs of the cheese industry. Non-coagulation (NC) 

of milk is prevalent among several dairy cattle breeds, such as Swedish Red, Finnish 

Ayrshire, Holstein-Friesian, and Italian Brown Swiss, to name a few (e.g., Frederiksen 

et al., 2011; Cecchinato et al., 2011, Gustavsson et al., 2014). The prevalence of NC 

milk varies among these breeds ranging from 4% in Italian Brown Swiss (Cecchinato 

et al., 2009) up to 13% in Finnish Ayrshires (Ikonen et al., 2004). A recent study 

reported the prevalence of NC milk at 18% in the Swedish Red cows (Gustavsson et 

al., 2014). 



1 General Introduction 

 

17 

 

 

1.4 Genomic regions influencing bovine milk composition 

 

Many genomic regions of the cattle genome have been associated with milk 

composition. While many of these genomic regions have not been studied in detail 

yet, some genes have been associated with milk-fat composition and non-

coagulation of milk.  

 

For bovine milk-fat composition, the main identified genes are: diacylglycerol O-

acyltransferase 1 (DGAT1) located on Bos taurus autosome (BTA) 14, stearoyl-CoA 

desaturase 1 (SCD1) located on BTA26, acyl-CoA synthase short-chain family 

member 2 (ACSS2) located on BTA13, fatty acid synthase (FASN) located on BTA19, 

and 1-Acylglycerol-3-Phosphate O-Acyltransferase 6 (AGPAT6) located on BTA27. 

The association of the DGAT1 and SCD1 genes with milk-fat composition has been 

studied e.g., by Schennink et al. (2007, 2008). The association of the ACSS2, FASN 

and AGPAT6 genes with milk-fat composition has have been studied e.g., by 

Bouwman et al. (2011) and LittleJohn et al. (2014). The involvement of each of these 

genes occurs at different stages in the synthesis of milk-fat in the mammary gland of 

a cow: intracellular FA activation (ACSS2), fatty acid synthesis (FASN), unsaturation 

of FA (SCD1), and triacylglycerol synthesis (AGPAT6, DGAT1).  

 

For bovine milk protein composition, the six major proteins in milk are encoded on 

the following chromosomes: α-lactalbumin on BTA5, the 𝛼𝑠1-,𝛼𝑠2-, β-, and κ-caseins 

on BTA6, and β-lactoglobubin on BTA11. However, other chromosomal regions have 

been associated with milk protein composition (Schopen et al., 2011). These 

chromosomal regions encoding milk proteins seem to influence milk coagulation 

properties including non-coagulation of milk. Studies by Jensen et al. (2012) and by 

Gregersen et al. (2015) suggest that poor- and non-coagulation of milk are influenced 

by the milk protein variants of the k-casein gene. In contrast, study by Tyrisevä et al. 

(2008) and Gregersen et al. (2015) revealed that non-coagulation of milk can be 

influenced by other parts of the cattle genome too. 

 

Promising genomic regions across the cattle genome in association with the desired 

trait can be identified with genetic markers. It is expected that associations with FA 

or non-coagulation of milk can be targeted to smaller chromosomal regions with 

sequences as compared to other panels of genetic markers, such as 50,000 (50k) and 

777,000 (777k) single nucleotide polymorphism (SNP) markers. Sequences should 

contain all of the causal variants (Meuwissen and Goddard, 2010) that are believed 
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to be associated with the studied phenotype. The use of sequences for association 

studies has been enabled by the availability of an increasing number of sequenced 

animals (bulls and cows) from projects like the 1000Bull Genome Consortium 

(Daetwyler et al., 2014). 

 

1.5 Aim and outline of this thesis 

 

The present thesis aims at unraveling the genetic background of bovine milk 

composition by finding genes associated with milk-fat composition and non-

coagulation of milk in targeted chromosomal regions. Throughout this thesis, there 

is a consistent increase in the number of genotypes analyzed, which have been useful 

to increase the resolution of some interesting genomic regions associated with 

bovine milk composition. In Chapter 2, we calculated the genetic correlations 

between the composition of bovine milk fat in winter and summer, and DGAT1 and 

SCD1 by season interactions. The conclusions of this work were further explored in 

Chapters 3 and 4. In Chapter 3, a quantitative trait locus on Bos taurus autosome 

(BTA) 17 explaining a large proportion of the genetic variation in de novo synthesized 

milk FA is mapped. In Chapter 4, we fine-mapped this QTL associated with de novo 

synthesized milk FA on BTA17 using imputed sequences. In Chapter 5, a similar fine-

mapping methodology was used for the identification of a QTL on BTA18 associated 

with non-coagulation of milk in Swedish Red cows. In Chapter 6, challenges regarding 

the substantial increase in the number of genotypes used in this thesis, and the 

future possibilities to expand gene discovery are discussed. 
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Abstract 

 

Milk fat composition shows substantial seasonal variation, most of which is probably 

caused by differences in the feeding of dairy cows. The present study aimed to know 

whether milk fat composition in winter is genetically the same trait as milk fat 

composition in summer. For this purpose, we estimated heritabilities, genetic 

correlations, effects of acyl-CoA: diacylglycerol acyltransferase1 (DGAT1) K232A and 

stearoyl-CoA desaturase1 (SCD1) A293V polymorphisms for milk fat composition in 

winter and summer, and tested for genotype by season interactions of DGAT1 K232A 

and SCD1 A293V polymorphisms. Milk samples were obtained from 2,001 first 

lactation Dutch Holstein Friesian cows, most of which with records in both winter 

and summer. Summer milk contained higher amounts of unsaturated fatty acids (FA) 

and lower amounts of saturated FA compared to winter milk. Heritability estimates 

were comparable between seasons: moderate to high for short and medium chain 

FA (0.33 to 0.74) and moderate for long chain FA (0.19 to 0.43) in both seasons. 

Genetic correlations between winter and summer milk were high, indicating that 

milk fat composition in winter and in summer can largely be considered as genetically 

the same trait. DGAT1 K232A and SCD1 A293V polymorphisms effects were similar 

across seasons for most FA. DGAT1 232A allele in winter as well as in summer milk 

samples was negatively associated with most FA with less than 18 carbons, SFA, SFA 

to UFA, and C10 to C16 unsaturation indices, and was positively associated with 

C14:0, unsaturated C18, UFA, and C18 and CLA unsaturation indices. SCD1 293V 

allele in winter as well as in summer milk samples was negatively associated with 

C18:0, C10:1 to C14:1cis-9, C18:1trans-11, and C10 to C14 unsaturation indices, and 

positively associated with C8:0 to C14:0, C16:1cis-9, and C16 to CLA unsaturation 

indices. In addition, significant DGAT1 K232A by season interaction was found for 

some FA and SCD1 A293V by season interaction was only found for C18:1trans-11. 

These interactions were due to scaling of genotype effects. 

 

Key words: genetic correlation, seasonal variation, DGAT1, SCD1
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2.1 Introduction 

 

Milk is an important source of lipids, proteins, vitamins and minerals in many 

Western human diets. Among the milk produced by the main dairy species (e.g., 

cows, goats and sheep), bovine milk is economically the most important. Bovine milk 

fat contains essential nutrients including fat soluble vitamins and bio-active lipids 

(German & Dillard, 2006) and is pointed out by FAO (2008) as being the main source 

of saturated fatty acids (SFA) in human diets. 

 

Genetic factors can influence milk fat composition, and its genetic variation has been 

reported in previous studies (e.g., Soyeurt et al., 2006; Schennink et al., 2007). Stoop 

et al. (2008) concluded that short and medium chain fatty acids (FA) synthesized de 

novo are more affected by genetic factors than long chain FA that originate from the 

cow’s diet or from mobilization of body fat (Chilliard et al., 2000; Palmquist, 2006). 

Moreover, polymorphisms in DGAT1 and SCD1 genes have been recognized as having 

large effects on milk fat composition (Moioli et al., 2007; Schennink et al., 2007; 

2008). 

 

In addition, nutrition of dairy cows can considerably alter milk fat composition (e.g., 

Palmquist et al., 1993; Lock & Bauman, 2004; Chilliard et al., 2007). It is well 

established that feeding dairy cows with polyunsaturated fatty acids (PUFA) that 

originate from forages results in a reduction of de novo synthesized FA and in an 

increase of long chain FA in milk fat (e.g., Chilliard et al., 2001; Bauman and Griinari, 

2003). Furthermore, there are indications that nutrition affects mammary lipogenic 

gene expression (Bernard et al., 2008; Mach et al., 2011). 

 

Substantial seasonal variation in milk fat composition has been found in European 

countries (Precht and Molketin, 2000; Thorsdottir et al., 2004; Heck et al., 2009). The 

main cause for this seasonal variation seems to be the differences in diets: in winter 

cows in Northern Europe are usually kept inside and fed silage whereas in summer 

cows are mainly on pasture and fed with fresh grass. These considerable differences 

in diets might affect the genetic background of milk fat composition. However, at 

present no information is available of possible genotype by season interaction on 

milk fat composition. Therefore, our aim was to study whether winter milk fat 

composition is genetically the same trait as summer milk fat composition. For this 

purpose, we estimated heritabilities, genetic correlations, effects of DGAT1 K232A 

and SCD1 A293V polymorphisms for milk fat composition in winter and summer, and 
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tested for genotype by season interactions of DGAT1 K232A and SCD1 A293V 

polymorphisms. 

 

2.2 Materials and methods 

 

This study is part of the Dutch Milk Genomics Initiative, which was initiated to 

identify opportunities to change milk composition through breeding. Based on data 

collected in this project, heritability estimates for milk fat composition based on 

winter milk samples have been published by Stoop et al. (2008) and effects of 

polymorphisms in the DGAT1 and SCD1 genes on milk fat composition based on 

winter samples have been published by Schennink et al. (2007; 2008). In the present 

study, heritability estimates for milk fat composition in winter and summer were 

obtained using a bivariate approach. Furthermore, to test whether winter milk fat 

composition is genetically the same trait as summer milk fat composition, we 

estimated genetic correlations between milk fat composition in winter and summer 

and, more specifically, we tested for DGAT1 and SCD1 by season interactions. 

 

2.2.1 Animals 

Data were available on 2,001 first lactation Holstein Friesian cows from 398 

commercial herds in the Netherlands. Winter records were available from 1,905 

cows, with each cow between 63 and 282 days in lactation. Summer records were 

available from 1,795 cows, with each cow between 97 and 335 days in lactation. A 

total of 1,699 cows had both a winter and a summer record, 206 animals had only a 

winter milk sample and 96 animals had only a summer sample. Details about the 

experimental design can be found in Stoop et al. (2008). In total 3,700 records on 

milk fat composition were available. 

 

2.2.2 Phenotypes 

One milk sample of 500 mL per cow per season was collected during morning milking 

between February and March 2005 (“winter”) and between May and June 2005 

(“summer”). Sample bottles contained sodium azide (0.03 w/w%) for conservation. 

Fat percentage (fat%) was measured by infrared spectroscopy using a MilkoScan 

FT6000 (Foss Electric, Hillerod, Denmark) at the Milk Control Station (Qlip, Zutphen, 

the Netherlands). Milk fat composition was measured by gas chromatography (GC) 

at the COKZ laboratory (Qlip, Leudsen, the Netherlands), as described by Schennink 

et al. (2007). The fatty acids were identified and quantified by comparing the methyl 

ester chromatograms of the milk fat samples with the chromatograms of pure FA 
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methyl ester standards (Stoop et al., 2008), and were measured as weight proportion 

of total fat (%w/w). In this study, results are shown for individual FA: C4:0 to C18:0, 

C10:1 to C18:1cis-9, C18:1trans-11, C18:2cis-9,trans-11 (CLA), C18:2cis-9,12 and 

C18:3cis-9,12,15. For C10:1 and C12:1, it could not be ascertained, if the cis-double 

bond occurred at the carbon 9 position. Because of coelution associated with the GC 

extraction method, C14:1cis-9 represents the sum of C14:1cis-9 and C15:0iso, and 

C18:1cis-9 represents the sum of C18:1cis-9 and C18:1trans-12. The groups of 

saturated FA (SFA), unsaturated FA (UFA) and the ratio SFA to UFA are described in 

Table 2.1. SFA and UFA sum to approximately 94 % w/w of total fat. 

 

Table 2.1 - Trait definition: groups of fatty acids 
 

1C14:1cis-9 due to coelution associated with the GC extraction method represents the sum of C14:1cis-9 
and C15iso. 
2C18:1trans-4-8 due to coelution associated with the GC extraction method represent the sum of 
C18:1trans-4, C18:1trans-5, C18:1trans-6, C18:1trans-7 and C18:1trans-8. 
3C18:1cis-9 due to coelution associated with the GC extraction method represents the sum of C18:1cis-9 
and C18:1trans-12. 

 

Fatty acid unsaturation indices were defined as described by Kelsey et al. (2003): 

 
𝑢𝑛𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑 𝑐𝑖𝑠−9

𝑢𝑛𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑 𝑐𝑖𝑠−9+𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑
∗ 100, e.g., 𝐶14𝑖𝑛𝑑𝑒𝑥 =

𝑐14:1 𝑐𝑖𝑠−9

𝑐14:1 𝑐𝑖𝑠−9+𝑐14:0
∗ 100 

 

Indices were calculated for the following product and substrate pairs: C10:1 and 

C10:0 (C10index); C12:1 and C12:0 (C12index); C14:1cis-9 and C14:0 (C14index); 

C16:1cis-9 and C16:0 (C16index); C18:1cis-9 and C18:0 (C18index); CLA and 

C18:1trans-11 (CLAindex). 

 

2.2.3 Genotypes 

Blood samples for DNA isolation were collected between April and June 2005. 

Genotyping of the DGAT1 K232A polymorphism was performed with a TaqMan® 

allelic discrimination assay (Applied Biosystems, Foster city, CA), according to 

Schennink et al. (2007). For the DGAT1 K232A polymorphism 1,692 animals were 

Group Content 

SFA C4:0, C5:0, C6:0, C7:0, C8:0, C9:0, C10:0, C11:0, C12:0, C13:0, C14:0, 
C15:0, C16:0, C17:0 and C18:0. 

  
UFA C10:1, C12:1, C14:1cis-91, C16:1cis-9, C18:1trans-4-82, C18:1trans-9, 

C18:1trans-11, C18:1cis-93, C18:1cis-11, C18:2cis-9,12, C18:2cis-
9,trans-11 (CLA) and C18:3cis-9,12,15. 

SFA to UFA saturated to unsaturated FA ratio.  
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genotyped, whereas for 103 animals no genotypes were available either because no 

DNA was available (N = 92) or because the genotyping was ambiguous (N = 11). 

Genotypes for the SCD1 A293V polymorphism were assayed with the SNaPshot® 

single base primer extension method (Applied Biosystems, Foster city, CA), according 

to Schennink et al. (2008). For the SCD1 A293V polymorphism 1,637 animals were 

genotyped, whereas for 158 animals no genotypes were available either because no 

DNA was available (N = 92) or the sample was genotyped ambiguously (N = 66).  

 

2.2.4 Statistical Analyses 

Variance and covariance components were estimated by bivariate analyses between 

a trait in winter and the same trait in summer milk samples using an animal model 

in ASReml (Gilmour et al., 2002), as described by Stoop et al. (2008): 

 

𝑦𝑖𝑗𝑘𝑙𝑚𝑛 =  𝜇 + 𝑏1 ∗ 𝑑𝑖𝑚𝑖𝑗𝑘𝑙𝑚𝑛 + 𝑏2 ∗ 𝑒−0.05∗𝑑𝑖𝑚𝑖𝑗𝑘𝑙𝑚𝑛 + 𝑏3 ∗ 𝑎𝑓𝑐𝑖𝑗𝑘𝑙𝑚𝑛 + 𝑏4 ∗

𝑎𝑓𝑐𝑖𝑗𝑘𝑙𝑚𝑛
2 + 𝑠𝑒𝑎𝑠𝑜𝑛𝑘 + 𝑠𝑐𝑜𝑑𝑒𝑙 + ℎ𝑒𝑟𝑑𝑚 + 𝑎𝑛 + 𝑒𝑖𝑗𝑘𝑙𝑚𝑛                                 [1]  

 

where yijklmn is the dependent variable; µ is the overall mean; b1 and b2 are the 

regression coefficients relative to dimijklmn; dimijklmn is the covariate describing the 

effect of days in milk, modeled with a Wilmink curve (Wilmink, 1987); b3 and b4 are 

the regression coefficients relative to afcijklmn; afcijklmn is the covariate describing the 

effect of age at first calving; seasonk is the fixed effect of calving season (June – 

August 2004, September – November 2004, or December 2004 – February 2005); 

scodel is the fixed effect accounting for differences in genetic level between groups 

of proven bull daughters and young bull daughters; herdm is the random effect of 

herd; an is the random additive genetic effect of animal; and eijklmn is the random 

residual effect. 

 

The variance-covariance structure of [1] was defined as: 𝑉𝑎𝑟(𝑎𝑛) = 𝐀𝜎𝑎
2, where A is 

the matrix of additive genetic relationships between individuals and 𝜎𝑎
2 is the 

additive genetic variance; 𝑉𝑎𝑟(ℎ𝑒𝑟𝑑𝑚) = 𝐈𝜎ℎ𝑒𝑟𝑑
2 , where I is the identity matrix and 

𝜎ℎ𝑒𝑟𝑑
2 is the herd variance and 𝑉𝑎𝑟(𝑒𝑖) = 𝐈𝜎𝑒

2, where I is the identity matrix and 𝜎𝑒
2 is 

the residual variance.  

 

Intraherd heritability was calculated (Heringstad et al., 2006) to make heritability 

estimates comparable with other studies that considered the effect of herd as fixed, 

and was defined as: ℎ2 =  
𝜎𝑎

2

𝜎𝑎
2+𝜎𝑒

2  
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The fraction of variance due to herd reflects the relative importance of herd effects 

such as feed and management practices, and was defined as: ℎ𝑒𝑟𝑑 =
𝜎ℎ𝑒𝑟𝑑

2

𝜎𝑎
2+𝜎ℎ𝑒𝑟𝑑

2 +𝜎𝑒
2 . 

 

Phenotypic, genetic, herd and residual correlations between a trait in winter and the 

same trait in summer milk samples were calculated as: 𝑟 =
𝜎𝑇𝑤,𝑇𝑠

√(𝜎𝑇𝑤
2 ∗𝜎𝑇𝑠

2 )

 , where 

𝜎𝑇𝑤,𝑇𝑠  = covariance between the same trait measured in winter and summer milk 

samples; 𝜎𝑇𝑤 
2 = variance of the trait in winter samples and 𝜎𝑇𝑠

2 = variance of the trait 

in summer samples. The genetic correlation between a trait measured in two 

different environments can be used to assess genotype by environment interaction 

(e.g. Falconer and Mackay, 1996). We followed this approach to assess whether milk 

fat composition in winter and summer milk is genetically the same trait. Significance 

of genetic correlations was based on the likelihood ratio test, in which the likelihood 

of the full model was compared to the likelihood of a model with restricted genetic 

correlation of 0.995. A value of 0.995 was chosen because restricting the genetic 

correlation to 1 leads to singularity. Significance of the likelihood ratio test was based 

on a Chi-Square distribution with one degree of freedom. 

 

Model [1] was extended with a fixed genotype effect to estimate effects of DGAT1 

(KK, KA or AA genotypes) or SCD1 (AA, AV or VV genotypes), and to estimate DGAT1 

or SCD1 by season interactions. Animals with missing genotypes were assigned to a 

separate genotype class. Missing genotypes appeared to be randomly distributed 

across other effects in the model.  

 

2.3 Results 

 

2.3.1 Milk-fat composition in winter and summer  

Phenotypic means for fat composition in winter and summer milk samples are shown 

in Table 2.2. In summer milk, short chain FA (C4:0 to C12:0) contributed 13.67% to 

total fat, medium chain FA (C14:0 and C16:0) contributed 40.32% and C18:0 

contributed 9.88%. Among the unsaturated C18 FA, the largest fraction was C18:1cis-

9 (20.56%). Fat% was slightly higher in winter (4.36) as compared to summer milk 

(4.26; P=2.4e-5). The largest differences in summer compared to winter milk were a 

3.42%w/w decrease in C16:0 (P<0.001), a 2.38%w/w increase in C18:1cis-9 (P<0.001) 

and a 1.16%w/w increase in C18:0 (P<0.001). Furthermore, relatively large increases 

could also be seen for C18:1trans-11 (+0.45%w/w), CLA (+0.17%w/w) and C18:3cis-

9,12,15 (+0.07%w/w; P<0.001). In addition, a 3.39%w/w decrease in SFA and a 
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3.00%w/w increase in UFA were observed (P<0.001). Among unsaturation indices, 

increases for C14index (+0.49%w/w) and C16index (+0.37%w/w), and a decrease in 

CLAindex (2.10%w/w) were seen in summer compared to winter milk (P<0.001). 

Standard deviations of unadjusted FA were on average 20% larger in summer than 

in winter milk. 

 

2.3.2 Heritability estimates and variance components  

Heritability (ℎ2), the fraction of variance due to herd (ℎ𝑒𝑟𝑑), and the ratios of 

phenotypic, genetic and herd variances for milk fat composition in winter and 

summer are shown in Table 2.3. In winter milk, moderate to high heritability 

estimates were found for fat%, short chain FA (C4:0 to C12:0), medium chain FA 

(C14:0 and C16:0), C12:1, C16:1cis-9, CLA, and C12 to C18 unsaturation indices. In 

summer milk, moderate to high heritability estimates were found for fat%, short 

chain FA (C4:0 to C12:0), medium chain FA (C14:0 and C16:0), C10:1 to C18:1cis-9, 

and C10 to C14 unsaturation indices. In general, heritability estimates for winter and 

summer milk were very similar. 

 

Fraction of variance due to herd (ℎ𝑒𝑟𝑑) in winter milk was moderate to high for 

C12:0, and most unsaturated C18 FA. H𝑒𝑟𝑑 in summer milk was moderate to high 

for C12:0, C16:0, unsaturated C18 FA, and groups of FA. In general, ℎ𝑒𝑟𝑑 was higher 

in summer compared to winter milk for most FA, groups of FA, and all unsaturation 

indices. 

 

Differences in ℎ2 and ℎ𝑒𝑟𝑑 for milk fat composition between winter and summer 

can either be the result of changes in additive genetic, herd or residual variance. 

Therefore, we also compared the magnitude of the individual variance components 

in winter and in summer milk. In summer, 𝜎𝑎
2 was considerably higher for C18:1trans-

11 and CLA compared to winter milk. For most FA, 𝜎ℎ𝑒𝑟𝑑
2

 was substantially higher in 

summer compared to winter milk, especially for C18:1trans-11, CLA, and SFA. 

 

2.3.3 Correlations between milk-fat composition in winter and 

summer  

The phenotypic, genetic, herd and residual correlations between winter and summer 

milk fat composition are shown in Table 2.4. The phenotypic correlations ranged 

from 0.29 for C18:1trans-11 to 0.69 for C18:2cis-9,12 and C14index, indicating that 

phenotypic correlation between winter and summer milk for individual FA is in the 

same order of magnitude as the phenotypic correlation for fat% (0.63). Genetic 
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correlations were higher than 0.90 for most FA and unsaturation indices. For C8:0 

(0.93), C10:0 (0.95), C14:0 (0.94), C16:0 (0.76), C18:1trans-11 (0.70), CLA (0.80), 

C18:3cis-9,12,15 (0.79), SFA (0.77), UFA (0.82) and SFA to UFA (0.79), genetic 

correlations were significantly different from 1 (P<0.05). Herd correlations were 

lower than 0.42 (C6:0) for most FA, groups of FA and unsaturation indices, except for 

herd correlations of 0.54 for C12:0 and 0.76 for C18:2cis-9,12. 

 

2.3.4 DGAT1 effects on milk-fat composition 

Estimated effects for DGAT1 K232A polymorphism on milk fat composition in winter 

and summer milk samples are shown in Table 2.5. The 232A allele was associated 

with lower fat% in both winter and summer milk. In winter as well as in summer milk, 

the 232A allele was negatively associated with most FA with less than 18 carbons, 

SFA, SFA to UFA, and C10 to C16 unsaturation indices, and was positively associated 

with C14:0, unsaturated C18, UFA, and C18 and CLA unsaturation indices. In general, 

effects of DGAT1 K232A polymorphism were very similar in winter and in summer 

milk.  

 

Significant DGAT1 by season interaction was found for C4:0 to C14:0, C16:1cis-9, 

C18:1cis-9, CLA, C18:3cis-9,12,15, SFA, UFA, and C14 and C16 unsaturation indices (P 

≤ 0.05). Significant DGAT1 by season interactions seem to be due to scaling rather 

than re-ranking: genotype effects in both seasons were in the same direction but of 

a different magnitude. Figure 2.1 shows an example of scaling of the genotype 

effects on C18:1cis-9. 

 

2.3.5 SCD1 effects on milk-fat composition 

Estimated effects for SCD1 A293V polymorphism on milk fat composition in winter 

and summer milk samples are shown in Table 2.6. SCD1 A293V polymorphism had 

no significant effects on fat% in winter as well as in summer milk. In winter milk, the 

293V allele was negatively associated with C18:0, C10:1 to C14:1cis-9, C18:1trans-

11, C18:3cis-9,12,15, and C10 to C14 unsaturation indices, and positively associated 

with C8:0 to C14:0, C16:1cis-9, CLA, and C16 to CLA unsaturation indices. In summer 

milk, the 293V allele was negatively associated with C18:0, C10:1 to C14:1cis-9, 

C18:1trans-11, CLA, and C10 to C14 unsaturation indices, and positively associated 

with C8:0 to C14:0, C16:1cis-9, C18:3cis-9,12,15, and C16 to CLA unsaturation 

indices. In general, effects of SCD1 A293V polymorphism were very similar in winter 

and in summer milk. Significant SCD1 by season interaction was found only for 

C18:1trans-11 (P = 0.03). The 293V allele was negatively associated with C18:1trans-

11 and this negative effect was larger in summer than in winter milk (Figure 2.2). 
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2.4 Discussion 

 

Heritability estimates for fat composition in winter and summer milk were very 

similar, and estimates of winter milk are comparable with results published by Stoop 

et al. (2008) , which are based on univariate analyses. Intraherd heritability estimates 

in our study are higher than estimates reported by others (Renner and Kosmack, 

1974; Karijord et al., 1982, Soyeurt et al., 2008). This might be because these studies 

used different methods to measure FA, or studied different breeds. 

 

Genetic correlations between winter and summer milk were high for all FA, 

indicating that milk fat composition in winter and in summer can be largely 

considered as genetically the same trait. Effects of DGAT1 K232A and SCD1 A293V 

polymorphisms on milk fat composition in winter and in summer were similar and 

their effects in summer milk confirm the results of Schennink et al. (2007; 2008) for 

winter milk. The results also showed several differences between winter and 

summer milk, which will be discussed in more detail. 

 

2.4.1 Effects of season on milk-fat composition 

Summer milk contained larger proportions of C18:0 and unsaturated C18, and 

smaller proportions of short and medium chain FA compared to winter milk, which 

is in agreement with literature (Palmquist et al., 1993; Soyeurt et al., 2008; Heck et 

al., 2009). Differences between winter and summer milk fat in our study could be 

partly due to differences in lactation stage, as cows in summer were on average 80 

days later in lactation than in winter (247 versus 167 days). Effects of lactation stage 

were accounted for in the statistical analysis and are known to be relatively small 

(Kelsey et al., 2003; Stoop et al., 2008). Therefore, we expect that it has not 

influenced our results.  
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Table 2.2 - Phenotypic mean ± standard deviation for fat%, individual fatty acids, groups of 
fatty acids and unsaturation indices based on 1,905 winter milk samples and 1,795 summer 
milk samples. 
 

Trait    Winter1    Summer -Log (P)2 

Milk production trait       
 Fat %   4.36±0.70    4.26±0.73     4.6*** 
Individual fatty acids3     
 C4:0   3.50±0.27    3.52±0.35      1.3ns 
 C6:0   2.22±0.17    2.17±0.21    15.0*** 
 C8:0   1.37±0.14    1.32±0.17    22.0*** 
 C10:0   3.03±0.43    2.87±0.46    26.6*** 
 C12:0   4.11±0.69    3.79±0.73    40.9*** 
 C14:0 11.61±0.92  11.15±1.06    43.2*** 
 C16:0 32.59±2.83  29.17±3.50  203.8*** 
 C18:0   8.72±1.42    9.88±1.77    99.3*** 
 C10:1   0.37±0.07    0.35±0.07    17.7*** 
 C12:1   0.12±0.03    0.11±0.03    23.7*** 
 C14:1cis-9   1.36±0.26    1.38±0.28      1.6* 
 C16:1cis-9   1.45±0.32    1.40±0.30      6.0*** 
 C18:1cis-9 18.18±2.04  20.56±2.80  170.4*** 
 C18:1trans-11   0.78±0.22    1.23±0.61  174.3*** 
 C18:2cis-9,trans-11 (CLA)   0.39±0.11    0.56±0.28  120.4*** 
 C18:2cis-9,12    1.20±0.29    1.12±0.25    16.7*** 
 C18:3cis-9,12,15     0.42±0.11    0.49±0.16    59.8*** 
Groups of fatty acids3     
 SFA 69.08±2.80  65.69±4.02  162.1*** 
 UFA  25.03±2.42  28.03±3.39  158.5*** 
 SFA / UFA   2.79±0.37    2.39±0.43  159.7*** 
Unsaturation indices4     
 C10 index 10.89±1.91  11.00±1.82       1.1ns 
 C12 index   2.74±0.54    2.76±0.56       0.6ns 
 C14 index 10.51±1.84  11.00±1.84     15.1*** 
 C16 index   4.24±0.82    4.61±0.92     36.4*** 
 C18 index 67.62±3.74  67.60±3.89       0.1ns 
 CLA index 33.72±4.06  31.62±3.96     57.0*** 

 

1Data based on winter milk samples for fat%, C4:0 to C18:0, C18:1cis-9, C18:1trans-11, CLA, 
C18:2cis-9,12, C18:3cis-9,12,15, and SFA to UFA have been published by Stoop et al. (2008). 
2Significance levels were assessed by a t-test considering winter and summer milk samples as 
independent traits, and  -Log(P) represent the –Log(P-values) of the difference between 
seasons, where **P-value < 0.001, **P-value < 0.01, * P-value ≤ 0.05 and ns = non-significant, 
i.e., P > 0.05.  
3Expressed in % w/w.  
4Unsaturation indices calculated as unsaturated/(unsaturated + saturated)x100. 
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Table 2.3 - Heritability (ℎ2), fraction of variance due to herd (ℎ𝑒𝑟𝑑), phenotypic(𝜎𝑝
2), genetic(𝜎𝑎

2) and herd(𝜎ℎ𝑒𝑟𝑑
2 ) variances and ratios of phenotypic, 

genetic and herd variances for fat%, individual fatty acids, groups of fatty acids  and unsaturation indices based on 1,905 winter milk samples and 
1,795 summer milk samples 
 
 

Trait 
ℎ2 

winter1 
ℎ2 
summer1 

ℎ𝑒𝑟𝑑 
winter2 

ℎ𝑒𝑟𝑑 
summer2 

𝜎𝑝
2 

summer3 

𝜎𝑎
2 

summer 
𝜎ℎ𝑒𝑟𝑑

2  
summer 

𝜎𝑝
2summer/ 

𝜎𝑝
2winter3 

𝜎𝑎
2summer/ 

𝜎𝑎
2winter 

𝜎ℎ𝑒𝑟𝑑
2  summer/ 

𝜎ℎ𝑒𝑟𝑑
2 winter 

Milk production trait           
Fat % 0.57 0.63 0.06 0.11 0.58 0.33 0.06 1.12 1.16 1.92 

           
Individual fatty acids           

C4:0 0.43 0.38 0.16 0.24 0.13 0.04 0.03 1.63 1.29 2.39 
C6:0 0.48 0.41 0.16 0.18 0.04 0.01 0.01 1.56 1.29 1.80 
C8:0 0.62 0.41 0.20 0.19 0.03 0.01 0.01 1.42 0.96 1.35 

C10:0 0.74 0.55 0.23 0.19 0.22 0.10 0.04 1.11 0.88 0.90 
C12:0 0.64 0.51 0.43 0.40 0.55 0.17 0.22 1.10 1.16 1.92 
C14:0 0.58 0.51 0.17 0.34 1.15 0.39 0.39 1.29 0.90 2.55 
C16:0 0.37 0.36 0.30 0.51 12.40 2.23 6.28 1.51 1.06 2.58 
C18:0 0.24 0.19 0.19 0.30 3.15 0.41 0.95 1.59 1.07 2.56 
C10:1 0.33 0.47 0.10 0.25 5.11E-3 1.80E-3 1.29E-3 1.15 1.36 2.87 
C12:1 0.37 0.48 0.21 0.30 0.95E-3 0.32E-3 0.29E-3 1.21 1.39 1.77 

C14:1cis-9 0.33 0.46 0.07 0.15 0.08 0.03 0.01 1.23 1.54 2.72 
C16:1cis-9 0.42 0.39 0.07 0.09 0.09 0.03 0.01 0.90 0.80 1.29 
C18:1cis-9 0.27 0.37 0.29 0.35 7.79 1.88 2.69 1.86 2.30 2.26 

C18:1trans-11 0.29 0.20 0.58 0.64 0.38 0.03 0.25 8.28 4.91 9.10 
C18:2cis-9,trans11(CLA) 0.43 0.28 0.51 0.58 0.08 0.01 0.05 6.09 3.32 7.02 

C18:2cis-9,12 0.20 0.23 0.50 0.57 0.07 0.01 0.04 0.82 0.84 0.93 
C18:3cis-9,12,15 0.26 0.22 0.64 0.63 25.94E-3 2.15E-3 16.30E-3 2.19 1.96 2.14 
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(continuation)           

Trait 
ℎ2 

winter1 
ℎ2 
summer1 

ℎ𝑒𝑟𝑑 
winter2 

ℎ𝑒𝑟𝑑 
summer2 

𝜎𝑝
2 

summer3 

𝜎𝑎
2 

summer 
𝜎ℎ𝑒𝑟𝑑

2  
summer 

𝜎𝑝
2summer/ 

𝜎𝑝
2winter3 

𝜎𝑎
2summer/ 

𝜎𝑎
2winter 

𝜎ℎ𝑒𝑟𝑑
2  summer/ 

𝜎ℎ𝑒𝑟𝑑
2 winter 

           
Groups of fatty acids           
SFA 0.30 0.34 0.29 0.44 15.88 3.06 6.94 2.00 1.83 3.02 
UFA 0.30 0.32 0.29 0.40 11.34 2.20 4.55 1.93 1.78 2.66 
SFA to UFA 0.29 0.31 0.29 0.42 0.18 0.03 0.08 1.33 1.14 1.91 
Unsaturation indices           
C10 index 0.31 0.43 0.06 0.13 3.29 1.22 0.44 0.94 1.21 1.98 
C12 index 0.36 0.51 0.06 0.15 0.31 0.14 0.05 1.12 1.44 2.82 
C14 index 0.44 0.52 0.06 0.07 3.36 1.64 0.22 1.05 1.25 1.08 
C16 index 0.48 0.33 0.06 0.13 0.89 0.26 0.12 1.28 0.83 2.68 
C18 index 0.35 0.31 0.06 0.11 15.38 4.18 1.72 1.09 0.89 2.17 
CLA index 0.26 0.25 0.08 0.17 16.03 3.39 2.69 0.96 0.85 2.00 

 

1ℎ2 = 𝜎𝑎
2/(𝜎𝑎

2+𝜎𝑒
2). Standard errors between 0.01 and 0.12 

2ℎ𝑒𝑟𝑑 = 𝜎ℎ𝑒𝑟𝑑
2 /(𝜎𝑎

2+𝜎ℎ𝑒𝑟𝑑
2 +𝜎𝑒

2). Standard errors between 0.02 and 0.08 
3𝜎𝑝

2 = 𝜎𝑎
2+𝜎ℎ𝑒𝑟𝑑

2 +𝜎𝑒
2. 
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Seasonal variation in milk fat composition seems to be the result of pasture grazing 

of dairy cows in summer compared to winter (Precht and Molketin, 2000; Thorsdottir 

et al., 2004). Grazing or availability of fresh cut grass in summer will result in a 

different dietary supply of FA, because fresh cut grass contains more PUFA than 

conserved forages which are affected by decreases in the leaf/stem ratio during the 

maturation period (Dewhurst et al., 2001). It is well known that supply of PUFA 

through the diet of dairy cows decreases de novo synthesized FA and increases long 

chain FA in milk fat (e.g., Chilliard et al., 2001; Agenas et al, 2002; Bernard et al, 

2008). Therefore, our observation that summer milk had higher amounts of long 

chain FA and lower amounts of de novo synthesized FA compared to winter milk is 

probably because about 50% of the cows in our experiment had access to pasture in 

summer (3.5 to 24 hours/day), whereas all cows were kept indoors in winter. 

 

Differences in dietary supply of FA between winter and summer are also reflected by 

our relatively low herd correlations between milk fat composition in winter and 

summer milk. This suggests that effect of herd, of which diet is part, on milk fat 

composition is not constant over the year. This might be related to the considerably 

higher herd variances in summer compared to winter milk found in our results. 

Variation due to herd might be due to several factors, however, differences in 

feeding regimes between and within herds play a major role. Larger herd variances 

in summer are most likely due to larger differences in feeding strategies between 

herds as well as within a herd: apparently the quantity and composition of forages, 

either fresh or conserved, varies more between herds and within a herd in summer 

compared to winter. 

 

In contrast, herd correlations found in our study for C12:0 and for C18:2cis-9,12 were 

higher than for other FA, probably because the supply of these FA on a herd were 

relatively constant during the year. Most concentrate feed supplied to Dutch dairy 

cows have high concentration of C12:0, due to the presence of ingredients such as 

palm kernel expeller (47%) and extracted coconut (48%) both rich in C12:0 

(Grummer, 1991; Heck et al., 2009). The high herd correlation for C12:0 might be 

because on a herd the same type of concentrate is fed to cows in both winter and 

summer. C18:2cis-9,12 is one of the major PUFA found in maize silage (Chilliard et 

al., 2001, Khanal et al., 2008). The high herd correlation for this FA suggest that herds 

that feed maize silage do this in winter as well as in summer. 
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Table 2.4 Phenotypic (𝑟𝑝), genetic (𝑟𝑎), herd (𝑟ℎ𝑒𝑟𝑑), and residual (𝑟𝑒) correlations (SE in 

parentheses) for fat%, individual fatty acids, groups of fatty acids and unsaturation indices 
between 1,905 winter milk samples and 1,795 summer milk samples. 
 

Trait 𝑟𝑝  𝑟𝑎
𝟏  𝑟ℎ𝑒𝑟𝑑  𝑟𝑒 

Milk production trait 
Fat % 0.63 (0.02)  0.99 (0.04)ns  0.19 (0.15)   0.40 (0.09) 
Individual fatty acids 
C4:0 0.48 (0.02)  0.94 (0.06)ns  0.31 (0.08)   0.25 (0.09) 
C6:0 0.55 (0.02)  0.95 (0.05)ns  0.42 (0.08)   0.29 (0.09) 
C8:0 0.52 (0.02)  0.93 (0.05)*  0.40 (0.08)   0.16 (0.14) 
C10:0 0.56 (0.02)  0.95 (0.03)*  0.41 (0.07)  -0.03 (0.26) 
C12:0 0.54 (0.02)  0.98 (0.03)ns  0.54 (0.05)  -0.06 (0.21) 
C14:0 0.52 (0.02)  0.94 (0.04)*  0.37 (0.07)   0.14 (0.15) 
C16:0 0.42 (0.03)  0.76 (0.11)**  0.21 (0.06)   0.47 (0.07) 
C18:0 0.45 (0.02)  0.90 (0.10)ns  0.26 (0.08)   0.41 (0.05) 
C10:1 0.44 (0.02)  0.99 (0.04)ns  0.31 (0.10)   0.15 (0.10) 
C12:1 0.49 (0.02)  1.00 (0.03)ns  0.37 (0.07)   0.21 (0.10) 
C14:1cis-9 0.61 (0.02)  1.00 (0.02)ns  0.16 (0.14)   0.46 (0.06) 
C16:1cis-9 0.67 (0.02)  0.97 (0.03)ns  0.19 (0.17)   0.53 (0.06) 
C18:1cis-9 0.41 (0.03)  0.91 (0.08)ns  0.19 (0.07)   0.33 (0.07) 
C18:1trans-11 0.29 (0.03)  0.70 (0.17)**  0.26 (0.05)   0.22 (0.07) 
C18:2cis-9,trans-11 (CLA) 0.36 (0.03)  0.80 (0.11)**  0.30 (0.05)   0.25 (0.08) 
C18:2cis-9,12 0.69 (0.02)  0.96 (0.07)ns  0.76 (0.03)   0.52 (0.04) 
C18:3cis-9,12,15 0.44 (0.03)  0.79 (0.13)**  0.41 (0.05)   0.40 (0.05) 
Groups of fatty acids 
SFA 0.42 (0.03)  0.77 (0.11)**  0.23 (0.07)   0.42 (0.06) 
UFA 0.40 (0.03)  0.82 (0.10)*  0.17 (0.07)   0.38 (0.06) 
SFA to UFA 0.40 (0.03)  0.79 (0.11)**  0.17 (0.07)   0.42 (0.06) 
Unsaturation indices 
C10 index 0.55 (0.02)  0.97 (0.09)ns  0.16 (0.15)   0.53 (0.03) 
C12 index 0.58 (0.02)  1.00 (0.02)ns  0.05 (0.16)   0.39 (0.08) 
C14 index 0.69 (0.02)  0.99 (0.02)ns  0.15 (0.20)   0.50 (0.07) 
C16 index 0.62 (0.02)  0.93 (0.05)ns  0.22 (0.15)   0.50 (0.06) 
C18 index 0.60 (0.02)  0.99 (0.03)ns  0.30 (0.16)   0.45 (0.05) 
CLA index 0.56 (0.02)  0.97 (0.04)ns  0.23 (0.13)   0.49 (0.04) 

 

1Supercripts indicate whether the genetic correlation differs significantly from 0.995, 

where **P-value < 0.01, * P-value ≤ 0.05 and ns = non-significant, i.e., P > 0.05 
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 Table 2.5 Effects of the DGAT1 K232A polymorphism (SE in parentheses) on fat%, individual fatty acids, groups of fatty acids and 
unsaturation indices based on 1,905 winter milk samples and 1,795 summer milk samples 
 

Trait 

-Log(P) 
DGAT1 X 
season 

interaction1 

Winter  Summer 

KA2 AA3 
-Log (P)4 

 KA2 AA3 
-Log (P)4 

(N=829) (N=644)  (N=773) (N=592) 

Milk production trait         
 Fat % 1.2ns -0.46 (0.04) -0.99 (0.04) 126.9***  -0.46 (0.04) -0.95 (0.05) 126.8*** 
Individual fatty acids         
 C4:0 1.5* -0.01 (0.02) 0.01 (0.02) 0.3ns  0.01 (0.02) 0.00 (0.02) 0.2ns 
 C6:0 5.1*** -0.02 (0.01) -0.06 (0.01) 13.4***  -0.04 (0.01) -0.12 (0.01) 14.1*** 
 C8:0 5.0*** 0.00 (0.01) -0.03 (0.01) 9.2***  -0.02 (0.01) -0.08 (0.01) 10.0*** 
 C10:0 5.1*** 0.07 (0.03) 0.02 (0.03) 3.2***  -0.03 (0.03) -0.14 (0.03) 3.7*** 
 C12:0 2.7** 0.13 (0.04) 0.10 (0.04) 1.0ns  -0.01 (0.04) -0.07 (0.04) 1.0ns 
 C14:0 4.0*** 0.44 (0.06) 0.80 (0.06) 33.4***  0.30 (0.07) 0.52 (0.07) 32.6*** 
 C16:0 0.1ns -1.05 (0.16) -2.56 (0.17) 65.0***  -1.14 (0.17) -2.63 (0.18) 65.6*** 
 C18:0 0.0ns -0.16 (0.09) -0.07 (0.10) 0.7ns  -0.16 (0.11) -0.11 (0.12) 0.7ns 
 C10:1 0.7ns 0.00 (0.00) -0.02 (0.00) 8.4***  -0.01 (0.00) -0.03 (0.00) 8.9*** 
 C12:1 

1.0ns 
0.23E-3 

(1.76E-3) 
-4.88E-3(1.89E-

3) 
3.0***  

-3.85E-3 (1.82E-
3) 

-6.59E-3 
(1.97E-3) 

3.0*** 

 C14:1cis-9 0.3ns -0.01 (0.020 -0.04 (0.02) 1.3*  -0.03 (0.02) -0.04 (0.02) 1.3* 
 C16:1cis-9 1.9* -0.14 (0.02) -0.32 (0.02) 53.2***  -0.12 (0.02) -0.27 (0.02) 53.7*** 
 C18:1cis-9 2.6** 0.66 (0.12) 1.73 (0.13) 61.0***  1.01 (0.15) 2.34 (0.16) 62.8*** 
 C18:1trans-11 0.4ns -0.01 (0.01) 0.03 (0.01) 3.5***  0.02 (0.03) 0.05 (0.03) 3.9*** 
 C18:2cis-9,trans-11 
(CLA) 

2.3** 0.02 (0.01) 0.05 (0.01) 16.0***  0.04 (0.01) 0.09 (0.01) 15.2*** 

 C18:2cis-9,12  0.4ns 0.06 (0.01) 0.13 (0.02) 28.2***  0.07 (0.01) 0.15 (0.01) 29.0*** 
 C18:3cis-9,12,15   1.3* 0.01 (0.00) 0.04 (0.01) 23.5***  0.01 (0.01) 0.06 (0.01) 22.8*** 
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(continuation)     

Trait 

-Log(P) 
DGAT1 X 
season 

interaction1 

Winter  Summer 
KA2 AA3 

-Log (P)4 
 KA2 AA3 

-Log (P)4 
(N=829) (N=644)  (N=773) (N=592) 

         
Groups of fatty acids         
 SFA 2.8** -0.72 (0.17) -2.00 (0.18) 44.3***  -1.20 (0.21) -2.84 (0.22) 46.6*** 
 UFA  3.0** 0.62 (0.14) 1.68 (0.15) 42.4***  1.04 (0.18) 2.43 (0.19) 44.7*** 
 SFA / UFA 0.4ns -0.11 (0.02) -0.26 (0.02) 44.8***  -0.14 (0.02) -0.30 (0.02) 46.2*** 
Unsaturation indices         
 C10 index 1.1ns -0.31 (0.12) -0.55 (0.13) 2.3**  -0.20 (0.12) -0.26 (0.13) 2.0** 
 C12 index 1.1ns -0.09 (0.03) -0.20 (0.04) 5.5***  -0.09 (0.04) -0.13 (0.04) 5.3*** 
 C14 index 1.4* -0.49 (0.11) -0.98 (0.12) 12.8***  -0.47 (0.12) -0.75 (0.13) 12.6*** 
 C16 index 1.8* -0.26 (0.05) -0.58 (0.06) 21.2***  -0.20 (0.06) -0.41 (0.07) 21.7*** 
 C18 index 0.6ns 1.18 (0.24) 2.23 (0.26) 23.5***  1.40 (0.25) 2.71 (0.27) 23.3*** 
 CLA index 0.7ns 1.09 (0.27) 1.82 (0.29) 15.0***  1.27 (0.26) 2.36 (0.28) 15.3*** 

 

1-Log(P) DGAT1 x season interaction represents -log(P-values) of the interaction between DGAT1 genotypes in winter milk samples and DGAT1 
genotypes in summer milk samples, where ***P-value<0.001, **P-value <0.01,* P-value≤0.05 and ns=non-significant, i.e., P >0.05. 
2Estimated contrast of KA - KK genotypes, where KK is set to zero, obtained using model [1] extended with DGAT1 K232A as a fixed genotype effect. 
3Estimated contrast of AA - KK genotypes, where KK is set to zero, obtained using model [1] extended with DGAT1 K232A as a fixed genotype effect.  
4Significance levels are represented by -log (P-values) of the effects of DGAT1 K232A polymorphism in winter and summer milk samples, respectively. 
Nominal P-values are reported. 
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 Table 2.6 Effects of the SCD1 A293V polymorphism (SE in parentheses) on fat%, individual fatty acids, groups of fatty acids and 
unsaturation indices based on 1,905 winter milk samples and 1,795 summer milk samples. 
 

Trait 
-Log(P) SCD1 x 

season 
interaction1 

Winter  Summer 

VA2 VV3 
-Log (P)4 

 VA2 VV3 
-Log (P)4 

(N=689) (N=117)  (N=653) (N=103) 

Milk production trait         
 Fat % 0.7ns  0.00 (0.03)  0.05 (0.07)      0.1ns   -0.02 (0.04)  0.04 (0.07) 0.1ns 
Individual fatty acids              
 C4:0 0.5ns -0.02 (0.01)  0.01 (0.03)      1.1ns   -0.01 (0.02)  0.05 (0.03) 1.1ns 
 C6:0 0.7ns  0.01 (0.01)  0.02 (0.02)      1.0ns    0.01 (0.01)  0.06 (0.02) 0.7ns 
 C8:0 0.8ns  0.01 (0.01)  0.02 (0.01)      1.7*    0.02 (0.01)  0.05 (0.02) 1.5* 
 C10:0 0.3ns  0.10 (0.02)  0.15 (0.04)      8.1***    0.09 (0.02)  0.20 (0.04) 7.5*** 
 C12:0 0.1ns  0.09 (0.03)  0.14 (0.06)      2.3**    0.05 (0.03)  0.13 (0.06) 2.3** 
 C14:0 0.9ns  0.22 (0.04)  0.40 (0.09)      6.5***    0.13 (0.05)  0.30 (0.09) 6.5*** 
 C16:0 0.6ns -0.14 (0.13) -0.26 (0.25)      0.4ns   -0.12 (0.13)  0.22 (0.27) 0.3ns 
 C18:0 0.3ns -0.29 (0.07) -0.43 (0.13)      5.5***   -0.24 (0.08) -0.64 (0.16) 6.0*** 
 C10:1 0.5ns -0.03 (0.00) -0.06 (0.01)    42.7***   -0.03 (0.00) -0.05 (0.01) 42.9*** 
 C12:1 0.0ns -0.01 (0.00) -0.02 (0.00)    25.0***   -0.01 (0.00) -0.02 (0.00) 24.1*** 
 C14:1cis-9 0.0ns -0.17 (0.01) -0.32 (0.02)    78.8***   -0.17 (0.01) -0.33 (0.02) 77.7*** 
 C16:1cis-9 0.2ns  0.16 (0.02)  0.34 (0.03)    47.6***    0.15 (0.01)  0.35 (0.03) 48.4*** 
 C18:1cis-9 0.5ns  0.09 (0.09)  0.20 (0.18)      0.3ns    0.17 (0.12) -0.04 (0.24) 0.4ns 
 C18:1trans-11 1.6* -0.01 (0.01) -0.04 (0.02)      2.1**   -0.07 (0.02) -0.11 (0.04) 2.3** 
 C18:2cis-9,trans-11(CLA) 0.4ns  0.02 (0.00)  0.02 (0.01)      2.5**   -0.07 (0.02) -0.11 (0.04) 1.7* 
 C18:2cis-9,12  0.4ns  0.01 (0.01) -0.02 (0.02)      0.9ns    0.01 (0.01) -0.04 (0.02) 1.4* 
 C18:3cis-9,12,15   1.1ns  0.01 (0.00) -0.01 (0.01)      1.5*    0.02 (0.01)  0.00 (0.01) 2.2** 
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(continuation)     

Trait 
-Log(P) SCD1 x 

season 
interaction1 

Winter  Summer 
VA2 VV3 

-Log (P)4 
 VA2 VV3 

-Log (P)4 
(N=689) (N=117)  (N=653) (N=103) 

         
         
Groups of fatty acids               
 SFA 0.2ns -0.02 (0.13)  0.05 (0.25)       0.0ns   -0.06 (0.16)  0.29 (0.32) 0.0ns 
 UFA  0.5ns  0.04 (0.11)  0.08 (0.22)       0.0ns    0.07 (0.14) -0.21 (0.28) 0.1ns 
 SFA to UFA 0.3ns -0.01 (0.02) -0.01 (0.03)       0.0ns    0.00 (0.02)  0.03 (0.03) 0.0ns 
Unsaturation indices              
 C10 index 0.1ns -1.18 (0.09) -2.15 (0.17)     70.8***   -1.11 (0.08) -2.11 (0.17) 69.2*** 
 C12 index 0.0ns -0.29 (0.02) -0.55 (0.05)     51.5***   -0.29 (0.03) -0.53 (0.05) 50.8*** 
 C14 index 0.0ns -1.34 (0.08) -2.59 (0.16)     98.4***   -1.31 (0.08) -2.59 (0.16) 97.0*** 
 C16 index 0.2ns  0.47 (0.04)  0.98 (0.08)     56.7***    0.49 (0.04)  1.05 (0.09) 58.7*** 
 C18 index 0.1ns  0.85 (0.19)  1.51 (0.37)       6.6***    0.75 (0.20)  1.47 (0.39) 7.0*** 
 CLA index 0.3ns  1.29 (0.20)  2.43 (0.40)     14.3***    1.14 (0.20)  2.13 (0.39) 15.0*** 

 

1-Log(P) SCD1 x season interaction represents -log(P-values) of the interaction between SCD1 genotypes in winter milk samples and SCD1 genotypes 
in summer milk samples, where ***P-value<0.001, **P-value <0.01,* P-value≤0.05 and ns=non-significant, i.e., P >0.05. 
2Estimated contrast of VA - AA genotypes, where AA is set to zero, obtained using model [1] extended with SCD1 A293V as a fixed genotype effect. 
3Estimated contrast of VV - AA genotypes, where AA is set to zero, obtained using model [1] extended with SCD1 A293V as a fixed genotype effect. 
4Significance levels are represented by -log (P-values) of the effects of SCD1 A293V polymorphism in winter and summer milk samples, respectively. 
Nominal P-values are reported. 

 



2 Milk-fat composition in winter and summer 

 

 

40 
 

It is well established that the supply of FA reaching the mammary gland of a cow for 

milk fat synthesis can be indirectly affected by processes that occur in the rumen 

known to convert PUFA into SFA (e.g., Chilliard et al., 2001, Jenkins et al., 2008). 

These processes are dependent on many factors that include: quantity and 

composition of microbiota (Haarfoot & Hazlewood, 1997; Lock & Bauman, 2004), the 

proportion of forages and concentrates in a cow’s diet (Dewhurst et al., 2006) and 

the source of the PUFA supplied to dairy cows (Sterk et al., 2011). Therefore, part of 

the observed differences in milk fat composition between winter and summer milk 

can also be attributed to dietary effects on processes in the rumen, which are known 

to affect the amounts of C18:1trans-11 and CLA reaching the mammary gland of a 

cow (Mach et al., 2011). 

 

2.4.2 Effects of polymorphisms in DGAT1 and in SCD1 

Some studies indicate that nutrition affects mammary expression of lipogenic genes 

(Bernard et al., 2008; Mach et al., 2011). Therefore, effects of polymorphisms in 

DGAT1 and SCD1 on milk fat composition might differ between winter and summer. 

In the present study, significant DGAT1 by season interactions were found on many 

FA, and SCD1 by season interaction was found only on C18:1trans-11. However, 

estimated genotype effects suggest that these interactions are due to scaling rather 

than to re-ranking (Figures 2.1 and 2.2). High genetic correlations between milk fat 

composition in winter and summer as well as similar genotypic effects in winter and 

summer support the idea that mainly the same genes are involved in milk fat 

composition in winter and in summer. 

 

DGAT1. Is the gene encoding acyl-CoA: diacylglycerol acyltransferase1 (DGAT1; EC: 

2.3.1.20), which is an enzyme responsible for the fixation of FA to the third position 

of triacylglycerol (TAG) (Cases et al., 1998; Palmquist, 2006; Yen et al., 2008). The 

K232A polymorphism causes an amino acid change (Lysine > Alanine at position 232 

of the protein) that might alter the activity or specificity of the enzyme. In our study, 

the DGAT1 232A allele was associated with a lower milk fat%, which agrees with 

previous research (e. g., Grisart et al., 2002; Winter et al., 2002; Thaller et al., 2003). 

DGAT1 shows a preference to esterify short chain and UFA to the third position of a 

TAG (Kinsella, 1976; Morand et al., 1998; Mistry and Medrano, 2002). In winter, the 

DGAT1 232A allele was negatively associated with most FA with less than 18 carbons 

and was positively associated with all unsaturated C18. In summer milk, higher 

amounts of UFA were found compared to winter milk. This larger supply seems to 

increase the effect of the DGAT1 K232A polymorphism, especially for UFA for which  
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Figure 2.1 Estimated effects of DGAT1 K232A polymorphism in winter and summer samples 
represented by the contrasts of AA-KK and KA-KK genotypes, where KK is set to zero. These 
contrasts illustrate the significant DGAT1 K232A by season interaction on C18:1cis-9. SE are 
shown as error bars. 

 

it has preference, because the effects of DGAT1 232A allele on most unsaturated C18 

and UFA were larger in summer compared to winter milk and resulted in DGAT1 by 

season interaction. 

 

SCD1. Is the gene encoding stearoyl-CoA desaturase1 (SCD1; EC: 1.14.19.1) and the 

A293V polymorphism causes an amino acid change (Alanine > Valine at position 293 

of the protein) which might affect the catalytic function of the enzyme, responsible 

for the insertion of a cis-double bond between carbon 9 and 10 of a FA (Pereira et 

al., 2003). In the present study, SCD1 A293V polymorphism had no significant effects 

on fat%. These results are in line with Schennink et al. (2008). 

 

Unsaturation indices have been suggested as indicators to indirectly measure the 

desaturation activity of the SCD1 enzyme (e.g., Peterson et al., 2002). In both winter 

and summer, high means for C18 and CLA unsaturation indices (Table2.2) indicate 

that C18:0 and C18:1trans-11 are unsaturated to a higher extent than C10:0, C12:0, 

C14:0 and C16:0. These results are in line with Enoch et al. (1976) who suggest that 

SCD1 has preferences in unsaturating longer chain FA. In addition, the SCD1 293V  
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Figure 2.2 Estimated effects of SCD1 A293V polymorphism in winter and summer samples 
represented by the contrasts of VV-AA and VA-AA genotypes, where AA is set to zero. These 
contrasts illustrate the significant SCD1 A293V by season interaction on C18:1trans-11. SE are 
shown as error bars. 
 

allele was positively associated with C16 to CLA indices compared to the SCD1 293A 

allele in both winter and summer (Table 2.6). These associations suggest that the 

SCD1 293V allele might have a higher affinity or specificity to unsaturate longer chain 

FA (e.g., C18:0 or C18:1trans-11) than other available FA (e.g., C10:0 or C14:0).  

 

2.5 Conclusions 

 

Milk fat composition in winter and in summer can be largely considered as 

genetically the same trait, because of the very high genetic correlations found 

between winter and summer milk fat composition. Differences in milk fat 

composition between winter and summer can probably be attributed to differences 

in the diets of cows between the two seasons rather than to genetic differences. 

Effects of DGAT1 K232A and SCD1 A293V polymorphisms on fat composition are 

similar in winter and in summer milk. Significant DGAT1 and SCD1 by season 

interactions were found for some fatty acids, and these interactions seem to be due 

to scaling of the genotype effects.  
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Abstract 

 

A genomic region associated with milk fatty acid (FA) composition has been detected 

on Bos Taurus Autosome (BTA) 17 based on 50k SNP genotypes. The aim of our study 

was to fine-map BTA17 with imputed 777k single nucleotide polymorphism (SNP) 

genotypes in order to identify candidate genes associated with milk FA composition. 

Phenotypes consisted of gas chromatography measurements of 14 FA based on 

winter and summer milk samples. Phenotypes and genotypes were available on 

1,640 animals in winter milk, and on 1,581 animals in summer milk samples. Single-

SNP analyses showed that several SNP in a region located between 29.0 and 34.0 

mega base-pairs were in strong association with C6:0, C8:0, and C10:0. This region 

was further characterized based on haplotypes. In summer milk samples, for 

example, these haplotypes explained almost 10% of the genetic variance in C6:0, 9% 

in C8:0, 3.5% in C10:0, 1.8% in C12:0, and 0.9% in C14:0. Two groups of haplotypes 

with distinct predicted effects could be defined, suggesting the presence of one 

causal variant. Predicted haplotype effects tended to increase from C6:0 to C14:0, 

however, the proportion of genetic variance explained by the haplotypes tended to 

decrease from C6:0 to C14:0. This is an indication that the quantitative trait locus 

(QTL) region is either involved in the elongation process or in early termination of de 

novo synthesized FA. Although many genes are present in this QTL region, most of 

these genes on BTA17 have not been characterized yet. The strongest association 

was found close to the progesterone receptor membrane component 2 (PGRMC2) 

gene. This gene has not been associated to milk FA composition. Therefore, no clear 

candidate gene associated with milk FA composition could be identified for this QTL. 

 

Key words: milk fatty acid composition, dairy cattle, candidate genes, high-density 

genotyping.



3 Fine mapping of BTA17 

51 

 

3.1 Introduction 

 

Bovine milk-fat is composed of more than 400 different fatty acids (FA), many of 

which are still un-identified (Jensen, 2002). FA may differ in the number of carbons 

and this difference can be related to the origin of the FA. Most short-chain FA are FA 

of less than 12 carbons that are mainly elongated from acetate by de novo synthesis 

in the mammary gland of a cow (e.g., Palmquist, 2006). Medium-chain FA are FA of 

14 and 16 carbons and, while C14:0 mainly originates from de novo synthesis, C16:0 

originates from two sources: approximately 50% from de novo synthesis and 50% 

from the diet of a cow. Most long-chain FA are FA of 18 or more carbons that mainly 

originate from the cow’s diet, or from body fat mobilization (e.g., Chilliard et al., 

2000). In addition to differences in the number of carbons, FA may also differ in their 

degree of saturation. On average, more than 70% of the identified FA in milk consist 

of saturated FA, and the remaining consist of unsaturated FA. 

 

Variation in the content of several FA in milk is affected by genetic factors. Stoop et 

al. (2008) reported that individual milk FA have heritability estimates that range from 

0.22 to 0.71. Some well characterized genes are recognized as having large effects 

on milk-fat and FA composition, such as acyl-CoA: diacylglycerol acyltransferase1 

(DGAT1) located on BTA14, and stearoyl-CoA desaturase1 (SCD1) located on BTA26 

(e.g., Schennink et al., 2007, Schennink et al., 2008). In addition, several regions of 

the bovine genome have been identified as having effects on milk-fat and FA 

composition but have not been characterized yet (e.g., Bouwman et al, 2012). By 

fine–mapping these regions, it is possible to identify candidate genes (Ishii et al., 

2013) associated with milk FA composition. Further insights into the biosynthesis of 

milk-fat and FA are relevant if the aim is to change milk FA composition by means of 

breeding (Boichard and Brochard, 2012) or feeding strategies. 

 

Fine-mapping allows to refine genomic regions by testing a large number of single 

nucleotide polymorphism (SNP) that are likely associated with a quantitative trait 

locus (QTL) (Hinds et al., 2005). Recently, a genomic region associated with short-

chain FA in milk has been detected on BTA17 (Bouwman et al., 2012). However, no 

candidate gene or causal variant has been identified so far. The aim of our study was 

to fine-map BTA17 with imputed 777k SNP genotypes in order to identify candidate 

genes associated with milk FA composition. 
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3.2 Material and Methods 

 

This study is part of the Dutch Milk Genomics Initiative that aims at exploring the 

possibilities to modify milk FA composition through breeding. Bouwman et al. (2012) 

performed a genome-wide association study (GWAS) using 50k SNP genotypes based 

on milk FA composition of winter and summer milk samples. In the present study, 

we re-analyzed the same phenotypes, and fine-mapped BTA17 using imputed 777k 

SNP genotypes. 

 

3.2.1 Animals and phenotypes 

Morning milk samples of 500mL per cow were retrieved from 2,001 first-lactation 

Holstein-Friesian cows from 398 herds throughout the Netherlands. At least three 

cows per herd were sampled in two distinct seasons: February-March 2005 (which 

will be referred to as “Winter” samples) and May-June 2005 (which will be referred 

to as “Summer” samples). The milk samples were taken from the same cows during 

the same lactation. Some cows sampled in winter were no longer lactating when 

summer milk samples were taken. Additional cows were sampled from the same 

herds to guarantee milk samples from at least three cows per herd. A total of 1,905 

cows had phenotypic records in the winter, with each cow lactating between 63 and 

282 days (see Stoop et al., 2008). A total of 1,795 cows had phenotypic records in 

the summer, with each cow lactating between 97 and 335 days (see Duchemin et al, 

2013). About 50% of the cows in our experiment had access to pasture in summer 

(3.5 to 24 h/d), whereas all cows were kept indoors and fed silage in winter. Further 

details about the experimental design can be found in Stoop et al. (2008). 

 

Milk FA composition was measured by gas chromatography at the COKZ laboratory 

(Qlip, Leudsen, Netherlands). Milk-fat was extracted from the milk samples, and fatty 

acid methyl esters were prepared from fat fractions, as described by Schennink et al. 

(2007). The FA were identified and quantified by comparing the methyl ester 

chromatograms of the milk fat samples with the chromatograms of pure FA methyl 

ester standards (Stoop et al., 2008). FA included in this study were measured as 

weight proportion of total fat (%wt/wt) and are described in Table 3.1. In addition, 

an indicator of de novo synthesized milk FA was created by combining C6:0 through 

C14:0 individual FA in the index referred to as “C6:0-C14:0” (Table 3.2). 
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3.2.2 Genotypes and imputation 

A blood sample from each cow and semen from each bull were used to extract DNA. 

The DNA of 55 sires and 1,813 daughters belonging to our experimental population 

was genotyped with a 50k SNP chip. This chip was designed by CRV (Arnhem, 

Netherlands), and was used to genotype the animals with the Infinium assay 

(Illumina, San Diego, CA). 

 

A reference population of 1,333 animals belonging to CRV and including the 55 sires 

with offsprings in our data was additionally genotyped with a 777k SNP chip 

(Illumina, San Diego, CA). This information on the reference population was used to 

impute the genotypes of our experimental population from 50k to 777k SNP. This 

imputation was done using Beagle version 3.2.2 (Browning and Browning, 2009), and 

resulted in a total of 1,736 animals being imputed to 777k SNP. From these 1,736 

animals, 12 animals were excluded because of pedigree inconsistencies and, 

subsequently, three animals were excluded because their herds no longer met the 

requirement of a minimum of three animals sampled per herd. As a consequence, 

1,721 animals with imputed 777k SNP genotypes were available for this study. 

Imputation of BTA17 increased the number of SNP genotypes from 1,562 (i.e., 50k) 

to 22,240 (i.e., 777k). The positions of the imputed SNP were based on the bovine 

genome assembly UMD 3.1. (Zimin et al., 2009) 

 

3.2.3 Fine-mapping of BTA17 

The fine-mapping of BTA17 was performed separately for winter and summer milk 

samples by using imputed 777k SNP genotypes and the 14 FA described in Table 3.1. 

For each season, animals were included in the analyses if both phenotypic and 

genotypic data were available. Therefore, a total of 1,640 animals were available for 

winter milk, and a total of 1,581 animals were available for summer milk samples. 

 

Single SNP analyses were performed using the following animal model: 

 

𝑦𝑖𝑗𝑘𝑙𝑚𝑛𝑜 =  𝜇 + 𝑏1  ∗  𝑑𝑖𝑚 𝑖 +  𝑏2 ∗  𝑒−0.05 ∗ 𝑑𝑖𝑚𝑖  +  𝑏3  ∗  𝑎𝑓𝑐𝑗  +  𝑏4  ∗ 𝑎𝑓𝑐𝑗
2  +

 𝑠𝑒𝑎𝑠𝑜𝑛𝑘 +  𝑠𝑐𝑜𝑑𝑒𝑙  +  𝑆𝑁𝑃𝑚  +  ℎ𝑒𝑟𝑑𝑛  +  𝑎𝑜  +  𝑒𝑖𝑗𝑘𝑙𝑚𝑛𝑜  (1)  
 

where 𝑦𝑖𝑗𝑘𝑙𝑚𝑛𝑜 is the dependent variable; µ is the overall mean; b1 and b2 are the 

regression coefficients related to 𝑑𝑖𝑚𝑖; 𝑑𝑖𝑚𝑖 is the covariate describing the effect of 

days in milk, modeled with a Wilmink curve (Wilmink, 1987); b3 and b4 are the 

regression coefficients related to 𝑎𝑓𝑐𝑗; 𝑎𝑓𝑐𝑗 is the covariate describing the effect of 

age at first calving; 𝑠𝑒𝑎𝑠𝑜𝑛𝑘 is the fixed effect of calving season (June – August 2004, 
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September – November 2004, or December 2004 – February 2005); 𝑠𝑐𝑜𝑑𝑒𝑙 is the 

fixed effect accounting for differences in genetic level between groups of proven bull 

daughters and young bull daughters; 𝑆𝑁𝑃𝑚 is the fixed effect of SNP genotype ; ℎ𝑒𝑟𝑑𝑛 

is the random effect of herd, and is assumed to be distributed as ~N(0, 𝐈𝜎ℎ𝑒𝑟𝑑
2 ), for 

which I is the identity matrix, and is the herd variance; 𝑎𝑜 is the random additive 

genetic effect of animal, and is assumed to be distributed as ~N(0, 𝐀𝜎𝑎
2), where A is 

the additive genetic relationships matrix which consisted of 12,548 animals, and 𝜎𝑎
2 

is the additive genetic variance; and 𝑒𝑖𝑗𝑘𝑙𝑚𝑛𝑜 is the random residual effect, and is 

assumed to be distributed as ~N(0, 𝐈𝜎𝑒
2), for which I is the identity matrix, and 𝜎𝑒

2 is 

the residual variance. 

 

Additive genetic and herd variances were estimated without the inclusion of SNP 

information, and the resulting estimates were fixed within model (1).  

 

Heritability estimates were calculated from univariate analyses based on model (1) 

without the inclusion of SNP effects as follows: ℎ2 =
𝜎𝑎

2

𝜎𝑎
2 + 𝜎𝑒

2. Analyses were 

performed separately for winter and summer milk samples. All statistical analyses 

were performed using ASReml 3.0 (Gilmour et al., 2009). 

 

3.2.4 Construction of haplotypes 

Haplotypes were constructed to further characterize a genomic region on BTA17, 

and these were constructed separately for winter and summer milk samples. This 

construction started with the identification of promising SNP by single SNP analyses 

using model (1). The SNP with the highest significance was defined as “QTagSNP1”. 

Subsequently, we corrected for the effect of QTagSNP1, by including QTagSNP1 as a 

fixed effect in model (1). This correction allowed to run a second round of single SNP 

analyses, and to retrieve remaining significant SNP. After this second round of 

analyses, if another SNP still was significant, it was defined as “QTagSNP2”. In these 

analyses, a SNP was considered to be still significant if – log10(P-value) ≥ 3. Next, we 

corrected for the effects of QTagSNP2 in the model already extended with 

QTagSNP1, by further including QTagSNP2 as a fixed effect. This methodology was 

repeated until no additional significant SNP were retrieved. Linkage disequilibrium 

(LD) was estimated as r2 between all the identified QTagSNP using PLINK version 1.07 

(Purcell et al., 2007). After the identification of QTagSNP, haplotypes were 

constructed based on the identified QTagSNP.  
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Effects of haplotypes were estimated with the following animal model: 

 

𝑦𝑖𝑗𝑘𝑙𝑛𝑝𝑞𝑟  =  𝜇 +  𝑏1  ∗ 𝑑𝑖𝑚𝑖 + 𝑏2 ∗  𝑒−0.05 ∗ 𝑑𝑖𝑚𝑖  +  𝑏3  ∗  𝑎𝑓𝑐𝑗  +  𝑏4  ∗ 𝑎𝑓𝑐𝑗
2 +

 𝑠𝑒𝑎𝑠𝑜𝑛𝑘  +  𝑠𝑐𝑜𝑑𝑒𝑙  + ℎ𝑎𝑝𝑙𝑜1𝑝  +  ℎ𝑎𝑝𝑙𝑜2𝑞  +  ℎ𝑒𝑟𝑑𝑛  +  𝑎𝑟
∗  +  𝑒𝑖𝑗𝑘𝑙𝑛𝑝𝑞𝑟   (2)  

 

where variables are as previously described for model (1), and: haplo1p is the random 

effect of the first haplotype; haplo2q is the random effect of the second haplotype, 

and they are both assumed to be distributed as N ~ (0, I𝜎ℎ𝑎𝑝𝑙𝑜
2 ), for which I is the 

identity matrix, and 𝜎ℎ𝑎𝑝𝑙𝑜 
2 is the haplotype variance. The first and second haplotypes 

were jointly used to estimate one haplotype variance (𝜎ℎ𝑎𝑝𝑙𝑜 
2 ) and one effect for 

each haplotype. This was achieved by combining the design matrices of both 

haplotypes in ASReml. 𝑎𝑟
∗  is the random additive genetic effect of animal estimated 

without the inclusion of haplotypes, and is assumed to be distributed as N ~ (0,𝐀𝜎𝑎∗
2 ), 

for which A is the additive genetic relationships matrix which consisted of 12,548 

animals, and 𝜎𝑎∗
2 is the additive genetic variance that remains after accounting for 

haplotype effects. The total additive genetic variance was defined as:𝜎𝑎
2 = 𝜎𝑎∗

2 +

𝜎ℎ𝑎𝑝𝑙𝑜
2 . The fraction of genetic variance explained by haplotypes was defined 

as:𝜎ℎ𝑎𝑝𝑙𝑜
2 𝜎𝑎

2⁄ . 

 

Additionally, we tested whether predicted haplotype effects differed from each 

other. Significance levels of the differences between predicted effects of haplotypes 

were assessed using Student’s t-tests, as implemented in ASReml. The predicted 

effect of a haplotype was considered significantly different from another haplotype 

if P-value ≤ 0.05. 

 

3.3 Results 

 

3.3.1 Phenotypic means and heritability estimates  

Phenotypic means and heritability estimates for milk FA composition in winter and 

summer milk samples are shown in Table 3.1. Winter milk had higher contents of 

short-chain FA than summer milk samples (14.2% vs. 13.7%), higher contents of 

medium-chain FA (44.2% vs. 40.4%), and lower contents of long-chain FA, such as 

C18:0 (8.7% vs. 9.9%) and cis-9 C18:1 (18,2% vs. 20.5%). Phenotypic variances were 

higher in summer as compared to winter milk samples, but genetic variances were 

similar in both seasons. A detailed discussion on differences between winter and 

summer milk samples can be found in our previous study (Duchemin et al., 2013). 
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Table 3.1 Phenotypic means (SD), and heritability estimates (h2)1 for individual fatty acids (FA) 

based on 1,640 winter milk samples and 1,581 summer milk samples 
 

Individual FA (% wt/wt) 

Winter  Summer 

Mean (SD) h2   Mean (SD) h2 

Saturated FA:      

C4:0 3.51 (0.27) 0.47  3.52 (0.35) 0.41 

C6:0 2.23 (0.16) 0.46  2.17 (0.21) 0.39 

C8:0 1.36 (0.14) 0.59  1.32 (0.17) 0.35 

C10:0 3.02 (0.43) 0.73  2.87 (0.45) 0.48 

C12:0 4.12 (0.70) 0.62  3.79 (0.72) 0.48 

C14:0 11.62 (0.92) 0.62  11.16 (1.05) 0.54 

C16:0 32.62 (2.84) 0.47  29.20 (3.49) 0.40 

C18:0 8.71 (1.39) 0.28  9.86 (1.77) 0.19 

Unsaturated FA:      

C10:12 0.37 (0.07) 0.35  0.35 (0.07) 0.50 

C12:12 0.12 (0.03) 0.38  0.11 (0.03) 0.47 

cis-9 C14:13  1.36 (0.25) 0.35  1.38 (0.28) 0.43 

cis-9 C16:1  1.45 (0.32) 0.44  1.40 (0.30) 0.38 

cis-9 C18:14 18.18 (2.05) 0.22  20.53 (2.76) 0.35 

cis-9, trans-11 C18:2 (CLA) 0.39 (0.11) 0.55   0.56 (0.27) 0.27 
 

1h2= σa
2 (σa

2+ σe
2)⁄ , where h2 is the heritability estimate, σa

2 is the additive genetic variance and 

σe
2 is the residual variance; SE between 0.01 and 0.12 for winter samples, and between 0.02 

and 0.08 for summer samples. 
2For C10:1 and C12:1, the cis double bond could not be ascertained at the carbon 9 position. 
3cis-9 C14:1 represents the sum of cis-9 C14:1 and iso C15 due to co-elution associated with 

the gas chromatography (GC) extraction method. 
4cis-9 C18:1 represents the sum of cis-9 C18:1 and trans-12 C18:1 due to co-elution associated 

with the GC extraction method. 

 

3.3.2 Fine-mapping of BTA17 

Results of the fine-mapping of BTA17 for winter and summer milk samples are shown 

in Additional File 1. For both seasons, we analyzed the associations between 22,240 

imputed SNP and each of the 14 FA. In a region between 29.0 and 34.0 mega base-

pairs (Mbp), multiple SNP showed highly significant associations with C6:0, C8:0, and 

C10:0. Moreover, multiple SNP showed associations both in winter and summer milk 

samples (Additional file 1). Previously, Bouwman et al. (2012) identified associations 

of multiple regions on BTA17 with C6:0, C8:0, C10:0, C14:1, and C16:1. Detailed 

analyses in the current study focused on the region between 29.0 and 34.0 Mbp 
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because here the strongest and most consistent associations were found across 

winter and summer milk samples. 

 

Figure 3.1A illustrates the strongest associations found with the imputed 777k SNP 

genotypes for C8:0 in summer milk samples. Additionally in Figure 3.1A, these 

associations were overlaid with the associations found by Bouwman et al. (2012) 

using 50k SNP genotypes, which was mainly the same data as used in the current 

study. Within the marked region (figure 3.1A), 10 significant SNP were found with 

the 50k SNP whereas 83 significant SNP were found with the imputed 777k SNP. The 

most significant SNP identified based on the imputed 777k SNP (-log10(P-value) = 

7.93) was not present on the 50k SNP array. The most significant SNP identified 

based on the 50k SNP genotypes was less significant (-log10(P-value) = 6.21; 

Bouwman et al., 2012) than the most significant SNP identified in the present study. 

The location of the QTL could be refined to the genomic region located between 29.0 

and 34.0 Mbp on BTA17 (figure 3.1A). Figure 3.1B shows the results of the 

associations for five FA in summer milk samples for this region. 

 

3.3.3 Construction of haplotypes 

The construction of haplotypes was based on the identified QTagSNP in the fine-

mapping of BTA17. These SNP, QTagSNP1 and QTagSNP2, were different for winter 

and summer milk samples. For winter milk samples, QTagSNP1 was 

BovineHD1700008470 (rs109426433) located at 29.92 Mbp, and with minor allele 

frequency (MAF) of 0.47. QTagSNP1 was associated with C6:0 (-log10(P-value) = 

4.90), C8:0 (-log10(P-value) = 6.28), C10:0 (-log10(P-value) = 4.03) and C12:0 (-log10(P-

value) = 1.33). QTagSNP2 was BovineHD1700009150 (rs135934524) located at 32.90 

Mbp, with MAF of 0.44. QTagSNP2 was associated with C6:0 (-log10(P-value) = 2.76), 

C8:0 (-log10(P-value) = 3.27), and C10:0  (-log10(P-value) = 2.24). QTagSNP1 and 

QTagSNP2 showed the strongest associations with C8:0. LD between QTagSNP1 and 

QTagSNP2 was r2 = 0.04. 

 

For summer milk samples, QTagSNP1 was BovineHD1700008490 (rs109290136) 

located at 30.08 Mbp (Figure 3.1B), with MAF of 0.44. QTagSNP1 was associated with 

C6:0  (-log10(P-value) = 6.82), C8:0 (-log10(P-value) = 7.93), C10:0 (-log10(P-value) = 

6.13) and C12:0 (-log10(P-value) = 3.35). QTagSNP2 was BovineHD1700008967 

(rs135465158) located at 32.17 Mbp (Figure 3.1C), with MAF of 0.14. QTagSNP2 was 

associated with C6:0  (-log10(P-value) = 2.82), C8:0 (-log10(P-value) = 3.19), and 

C10:0 (-log10(P-value) = 1.84). QTagSNP1 and QTagSNP2 showed the strongest 

associations with C8:0. LD between QTagSNP1 and QTagSNP2 was r2 = 0.07. LD 
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between QTagSNP1 and all other markers in the fine-mapped region as well as 

significance of association with C8:0 is represented in Additional File 3.2 – figure A. 

LD between QTagSNP2 and all other markers in the fine-mapped region as well as 

significance of association with C8:0 is represented in Additional file 3.2 - figure B. 

LD between QtagSNP1 for winter milk samples and QtagSNP1 for summer milk 

samples was r2 = 0.56; LD among other combinations of QTagSNP based on winter 

or on summer milk samples was low (r2 < 0.10). For both winter and summer milk 

samples, two QTagSNP were identified. These two QTagSNP were used for haplotype 

construction, and this construction resulted in four haplotypes. As QTagSNP were 

not the same in winter and in summer milk samples, different haplotypes were 

constructed for both seasons. 

 

3.3.4 Predicted effects of haplotypes 

Predicted effects of haplotypes are shown in Table 3.2. For winter samples, 

frequencies of haplotypes were 0.33 for A-A, 0.21 for A-G, 0.12 for C-A, and 0.35 for 

C-G. While A-A haplotypes were associated with higher contents of C6:0, C8:0, C10:0, 

C12:0, C14:0 and the index C6:0-C14:0, C-G haplotypes were associated with lower 

contents of these FA and index. The absolute difference between one copy of the 

most contrasting haplotypes (A-A and C-G) was 0.040 for C6:0, 0.039 for C8:0, 0.090 

for C10:0, 0.054 for C12:0, 0.065 for C14:0, and 0.239 for the index C6:0-C14:0. The 

fraction of genetic variance explained by haplotypes was 2.7% for C6:0, 2.8% for 

C8:0, 1.4% for C10:0, 0.5% for C12:0, 0.3% for C14:0, and 0.7% for the index C6:0-

C14:0.  Effects of the C-A haplotype did not differ from effects of the A-G haplotype 

for C6:0, C8:0 and C10:0, while they differed significantly (P-value ≤ 0.05) from 

effects of the C-G haplotype for C8:0. These results suggest that there are two groups 

of haplotypes with distinct effects (A-A, and A-G/C-A/C-G) for C6:0 and C10:0, and 

there are three groups of haplotypes with distinct effects (A-A, C-G, and A-G/C-A) for 

C8:0. 

 

For summer samples, frequencies of haplotypes were 0.44 for A-G, 0.12 for A-A, 0.01 

for C-A, and 0.42 for C-G. While C-G haplotypes were associated with higher contents 

of C6:0, C8:0, C10:0, C12:0, C14:0, and the index C6:0-C14:0, A-G haplotypes were 

associated with lower contents of these FA and index. The absolute difference 

between one copy of the most contrasting haplotypes (C-G and A-G) was 0.048 for 

C6:0, 0.043 for C8:0, 0.102 for C10:0, 0.101 for C12:0, 0.106 for C14:0, and 0.495 for 

the index C6:0-C14:0. The fraction of genetic variance explained by haplotypes was 

0.3% for C4:0, 9.7% for C6:0, 9% for C8:0, 3.5% for C10:0, 1.8% for C12:0, 0.9% for 

C14:0, and 5.0% for the index C6:0-C14:0. 
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In summer samples, predicted effects of the A-G haplotype differed significantly (P-

value ≤ 0.05; table 3.2) from effects of A-A, C-G and C-A haplotypes for C6:0, C8:0, 

C10:0, and the index C6:0-C14:0. Additionally, effects of the A-G haplotype differed 

significantly (P-value ≤ 0.05) from effects of the C-G haplotype for C12:0, and C14:0. 

Effects of the C-G haplotype did not differ from the effects of C-A and A-A haplotypes 

for any of the traits. These results suggest that there are two groups of haplotypes 

with distinct effects (A-G, and A-A/C-A/C-G) for C6:0, C8:0, C10:0, C12:0, C14:0, and 

the index C6:0-C14:0. 

 

3.4 Discussion 

 

In the present study, we refined the location of a QTL first described by Bouwman et 

al. (2012). This QTL seems to influence multiple de novo synthesized FA. We fine-

mapped BTA17 by using imputed 777k SNP genotypes, and by using winter and 

summer milk FA composition. To further characterize the effects associated with this 

genomic region, we constructed haplotypes for each season. 

 

3.4.1 Fine-mapping of BTA17 

The fine-mapping of BTA17 combined high-density SNP genotyping with imputation. 

Imputation was based on a large reference population genotyped with 777k SNP. 

Additionally, the 55 sires belonging to our experimental population were genotyped 

with both 50k and 777k SNP. Our experimental population, which is composed of the 

daughters of the 55 sires, was imputed from 50k to 777k SNP genotypes using Beagle 

(Browning and Browning, 2009). The estimated error of this imputation was below 

1%. Pausch et al. (2013) showed that imputation to high-density genotypes largely 

depends on the size of the reference population. An imputation accuracy of about 

~99% can be obtained when a reference population of more than 400 animals is used 

(Pausch et al., 2013). This is in line with the imputation accuracy obtained in the 

current study. When imputation accuracy is high, GWAS based on imputed 

genotypes can assist in fine-mapping because imputation provides a high-resolution 

view of an associated region, and increases the chance that a causal SNP can be 

directly identified (Marchini and Howie, 2010). In the present study, the number of 

SNP increased by at least 10 times with the imputation of BTA17 from 50k to 777k 

SNP genotypes. 
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Figure 3.1. (A) Fine-mapping of BTA17 for C8:0 in summer milk samples showing genome-wide 

association of imputed 777k (777,000) SNP overlaid with genome-wide association of 50k 

(50,000) SNP genotypes done by Bouwman et al. (2012). The black dotted line is the genome-

wide significance level based on 50k SNP genotypes at a false discovery rate of 0.05 [-log10(P-

value) = 3.63]. A list of candidate genes was added as well as an indication of the location of 

SNP, with the highest significance referred to QTagSNP1 and the SNP with the second highest 

significance referred to QTagSNP2. (B) Fine-mapping of candidate region from 29.0 to 34.0 

Mbp associated with C4:0 to C12:0 on BTA17 (results represent summer samples only). Circle 

indicates QTagSNP1. (C) Fine-mapping of candidate region on BTA17 after the correction for 

QTagSNP1 (results represent summer samples only). Circle indicates QTagSNP2. 

 

 

GWAS by Bouwman et al. (2012) with 50k SNP genotypes identified a QTL associated 

with milk FA composition on BTA17. By fine-mapping BTA17 with the imputed 777k 

SNP genotypes, additional SNP were found to be significantly associated with milk 

FA, and these were more significant than the SNP found by Bouwman et al. (2012). 

In addition, multiple FA showed associations with the same genomic region on 

BTA17, both in winter and in summer milk samples (Additional File 1). We focused 

on the strongest and most consistent associations found in both winter and summer 

milk samples. These associations were identified in this region located between 29-

34 Mbp. Additional analyses in which we extended the region (26- 34 Mbp) showed 

results that were comparable to the ones presented in this paper. 

 

Within this genomic region, summer milk showed more pronounced associations 

than winter milk samples. Duchemin et al. (2013) reported strong genetic 

correlations between winter and summer milk-fat composition of de novo 

synthesized FA (e.g., 0.95 for C6:0, 0.93 for C8:0, and 0.95 for C10:0). These strong 

genetic correlations suggest that de novo FA in winter and in summer milk are 

genetically the same trait. In addition, GWAS by Bouwman et al. (2012) showed that 

many genomic regions associated with milk FA in winter milk could be confirmed in 

summer milk samples (e.g., BTA17). Therefore, it is likely that milk FA composition is 

influenced by similar groups of genes. When studying the effects of DGAT1 

polymorphism on milk-fat composition in winter and summer milk samples, 

Duchemin et al. (2013) concluded that genotypic effects were in the same direction, 

but some of the genotypic effects were larger in summer as compared to winter.  
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 Table 3.2 Predicted effects of haplotypes (frequency given in parenthesis after each haplotype) for de novo synthesized milk fatty acids based on 

1,640 winter milk samples and 1,581 summer milk samples. 
 

Trait 
Winter milk samples σhaplo

2 σa
2⁄  

(%)1 A-A (0.33) A-G (0.21) C-A (0.12) C-G (0.35) 

C4:0 0.000 ± 0.000a 0.000 ± 0.000a  0.000 ± 0.000a  0.000 ± 0.000a 0.0% 

C6:0 0.021 ± 0.010a 0.002 ± 0.010b -0.004 ± 0.011bc -0.019 ± 0.010c 2.7% 

C8:0 0.020 ± 0.009a 0.002 ± 0.009b -0.002 ± 0.010b -0.019 ± 0.009c 2.8% 

C10:0 0.045 ± 0.023a 0.005 ± 0.023b -0.005 ± 0.025bc -0.045 ± 0.023c 1.4% 

C12:0 0.026 ± 0.020a 0.004 ± 0.020ab  0.001 ± 0.022ab -0.028 ± 0.020b 0.5% 

C14:0 0.037 ± 0.028a 0.003 ± 0.028ab -0.012 ± 0.031ab -0.028 ± 0.028b 0.3% 

C6:0-C14:0 0.106 ± 0.084a 0.027 ± 0.085ab  0.000 ± 0.091ab -0.133 ± 0.084b 0.7% 
 

 
Summer milk samples 

 
A-G (0.44) A-A (0.12) C-A (0.01) C-G (0.42) 

C4:0 -0.009 ± 0.009a  0.002 ± 0.010a  0.006 ± 0.011a 0.000 ± 0.009a 0.3% 

C6:0 -0.043 ± 0.021a -0.009 ± 0.022b  0.046 ± 0.027c 0.005 ± 0.021bc 9.7% 

C8:0 -0.035 ± 0.016a -0.003 ± 0.017b  0.030 ± 0.021b 0.008 ± 0.016b 9.0% 

C10:0 -0.068 ± 0.031a  0.003 ± 0.033b  0.030 ± 0.043b 0.034 ± 0.032b 3.5% 

C12:0 -0.049 ± 0.032a  0.003 ± 0.035ab -0.006 ± 0.045ab 0.052 ± 0.033b 1.8% 

C14:0 -0.055 ± 0.039a  0.004 ± 0.044ab  0.000 ± 0.054ab 0.051 ± 0.041b 0.9% 

C6:0-C14:0 -0.329 ± 0.168a  -0.050 ± 0.180b  0.213 ± 0.237b 0.166 ± 0.172b 5.0% 
 

a-c For each trait (i.e., within a row), different letters indicate a significant difference between haplotypes at P ≤ 0.05, using Student’s t-test. 
1σa

2 = σa*
2  +  σhaplo

2 , where σa
2  is the total additive genetic variance,  σa*

2  is the additive genetic variance that remains after accounting for haplotype 

effects, and  σhaplo
2  is the haplotype variance
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Duchemin et al. (2013) concluded that differences between winter and summer milk-

fat composition were likely due to differences in the diets of the cows, and that the 

effects of DGAT1 were scaled. This scaling resulted in significant DGAT1 by season 

interaction, especially for short-chain FA (C4:0 to C14:0). In the present study, similar 

scaling effects might explain the more pronounced associations found in summer as 

compared to winter milk samples. 

 

3.4.2 Construction of haplotypes  

Haplotypes were constructed by first retrieving the most significant SNP within the 

fine-mapped region. This SNP, QTagSNP1, was associated with C8:0. Most of the 

variation in the region was explained by QTagSNP1, but not all. The remaining 

variation was accounted for by QTagSNP2 (results shown for summer samples, 

Figure 3.1B and 3.1C). After adjusting for both QTagSNP, no other significant SNP 

was found. Based on the two QTagSNP, a total of four haplotypes were constructed. 

In summer milk samples, these haplotypes explained almost 10% of the genetic 

variance in C6:0, 9% in C8:0, 3.5% in C10:0, 1.8% in C12:0, and 0.9% in C14:0 (Table 

3.2). When these FA were combined into an index, haplotypes explained 5% of the 

genetic variance in de novo synthesized milk FA (C6:0-C14:0; Table 3.2).After testing 

for differences between these haplotypes, we concluded that estimated effects in 

summer milk for three out of four haplotypes did not differ from each other. 

Therefore, our four haplotypes could be divided in two groups with distinct effects 

on C6:0, C8:0, C10:0, C12:0, C14:0, and the index C6:0-C14:0: A-G versus the 

remaining haplotypes. The existence of two groups of haplotypes with distinct 

effects can be explained by one causal variant, i.e., one QTL. However, we cannot 

exclude the presence of multiple causal variants in strong LD. 

 

The QTL region is associated with multiple de novo synthesized FA. The de novo 

synthesis occurs within the mammary gland of a cow, and is a process that elongates 

precursors by adding C2:0. These precursors originate from blood lipids and can be 

either acetate (C2:0), propionate (C3:0) or butyrate (C4:0). Butyrate in milk may 

originate from de novo synthesis or directly from β-hydroxybutyrate derived from 

the blood (e.g., Craninx et al., 2008). Depending on the precursor, the elongation 

process ends either at C16:0 or at C17:0. Results of the current study show that 

predicted effects of haplotypes increase from C6:0 to C14:0, however, the 

proportion of genetic variance explained by haplotypes decreases from C6:0 to 

C14:0. This increase of haplotype effects tends to be more pronounced in summer 

than in winter milk samples (Table 3.2). These results suggest that our candidate 

gene is involved in the elongation of FA or the early termination of this process 
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(Barber et al., 1997), and it might be up-regulated in summer as compared to winter 

milk samples.  

 

Interestingly, in other species, such as humans, macaques and pigs, this genomic 

region is highly conserved. Further, in dairy cattle breeds, two studies suggested that 

this region on BTA17 contains signatures of selection: Qanbari et al. (2011) identified 

signatures of selection in a region close to the progesterone receptor membrane 

component 2 (PGRMC2 at 29.8Mb) gene; and Stella et al. (2010) in a region close to 

the sprout homolog1, antagonist of FGF signaling (Drosophila) (SPRY1 at 34.7 Mbp) 

gene. Possibly this genomic region is related to a highly conserved evolutionary 

mechanism. 

 

3.4.3 Candidate genes 

Information on candidate genes possibly associated with de novo synthesized FA was 

retrieved from the National Center for Biotechnology Information (NCBI) website. 

The QTL region on BTA17 contains 29 genes, but 18 of these genes have not been 

characterized yet Between QTagSNP1 and QTagSNP2 in summer samples, there are 

11 genes of which five have been characterized (Figure 3.1A). 

 

The gene that has been characterized and is closest to the most significant 

association is PGRMC2, which is located between 29.87 and 29.89 Mbp. This gene 

belongs to the Superfamily cytochrome b5-like heme/steroid binding domain. This 

Superfamily is involved in the fatty acid metabolic process, and oxido-reductase 

activity. In humans, this gene has been associated with breast adenocarcinoma 

(Causey et al., 2011), and it was pointed out as a regulator of cytochrome P450 

enzyme activity (Wendler and Wehling, 2013). By sequencing the mRNA found in 

milk fat layer, Lemay et al. (2013) showed that PGRMC2 is expressed in humans 

throughout the lactation, which included colostrum, transitional and mature milk.  

In cattle, PGRMC2 has been associated with fertility. Kowalik et al. (2013) showed 

that expression of PGRMC2 mRNA in the bovine endometrium was higher in the first 

trimester of pregnant cows as compared to cyclic animals. However, the translation 

of PGRMC2 mRNA in protein within the bovine endometrium was not different 

between cyclic and pregnant cows. In our study, cows in winter and summer 

sampling period were in a different stage of lactation (average of 166 days in winter 

and average of 247 days in summer samples), and probably at different stages of 

pregnancy. This might be a reason for the more pronounced associations found in 

summer milk samples. Therefore, we performed additional analyses in which we 

investigated interactions between stage of lactation and our QTagSNPs in both 
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seasons. None of these interactions were significant (results not shown). Bionaz et 

al. (2012) showed that PGRMC2 is expressed during lactation in bovine mammary 

tissue. PGRMC2 has not been associated with milk FA composition in dairy cattle. 

 

Of the genes located within our QTL region, Bionaz et al. (2012) showed that four 

other genes are highly expressed during lactation in bovine mammary tissue: 

UPF0462 protein C4orf33-like (LOC513251), sodium channel and clathrin linker 1 

(SCLT1), la-related protein 1B-like (LOC515517), and chromosome 17 open reading 

frame, human C4orf29 (C17H4orf29). The location in Mbp for these genes is between 

29.10-29.12 for LOC513251, between 29.12-29.35 for SCLT1, between 30.03-30.07 

for LOC515517, and between 30.10-30.13 for C17H4orf29. By sequencing the mRNA 

found in milk fat layer, Lemay et al. (2013) showed in humans that C17h4orf33 

(validated LOC513251 gene in humans), LARP1B (validated LOC515517 gene in 

humans), and C17H4orf29 are expressed during all stages of lactation. These four 

genes have not yet been associated to milk FA composition. 

 

In the present paper, we refined the location of a QTL, which is associated with 

multiple de novo synthesized milk FA, to a region between 29.0 and 34.0 Mbp on 

BTA17. We characterized the effects associated with this region by constructing 

haplotypes, and identified candidate genes possibly related to this QTL. 

 

3.5 Conclusions 

 

The fine-mapping of BTA17 improved the location of a QTL associated with multiple 

de novo synthesized milk FA. In summer milk samples, this QTL region explained a 

large proportion of the genetic variance in these FA individually (e.g., 10% in C6:0). 

When all de novo synthesized milk FA were combined into an index, this QTL region 

explained 5% of the genetic variance. This QTL region seems to be involved in either 

the elongation process of the de novo FA synthesis or in the early termination of this 

process. In addition, the effects of this QTL region are bigger in summer as compared 

to winter milk samples. Candidate genes associated with milk FA composition could 

not be clearly identified for this QTL because the QTL region on BTA17 is still being 

characterized. A characterized gene that might be of interest within the QTL region 

is PGRMC2.  
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Supplementary Figure 3.1. Fine-mapping of BTA17 with imputed 777k SNP genotypes overlaid 

between winter and summer samples for 14 FA. The marked region between black dotted 

lines (29.0 to 34.0 Mbp) is the region we focused on to refine the location of the QTL. 
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Supplementary Figure 3.2. (A) Fine-mapping of candidate region from 29.0 to 34.0 Mbp 

associated with C8:0 on BTA17 (results represent summer samples only). Circle indicates 

QTagSNP1. Linkage disequilibrium (LD), measured as r2, between QTagSNP1 and all other 

markers for the trait is represented as a gradient of colors. (B) Fine-mapping of candidate 

region associated with C8:0 on BTA17, after the correction for QTagSNP1 (results represent 

summer samples only). Circle indicates QTagSNP2. LD, measured as r2, between QTagSNP2 

and all other markers for the trait is represented as a gradient of colors. 

 

 



3 Fine mapping of BTA17 

 

70 

 

3.8 References 

 

Barber, M. C., R. A. Clegg, M. T. Travers, and R. G. Vernon. 1997. Lipid metabolism in 

the lactating mammary gland. Biochim. Biophys. Acta. 1347:101–126 

Bionaz, M., K. Periasamy, S. L. Rodriguez-Zas, W. L. Hurley, and J. J. Loor. 2012. A 

novel dynamic impact approach DIA for functional analysis of time-course omics 

studies: validation using the bovine mammary transcriptome. PLoS ONE.7: e32455 

Boichard, D., and M. Brochard. 2012. New phenotypes for new breeding goals in 

dairy cattle. Animal. 6:544-550. 

Bouwman, A., M. H. P. W. Visker, J. A. M. van Arendonk, and H. Bovenhuis. 2012. 

Genomic regions associated with bovine milk fatty acids in both summer and 

winter milk samples. BMC Genet. 13:93. 

Browning, B. L., and S. R. Browning. 2009. A unified approach to genotype imputation 

and haplotype-phase inference for large data sets of trios and unrelated 

individuals. Am. J. Hum. Genet. 84:210-223. 

Causey, M. W., L. J. Huston, D. M. Harold, C. J. Charaba, D. L. Ippolito, Z. S. Hoffer, T. 

A. Brown, and J. D. Stallings. 2011. Transcriptional analysis of novel hormone 

receptors PGRMC1 and PGRMC2 as potential biomarkers of breast 

adenocarcinoma staging. J. Surg. Res. 171:615-622. 

Chilliard, Y., A. Ferlay, R. M. Mansbridge, and M. Doreau. 2000. Ruminant milk fat 

plasticity: Nutritional control of saturated, polyunsaturated, trans and conjugated 

fatty acids. Ann. Zootech. 49:181–206. 

Duchemin, S., H. Bovenhuis, W. M. Stoop, A. C. Bouwman, J. A. M. van Arendonk, 

and M. H. P. W. Visker. 2013. Genetic correlation between composition of bovine 

milk fat in winter and summer, and DGAT1 and SCD1 by season interactions. J. 

Dairy Sci. 96:592-604. 

Gilmour, A. R., B. Gogel, B. Cullis, and R. Thompson. 2009. ASReml user guide release 

3.0. VSN International Ltd, Hemel Hempstead, UK. 

Hinds, D. A., L. L. Stuve, G. B. Nilsen, E. Halperin, E. Eskin, D. G. Ballinger, K. A. Frazer, 

and D. R. Cox. 2005. Whole-genome patterns of common DNA variation in three 

human populations. Science. 307:1072-1079. 

Ishii, A., K. Yamaji, Y. Uemoto, N. Sasago, E. Kobayashi, N. Kobayashi, T. Matsuhashi, 

S. Maruyama, H. Matsumoto, S. Sasazaki, and H. Mannen. 2013. Genome-wide 

association study for fatty acid composition in Japanese Black cattle. Anim. Sci. J. 

84:675-682. 

Jensen, R. G. 2002. The composition of bovine milk lipids: January 1995 to December 

2000. J. Dairy Sci. 85:295-350. 



3 Fine mapping of BTA17 

71 

 

Kowalik, M. K., D. Slonina, R. Rekawiecki, and J. Kotwica. 2013. Expression of 

progesterone receptor membrane component (PGRMC) 1 and 2, serpine mRNA 

binding protein 1 (SERBP1) and nuclear progesterone receptor (PGR) in the bovine 

endometrium during the estrous cycle and the first trimester of pregnancy. 

Reprod. Biol. 13:15-23. 

Lemay, D. G., O. A. Ballard, M. A. Hughes, A. L. Morrow, N. D. Horseman, and L. A. 

Nommsen-Rivers. 2013. RNA sequencing of the human milk fat layer 

transcriptome reveals distinct gene expression profiles at three stages of lactation. 

PLoS ONE 8:e67531. 

Marchini, J., and B. Howie. 2010. Genotype imputation for genome-wide association 

studies. Nat. Rev. Genet. 11:499-511. 

Palmquist, D. L. 2006. Milk fat: Origin of fatty acids and influence of nutritional 

factors thereon. Pages 43–92 in Advanced Dairy Chemistry: Lipids. Vol. 2. P. F. Fox 

and P. L. H. McSweeney, ed. Springer, New York, USA. 

Pausch, H., B. Aigner, R. Emmerling, C. Edel, K.-U. Götz, and R. Fries. 2013. Imputation 

of high-density genotypes in the Fleckvieh cattle population. Genet. Sel. Evol. 45:3. 

Purcell, S., B. Neale, K. Todd-Brown, L. Thomas, M. A. Ferreira, D. Bender, J. Maller, 

P. Sklar, P. I. De Bakker, and M. J. Daly. 2007. PLINK: a tool set for whole-genome 

association and population-based linkage analyses. Am. J. Hum. Genet. 81:559-

575. 

Qanbari, S., D. Gianola, B. Hayes, F. Schenkel, S. Miller, S. Moore, G. Thaller, and H. 

Simianer. 2011. Application of site and haplotype-frequency based approaches for 

detecting selection signatures in cattle. BMC Genomics 12:318. 

Schennink, A., J. M. L. Heck, H. Bovenhuis, M. H. P. W. Visker, H. J. F. van Valenberg, 

and J. A. M. van Arendonk. 2008. Milk fatty acid unsaturation: genetic parameters 

and effects of stearoyl-coa desaturase (SCD1) and acyl coa: diacylglycerol 

acyltransferase 1 (DGAT1). J. Dairy Sci. 91:2135-2143. 

Schennink, A., W. Stoop, M. Visker, J. Heck, H. Bovenhuis, J. Van Der Poel, H. Van 

Valenberg, and J. Van Arendonk. 2007. DGAT1 underlies large genetic variation in 

milk‐fat composition of dairy cows. Anim. Genet. 38:467-473. 

Stella, A., P. Ajmone-Marsan, B. Lazzari, and P. Boettcher. 2010. Identification of 

selection signatures in cattle breeds selected for dairy production. Genetics. 

185:1451-1461. 

Stoop, W. M., J. A. M. van Arendonk, J. M. L. Heck, H. J. F. van Valenberg, and H. 

Bovenhuis. 2008. Genetic parameters for major milk fatty acids and milk 

production traits of Dutch Holstein-Friesians. J. Dairy Sci. 91:385-394. 



3 Fine mapping of BTA17 

 

72 

 

Wendler, A., and M. Wehling. 2013. PGRMC2, a yet uncharacterized protein with 

potential as tumor suppressor, migration inhibitor, and regulator of cytochrome 

P450 enzyme activity. Steroids.78:555-558. 

Wilmink, J. B. M. 1987. Adjustment of test-day milk, fat and protein yield for age, 

season and stage of lactation. Livest. Prod. Sci. 16:335-348. 

Zimin, A. V., A. L. Delcher, L. Florea, D. R. Kelley, M. C. Schatz, D. Puiu, F. Hanrahan, 

G. Pertea, C. P. Van Tassell, and T. S. Sonstegard. 2009. A whole-genome assembly 

of the domestic cow, Bos taurus. Genome Biol. 10:R42. 

 

 



 

 

 

 
 

 
 
 
 

 

4 
 

Fine-mapping of BTA17 using imputed 

sequences for associations with de novo 
synthesized fatty acids in bovine milk 

 
 

 
 

 
 
 

 
 

S. I. Duchemin1,2, H. Bovenhuis1, H-J. Megens1, J. A. M. Van Arendonk1, M. H. P. W. 

Visker1 

 
1 Animal Breeding and Genomics Centre, Wageningen University, PO Box 338, 6700 

AH Wageningen, the Netherlands; 2 Department of Animal Breeding and Genetics, 

Swedish University of Agricultural Sciences, Uppsala, Sweden 

 

(Manuscript in preparation)



 

74 
 

Abstract 

 

A genomic region associated with milk fatty acids on Bos taurus autosome (BTA) 17 

has been discovered with 50,000 (50k) SNP and characterized with imputed 777,000 

(777k) SNP genotypes. The aim of this study was to characterize this genomic region 

using imputed whole-genome sequences (WGS) and identify candidate genes 

associated with milk fatty acids (FA) composition on BTA17. Phenotypes and 

genotypes were available for 1,905 cows sampled in winter, and for 1,795 cows 

sampled in summer. Phenotypes consisted of gas chromatography measurements of 

6 FA in winter and in summer milk samples. Genotypes consisted of imputed 777k 

SNP, and 89 sequenced founders of our population of cows. In addition, 450 WGS 

from the 1,000 bull genome consortium were available. Using 495 Holstein-Friesians 

sequences as reference population, we imputed the imputed 777k SNP genotyped 

cows to sequence level. Single-marker analyses were run with an animal model, and 

many significant associations with C6:0, C8:0, C10:0, C12:0 and C14:0 were 

identified. For example, for C8:0, a total of 1,182 significant associations in winter 

milk samples, and a total of 1,943 significant associations in summer milk samples 

were identified. Similar results were identified for all 6 FA. For C8:0 in summer milk 

samples, the genomic region located between 29 and 34 mega base-pairs on BTA17 

revealed a total of 608 significant associations. The most significant association (–

Log10(P-value) = 7.66) was found for 8 SNP in perfect linkage disequilibrium. After 

fitting one of these 8 SNP as a fixed effect in the model, and re-running the single-

marker analyses, no further significant associations were found. In the QTL region 

located between 29 and 34 mega base-pairs, a total of 14 genes could be identified. 

Six out of the 8 SNP in perfect LD were located in the LA ribonucleoprotein domain 

family, member 1B (LARP1B) gene. This primary candidate gene has not been 

associated with milk-fat composition yet. 

 

Key words: QTL, candidate genes, sequences, LARP1B 
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4.1 Introduction 

 

Bovine milk-fat is an important source of energy in human diets. The main bioactive 

lipids in bovine milk are fatty acids (FA). FA from bovine milk have important 

biological activities regarding the cell and tissue metabolism, as well as 

responsiveness to hormones and other signals in human cells (Calder, 2015). 

Previous studies on milk FA composition have indicated that amounts of individual 

FA in bovine milk are heritable (e.g., Duchemin et al., 2013). Heritability estimates 

range from 0.22 to 0.71 in Dutch Holstein-Friesian cows (Stoop et al., 2008). These 

findings suggested there is high genetic variability in the content of many individual 

FA in bovine milk.  

 

Supporting these findings, polymorphisms in the acyl-CoA: diacylglycerol (DGAT1) 

and in the stearoyl-CoA desaturase1 (SCD1) genes have been associated with milk 

FA composition (e.g., Moioli et al, 2007; Schennink et al., 2007, 2008). In addition, 

Bouwman et al. (2012) identified many promising genomic regions associated with 

individual FA in bovine milk, when performing a genome-wide association study 

(GWAS) with 50,000 single-nucleotide polymorphism (SNP) genotypes. One of these 

regions located on Bos taurus autosome (BTA) 17 was fine-mapped with imputed 

777,000 SNP (777k) genotypes, and significant associations with short-chain de novo 

synthesized FA have been identified (Duchemin et al., 2014). Furthermore, other 

studies have helped characterize BTA17. In Danish Holsteins, Buitenhuis et al. (2014) 

performed a GWAS identifying a QTL on BTA17 associated with conjugated linoleic 

acid (CLA). In Fleckvieh cattle breed, Pausch et al. (2012) performed a GWAS 

identifying a genomic region on BTA17 associated with supernumerary teats, and 

this genomic region has been associated with the absence of teats in Japanese Black 

cattle (Ihara et al., 2007). In Bubalus bubalis, Venturini et al. (2014) performed a 

GWAS on milk production traits and identified significant associations with milk 

production traits (i.e., milk yield, fat yield and protein yield) on BTA17 (note: BTA17 

is used as a one-to-one correspondence to BBU17 in buffaloes). Despite the attempts 

to characterize BTA17 with a limited annotation of the cattle genome and genetic 

markers separated by more than 4 mega-base pairs in most cases, it is still difficult 

to identify the causal variants underlying the identified QTL. 

 

With the advent of whole-genome sequences (WGS) in cattle, causal variants 

underlying QTL should be identified more easily with GWAS. WGS should contain the 

polymorphisms causing the genetic differences between individuals (Meuwissen and 

Goddard, 2010). To overcome the high-costs associated with WGS, Druet et al. 
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(2014) proposed to sequence influential ancestors of a population, and impute the 

rest of this population to sequence level. A GWAS using imputed WGS was first 

implemented by Daetwyler et al. (2014). Their study successfully mapped previously 

identified QTL affecting milk production traits and curly coat in cattle. Therefore, 

GWAS using imputed WGS can be used successful in (fine) mapping complex traits.  

 

GWAS by Bouwman et al. (2012) identified a QTL region on BTA17 influencing C6:0, 

C8:0 and C10:0 FA. This genomic region was further characterized by Duchemin et 

al. (2014), and their findings suggested that this QTL region influenced multiple 

short-chain FA (C6:0 to C12:0) in a similar location on BTA17. Although candidate 

genes have been suggested for this QTL region, no causal variant for this QTL has 

been identified yet. The aim of this study was to use imputed WGS to identify the 

causal variant underlying the QTL on BTA17 associated with multiple short-chain FA 

previously identified by Bouwman et al. (2012), and fine-mapped by Duchemin et al. 

(2014). 

 

4.2 Material and Methods 

 

4.2.1 Animals and phenotypes 

Morning milk (500mL/cow) was sampled from 2,001 primiparous Holstein-Friesian 

cows belonging to 398 herds throughout the Netherlands. These samples were 

collected in two periods: February-March 2005 (referred to as winter samples) and 

May-June 2005 (referred to as summer samples). For each herd, most of the cows 

were sampled in both periods. However, some cows sampled in winter were no 

longer in lactation in summer. Consequently, additional cows were sampled in 

summer to ensure that at least 3 cows per herd were sampled in both periods. For 

winter milk samples, phenotypes were available on 1,905 cows, and their lactation 

stages ranged from 63 to 282d (see Stoop et al., 2008). For summer milk samples, 

phenotypes were available on 1,795 cows, and their lactation stages ranged from 97 

to 335d (see Duchemin et al., 2013). During the winter, all cows were kept indoors 

and fed silage, while in summer 50% of the cows could graze pasture (3.5 to 24h/d). 

More information on the experimental design is available in Stoop et al. (2008). 

 

Milk FA were measured by gas chromatography at the COKZ laboratory (Qlip, 

Leudsen, Netherlands). The milk FA included in this study were C4:0, C6:0, C8:0, 

C10:0, C12:0, and C14:0, and they were expressed as weight proportion of total fat 

(%wt/wt). For more information regarding phenotypes, see Stoop et al. (2008). 
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4.2.2 Genotypes and variant calling 

Blood from cows and semen from bulls were sampled to retrieve DNA for genotyping 

purposes. First, a total of 55 sires (founders) and 1,813 cows (experimental 

population) were genotyped with a 50k SNP chip designed by CRV (Arnhem, the 

Netherlands) with the Illumina Infinium array (Illumina Inc., San Diego, CA). Second, 

777k SNP genotypes were imputed for the 1,813 cows, based on their 50k SNP 

genotypes and a reference population of 1,333 animals including the 55 founder 

sires genotyped with the 777k SNP chip (Illumina). See Duchemin et al., (2014) for 

details. The imputation resulted in 1,736 cows imputed to 777k SNP genotypes. From 

these 1,736 animals, some animals were removed from the data: 12 animals because 

of pedigree inconsistencies, and, subsequently, 3 animals that did not meet the 

criteria of a minimum of 3 animals sampled per herd. Therefore, 777K SNP genotypes 

were available for 1,721 cows. For BTA17, the target of the present study, the data 

consisted of a total of 22,240 imputed SNP genotypes for each of the 1,721 cows. 

Third, the 55 founder sires and 34 influential ancestors (grand-sires) of the 

experimental population (MGI) were sequenced. These 89 ancestors were 

sequenced with the HiSeq® 2000 Sequencing System (Illumina Inc., San Diego, CA). 

All downstream analyses were performed according to the protocols described by 

Daetwyler et al., (2014). Multi-sample variant calling was done using the 

UnifiedGenotyper implemented in GATK, following the procedures as explained by 

Daetwyler et al., (2014). The resulting raw VCF files were filtered for exclusion of 

duplicates, resulting in 854,779 called sites for BTA17. 

 

In addition, 450 WGS from Holstein-Friesian cows and bulls were available from Run5 

of the 1000 Bull Genome Consortium (RUN5; Daetwyler et al., 2014). These 450 WGS 

included the re-sequenced 44 out of the 55 founder sires. All positions of the variants 

on sequences were aligned to the bovine genome assembly UMD3.1 (Zimin et al., 

2009). SNP and indels at same base-pairs positions were excluded because of 

alignment and sequencing problems. For further details on alignment, variant calling 

and filtering, see Daewytler et al. (2014). For BTA17, a total of 1,157,678 sites were 

available for each of the 450 sequenced animals. 

 

4.2.3 Imputation 

We created a reference population containing both MGI and RUN5 WGS. This 

reference population consisted of imputing the 45 MGI WGS to the level of the 450 

RUN5 WGS to equalize the number of sites. Comparison of called sites for BTA17 

between the 45 MGI and the 450 RUN5 WGS showed that 495,726 called sites 
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overlapped, and 661,952 sites in the RUN5 WGS were not called in MGI WGS. These 

661,952 sites were set to missing in the 45 MGI WGS and imputed based on the 450 

RUN5 WGS. Imputation was done using Beagle version 4.0 (Browning and Browning, 

2007). After imputation, the 45 MGI WGS were combined with the 450 RUN5 WGS, 

resulting in a reference population of 495 Holstein-Friesian animals with 1,157,678 

sites for BTA17. 

 

Inconsistencies between 777K SNP genotypes and WGS sites of the reference 

population were checked using the Conform-gt software 

(https://faculty.washington.edu/browning/conform-gt.html). Three hundred and 

eighty three SNP were inconsistent sites due to strand problems, and 1,481 SNP 

showed different positions between the 777k SNP genotypes and in the WGS. These 

inconsistencies were set to missing and imputed to WGS. All BTA17 WGS sites were 

imputed for the 1,721 cows with Beagle version 4.0 based on their imputed 777K 

SNP genotypes and the reference population of 495 animals with WGS. The accuracy 

of imputation for each marker was provided by Beagle as the bi-allelic r2 (AR2). Only 

polymorphic markers with an AR2 ≥ 0.8 were retained for the remaining analyses. 

 

4.2.4 Fine-mapping of BTA17 with imputed sequences 

The fine-mapping of BTA17 with imputed sequences was performed in Asreml 4.0 

(beta version, Gilmour et al., 2009), and consisted of two steps. For the first step, we 

ran single-variant analyses for each FA with all polymorphic variants imputed with 

an AR2 ≥ 0.8, using the following animal model:  

 

𝑦𝑖𝑗𝑘𝑙𝑚𝑛𝑜 = µ + 𝑏1 ∗ 𝑑𝑖𝑚𝑖𝑗𝑘𝑙𝑚𝑛𝑜 + 𝑏2 ∗ 𝑒
𝑖

−0.05∗𝑑𝑖𝑚𝑖𝑗𝑘𝑙𝑚𝑛𝑜 + 𝑏3 ∗ 𝑎𝑓𝑐𝑖𝑗𝑘𝑙𝑚𝑛𝑜 + 𝑏4 ∗ 𝑎𝑓𝑐𝑖𝑗𝑘𝑙𝑚𝑛𝑜
2

+ 𝑠𝑒𝑎𝑠𝑜𝑛𝑘 + 𝑠𝑐𝑜𝑑𝑒𝑙 + 𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑚 + ℎ𝑒𝑟𝑑𝑛 + 𝑎𝑜 + 𝑒𝑖𝑗𝑘𝑙𝑚𝑛𝑜  [1] 

 

where, 𝑦𝑖𝑗𝑘𝑙𝑚𝑛𝑜 is the phenotype; 𝑏1 and 𝑏2 are the regression coefficients regarding 

𝑑𝑖𝑚𝑖𝑗𝑘𝑙𝑚𝑛𝑜; 𝑑𝑖𝑚𝑖𝑗𝑘𝑙𝑚𝑛𝑜  is the fixed effect of days in milk modelled by a Wilmink’s 

curve (Wilmink, 1987); 𝑏3 and 𝑏4 are the regression coefficients regarding 

𝑎𝑓𝑐𝑖𝑗𝑘𝑙𝑚𝑛𝑜; 𝑎𝑓𝑐𝑖𝑗𝑘𝑙𝑚𝑛𝑜 is the fixed effect of age at first calving; 𝑠𝑒𝑎𝑠𝑜𝑛𝑘  is the fixed 

effect of calving season (June-August 2004, September-November 2004 or 

December 2004 – February 2005); 𝑠𝑐𝑜𝑑𝑒𝑙 is the fixed effect accounting for genetic 

differences between groups of proven bull daughters and young bull 

daughters; 𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑚  is the fixed effect of a variant; ℎ𝑒𝑟𝑑𝑚 is the random effect of 

herd assumed to be distributed as 𝑁 ~ (0, 𝑰𝜎ℎ𝑒𝑟𝑑
2 ), where I is the identity matrix and 

𝜎ℎ𝑒𝑟𝑑
2  is the herd variance; 𝑎𝑛 is the random additive genetic effect of animal 
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assumed to be distributed as 𝑁 ~ (0, 𝑨𝜎𝑎
2), where A is the additive relationship 

matrix based on 12,548 animals and 𝜎𝑎
2 is the additive genetic variance; and 𝑒𝑖𝑗𝑘𝑙𝑚𝑛 

is the random residual effect assumed to be distributed as 𝑁 ~ (0, 𝑰𝜎𝑒
2), where I is 

the identity matrix and 𝜎𝑒
2 is the residual variance. 

 

Variance components were estimated based on model [1] prior to the inclusion of 

information on genetic markers, and these variance component estimates were 

subsequently fixed within model [1].  

 

The strongest association found in the first step was named as “TagSNP1”. For the 

second step, TagSNP1 was added as a fixed effect in model [1], and single-variant 

analyses were re-run for each FA with all polymorphic variants imputed with an AR2 

≥ 0.8. 

 

Manhattan plots illustrating significance of associations were produced in R (R Core 

Team, 2015). In addition, linkage disequilibrium (B) between TagSNP1 and all 

polymorphic SNP imputed with an AR2 ≥ 0.8 was calculated using PLINK version 1.9 

(Purcel et al., 2007). 

 

4.2.5 Candidate genes and causal variants 

Candidate genes were assessed with the online tool variant effect predictor (Ve!P; 

McLaren et al., 2010) available through Ensembl (http://www.ensembl.org). This 

tool determines the effects of SNP, insertions, deletions, copy number variants and 

structural variants on either genes, transcripts, proteins or regulatory regions.  

 

4.3 Results 

 

4.3.1 Descriptive statistics 

The phenotypic means and heritability estimates for the 6 studied FA are presented 

in Table 4.1. In both samples, C14:0 was the most abundant FA. Heritability estimates 

were higher in winter milk samples in comparison with summer milk samples, 

especially for C8:0 and C10:0. Phenotypic means and heritability estimates of these 

6 FA in winter and summer milk samples have been discussed in detail by Duchemin 

et al. (2013). 

 

4.3.2 Imputation 

To enable combining the MGI WGS with the RUN5 WGS into one reference 

population, the 661,952 sites that were not called in the 45 MGI WGS were imputed  

http://www.ensembl.org/
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Figure 4.1 – (A) Fine-mapping of BTA17 for C8:0 in summer milk samples showing the genome-
wide association of imputed sequences with an accuracy of imputation (AR2) ≥ 0.8 overlaid 
with imputed 777k (777,000) SNP genotypes done by Duchemin et al. (2014). The red dotted 
line is the genome-wide significance level based on 50,000 SNP genotypes at a false discovery 
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rate of 0.05 [-Log10(P-value)=3.63]. The vertical red lines indicate the location of the QTL region 
previously identified by Duchemin et al. (2014). The SNP with the highest significance is 
referred to as TagSNP1. (B) Fine-mapping of BTA17 for C8:0 in summer milk samples showing 
the genome-wide association of imputed sequences with AR2 ≥ 0.8 after correction for 
TagSNP1. 
 
 

based on the 450 RUN5 WGS. The average accuracy of imputation for these 661,952 

sites was equal to 0.97. Based on the reference population of 495 WGS, all 1,157,678 

sites on BTA17 were imputed for the 1,721 cows. As Table 4.2 shows, 58.6% of these 

sites were monomorphic variants in our data set, and have been excluded from our 

analyses. The remaining 41.4% were polymorphic variants. From these 41.4% 

polymorphisms, a total of 356,044 (30.8%) were imputed with AR2 ≥ 0.8 (average 

accuracy = 0.96). All polymorphisms imputed with AR2 ≥ 0.8 were considered for our 

fine-mapping of BTA17 with imputed sequences. 

 

4.3.3 Fine-mapping of BTA17 with imputed sequences  

Associations were analyzed for each of the 6 FA separately for winter and summer 

milk samples. We analyzed these phenotypes for both samples combined with all 

356,044 imputed sequence variants of BTA17 imputed with AR2 ≥ 08 (supplementary 

figure 4.1 A, B, C and D). We focus on C8:0 because associations were found in a 

similar location for all 6 FA in both samples, and the strongest of these associations 

was identified with C8:0. For C8:0, an association was significant at –Log10(P-value)= 

3.63. This threshold was defined by Bouwman et al. (2012), and corresponds to the 

genome-wide significance level based on the 50k SNP genotypes at a false discovery 

rate (FDR) of 5%. For C8:0 in winter milk samples, we identified 1,182 significant 

associations on BTA17 at a –Log10(P-value) > 3.63.  

 

For C8:0 in summer milk samples, we identified 1,943 significant associations on 

BTA17 (–Log10(P-value) > 3.63). Of these significant associations, 608 were located 

within the previously defined QTL region (Duchemin et al., 2014) between 29 and 34 

MBP (Figure 4.1A). A set of 8 SNP in perfect LD showed the strongest association 

with C8:0 in summer milk samples at a –Log10(P-value) = 7.66. One of these 8 SNP 

was defined as TagSNP1. TagSNP1 (rs110127535) had a MAF of 0.44 and was 

imputed with an AR2 = 0.98. TagSNP1 was added as fixed effect in model 1, and 

associations were analyzed again between each of the 6 FA in both winter and 

summer samples and all 356,044 imputed sequence variants of BTA17 with AR2 ≥ 

0.8. No significant associations were found after adjusting for the TagSNP1 for any 
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of the 6 FA in winter or summer milk samples (Figure 4.1B, Supplementary figure 

4.1B). 

 

4.3.4 Candidate genes 

The QTL region located between 29 and 34 MBP on BTA17 contains 14 genes based 

on the current annotation of the cattle genome (table 4.3). These 14 genes are: 

chromosome 4 open reading frame 33 (C4orf33) gene, sodium channel and clathrin 

linker 1 (SLCT1) gene; jade family PHD finger 1 (JADE1) gene; progesterone receptor 

membrane component 2 (PGRMC2) gene; LA ribonucleoprotein domain family, 

member 1B (LARP1B) gene; U2 spliceosomal RNA (U2) gene, the abhydrolase 

domain containing 18 (ABHD18 former C4orf29) gene; small nucleolar RNA 

SNORA42/SNORA80 family (SNORA42) gene; major facilitator superfamily domain 

containing 8 (MFSD8) gene, the polo-like kinase 4 (PLK4) gene; solute carrier family 

25 member 31 (SLC25A31) gene; inturned planar cell polarity protein (INTU) gene; 

and FAT atypical cadherin 4 (FAT4) gene. In addition, Ve!P was used on the 608 

variants including TagSNP1, and these variants were distributed as indicated in figure 

4.2. 

 

Of the 8 SNP that showed the strongest association: 2 SNP were intergenic, 3 SNP 

were upstream gene variants of the LARP1B gene, and 3 SNP were intron variants in 

the LARP1B gene. The splice-region variant (rs110862734) is located at 29.94 MBP in 

the LARP1B gene [-Log10(P-value) for association with C8:0 in summer milk = 6.18; LD 

with 8 most significantly associated SNP = 0.92]. 

 

 
 

Figure 4.2 – Distribution of the 608 significant variants according to their functions and their 

coding consequences.  
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4.4 Discussion  

 

The fine-mapping of BTA17 was first performed by Duchemin et al. (2014), in which 

the de novo synthesized FA in winter and summer milk samples were analyzed with 

imputed 777k SNP genotypes. Their study identified two intergenic SNP associated 

with multiple FA in a QTL region located between 29 and 34 mega base-pairs on 

BTA17. In the present work, 6 of the FA studied by Duchemin et al. (2014) have been 

considered. Our goal was to identify the causal variant underlying this QTL region, 

and to characterize this QTL region with recent information on candidate genes. 

 

4.4.1 Fine-mapping of BTA17 with imputed sequences 

The fine-mapping of BTA17 with imputed sequences identified many significant 

associations with the 6 studied FA. In agreement with Duchemin et al. (2014), 

multiple FA showed strong signals at a similar location on BTA17. These multiple FA 

were the de novo synthesized FA in the mammary gland of a cow. It is assumed that 

de novo synthesis elongates FA by adding C2:0 to precursors, such as C2:0, C3:0 and 

C4:0. Depending on which precursors, the elongation of FA is assumed to end at 

either C16:0 or C17:0. The origin of these precursors in the mammary gland of a cow 

varies: C2:0 and C3:0 are originated mainly from blood lipids, while C4:0 can either 

arise from blood lipids or be de novo synthesized (e.g., Craninx et al, 2008). In the 

present study, C4:0 does not seem to be influenced by this QTL region, while this QTL 

region seems to influence the other 5 FA. With imputed sequences, it was possible 

to observe that the QTL region does not only influences C6:0, C8:0 and C10:0, but 

also C12:0 and C14:0 (Supplementary file 1). Although the signals were weaker for 

C12:0 and C14:0, their signals overlap with the remaining FA in the QTL region for 

winter and summer milk samples (Supplementary file 1A and B). 

 

Whole-genome sequences (WGS) should contain all of the causal variants underlying 

complex traits. On BTA17, the density of markers increased by more than 20 times 

from imputed 777k SNP genotypes to sequence level. With this increased density, 

more associations became significantly associated with the 6 studied FA: from less 

than 100 using imputed 777k SNP genotypes to more than a thousand with sequence 

data. For instance, 8 SNP were in perfect LD, and represent our strongest 

associations with C8:0 in summer milk samples. Duchemin et al. (2014) using 

imputed 777k SNP genotypes identified only one top SNP, and at a higher 

significance level than the eight SNP identified by this study. In the present study, we 

imputed to sequence level the already imputed 777k SNP genotypes. With sequence 

data, the extent of LD among SNP is conversed at 5-10kb in Bos Taurus breeds (e.g., 
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Gibbs et al., 2009). According to Weiss and Terwilliger (2000), the distribution of LD 

shows stochastic variance, which tends to be highly skewed under certain conditions, 

as described by Terwilliger (2001). As a consequence, some parts of the genome will 

exhibit regions of long LD, while most SNP will exhibit less LD than predicted by lower 

density panels of genetic markers. If this is the case, it is possible that the imputation 

overestimated the extent of LD between genetic markers, and therefore, the effect 

of the top SNP with imputed 777k SNP is likely overestimated in comparison with 

sequence data. Other GWAS using imputed sequences have identified a considerable 

number of significant variants closely linked to each other (e.g., Daetwyler et al., 

2014; Sahana et al., 2014). In addition, single-marker analyses assume that each 

marker contributes independently to the genetic variance. Taken together, these 

findings might explain why Duchemin et al. (2014) obtained better significance level 

for their top SNP than in the present study.  

 

TagSNP1 seems to explain most of the genetic variation in a region distributed over 

almost 20 MBP on BTA17 (Figure 4.1B). The QTL region identified in the present study 

is wider than the 5 MBP QTL region narrowed by Duchemin et al. (2014). The present 

study confirms the multiple FA that were found associated with a similar QTL region 

and the strongest association that was found with C8:0, both by Duchemin et al. 

(2014). Study conducted by Govignon-Gion et al. (2014) found a QTL region on BTA17 

associated with C4:0 and C6:0 when performing GWAS with imputed 500K SNP 

genotypes for three different breeds of dairy cattle. This QTL region was present in 

the three breeds, and the strongest associations were identified with C4:0. In our 

study, C4:0 in winter and summer milk samples was not significantly associated with 

our QTL region. The main difference between Govignon-Gion et al. (2014) and the 

present study is the method of measurement of fatty acids. Our 6 studied FA were 

measured by gas chromatography for both winter and summer milk samples, 

whereas the FA studied by Govignon-Gion et al. (2014) were measured by mid-

infrared spectrometry. This might explain the observed differences between the 

studies. 

 

Previously for the same QTL region, Bouwman et al. (2012) identified 10 significant 

SNP with 50k SNP genotypes, and Duchemin et al. (2014) identified 83 significant 

SNP with imputed 777k SNP genotypes for C8:0 in summer samples. From the 50K 

to the imputed 777k SNP genotypes, there was no overlap of associations. From 

imputed 777k SNP to imputed sequences, 70 associations found by the imputed 777k 

SNP genotypes were also found among the 608 significant associations with imputed 

sequences. In addition, the 8 SNP include the strongest SNP (rs109290136) identified 
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by Duchemin et al. (2014) with imputed 777k SNP genotypes. However, the 

significance of the top SNP in Duchemin et al. (2014) was higher [–Log10(P-value) = 

7.93] than the significance of the strongest SNP identified with imputed sequences 

(Figure 4.1A).  

 

4.4.2 Candidate genes 

Six of our eight strongest associations are located within the LARP1B gene. According 

to genecards (http://www.genecards.org/), the LARP1B gene encodes a protein 

containing domains found in the La related protein of Drosophila melanogaster.  The 

LARP1 family was first described in Drosophila melanogaster (Chauvet et al., 2000), 

where the Drosophila LARP1 gene is required for spermatogenesis, embryogenesis 

and cell cycle progression (e.g., Ichihara et al., 2007). Study by Blagden et al. (2009) 

showed that the Drosophila LARP1 gene interacts with poly A binding protein (PABP), 

and suggested that the phenotype observed in LARP1 mutants could be the result of 

defective mRNA translation or regulation. In Caenorhabditis elegans, the CeLARP1 

gene was identified as an RNA-binding protein (Nykamp et al., 2008). In yeast, the 

mRNA-dependent LA-related proteins family (LARP1) when in association with SLF1 

promotes copper detoxification (Schenk et al., 2012). In viruses, the LARP1B gene 

has the biological process of mitophagy in response to mitochondrial depolarization 

(Orvedahl et al., 2011). In Arabidopsis, the overexpression of the LARP1B gene causes 

a premature leaf yellowing phenotype, and leaf senescence (Zhang et al., 2012). 

 

According to Stavraka and Blagden (2015), la related proteins family 1 (LARP1) genes 

in humans have two paralogues: LARP1A and LARP1B. LARP1A (or simply LARP1) is 

positioned at chromosome 5q34, encoding 1096 amino acid proteins. LARP1B (or 

LARP2) is positioned at chromosome 4q28, encoding 914 amino acid proteins. 

According to Stavraka and Blagden (2015), LARP1A and LARP1B are similar (60% 

homology and 73% of positivity). Burrows et al. (2010) showed that LARP1A is more 

abundant than LARP1B, therefore LARP1B has been less studied. According to 

Uniprot (www.uniprot.org; accessed on 11/21/2015), the gene ontology regarding 

the molecular function of the LARP1B gene in humans is the poly(A) RNA binding, 

i.e., the very same as LARP1A. Review by Bousquet-Antonelli, and Deragon (2009) 

suggested that members of the same family are functional homologs and/or share a 

common molecular mode of action on different RNA baits. 

 

Interestingly, in mammalian cells, Tcherkezian et al. (2014) found that the LARP1A 

gene associates with the mTOR complex 1 (mTORC1) and is required for global 

protein synthesis as well as cell growth and proliferation. This implicates the LARP1A 

http://www.genecards.org/
http://www.uniprot.org/
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gene as an important regulator of cell growth and proliferation. Bionaz et al. (2012) 

reviewed the role of mTORC1 relating it to the regulation of protein synthesis, 

particularly translation in the mammary tissue. Interestingly, mTORC1 was 

considered to be the missing link between nutrition and milk protein synthesis 

(Bionaz et al., 2012). According to Bionaz et al. (2012), insulin regulates the amount 

of translation of the mTORC pathway that will influence milk protein synthesis. 

Gomes and Blenis (2015) suggest that, through various mechanisms, mTORC1 

stimulate mRNA translation, aerobic glycolysis, glutamine anaplerosis, lipid 

synthesis, the pentose phosphate and pyrimidine synthesis, thus producing the 

major components necessary for cell growth and proliferation. Although less studied 

as compared with the LARP1A gene, the LARP1B gene possess the same molecular 

function as LARP1A gene. We cannot exclude that the LARP1B might play a role 

regarding cell growth and proliferation in the mammary gland of a cow. 

 

Furthermore, the LARP1B gene contains a splice-region variant. According to 

Sammeth et al. (2008) splice-region variants generate different mature transcripts 

from the same primary RNA sequence. Although no further information is available 

on the possible transcripts generated by the LARP1B gene, this gene is highly 

expressed in bovine mammary tissue (Bionaz et al., 2012), and it is expressed in all 

stages of lactation in humans (Lemay et al., 2013). Yet, the LARP1B gene has not been 

associated to milk FA composition or milk-fat synthesis. 

 

Previously, the candidate gene identified by Duchemin et al. (2014) was the PGRMC2 

gene. The PGRMC2 gene is still among the genes associated with the QTL region that 

influences multiple FA on BTA17 (Table 4.3). However, the PGRMC2 gene was 

assigned as the most likely candidate gene because it was the closest gene to the 

strongest association found by Duchemin et al. (2014). At that time, there were no 

associations found in the PGRMC2 gene. In addition, the identified LOC515517 was 

the gene closest to the strongest association on BTA17. However, because of limited 

annotation available on BTA17 at that time, LOC515517 was identified as a 

suggestive candidate gene while PGRMC2 was suggested as primary candidate gene. 

Since then, LOC515517 has been annotated in the cattle genome as LARP1B gene.  

 

4.5 Conclusions 

 

The fine-mapping of BTA17 with imputed sequences identified a substantial number 

(in the thousands) of significant associations with de novo synthesized milk FA (C6:0 
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to 14:0). With imputed sequences, the resolution of the QTL region influencing 

multiple milk FA improved compared to previous studies. The strongest associations 

were identified with C8:0 in summer milk samples. With imputed sequences, the 

number of candidate genes in this QTL region was reduced from 29 to 14. Among 

these 14 candidate genes, 6 out of 8 SNP in strong LD were identified in the LARP1B 

gene. The LARP1B gene is expressed in bovine mammary tissue. Nonetheless, the 

LARP1B gene has not been associated with milk FA composition at present.  
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4.7 Tables 

 
Table 4.1 - Phenotypic means (SD), and heritability estimates (h2)1 for individual fatty acids 
(FA) based on 1,640 winter milk samples and 1,581 summer milk samples 
 

Individual FA (% wt/wt) 

Winter  Summer 

Mean (SD) h2   Mean (SD) h2 

C4:0 3.51 (0.27) 0.47  3.52 (0.35) 0.41 
C6:0 2.23 (0.16) 0.46  2.17 (0.21) 0.39 
C8:0 1.36 (0.14) 0.59  1.32 (0.17) 0.35 
C10:0 3.02 (0.43) 0.73  2.87 (0.45) 0.48 
C12:0 4.12 (0.70) 0.62  3.79 (0.72) 0.48 
C14:0 11.62 (0.92) 0.62   11.16 (1.05) 0.54 

 

1h2= σa
2 (σa

2+ σe
2)⁄ , whereσa

2 is the additive genetic variance and σe
2 is the residual variance. SE 

between 0.01 and 0.12 for winter samples, and between 0.02 and 0.08 for summer samples. 

 

 
Table 4.2 - Distribution of the average accuracy of imputation (AR2) stratified per ranges of 
minor allele frequency (MAF), and the number of markers (as counts and in percentage) for 
the 45 sequences of Milk Genomics Initiative (MGI) and the 450 sequences of the 1000Bull 
Genome Consortium (RUN5) 
 

MAF AR2 

MGI45 RUN5 

AR2 typed imputed 
Total 
(%) 

AR2 typed imputed total 
Total 
(%) 

0 
all 0.92 64,564 614,367 58.6% 0.00 64,564 614,367 678,931 58.6% 

≥0.8 0.97 41,601 531,552 49.5% - 0 0 0 0.0% 

0-0.1 
all 0.97 158,733 42,979 17.4% 0.73 158,733 42,979 201,712 17.4% 

≥0.8 0.99 154,028 37,790 16.6% 0.94 102,738 17,003 119,741 10.3% 

0.1.2 
all 0.98 90,821 1,549 8.0% 0.89 90,821 1,549 92,370 8.0% 

≥0.8 0.99 90,000 765 7.8% 0.96 76,582 313 76,895 6.6% 

0.2-0.3 
all 0.98 68,423 965 6.0% 0.91 68,423 965 69,388 6.0% 

≥0.8 0.99 67,830 511 5.9% 0.97 60,442 223 60,665 5.2% 

0.3-0.4 
all 0.98 54,352 934 4.8% 0.92 54,352 934 55,286 4.8% 

≥0.8 0.99 53,803 462 4.7% 0.97 48,559 210 48,769 4.2% 

0.4-0.5 
all 0.96 58,833 1,158 5.2% 0.86 58,833 1,158 59,991 5.2% 

≥0.8 0.99 56,074 426 4.9% 0.97 49,823 151 49,974 4.3% 

Total 
all 0.97 495,726 661,952 100.0% 0.72 495,726 661,952 1,157,678 100.0% 

≥0.8 0.99 463,336 571,506 89.4% 0.96 338,144 17,900 356,044 30.8% 
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Table 4.3 - Details about candidate genes identified in the QTL region located between 29 and 
34 mega base-pairs on BTA17 
 

Genes Identifier Location 
Numbers of 

variants 

C4orf33 ENSBTAG00000044159 Chr17:29,105,309-29,116,531 2 

SLCT1 ENSBTAG00000013611 Chr17:29,190,572-29,354,595 23 

JADE ENSBTAG00000017493 Chr17:29,368,416-29,421,827 5 

PGRMC2 ENSBTAG00000010843 Chr17:29,872,406-29,890,867 8 

LARP1B ENSBTAG00000012135 Chr17:29,938,416-30,073,786 83 

U2 ENSBTAG00000043806 Chr17:30,096,344-30,096,524 4 

C4orf29 
(ABHD18) 

ENSBTAG00000010630 Chr17:30,106,834-30,143,868 11* 

SNORA42 ENSBTAG00000042423 Chr17:30,118,538-30,118,671 1 

MFSD8 ENSBTAG00000044058 Chr17:30,144,105-30,181,831 11** 

PLK4 ENSBTAG00000039552 Chr17:30,185,756-30,202,777 4 

SLC25A31 ENSBTAG00000012826 Chr17:30,291,318-30,319,495 2 

INTU ENSBTAG00000012824 Chr17:30,324,842-30,404,702 3 

FAT4 ENSBTAG00000003345 Chr17:32,712,712-32,889,849 109 
 

*one intron variant of the ABHD18 gene overlaps with the MFSD8 gene, for which it is an 
upstream gene variant.  
**one downstream variant of the MFSD8 gene overlaps with the PLK4 gene, for which it is an 
downstream gene variant.  
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4.8 Supplementary figures 

 

Supplementary Figure 4.1 (A) Fine-mapping of BTA17 with an accuracy of imputation equal 
and greater than 0.8 (AR2 ≥ 0.8) showing summer milk samples for 6 fatty acids.  
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Supplementary Figure 4.1 (B) Fine-mapping of BTA17 with an accuracy of imputation equal 
and greater than 0.8 (AR2 ≥ 0.8) showing winter milk samples for 6 fatty acids. 



4 Fine-mapping of BTA17 with imputed sequences 

 
 

96 

 

 

Supplementary Figure 4.1 (C) Fine-mapping of BTA17 with an accuracy of imputation equal 
and greater than 0.8 (AR2 ≥ 0.8) showing summer milk samples for 6 fatty acids, after fitting 
the SNP with the highest significance. 
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Supplementary Figure 4.1 (D) Fine-mapping of BTA17 with an accuracy of imputation equal 
and greater than 0.8 (AR2 ≥ 0.8) showing winter milk samples for 6 fatty acids, after fitting the 
SNP with the highest significance.
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Abstract 

 

Non-coagulating (NC) milk, defined as milk not coagulating within 40 min after 

rennet-addition, can have a negative influence on cheese production. Its prevalence 

is estimated at 18% in the Swedish Red (SR) cow population. Our study aimed at 

identifying genomic regions and causal variants associated with NC milk in SR cows, 

by doing a GWAS using 777k SNP genotypes and using imputed sequences to fine 

map the most promising genomic region. Phenotypes were available from 382 SR 

cows belonging to 21 herds in the south of Sweden, from which individual morning 

milk was sampled. NC milk was treated as a binary trait, receiving a score of one in 

case of non-coagulation within 40 minutes. For all 382 SR cows, 777k SNP genotypes 

were available as well as the combined genotypes of the genetic variants of αs1-β-κ-

caseins. In addition, whole–genome sequences from the 1000Bull Genome 

Consortium (Run 3) were available for 429 animals of 15 different breeds. From 

these sequences, 33 sequences belonged to SR and Finish Ayrshire bulls with a large 

impact in the SR cow population. Single-marker analyses were run in ASReml using 

an animal model. After fitting the casein loci, 14 associations at –Log10(P-value) > 6 

identified a promising region located on BTA18. We imputed sequences to the 382 

genotyped SR cows using Beagle 4 for half of BTA18, and ran a region-wide 

association study with imputed sequences. In a 7 mega base-pairs region on BTA18, 

our strongest association with NC milk explained almost 34% of the genetic variation 

in NC milk. Since it is possible that multiple QTL are in strong LD in this region, 59 

haplotypes were built, genetically differentiated by means of a phylogenetic tree, 

and tested in phenotype-genotype association studies. Haplotype analyses support 

the existence of one QTL underlying NC milk in SR cows. A candidate gene of interest 

is the VPS35 gene, for which one of our strongest association is an intron SNP in this 

gene. The VPS35 gene belongs to the mammary gene sets of pre-parturient and of 

lactating cows. 

 

Key words: non-coagulating milk, sequences, dairy, cheese production, haplotypes, 

VPS35. 
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5.1 Introduction 

 

Non- or poor-coagulating milk is an undesirable characteristic of milk with a negative 

influence on cheese production. Non-coagulating (NC) milk is prevalent among 

several dairy cattle breeds, such as Swedish Red (SR), Finnish Ayrshire (FAY), 

Holstein-Friesian (HF) and Italian Brown Swiss, to name a few (e.g., Frederiksen et 

al., 2011; Cecchinato et al., 2011, Gustavsson et al., 2014a). The prevalence of NC 

milk varies among these breeds ranging from 4% in Italian Brown Swiss (Cecchinato 

et al., 2009) up to 13% in FAY (Ikonen et al., 2004). A recent study has estimated the 

prevalence of NC milk, defined as milk not coagulating within 40 min after rennet-

addition, at 18% in the SR cow population (Gustavsson et al., 2014a). Targeted 

research on NC milk can help geneticists develop breeding programs to modify milk 

composition and technological properties of milk and thus reduce the prevalence of 

NC milk. 

 

Bittante et al. (2012) suggested that effects of herd have little influence on milk 

coagulation properties (MCP) including NC milk, although several factors can 

influence the composition of bovine milk (e.g., breed, a cow’s diet, age of a cow, and 

the stage of lactation; Chilliard et al., 2001). In addition, MCP seem be influenced by 

many factors, such as SCC (e.g., Ikonen et al., 2004; Cassandro et al., 2008), titratable 

acidity (e.g., Penasa et al., 2010), casein composition (Okigbo et al., 1985b), pH 

(Nájera et al., 2003), stage of lactation (Okigbo et al., 1985a; Ostersen et al.,1997), 

and breed (e.g., Auldist et al., 2004; De Marchi et al., 2007, Bittante et al., 2012), 

among many other factors. Heritability estimates for MCP and NC milk range from 

0.26 in FAY (Ikonen et al., 2004) to 0.45 in SR cows (Gustavsson et al., 2014a). These 

heritability estimates suggest that breeding could effectively reduce the prevalence 

of NC milk. In Sweden, the breeding program includes production traits to guarantee 

the increase in both protein and fat contents (Nordic Cattle Genetic Evaluation, 

2013). The negative genetic correlations between NC milk and protein content 

estimated by Gustavsson et al. (2014a) suggest that breeding for higher protein 

content in the Swedish Red cows can lead to an increase in the prevalence of NC 

milk. In Sweden, 41% of SR cows produce milk for the dairy industry, and more than 

30% of total milk production is used for cheese production (LRF Dairy Sweden, 2015). 

Since total milk production is about 3 million tons per year (LRF Dairy Sweden, 2015) 

and the market price of milk produced is about 0.28 euros per kg, the problem of NC 

milk affects milk with a value of approximately 63 million euros per year. Frederiksen 

et al. (2011) has estimated in 25% the proportion of NC milk in a batch of well-

coagulating milk that is sufficient to deteriorate the MCP of well-coagulating milk. 
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Van Hooydonk et al. (1986) showed that the addition of calcium would restore 

coagulation of NC milk but not to the level of well–coagulating milk according to 

Hallén et al. (2010). Furthermore, addition of calcium above 0.04% have been 

reported to produce a bitter flavour (Schwarz and Mumm, 1948) which could be 

detrimental to cheese production. Therefore, it is important to the Swedish industry 

to reduce the frequency of NC milk. 

 

It is well established that MCP, including NC milk, are strongly influenced by variable 

proportions, and genetic variants of milk protein fractions (especially of κ-casein 

(CN); Bittante et al., 2012). In poor- and non-coagulating milk samples of Danish 

Jerseys and HF cows, Jensen et al. (2012) showed that BB-A2A2-AA was the 

predominant combined genotype of αS1-, β-, and κ-CN associated with NC milk. 

Hallén et al. (2007) and Gustavsson et al. (2014b) showed that some of these 

genotypes (especially β-, and κ-CN genotypes A2A2-AA) segregate in SR cows. Besides 

these genetic variants of milk protein fractions in the cattle genome, other 

undiscovered genes might play a role in the prevalence of NC milk. These genes can 

be identified by genome-wide association studies (GWAS) using high-density 

genotyping techniques. 

 

High-density genotyping techniques, such as whole-genome sequences (WGS), can 

help GWAS increase the power and the precision of quantitative trait loci (QTL) 

mapping. Whole-genome sequences are expected to contain most of the 

polymorphisms causing the genetic differences between individuals (Meuwissen and 

Goddard, 2010). When an entire population is sequenced, WGS are independent of 

linkage disequilibrium (LD) between polymorphisms and the causal variant (Druet et 

al., 2014) compared with a lower panel of markers. However, sequencing an entire 

population can be expensive, and a cost-effective strategy consists of sequencing key 

ancestors of a population, and imputing to sequence level the rest of this population 

(Druet et al., 2014). To demonstrate this approach, Daetwyler et al. (2014) imputed 

dairy cattle populations that were genotyped with 777k SNP (BovineHD) to sequence 

level using WGS from the 1000 Bull Genome Project. Their study targeted some 

known genomic regions where QTL affecting milk production and curly coat had 

previously been identified, and they successfully identified the causal variants 

underlying these QTL. Therefore, GWAS using imputed sequences could assist in the 

identification of causal variants. 

 

A recent GWAS on SR cows used BovineHD as genotypes and MCP as phenotypes 

(Gregersen et al., 2015). However, their GWAS did not include NC milk in the 
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analyses. The aim of our study was to identify genomic regions and causal variants 

associated with NC milk in SR cows. For this purpose, firstly we ran a GWAS using 

BovineHD genotypes to identify the most promising genomic region associated with 

NC milk, and secondly we fine-mapped this genomic region using imputed 

sequences. 

 

5.2 Material and Methods 

 

5.2.1 Animals and phenotypes 

Morning milk samples were retrieved from 382 SR cows belonging to 21 herds in the 

southern part of Sweden. Cows were kept indoors, were fed according to standard 

practices, and were milked 2 or 3 times a day. Cows were daughters of 160 sires, and 

were chosen to be as genetically unrelated as possible. Cows were multiparous, 

ranging from 1 through 3 parturitions, and were in different lactations stages, 

ranging from 2.5 through 61 weeks in lactation. 

 

Milk samples were collected in two distinct periods: April through May 2010, and 

September 2010 through April 2011. Directly after collection, milk samples were 

cooled and transported to Lund University (Lund, Sweden), where samples were 

defatted by centrifugation (at 2,000 x g for 30 min) to reduce the number of factors 

influencing coagulation properties. Fresh skimmed milk samples were preserved by 

adding bronopol (Sigma-Aldrich, Schnelldorf, Germany) solution of 17% wt/vol 

(2µL/mL), as described in Hallén et al. (2007). For rheological measurements, these 

milk samples were stored at +4ºC, but no longer than 3d. Skimmed milk samples 

were heated to 32ºC for 30min, after which chymosin (0.44mL/L Chy-Max Plus, 205 

international milk clotting units (IMCU)/mL, Chr. Hansen A/S Hørsholm, Denmark) 

was added, and the resulting solution was gently stirred. The addition of the 

chymosin represented time zero. Measurements, such as rennet gel strength, rennet 

coagulation time, and yield stress of rennet-induced gels, were done and described 

by Gustavsson et al. (2014a). Some samples were unable to coagulate within 40 min 

after rennet-addition, and were defined as non-coagulating (NC) milk samples. When 

observed, NC milk was scored as one, while coagulating milk was scored as zero. Of 

the 382 cows that had available phenotypes on coagulation properties, 18% of these 

cows had NC milk. 

 

5.2.2 Genotypes 

A blood sample of each of the 382 SR cows was collected for genotyping purposes. 

These cows were genotyped for 777,963 SNP using the Illumina BovineHD BeadChip 
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(Illumina Inc., San Diego, CA). Quality controls of the data were performed using the 

R-package GenAbel (Aulchenko et al., 2007), and consisted of a minimum of 95% of 

non-missing SNP per called genotypes (call rate) and minor allele frequency (MAF) 

of a minimum of 1% for a called SNP. All SNP without a map position on the UMD 3.1 

genome assembly (Zimin et al., 2009) as well as SNP on the sex chromosome were 

discarded. After these edits, a total of 624,302 SNP were available for further 

analyses. 

 

In addition, blood samples were used to extract DNA to genotype all cows for genetic 

variants of αs1-, β- and κ-caseins (CN) using TaqMan SNP genotyping assays (Applied 

Biosystems, Foster City, CA), as described in Gustavsson et al. (2014b). For these 

variants, the assays were distinguished among the following: αs1-CN variant A, B, C, 

D, and F; β-CN variants A1, A2, A3, B and I; and κ-CN variants A, B and E). In their study, 

combined genotypes were created by combining the genetic variants of αs1-β-κ-CN. 

These combined genotypes were used in the present study, and are referred to as 

“CNcluster”. 

 

Whole–genome sequences were available for 428 bulls and for 1 cow from 15 

different breeds (Run 3 of the 1000 Bull Genomes consortium; Daetwyler et al., 

2014), representing a multi-breed reference population. Among these sequences, 33 

belonged to SR and FAY bulls with a large impact in the SR cow population. All 

positions of the variants on sequences were aligned to the bovine genome assembly 

UMD3.1 (Zimin et al., 2009). Within this multi-breed reference population, positions 

containing both a SNP and an indel were excluded because of possible problems with 

alignment and sequencing. 

 

5.2.3 GWAS on BovineHD genotypes 

Single-marker analyses were run in ASReml 4.0 (Beta version; Gilmour et al., 2009) 

using the following animal model: 

 

𝑦 =  𝜇 + ℎ𝑒𝑟𝑑 + 𝑝𝑎𝑟𝑖𝑡𝑦 + 𝑤𝑖𝑚 + 𝑒−0.05∗𝑤𝑖𝑚 + 𝐶𝑁𝑐𝑙𝑢𝑠𝑡𝑒𝑟 + 𝑀𝑎𝑟𝑘𝑒𝑟 + 𝑎

+ 𝑒       [1] 
 

where y is the dependent variable; µ is the overall mean, herd is the covariate that 

describes the effect of a cow belonging to a specific herd; parity is the covariate that 

describes the effect of number of parities per cow; wim is the covariate that 

describes the effect of weeks in milk, modeled as a Wilmink curve (Wilmink, 1987); 

CNcluster is the covariate describing the effect of the combined genotypes; Marker 
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is the fixed effect of a variant genotype; a is the random effect of animal and is 

assumed to be distributed as 𝑁 ~ (0, 𝑮𝜎𝑎
2), where G is the genomic relationship 

matrix based on 382 animals and 𝜎𝑎
2 is the additive genetic variance. We calculated 

the G-matrix based on the BovineHD genotypes using the software calc_grm (Calus, 

2013). 𝜎𝑎
2 was estimated with a model excluding the effect of Marker, and was fixed 

in model 1. e is the random residual effect and is assumed to be distributed as 

𝑁 ~ (0, 𝑰𝜎𝑒
2), where I is the identity matrix and 𝜎𝑒

2 is the residual variance. 

 

The most promising genomic region with multiple signals at –Log10 (P-value) ≥ 6 was 

imputed from the BovineHD genotypes to sequence level, and a region-wide 

association study (RWAS) was performed. 

 

5.2.4 Imputation 

Imputation started by checking the BovineHD against the sequenced reference 

population for inconsistencies using the Conform-gt software 

(http://faculty.washington.edu/browning/conform-gt.html). After this check, the 

382 cows were imputed from BovineHD genotypes to sequence level for half of a 

chromosome using Beagle version 4.0 (Browning and Browning, 2007). Beagle 

version 4 was run with the following settings: 50 for phase iterations, 50 for 

nthreads, and 100 for imputation iterations. To account for the nature of the 

different variants, we ran three imputations based on different reference 

populations. These imputations were named as follows: “Nordic-red-specific”, 

“Dairy-specific”, and “Common”. For the imputation of the “Nordic-red-specific”, the 

reference population used consisted of the 33 sequences belonging to SR and FAY 

breeds. For the imputation of the “Dairy-specific”, the reference population used 

consisted of the 284 sequences belonging to dairy breeds (8 breeds). For the 

imputation of the “Common”, the reference population used consisted of 429 

sequences belonging to Nordic-red, dairy and beef breeds (15 breeds). Following this 

approach, each variant was imputed three times based on the three different 

reference populations, which resulted in different imputation accuracies (Beagle 

allelic-r2, AR2) for each variant. The genotype with the highest imputation accuracy 

across the three imputations was selected as the best-imputed genotype. 

 

We calculated the average concordance between the imputed genotypes across the 

three different scenarios of imputation, as implemented in VCFtools version 0.1.12b 

(Danecek et al., 2011). Subsequently, we combined the best-imputed genotypes into 

one data set that was used in the RWAS.  

 

http://faculty.washington.edu/browning/conform-gt.html
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5.2.5 RWAS on imputed sequences for half a chromosome 

A RWAS with imputed sequence data for the most promising region on half a 

chromosome was run using model 1. The imputed sequences were filtered to 

remove poorly imputed genotypes: only variants that were imputed with an AR2 ≥ 

0.2 were included in the RWAS. Single-marker analyses were run using model 1 with 

one modification: the variance of the genetic effect a was assumed to be distributed 

as 𝑁 ~ (0, 𝐆𝟏𝜎𝑎∗
2 ), where G1 is the genomic relationship matrix based on 382 

animals and 𝜎𝑎∗
2  is the additive genetic variance. The G1-matrix was calculated using 

the software calc_grm (Calus, 2013). The BovineHD genotypes of half chromosome 

that were used in the imputation to sequence level were not included in the G1-

matrix calculations. 𝜎𝑎∗
2  was calculated before the inclusion of Marker, and was fixed 

in model 1. 

 

The most significant association from the first RWAS (coined TagSNP1) was 

subsequently included as a fixed effect in model 1, and a second RWAS was run. For 

this second RWAS, only the variants with an AR2 ≥ 0.8 were re-analyzed and 

considered for further analyses, such as linkage disequilibrium (LD) calculations and 

haplotype analyses. 

 

5.2.6 Haplotype analyses 

The construction of haplotypes started by selecting the SNP moderately to highly 

correlated with TagSNP1 (LD > 0.5). LD was calculated as the squared correlation 

between TagSNP1 and all other SNP using PLINK version 1.9 (Purcell et al. 2007). An 

LD plot was produced using the R-package ggplot2 (Wickham, 2009). Next, we 

combined these correlated SNP into haplotypes. 

 

For the haplotypes, we produced a phylogenetic tree using the molecular 

evolutionary genetics analysis (MEGA6) software, version 6.0. The MEGA6 software 

was developed for comparative analyses of DNA and protein sequences that aim at 

inferring the molecular evolutionary patterns of genes, genomes, and species over 

time (Kumar et al. 1994; Tamura et al. 2013). To build the phylogenetic tree, we 

applied the Neighbor-Joining statistical method (Saitou and Nei, 1987) with a 

substitution model based on the proportion of nucleotide substitutions per site 

between nucleotides of loaded sequences. Alignment gaps and missing information 

gaps were accounted for with the partial-deletion option implemented in the 

software, and gaps were removed when the number of ambiguous sites ≥ 0.95.  
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Subsequently, the phylogenetic tree, all phenotypes and 2 copies of each haplotypes 

per cow were supplied to TreeScan software, version 1.0 (Templeton et al., 2005). 

TreeScan uses the phylogenetic tree built from haplotypes in phenotype-genotype 

association studies. With its iterative approach, TreeScan cuts in two parts a branch 

of the phylogenetic tree. For part 1, all haplotypes are grouped, and treated as a 

single allele, say A. For part 2, all haplotypes are grouped, and treated as a single 

allele, say B. These alleles allow different combinations of genotypes: AA, AB and BB. 

Subsequently, associations between phenotypes and genotypes (AA, AB and BB) are 

statistically tested with the F-statistics of a one-way ANOVA. This iterative approach 

is repeated until all the branches of the phylogenetic tree have been tested. The null 

hypothesis considered for the inference of branches (i.e., haplotypes) is of no 

association between a partition and the trait of interest, which in our case was NC 

milk. In addition, the following settings were used in TreeScan: the number of 

simulations to obtain P-values for the ANOVA tests p=5,000; the significance level α 

=0.05, and the minimum number of individuals required in each observed genotypic 

class c=2. A bipartition was considered as significantly associated to NC milk at P-

value <0.05. 

 

5.2.7 Bioinformatics and candidate genes 

We used the variant effect predictor (Ve!P) online tool (at 

http://www.ensembl.org/info/docs/tools/vep/index.html; McLaren et al., 2010) to 

determine the effect of the variants (SNPs, insertions, deletions, CNVs or structural 

variants) on genes, transcripts, and protein sequence, as well as regulatory regions. 

 

5.3 Results 

 

5.3.1 GWAS on BovineHD genotypes 

The GWAS on BovineHD genotypes identified many significant SNP associated with 

NC milk after fitting the casein loci (Supplementary Figures 5.1A, 5.1B, 5.1C, and 

5.1D). The accompanying QQ-plot indicated that a small proportion of SNP were 

deviating from the x=y line. This smaller proportion of SNP represented the most 

likely associated SNP among the thousands of non-associated SNP with NC milk. In 

addition, no important deviations from the x=y line were observed, suggesting no 

obvious signs of population stratification (Supplementary Figure 5.2). Fourteen of 

the many significant associations had –Log10(Pvalue) larger than 6, and they are 

located on BTA11, BTA13 and BTA18 (Table 5.1). The most promising region was 

located on BTA18, and was distributed over a region of 7 mega base-pairs (MBP). 

Because BTA18 showed the most significant association with NC milk after fitting the 
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casein loci, we focused on this chromosome by running a RWAS using imputed 

sequence data. 

 

Table 5.1 Most significant SNP from genome-wide association study with NC milk† based on 
BovineHD genotypes in 382 Swedish Red cows. 
 

Chromoso
me 

SNP position -Log10(Pvalue)  𝜎𝑚𝑎𝑟𝑘𝑒𝑟
2 § 

𝜎𝑚𝑎𝑟𝑘𝑒𝑟
2

𝜎𝑝
2⁄ * 

11 rs136987882 55787730 6.29 0.01 0.07 
13 rs136185829 47744740 6.15 0.01 0.07 
13 rs109492822 47749851 6.15 0.01 0.07 
13 rs134756836 47754335 6.15 0.01 0.07 
18 rs137544086 9179722 6.19 0.01 0.07 
18 rs41865365 11166809 8.77 0.01 0.09 
18 rs110267892 13136171 6.65 0.01 0.07 
18 rs109208214 13934856 10.18 0.02 0.11 
18 rs135171892 13939170 10.18 0.02 0.11 
18 rs137827420 13943440 10.18 0.02 0.11 
18 rs137429187 13960525 10.18 0.02 0.11 
18 rs132908573 13967910 10.18 0.02 0.11 
18 rs110637786 15017982 9.35 0.01 0.10 
18 rs110615481 15047675 6.54 0.01 0.08 

 

†NC milk as binary trait where 0 = coagulating milk and 1= non-coagulating milk 
§𝜎𝑚𝑎𝑟𝑘𝑒𝑟

2  = marker’s variance, computed for each marker as 2 times major allele frequency 
times minor allele frequency times the square of the allele substitution effect 
* 𝜎𝑚𝑎𝑟𝑘𝑒𝑟

2 / 𝜎𝑝
2= proportion of phenotypic variance explained by a marker 

 

5.3.2 Imputation for half of BTA18 

Before imputation, the inconsistencies between the BovineHD genotypes and the 

sequence data were strand problems (i.e., 1 for Nordic-red-specific, 815 for Dairy-

specific, and 927 for commons), and 7 SNP from the BovineHD genotypes not present 

in the sequence data. All these inconsistencies were set to missing in the BovineHD 

data, and imputed. 

 

After imputation, the total number of variants in the region between 0-30 MBP on 

BTA18 increased from 7,873 SNP on the BovineHD to 562,432 variants on the 

sequence level, representing an increase of 71 times in the total number of variants. 

From the 562,432 imputed variants, 69.3% were monomorphic (MAF=0), 24.5% were 

polymorphic and AR2 ≥ 0.2, and 14.3% were polymorphic and AR2 ≥ 0.8 (Table 5.2). 

After filtering out the monomorphic variants, 137,949 polymorphic variants imputed 

with an AR2 ≥ 0.2 were left. This is an increase of more than 17 times in the total 

number of variants from BovineHD genotypes (N=7,873 SNP) to sequence level 

(N=137,949 sites). These 137,949 variants originated from the three scenarios as 
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Table 5.2 Distribution of the average accuracy of imputation (AR2) per ranges of minor allele frequency (MAF), and the number of markers  (as 

counts and in percentage) for the three scenarios of imputation 
 

†where: All considers all imputed animals, ≥0.2 considers animals imputed with an AR2 equal and higher than 0.2, and ≥ 0.8 con siders animals imputed with an AR2 
equal and higher than 0.8. §N1 = total number of markers for the Nordic-Red specific scenario. *N2 = total number of markers for the Dairy-specific scenario. ¢N3= total 
number of markers for the Common scenario. ¥N= sum of markers for all three imputation scenarios (N1+N2+N3). 

MAF AR2† 
Nordic-red specific 

 

Dairy-specific 

 

Common 

 

Total number of variants 

average AR2 N1§ average AR2 N2* average AR2 N3¢ N¥ (%) 

0 All 0.00 389,518 0.00 94 0.00 54 389,666 69.3% 
 ≥ 0.2 - 0 0.31 4 0.31 0 4 0.0% 
 ≥ 0.8 - - - - - - - - 

0-0.1 All 0.42 28,346 0.37 17,720 0.34 9,547 55,613 9.9% 
 ≥ 0.2 0.72 16,772 0.62 11,266 0.59 5,861 33,899 6.0% 
 ≥ 0.8 0.94 9,467 0.91 2,748 0.90 1,082 13,297 2.4% 

0.1-0.2 All 0.69 23,425 0.63 6,951 0.61 2,774 33,150 5.9% 
 ≥ 0.2 0.76 20,922 0.70 6,136 0.67 2,462 29,520 5.2% 
 ≥ 0.8 0.94 12,994 0.92 2,329 0.91 761 16,084 2.9% 

0.2-0.3 All 0.75 22,765 0.70 4,593 0.68 1,467 28,825 5.1% 
 ≥ 0.2 0.80 21,235 0.75 4,075 0.73 1,291 26,601 4.7% 
 ≥ 0.8 0.94 14,609 0.92 2,049 0.92 412 17,070 3.0% 

0.3-0.4 All 0.78 21,900 0.74 4,422 0.71 1,205 27,527 4.9% 
 ≥ 0.2 0.83 20,429 0.80 3,759 0.78 991 25,179 4.5% 
 ≥ 0.8 0.95 15,189 0.93 2,186 0.92 392 17,767 3.2% 

0.4-0.5 All 0.67 22,731 0.62 3,854 0.59 1,066 27,651 4.9% 
 ≥ 0.2 0.83 18,794 0.79 3,154 0.78 798 22,746 4.0% 
 ≥ 0.8 0.95 13,937 0.93 1,779 0.92 272 15,988 2.8% 

Total All 0.55 508,685 0.51 37,634 0.49 16,113 562,432 100.0% 
 ≥ 0.2 0.79 98,152  0.73 28,394  0.71 11,403  137,949 24.5% 
 ≥ 0.8 0.94 66,196  0.92 11,091  0.91 2,919  80,206 14.3% 
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follows: 98,152 variants from the Nordic-red-specific scenario, plus 28,394 variants 

from the Dairy-specific scenario, plus 11,403 variants from the common scenario. In 

addition, the 98,152 variants from the Nordic-red-specific scenario are composed of 

91,363 SNP, 6,753 indels, and 36 multi-allelic variants. The 28,394 variants from the 

Dairy-specific scenario are composed of 27,113 SNP, 1,253 indels, and 28 multi-allelic 

variants. The 11,403 variants from the common scenario are composed of 10,989 

SNP, 401 indels, and 13 multi-allelic variants. 

 

The average concordance was calculated by comparing genotypes imputed in the 

three different scenarios, and reported sites were alleles in exact match between 

files. Results indicated that 97.0% of the imputed genotypes from the Nordic-red-

specific scenario were concordant with the Dairy-specific scenario; 96.8% of the 

imputed genotypes from the Nordic-red-specific scenario were concordant with the 

common scenario; and 98.9% of the imputed genotypes from the Dairy-specific 

scenario were concordant with the common scenario. 

 

5.3.3 RWAS on imputed sequences for half of BTA18 

A RWAS based on imputed sequences was run for half of BTA18, which corresponds 

to a genomic region of 30 MBP running from position 0 on bovine genome built UMD 

3.1. Throughout this region, a total of 205 variants were significantly associated with 

NC milk at –Log10(Pvalue) > 6 and imputed with AR2 ≥ 0.8 (Supplementary Table 5.1). 

The most significant variants were 1 indel and 2 SNP. The indel was rs385975260 

occurring at 15.03 MBP, and was imputed with AR2 = 0.87. The first SNP was 

rs525335650 located at 15.03 MBP, and was imputed with AR2 = 0.87. The second 

SNP was rs379827811 located at 15.04 MBP, and was imputed with AR2 = 0.42. 

These 2 SNP and 1 indel are in perfect LD with each other. We chose rs525335650 

among these three imputed variants, since it was the best imputed variant, and 

tagged it as TagSNP1 (Figure 5.1A). 

 

After including TagSNP1 as a fixed effect in model 1, a total of 80,206 variants with 

an AR2 ≥ 0.8 were re-analyzed. We re-analyzed these 80,206 imputed variants 

instead of the 137,949 imputed variants to reduce potential false-positive 

associations with NC milk caused by imputation errors. After accounting for TagSNP1 

in model 1 as fixed effect, no remaining associations were found (Figure 5.1B).  

 

5.3.4 Haplotype analyses 

A total of 129 SNP plus 17 indels in LD with TagSNP1 (Figure 5.2) were combined into 

59 haplotypes. These 59 haplotypes were the basis to build a phylogenetic tree, for 
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Figure 5.1 Region-wide association study (RWAS) with non-coagulating (NC) milk in 382 
Swedish Red cows. Figure 5.1A RWAS based on 137,949 polymorphic imputed variants 
overlaid with the BovineHD genotypes for half of BTA18. In light gray, imputed variants with 
accuracy of imputation (AR2) ≥ 0.2. In black, imputed variants with AR2 ≥ 0.8. “TagSNP1” as 
most significant association. Figure 5.1B RWAS after correcting for TagSNP1. In black, imputed 
variants with AR2 ≥ 0.8 (N=80,206 variants). 

 

1A 

1B 
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Figure 5.2 Linkage disequilibrium in the QTL region. In the colored region, pairwise linkage 
disequilibrium as the squared correlation between the most significant association, 
“TagSNP1”, and all other markers. In light gray, imputed variants with accuracy of imputation 
(AR2) ≥ 0.2. In black, imputed variants with AR2 ≥ 0.8. 
 

which each branch represented one unique haplotype segregating in the SR cow 

population (Figure 5.3A). The iterative inference of haplotypes using TreeScan 

occurred by, for example, cutting the phylogenetic tree in two parts at branch “A”, 

where haplotypes 38 and 58 were grouped in one part, while all other haplotypes 

were grouped in the other part. The parts were then tested against each other. After 

all branches of the tree were tested, associations with NC milk were: branch “A” at 

P-value = 0.002; haplotype 38 at P-value = 0.03; and, haplotype 58 at P-value =0.03 

(Figure 5.3A). Next, we scrutinized in depth the sequences of haplotypes 38 and 58, 

and we found they have 3 SNP in common. When comparing haplotypes 38 and 58 

with haplotypes 13, 20, 29 and 39 (Figure 5.3B), haplotypes 38 and 58 differed from 

the other haplotypes at these exact same 3 SNP. Interestingly, these 3 SNP shared 

by haplotypes 38 and 58 are quite close to our TagSNP1 (Figure 5.3B). 
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5.3.5 Bioinformatics and candidate genes 

According to Ve!P, the 129 SNP plus the 17 indels, which included our TagSNP1, were 

distributed as follows: 32% of intron variants; 26% of downstream gene variants, 

25% of upstream gene variants; 12% of intergenic variants; 4% of 3’UTR variants; 1% 

of synonymous variants, and 1% of missense variants. In summary, 67% of these 129 

SNP plus 17 indels were synonymous variants without changes to the encoded amino 

acids. The remaining 33% were missense variants with changes in one or more bases 

to the encoded amino acid. 

 

In addition, Ve!P showed that our QTL region on BTA18 contains 7 genes (Table 5.3), 

of which 1 is a validated gene and 6 are provisional genes. These 7 genes are: 

validated carbonic anhydrase VA, mitochondrial (CA5A) gene; BTG3 associated 

nuclear protein (BANP) gene; cytochrome b-245, alpha polypeptide (CYBA) gene; the 

mevalonate (diphospho) decarboxylase, mRNA (MVD) gene; snail family zinc finger 

3 (SNAI3) gene; ring finger protein 166 (RNF166) gene; and, vacuolar protein sorting 

35 homolog, mRNA (VPS35) gene. In addition, the CA5A gene is located within a copy 

number variation. 

 

Table 5.3 Details about candidate genes identified in the QTL region 
 

Genes Identifier Location 
Numbers 

of variants 

CA5A ENSBTAG00000010151 chr18:13,356,215-13,445,854 8 

BANP ENSBTAG00000023745 chr18:13,425,303-13,493,366 3 

CYBA ENSBTAG00000003895 chr18:13,931,107-13,938,075 40 

MVD ENSBTAG00000012059 chr18:13,938,827-13,945,489 72* 

SNAI3 ENSBTAG00000017528 chr18:13,958,995-13,964,622 36** 

RNF166 ENSBTAG00000020942 chr18:13,969,303-13,977,633 3 

VPS35 ENSBTAG00000002493 chr18:15,038,821-15,066,463 2 
 

*40 of these 72 variants in the MVD gene overlap with variants in the CYBA gene. These are: 
26 downstream variants in the MVD gene corresponding to 16 introns, 1 synonymous, and 9 
upstream variants in the CYBA gene; and seven 3' UTR, 1 synonymous, 5 intron, and 1 missense 
variants in the MVD gene corresponding to upstream variants in the CYBA gene. 
**5 of these 36 hits are downstream gene variants in the SNAI3 gene that correspond to 
upstream gene variants in the RNF166 gene. 
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The genomic position of the 3 strongest associations with NC milk on BTA18 are 

shown in Supplementary Figure 5.3A. Of these associations, rs379827811 is an intron 

variant in the VPS35 gene. According to Ve!P, rs379827811 is upstream to 14 

missense variants, 1 synonymous variant, 1 stop gained variant and 1 splice region 

variant (Supplementary Figure 5.3B). 

 

The 3 SNP shared by haplotypes 38 and 58 identified in the haplotype analyses are 

intergenic variants located between 20.5 and 31.2 kilo base-pairs (kbp) downstream 

to the VPS35 gene.  

 

5.4 Discussion 

 

In the present study, we used the same phenotypes and BovineHD genotypes as in 

Gustavsson et al. (2014a) to perform a GWAS with NC milk, and we further fine-

mapped a genomic region on half of BTA18 using imputed sequences. This genomic 

region is distributed over 7 MBP on BTA18, and is strongly associated with NC milk. 

At least one QTL could be fine-mapped using imputed sequences. In addition, we 

conducted haplotype analyses to disentangle the occurrence of multiple QTL in 

strong LD within this region. At last, we identified potential candidate genes within 

this QTL region. 

 

5.4.1 GWAS on BovineHD genotypes 

The GWAS on BovineHD  genotypes showed significant associations with NC milk 

distributed over 7 mega base-pairs (MBP) on BTA18 (Table 5.1). These 7 MBP explain 

large fractions of the phenotypic variation in NC milk, ranging from 7% to 11%. 

Tyrisevä et al. (2008) performed a genome scan to map non-coagulation of milk in 

477 genotyped FAY cows. Their study used microsatellite markers and identified a 

QTL located around 17 MBP on BTA18. Their QTL is very close to the 7 MBP region 

identified in our study. The methodology used by Tyrisevä et al. (2008) is different 

from the present study. It is important to note that the study by Tyrisevä et al. (2008) 

is based on a linkage study within sire families with pooled DNA of cows with extreme 

phenotypes, and our study is based on an association analysis of genotyped cows 

with scored phenotypes. Both methodologies have the common goal of pointing out 

the potential candidate genes associated with a trait of interest, and, despite the 

differences between both studies, a similar genomic region was associated with NC 

milk.  
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Figure 5.3 Haplotypes analyses characterizing the QTL region in SR cows. Figure 5.3A 
Phylogenetic tree of the 59 unique haplotypes, numbered in blue. In light blue, a branch of 
the tree. In black borders, bipartitions. In red and yellow, significant haplotypes at P-value 
<0.05. Figure 5. 3B relevant part of the sequences of significant versus other haplotypes. In 
red, differences between haplotypes. Dashed in black, strongest associations including 
TagSNP1. In light blue, the VPS35 gene. 
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Eleven significant associations found by our GWAS were in agreement with 

associations found by the GWAS of Gregersen et al. (2015), who studied MCP 

properties but not NC milk. This agreement occurred with the following two traits: 

rennet gel strength measured 30 minutes after chymosin addition (G’30), and rennet 

coagulation time (CTrennet). For G’30, associations agreed on BTA1, BTA13, BTA18, 

and BTA22. More specifically, these associations were: 4 SNP located between 70.75 

and 70.90 MBP on BTA1; 5 SNP located between 58.10 and 58.14 MBP on BTA13; 1 

SNP at 13.13MBP on BTA18; and 1 SNP located at 19.35 MBP on BTA22. The strong 

negative genetic correlation between NC milk and G’30 (-0.82; Gustavsson et al., 

2014a) is likely to explain the agreement of results between both studies regarding 

G’30. For CTrennet, associations agreed on BTA18, and these were: 1 SNP located at 

11.16 MBP, and 1 SNP located at 11.65 MBP. Gregersen et al. (2015) used (log-

transformed) CTrennet in their GWAS, whereas we analyzed NC milk, a trait derived 

from CTrennet. Despite the use of different but CTrennet-related traits, it was 

unexpected to find only two associations in agreement between both studies. A 

reason for this little agreement might be caused by our approach to analyze NC milk, 

which dealt with the right-censored nature of coagulation time in a more suitable 

way (Cecchinato and Carnier, 2011). 

 

An important aspect of our GWAS on BovineHD genotypes was the analyses of NC 

milk as a normally distributed trait despite its binary nature. Cecchinato and Carnier 

(2011) were the first authors to suggest this approach because NC milk samples have 

been consistently excluded from most analyses when observed (e.g., Ikonen et al., 

2004; Gregersen et al., 2015). Cecchinato and Carnier (2011) showed that statistical 

models have difficulties to correctly account for NC milk, and suggested to score NC 

milk as a binary trait and include it as a normally distributed trait in linear mixed 

models. This option allows for analyses of NC milk without the exclusion of 

information. Following this approach, Gustavsson et al. (2014a) included NC milk as 

a binary trait in their analyses, and estimated genetic parameters for rennet-induced 

coagulation properties in SR cows. In addition, the inclusion of NC milk as a binary 

trait in our study could be one of the reasons why little overlap was found with the 

study by Gregersen et al. (2015) regarding CTrennet. 

 

Besides their GWAS, Gregersen et al. (2015) found a suggestive QTL for the log-

transformed G’30 trait by haplotypes analyses. This suggestive QTL was found in the 

interval located between 11.65 and 22.34 MBP on BTA18. Although not significant in 

their study, this suggestive QTL interval is in agreement with 9 out of 10 of our most 

significant SNP associated with NC milk on BTA18 (Table 5.1). In addition, the top 
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SNP indicated by Gregersen et al. (2015) at 11.16 MBP is among our most significant 

SNP associated with NC milk. 

 

Breeding for higher protein content in SR cows might lead to problems in the 

foreseeable future, suggested by the moderate, yet unfavorable genetic correlation 

between NC milk and protein content (Gustavsson et al., 2014a). Our main goal was 

to disentangle the effects of genetic variants of milk protein fractions from other 

genetic variants associated with NC milk. For this reason, we included a multi-locus 

genotype that combined the genetic variants of the main milk protein fractions (i.e., 

αs1-β-κ-CN; “CNcluster”) in our model. Bittante et al. (2012) reviewed the most 

important genetic factors that affect MCP, indicating that MCP, including NC milk, 

are strongly influenced by variable proportions, and genetic variants of milk protein 

fractions (especially of κ-CN). These milk protein fractions, mainly representing 

caseins, are encoded on BTA6 and thus, the recombination among alleles is small 

(Bittante et al., 2012). In contrast, Tyrisevä et al. (2008) did not find significant 

associations between NC milk and the casein loci. In the present study, the casein 

loci were included as part of the design of our GWAS with NC milk, resulting in 

significant associations that are independent from the casein loci. This means that 

genes found by our study represent a new set of genes compared with the genes of 

the casein loci known to influence the prevalence of NC milk (e.g., Jensen et al., 2012; 

Gustavsson et al., 2014b). 

 

5.4.2 Imputation 

Imputation of SR cows was quite challenging because most of the variants were 

poorly imputed at sequence level when directly using the 429 WGS as reference 

population. As pointed out by Bouwman and Veerkamp (2014), breed-specific 

variants are best imputed by using a large single-breed reference population. This 

suggestion would mean that only 33 out of the 429 WGS would be of interest to 

impute our 382 SR cows to sequence level. The challenge of imputing a small breed 

like SR was overcome by running three different scenarios of imputation, and each 

time with a different reference population. The genotype that had the best 

imputation accuracy across the three scenarios was selected as the best-imputed 

genotype. The average accuracies of imputation using our approach were 0.79 for 

variants imputed with AR2 ≥ 0.2, and 0.93 for variants imputed with AR2 ≥ 0.8. While 

this is a slightly ad-hoc approach, there was good concordance between the three 

imputation scenarios and our subsequent focus on variants with AR2 ≥ 0.8 adds 

further rigor to our analyses. 
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5.4.3 RWAS on imputed sequences for half of BTA18  

The RWAS on imputed sequences for half of BTA18 revealed many significant 

associations with NC milk (Supplementary Table 5.1). One of our three strongest 

associations, TagSNP1, explained almost 34% of the genetic variation and 14% of the 

phenotypic variance in NC milk (Figures 5.1A and 5.1B). This large fraction of genetic 

variance explained by TagSNP1 is independent of the casein loci on located on BTA6. 

Altogether, these findings strongly suggest the existence of at least one causal 

variant in our focus region distributed over 7 MBP associated with NC milk. It might 

be plausible that one causal variant, i.e., 1 QTL is associated with NC milk in our focus 

region, although we cannot exclude the presence of multiple QTL in strong LD 

associated with NC milk in our focus region. Similar findings were found by Daetwyler 

et al. (2014) and Sahana et al. (2014). In their GWAS with imputed sequences, the 

considerable number of significant variants closely linked to each other increased 

the complexity of identifying a causal variant. In our study, we performed haplotype 

analyses to answer whether one or multiple QTL were present in the 7 MBP. 

 

5.4.4 Haplotype analyses 

Among the many advantages of haplotype over single-variant analyses (Balding, 

2006), two of them are: a) haplotype analyses naturally account for the correlated 

structure between variants because all the genetic variation in a population is 

transmitted from parent to offspring through haplotypes (Clark, 2004); and b) 

haplotype analyses reduce the number of parameters tested in association studies 

as compared with single-variant analyses (e.g., Clark, 2004; Balding, 2006). In 

contrast, a “tagging” strategy would reduce the power gained from using haplotypes 

per se (Balding, 2006). In our study, this limitation was dealt with by using the 

TreeScan approach (Templeton et al., 2005). TreeScan considered two aspects 

simultaneously: the correlated structure of variants closely linked to each other, and 

the origin of this haplotype in the population through a phylogenetic tree. Using the 

TreeScan approach, 2 out of the 59 haplotypes were found to be associated with NC 

milk in our QTL region (Figure 5.3A). The two significant haplotypes had 3 SNP in 

common, and these SNP are located from 13.7 to 24.4 kbp apart from TagSNP1 

(Figure 5.3B). These findings support the presence of one QTL influencing NC milk in 

our focus region. Nonetheless, the task of identifying the causal variant remains 

challenging. According to Vasemägi and Primmer (2005), when an association 

between TagSNP1 and the causal variant is found, other linked associations can be 

responsible for the variation in the trait of interest. This might be our case since 

TagSNP1 was one out of three closely linked variants strongly associated with NC 

milk. 
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5.4.5 Bioinformatics and candidate genes 

Our three strongest association with NC milk are composed of 1 indel and 2 SNP. One 

of the 2 SNP (rs379827811) is an intron variant located between 15.04 MBP within 

the VPS35 gene (Figures 5.3B, Supplementary Figure 5.3A, and Supplementary Figure 

5.3B). In humans, the VPS35 gene is a component of the retromer complex that 

mediates endosome-to-Golgi retrieval of membrane proteins such as the cation-

independent mannose 6-phosphate receptor. According to Malik et al. (2015), cargo-

selective sorting is important for the correct sub-cellular destination of membrane 

proteins. The retromer complex mediated by VPS35 gene seems to promote the 

recycling of specific membrane proteins, such as β2-adrenergic receptor and the 

glucose transporter GLUT1, directly back to plasma membrane (Seaman et al., 2013). 

It is important to mention that GLUT1 is the major glucose transporter in the basal 

membrane of epithelial cells and, in the mice mammary gland, its expression was 

increased when greater demand for glucose for the synthesis of lactose was needed 

(Anderson et al., 2007). If the recycling mechanism of the retromer complex is 

defective, it is possible that not enough membrane proteins are recycled, and in turn, 

are not available for milk synthesis. 

 

A mutation in the VPS35 gene has been associated with Parkinson’s disease 

(Zavodszky et al., 2014). In mice-models for Parkinson’s disease, a VPS35 deficiency 

could contribute to retinal ganglion neuro-degeneration, leading to the blindness of 

many retinal degenerative disorders (Liu et al., 2014). In addition, Lemay et al. (2013) 

shows that the VPS35 gene is expressed throughout lactation in humans, which 

include colostrum, transitional, and mature milk, after they sequenced the mRNA 

found in milk fat layer. In Arabidopsis, the VPS35 gene has been associated with 

protein sorting and is involved in the plant growth and leaf senescence (Yamazaki et 

al., 2008). In addition, Munch et al. (2015) shows that a dysfunction in the VPS35 

gene can contribute to immune-associated cell death in Arabidopsis. In cattle, Lemay 

et al. (2009) classified the mammary gene sets according to their condition and their 

developmental specific-stage, and showed that the VPS35 gene belonged to the 

mammary gene sets of pre-parturient and of lactating cows. The VPS35 gene has not 

been associated to non-coagulating milk yet. 

 

5.5 Conclusions 

 

The GWAS on BovineHD genotypes found significant associations with NC milk 

distributed over 7 MBP on BTA18 for SR cows. These 7 MBP contained 14 SNP that 
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explained from 7% to 11% of phenotypic variation in NC milk. This large proportion 

of explained phenotypic variance is independent of the casein loci. To further 

characterize these 7 MBP, we ran a region-wide association study with imputed 

sequences. The significance of the associations increased from –Log10(P-value) 

=10.18 on BovineHD genotypes to –Log10(Pvalue) = 14.12 on imputed sequences. NC 

milk in SR cows was influenced by at least one QTL within these 7 MBP. A haplotype 

analyses identified 2 haplotypes that differed from the other 57 haplotypes at 3 SNP. 

These 3 SNP were located near to the strongest association identified by the region-

wide association study with imputed sequences. For BTA18, haplotype analyses 

support the existence of one QTL underlying NC milk in SR cows. A candidate gene 

of interest is the VPS35 gene, for which one of our strongest association is an intronic 

SNP in this gene. It has been suggested that the VPS35 gene is involved in the 

recycling of specific membrane proteins, such as β2- adrenergic receptor and the 

glucose transporter GLUT1. The VPS35 gene belongs to the mammary gene sets of 

pre-parturient and of lactating cows, and has not been associated to NC milk yet. 
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BTA – Bos taurus autosome 

CN – caseins 

CTrennet - rennet coagulation time 

FAY – Finnish Ayrshire 

G’30 – rennet gel strength measured 30 minutes after chymosin addition  

GWAS – genome-wide association study 

LD – linkage disequilibrium 

MAF – minor allele frequency  

MBP – mega base-pair 

MCP – milk coagulation properties 
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NC – non-coagulating 

QTL - quantitative trait loci 

RWAS – region-wide association study 

SR - Swedish Red 

TagSNP1- most significant association retrieved from RWAS 

Ve!P – variant effect predictor 

WGS – whole-genome sequences 
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5.11 Supplementary Files 

 
 

Supplementary Figure 5.1 A Genome-wide association study using 777,963 SNP genotypes 
affecting non-coagulating milk in Swedish Red cows for BTA1 through BTA7 



5 RWAS with NC milk on BTA18 

 

 

128 

 

 

Supplementary Figure 5.1 B Genome-wide association study using 777,963 SNP genotypes 
affecting non-coagulating milk in Swedish Red cows for BTA8 through BTA14.
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Supplementary Figure 5.1 C Genome-wide association study using 777,963 SNP genotypes 
affecting non-coagulating milk in Swedish Red cows for BTA15 through BTA21.
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Supplementary Figure 5.1 D Genome-wide association study using 777,963 SNP genotypes 
affecting non-coagulating milk in Swedish Red cows for BTA22 through BTA29. 
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Supplementary Figure 5.2 Genome-wide QQ-Plot for the GWAS with NC milk based on 
777,963 SNP genotypes and 382 Swedish Red Cows. 
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Supplementary Figure 5.3. Views from Ensembl (http://www.ensembl.org) of strongest associations. (A) Genomic location of rs385975260, 
rs525335650 (TagSNP1), and rs379827811. (B) rs379827811 as intron variant to the VPS35 gene.  

A 

B 

http://www.ensembl.org/
http://www.ensembl.org/Bos_taurus/Variation/Explore?db=core;tl=j1z4Vo7h11CfBG4x-1092074;v=rs379827811
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Supplementary Table 5.1. Region-wide association study: list of most significant variants 

associated with non-coagulating (NC)† milk in Swedish Red cows 
 

Chromosome 
Name of 
variant 

-Log10 

(Pvalue) 
AR2§  𝜎𝑚𝑎𝑟𝑘𝑒𝑟

2 ¢ 
𝜎𝑚𝑎𝑟𝑘𝑒𝑟

2

𝜎𝑝
2⁄ * 

18 18:9179338 6.11 0.80 0.01 0.07 

18 18:9179437 6.11 0.82 0.01 0.07 

18 18:9179455 6.11 0.83 0.01 0.07 

18 18:9179462 6.11 0.83 0.01 0.07 

18 18:9179471 6.11 0.81 0.01 0.07 

18 18:9179491 6.11 0.82 0.01 0.06 

18 18:9179500 6.11 0.82 0.01 0.06 

18 18:9179561 6.11 0.91 0.01 0.06 

18 18:9179563 6.11 0.91 0.01 0.06 

18 18:9179722 6.11 1.00 0.01 0.07 

18 18:9179819 6.11 0.99 0.01 0.07 

18 18:9179826 6.11 1.00 0.01 0.07 

18 18:9179834 6.11 1.00 0.01 0.07 

18 18:9180145 6.11 0.99 0.01 0.07 

18 18:9180426 6.11 0.99 0.01 0.07 

18 18:9180513 6.11 0.99 0.01 0.07 

18 18:9180543 6.11 0.99 0.01 0.07 

18 18:9180617 6.11 0.99 0.01 0.07 

18 18:9180637 6.11 0.99 0.01 0.07 

18 18:9181238 6.11 0.99 0.01 0.07 

18 18:9181315 6.11 0.99 0.01 0.07 

18 18:9181629 6.11 0.99 0.01 0.07 

18 18:9181646 6.11 0.99 0.01 0.07 

18 18:9182405 6.11 0.81 0.01 0.08 

18 18:9214353 6.59 0.85 0.01 0.08 

18 18:9215169 6.59 0.96 0.01 0.07 

18 18:9215335 6.59 0.86 0.01 0.08 

18 18:9215376 6.59 0.96 0.01 0.07 

18 18:9215787 6.59 0.96 0.01 0.07 

18 18:9215948 6.59 0.96 0.01 0.07 
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Name of 
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-Log10 

(Pvalue) 
AR2§  𝜎𝑚𝑎𝑟𝑘𝑒𝑟

2 ¢ 
𝜎𝑚𝑎𝑟𝑘𝑒𝑟

2

𝜎𝑝
2⁄ * 

18 18:9216194 6.59 0.96 0.01 0.07 

18 18:11166809 8.66 1.00 0.01 0.09 

18 18:13136070 6.61 0.83 0.01 0.07 

18 18:13136171 6.61 1.00 0.01 0.07 

18 18:13137293 6.61 0.95 0.01 0.07 

18 18:13138676 6.61 0.95 0.01 0.07 

18 18:13142955 6.61 0.90 0.01 0.07 

18 18:13145923 6.61 0.90 0.01 0.07 

18 18:13146013 6.61 0.90 0.01 0.07 

18 18:13146020 6.61 0.90 0.01 0.07 

18 18:13146999 6.61 0.90 0.01 0.07 

18 18:13147063 6.61 0.90 0.01 0.07 

18 18:13147747 6.61 0.90 0.01 0.07 

18 18:13149017 6.61 0.90 0.01 0.07 

18 18:13149305 6.61 0.90 0.01 0.07 

18 18:13151402 6.61 0.86 0.01 0.07 

18 18:13151967 6.61 0.86 0.01 0.07 

18 18:13152843 6.61 0.86 0.01 0.07 

18 18:13155943 6.61 0.83 0.01 0.07 

18 18:13175633 6.93 0.90 0.01 0.07 

18 18:13175950 6.93 0.89 0.01 0.07 

18 18:13391752 9.84 0.83 0.02 0.11 

18 18:13391841 9.84 0.83 0.02 0.11 

18 18:13393733 9.84 0.85 0.01 0.11 

18 18:13403337 10.57 0.83 0.02 0.11 

18 18:13403968 9.37 0.87 0.01 0.10 

18 18:13405460 9.37 0.87 0.01 0.10 

18 18:13408106 10.57 0.85 0.02 0.11 

18 18:13409996 10.57 0.84 0.01 0.10 

18 18:13450556 10.77 0.80 0.02 0.11 

18 18:13453819 10.77 0.82 0.01 0.10 
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Name of 
variant 

-Log10 

(Pvalue) 
AR2§  𝜎𝑚𝑎𝑟𝑘𝑒𝑟

2 ¢ 
𝜎𝑚𝑎𝑟𝑘𝑒𝑟

2

𝜎𝑝
2⁄ * 

18 18:13454607 10.77 0.95 0.02 0.11 

18 18:13839520 10.08 0.80 0.01 0.09 

18 18:13840950 6.02 0.86 0.01 0.07 

18 18:13934348 10.08 0.84 0.02 0.11 

18 18:13934429 10.08 0.82 0.01 0.10 

18 18:13934546 10.08 0.87 0.02 0.11 

18 18:13934657 10.08 0.93 0.01 0.10 

18 18:13934670 10.08 0.95 0.02 0.11 

18 18:13934856 10.08 1.00 0.01 0.11 

18 18:13934858 10.08 0.97 0.02 0.11 

18 18:13934872 10.08 0.97 0.01 0.11 

18 18:13934903 10.08 0.94 0.02 0.11 

18 18:13934926 10.08 0.95 0.02 0.11 

18 18:13935065 10.08 0.95 0.02 0.11 

18 18:13935102 10.08 0.94 0.02 0.11 

18 18:13935106 10.08 0.94 0.02 0.11 

18 18:13935269 10.08 0.92 0.01 0.10 

18 18:13935300 10.08 0.93 0.01 0.11 

18 18:13935356 10.08 0.84 0.01 0.11 

18 18:13935590 10.08 0.90 0.02 0.11 

18 18:13938211 10.08 0.86 0.02 0.11 

18 18:13938277 10.08 0.90 0.01 0.10 

18 18:13938283 10.08 0.90 0.01 0.10 

18 18:13938291 10.08 0.91 0.01 0.10 

18 18:13938461 10.08 0.85 0.01 0.09 

18 18:13938602 10.08 0.99 0.02 0.11 

18 18:13938614 10.08 0.99 0.02 0.11 

18 18:13938680 10.08 0.99 0.02 0.11 

18 18:13938708 10.08 0.95 0.01 0.10 

18 18:13938871 10.08 0.99 0.02 0.11 

18 18:13938963 10.08 1.00 0.02 0.11 
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Name of 
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(Pvalue) 
AR2§  𝜎𝑚𝑎𝑟𝑘𝑒𝑟

2 ¢ 
𝜎𝑚𝑎𝑟𝑘𝑒𝑟

2

𝜎𝑝
2⁄ * 

18 18:13939032 10.08 0.95 0.01 0.10 

18 18:13939085 10.08 0.91 0.01 0.10 

18 18:13939109 10.08 0.96 0.01 0.10 

18 18:13939170 10.08 1.00 0.01 0.11 

18 18:13939213 10.08 0.96 0.01 0.10 

18 18:13939414 10.08 1.00 0.01 0.11 

18 18:13939492 10.08 0.96 0.01 0.10 

18 18:13939541 10.08 0.89 0.01 0.10 

18 18:13940296 10.08 0.96 0.02 0.11 

18 18:13941584 10.08 0.89 0.01 0.10 

18 18:13941841 10.08 0.91 0.01 0.11 

18 18:13942012 10.08 0.90 0.01 0.10 

18 18:13943200 10.08 0.93 0.02 0.11 

18 18:13943440 10.08 1.00 0.01 0.11 

18 18:13944067 10.08 0.95 0.01 0.11 

18 18:13944341 10.08 0.95 0.01 0.11 

18 18:13944359 10.08 0.95 0.01 0.11 

18 18:13944405 10.08 0.95 0.01 0.11 

18 18:13944426 10.08 0.94 0.01 0.11 

18 18:13944487 10.08 0.94 0.01 0.11 

18 18:13944678 10.08 0.94 0.02 0.11 

18 18:13944759 10.08 0.93 0.01 0.11 

18 18:13944979 10.08 0.97 0.02 0.11 

18 18:13945037 10.08 0.92 0.01 0.11 

18 18:13945704 10.08 0.88 0.02 0.12 

18 18:13945860 10.08 0.85 0.02 0.11 

18 18:13945962 10.08 0.86 0.02 0.12 

18 18:13946128 10.08 0.88 0.02 0.11 

18 18:13946143 10.08 0.87 0.02 0.11 

18 18:13946439 10.08 0.85 0.01 0.10 

18 18:13947029 10.08 0.84 0.02 0.12 
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Name of 
variant 

-Log10 

(Pvalue) 
AR2§  𝜎𝑚𝑎𝑟𝑘𝑒𝑟

2 ¢ 
𝜎𝑚𝑎𝑟𝑘𝑒𝑟

2

𝜎𝑝
2⁄ * 

18 18:13947133 10.08 0.84 0.02 0.12 

18 18:13947135 10.08 0.84 0.02 0.12 

18 18:13947191 10.08 0.84 0.02 0.12 

18 18:13947229 10.08 0.83 0.02 0.12 

18 18:13948757 10.08 0.86 0.02 0.11 

18 18:13949676 10.08 0.83 0.02 0.11 

18 18:13949754 10.08 0.85 0.02 0.11 

18 18:13949853 10.08 0.85 0.02 0.12 

18 18:13949912 10.08 0.85 0.02 0.12 

18 18:13950098 10.08 0.85 0.02 0.12 

18 18:13950100 10.08 0.85 0.02 0.12 

18 18:13950384 10.08 0.85 0.02 0.12 

18 18:13950481 10.08 0.85 0.02 0.12 

18 18:13950512 10.08 0.85 0.02 0.12 

18 18:13950714 10.08 0.86 0.02 0.12 

18 18:13951417 10.08 0.90 0.02 0.11 

18 18:13951454 10.08 0.90 0.02 0.11 

18 18:13951584 10.08 0.83 0.02 0.12 

18 18:13952060 10.08 0.90 0.02 0.11 

18 18:13952858 10.08 0.90 0.02 0.11 

18 18:13953290 10.08 0.87 0.02 0.12 

18 18:13953846 10.08 0.86 0.02 0.12 

18 18:13953980 10.08 0.86 0.02 0.12 

18 18:13954496 10.08 0.90 0.02 0.11 

18 18:13955270 10.08 0.91 0.01 0.10 

18 18:13955479 10.08 0.87 0.02 0.12 

18 18:13956152 10.08 0.87 0.02 0.12 

18 18:13956601 10.08 0.90 0.02 0.11 

18 18:13956677 10.08 0.90 0.01 0.11 

18 18:13956796 10.08 0.90 0.02 0.11 

18 18:13956954 10.08 0.90 0.02 0.11 



5 RWAS with NC milk on BTA18 

 

138 

 

(continuation) 

Chromosome 
Name of 
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-Log10 

(Pvalue) 
AR2§  𝜎𝑚𝑎𝑟𝑘𝑒𝑟

2 ¢ 
𝜎𝑚𝑎𝑟𝑘𝑒𝑟

2

𝜎𝑝
2⁄ * 

18 18:13957123 10.08 0.90 0.02 0.11 

18 18:13957548 10.08 0.86 0.02 0.12 

18 18:13957651 10.08 0.90 0.02 0.11 

18 18:13957672 10.08 0.87 0.02 0.12 

18 18:13958100 10.08 0.86 0.02 0.12 

18 18:13958151 10.08 0.84 0.02 0.12 

18 18:13958362 10.08 0.91 0.02 0.11 

18 18:13958364 10.08 0.91 0.02 0.11 

18 18:13958689 10.08 0.92 0.02 0.11 

18 18:13958726 10.08 0.92 0.02 0.11 

18 18:13959429 10.08 0.92 0.02 0.11 

18 18:13959552 10.08 0.92 0.02 0.11 

18 18:13959862 10.08 0.92 0.02 0.11 

18 18:13959864 10.08 0.92 0.02 0.11 

18 18:13960117 10.08 0.93 0.02 0.11 

18 18:13960334 10.08 0.94 0.02 0.11 

18 18:13960525 10.08 1.00 0.01 0.11 

18 18:13961532 10.08 0.91 0.01 0.11 

18 18:13962136 10.08 0.97 0.02 0.11 

18 18:13962696 10.08 0.96 0.02 0.11 

18 18:13962940 10.08 0.96 0.02 0.11 

18 18:13962990 10.08 0.93 0.01 0.11 

18 18:13963215 10.08 0.96 0.02 0.11 

18 18:13964657 10.08 0.88 0.01 0.11 

18 18:13965595 10.08 0.93 0.02 0.11 

18 18:13967836 10.08 0.94 0.02 0.11 

18 18:13967910 10.08 1.00 0.01 0.11 

18 18:13968028 10.08 0.93 0.02 0.11 

18 18:13970606 10.08 0.80 0.02 0.12 

18 18:13970771 10.08 0.80 0.01 0.10 

18 18:13971413 10.08 0.86 0.02 0.11 
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AR2§  𝜎𝑚𝑎𝑟𝑘𝑒𝑟

2 ¢ 
𝜎𝑚𝑎𝑟𝑘𝑒𝑟

2

𝜎𝑝
2⁄ * 

18 18:15017933 10.31 0.99 0.01 0.11 

18 18:15017982 9.24 1.00 0.01 0.10 

18 18:15018610 9.24 0.99 0.01 0.10 

18 18:15019735 10.31 0.99 0.01 0.11 

18 18:15024959 10.31 0.83 0.01 0.10 

18 18:15029101 14.12 0.88 0.02 0.14 

18 18:15032047 14.12 0.88 0.02 0.14 

18 18:15038074 7.05 0.85 0.01 0.07 

18 18:15046094 7.05 0.89 0.01 0.07 

18 18:15047436 6.46 0.99 0.01 0.07 

18 18:15047675 6.46 1.00 0.01 0.07 

18 18:15047877 6.46 0.99 0.01 0.07 

18 18:15047927 6.46 0.99 0.01 0.07 

18 18:15049190 7.05 0.84 0.01 0.08 

18 18:15051124 7.05 0.86 0.01 0.08 

18 18:15055682 7.05 0.84 0.01 0.08 

18 18:15056537 7.05 0.87 0.01 0.08 

18 18:15064047 6.68 0.89 0.01 0.08 

18 18:15081850 6.68 0.96 0.01 0.08 

18 18:15083765 6.68 0.96 0.01 0.08 
 

†NC milk as binary trait where 0= coagulating and 1=non-coagulating 
§AR2 =accuracy of imputation obtained from Beagle 4.0 

¢𝜎𝑚𝑎𝑟𝑘𝑒𝑟
2  = marker’s variance, computed for each marker as 2 times major allele frequency 

times minor allele frequency times allele substitution effect 

*𝜎𝑚𝑎𝑟𝑘𝑒𝑟
2 𝜎𝑝

2⁄  = phenotypic variance explained by a marker 



 

 

 

 



 

 

 

 
 

 

 
 
 
 

6 
 

General discussion 
 



 

 



6 General Discussion 

143 

 

 

6.1 Introduction 

 

In this thesis, the genetic backgrounds of milk-fat composition and of non-

coagulation of milk have been explored. Firstly, for bovine milk-fat composition, we 

investigated how genetic differences between winter and summer milk contributed 

to the observed phenotypic differences (Chapter 2). We showed that winter and 

summer milk-fat composition are largely genetically the same trait. Phenotypic 

differences between winter and summer milk-fat composition were mainly caused 

by dietary differences rather than by genetic differences. Furthermore, for most fatty 

acids (FA), no significant DGAT1 and SCD1 by season interactions were found. In case 

significant interactions were present, we showed that these interactions were likely 

caused by the scaling of the genotype effects. Secondly, for bovine milk-fat 

composition and for non-coagulation (NC) of milk, we explored their genetic 

variation by means of genome-wide association studies (GWAS). Through GWAS (in 

Chapters 3 and 5), we characterized promising chromosomal regions associated with 

the phenotypes. Subsequently, in Chapters 3, 4 and 5, these promising regions were 

fine-mapped with imputed 777k SNP genotypes and imputed sequence data. The 

fine-mappings refined the location of quantitative trait loci (QTL), and contributed 

to the identification of candidate genes for these QTLs. 

 

In this general discussion, I discuss different perspectives regarding gene discovery 

in cattle. I had the opportunity to use a substantial number of genetic markers for 

gene discovery, and encountered some challenges. Therefore, firstly, I discuss the 

challenges with respect to high-density genotypes for gene discovery. Secondly, I 

discuss future possibilities to expand gene discovery studies, and I propose some 

alternatives to identify causal variants underlying complex traits in cattle.  

 

6.2 Challenges with high-density genotypes for gene 

discovery 

 

The two main challenges for gene discovery were the imputation to high-density 

genotypes and the annotation of the cattle genome. In general, the attainment of 

high-density genotypes (and herein, I include sequences as high-density genotypes) 

requires several expensive steps, such as genotyping DNA samples in laboratories, 

using bioinformatic tools plus programmers to handle the huge data sets, and storing 

data. In recent years in cattle, imputation has been used to reduce costs and to 

accelerate the attainment of these high-density genotypes for large groups of 
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animals. A recognized imputation strategy consists in genotyping influential 

ancestors in a population, and imputing the rest of the population to a higher density 

of genetic markers (e.g., Druet et al., 2014). After using imputation in Chapters 3, 4 

and 5, the density of genetic markers increased while the distance between genetic 

markers decreased. Regarding the distance between genetic markers, it was reduced 

from 10 mega base-pairs (bp) with 50k SNP to ± 4 mega bp with (imputed) 777k SNP 

genotypes (Chapter 3), and to a few kilo bp with (imputed) sequences (Chapters 4 

and 5). GWAS and fine-mapping using these imputed genotypes resulted in a 

substantial increase in the number of significant associations (in the thousands) with 

the phenotypes (Chapters 4 and 5). As a consequence, it became more difficult to 

identify among the thousands of significant associations which one is the causal 

mutation. 

 

After finding thousands of significant associations with the phenotypes, the next step 

consisted in identifying candidate genes underlying these phenotypes. For this 

purpose, the annotation of the cattle genome is an important tool to pin-point 

candidate genes. The annotation of genomes including cattle is a dynamic process, 

hence, constantly changing over time. Currently, important developments regarding 

the assembly and the annotation of genomes including cattle are on their way. These 

developments, more specifically the FAANG Consortium (Andersson et al., 2015), will 

contribute to identify candidate genes and regulatory elements more efficiently than 

at present.  

 

I will discuss in more detail the two challenges for gene discovery: imputation to 

high-density genotypes and the annotation of the cattle genome. 

 

6.2.1 Imputation of high-density genotypes  

A key feature in using GWAS with imputed high-density genotypes is the accurate 

imputation of genotypes. According to Marchini and Howie (2010), genotype 

imputation is a statistical method of predicting (i.e., imputing) genotypes in a sample 

based on a reference population (RefPop). The sample is a representation of a 

population, typically genotyped for a lower density of genetic markers (e.g., 50k SNP 

genotypes), and this sample has not been assayed for a higher density of genetic 

markers (e.g., 777k SNP genotypes). The RefPop consists of individuals that are 

related to the sampled population and that have been genotyped for a higher density 

of genetic markers (e.g., 777k SNP genotypes). Based on the RefPop, the sampled 

population is imputed to a higher density of genetic markers (see figure 6.1). The 

accuracies of the resulting imputed genotypes range from 0 (poorly imputed) to 1 
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(correctly imputed). In most cases, genotypes are imputed at accuracies lower than 

1. Imputation accuracy is influenced by factors, such as the size of the RefPop, the 

genetic distance between the sampled population and the RefPop, the minor allele 

frequency (MAF), and the linkage disequilibrium (LD) between genetic markers (e.g., 

Zhang and Druet, 2010; Van Raden et al., 2013; Pausch et al., 2013; and Uemoto et 

al., 2015).  

 

 
Figure 6.1 – Schematic representation of how imputation works. The sampled population is 

genotyped at a lower density of genetic markers. The reference population (RefPop) contains 

individuals related with the sampled population that are genotyped at a higher density of 

genetic markers. Based on the RefPop, the sampled population is imputed to a higher marker 

density. 

 

Size of the reference population and the genetic distance between the 

sampled and the reference population. The 1000 Bulls Genome Consortium 

(Daetwyler et al., 2014) is a world-wide collaborative initiative that aims at 

sequencing animals from the cattle population, and at creating a multi-breed 

RefPop. Using this multi-breed RefPop, a substantial increase in the density of 

genetic markers is currently available for imputation giving the opportunity to 

impute genotypes to whole-genome sequences (WGS). The WGS are available for 

more than 15 breeds, and each breed is represented by a number of key sequenced 

influential ancestors. Recently the 1,000 Bull Genome Consortium increased the 
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number of sequenced animals, and has included sequences of influential cows in this 

multi-breed RefPop. By accounting for influential cows and bulls, more relationships 

between the sampled population and the RefPop are considered. Consequently, the 

accuracy of imputed genotypes should increase.In this multi-breed RefPop, the 

Hostein-Friesian (HF) breed is well represented with 450 HF sequenced ancestors 

(the latest Run5). In contrast, the Swedish Red (SR) breed is represented with 16 SR 

sequenced ancestors and the Finnish Ayrshire (FAY) breed is represented with 17 

FAY sequenced ancestors.  

 

In Chapter 4, we aimed at imputing the imputed 777k SNP genotypes of HF cows to 

WGS level. Therefore, only HF sequences (N=450) from the multi-breed RefPop were 

used to impute genotypes to WGS level, and due to the size of the RefPop, at high 

accuracies (> 0.9). In contrast, in Chapter 5, a rather limited number (N=33) of 

sequenced SR and FAY were available for the imputation to WGS level. The 33 

sequenced SR and FAY bulls have a large impact in the SR cow population. To make 

the best possible use of the multi-breed RefPop, our approach in Chapter 5 consisted 

of imputing a variant three times, each time with a different RefPop (33 SR and FAY 

sequences, 284 dairy-breeds sequences, and 429 beef- and dairy-breeds sequences). 

Subsequently, we were able to impute the genotypes of SR cow population to WGS. 

Based on the findings of Chapter 5, the accuracies of imputed genotypes in smaller 

breeds (e.g., SR) will only improve if the addition of sequenced animals in the multi-

breed RefPop is tailored toward smaller breeds. 

 

Minor Allele Frequency. According to Daetwyler et al. (2014) imputation errors for 

low MAF (< 0.05) genetic markers are high when imputing a cow population to WGS 

level. If an allele segregates at low MAF, then there is a relatively small number of 

sequenced ancestors in the RefPop carrying this low MAF variant. Hence, the 

imputation of this low MAF variant in the sampled population will be more difficult, 

and there is a high probability that this variant will be poorly imputed. Therefore, the 

interpretation of GWAS findings needs more caution when significant associations 

concern imputed low MAF variants. GWAS detects QTL with genetic markers at a 

certain power. This detection occurs under the assumption that a genetic marker is 

correlated with the QTL. MAF at the QTL is an important determinant of power 

because the heritability of a QTL is directly proportional to the frequencies of the 

alleles at the QTL locus (Sham and Purcell, 2014). In this context, the power of 

detecting a QTL segregating at low MAF is low. In addition, the power of detecting 

this QTL becomes even lower when using imputed low MAF variants, especially if 

their imputation accuracy is low. If a variant has low MAF, low imputation accuracy 
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and is strongly correlated with the QTL, this implies that QTL effect size needs to be 

sufficiently high to be detected by GWAS. In Chapter 4, the 8 strongest associations 

with milk-fat composition segregate at a MAF=0.44. For the findings of Chapter 4, 

the imputation accuracy of low MAF variants was not an important issue. In Chapter 

5, the 3 strongest associations with NC milk were segregating at a MAF=0.03 and 

explained more than 10% of the phenotypic variance. This strong signal, which was 

first detected in SR cows genotyped for 777k SNP genotypes, can be explained by a 

large QTL effect of more 1 phenotypic standard deviation. This illustrates that rare 

variants should not by default be considered sequencing errors and therefore 

excluded from GWAS. 

  

The inclusion of pedigree information can improve the accuracy of imputation of low 

MAF genetic markers. This approach focuses on imputing identical-by-descent 

genetic markers that segregate from parents to offspring instead of using 

information on LD between genetic markers. However, this approach is 

computationally time-consuming. Some examples of softwares with implemented 

algorithm that account for simple pedigree information (i.e., duos and trios) are 

Beagle, fastPHASE, and Fimpute. Recently, a method that imputes SNP combining LD 

and identical-by-descent information has been proposed (iBLUP, Yang et al., 2014). 

In general, accounting for pedigree information is expected to impute low MAF 

genetic markers more accurately than without pedigree information. 

 

Linkage disequilibrium. The non-random association between two loci is defined 

as LD. Two sampling processes cause LD to arise in a population according to Hill and 

Weir (1980). First, the sampling of gametes from parents to offspring, and this 

process depends on the effective population size. Second, the number of individuals 

sampled from a finite population. In the case of cattle, crossbreeding, mutation, drift, 

and small population size are events that create LD. Imputation uses LD present in 

the RefPop to impute the genotypes of the sampled population. One of the problems 

is that LD can exist between an (imputed) marker and QTL in one family but not in 

other families (Goddard and Hayes, 2012). For Chapters 3 and 4, the sires of the 

sampled population of HF cows were included in the RefPop, and in Chapter 5, this 

was also the case with the 33 sequenced ancestors of SR and FAY. However, in 

Chapter 5, we also used two other imputation scenarios that included different 

breeds, for which the sequenced SR and FAY have no common ancestors. In this case, 

LD in SR and FAY breeds can be different than LD in other breeds. LD across-breeds 

is expected to be smaller than LD within a breed because more recombination events 

separate individuals from different breeds (De Roos et al., 2008). Therefore, 
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imputation accuracy is probably influenced by the differences in LD within- and 

across- breeds, which might result in lower imputation accuracies for genotypes in 

small breeds compared with large breeds. 

 

In both cases, for milk-fat composition and for NC milk, imputation to high-density 

genotypes was challenging. The factors affecting imputation and their consequences 

on the interpretation of GWAS and fine-mapping results cannot be solved with the 

data at hand. Only through validation studies it will be possible to confirm the 

findings reported in this thesis. Validation studies would further help to ascertain if 

the strongest associations identified in Chapters 3, 4 and 5, and thus the most likely 

candidate genes, can be confirmed. If a validation study would be based on multiple 

breeds and these associations persist across breeds, the genetic markers are likely 

to be very close to the QTL, because of the limited extent of LD across-breeds (e.g., 

De Roos et al., 2008; Goddard and Hayes, 2012). However, we cannot exclude the 

possibility that the QTL might not segregate in other breeds (Goddard and Hayes, 

2012). Nonetheless, by attempting to validate our associations, it would lead us 

closer to the identification of the causal variants for the QTL identified in Chapters 3, 

4 and 5.  

 

6.2.2 Annotation of the cattle genome 

The second major challenge encountered in Chapters 3, 4 and 5 was the limited, 

hence, incomplete annotation of the cattle genome. The cattle genome contains the 

genetic information organized in chromosomes, which include the genes for the 

protein coding regions, and the DNA sequences for the non-protein coding regions. 

The genome annotation attaches to these genes and DNA sequences the biological 

information of an organism (Stein, 2001). In Chapter 3, the QTL region located 

between 29 and 34 mega bp on BTA17 contained 29 genes. A total of 18 out of the 

29 genes had not been annotated yet. Among these 18 genes, the non-annotated 

LOC515517 was the gene closest to our strongest association on BTA17, and was 

pointed out as a suggestive candidate gene in Chapter 3. LOC515517 was assigned 

this symbol because the investigation of all orthologs for this gene was incomplete. 

Orthologs are genes in different species that evolved from a common ancestral gene 

by speciation. The full determination of orthologs assist in the annotation of a gene. 

Two years later, this QTL region was re-analyzed with imputed sequences (Chapter 

4). In these two years, the non-annotated LOC515517 has been annotated as the 

LARP1B gene in the cattle genome. In Chapter 4, the LARP1B gene became our 

primary candidate gene because 6 out of the 8 strongest associations were located 

in this gene. In two years, a clear improvement has been made on the annotation of 
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genes and their biological functions, at least for BTA17. The lesson taken from 

Chapters 3 and 4 is that the limited annotation of the cattle genome should not be a 

reason to discard suggestive candidate genes. 

 

The annotation of the genome of domesticated animal species is a slow and complex 

process. In the last decade, the annotation of the genome of domesticated animal 

species has been extrapolated from the annotation of the human genome, through 

actions such as the encyclopedia of DNA elements (ENCODE). ENCODE is a global 

initiative to identify functional variants in high-quality sequences of humans. It is the 

aim of ENCODE to improve the annotation of structural and regulatory variants as 

well as non-coding genes in humans. The ENCODE initiative has been very successful 

in humans, and was expanded to other species like mouse (Shen et al., 2012; Yue et 

al., 2014). However, the idea of extrapolating gene-expression and its regulation 

network from human to mouse was not successful because of substantial divergence 

between these two species (Yue et al., 2014). This genetic diversity between species 

contributes to the complexity and the slow annotation of the domesticated animal 

species genomes. 

 

The genetic diversity of domesticated animal species is the focus of the recently 

started functional annotation of the animal genomes (FAANG) consortium. The 

FAANG consortium aims at identifying all functional elements in the genome of 

domesticated animal species (Andersson et al., 2015), and involves a collaboration 

between several research groups worldwide. In a first stage, many different tissues 

across domesticated animal species will be sampled, such as skeletal muscle, adipose 

and liver tissues, and in addition, samples of reproductive, immune and nervous 

systems will be collected. These sampled tissues and systems are necessary to 

perform functional studies. These studies enable the prediction of the function 

encoded in sequences. Andersson et al. (2015) argue that filling the genotype-to-

phenotype gap requires functional genome annotation of species with substantial 

phenotype information. The FAANG initiative aims at improving the annotation of 

the genome of domesticated animal species by creating standardized protocols for 

sampling, storing, and analyzing the information among the participating research 

groups (Clarke et al., 2015). The samples will be analyzed by some of the following 

protocols: transcribed loci (using RNA sequencing), chromatin accessibility and 

architecture (the link between gene-expression and nuclear organization of cells), 

and histone modification marks (to identify regulatory elements; Andersson et al., 

2015). In a second stage, other tissues will be sampled, such as rumen tissues from 

ruminant species, mammary tissue from mammals, among others (Andersson et al., 
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2015). As pointed out by Zhou et al. (2015), the genomes of chicken, cow and pig 

have been assembled, but limited information is available on the enhancers, 

promoters, and other elements of the genome of these species. The identification of 

these elements and their biological roles will improve the annotation of these three 

genomes. I expect that it will take some time (> 5 years) to gather and analyze all this 

information, in order to produce a comprehensive and better annotated genome for 

each of the domesticated animal species, including cattle. Therefore, the 

identification of candidate genes will be more efficient in the near future. 

 
6.3 From GWAS to causal variants 

 

The typical outcomes of GWAS are large chromosomal regions, and many 

polymorphisms that are statistically associated with phenotypes. In Chapter 3, GWAS 

with imputed 777k SNP genotypes identified a QTL region covering 5 mega bp that 

contained 29 genes. Subsequent fine-mapping with imputed sequences (Chapter 4) 

refined the QTL region and reduced the number of candidate genes from 29 to 14. 

Although this characterization of chromosomal regions associated with our 

phenotypes (Chapters 3, 4 and 5) was successful, what remains unclear from GWAS 

and subsequent fine-mapping is whether a polymorphism is the actual causal 

variant. For complex traits, such as bovine milk composition, it would be interesting 

to identify causal variants. It would increase biological knowledge, and specifically, 

help to understand how these causal variants influence our phenotypes. 

Consequently, it would be possible to predict potential pleiotropic effects on non-

(routinely) recorded traits with consequences on the selection of the next-

generation of cows. According to Falconer and Mackay (1996), quantitative genetic 

theory will become more realistic when the numbers and the properties of genes are 

known because it would improve the methods to studying complex traits. If this is 

the case, we need to find causal variants to confirm that the identified genes 

influence the phenotypes. Therefore, in this section, I propose several possibilities 

to identify causal variants. In more detail, I explore the possibilities of using targeted 

gene-expression studies, gene-editing, and gene knockouts in livestock to identify 

causal variants. 

 

6.3.1 Exploring alternatives to identify causal variants 

As indicated by Das et al. (2011), the causality of a polymorphism is difficult to be 

determined by GWAS and fine-mapping. In practice, when GWAS and fine-mapping 

identify significant associations with the phenotype, the associated variants can be 

located within protein-coding regions. When this happens, the gene is declared a 
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candidate gene and the polymorphism might be a causal variant. If the variant is 

causal, it is possible to predict changes to the encoded-protein, thus predicting 

functional changes to the phenotype (e.g., Freedman et al., 2011). Consequences on 

the phenotype can be straightforward for monogenic diseases in humans, such as 

the Duchenne muscular dystrophy. This disease is caused by large deletions of one 

or more exon(s) in the dystrophin gene causing severe muscular dystrophy in about 

60% of male infants (Hoffman et al., 1987). However, consequences on complex 

traits are more difficult to interpret than for monogenic diseases. In Chapters 4 and 

5, many associations with milk FA composition and with NC milk were identified 

within and outside protein-coding regions. In Chapters 4 and 5, the LARP1B and the 

VPS35 genes were nominated as positional candidate genes, after these genes were 

found expressed in bovine mammary tissue (Bionaz et al., 2012), and during different 

stages of lactation in humans (Lemay et al., 2013). Figure 6.2 (A and B) illustrates the 

strongest associations with milk FA composition in the LARP1B gene and with NC 

milk in the VPS35 gene. Although we limited the number of candidate genes to only 

2, the interpretation of possible functional changes of these 2 genes on milk FA 

composition and on NC milk are unclear.  

 

Furthermore, two other complications arise. First, the strongest identified 

associations with milk FA composition and with NC milk are in strong LD (figure 6.2-

A and B). Hence, we cannot disentangle which of these associations would promote 

changes to the phenotypes. Second, some of these correlated associations are intron 

variants in these candidate genes (figures 6.2 A and B). Particularly in livestock 

species, there might be a bias in declaring candidate genes toward well–annotated 

genes (Taȿan et al., 2015) because non-coding protein regions still need to be 

characterized (Andersson et al., 2015). Consequently, associations identified in non-

protein coding regions are often ignored.  To understand the possible changes to the 

phenotypes, I hypothesize that the causal variants are among one of the significant 

associations with the LARP1B and VPS35 genes. If this is the case, this hypothesis can 

serve as research question for further studies, such as targeted gene-expression 

studies. 

 

6.3.2 Targeted gene-expression studies 

Gene-expression is the process by which functional gene products are formed. Gene 

products have been studied in many species including mice, rats and humans, and in 

different cell types (e.g., de Koning et al., 2007; Civelek and Lusis, 2014). Gene  



6 General Discussion 

 

152 
 

 
Figure 6.2 – Schematic view of the LARP1B and the VPS35 genes. The green boxes represent 
the exons connected by a black line and small arrows showing the protein coding direction of 
the genes. Blue boxes represent the location of the strongest associations, and the red boxes 
represent the splice region variants. (A) The LARP1B gene, and its eight strongest associations 
with multiple fatty acids on Bos Taurus Autosome (BTA) 17 [at –log10 (P-value) = 7.66, and 
linkage disequilibrium between the eight markers = 1]. (B) The VPS35 gene, and its three 
strongest associations with non-coagulation of milk on BTA18 [at –log10 (P-value) = 14.12, and 
linkage disequilibrium between the three markers = 1]. 

 

products can be transcripts of genes (mRNA) but equally protein abundance and 

metabolite levels. The most often analyzed gene products are mRNA rather than 

protein abundance or metabolite levels (e.g., Albert and Kruglyak, 2015). Typically, 

the mRNA expression is constantly changing over time (e.g., Jiang et al., 2013). After 

establishing that most genes are quantitatively expressed, Jansen and Nap (2001) 

proposed the “genetical genomics” approach. Genetical genomics combines the 

(quantitative) gene-expression and the genetic variation from related individuals in 

segregating populations (as a representation of genetic markers). 

 

In genetical genomics (or its equivalent genome-wide association of gene-expression 

studies – eQTL ), the mRNA abundance is treated as the quantitative phenotype, and 

the genomic regions influencing gene-expression result in the detection of eQTL 

(e.g., Jansen and Nap, 2001; Jansen, 2003). According to Jansen and Nap (2001), the 

eQTLs can act in two ways: a) in cis by influencing the expression of the closest gene 

nearby (also known as locale QTL); or b) in trans by influencing the expression of 

genes in other parts of the genome (also known as distant eQTL). In animal breeding, 

Kadarmideen et al. (2006) indicated that eQTLs contribute to the refinement of the 

identified traditional QTL, candidate gene and SNP discovery. Furthermore, de 

Koning et al. (2007) combined eQTL and fine-mapping to reduce the confidence 
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interval of functional trait loci in poultry. As a consequence, the chromosomal region 

under investigation and the number of candidate genes were reduced. This targeted 

eQTL approach allows the identification of cis-acting eQTL rather than trans-eQTL. 

Targeted eQTL are especially important when there is no obvious biological reason 

supporting a significant association with the phenotypes. The reason being that eQTL 

can provide further insights into the function, regulation and pathways of genes 

underlying a complex trait (e.g., Jansen, 2003; de Koning et al., 2007; Lowe and 

Reddy, 2015). For instance, the LARP1B and the VPS35 genes have not been 

associated to bovine milk composition before the present thesis. Further insights 

into the function, regulation and pathways would clarify the functional role of the 

LARP1B and the VPS35 genes in relation to their respective phenotypes. 

 

According to Hassan and Saeij (2014), if a genetic variant influences the mRNA 

abundance of a nearby gene, which in turn modulates a complex trait, this cis-eQTL 

can co-localize with the QTL identified by traditional GWAS. When a common 

chromosomal region identified by cis-eQTL co-localizes with the QTL from traditional 

GWAS at the same genetic variant, it provide strong evidence that the underlying 

candidate gene is correctly identified (Schadt et al., 2005). In addition, this co-

localization (if observed) would suggest that the causal variant is associated with the 

gene-expression and with the phenotype simultaneously (Schadt et al., 2005). Based 

on these findings, targeted eQTL focused on the expression of the LARP1B and the 

VPS35 genes would help confirm that the candidate genes were correctly assigned, 

and help determine the most likely causal variants for these phenotypes.  

 

Nonetheless, targeted eQTL on the expression of LARP1B and VPS35 genes can point 

out variants in regulatory elements. In humans, some studies have suggested that 

multiple correlated associations can influence the activity of multiple enhancers 

(regulatory elements). When the activity of these regulatory elements is 

coordinated, their effects can alter gene-expression (e.g., Corrandin et al., 2014; 

Lowe and Reddy, 2015). Albert and Kruglyak (2015) indicated that many 

polymorphisms identified in human GWAS are over-represented in regulatory 

regions. In addition, Parikshak et al. (2015) indicated that these regulatory elements 

are located in non-protein coding regions of the genome. In our case, multiple 

significant associations with the LARP1B and the VPS35 genes are in strong LD and 

are located in non-protein coding regions (figure 6.2 A and B). I would investigate if 

the co-localization of the cis-eQTL with the QTL from a traditional GWAS would occur 

at one of the variants located in the non-protein coding regions of LARP1B and VPS35 

genes. If this would happen, the position of the regulatory element showing the cis-
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eQTL effect could be accurately determined based on the sequence data. One 

limitation, however, is that the regulatory elements of the cattle genome are not 

annotated yet. In summary, it is possible that the significant associations in strong 

LD for the LARP1B and the VPS35 genes are regulatory elements. 

 

A step further from targeted eQTL would be to investigate the proteins encoded by 

the genes directly. This approach would be interesting because of a highly regulated 

mechanism known as alternative splicing (Hassan and Saeij, 2014). Through this 

process, introns and exons in genes are re-arranged creating the opportunity for 

mRNA to synthesize different protein variants (isoforms) that may have different 

cellular functions (Wang et al., 2008). This process occurs at a specific site known as 

splice junction (or splice variant). Interestingly, the LARP1B and the VPS35 genes 

contain splice-region variants (figure 6.2 A and B). Using RNA-sequencing 

technology, it is possible to distinguish between the transcript abundance from 

alternative splicing and regular transcript abundance (Trapnell et al., 2010). 

According to Wickramasinghe et al. (2014), RNA-sequencing technology is the 

method of choice for studying RNA transcripts, and this technology shows great 

ability in studying allele-specific expression and non-coding RNA. In a further study, 

it might be worth investigating the different isoforms resulting from the splice-

variants found in the LARP1B and the VPS35 genes with RNA-sequencing.  

 

The contribution of RNA-sequencing is not limited to studying gene-expression. RNA-

sequencing can also be used for SNP and gene discovery, as well as gene ontology 

and pathway analysis. The RNA-sequencing approach is different than genetical 

genomics. Using RNA-sequencing and gene-expression of bovine milk retrieved from 

somatic cells, the different isoforms of interesting genes are tested for associations 

directly with the phenotypes. When a significant association is identified, if this 

association is identified within the isoforms, then SNP and candidate genes can be 

identified. Several studies have used this approach to identify candidate genes 

associated with bovine milk composition (e.g., Cánovas et al.,2010; Wickramasinghe 

et al., 2012; and Cánovas et al., 2013). It is important to acknowledge the substantial 

contribution of the RNA sequencing technology for studying bovine milk 

composition.  

 

6.3.3 Gene-editing and gene knockouts in livestock 

A complementary approach to gene-expression studies is targeting genes in mouse 

models. Targeting a gene in mouse models means to disrupt a specific gene in the 

genome of a mouse, thus creating a knockout mouse for that specific gene. In the 
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last 50 years, gene targeting by means of homologous recombination combined with 

the refinement of protocols (e.g., microinjection of purified DNA, electroporation, 

and positive selection enrichments) and the subsequent transmission to mouse 

germlines have led to knockout more than 7,000 genes in transgenic mouse models 

(Capecchi, 2005). The “principles for introducing specific gene modifications in mice 

by the use of embryonic stem cells” have made Dr. Capecchi, Dr. Evans and Dr. Oliver 

winners of the Nobel Prizes in Physiology or Medicine in 2007. This refinement of 

methods and protocols has substantially accelerated the biological knowledge of 

genes, and has led to the development of gene-editing. 

 

Gene-editing. Although gene targeting has required the introgression of exogenous 

DNA into the genome of a mouse, gene-editing with site-specific nucleases is an 

alternative to target specific genes without the introgression of exogenous DNA (e.g., 

Capecchi, 2005; Carlson et al., 2014). According to Cappechi (2005), the use of these 

site-specific nucleases allow to target a series of alleles in the same gene, thus 

manipulating any chosen allele in mouse models. There are at least three known site-

specific nucleases: the zinc-finger nucleases (Kim et al., 1996), the transcription 

activator-like effector nucleases (Boch et al., 2009; Moscou and Bogdanove, 2009), 

and the clustered regularly interspaced short palindromic repeats associated 

endonuclease cas9 (CRISPR/Cas9; Cong et al., 2013; Mali et al., 2013). My focus will 

be on the most recent, the CRISPR/Cas9 system.  

 

The CRISPR/Cas9 system is part of the protection mechanism against viruses that has 

been identified from the immune system of bacteria. The CRISPR/Cas9 was first 

described by Cong et al. (2013) and by Mali et al. (2013), as a RNA-guided site-specific 

DNA cleavage technique. According to Cong et al. (2013), the Cas9 nuclease can 

direct short RNAs to induce precise cleavage at DNA loci, facilitating the knockout of 

targeted genes. Initially, the CRISPR/Cas9 technique was intended to understand 

genes, their regulation and their biological functions because of its easiness of 

programmability and of usage (Cong et al., 2013). Gene-editing has the potential of 

targeting a single gene as well as multiple genes simultaneously. Gene-editing can 

be used to obtain cell-specific knockdown (one copy of the gene inactivated) or 

knockout (both copies of a gene inactivated) as well as gene specific mutations using 

rodent models (Shalem et al., 2015). For this reason, it has become an important ally 

to study genes underlying complex traits, such as bovine milk composition. For 

bovine milk composition, gene-editing has the potential to accelerate knowledge 

discovery (about genes, their biological function, and their influence at the 
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phenotypic level). On this regard, gene-editing is substantially contributing to 

improve the annotation of domesticated animal species genomes, including cattle. 

 

Gene knockouts in livestock. With gene-editing, some gene knockouts in livestock 

have been successfully produced. With the zinc-finger nuclease, the knockout of the 

PPARγ gene in pigs (Yang et al., 2011) and of the β-LG gene in cattle (Yu et al., 2011) 

was possible. However, Carlson et al. (2014) indicated that proprietary algorithms 

were responsible for impeding the use of this zinc-finger nuclease. With the 

transcription activator-like effector nucleases, Proudfoot et al. (2015) reports the 

gene-editing of the myostatin (MSTS) gene in sheep and in cattle with successful 

results. In the future, using gene-editing with the CRISPR/Cas9 technique, knockout 

cows are likely to be produced. The resulting (functional) changes will be 

interpretable at the phenotypic level. It would be useful to understand the extent of 

changes from one or multiple genes on bovine milk composition, but also on the 

important physiologic changes faced by cows at parturition. For phenotypes such as 

bovine milk, I foresee in the coming future gene knockout cows being widely 

produced, kept and challenged in a commercial environment. I can also foresee the 

knockdown of one or multiple alleles in the LARP1B and the VPS35 genes, as well as 

the knockout of these genes in gene-edited cows. 

 

While gene-editing with the CRISPR/Cas9 technique will become widely used in the 

future, functional changes in bovine milk composition can already be studied using 

a lactating bovine mammary epithelial cell (bMEC) model. Zhao et al. (2010) and 

Jedrzejczak and Szatkowska (2014) indicated that bMEC models are suitable to study 

bovine milk synthesis. Instead of using bMEC sampled from tissues through biopsy, 

Boutinaud et al. (2002) isolated mRNA directly from somatic cells, which are 

naturally released in milk during lactation. Using RNA sequencing, Medrano et al. 

(2010) and Cánovas et al. (2014), both concluded the viability of using milk somatic 

cells and milk fat globules to study mammary gland expression. For bovine milk 

composition, functional changes to be phenotypes can already be assessed by 

studying the gene-expression of LARP1B and the VPS35 genes directly from milk 

samples. In addition, it is also a possibility to target one or multiple alleles in a single 

gene (e.g., the LARP1B and the VPS35 genes) using bMEC models. 

 

In summary, there are many opportunities to transform the significant associations 

identified from traditional GWAS and fine-mapping in research questions for further 

studies. All the approaches discussed in this section would, a priori, help to identify 

causal variants underlying complex traits such as bovine milk composition, and a 
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posteriori, help to understand the function of genes and their biological role in 

bovine milk. 
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Summary 

The present thesis aims at unraveling the genetic background of bovine milk 

composition by finding genes associated with milk-fat composition and non-

coagulation of milk. The fine-mapping was realized by increasing the number of 

genotypes analyzed in the targeted chromosomal regions. This allowed to increase 

the resolution for these genomic regions and pin-point candidate genes associated 

with bovine milk composition. 

 

In Chapter 2, we analyzed milk fat composition in winter and summer and estimated 

in both seasons’ genetic parameters, the effects of acyl-CoA: diacylglycerol 

acyltransferase1 (DGAT1) K232A and stearoyl-CoA desaturase1 (SCD1) A293V 

polymorphisms. Furthermore, we estimated genetic correlations between winter 

and summer milk fatty acids and tested for genotype by season interactions of 

DGAT1 K232A and SCD1 A293V polymorphisms. Phenotypes consisted of gas 

chromatography measurements (%w/%w) of seventeen individual fatty acids (C4:0 

to C18:0, C10:1 to C18:1cis-9, C18:1trans-11, C18:2cis-9,trans-11 (CLA), C18:2cis-

9,12 and C18:3cis-9,12,15), groups of fatty acids (saturated FA (SFA), unsaturated FA 

(UFA) and the ratio SFA to UFA), and six unsaturation indices (C10 index – CLAindex). 

These phenotypes were available for 2,001 cows in winter and in summer milk 

samples. We showed that the genetic correlations between winter and summer milk 

FA were very high, and these indicated that milk-fat composition in winter and in 

summer can largely be considered as genetically the same trait. We showed that 

effects of DGAT1 K232A and SCD1 A293V polymorphism were very similar in winter 

and in summer milk for most FA. At last, we tested for genotype by season 

interactions, and demonstrated significant DGAT1 K232A by season interaction for 

some FA. A SCD1 A293V by season interaction was only found for C18:1trans-11. 

These genotype by season interactions were due to scaling of genotype effects.  

 

In Chapter 3 and in Chapter 4, we used a subset of the fatty acids analyzed in Chapter 

2. This subset consisted of six individual FA (C4:0 - C14:0) were available for winter 

and for summer milk samples. 

 

In Chapter 3, a quantitative trait locus (QTL) on Bos taurus autosome (BTA) 17 

explaining a large proportion of the genetic variation in de novo synthesized milk FA 

was fine-mapped. This QTL region has been identified previously using 50k SNP 

genotypes. We fine-mapped this QTL region with imputed 777k single nucleotide 

polymorphism (SNP) genotypes to identify candidate genes associated with milk FA 

composition. Single-SNP analyses showed that several SNP in a region located 
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between 29.0 and 34.0 mega base-pairs were in strong association with C6:0, C8:0, 

and C10:0. This region was further characterized based on haplotypes, and these 

analyses suggested the presence of one causal variant. Although many genes are 

present in this QTL region on BTA17, the strongest association was found close to 

the progesterone receptor membrane component 2 (PGRMC2) gene. This gene has 

not been associated previously to milk FA composition. 

 

In Chapter 4, the chromosomal region associated with de novo synthesized milk FA 

on BTA17 was further re-fined using imputed whole-genome sequences (WGS). WGS 

were available for 450 Holstein-Friesian (HF) animals (the 1000 bull genome 

consortium (Run5) and 45 HF sequenced animals from the Dutch Milk Genomics 

Initiative. Based on these 495 HF sequences, all cows were imputed from (imputed) 

777k SNP genotypes to sequence level. Single-marker analyses identified many 

significant associations (in the thousands) with c6:0, c8:0, c10:0, c12:0 and c14:0. 

Most significant associations were detected in a region covering 5 mega base-pairs 

and in this region a total of 14 genes could be identified. Six out of the 8 SNP that 

showed the strongest associations were located in the LA ribonucleoprotein domain 

family, member 1B (LARP1B) gene. This candidate gene has not been associated with 

milk-fat composition before. 

 

In Chapter 5, firstly, we performed a GWAS using 777k SNP genotypes to identify the 

most promising genomic regions associated with non-coagulation (NC) of milk in 

Swedish Red cows. Secondly, we fine-mapped the most promising genomic region 

using imputed sequences. Individual morning milk samples were available for the 

382 Swedish Red cows that were also genotyped using a 777k SNP array. Using 429 

sequences from the 1000 bull genome consortium (Run 3), all cows were imputed 

from 777k to sequence level. Single-marker analyses identified 14 associations with 

NC milk in a 7 mega base-pairs region on BTA18. For this region, our strongest 

association explained almost 34% of the genetic variation in NC milk. Haplotypes 

were built, genetically differentiated by means of a phylogenetic tree, and tested in 

phenotype-genotype association studies. A candidate gene is the vacuolar protein 

sorting 35 homolog, mRNA (VPS35) gene, for which one of our strongest association 

is an intron SNP in this gene. The VPS35 gene belongs to the mammary gene sets of 

pre-parturient and of lactating cows, and has not been associated to milk 

composition yet. 

 

In Chapter 6, the general discussion is presented. Firstly, I discuss the imputation to 

high-density genotypes and the annotation of the cattle genome. I discuss what 
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imputation is, the factors which affect imputation accuracy, and the consequences 

of using imputed genotypes for GWAS and fine-mapping studies. Regarding the 

annotation of the cattle genome, I discuss the major difficulties in finding candidate 

genes with the current annotation, and discuss future initiatives that will contribute 

for a better annotation of genomes in the future.  

 

Secondly, the future possibilities to expand gene discovery are discussed. In this 

section, the discussion starts with the importance of identifying causal variants 

underlying complex traits. The discussion continues by exploring possibilities, such 

as targeted gene-expression studies, eQTL, gene editing and knockout cows, to 

identify the causal variants underlying complex traits
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feeling lighter again, and I think proudly to myself: “Yes, ‘mam. I am a ‘75s. Go for 

it!”. 
 

Dieuwertje, I will never forget how much you helped me. Thank you! For all the 

support and help on this difficult phase, I acknowledge Dr. Cafure and his family, my 

family, Johan, Marleen, and Henk. I would like to say thank you for the amazing 

support and hard work that Ada and Lisette did. “Lieve Dames, dank jullie wel!” 
 

This is the year 2014, and on this very sunny day, Captain Johan, Colonel Henk and 

Major Marleen altogether announce my final destination: “Sandrine”, said captain 

Johan, “You are going to the North Pole. There, you will spend some time in a ship 

called SLU. The captain is a good friend of mine and you can learn lots of things from 

him and his crew. I argued back: “Captain, my Captain! These are dangerous waters. 

I am going to freeze to death!” “Naja”, says Captain Johan, “You just need some good 

clothes, then it will be OK!”. Colonel Henk watching me worried, says “Sandrine, keep 
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an eye on polar bears. Beware of sliding bears! They can swipe you out of the deck!”. 

“Safe trip! ”said Major Marleen. After waving goodbye to all colleagues and friends, 

and gathering nice tips from my fellow PhD Dianne, my puzzlement was replaced by 

the eagerness of discovering this new boat, place and crew.  
 

It is on a summer sunny day when I finally reach ship SLU. This boat was somewhat 

surprising; the main deck was round. I was a little lost at first, especially because so 

many people around me were saying “Fiiiikka!”. I could not stop thinking: “What a 

strange language!”. “AH, AH”, says this voice at the far end of the deck. “You made 

it! Welcome, welcome to the main deck of the SLU ship. By the way, I am Captain DJ 

and this is my crew: Major Freddy, Lieutenants Fernando and Lisa. You also know 

Nancy and André!”. It was so nice to see these familiar faces. Very supportive PhDs 

Nancy and André helped me settling in very fast. In no time, the round deck became 

a very familiar place. But there was that dark side of the deck. I turn to André, and 

ask: “Hey bro, what is on that dark side of the deck?”. “Sandrine, follow me”, he said. 

In no time, we step into the dark side, and André says: “Meet the SLU Mafia!”. “Hey, 

bro! Who is THAT? You are not supposed to bring strange people in.” says this PhD 

to André. She turns to me and says: “My name is Agnese, and I am sort of the leader 

of the SLU mafia! And these are Merina, Chrissy, Bingjie, Ahmed, Thu, Shizhi, 

Xiaowei, and all the others! This is where all the PhD gather and organize many 

parties and all sorts of activities! You are most welcome to join! By the way, 

Fiiiiikkka.” I thought “And here we go again”.      
 

It was mid-October 2014 and strong winds were bringing very dark clouds that 

marked the beginning of the winter. The forecast was announcing light snow for the 

evening, and at the main deck, I noticed that the days were getting shorter quite 

rapidly. Captain DJ in his usual good shoes was sort of inspired: “Sandrine, the 

weather is not an issue, we are inside the ship. For some months, the main deck will 

remain closed, and we will be stuck in the North Pole until spring, next year.” I say: 

“WHAT????? Spring is in April, we are gonna die!” Major Freddy and Lieutenant 

Fernando started their usual jokes “Ah, Ah, we are gonna die indoors, so we will go 

out to ski, ice-skate and all sorts of nice things! It will be fun! You will see!”. The next 

morning the weatherman announces: “Yesterday, it only snowed one meter of 

snow.” “Whow, this winter is gonna be promising”, I thought.  
 

I would like to say thank DJ and Freddy for all the support that you gave me while in 

Sweden and afterwards. Thank you Maria and Marie for all the nice comments. A 

special thank you to Lisa because you let me stay two months in your house, and I am 

really grateful for this. Fernando, Karl and Cano thanks for keeping me smiling. A 
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special thank you to the SLU Mafia. Thank you for all the amazing stuff we did 

together: “Guys, you rock!”. Thanks Sofia, Kim, Emilie, Thomas, Eva and Valentina for 

the nice discussions. 
 

Thank you Dianne for the tips before I went to Sweden, especially the one to go to 

Kiruna! It was fantastic! Nancy and André: Hey you two! I shall never forget you! 

After a PhD, we shared so many moments! I can only say: thanks for everything. 
 

This is the year 2015 and spring makes its way in this rather dark room. This new ship 

ABGC 2.0 is located in the middle of this rather dark forest. A change that I notice, 

especially after spending sometime at the North Pole. This is the last chapter of this 

tremendous adventure called EGS-ABG to me. I have experienced so much, and 

many PhD have harvested their thesis already. The direction set for me now is 

towards the sun. I am heading full speed towards the final stage of every training: 

the Aula. This period of time is intense, and everything has to be ready before spring 

2016. Courses have to be finalized, all the Storm Papers are mastered by now, and 

the final challenge makes its entrance in no time: Hurricane General Discussion. 

Winds much stronger than expected and waves just look like mountains of waters in 

front of ABGC 2.0 ship. Everything is so dark, and suddenly caught off guards, I fell in 

the sea. “Woman at Sea”, shouts the Captain. I am safe and sound. I am quite lucky 

because new EGS-ABG and PhDs have started their training.  
 

So nice to meet them with their high spirits and hearts full of determination. The nice 

and quiet main deck is suddenly taken by their voices, bringing a new sense of hope. 

They do not realize, but they came to the rescue right on … “DRING, DRING”, I am 

immediately transposed at the computer behind my desk at Radix building. “DRING, 

DRING”, insists the phone. “Bonjour Maman, Bonjour Papa!”… 
 

Para minha Família: Merci Maman et Papa! Merci pour tous ce que vous avez fait 

pour moi et de m’avoir enseignée ce que l’amour inconditionnel est. Je vous aime! 

Merci Yvan et Stéphane, pour les visites, voyages et vos soucis. Obrigada Maria-

Claudia e Sophia pelo carinho. Obrigada à tia Carmen, tio Reimar , Alexandra, Simão, 

Felipe, Mariana, Fernando e à falecida tia Margitte por todo o carinho, interesse e 

apoio. 
 

Afinal, um PhD não é fruto de coincidências. É fruto de muito trabalho, e dedicação. 

Por isso, estendo os meus agradeçimentos a todos os meus professores da FAA-

Valença/RJ, e em especial à minha amiga Aparecida e ao meu amigo Generoso.  
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