
Elements of 
system-dynamics simulation 

A textbook with exercises 

A , « i p VW . * S 



Elements of 
system-dynamics simulation 

A textbook with exercises 

Th. J. Ferrari 

CENTRALE LAND BOUWCATALOGUS 

fpudooj 

0000 0021 6073 
Wageningen 
Centre for Agricultural Publishing and Documentation 
1978 

3 0 JUL11979 
(y I.: 



Published by Pudoc outside the U.S.A., Canada and Latin America. 

ISBN 90-220-0668-9 

© Centre for Agricultural Publishing and Documentation, Wageningen, the Nether­
lands, 1978 
Printed in the Netherlands 



Contents 

Preface 
1. Introduction; systems and models 
2. Rate and its resultant; differential equations and integration 
3. Analytical and numerical integration; differential equation 

and finite-difference equation 
4. Feedback loops 
5. Time coefficients 
6. Relational diagrams 
7. Rate equations and state equations 
8. Building of larger models 
9. Simulation of delay and dispersion 

10. Exercises 
11. Answers to the questions 
12. Solutions to the exercises 
References 
Index 

1 
4 

10 

13 
17 
22 
27 
29 
32 
37 
40 
54 
61 
87 
88 



Preface 

This book is the revised content of various courses that the author 
has given in recent years to groups of persons from different scientific 
disciplines. Among them were students of economics and social science 
at the University of Groningen, students of environmental health at 
the University of Amsterdam, participants in courses for scientific 
co-workers of the Ministry of Agriculture and Fisheries at Wageningen 
and participants in courses of graduate scientists on Dynamic Simula­
tion in Ecology at Wageningen. 

All participants had in common the need to learn practical applica­
tions of the system-dynamics approach. The course also aimed at 
giving the participants an understanding of the origin of actual 
phenomena and the skill in converting the problems into system-
dynamics relational diagrams and into simple algebraic equations. In 
planning the course, I assumed that most participants had little know­
ledge of mathematics and it served little purpose to bring it up to 
scratch. The same applies to the book. To understand it, one need 
know nothing of differential and integral calculus. The essentials are 
introduced gradually. 

The course emphasized the practical application of system dynamics 
as is illustrated by the numerous exercises. In my experience, students 
can learn the concepts and principles of system dynamics fairly easily 
but have difficulty in translating and converting the problem into the 
language of system dynamics. Perhaps traditional approaches and 
accepted models of the various sciences have not paid sufficient atten­
tion to changes with time, i.e. to behaviour. In the course, theory and 
application were linked by setting problems for homework. The solu­
tions were then discussed in the next lecture. Within 20-25 lectures, 
participants became sufficiently acquainted with system dynamics to 
solve their own problems. 

Forrester and his school have aroused much interest in the applica­
tion of system dynamics. There is, however, a need for a book dealing 
with its principles, the solution of models based on them, and the 
derivation of equations that describe these models more extensively. 
Such a book should relate theory to application. Therefore, I have 
devoted much attention in this book to problems and their solution. 
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The book starts with the discussion of systems and models, and then 
deals with the concepts of the system-dynamics approach. The reader 
must first study and become familiar with this part. He can test how 
well he has understood the text by answering various questions. Then 
come the exercises, which form the key to the whole work. Answers to 
both questions and exercises are included, so that the reader can check 
his own work. It is essential that the reader works out the problems 
himself! The exercises become more difficult as more phenomena are 
introduced but they are fairly simple, so that the reader should still see 
the wood for the trees. The text progresses from simple to more 
complex structures, so that an understanding is gained of the origin 
and essentials of some characteristic patterns of behaviour. 

The book also explains how to set down the numerical solution of 
the differential equations with just pencil and paper. It does not deal 
with the use of a computer in such calculations, even though the 
computer is indispensable for the study of models, even simple ones. 
That task is outside the scope of this book: it is not a computer course. 
Moreover the value of training in simulation techniques is debatable, 
because the introduction of 'simulation languages' considerably simp­
lifies the programming of such calculations. 

I have dealt with patterns of behaviour that occur in different 
disciplines. Examples are taken from physics, chemistry, process con­
trol, biology, ecology, hydrology, food science and economics, al­
though most examples are from natural science. The exercises are so 
treated that readers from other disciplines can solve them with system 
dynamics. Thus the reader becomes aware of how problems from 
various disciplines can be described and explained analogously. It is 
also good experience to draw abstractions from the real world. All this 
helps in an interdisciplinary approach to important problems for 
human welfare. 

This book is intended for students, researchers and others interested 
in how feedback systems work. The reader must never lose sight of the 
fact that the usefulness of system dynamics depends on the user's 
knowledge of his own discipline. System dynamics is no answer to lack 
of expertise! However system-dynamics models can indicate where 
knowledge is lacking. 

Finally, let me thank all those who by their interest and criticism 
have contributed to the content of the course and this book. Particip­
ants have played a major role in working out the course. I hope that 
their influence can be seen. The exercises are mainly system-dynamics 



elaborations of subjects from literature. Some exercises on business 
management are the work of J. V. Ferrari. 

Groningen, September 1977 



1 Introduction; systems and models 

Nowadays, more than ever before, well-meant human action at a 
certain place and at a certain moment may have large and unexpected 
results, unfavourable for human welfare at another place and at 
another time. There is much knowledge about separate parts of a 
system, but it is difficult or even impossible to connect these pieces of 
information. Reality shows a behaviour which is characteristic for the 
system, of which the behaviour is more than the behaviour of the sum 
of the separate parts. 

What is meant by the behaviour of a system is illustrated in Fig. 1, 
which shows the calculated behaviour of a biological system. It relates 
the interaction between two insect species: the parasites living off the 
host insects and the hosts killed by the parasites (Exercise 29). The 
numbers of both species show systematic oscillations comparable with 
those in nature. However, the most remarkable aspect of these oscilla­
tions is the way in which they originated. The initial condition before 
the calculations started was a steady state or state of dynamic equilib­
rium in which the numbers of both species were constant. In such a 
state, we introduced small randomized changes, as external noise, in 
the natural birth and death rates so that after some time large 
systematic oscillations were produced. The influences introduced were 
at random; therefore, it would be pointless to relate the characteristic 
attributes of these oscillations to just any environmental factor. Ele-
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Fig. 1. Calculated behaviour of a system representing the interaction of two 
insect species. The system was affected only by external random noise. 



ments in this system and its structure are responsible for this oscillatory 
behaviour. Such phenomena, which indeed are known in other discip­
lines such as economics and social science, point to the importance of 
the systems approach. 

The use of systems is a rather recent development in scientific 
methodology. The first step was taken in biology. Further development 
in other disciplines has been more or less independent and has resulted 
in a lack of uniformity in concepts and in methods of systems thinking, 
also known as system analysis, system dynamics, systems theory and 
systems engineering. However uniformity is gradually emerging, so 
that the systems approach is becoming the connecting link between the 
different disciplines. 

The concept system can be defined as a collection of associated 
elements sharing a common purpose or function. In this context, 
element is taken as given and is not investigated further. The element 
itself can be considered as a system too; then we increase the level of 
generalization. A sociological unit is a system which may be composed 
of the elements man, animal or plant; at a higher level of generaliza­
tion man, animal or plant can be taken as a system. If there are 
relationships between the elements, their behaviour is no longer inde­
pendent: a change in one element causes a change in one or more 
other elements in the system. Really the definition of a system is too 
general. We can only use it to distinguish systems from each other by a 
number of elements and relationships, by the structure, and consequent 
differences in behaviour, i.e. the changes in the state of the system 
during a certain period. 

Actual systems can be classified according to different aspects. As 
the number and content of the relationships is important, a classifica­
tion can be based on an increasing complexity of structure. For 
instance, Boulding (1956) introduced the following scheme: 
Level 1 is characterized by a static structure, in which the time element 
is absent: examples are some physical laws, a map. 
Level 2 has a dynamic structure with the time element: simple 
machines, a clock. 
Level 3 includes control mechanisms, characterized by information 
transfer and processing: a thermostat. 
Level 4 refers to self-maintaining systems. It is the level of the cell; it is 
the transitional state between inanimate material and life: virus, bac­
terium. 
Level 5 is the start of functional separation: the plant. 
Level 6 is characterized by movement and consciousness: the animal 
nature. 
Level 7 is the level of the human being who is able to think. 



Level 8 is related to social organizations: family, group, society. 
Level 9 is less important for our purpose, it refers to the transcenden­
tal master-system. 

An increase in complexity usually means an increase in relaxation 
time or response time. The former is the time needed to settle a system, 
unbalanced by an interference. For instance, if we compare the values 
for the restoration time of chemical processes, those for reactions of 
biological cells and those for behaviour of plant and plant com­
munities, we see that they range from seconds up to years. In the 
discussion on the time coefficient, we will revert to this point. Re­
versely, with increasing complexity, it also takes more time, i.e. re­
sponse time, to realize certain changes. The ideals of a single person 
are changed more quickly and enduringly than those of the group to 
which the person belongs. 

According to Boulding's classification, each level includes the 
characteristics of the systems of lower levels. Thus we may incorporate 
the characteristics of a system of a high level in a system of a lower 
level, if necessary. In scientific research and management decisions, 
this procedure is often used in reverse. However, one then runs the 
risk of omitting essential characteristics of these higher-level systems 
and of not understanding how these systems work. Most models have 
this drawback. 

Man has always used a model to vizualize the real world. Especially 
in the empirical sciences, models have caught on. They can be used to 
predict the effects of certain decisions and interferences. In this book 
we shall restrict ourselves to the following definition: a model is a 
representation of a system by a form different from that of the system 
represented. We shall only meet models in an analogous form (rela­
tional diagrams) and in a mathematical form (differential, finite-
difference and other equations). 

A model is applied especially in communication, instruction, plan­
ning and when forming hypotheses. Reality, however, is too complex 
to be represented completely so that a model has merits and signifi­
cance only if all relevant elements and relationships have been in­
cluded in the model. The question remains whether it is possible to 
represent satisfactorily the different systems according to Boulding's 
scheme. 

The representation must fulfil the needs of reality and of generality. 
Reality is the extent to which the elements and the relationships, 
taken-up in the model, correspond to those in the real world. General­
ity relates to the number of situations and systems to which the model 
can be applied and is bound up with the number of elements and 



relationships in the model: the degree of resolution or reticulation, or 
reversely, the degree of aggregation. 

An analysis of the historical development of model making shows 
why systems thinking did not develop until the last decade. The 
problems of system dynamics only appear with the representation of 
systems belonging to Level 3 and higher of Boulding's classification. In 
the beginning of the research, insight was still insufficient to feel the 
need to mimic such systems. A combination of circumstances and 
developments has undoubtedly contributed to the enormous increase 
in systems thinking during the last years: the increase in knowledge on 
control and servo mechanisms, the importance of the feedback loop for 
the behaviour of these technical systems, the working of decision 
functions and the significance of information for it. At the same time 
we have gained insight into the applicability of all this knowledge to 
the explanation of the behaviour of natural systems. Finally, the 
introduction of the computer has made it possible to solve the differen­
tial equations needed to describe feedback mechanisms and to make 
the models of such dynamic systems operable. 

As a result, the technique of simulation which has been in use for 
many years, has gained new impetus. For a long time, emphasis in 
research has been on experimentation with the real world, with and 
without interference (Ferrari, 1965). During the last decades, the 
simulation technique has been used more and more in research (Shan­
non, 1975). Simulation means experimentation with models by changes 
in elements or in relationships in order to understand better the 
behaviour of the system or to compare the meanings and values of the 
different strategies. The simulation technique should play a great part 
in research and in management, especially with the development of 
systems theory. Simulation is often the only way to assess the extent of 
knowledge, for example when the mathematical or analytical solution 
of the model is too complicated. Often it is impossible to study real 
phenomena in isolation according to the ceteris-paribus principle, in 
which all factors, except one or two, are kept constant. In other 
situations, such isolation may give unrealistic results. Moreover, simu­
lation is an outstanding method when experimenting with the real 
world is unethical as in social science, ecology and space flights or 
would take too long as in economics and ecology, or involves risks as 
in ecology, medical science and social science. 

Which models have been used in research and in management up to 
now? To answer this question, we do not need to differentiate between 
the various sciences, as the sequence of development has always been 
the same. We are concerned here with models intended to represent 



the systems of the several levels of Boulding's scheme. 
Although at the start of the development of the various sciences, 

models were applied in which the time variable was used explicitly, 
mostly static models (i.e. without time as variable) with one equation 
are still used in all sciences. The well-known regression equation is based 
on this model; it has the form y = f(xi, x2... xn) in which y is the 
dependent variable, x the independent or explanatory variables, and f 
represents some function of the independent variables. The use of this 
type of equation means that a structure of Level 1 is taken to represent 
systems of higher levels of complexity. Without underestimating the 
value of such a description, we may conclude that reality was poorly 
mimicked in many cases. However, many phenomena are still rep­
resented in this way! An improvement has been the introduction of 
models described not by one equation but by more equations. Such 
models assume that the dependent variables have an influence on other 
variables. The mathematical form of an arbitrary model could be: 
yi = fi(*i, x2, y2, y3), y2 = f2(xl5 x2) and y3 = f3(x2, x3); in the first 
equation, the dependent variables y2 and y3 are now assumed to be 
explanatory variables. The model of the factor analysis belongs to this 
type too; the number of relationships, however, is assumed to be 
unlimited. All these models are static; one is interested in number and 
relative influences, the behaviour of the system as such is not consi­
dered. 

From the beginning scientists have tried to introduce the dynamic 
character of a phenomenon into models. Often the rate of change in a 
variable can be expressed in a differential equation as a function of a 
number of factors. This kind of model is only useful if the change or 
behaviour can be inferred as a function of time by integration of the 
differential equation. This procedure has always been used in physics 
and chemistry and less frequently in other sciences. Naturally, scien­
tists have tried to develop models with one or more differential 
equations, also for complex systems as in biology. However, this 
approach could hardly develop because it was impossible to solve or 
integrate analytically these more realistic and consequently more com­
plex models. The computer and the development of systems thinking 
changed this situation. 

The application of static models strongly stimulated the idea of 
causality in one direction; a change in the independent or causal 
variables only implies a change in the dependent variables. This change 
in a dependent variable does not influence the state of the independent 
one, neither now nor later. This way of scientific thinking has strongly 
determined all actions in science and in management. However, the 
development towards the systems-thinking approach has brought the 



causal loop more to the fore: each change in a state variable again 
influences the rate of change. It is clear that the scope of the system 
description is widened by the introduction of these 'feedback loops' 
into models of systems of Level 3 and higher in Boulding's scheme. 

By using the ideas mentioned and the possibilities of the computer, 
Forrester (1961, 1968) put forward a theory about the content and 
structure of systems and how they work. To this, he coupled the 
numerical solution technique of differential equations. By using an 
adapted relational diagram technique, he introduced to non-specialists 
a way to apply this systems thinking. Forrester called this combination 
of theory and method system dynamics. It became well known through 
the publications of the Club of Rome (Meadows, 1972), which had 
used the method. 

The simple structure of this system dynamics can be applied and 
extended easily by every specialist. The theory of system dynamics is 
universally applicable because every phenomenon that may be consi­
dered as a change in a state can be described by this method and 
studied by means of simulation. It has already been applied in many 
disciplines such as biology, chemistry, hydrology, environmental sci­
ence, ecology, economics, social science and pharmacology. The pos­
sibilities of application are determined primarily by the professional 
knowledge of the researcher and not by his knowledge of mathematics 
or his ability to use a computer. 

This universality will undoubtedly promote an interdisciplinary con­
struction of models, in which systems of one speciality are connected 
with those of another by paths of information. However, it may be 
utopistic to think that system dynamics can be used to build and study 
models in which the real world is elaborated on all levels of complex­
ity. Reality will always be too complex to be modelled wholly in this 
form. One has to fall back upon the use of aggregated elements, which 
as we know substantially decreases the degree of generality and 
applicability. 



Rate and its resultant; differential equations and 
integration 

The rate by which a change in a state of a variable takes place, is 
expressed in the dimension: amount per time unit. Depending on the 
nature of the state, this amount can relate to different quantities, such 
as weight, length, number and rate. The rate itself may be constant for 
a certain period; it may also change without a clear pattern (at 
random) or according to certain rules. These so-called decision rules 
must then be converted into differential equations. Note that decision 
does not have a human connotation; the differential equation describ­
ing a chemical reaction can be considered as a decision rule. 

It has great advantages to illustrate with simple examples a discus­
sion on nature and function of a differential equation and on the 
integration associated with this equation. The principles used hereby 
are essentially the same as for more complex phenomena. The most 
simple case is the solution of a differential equation to describe the 
constant speed or rate of change in position of a vehicle. Plotted 
against time in hours (h) in a graph, this speed (in km h_1) is shown as 
a straight line parallel to the time axis. What is the result of this speed 
after a certain period? In other words, what is the distance covered? 
This question can be answered easily. The speed is multiplied by the 
length of time or period concerned and the distance covered s in km is 
obtained as result. One has now integrated the differential equation 
ds/df = c. Integration is applied chiefly to find the values of the 
function of a variable when its differential quotient is known. 

The differential quotient or derivative ds/df is a notation for the rate 
during an infinitely small time interval df. As is usual in a programming 
language processed by a computer, an abbreviation of the verbal 
description of the rate concept is often used in the text instead of the 
differential quotient; for instance, the speed of the flow of water w into 
a tank dw/dt (another notation is w) may be written as INR and the 
rate of change in speed (acceleration) as ACC. 

In a graph, this integration is the same as the computation of the 
area bounded by the time axis, by the line parallel to this time axis at a 
value c of the rate ordinate and by both lines, parallel to the vertical 
rate axis, at 2 points of time indicating the period. The result of the 
integration, here the distance covered s in km, can be plotted as a 
function of time. See the dashed line through the origin with slope c in 
Fig. 2. In a graph, the slope of a straight line or the tangent to a curve 
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speed distance 

t t, time 

Fig. 2. Speed in km h"1 (solid line) and distance covered in km (broken line) as 
functions of time. The area bounded by the speed line, the two lines at the 
moment to and t1; respectively and the time axis equals the distance covered 
after to — tj time units. 

represents the speed or rate at a certain moment (Fig. 2). 

Question 1 
In a graph, the distance in meters m on the y axis is plotted against the 
time in seconds s on the x axis; the result is a straight line. 
a. What does the slope of the line represent? 
b. What is the dimension of this concept? 
c. What can be said about this concept, if the line is parallel to the x 
axis? 

Such a procedure is always performed by integration. The right side 
of the differential equation is mostly more complex, often so complex 
that the shape of the integrated function of the variable with respect to 
time cannot be assessed mathematically. Here one must use the 
numerical solution. On the other hand, the mathematician always tries 
to integrate mathematically such differential equations by introducing 
boundary conditions or constraints into the model. The analytical or 
mathematical solution often gives a better understanding of the be­
haviour of the system, but can be applied less easily to practical 
circumstances. 

Question 2 
Suppose that the rate of net change in the working capital of a firm, 
taken as the difference between profit and loss over some years, is 
given by the graph of Fig. 3. 
a. Calculate and sketch the changes in the working capital in the first 6 
years, assuming that the initial investment was 6 x l 0 6 guilders. 
b. What do you notice? 
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c. What happens if the scale of the time axis is halved so that the 
changes in rate do not take place at the time points 2, 4 and 5 but at 4, 
8 and 10, respectively (no changes of rate occur after the original point 
6)? 

4 
1 
9 

1 
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-1 

-I 
-3 
-4 

-•ate (105 

-

1 

Guilders y ) 

i 

3 

i i i 

5 7 

time (y) 

Fig. 3. The rate of change in working capital as a function of time. 

The method of direct calculation by determining the area can be 
used quite well when the rate is a simple function of time. To solve 
more complex differential equations, this area calculation is also used, 
but then step-by-step. This procedure will be treated later. 

Question 3 
In a graph, the rate of water flowing into a tank in litres (1) per second 
(s) on the y axis are plotted against the time t in seconds (s) on the x 
axis. The result is a descending straight line with a rate of 1.2 litre per 
second at point t = 0 and with a rate equal to zero after 30 seconds. 
a. What is the amount of water in the tank after 30 seconds, if there 
was no water in the tank at point t = 0? 
b. Sketch the amounts of water in the tank as function of time, 
between the time points t = 0 and t = 50. 

Often it is possible for a specialist to indicate on which factors and in 
which way the rate of a process depends. With an increase in know­
ledge in a science, there is the tendency to make the differential 
equations more complex so that they can no longer be integrated 
analytically. Then, if it is impossible to gauge shape and characteristics 
of the function describing the process with respect to time, the 
differential equation becomes of little value. This drawback is partly 
overcome by the numerical solution. 
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Analytical and numerical integration; differential 
equat ion and finite-difference equat ion 

Question 3 referred to the problem of filling a tank with water. The 
constructor could have regulated the valve with a time switch. Then 
the rate of flow is described as a function of time by the differential 
equation dw/df = —1.2/30 x f + 1.2 in which w is the number of litres 
and t the time in seconds; consequently, dw/df is the changing rate 
with which the water is flowing into the tank. 

Question 4 
How is this equation deduced algebraically from the data given in 
Question 3? 

An analytical integration of this differential equation gives the 
amount of water w in the tank as a function of time according to 
vv = —1.2/60 x r 2 +1.2 xf. With this equation, it is now possible to 
compute the inflow of water for each period between the points t = 0 
and t = 30. 

Question 5 
How can the result of Question 4 be verified? 

In this last example, the rate of flow is not dependent on the amount 
of water already present in the tank. The rate need not always be 
independent of the state as the next example shows. 

Suppose the ecologist thinks, on biological grounds, that the number 
of animals in an area increases by a certain percentage every year. 
Then the rate of increase, expressed in numbers of animals per year, 
would be determined by the number of animals already present and 
consequently would not be constant in successive years. Under such 
conditions, the following differential equation holds: dy/d£ = cxy , in 
which y is the number of animals at a certain moment and c the 
percentage of annual growth. The rate is now a function of the number 
of animals y; in a graph this relationship is represented by a straight 
line through the origin. 

13 



Question 6 
What are the graphs of the rate equations with values of c equal to 
10% and 5% per year, respectively? 

Such differential equations can be integrated analytically and pro­
duce the well-known exponential growth curve yt = y0 + ecx ', in which t 
is the time in the chosen units and e the base of the natural or 
Napierian logarithms. The subscripts of y represent time; conse­
quently, yt and y0 are the amounts of moment t and at the start of the 
calculation, respectively: y0 is the starting value. With this equation, 
the state of the variable y at every moment can be calculated. 

Until now we have investigated the influence of a certain rate 
equation on a state variable by analytically integrating this equation, 
after which the state of the variable could be represented as a function 
of the time, the behaviour. It is also possible to construct this last 
relationship by computing successively the changes during a number of 
successive short periods; the rate during such a short period is sup­
posed to be constant. One starts with a certain initial state y0. By using 
the rate equation concerned, one can calculate the absolute rate during 
the next time interval or step At and the subsequent change in state 
during this time interval. The new state again causes a new rate which 
holds for the next interval At, and so on. 

Question 7 
Why is it necessary to calculate the absolute rates (amounts per time 
unit) at a number of time points? 

The following example explains this procedure. Suppose that the 
rate at which an amount of water w is flowing into the tank through an 
adjustable valve, is given by the differential equation dw/df = 
gX(16-w) . Suppose also that there is no water in the tank at t = 0; 
thus w0 = 0. The rate in 1 s_1 by which water is flowing at that moment 
into the tank equals: | x ( 16 -0 ) or 4 I s - 1 . If we take the length of the 
time interval At equal to 2 seconds, then 8 litres water will have flowed 
into the tank after 2 seconds; w becomes 81. During the following time 
interval of 2 seconds, the rate is then: \ x (16 - 8 ) or 21s - 1 . Therefore, 
during this time step 4 litres is flowing into the tank, so that the total 
quantity of water in the tank equals to 8 + 4 or 121. The calculation 
proceeds as follows: 
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16 
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2 

Question 8 
Complete the calculation and plot the amount of water in the tank 
against time. 
a. What do you notice? 
b. When is the rate of inflow zero? 
c. What happens if an 8 is substituted for a 4 in the fraction 5? 
d. Suggest a name for this fraction. 

The reader has now performed a numerical integration. As we 
know, analytical integration can also be applied here. Integrating the 
differential equation dw/df = | x ( 1 6 - w ) gives the equation w, = 
16 - (16 - 0) x e_t/4. Fig. 4 shows the state variable w as a function of time. 

amount of water w (1) 

12 _ 

4 -

Fig. 4. The amount of water w as function of time. The curve is the integral of 
the differential equation dw/dt = \ x (16 — w) in which w is the amount of water 
at moment t. The broken line represents the maximum amount wmax=16 
litres. 
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Question 9 
Plot the results of the calculations of Question 8 in Fig. 4. 
a. Are the results of these calculations of the amount of water in the 
tank underestimated or overestimated compared with those of the 
analytical solution? 
b. How do you explain this difference and in which way could it be 
corrected? 
c. If such calculations are also executed with the rate equations of the 
exponential growth of Question 6, do you expect the numerical solu­
tion to underestimate or overestimate? 

Actually, with the calculation just discussed a numerical integration 
is done in the same way as with the computer. The researcher converts 
continuous differential equations into finite-difference equations or rate 
equations, with a difference quotient Ay/At; with aid of these finite-
difference equations the new state or amounts are computed. 

The state equations describe how the changes are effected and form 
the integral. Here the multiplication of the rate equation and the 
length of the time interval At are essential. This multiplication can be 
executed in various ways, the integration method after Euler being the 
best-known. However, whatever the method a discrete integrated 
function is always obtained (Kuo, 1965). 

The only difficulty is to express the rate and state equations in a 
form that can be processed easily by a computer. We will refer later to 
this subject. The use of simulation languages facilitates this part too. 
These languages include procedures which allow for inaccuracy and 
errors inherent to numerical integration (see Question 9). However, 
this book does not go into these matters. 
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4 Feedback loops 

Study of the behaviour of man-made control and servo mechanisms 
has shown that the structure of a system may be more significant than 
the individual elements for the system behaviour. An important struc­
ture was the closed loop or feedback loop, in which the state of an 
element or variable determines the degree of action or flow, which 
subsequently changes this state. This process takes place in a continu­
ously circulating loop. There are two kinds of feedback loop. 

In a positive feedback system, the action enhances the state so that 
afterwards the action becomes greater again. An example is the 
exponential growth according to yt = yoxecx ' with as underlying 
differential or growth-rate equation dy/df = cxy. This is the model of, 
for example, the growth of capital that is put out at a fixed interest a 
year or of the unlimited growth of algae in a lake with a constant 
'relative' or 'intrinsic' growth rate (dy/df)/v, which expression follows 
from the differential equation. The growth itself as function of time is 
given in Fig. 5. The absolute increase per time unit is determined by 
the amounts already present, so that the increase in amounts is 
enormous. The system of a positive feedback loop produces, as it were, 
a departure from some reference, neutral condition or goal, often that 
of zero activity. Such an equilibrium state in a positive feedback loop is 
often called an 'unstable' equilibrium. 

Unlike the positive feedback, the negative feedback loop is goal-
seeking; a departure from this goal or equilibrium produces an action 
to return the state to this goal. An example is the mechanism for the 
automatic filling of a tank with water up to a certain level. The tank is 
filled according to the equation wt = wmax-(wmax-w0)xe~cx ', ob­
tained as we have seen by integration of the differential equation 
dw/dt = ex (wmax— w). The term w0 is the amount of water in the tank 
at the beginning of the calculation (see Fig. 4). With the help of the 
differential equation, trace how this negative feedback loop works. 

Question 10 
The death rate of a group of animals is described by dy/dt = — c x y, in 
which y is the number of animals and c the relative death rate. 
a. Does this system contain a positive or a negative feedback loop? 
b. What is the goal or equilibrium of the system? 
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State y 

time 

Fig. 5. Graph of the exponential growth curve yt = 
differential equation dy/df = c x y. 

:y0xecx ' as integral of the 

The principle of the feedback structure is present everywhere in the 
world around us. We see that every decision on an action or flow has 
to be based on information about the state of one or more elements of 
the system. Such concepts as decision, action and information should 
not always be given a human connotation. These concepts include not 
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only processes such as deciding on the length of a rest period in 
relation to degree of tiredness and the state or interaction between a 
government's programme and a population's reaction, reflected in how 
it votes, but also the working of a system describing exponential 
growth, the reaction of living things to poisonous chemicals and the 
automatic filling of a tank up to a maximum. 

The elementary model of a feedback structure comprises four 
characteristic elements: a closed boundary, the state, the information 
on this state and the decision function controlling the action by which 
the state is altered. Fig. 6 shows schematically the relationships. 

action 

decision state 

information 

Fig. 6. Scheme of the feedback loop. 

Because the system has a closed boundary, its behaviour must be 
accounted for by the structure only; the behaviour arises from the 
properties inside the system. Although factors outside the system do 
influence it, they are not essential for the pattern of behaviour (see the 
origin of the behaviour given in Fig. 1). Furthermore, the closed whole 
contains a feedback loop with a decision on the action built in. State 
and decision functions are parts of this loop, connected by an informa­
tion chain or flow. The state is an element that is altered by the action 
or flow; the result is integration. The state contains all information on 
earlier changes and is, as it were, a memory. Through the decision 
function, the state determines the action by which it is altered. The 
components of a decision function are the goal, the state as observed 
by the decision function, the discrepancy between this state and goal 
and finally, the necessary action resulting from this discrepancy. The 
system of feedback can only be described by a function that produces 
the same mathematical function when integrated and successively 
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differentiated. 
Chapter 8. 

Discussion of the 'why' will be referred to later, in 

Question 11 
Describe the process of buretting or that of steering a bicycle. 

The importance of the feedback structure and how it works can be 
illustrated best by two comparable examples, with or without a feed­
back structure. Both examples refer to the filling of a tank with water 
through an adjustable valve and are worked out in Fig. 7 by relational 
diagrams. 

In the first example, there is no connection between the water level 
in the tank and the aperture of the valve; the valve is not 'aware' of the 
water level and has an aperture that does not change. In the second 
example, however, the system is 'aware' of the water level in the tank; 
through the float in the tank and the lever between float and valve, 
information about the water level is transmitted to the valve; the water 

f—• f— 
ÜX1 fr—EX 

* - < > 

Fig. 7. Relational diagram of a system of the filling of a tank with water, a. 
without feedback loop and without maximum level, b. with feedback loop to a 
maximum level. For the explanation of the symbols, see Fig. 9. 
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level determines the position of the valve and thus the aperture and 
the flow rate or decision. The builder of this system fitted a valve 
whose aperture closes when the water level in the tank has attained its 
maximum. The system reacts instantaneously to information; it is 
striving for a goal, namely the maximum level. Consequently, this 
system has a negative feedback loop. 

In the first example, the rate of flow is constant and independent of 
the water level, and the relevant differential equation is dw/df = c. By 
integration, one can derive that the amount of water w at every 
moment can be calculated from vvt = c x t. In the example with the 
feedback structure, the aperture of the valve on which the rate of flow 
depends, is a function of the water level and therefore not constant. 
How is this function derived? It is reasonable to suppose (cf. the 
process of buretting), that the rate of flow is a constant fraction of the 
difference between the maximum level wmax and the instantaneous 
level w. The lower the water in the tank, the faster the flow and 
conversely. The differential equation now becomes dw/df = 
cx (wmax-w) , from which after integration the amount of water in 
the tank can be calculated as function of time according to w, = 
wmax —(wmax—w0)xe~cx'; c is the constant fraction value and w0 

represents as usual the initial state. The rate of flow is zero at the 
moment that the water level in the tank has reached the maximum 
(goal). This situation is called an equilibrium because the rate of flow 
at that level has become zero. This state must be distinguished from a 
stationary state, steady state or dynamic equilibrium (in German: 
Fliessgleichgewicht), at which the total amount present is no longer 
changed, but the rate or rates do not equal zero. 
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5 Time coefficients 

To formulate the two differential or rate equations which represent a 
positive or a negative feedback system, the rates were calculated by 
taking a certain percentage of a state or of a difference between a 
target state or goal and the instantaneous state per time unit. What 
dimension has this proportionality factor? To answer this question, it is 
possible to compare the dimensions on both sides of the equals sign in 
the rate equation; these should equal each other. In fact it is recom-
mendable to always check dimensions when forming equations, espe­
cially of complex situations; by following this procedure, one learns 
more about the significance of the various coefficients and parameters, 
and can often see how to determine then* Such a check guards against 
computer difficulties. 

In both cases, this comparison shows that the proportionality factor c 
has the dimension 1/time or t ime -1 . Only then do the dimensions on 
both sides of the rate equation equal each other. This time element is 
significant for the behaviour of the system and is called the time 
coefficient TC. In the two systems treated so far, the time coefficients 
were assumed to be constant. It is also possible that they are not 
constant or are assumed to be not constant during the process. In the 
equations for exponential growth or for the system of automatically 
filling a tank, the time coefficients equal the inverse of the proportion­
ality factor c. The equations of the exponential growth become dy/df = 
1/TCxy and y t =y 0 xe , / T C , respectively. 

Question 12 
What are the time coefficients if the growth percentages are 5, 2 and 
0 .1% a year, respectively? 

The time coefficient determines mainly the reaction rate and indi­
rectly the behaviour of the system. This can be demonstrated by the 
most simple feedback systems: the exponential growth curve and the 
system by which a tank is filled automatically with water. In such 
feedback systems with only one integration, the time coefficient deter­
mines the degree of reaction. Check this statement by comparing the 
integrated growth curves with the time coefficients of Question 12. 
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Question 13 
What can be said about the amount of water which flows into the tank, 
with a constant absolute rate, after one time coefficient? 

In such simple examples, the time coefficient can be defined as the 
time needed to bring the system into equilibrium, assuming a constant 
absolute rate during that period; this assumption is expressed by a 
tangent to the integrated function at that point of time, extending from 
that point to the intercept with the equilibrium line. 

Question 14 
a. Check this statement by using the rate equation of the system for 
automatical filling a tank with water. This property of the time 
coefficient indeed holds for every point of the integrated function! 
b. Such a property also holds in a positive feedback system. However, 
the formulation is different. Why? 

Question 12 and the preceding text gave the relationship between 
increase or decrease in percentage per time unit on one side and the 
value of the time coefficient on the other. Theoretically, this rule of 
thumb is incorrect because for this relationship it was assumed that the 
absolute rate during a period equal to the time coefficient does not 
change. However this rate, or geometrically expressed, the tangent to 
the integrated curve during that period, is changing continuously. The 
time coefficient calculated according to this assumption is therefore 
underrated for an exponential increase and overrated for an exponen­
tial decrease. The values of these deviations can be assessed easily by 
comparing the time coefficient calculated by the rule of thumb with 
that calculated according to the integrated equation y, = y0 x e±,/TC. For 
a growth percentage of 10% a year and with an initial state of 100, this 
equation becomes 110= 100xe , /TC . By taking logarithms of this equa­
tion, it follows that TC does not equal 10 years but 1/ln 1.1 or 10.48 
years, i.e. a difference of about 5%. This difference becomes larger at 
higher percentages. At low values of c, for instance smaller than 10%, 
the rule given in Question 12 does not give deviations that are too large. 

The time coefficient is obviously significant because it, or a derived 
form, is accentuated by well-known names in the various sciences: the 
relative or intrinsic growth rate (dy/df)/y with the dimension t ime - 1 , 
the doubling time, the half-life, the time constant or transmission time 
of the control-system theory, the turnover time, the average total 
residence time and the delay time. 
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Question 15 
The doubling time, defined as the real time needed to double the 
amount, equals 0.7 xTC and is therefore smaller than the time for the 
situation in Question 13. 
a. Why? 
b. How can the factor 0.7 be derived? 
c. What could be the definition of half-life or half-value time? The 
real half-life period equals 0.7xTC for the same reason. 

The relaxation time, often used in physics, is the time needed to 
decrease the state to 1/eth or 0.37th part of the original value. It is the 
time coefficient of the exponential return to the original state and can 
be used as a measure of the speed with which a system is absorbing 
disturbances. 

As discussed in Question 10, the death of individuals in a group is 
described by the differential equation dy/dr = — 1/TCxy of which the 
integrated function is yt = y0xe~1/TCx\ This model is illustrated in Fig. 
8. The death rate is mostly given as a certain percentage per time unit, 
for instance 12.5% a year. The time coefficient is therefore about 8 
years. What is the average lifetime or average total residence time of 

state or amount y 

time t 

Fig. 8. The exponential death curve yt = yoxe~ , /TC as an integral of the 
differential equation dy/df = — 1/TCxy. After a period of TC time units the 
value of 37% of the initial state is reached; this relationship holds for every 
part of the curve. However, with the assumption that the absolute rate will be 
constant the equilibrium state will be reached after a period of TC time units. 
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the individuals of the group? It is common to speak of an average 
lifetime of 65 years with the implicit assumption that death takes place 
with a constant percentage. What is the time coefficient in this case? 

Suppose that 10 persons enter a room at the same moment and 
leave this room at different moments: 1 person after 2 hours, 4 after 3 
hours, 2 after 4 hours, and 3 after 5 hours. What is the average total 
residence time of these persons in the room? It is easy to understand 
that this time equals ( I x 2 + 4 x 3 + 2 x 4 + 3x5)/10 or 3.7 hours. The 
average residence time is determined not only by the residence time of 
each individual but also by the shape of the frequency-distribution 
function of the moments at which each person leaves the room. 

If the departures of persons or particles from a space is expressed as 
a percentage of the individuals still present in the space, the exponen­
tial decrease curve is at the same time the frequency-distribution curve 
of the moments at which the persons or the particles are leaving the 
space. It is possible to prove mathematically, in a way analogous to the 
calculation procedure just described, that the average residence time 
and the average departure or transit time of the individuals are equal 
to the time coefficient TC (Goudriaan, 1973). 

Question 16 
The amount of poison in a fishing pond decreases by chemical decay at 
a rate proportional to the amount of poison still present. The propor­
tionality factor is called k. 
a. What is the dimension of k? 
b. Sketch the cumulative frequency-distribution curve of the residence 
times of the poisonous particles in the pond as a function of time. 
Where on the time axis is the average residence time? 

Another example is the death of biological individuals. If death 
takes place at a constant percentage of the present individuals and if 
the mean lifetime is 65 years, the time coefficient TC equals 65 years. 

Question 17 
a. What is the assumption about the time coefficient in all these cases? 
b. Suppose that the death of a group of individuals must be described 
in this way. Is the assumption made in the first part of this question 
reasonable? Why? How is it possible to build a more realistic model? 

Closely related to the concept of the average residence time is that 
of delay time. This concept involves an intended change of place or 
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form that is not realized immediately. A transformation of raw mater­
ial into a product requires time for manufacture, the transfer of oil 
from the mining area through the pipeline to client takes time when 
the oil is in the pipeline, the transmission of information requires time 
as information delay, governmental laws take time before they are 
implemented, decisions can not be realized instantaneously etc. All 
these delays can be considered simply as the average residence time in 
a delay element or box. A delay with an exponential curve can be 
worked out by integration; the time coefficient used is the average 
delay time. The reverse applies too: every integration yields a delay! 
We will return to these exponential delays. 

Finally, the time coefficient is important for the length of the time 
interval At (DELT). We have already seen that the drawbacks of 
numerical solutions can be overcome partly by using small time inter­
vals. However, smaller intervals require much computer time and cost 
a lot of money. Therefore, the tendency to increase the length of the 
time interval does raise the question how far this enlargement may 
proceed without invalidating the prediction. 

The slope or tangent to a point of the integrated function and the 
significance of the errors incurred are determined mainly by the time 
coefficient. As a rule the length of the interval is taken to be not 
greater than ^-j of the smallest time coefficient of the system. If the 
interval in tfîë"~simulation procedure is too large, the system's be­
haviour will have nothing to do with reality (see also Question 18). 

The combined effect of more time coefficients with more integrations 
inside one feedback loop (see Chapter 8 on the building of larger 
models) has been described in some cases. In a positive feedback loop, 
composed of m integrations, the ultimate time coefficient of this loop 
equals ^TQ x TC2 x . . . TCm. The time coefficient of a negative feed­
back loop with 2 integrations goes by the name of period and, after 
working out, equals l-n-xVTQxTCj. Mostly the effect of a combina­
tion of time coefficients in a loop cannot be expressed so simply. The 
influence and the significance of the combined time coefficients have to 
be studied by simulation. 
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6 Relational diagrams 

Strictly speaking, relational diagrams, which visualize the elements 
and relationships (structure) of a model, are not essential. However 
many people find them useful for building and elaborating more 
abstract mathematical models. A relational diagram has the following 
advantages. At the start of research, it summarizes the most important 
elements and relationships and helps the researcher maintain an over­
all picture. Especially when problems are complex, it simplifies the 
working-out of rate and state equations. Incidentally it makes the 
content and characteristics of a model easily accessible to others. 
Finally, a relational diagram improves the comprehensibility of a 
model so that effects on the system's behaviour and the significance of 
certain structures (loops) for the behaviour stand out more clearly. 

A model of the automatic filling of a tank with water, of which the 
differential equation is dw/df = l/TCx(wmax—w), is represented by 
the relational diagram shown in Fig. 7. The representation of this and 
other differential equations is based on a number of agreements 
summarized in Fig. 9. These agreements do not need further explana­
tion. It is usually sufficient to represent the states, constants, parame­
ters etc. on which the decision function depends by information lines in 
the relational diagrams. How the decision function itself is composed, 
is mostly left out of the diagram. This composition is given by the rate 
equation, to be discussed later. However, the values of the constants 
are often mentioned in the diagram; in the example already given: 
wmax =16 litres and TC = 4 seconds. Sometimes during the research, 
it appears that the factor, supposed to be constant, is variable after all. 
Then the symbol used has to be replaced by something else, perhaps a 
table, an auxiliary equation or a connection with an integral. One 
sometimes indicates with a + or — sign whether the loop concerns 
positive or negative feedback. 

Special emphasis must be given to the information flows, rep­
resented by broken lines. With these information chains, systems of 
different nature can be combined: systems with dissimilar quantities 
such as men, energy, money and material and those from different 
disciplines. Also larger systems can be composed in this way. Informa­
tion is only transmitted and not processed, with one exception men­
tioned below. Thus information is given, directly or indirectly, only to 
decision functions and never to states. Information chains therefore 
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Stream or flow and direction of an action by which amount 
or state is changed; if necessary, different sorts of 
line can be used to distinguish between various states 
but not broken lines. 

Integral of the flow; summary of what has happened. 

o > 

Stream or flow and direction of information; o means 
that nothing is removed or changed. This is not always 
so; for instance, if information is delayed, the delay 
itself is performed by integration. 

cx Valve which indicates that a decision takes place here; 
the lines of information coming-in indicate on which 
factors the decision function depends. 

Source and sink of quantities in whose content one is 
not interested. 

A constant or a parameter. 

Ki 
Auxiliary equation, which is part of a decision function 
and is given separately for c lar i ty ; conversion 
coefficients. 

Fig. 9. Basic elements of a relational diagram. 

connect states to rates. An auxiliary equation is always part of the rate 
equation and can only be part of an information chain. The informa­
tion offtake does not affect the information source itself; this source, 
either a state, constant or variable, is not altered by this information 
offtake, except when information itself is subjected to a process. This 
takes place when information is delayed and as such is part of a 
process; within the process of delaying, changes and integration of 
amounts of information are executed. 
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7 Rate equations and state equations 

The rate equations and state equations are another representation of 
the model and specify further the relationships and structures of the 
model. Connected closely to this is the procedure, including rules and 
instructions, to calculate the changes during the time interval At 
(DELT). Fig. 10 shows the scheme of the sequence of the calculations. 

t+l time 

Fig. 10. Scheme of the sequence of the calculations of a state H and a rate 
HR. Notice that the rate during the calculation interval At remains constant, 
the state, on the contrary, changes. 

The vertical in this graph represents 2 axes: the rate axis and the 
state axis. The rate is represented by a broken line; as the rate is 
assumed to be constant during the interval At, this line runs parallel to 
the time axis. An agreement is made that every calculation step 
consists of the calculation of state or quantity H t at moment t and of 
the calculation of the succeeding rate HR t at moment t, using this new 
state or quantity H t. This rate HR t is assumed to be constant during 
the interval or period t till t + l . For the next calculation step, this time 
point t and this period are shifted back, as it were, by a time interval 
At; then the state H, and the rate HR t become H t_! and HR t_j, 
respectively. The subscript t of the state means the state exactly at the 
moment t, whereas the subscript t of the rate indicates the rate during 
the period t + At or t till t + l . 

When formulating the equations of larger models, it may be impor­
tant to note this sequence. The initial conditions at the beginning of 
the calculations must always be considered as belonging to the moment 
t. Consequently the computing procedure starts with the computation 
of the rates during the interval 0 till 0 + 1, which completes the first 

29 



calculation step and the time subscripts are shifted as described. 
The rate and state equations and the necessary (why?) statements 

about the initial states (INIH etc.) are formulated as follows: 

H t = Ht_x ±DELT x HR t_j 
H R t = ± l / T C x H t 

INIH = a value 

The first equation says that the new state or quantity at moment t 
equals the old one plus or minus the change during the interval At. The 
second equation means that the rate at moment t and during the next 
interval At is a function of a state and of a time coefficient. In the 
formulation of the ultimate program used by the computer, the time 
subscripts can usually be dropped. The program itself does not need 
these subscripts. Besides, the right side of the state equation is formu­
lated differently in a simulation language, for instance in CSMP as 
INTGRL(INIH, HR), by which the integration as given in the first 
equation is executed automatically. The use of such simulation lan­
guages is not discussed in this book (Shannon, 1975). 

Question 18 
An interval DELT equal to twice the time coefficient can cause 
fluctuations. Show this by using the equation for the system of automa­
tic filling of a tank. 

The right sides of the rate equations and of the state equations can 
be extended in various ways. More rates can be taken up in a state 
equation. The right side of a rate equation may contain every combina­
tion of state variables and constants required by the problem. Further­
more, the number of rate equations and state equations can be 
increased as specified by the content of the problem. See Chapter 8 on 
the building of larger models. 

Question 19 
It is known, that the birth rate and the death rate of a population of 
50 000 persons are 5% and 2%, respectively. 
a. Draw the relational diagram for this system. 
b. Formulate the rate and state equations describing this system. 

When the equations are formulated, the following points have to be 
taken into account. The time interval DELT is only found in state 
equations. It is reasonable to assume that a rate does not depend 
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directly on another rate and because a rate can be determined in 
reality only indirectly through states rate equations contain only states, 
other variables and constants, but never rates. The states are altered 
only by rates. These principles are demonstrated in the relational 
diagrams by the fact that rates and states alternate with each other. 

The dimension of an element in the equation does not determine 
whether it has a rate function in the system. To check the rate function 
itself in the system, it is assumed that the system has been stopped; 
then the real rates become equal to zero, and the other elements 
remain as information. The presence of a negative feedback loop is 
given by the minus sign of the state in the rate equation or by the 
minus sign of the rate in the state equation. 
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8 Building of larger mode l s 

Only the elementary structure of the feedback loop has been treated 
so far. It is possible to construct models with larger and more complex 
structures using the principles and agreements mentioned. This en­
largement can be obtained by 
- increasing the number of integrations, 
- using combinations of positive and negative feedback loops, 
- introducing non-linear functions, 
- constructing larger feedback loops and combining more feedback 
loops. 

An increase in the number of integrations means that the number of 
state equations, and consequently the number of rate equations, in­
crease too; the order of the differential equation, representing the 
whole system, increases. 

Complexity can be increased by an increase in the number of 
feedback loops even in structures with only one integration. Each 
feedback loop may be positive or negative. A combination of positive 
and negative feedback is present in the model for the growth of yeast, 
by which alcohol is produced; the alcohol has an adverse effect on the 
growth rate, the growth even stops at high concentrations. A reasona­
ble assumption is that the relative growth rate (in time J) decreases 
linearly with the increase in amount of alcohol in the growth medium. 
When it is also assumed that the amount of alcohol is a measure of the 
amount of yeast present, the following differential equation can be 
formulated: dG/df = G x l / T C x ( l - G / G M A X ) , in which G is the 
amount of yeast at a certain moment and GMAX the maximal amount 
of yeast. The relational diagram is given in Fig. 11. 

Question 20 
a. What is assumed about the time coefficient in the diagram? 
b. Which feedback loops are present in this system? 
c. Describe the effect of each loop in the course of time, using the rate 
equation. 
d. Sketch the amount of yeast as a function of time. 
e. Sketch the rate as a function of time. 

By increasing the number of integrations the scope of a feedback 
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Fig. 11. Relational diagram of the growth of yeast G with the assumption that 
the time coefficient is not constant during the growth process. The differential 
equation of the growth rate is: dG/dt = G x l / TCx ( l -G /GMAX) . 

loop can be extended. Moreover, a state may be part of more feedback 
loops. Two systems can differ from each other merely by a difference 
in feedback at the same place in the system. 

Non-linearity means that two or more elements somewhere in the 
system, which change in course of time, are multiplied by each other. 
An example is the model of logistic growth, which has just been 
discussed. Here two changing quantities, in this case the same, are 
multiplied. This non-linearity has a significant influence on the be­
haviour of systems; for example, it achieves a transition from one 
mode of behaviour characterized by a positive feedback to another 
characterized by a negative feedback, and conversely. Non-linearity in 
a system is also accountable for the well-known insensitivity of changes 
in behaviour to alterations of the parameter values. 

Until now, only simple systems have been discussed. In the applica­
tion of this system-dynamics approach to problems of a special scien­
tific or management area, the scientist soon meets systems that have to 
be described by differential equations that cannot be solved analyti­
cally. Then the behaviour of such a system can only be studied further 
by applying a numerical solution with subsequent simulations. 

On the whole, there is still little known about the behaviour of larger 
systems. Increasing the number of elements soon results in feedback 
loops that are too large for drawing universally applicable conclusions. 
An example of a slightly more complex but still simple structure is 
shown by the relational diagram in Fig. 12. The rate equation Rl has 
the same formulation as that used for the system of the automatic 
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Fig. 12. Relational diagram of a system with a negative feedback loop with 
two integrations. 

filling of a tank. The rate is now influenced by the discrepancy between 
H2 and its goal. 

Question 21 
a. What are the rate and state equations in this system with 2 
integrations? 
b. What kind of feedback loops are present in this system? 

The behaviour of this system is characterized by oscillations in H I 
and H2 and in R l and R2, their mathematical formulations being sine 
and cosine functions (Fig. 13). These oscillations are sustained and not 
damped. The system reaches the goal or equilibrium but does not stay 
there. This should occur, when this system with 2 integrations contains 
another second negative feedback loop. The oscillations of this system 
are damped and attenuate to the goal. A relational diagram of a 
system with this behaviour is presented in Fig. 14. This could be the 
model of a system in which the stock H2, diminished by sale, is 
replenished by orders. By placing orders H I , of which the number per 
time unit R l depends on the discrepancy between the present and 
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time 

Fig. 13. Behaviour pattern of a system of which the relational diagram is given 
in Figure 12. Notice the shifts in time of H I , R l , H2 and R2. 

Fig. 14. Relational diagram of a system with two integrations and with two 
negative feedback loops. The rate SALE is an external factor. 

stock or goal that considered necessary and on the time coefficient 
TCI, an attempt is made to replenish this stock. This replenishment 
through R2 is not realized instantly; it undergoes a delay, the extent of 
which is determined by the delay time TC2. 

Question 22 
Formulate the rate and state equations of this system. 
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It appears from these equations and from the reaction of this system 
to change that there are 2 negative feedback loops. The larger loop 
starts, for instance, at H2, runs through the information flow, Rl, HI 
and R2 back to H2; the small one, starting at HI, runs through the 
information flow and R2 back to HI. The small feedback loop 'con­
trols' the larger one. 

The assessment of the nature of a feedback structure in larger 
systems can sometimes be difficult. One can use the relational diagram 
and trace the reaction of a system to a change in a rate or state, 
introduced somewhere in the loop. If the reaction is such that the 
system is counteracting this change, the feedback loop is negative. 
Another method is to count in the rate and state equations the number 
of multiplications of minus signs in the loop. The feedback is negative 
when this number is odd. 

The fact that the exponential and the sine and cosine functions play 
an important part in the formulation of feedback systems, is related to 
the following. In a feedback loop, the integration of a decision function 
is always followed by the differentiation of the state, resulting again in 
the decision function and so on. This alternating process within a loop 
can be continued only, if both differentiation and integration yield the 
same function; only the functions mentioned meet this requirement. 

A negative feedback system of the second order generates oscilla­
tions because integration of the differential equation of this system 
yields an exponential function with the imaginary unit i in the expo­
nent. Such exponentials can be resolved into a sum of the trigonomet­
rical functions of sine and cosine. 
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9 Simulation of delay and dispersion 

The concept of delay time and the fact that every integration yields a 
delay have been mentioned in Chapter 5. Delay means that an increase 
in a rate like input is not realized instantly in the output but later and 
according to a characteristic pattern or frequency-distribution curve. 
With one integration, this distribution is exponential and equals the 
curve describing the automatic filling of a tank with water; this change 
in the output of the delay is realized only slowly. It is possible to 
simulate some characteristic patterns of delay-response by a number of 
successive integrations. 

Suppose that many ships are leaving a harbour at the same moment 
and that the average transit time (or residence time or delay time) is 14 
days. Only a few ships will take exactly 14 days to reach the destina­
tion because there are slow ships and fast ships. Hence the arrival 
dates show a dispersion according to a certain frequency-distribution 
curve. These dispersions are met in all kind of problems. Some 
examples are: the difference in dates of seed germination, the differ­
ence in biological response times to signals or to manipulation, the 
difference in physiological development of biological subjects, the 
dispersion during the transport of chemical by water in rivers and in 
soil. Finally, a delay is sometimes found whereby a change in input 
results in a change in output, delayed indeed but not dispersed, the 
so-called pipeline effect. 

These dispersion-distribution curves can be obtained by simulation, 
using a cascade of successive integrations. An example is the relational 
diagram of Fig. 15, which represents a second-order exponential delay 

X X X 

-è-
VT/2 

-A-
VT/2 

Fig. 15. Relational diagram of an exponential delay of the second order of a 
rate. The input IN is changed; this change is effectuated in the output in a 
delayed and transformed way. 
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of a rate. It is a delay of the second order (why?) with a total delay 
time VT. The corresponding rate and state equations are: 

H l t = H l t _ 1 +DELTx( IN t _ , -R l t _ , ) 
Rlt = Hlt/(VT/2) 
H2 t = H2 t_! + DELTX (Rlt_! -OUT t_j) 
OUT t = H2t/(VT/2) 

Question 23 
a. Why has VT/2 been taken as time coefficient in both rate equa­
tions? 
b. What are the initial conditions of H I and H2, assuming that a 
steady state is reached for a constant inflow rate IN? 

Delays of higher order than the second order can be formulated in a 
similar way. Using simulation languages, one does not need to formu­
late these equations; they are present as functions of the simulation 
language used. Delays in information flow can be described and used 
in the same way. 

We have already met the exponential dispersion curve of a delay of 
the first order. It appears that cascades of successive first-order delays 
yield dispersion curves distinct from this one. Some of these curves are 
brought together into Fig. 16. In this graph, the simulated response of 
the output on a sudden but permanent change in the input is given. 
This figure shows that the greater the order of the delay, the steeper 
the distribution curve and the narrower the distribution. The relation-

Fig. 16. Patterns of responses of the output rates on sudden changes in the 
input rates. 
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ship is formulated by the expression N = (VT/s)2 in which N represents 
the order or the number of integrations, VT total delay time and s the 
standard deviation in time units (Goudriaan, 1973). In a delay of 
infinite order with N equal to infinite, this dispersion disappears and 
the pipeline effect is obtained. In the model the formula can be used to 
simulate the empirically found dispersion with a certain delay time. 

Question 24 
Sketch the output of a sudden but permanent decrease of the input, 
subject to exponential delays of the first, second, 10th, 20th, 50th and 
infinite order. 

Integrations or delays of a momentary sudden change of a rate, the 
so-called impulse, cause mostly a transformation in the change too. It 
is possible to show by reasoning comparable with that used in Exercise 
25, that the output of an impulse, subject to a delay of the first order, 
gives the well-known decrease as a function of time after an initial 
sudden increase; however, even after passage of the delay time the 
output is still responding. These initial and subsequent reactions are 
determined by the ratio of impulse to delay time. 

An impulse delay of higher order yields an asymmetrical bell-shaped 
distribution curve of the output; the output does not react instantly to 
the impulse. Afterwards the reaction increases strongly and passes 
after a maximum into a decrease and disappears ultimately. Also in 
these cases, the output is still reacting after the delay time. At 
increasing orders of exponential delay, the positions of maximal reac­
tion are shifted to later moments together with a decrease in disper­
sion; by a delay of infinite order, the output develops into the pipeline 
effect, i.e. an output of the impulse without any dispersion, delayed 
with the total delay time. 

This artificial dispersion is inherent to the use of exponential changes 
in the model. However there are many real phenomena without any 
dispersion and the introduction of exponential changes into the model 
yields undesirable effects and is not permitted. A well-known example 
is the age-class in demography; in conformity with the definition, the 
content of an age-class is shifted to the next one after, for example, 
each year, without any dispersion. It is possible but impractical (why?) 
to simulate such shiftings by an exponential delay of infinite order with 
a delay time of one year. In the literature (de Wit & Goudriaan, 1978), 
a number of boxcar-train techniques are described, by which a more 
practical shifting without any dispersion is obtained. One always has to 
investigate which description is needed and is correct. 
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10 Exercises 

By answering of questions, the reader had been able to test whether 
he has understood the text or not. By doing the following exercises, he 
can gain experience of formulating and using system dynamics models. 
At the same time these exercises provide the opportunity to study 
some behaviour patterns mentioned already in the text. Hence the 
working out of these exercises is an indispensable part of this study 
book. 

The exercises are given in order of increasing complexity and 
perhaps are progressively more difficult. They cannot be solved prop­
erly until the whole text has been read through at least once. Not only 
the solutions should be studied; it is essential that the reader struggles 
with the problems and finds the answers out himself. 

The first three exercises relate to the graphic representation of an 
integration; some attention is also paid to dimensions. Subsequently, 
some simple exercises (4-11) with one state or one integration are 
given. The reader should gain experience of the formulation and 
comprehension of rate and state equations and improve his insight into 
the significance of the time coefficient for the behaviour of the most 
simple systems with positive and negative feedback loops. Exercises 
12-21 are more complex and introduce models with more integrations. 
Then thé effect of combining both kinds of feedback loop inside the 
system are introduced, experience being gained from reading differen­
tial equations. Exercises 24 and 25 refer only to the behaviour patterns 
as affected by exponential delays. 

Exercise 1 
In a graph the speed (km hour -1) on the y axis is plotted against time 

(hour) on the x axis; this yields a straight line parallel to the x axis. 
a. What can be said about the speed? 
b. What represents the area between this straight line and the x axis, 
measured between two instants? 

Exercise 2 
The growth rates (kg dry matter ha - 1 day - 1 during the growing 

season of a perennial crop are known. These rates are plotted against 
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time yielding the following graph (only the data needed are given). 

kg dry matter ha day 

180 

0 120 170 270 time (day) 

Note. The notation 'kg dry matter ha - 1 day - 1 ' is preferable to that of 
'kg dry matter/ha/day', as the latter is ambiguous; it can mean 'kg dry 
matter day ha - 1 ' and 'kg dry matter ha"1 day"1 ' the latter being 
intended. 
a. Calculate with the graphical data the amount of dry matter per ha 
present after 270 days of growth. 
b. Sketch and discuss point by point the development of this amount 
of dry matter per ha during that period. 

Exercise 3 
1. The management of a flower auction market is interested in the 

supply (number of cut flowers per week). This supply can be calculated 
with the aid of an auxiliary equation, in which this supply SUP at a 
certain moment can be expressed as a function of the number of 
glass-houses GLA, the number of plants per glass-house PLAGLA 
and the mean number of flowers FPR by SUP = GLA x 
PLAGLA XFPR. 

What is the dimension of the number of flowers FPR? 

2. In the literature on the effect of advertizing charges, the following 
equation is often used to describe the normal loss of customers and the 
increase of customers by advertizing as a function of time: dS/d( = 
r x A x ( M - S ) / M - q x S in which 

t = time in months 
S = number of customers at moment t 
A = advertizing charges in guilders a week 
M = saturation point of the market, consequently the maximal value 
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of S 
r and q are constants. 

a. Which processes represent each part of the right side of this 
equation, separated by the minus sign? 
b. What is the dimension of r; suggest a name for this constant in 
connection with this advertizing problem? 

Exercise 4 
Radioactive material RAM decays with a rate DECR which depends 

on the amount of material present: a certain ratio of this material per 
day disappears. We have 1 milligram of this material of which the 
relative decay rate per day or disintegration constant equals 0.05. 
a. Draw a relational diagram of this system. 
b. Sketch a graph in which the decay rate (mg a day) is plotted against 
amount of material present (mg). 
c. To which equilibrium value does this system tend? 
d. What value has the time coefficient of this system? 
e. Write out the equation for the rate of decay. 
f. Calculate the decay rates and the amounts of material during the 
first 30 days as function of time, using a calculation time interval of 5 
days. 

Exercise 5 
A number of systems are formulated by the following rate and state 

equations and initial values. 

1. Lt = L t_ 1+DELTxR t_ 1 

Rt = 2xLt/4 
INIL = 4 
DELT = 4. 

a. Draw the relational diagram. 
b. What is the value of the time coefficient? 
c. Which feedback loop is present in this system? 
d. What is the equilibrium value? 
e. Is the value of the time interval well-chosen? 

2. Lt = L t_ 1+DELTxR t_ 1 

INIL = 20 
Rt = ( 1 0 - U / 6 . 

a. Draw the relational diagram. 
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b. Which feedback loop does this system have? 
c. What is the equilibrium value? 
d. How large is the time coefficient? 
e. What is the rate at moment t = 0? 
f. Which value can DELT have? 
g. Sketch the development of L as a function of time. 

3. Lt = L t ^ 1 +DELTx(Rl t _ 1 -R2 t _ 1 ) 
INIL = 2 
R l t = 0 
R2 t = ( l -L t ) / 20 . 

a. Draw the relational diagram. 
b. Which feedback loop is present in this system? 
c. What is the equilibrium value? 
d. Sketch the development of L as a function of time. 
e. How does L develop, if the initial value INIL is —2? 
f. What is L's value after one time coefficient? This question is to be 
answered without the numerical integration technique. 

Exercise 6 
A system is represented by the following equations: 

HW t = HW^i + DELT x HWR,_, 
INIHW = 0 
HWR t = 1/INS x (MAH-HW t ) . 

a. Which feedback loop does this system govern? 
b. With a value of INS to 4 seconds the system shows a certain 
behaviour. What happens if INS equals 8 instead of 4? 

Exercise 7 
The relative decomposition rate DCOR of a herbicide or weedkiller 

HERB in the soil amounts to 0.7, whilst 50 kg per ha of this herbicide 
is given every year as a single application. 
a. Draw the relational diagram of the behaviour of the herbicide in the 
soil. 
b. Which feedback loop does this system display? 
c. Discuss and sketch the change in amount of herbicide in the soil in 
course of time. 

43 



Exercise 8 
The rate with which photosynthesis reacts to changes in light and 

carbon dioxide can be formulated by the equation dP/dt = 
l /TAUx(P s —P), in which P is the rate of photosynthesis in 
kg C 0 2 m

- 2 s_1 at moment t, Ps the stationary photosynthesis rate 
belonging to certain light flux and carbon dioxide densities and TAU 
the time coefficient. The light flux density fluctuates and is alternatively 
high or low for a while; the changes set in suddenly. The carbon 
dioxide density is constant. 
a. Which process is represented by the differential equation? 
b. Sketch the changes in the rates of photosynthesis P and Ps, gener­
ated by these sudden changes. 

Exercise 9 
The beet cyst nematode NEM multiplies only by growing of beets. 

The annual relative growth rate of a nematode population INCR is 
constant and equals 1.0. When beets are not grown, the annual relative 
fall-off rate DEATR equals 0.25. 
a. Draw the relational diagram for increase and decrease in 
nematodes. 
b. Form the rate and state equations of this diagram, if the initial 
number of nematodes is 1000 per ha. 
c. Sketch the changes in the numbers of nematodes during 10 years, 
assuming a crop rotation with beets once in 5 years. 

Exercise 10 
From experience, the gamekeeper of an area thinks that a roe 

population ROE of 400 is optimum. He tries to keep this number 
stationary by issuing shooting permits; thus the number of roes that the 
hunters are allowed to shoot annually and indeed that are killed, is 
limited. The problem is to derive how many permits R3 the 
gamekeeper can issue annually to maintain the initial population of 
400. The birth rate of the roes R l is 12.5% per year, the natural death 
rate R2 10% per year. Shooting takes place throughout the year. 
a. Draw the relational diagram. 
b. Write the rate and state equations and the values of the constants. 
c. How many permits must be issued annually? 
d. Is the model described realistic? What will happen if the initial 
population is greater or less than 400? 

44 



Exercise 11 
In a crop-rotation system, the organic matter content ORMAT of 

the plough layer is enriched by stubble, roots and green manure with 
an annual rate R l of 4000 kg per ha; this enrichment is distributed 
uniformly over the year. It is also known that on the average the 
annual relative decomposition rate R2 of the organic matter in the soil 
is 0.02 and that 0.5% of this organic matter is leached annually from 
the plough layer. The agricultural consultant likes to know which level 
the organic matter content of the plough layer will reach ultimately. 
a. Draw a relational diagram of supply and loss of the organic matter 
in the plough layer. 
b. Give the rate and state equations and the values of the constants. 
c. Calculate with the aid of the available data, the organic matter 
content of the plough layer for which the stationary or steady state is 
reached. 

Exercise 12 
The differential equation of the motion under gravity or of the free 

fall are: dv/dt = g and ds/df = u, in which t is the time, g the gravita­
tional constant, v the speed and s the distance covered, all in the 
well-known units. 
a. Draw the relational diagram of the system of free fall. 
b. Formulate the rate and state equations. 
c. Which feedback loops does this system have? 

Exercise 13 
How long can the population POP of a country still utilize the 

current stock of 5000 million tons of coal COL? At this moment, the 
size of the population is 5 million people, whilst the birth rate BIRTR 
is 100 000 a year. It may be assumed that the relative birth rate will 
remain constant; the average life expectancy after birth is taken as 65 
years. 
a. Draw the relational diagram for the changes in population and coal 
stock. 
b. Derive the rate and state equations, with the assumption that the 
average consumption of coal is 1 ton year - 1 person -1. 

Exercise 14 
A factory wants to establish a pension fund for its employees when 

they retire. The management sets up an inquiry into the increase and 
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decrease of this fund by contributions of the employees, interest from 
the capital and by payments to retired employees. The calculations are 
started with an initial capital of f 1 million given by the factory, with an 
initial number of employees of 300 and without any pensioners. The 
interest which is always added to the capital is 5% a year. The 
contributions of the employees to the fund are fixed at f 500 per 
employee per year. It may be assumed that the number of employees 
appointed every year is 10% of the number of employees already 
present and that 8% of the employees retire every year. The average 
death rate of the pensioners is 20% a year. 
a. Draw a relational diagram of the employees EMP, of the capital 
volume CAP and of the number of pensioners PENS. 
b. Give the initial state, the values of the constants and the rate and 
state equations. 

Exercise 15 
The frequency of the annual births in a country is 1 to 20 adults. 

After 6 years on the average, these children are sent to school. This 
schooling continues for 10 years on the average, after which everybody 
is considered to be adult. The mean life expectancy after that is still 50 
years. Suppose that the number of babies, of children at school and of 
adults are 20, 3000 and 100 000, respectively at the beginning of the 
calculations. 
a. Draw the relational diagram for calculation of the changes in the 
numbers of babies BAB, of children at school SCHO and of adults 
ADUL. 
b. Write the initial conditions, values of the constants and rate and 
state equations concerned. 
c. Which feedback loops does this system contain? 

Exercise 16 
A town with a specified number of inhabitants has been projected in 

one of the newly reclaimed polders in the Netherlands. The rate with 
which the houses are completed and occupied immediately is propor­
tional to the discrepancy between the maximum number of houses 
projected HOUMAX and the number of completed and occupied 
house HOU. The houses are built without central heating, but after 
some time the occupants tend to install it. The central heating dealer of 
the new polder wants to plan his work and supposes that the rate with 
which central heating systems are ordered is proportional to the 
discrepancy between the number of houses occupied and the number 
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of houses with central heating CH (delivered). 
a. Draw the relational diagram for the calculation of the changes in 
the number of houses occupied and in the number of houses with 
central heating. 
b. Write the rate and state equations concerned. 
c. Sketch the curves representing the number of houses HOU and the 
number of houses with central heating as functions of time. 

Exercise 17 
The growth rate of algae AGR is a function of the amount of algae 

by AGR, = RAGR x A„ in which A, is the amount of algae at moment 
t expressed as the nutrient N in gm~3 taken up and RAGR is the 
annual relative growth rate. Moreover, RAGR itself is a function of N 
by RAGRt = 1/TC x N, in which Nt is expressed as g m~3. The quantity 
of N in the nutrient solution is decreased by the uptake and is not 
replenished. Compare this situation with that of Question 20. 
a. Draw the relational diagram of this system. 
b. Formulate the rate and state equations. 
c. What is the dimension of TC? 
d. Which feedback loops does this system contain? 
e. Sketch and discuss the changes in N, A and the growth rate AGR as 
functions of time. Hint: translate the amounts of nutrient into amounts 
of A. 

Exercise 18 
In an investigation on the influence of phosphate on growth, plants 

are grown in pots. The relative growth rate RGR in grams of dry 
matter per time unit and per gram of dry matter already present has an 
empirically found maximum RGRMAX. The RGR decreases recti-
linearly with increasing plant weight G (in gram). This plant weight too 
has an empirically found maximum GMAX at which growth stops. 
a. Draw the relationship between RGR and G; complete this graph 
with the characteristic quantities given. 
b. From a derive the equation of RGR as function of G. 
c. What is the equation for plant growth as function of weight? 
d. Draw the relational diagram of this system. 
e. Discuss and sketch the increase of weight G as a function of time. 

Exercise 19 
In literature on business economics, one can read that the number of 
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owners of a product often shows an S-shaped curve with respect to 
time. However, a satisfactory explanation of this phenomenon is not 
given. A good explanation could be obtained by assuming that owners 
OWN usually stimulate non-owners by verbal and visual contact. Thus 
the rate of increase in owners IOWNR is a function of the number of 
owners. It may be assumed that the number of stimuli per owner per 
time unit STITC is not changed in the course of time. The effect of 
these stimuli EFF expressed as the number of new owners per stimulus 
decreases as the number of owners increases and becomes zero when 
the number of owners attains the maximum number of owners 
OWMAX or the saturation point of the market. The decrease itself is 
rectilinear. 
a. Draw the relational diagram of the model. 
b. Does this model give an explanation of the S-shaped curve of the 
number of owners in the course of time? Explain your answer. 

Exercise 20 
The relative rate of increase of the leaf area, infected by a fungal 

population, INFA is proportional to the percentage of the leaf area not 
yet infected. The total leaf area A itself at a certain moment, that 
means infected plus uninfected, increases in the course of time accord­
ing to the S-shaped or logistic curve; the maximum attainable leaf area 
MA is assumed to be constant. 
a. Draw the relational diagram of both growth processes combined. 
b. Formulate the rate and state equations. 

Exercise 21 
The Gompertz growth curve is derived from the rate equation 

dW/dt = Mo x W x e"Sx ', in which W is the amount of dry matter in kg, 
Mo a constant, S the senility factor and t the time. This senility factor S 
may be investigated more closely by considering the part MQ X e~Sx' as 
the integration of another rate equation. Then the rate equation 
mentioned first can be separated into two rate equations of the first 
order. 
a. Formulate these rate equations. 
b. Draw the relational diagram. 
c. Sketch the development of W as function of time. 

Exercise 22 
A lake with a water supply equal to amount of water discharged is 
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polluted by organic matter which is decomposed in the lake. On the 
assumption of a complete mixing, the increase and decrease in amount 
of organic matter can be described by the following differential equa­
tion: dc/df = W(t)/V- c/t0-k x c, in which 

c = the concentration of organic matter in the water, 
t0 = Q/v, 
Q = the supply of water per time unit, 
V = the volume of the lake and 
W(t) = the amount of organic matter deposited at moment t. 

a. Which processes do the 3 parts of the right side of the equation 
represent? 
b. How long on the average will a water particle stay in the lake? 

Exercise 23 
The equations of Streeter-Phelps describe the changes in amounts of 

dissolved oxygen O in a river, effectuated by oxygen depletion due to 
decomposition of organic wastes L and by oxygen replenishments due 
to atmospheric reaeration. These equations are dL/dt = - k d x L and 
dO/df = kr x (O s - O) - kd x L, in which 

L = the amount of organic matter in the water, expressed in terms of 
the biological oxygen demand in mg/1, 

O = the amount of dissolved oxygen in mg/1, 
Os = the maximum oxygen content of water at specific conditions or 

at saturation point, 
k ^ t h e decomposition coefficient and 
kr = the reaeration coefficient. 

a. Draw the relational diagram. 
b. Give the rate and state equations. 
c. Discuss and sketch the changes in the oxygen deficit (the so-called 
oxygen sag curve) after the introduction of a momentary pollutional 
load, assuming a prompt complete mixing. 

Exercise 24 
Arabian countries export oil by tanker to the Netherlands. The rate 

of transport is 0.2 million ton per week, the mean transit time from 
export harbour to destination is 9 weeks. 
a. Draw the relational diagram of this transport system, assuming an 
exponential delay of the third order. 
b. Formulate the rate and state equations concerned, give the initial 
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states for a steady state situation. 
c. Suppose that the Arabian countries suddenly start a boycott and 
decrease the oil export to the Netherlands by 50%. Sketch the oil 
import in tons a week as a function of time, from just before the 
boycott until 4 months afterwards. 

Exercise 25 
A production process consists of a number of successive steps: raw 

material A is converted to B, the product B is converted into C. The 
processes take place simultaneously. The rates ABR and BCR with 
which every product is produced is proportional to the remaining 
quantity of material or product from which it is converted. It is 
assumed that the relative production rate of ABR is greater than that 
of C BCR. The production has been started without any quantity of B 
and C; during the process, no replenishment of A takes place. 
a. Draw the relational diagram of both processes. 
b. Give the rate and state equations concerned. 
c. Discuss and sketch the shape of the curves representing the 
amounts of A, B and C in the course of time. 

Exercise 26 
The two banking firms B and M show a remarkable similarity of 

behaviour to the opening of new bank offices of the respective firm; an 
explosive increase as it were! It may be expected that arguments for 
such growth can be found in mutual competition. An explanation could 
be the following. 

The rates INBR and INMR with which B and M, respectively, invest 
money in new offices, increases proportionally to the total amount 
already invested in bank offices by the other banking firm; the propor­
tionality factors of both firms are constant with respect to time but may 
differ from each other. The annual percentage of depreciation with 
which both firms write off (=loss of money) the formerly paid invest­
ments in offices may also differ from each other, but are constant in the 
course of time. 
a. Draw the relational diagram to calculate the changes in amounts of 
money MB and MM, invested in offices by firms B and M, respectively. 
b. Write the state and rate equations concerned. 
c. Which feedback loops are present in this system? 
d. Derive under which conditions (relationships between the time 
coefficients) a steady state of the invested amounts will appear in the 
long run. 
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Exercise 27 
A system is represented by the following rate and state equations: 

S l ^ S V j + D E L T x R l , . ! 
INIS1 = 10 
S2t = S2t_!+DELT x R2t_! 
INIS2 = 0 
Rl t = - JxS2 , 
R2t

 = g x Sl t . 

a. Draw the relational diagram of this system. 
b. Which feedback loops can be indicated? 
c. Calculate the quantities SI and S2 and the rates Rl and R2 at 10 
successive time intervals with a length of 2 time units. What do you 
notice? Give a simplified example of a system, process etc., that can be 
described by these 2 equations. 

Exercise 28 
The following equations hold for the description of the motion of a 

comparatively long pendulum: 

fl = g/lx(-P) 
dv/dt = a 
dP/dt = r 

in which 1 is the length of the pendulum, t the time, P the discrepancy 
between pendulum end and the equilibrium position on which P = 0, g 
the constant of gravity and v the speed, all in the well-known units. 
a. Draw the relational diagram of this system of the pendulum motion. 
b. Write the rate and state equations concerned. 
c. Which feedback loops does this system have? Describe the be­
haviour of this system. 

Exercise 29 
The interaction between a host-insect H and its parasite-insect P 

can be described on biological grounds by the two following differen­
tial equations: dH/df = a x H - b x P x H and dP/df = c xP - exP 2 /H . 
The parameters a and c represent the net-influences of the natural 
birth and death processes; consequently, b and e are the parameters of 
the additional death processes influenced by the interaction of the two 
insect species. 
a. Draw the relational diagram of this system. 
b. Formulate the rate and state equations. 
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c. Will an equilibrium or a steady state be attained in the long run? If 
so, at which values of H and P? 
d. Which feedback loops does this system contain? Which behaviour 
pattern can be derived from this knowledge? 

Exercise 30 
A company for management of road restaurants RORE with 100 

small and large locations in Europe has the following management 
policy: 2.5% of the total annual turnover of all restaurants RORE is 
used for maintenance and for building of new restaurants; the mean 
expenses of maintenance per restaurant per year MAICF are estimated 
at f 100 000, the mean cost of building a new restaurant BUICF at 2 | 
million guilders. Therefore, the number of restaurants to be built is 
determined by the amount left when the expenses of maintenance for 
all restaurants have been subtracted from the 2.5% of the total 
turnover. The average life of a restaurant DETC is taken to be 20 
years and the annual turnover per restaurant TUO decreases with an 
increasing number of restaurants according to the following graph. On 
the average, 3 years will pass from commissioning till realization of a 
restaurant (exponential delay of the third order with a total delay time 
VT of 3 years). The company is so large that all activities can be 
considered to be executed continuously. 

mean turn-over in guilders 
year"1 restaurant"1 

>1(T 

125 150 250 number of 
road restaurants 

a. Draw the relational diagram of this system, so that the number of 
restaurants can be calculated as a function of time. Put in the diagram 
a delay of the first order only. 
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b. Formulate the rate and state equations; the equations of the delay 
do not have to be given. 
c. Give the dimensions of the separate parts in the rate equation. 
d. Is the number of commissions for building restaurants subject to a 
negative or positive feedback loop? 
e. Will a steady state appear in the long run? How many are there if 
this state is attained? 
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11 Answers to the questions 

Question 1 
a. Speed or rate. 
b. Meter second-1 or meter/second. 
c. Speed equals zero. 

Question 2 
a. 

6 . 5 _ 
gui lders*10 

6.0 

time (year) 

b. There are fluctuations, the maxima and the minima being delayed 
with respect to the beginning of an alteration. 
c. The ampiltude of the fluctuations becomes larger. 

Question 3 
a. The amount of water in the tank is 18 litres which is equal to the 
area bounded by the rate of flow line and by both axes. 
b. At t = 0 there is no water in the tank; after t = 30 the flow stops and 
the maximum level is reached. The curve lying between these moments 
can be obtained by calculating the inflow of water during a number of 
successive time intervals and by summing these amounts; every 
amount is found by multiplying the average rate during an interval by 
the length of the corresponding time interval. 
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amount (1) 

time (s) 

Question 4 
The formula of a descending straight line is y = — a x x+b, in which a is 
the slope of the line and b the intercept with the y axis. Here the 
values of these parameters are 1.2/30 and 1.2, respectively. 

Question 5 
Substitute various values for t into the equation of the amount of water 
in the tank as function of time; for t = 30 the substitution results in 
w = -1.2/60x900 + 1.2x30 etc. 

Question 6 
5 -1 

y*10 year 

olOX year 

^s"^ » c=5% year" 

*^*~ • I I l I i I l 1 
7 8 9 10 y*10 

Question 7 
According to the equation, the absolute state determines the value of 
the next change. 
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Question 8 
a. The calculated values do not form a smoothed curve, but a broken 
one. 
b. The rate of inflow is zero when the maximum level is reached, i.e. 
the tank is full. 
c. With an 8 instead of a 4, the process is slower. 
d. The inflow coefficient, for instance. 

Question 9 
a. The result of the calculations gives overestimates compared with 
those of the analytical solution. 
b. This overestimate is caused by the wrong assumption that the rate is 
constant during the calculation interval. It could be corrected by 
making the interval smaller. 
c. Underestimate. 

Question 10 
a. A negative feedback loop. 
b. The goal of the process is the zero state. 

Question 11 
The information from the eye about the level of liquid in the glass 
allows a decision on the change in position of the glass tap, which 
causes a decrease in the rate of outflow at the tip. By intuition, the size 
of the opening of the tap will probably be proportional to the observed 
discrepancy between level and desired level or goal. This procedure 
also holds for the steering of a bicycle. 

Question 12 
The time coefficients are 20, 50 and 1000 years, respectively. 

Question 13 
The amount is duplicated. 

Question 14 
a. The rate equation is given by dw/df = l/TCx(16 —w); this relation­
ship holds for every moment. The change during a time interval equal 
to TC and with constant rate equals TCxl/TCx(16-w) or (16- w). 
Thus the difference between w and the equilibrium value of 16 is 
bridged within one interval equal to the time coefficient. 
b. In a positive feedback loop, the change is directed away from the 
equilibrium state, so that the direction of the extrapolation of the 
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tangent must be reversed toward the unstable equilibrium state; the 
tangent cuts the horizontal equilibrium line after a time-coefficient 
interval. 

Question 15 
a. As the true state is increasing continuously the actual duplication is 
attained earlier. 
b. The increase in the amount during the time interval At equals to 
eAt/Tc a c co r<jmg to the exponential growth equation; for a duplication 
this expression for the increment must equal 2. Hence At = TC x In 2 or 
At = 0.7xTC. 
c. If the process is decreasing the amount, the half-life is the time 
necessary to reach half the amount. 

Question 16 
a. Time-1 

b. The cumulative frequency-distribution curve of the residence times 
(and of the transit times) equals the descending exponential curve, 
reversed with respect to a line parallel to the time axis. 

1QQ number in % 

residence time 

Question 17 
a. It is assumed that the time coefficient continues to be constant. 
b. No; the death risk increases with age and therefore, the actual time 
coefficient must decrease. A more realistic model is obtained by taking 
more age-classes, each with their own time coefficient. 
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Question 18 
The equations are: 

HW, = HWt_! + DELT x INR,.! 
INRt = lx(16-HW t) . 

Take a time interval DELT equal to 8; then, 32 litres flow into the 
tank during the first interval. In the second interval, the inflow is 
negative (= outflow) because the rate becomes negative according to 
the rate equation. After the second interval, 32 litres flowed out etc. 

Question 19 
a. 

If the process is described only as a net increase or net decrease by 
birth and death, it suffices to use one flow or stream and the related 
function in the diagram. 
b. POP, = POPt_! + DELT x (BIRR,,! -DEAR,^) 
INIPOP = 50 000 persons 
BITC = 20 years 
DETC = 50 years 
BIRR, = &x POP, 
DEARt = ^xPOP t . 

Question 20 
a. The time coefficient is not constant and depends on the state of the 
system. 
b. A positive feedback loop from G through information to dG/dt, 
whose action affects again G; a negative feedback loop through 
GMAX and G to dG/dt etc. 
c. At the beginning of the growth with G small compared with 
GMAX, the part (1-G/GMAX) is about 1; in this situation, the 
positive feedback loop in the part 1/TCx G dominates. In later phases, 
G is large compared with GMAX and the part in brackets, so the 
negative feedback loop becomes progessively dominating. 
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d. 

GMAX 

time 

e. 
rate 

time 

The moment at which the maximum of the rate appears, coincides with 
the point of inflexion on the logistic curve. 
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Question 21 
a. H l ^ H l . ^ + DELTxRl,^ 
Rl t = 1/TC1 x(GOAL-H2 t) 
H2t = H2t_! + DELT x R2t_! 
R2t = l /TC2xHl t . 
b. The equation shows that, for instance, an increase in Hl will 
effectuate an increase in H2 through R2. This increase in H2 causes a 
decrease of the rate Rl according to the rate equation, by which the 
increase in HI is undone. Consequently, the model has a negative 
feedback system. 

Question 22 
Hl t = Hl t_1+DELTx(Rl t_1-R2 t_1) 
H2t = H2t_i+DELT x R2t_x 

Rl t = 1/TC1 x (GOAL - H2t) 
R2t = l /TC2xHl t . 

Question 23 
a. The mean total residence time in the complete delay is VT time 
units. There is no difference between both delay elements or boxes, the 
amounts remain therefore on the average VT/2 time units in every 
delay element. 
b. In a steady state, the amount streaming into and out of both delay 
elements is the same. Consequently, SNlt and OUT, equal IN,. Ac­
cording to the rate equations, the conditions IN, = Hlt/(VT/2) and 
INt = H2t/(VT/2) apply, from which Hl t = INtxVT/2 and H2t = 
IN, x VT/2 follow. 

Question 24 
By a permanent reduction in rate of flow a dispersion pattern develops 
that equals the reverse of the patterns of Fig. 16. 

nput 
output 
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12 Solutions to the exercises 

Exercise 1 
a. The speed is constant. 
b. The distance covered between these 2 months. 

Exercise 2 
a. After 270 days of growth an amount of dry matter per ha is present 
which equals the area bounded by the time axis, the growth rate axis 
and the growth rate lines. Consequently, this amount equals §x 
(30+20)x 120+ix(20+180)x50+§x 180x100 or 170 00 kilograms 
dry matter ha-1. 
b. The growth rate is decreasing up to 120 days, from 120 till 170 days 
the rate increases and after 170 days the rate decreases again to zero. 
The growth curve is given in the following graph: 

dry matter (kg ha 
17000 K-

8000 — 

3000 _ 

270 time (day) 
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Exercise 3 
1. By writing out the dimensions of the left and right sides of the 
equation, the dimension of the flowering FPR becomes: flower plant"1 

week -1 . 
2a. The first part represents the rate of increase by advertizement, the 
second part describes the normal loss of customers with time. 
2b. The dimension of r is: customer guilder-1. A name could be: 
advertizement efficiency. 

Exercise 4 
a. 

b. 

DECR (mg d a y " 1 ) 

0.01 

0.5 1.0 RAH (mg) 

c. At the equilibrium value dRAM/df = 0, thus DECR = 0. It follows 
that 0.05 x RAM = 0 or RAM = 0. 
d. TC= 1/0.05 or 20 days. 
e. DECRt = ^ xRAM t . 
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t 
0 
5 

10 
15 
20 
25 
30 

Exercise 5 
la. 

RAM t 

1.0000 
0.7500 
0.5625 
0.4220 
0.3165 
0.2375 
0.1780 

DECR, 
0.0500 
0.0375 
0.0281 
0.0211 
0.0158 
0.0119 
0.0089 

K 

TC 

lb. 1^ = 2x1^/4 or Rt = | xL„ consequently TC = 2. 
le. Positive feedback loop. 
Id. An unstable equilibrium equal to zero; each discrepancy with this 
equilibrium causes an exponential growth. 
le. No. Experience has shown that DELT must be about \ to 5th of 
TC; by this rule of thumb, DELT can therefore be 1. 

2a. 

EQUILIBRIUM 
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2b. A negative feedback loop by a combination of + and - . 
2c. The equilibrium will be reached, when Rt = 0 or (10-L,)/6 = 0, 
thus L, = 10. 
2d. R t=l/TCx(10-L t) , thusTC = 6. 
2e. L equals 20 at the moment t = 0, thus Ro = (10 - 20)/6 or -10/6. 
2f. DELT might be 1.5 or 2. 
2g. 

20 

10 

10/6 time 

TC 

3a. 

Q > - ^ * 

-è-
EQUILIBRIUM 

-4-
TC 
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3b. A positive feedback loop by the combination of a negative rate in 
the state equation and the negative sign of L in the rate equation. 
3c. At the equilibrium state R2t = 0 applies, thus by substitution 
(1 -L,)/20 = 0, which means that the equilibrium value of L equals 1. 
3d. 

3e. The reverse in respect to the horizontal equilibrium line, the first 
one shifted slightly to the right. 
3f. After one time coefficient or 20 time units the discrepancy of L to 
the equilibrium value is increased with a factor e. Therefore, after 20 
time units L= 1 x 2.718+1, in which the first 1 represents the starting 
value, expressed as difference with the equilibrium value, and the 
second 1 the equilibrium value itself. 

Exercise 6 
a. A negative feedback loop by the negative sign of the state in the 
rate equation. 
b. The process state moves more slowly to its equilibrium value. 
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Exercise 7 
a. 

K 

b. A negative feedback loop. 
c. The time coefficient is 10/7 years 

* 

-é-

It is known further, that the 
half-life is 7/10th of the time coefficient. It follows that 50% of the 
herbicide in the soil is decomposed after 1 year at every turn so that 
the amount of herbicide changes as shown in the next graph. The 
amount of herbicide in the soil will never exceed 100 kg per ha. 

herbicide (kg ha 

time (year) 

Exercise 8 
a. A specific photosynthesis rate Ps is connected with every light flux 
and carbon dioxide density. Therefore, a change in the latter effects a 
change in Ps. From the rate equation given, we see that the change in 
Ps is not reached instantly; the adjustment is exponential. 
b. A response is generated as shown in the next figure. To work out 
this graph, it is assumed that TAU is not affected by the light flux and 
carbon dioxide densities and is therefore constant. The broken line in 
the graph is the adjustment value Ps of the photosynthesis rate, which 
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belongs to a certain light flux or carbon dioxide density. The solid line 
represents the actual photosynthesis rate. 

rate of photosynthesis (kg CO, m"£s" ) 

time (s) 

Exercise 9 
a. 

INCR 

INTC 

b. NEM, = NEMt_j+DELT x (INCR,-! -DEATR,^) 
EMINEM =1000 
INCR, = 1/1 xNEMt 

DEATR, = £xNEM,. 
c. After 1 year (INCTC = 1) the number of nematodes has become 
e-times as large. After the next 4 years (DEATTC = 4), the number of 
nematodes has become e-times as small. Increase and decrease are 
cancelled within a 5-year crop rotation. The changes as function of 
time are sketched in the next figure. 
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nematodes ha -1 

2700 I 

2000 _ 

1000 

10 year 

Exercise 10 
a. 

b. ROE, = ROEt_j+DELT x (Rl ,^ - R2,_x - R3,_i) 
Rl t = èxROE t 

R2, = ^ xROE, 
The number of annual permits R3 is the unknown factor. 
c. In a steady state with ROE, = 400, the following equation applies: 

Rl t = R2,+R3,. 
Substitution gives: 

gXROE, = ̂ xROE, + R3, or R3, must be 10 roes a year. 
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d. It is an unrealistic model as the steady state can never be main­
tained in this problem. The system shows a positive feedback loop, by 
which every random discrepancy with the 400 roes effectuates a 
positive or negative growth (see also Exercise 5.3). 

Exercise 11 
a. 

o-s 
Rl 

—r~ 
i 
i 

-è-
TCI 

b. ORMAT t = ORMAT t_! + DELT x ( R l ^ - R2t_x - R3t_!) 
R l t = 4000kgper ha 
R2 t = ^ x O R M A T t 

R3 t = 500 x ORMAT, 
c. In the steady state: 
R l t = R2 t+R3 t . 
Substitution gives: 
4000 = <fe x ORMAT,+255 x ORMAT, or 
ORMAT t= 160 000 kg per ha as the equilibrium value. 
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Exercise 12 
a. 

i 
i 

g 

CHSPR 

SP 

dS 
dT 

b. Call the rate of change of speed, the speed itself and the distance 
covered CHSPR, SP and S, respectively. Now according to the equa­
tions of free fall: 
SPt = SPt_i + DELT x CHSPR,-! 
CHSPR, = g 
S, = S,_! + DELT x SP,_!. 
c. This system does not contain any feedback loop. 

Exercise 13 
a. 

O POP 

CONSF 

-9-

^ f — < < J 
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b. The increase by birth is 2% in the first year; as the relative birth 
rate remains constant, the time coefficient BTC equals 50 years. The 
time coefficient DTC of the death rate DEATR equals 65 years and 
the consumption factor CONSF to 1 ton person -1 year"1. 
POP, = POP t_! + DELT x (BIRTRt_! - DEATR,_i) 
INIPOP = 5 000 000 inhabitants 
BIRTR t = ^ x P O P t 

DEATR, = è x P O P t 

COL, = COL,_! - DELT x CONSF x POP,_! 
INICOL = 5000 million tons. 

Exercise 14 
a. 

TC4 PENF 

b. It appears from the data, that TCI = 10 years, TC2 = 12.5 years, 
TC3 = 5 years, TC4 = 20 years, CONF = 500 guilders employee -1 

year - 1 and PENF =10 000 guilders pensioner -1 year -1. 
EMP, = EMPt_!+DELT x ( R l , ^ - R2,_i) 
INEMP = 300 persons 
PENS, = PENS,_!+DELT x (R2,_! - R3t_i) 
INPENS = 0 persons 
CAP, = CAP,_!+DELT x (R4,_! + R5,_! - R6,_i) 
INCAP = 1 000 000 guilders 
R l , = ^ x E M P , 
R2,= 1/12.5 x EMP, 
R3, = ^xPENS, 
R4, = ^ x C A P , 
R5, = 500xEMP, 
R6, = 10 000 x PENS,. 
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Exercise 15 
a. 

O-
BIRTR SCHOR 

SCHA 

— f -

BTTC SCHOTC 

lADULR 

ADUlTC 

ADUL 

-»-9-

b. BABt = BAB,_!+DELT x (BIRTR,^ - SCHOR,^) 
SCHOt = SCHOt_!+DELT x (SCHOR,-! - ADULR,_i) 
ADUL, = ADUL,^+DELT x (ADULR,-! - DEATR,^) 
INBAB = 300 INSCHO = 3000 INADUL = 100 000 
BITC = 20 SCHOTC = 6 ADUTC = 10 DETC = 50 
BIRTR, = ̂ x ADUL, 
SCHOR, = èxBAB, 
ADULR, = ^xSCHO, 
DEATR, = ̂  x ADUL,. 
c. Three negative feedback loops and one positive one. 

Exercise 16 
a. 

X 
HOUR 

CHTC 

HflllMAV • H0UMAX 

—T— 
I 
I 
i 

-Ô-
H0UTC 

CHR » • 

* 

b. HOU, = HOU,_i +DELT xHOUR,_! 
HOUR, = 1/HOUTC x (HOUMAX - HOU,) 
CH, = CH,_! + DELT x CHR,.! 
CHR, = 1/CHTC x (HOU, - CH,). 

<3 
DEATR 

-4-
DETC 
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HOUMAX 

time 

Exercise 17 
The data show that the relative growth rate and therefore the time 
coefficient are not constant and influenced during the process by the 
amounts of nutrient in the solution; the nutrient uptake decreases the 
relative growth rate (or increases the time coefficient). Further, A is 
expressed in terms of the nutrient; in the relational diagram a direct 
flow from N to A can be drawn, 
a. 

N 
\ / 

Y AGR 

1 
1 

«-

L JRAGR V - 1 
1 
1 

TC 

A 

9 

b. N ^ N ^ j - D E L T x A G R , . . ! 
A t = At_i + DELT x AGR, . ! 
AGR, = l / TCxA t xN t . 
c. month gram meter - 3 

d. A negative feedback loop connecting N through RAGR and AGR 
with N, a positive one from A through AGR to A. 
e. Call the initial amount of the nutrient ININ; then the amount of the 
nutrient N, can be expressed as amount of A, in grams N per m3 
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according to Nt = ININ - A,. Substituting this value in the rate equation 
gives: 
AGR, = 1/TC x (ININ - At) x At or 
AGRt = 1/TC x ININ x (1 - A./ININ) x At. 
This is the equation of the logistic growth curve. The curves of A and 
AGR as functions of time are given in the figures of the answer to 
Question 20. The curve of N is the curve of A, reversed with respect to 
a line parallel to the time axis. 

GMAX 

b. RGR = RGRMAXx(l-G/GMAX) according to y = mxx + q in 
which m = -RGRMAX/GMAX. 
c. It follows from the equation given in b that dG/df = 
G x RGRMAX x (1 - G/GMAX) or expressed with the time coefficient 
dG/df = G x 1/(1/RGRMAX) x (1 -G/GMAX). 
This is the equation of the logistic growth curve of Question 20 in the 
text. 
d. See the answer to Question 20. 
e. See the answer to Question 20. 

Exercise 19 
a. It is clear from the description of the model assumed, that the time 
coefficient STITC (period in which one owner gives one stimulus) is 
constant in this case. The number of owners OWN affects the increase 
of owners directly and also indirectly through the effect of the stimuli. 
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STITC 

b. The rate of increase is the reciprocal of the time coefficient multi­
plied by the number of stimuli per owner, by the number of owners 
and by the effectivity EFF of the stimuli. However, this eflectivity is 
influenced by the dimensionless factor (l-OWNt/OWMAX). The 
dimension of the right side of the rate equation is equal to: owner 
time-1. The rate equation itself is: IOWRRt = 1/STITCx 
OWN txEFFx(l-OWN t/OWMAX). This equation is comparable 
with that of the logistic growth of yeast. Therefore, the model gives an 
explanation of the S-shaped curve of the number of owners as a 
function of time. 
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Exercise 20 
a. 

b. I N F A ^ I N F A ^ i + D E L T x I N F A R , . ! 
A, = A,_i+DELT x GAR t_j 
INFAR t = INFA t x 1/INFTC x ((At - INFAt)/At) 
GAR t = A t x 1/GATC x (1 - A./MA). 
This system can be described by a differential equation: dy/df = 
axyx( fc ( f ) -y ) in which k(t) = k/(l+e~m><')llm; the integral of this 
differential equation is very complex (in these equations other symbols 
are used). 

Exercise 21 
a. It appears from the description of the problem that the system 
contains a second state variable with initial value MQ besides the 
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variable W. Both differential equations become: dW/d( = MxW in 
which 1/M is the time coefficient, and dM/df = -S x M with 1/S as time 
coefficient, 
b. 

i/s 

dM 
ïït 

X 
c. As time goes on, the factor M of the first equation becomes smaller 
according to the process described by the second equation. Therefore, 
the growth curve is nearly logistic. 

Exercise 22 
a. W(t)/V, is the pollution load of the lake, — c/to the reduction of the 
organic matter by discharge and - k x c the reduction by decomposi­
tion. 
b. The mean residence time is t0. 
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Exercise 23 
a. 

i/kd<f)-

r -

-è-

os 

-9-
I 
I 
I 

<J 
b. L A R t = k d x L t 

OGR t = k d xL t 

OAR t = k r x (OS -O t ) 
O t = Ot_i + DELT x (OAR.-1 - OGR,^) 
Lt = Lt_ ! - DELT x LARt_ t 

in which LAR, OGR and OAR are the decomposition rate of the 
organic waste, the rate of oxygen depletion used for this decomposition 
and the reaeration rate, respectively. OS is the saturation value of 
oxygen in water at specific conditions. 
c. By the decomposition of the organic waste, a corresponding loss of 
oxygen in water takes place; according to the decomposition equation, 
this loss is exponential. The actual reduction of oxygen in water is less 
as reaeration takes place, though delayed; the oxygen content of the 
water continues decreasing until reaeration has been become equal to 
the loss of oxygen by decomposition. After this critical point, the 
oxygen content of the water will increase and reach ultimately the 
saturation value OS. 

Exercise 24 
a. 

VT/3 
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b. In the steady state with a total delay time VT, with an exponential 
delay of the third order and with an input INS, the amounts entering 
each delay element D are equal to the amounts leaving. It follows that 
the content of an element just before the change is INSx(VT/3). The 
equations are: 
D l . ^ D l ^ j + D E L T x d N S ^ j - R l t - i ) 
R l t = l / (VT/3)xDl t 

D2 t = D2 t_ 1+DELTx(Rl t_ 1 -R2 t_ 1 ) 
R2 t = l / (VT/3)xD2 t 

D3 t = D3t_j + DELT x (R2t_x - OUTR,^) 
OUTR t = l / (VT/3)xD3 t . 
c. 

transport rate 

(106*ton week"1) 

0.2 

0.1 

oi l export 

o i l import 

time (week) 

Exercise 25 
a. 

A 

1 Ç—J 
1 

— K — • 
ABR 

« 

B 

1 Ç—1 
i 

— - ^ ' 
BCR 

t 
ABTC 

b. A ^ A ^ i - D E L T x A B R , ^ 
B t = B t_i+DELT x (ABRt_! - BCR,-!) 
Ct = C t_j+DELT x BCR t_! 
INIA = 100 INIB = 0 INIC = 0 
ABR t = l /ABTCxA t 

BCRt = l /BCTCxB t . 

-è-
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c. The curve of A is always decreasing exponentially. In the first 
calculation interval, no C is produced as there is no B yet; during this 
interval, the curve of B is the reverse of the curve of A and convex 
upwards. In the next interval, B always increases less than A decreases 
because of the reduction of B by the simultaneous conversion into C. 
The amounts of B reach a maximum value when the increase in B by 
conversion of A equals the decrease in B by the production of C. In 
the first intervals, hardly any C is produced, the shape of the C curve is 
concave upwards with an ascending slope. This slope reaches a max­
imum or point of inflexion at the moment that B has its maximum 
value. Therefore, the curve of C is S-shaped and attains its maximum, 
when there is no A left and all B is converted into C. 
The ratio ABTC/BCTC determines, whether the maximum of B lies 
above or under the A curve. For l/ABTCxA t= l/BCTCxB t or 
BCTC/ABTC = Bt/At applies to the maximum point of B. The coeffi­
cient ABTC is larger than BCTC at a relatively slow production of B 
and then the maximum of B lies under the A curve, and conversely. 
The behaviour pattern of the system is given in the following figure. 

amounts 

time 

This exercise gives an insight into the working of successive integra­
tions on the response patterns of delays. It makes clear, that an 
increasing number of integrations or the order of delay enlarges the 
time before the last integration reacts to the change in the input: with a 
delay of infinite order, the output reacts just after the total delay time, 
which yields the pipeline effect. 

80 



Exercise 26 
a. 

< ^ ^ 
. -.+ INBR 

i 

-r-9- f^-O 
-è-

INBTC 

I 

-è-

DEBR 

I 
I 

-è-
DEBTC 

IMHTC DEMTC 

b. MBt = MBt_i + DELT x (INBR,_! - DEBR,_i) 
MM, = MM,., + DELT x (INMR,^ - DEMR,^) 
INBR, = 1/INBTC x MM, 
INMRt = 1/INMTC x MB, 
DEBR, = 1/DEBTC x MB, 
DEMR, = 1/DEMTC x MM,. 
c. Two negative feedback loops of the depreciation rates of B and M; 
a large positive loop running from B through INMR, MM and INBR 
to MB. 
d. In a steady state, the rates of inflow must be equal to the rates of 
outflow. Therefore, INBR, = DEBR, and INMR, = DEMR,. Substitu­
tion gives: 
1/INBTC x MM, = 1/DEBTC x MB, and 
1/INMTC x MB, = 1/DEMTC x MM,. 
Further working-out shows, that a steady state will be attained, if 
1/INMTC x 1/INBTC = 1/DEBTC x 1/DEMTC. 
e. The necessary conditions for an explosive growth can be derived 
from the results of d: the products of the time coefficients of invest­
ments must be smaller than those of depreciation. In the next figure, 
the investments of both firms as function of time are given for the 
three cases: 
INMTC x INBTC S DEBTC x DEMTC. 
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Exercise 27 
a. 

1X2=8 X 
Y TC1=5 

b. A negative feedback loop from Rl, through LI, R2 and L2 to Rl . 
c. 

moment 

0 
2 
4 
6 
8 

10 
12 
14 
16 
18 
20 

change in 
LI 

0.00 
- 1 . 00 
- 2 . 00 
- 2 . 90 
- 3 . 60 
- 4 . 0 1 
- 4 . 06 
- 3 . 7 1 
- 2 . 95 
- 1 . 82 

LI 

10.00 
10.00 
9.00 
7.00 
4.10 
0.50 

- 3 . 51 
- 7 . 57 

-11 .28 
- 14 .23 
-16 .06 

change in 
L2 

2.50 
2.50 
2.25 
1.75 
1.03 
0.13 

- 0 .88 
- 1 . 89 
- 2 . 92 
- 3 . 56 

L2 

0.00 
2.50 
5.00 
7.25 
9.00 

10.03 
10.15 
9.27 
7.38 
4.56 
1.00 

R l 

0.00 
- 0 . 50 
- 1 . 00 
- 1 . 45 
- 1 . 80 
- 2 . 01 
- 2 . 03 
- 1 . 85 
- 1 . 48 
- 0 . 91 
- 0 . 21 

R2 

1.25 
1.25 
1.13 
0.88 
0.51 
0.06 

- 0 . 44 
- 0 . 95 
- 1 . 41 
- 1 . 78 
- 2 . 01 

The ultimate result is the characteristic behaviour pattern of two 
integrations connected with each other in a negative feedback loop, 
represented by a differential equation of the second order. This pattern 
consists of oscillations as given in Fig. 13 of the text. These oscillations 
are not damped and the equilibrium state will never be attained 
permanently. Notice the shifts or delays between LI and L2 etc. 
However, a system with two integrations, connected with each other in 
a positive feedback loop, exhibits an explosive growth. Some examples 
are: the system describing the motion of a relatively long pendulum 
with LI and L2 as speed and position of pendulum end, respectively, 
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the placing of orders LI dependent on the stock L2 compared with a 
standard stock (=goal or equilibrium), the Lotka-Volterra equations 
about the interaction between host H and parasite P: dH/dt = 
( a - b x P ) x H and dP/dt = ( - c + e x H ) x P (compare these feedback 
loops with those of the equations of Exercise 29). 

Exercise 28 
a. See Fig. 12 in the text, in which L2 and LI are P and v respec­
tively; the goal or equilibrium equals to zero. 
b. Call dv/dt, v and the rate of change of position ACC, V and PCR 
respectively. The equations concerned are now: 
ACC t = - g / l x P t 

V, = V t_j+DELT x ACCt_j 
PCR t = Vt 

P, = P t_! + DELT x PCR t_j. 
c. It is a system with two integrations, connected with each other in a 
negative feedback loop. The behaviour pattern is described by sine and 
cosine functions as given in Fig. 13 of the text. 

Exercise 29 
a. 

* - - - • < > 
-9-9-

O 

1/a (j>---0--4 
0j-<>-Ç>-4 

l/b 

-ffil/e 

< U H 
< ) — I 

b. H t = H t_! + DELT x (NCHRt_! - EDHR,^) 
P t = P t - i+DELT x (NCPRt_! - EDPR t_!) 
NCHR, = l / ( l / a )xH t 

EDHR t = l / ( l /b )xH«xP t 
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NCPRt = l/(l/c)xP t 

EDPRt = l/(l/e) xP.x Pt/Ht. 
c. The steady state will be attained, when axH, = b xH t xP t and 
cxP, = exP txP,/H,. Then P = a/b and H = axe/(bxc). 
d. Two positive feedback loops determine the natural net-increase of 
P and H. There is also a large negative feedback loop ranging from P 
through EDHR, H, EDPR to P. Two smaller negative feedback loops 
are present within this large loop, ranging from P through EDPR to P 
and from H, through EDHR to H, respectively. The behaviour pattern 
of such systems is represented by oscillations which may be damped to 
an equilibrium or steady state. Compare this behaviour with that of a 
system as described by the Lotka-Volterra equations, discussed in the 
solution to Exercise 27. 

Exercise 30 
a. Let the mean rate of commissioning be BUIR, the mean deprecia­
tion rate DER, the relationship between mean annual turnover per 
restaurant and the number of road restaurants FUNC, the percentage 
of the total turnover set apart for maintenance of and building new 
restaurants PERC and the building costs per restaurant ORCF. The 
relational diagram of this system with a delay of the first order is given 
in the next figure. 

O 
UIR 

[delay function -VT 

RORE 

? ? ? 
-Q, 

BUICF f-<J>-—# 
I 
I 

MAICF f — • ( _ ) -

FUNC 

PERC 

DETC 

b. ROREt = ROREt_!+DELT x (BUIR,_! - DER,_i) 
INIROR=100 
BUIR, = (RORE, x TUO, x PERC - MAICF x RORE,)/BUICF 
DER, = 1/DETC x RORE, 
DETC 20 VT = 3 MAICF =100 000 PERC = 0.025 
BUICF = 2 500 000; FUNC is given. 
After substitution, the rate equations are: 
BUIR, = (RORE, x TUO, x 0.025 -100 000 x RORE,)/2 500 000 
DER, = ̂ x RORE,. 
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c. The dimensions of the right side of the first rate equation are: 
restaurant x (guilder/(year x restaurant)-guilder/(year x restaurant))/ 
(guilder/restaurant). Working out gives: restaurant/year which is 
also the dimension of the left side. 

d. A reconstruction of the rate equation BUIR gives: BUIRt = 
(RORE tx(TUO t/40-100 000))/2 500 000. Thus the system is gov­
erned by a positive feedback loop so long as TUO/40 is larger than 
100 000. The positive feedback will be changed into a negative one, 
when the mean turnover is smaller than 4 000 000; this change takes 
place when the number of restaurants exceeds 125. 
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