RIJKSINSTITUUT VOOR VOLKSGEZONDHEID EN MILIEUHYGIENE BILTHOVEN

Report no. 734201001

DOCUMENTATION OF ZOOPLANKTON SPECIES IN THE LOWER RIVER RHINE

B. van Zanten & P. Leentvaar⁽¹⁾ April 1993

⁽¹⁾ Waterquality, Environment & Limnology, Bilthoven

Dit rapport is opgesteld in opdracht en ten laste van het Directoraat-Generaal Milieubeheer; Directie Internationale Milieuzaken en Directie Drinkwater, Water, Landbouw in het kader van het project Ecologisch Herstel Rijn en Maas (projectnr 734201).

To be cited as:

Van Zanten B. and P. Leentvaar, 1993. Documentation of zooplankton species in the Lower River Rhine. Report of the project 'Ecological Rehabilitation of the rivers Rhine and Meuse' report no. 51/RIVM report no. 734201001

Participating institutes: On behalf of the Ministry of Transport and Public Works: Institute for Inland Water Management and Waste Water Treatment (RIZA)

On behalf of the Ministry of Housing, Physical Planning and Environment: National Institute of Public Health and Environmental Protection (RIVM) P.O. Box 1, 3720 BA BILTHOVEN

On behalf of the Ministry of Agriculture, Nature Management and Fischeries. Netherlands Institute for Fishery Investigations (RIVO-DLO) P.O. Box 68, 1970 AB IJMUIDEN Institute for Forestry and Nature Research (IBN-DLO) P.O. Box 9201, 6800 HB ARNHEM The Winand Staring Centre for Integrated Land, Soil and Water Research (SC-DLO) P.O. Box 125, 6700 AC WAGENINGEN

MAILING LIST

- 1 Directoraat-Generaal Milieubeheer; Directie Internationale Milieuzaken en Directie Drinkwater, Water en Landbouw
- 2 Directeur-Generaal Milieubeheer, ir M.E.E. Enthoven
- 3 Plv. Directeur-Generaal Milieubeheer, dr i r B.C.J. Zoeteman
- 4 Plv. Directeur-Generaal Milieubeheer, mr G.J.R. Wolters
- 5 Dr H.W. Kroes, DGM/IMZ
- 6 Drs J.F.M. van Vliet, DGM/DWL
- 7 Drs M.L. Koen, DGM/DWL
- 8 Dr D. Backhaus, Landesanstalt für Umweltschutz Baden-Württemberg, Germany
- 9 Prof. Dr G. Friedrich, Landesamt für Wasser und Abfall, Germany
- 10 Dr Kümmerlin, Landesanstalt für Umweltschutz Baden-Württemberg, Germany
- 11 Dr D. Müller, Bundesanstalt für Gewässerkunde, Germany
- 12 Dr P. Obrdlik, WWF-Aueninstitut, Germany
- 13 Dr U. Sieber, Bundesambt für Umwelt, Wald und Landschaft, Switserland
- 14 Drs E.C.L. Marteijn, RIZA
- 15 Dr R. Gulati
- 16 Dr C. Davids
- 17 Prof. dr W. Admiraal
- 18 Depot Nederlandse Publicaties en Nederlandse Bibliografie
- 19 Directie RIVM
- 20 Directie sector 7, RIVM, Prof. Dr ir C. van den Akker
- 21 Hoofd LWD, ir B. Bannink
- 22 Ing L. Breebaart
- 23 Drs G.M.J. Tubbing
- 24 Dr G.M. van Dijk
- 25 Drs J.C. van der Vlugt
- 26-27 Auteurs
- 28 Bureau Projecten- en rapportenregistratie, RIVM
- 29 Hoofd Voorlichting en Public relations, RIVM
- 30 Bibliotheek, RIVM
- 31 LWD-depot bibliotheek, RIVM
- 32-50 Reserve exemplaren

CONTENTS

Mailing list	iii
Table of contents	v
Introduction	1
Taxonomy of zooplankton species in the River Rhine	2
Checklist of zooplankton species in the River Rhine	3
Rhizopoda	5
Ciliata	15
Rotatoria	25
Crustacea	71
Mollusca	101
Acknowledgements	107
References	107

•

INTRODUCTION

In the framework of the Rhine Action Programme, the International Rhine Commission agreed on conducting regular biological inventories of the River Rhine to be held at fiveyear intervals, starting in 1990. The result is an ecological monitoring programme for plankton, fish fauna and benthic macrofauna prepared by research institutes of the Rhine countries. A harmonization of methods seemed impera tive and for this reason a group of experts on plankton proposed a checklist of plankton species.

This documentation, which gives an overview of zooplankton species commonly found in the River Rhine, will support a proper identification of River Rhine zooplankton. This working document is meant to be used when counting zooplankton samples. It should be stressed, however, that it is not meant to replace the identification documentation. For a selected group of zooplankton species, one or more photographs are shown as well as some relevant information on ecology, feeding behaviour, etc. Where essential details required for proper identification could not be shown clearly on photographs, we refer per species to the relevant literature for more detailed information.

At this stage only lowland species are included. Hence, some relevant species, e.g. those typical of the Upper Rhine might be missing. Furthermore, it has not been possible to describe the distribution of species along the River Rhine to date; only for the lowland reach have some comments been given.

Despite these limitations, this documentation could be a first step towards harmonization within the international biomonitoring programme of zooplankton in the River Rhine.

TAXONOMY OF ZOOPLANKTON SPECIES IN THE RIVER RHINE

Protozoa (after Kudo, 1954)

_subclass Rhizopoda _order Testacea _order Foraminifera

_class Ciliata

_order Peritricha

_class Suctoria

Aschelminthes

_class Rotatoria (after Koste, 1978)

_order Ploimida

_family Brachionidae _family Euchlanidae _family Trichotridae _family Colurellidae _family Lecanidae _family Synchaetidae _family Asplanchnidae _order Gnesiotrocha -family Testudinellidae

Arthropoda

_class Crustacea

_subclass Phyllopoda (after Flößner, 1972) _suborder Cladocera _family Sididae _family Daphniidae _family Bosminidae _family Macrothricidae _family Chydoridae _family Polyphemidae _order Copepoda (after Kiefer, 1987) _suborder Calanoida _suborder Cyclopoida _suborder Harpacticoida

CHECKLIST OF ZOOPLANKTON SPECIES IN THE RIVER RHINE

RHIZOPODA

Arcella sp. Centropyxis aculeata Centropyxis sp. Cyphoderia ampulla

CILIATA

Ciliata unidentified Codonella lacustris Suctoria sp. Vorticella sp. Zoothamnium sp.

ROTATORIA

Asplanchna priodonta Brachionus angularis Brachionus calyciflorus Brachionus leydigi Brachionus leydigi f. tridentatus Brachionus quadridentatus Brachionus quadridentatus f. cluniorbicularis Brachionus urceolaris Brachionus sp. Dipleuchlanis propatula Euchlanis dilatata Filinia longiseta Kellicottia longispina Keratella cochlearis Keratella cruciformis Keratella quadrata Lecane bulla Lecane closterocerca Lecane hamata Lecane luna Lepadella ovalis Notholca acuminata Notholca squamula Notommata sp. Polyarthra sp. Trichotria tetractis

CRUSTACEA

Cladocera Alona sp. Bosmina coregoni Bosmina longirostris Bosmina sp. Ceriodaphnia pulchella Chydorus sphaericus Daphnia cucullata Daphnia galeata Daphnia longispina Daphnia sp. Diaphanosoma brachyurum Disparalona rostrata Eurycercus lamellatus Macrothrix laticornis

Copepoda

Cyclops sp. Eucyclops macruroides Eurytemora affinis Eurytemora lacustris Eurytemora sp. Mesocyclops leuckarti

Dreissena larvae

RHIZOPODA

RHIZOPODA

GENERAL

Rhizopoda are armoured Protozoans. Most of the species are living attached to silt particles or on substrates.

.

.

RHIZOPODA

TESTACEA

ARCELLIDAE

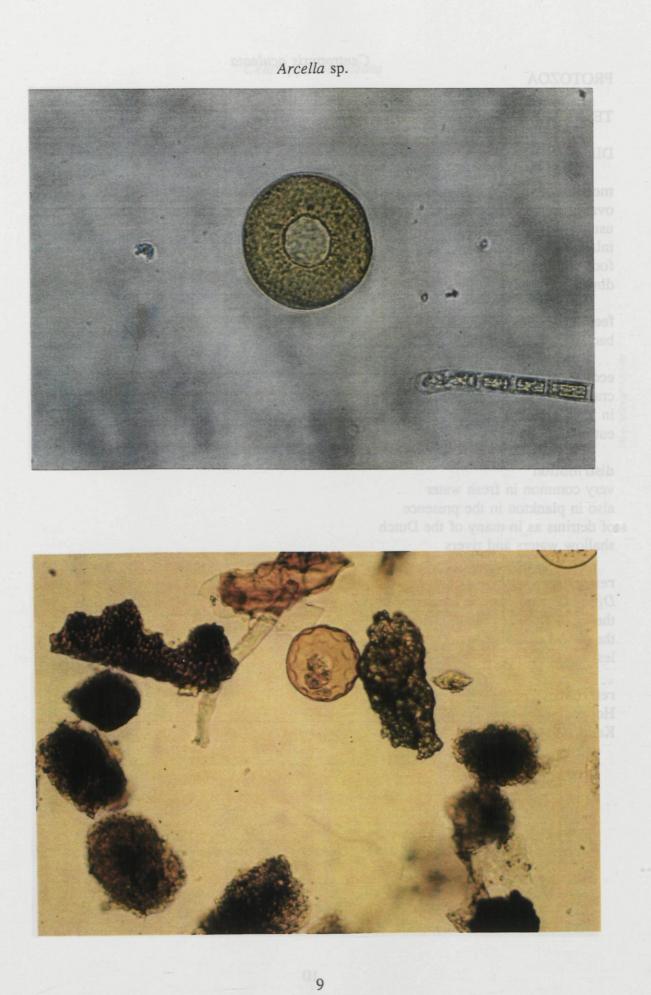
morphology

round brown chitinous carapace round central opening dimensions: 30-100 µm

feeding

bacteria, detritus

ecology


crawling on substrate, mud, in plankton on detritus debris eutrophic, oligotrophic

distribution

very common in fresh water also in plankton in the presence of detritus as in many of the Dutch shallow waters and rivers

references

Hoogenraad and de Groot (1940) Kudo (1954)

PROTOZOA

TESTACEA

DIFFLUGIIDAE

morphology

oval to round carapace usually with spines and inlaid with quartz grains foot opening acentric dimensions: 80-162 μ m

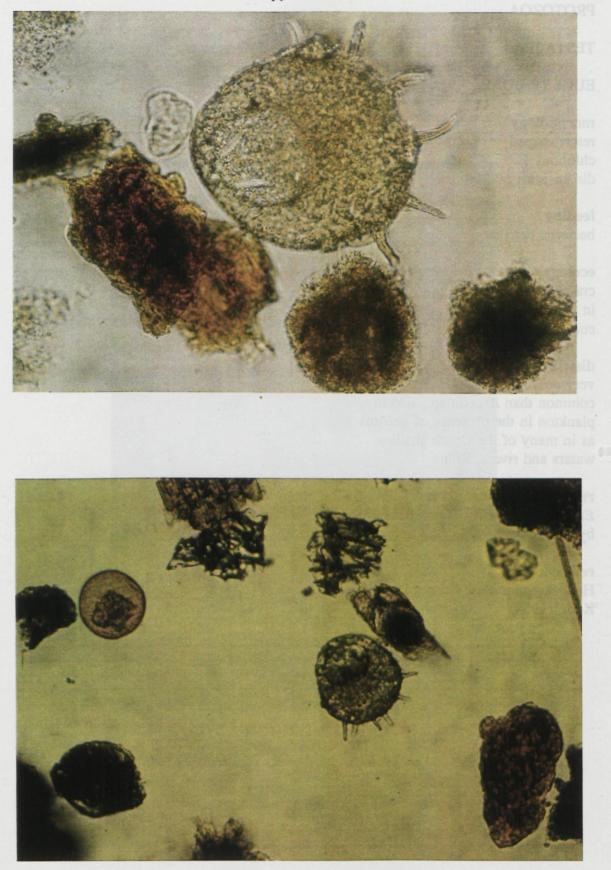
feeding

bacteria, detritus

ecology

crawling on substrate, mud, in plankton on detritus, debris eutrophic, oligotrophic

distribution


very common in fresh water also in plankton in the presence of detritus as in many of the Dutch shallow waters and rivers

remarks

Difflugia genus can be identified by the more elongated acuminated shape and the coarse inlaid grains, less common in plankton

references

Hoogenraad and de Groot (1940) Kudo (1954) Centropyxis aculeata

Cyphoderia ampulla

PROTOZOA

TESTACEA

EUGLYPHIDAE

morphology

retort shaped chitinous dimensions: 60-200 µm

feeding bacteria, detritus

ecology crawling on substrate, mud, in plankton on detritus, debris eutrophic, oligotrophic

distribution

very common in fresh water, but less common than *Arcella* sp., also in plankton in the presence of detritus as in many of the Dutch shallow waters and rivers, Rhine

remarks

Euglypha genus is (as type) identified by the scaled hyaline structure of the carapace

references Hoogenraad and de Groot (1940)

Kudo (1954)

Cyphoderia ampulla

CILIATA

CILIATA

GENERAL

Ciliata are naked Protozoans and as such often misformed in treated plankton samples. Therefore the group is often missing in plankton lists. Most of the Ciliata are living attached to silt particles and are mainly observed during periods with high turbidity. They also may originate from firm substrates.

Codonella lacustris

PROTOZOA

CILIATA

TINTINNIDAE

morphology

clock-shaped envelope inlaid with grains dimensions: $50-100 \ \mu m$

feeding

bacteria

ecology

in plankton, free-swimming eutrophic, oligotrophic

distribution

commonly present, often accompanied by *Tintinnidium fluviatile* Rhine: sporadic

remarks

T. fluviatile has an elongated envelope

references

Redeke (1975) Kudo (1954)

Codonella lacustris

Vorticella sp.

PROTOZOA

PERITRICHIA

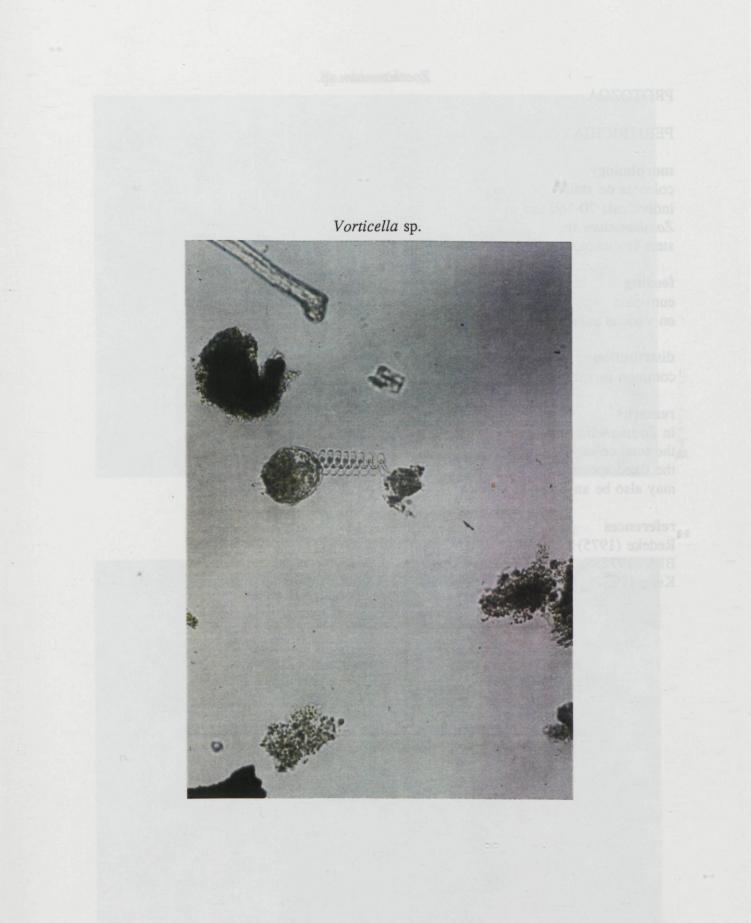
morphology

colonies on stalks individuals 70-160 μ m *Vorticella* sp. has a contractile stalk

feeding

bacteria

ecology


eutrophic on various substrate

distribution

common in all kinds of lakes

references

Redeke (1975) Bick (1972) Kudo (1954)

Zoothamnium sp.

PROTOZOA

PERITRICHIA

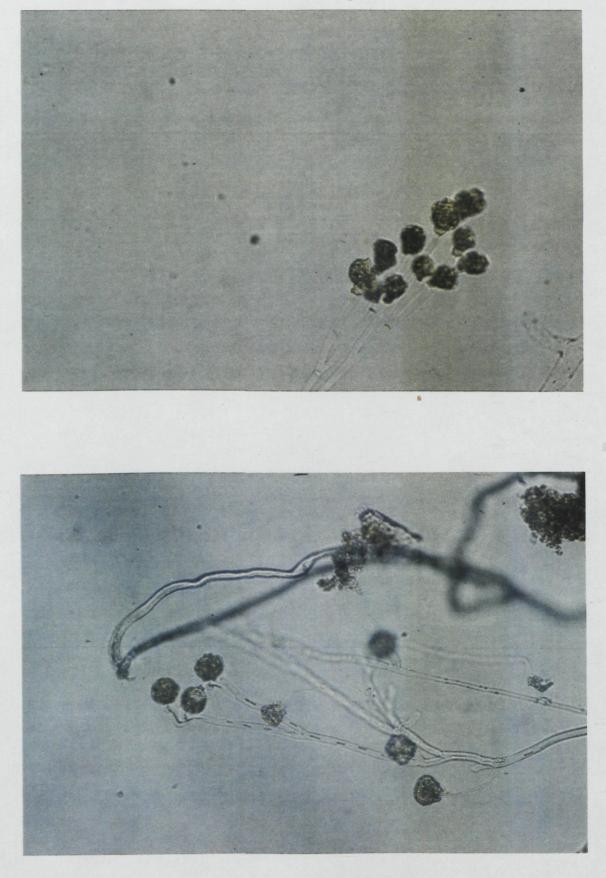
morphology

colonies on stalks individuals 70-160 μ m Zoothamnium sp. stem is dichotomously branched

feeding

eutrophic on various substrate

distribution


common in various lakes

remarks

in Zoothamnium sp. the total colony contracts the fixed specimen in the photo may also be an *Epistylis* species

references

Redeke (1975) Bick (1972) Kudo (1954) Zoothamnium sp.

GENERAL

Most Rotatoria species can be identified by the shape and structure of their carapace. Identification of unarmoured Rotatoria is generally difficult as they contract when the samples are fixated. The most common species generally found are: Keratella cochlearis, Keratella quadrata, and Polyarthra spp. Also Brachionus calyciflorus, Brachionus angularis, Brachionus urcealaris, Filinia longiseta, Kellicottia longispina, and Asplanchna spp. are common in stagnant and flowing waters. These species occur in relatively high densities.

Species of the Lecane family are less common and are seldom found in high numbers. Identification of the Lecanes is not easy and as little is know of the specific life conditions, the Lecanes might best be identified as the genus *Lecane* sp. Common but in low numbers are the species *Lecane bulla*, *Lecane luna*, and *Lecane hamata*.

ASPLANCHNIDAE

morphology

pouched-shaped transparent no foot and no anus dimensions: 250-1500 µm

feeding

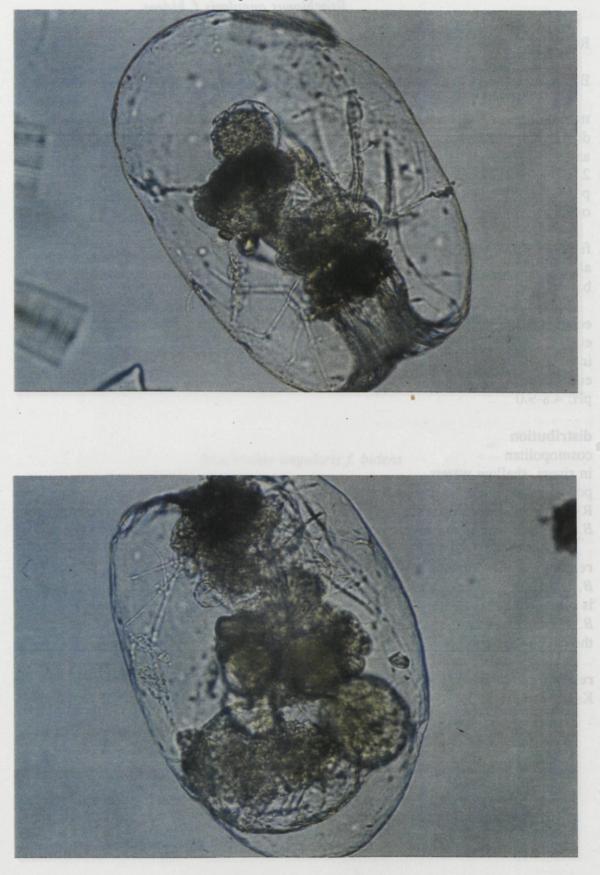
predator with jaws eats other rotatoria, diatoms, peridinians, etc. excrements like carapaces etc. are spit out also cannibalistic

ecology

in plankton from lakes pH: 4.5-8.0

distribution

cosmopolitan Netherlands: in almost all waters, also oligo-haline Rhine: in small numbers


remarks

is present in combination with A. brightwelli, which has a horseshoe-shaped ovary Asplanchna is transparant often other Rotatoria swallowed can be recognized inside the organism

references

Koste (1978)

Asplanchna priodonta

Brachionus angularis Brachionus angularis f. bidens

ROTATORIA

BRACHIONIDAE

morphology

dimensions: 90-210 x 60-160 μ m anterior edge of carapace has 2 fairly truncated spines posterior: no lateral spines, often with lateral angles

feeding

algae bacteria

ecology

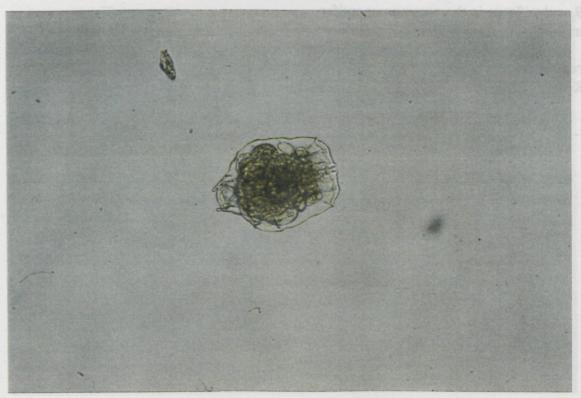
euplanktonic in fresh and brackish water eutrophic pH: 4.8-9.0

distribution

cosmopolitan in rivers, shallow waters, ponds and canals Rhine: usually accompanied by *B. calyciflorus*, but less numerous

remarks

B. angularis f. bidens is often smaller than B. angularis without the sidelong angularity


references

Koste (1978)

Brachionus angularis

Brachionus angularis f. bidens

Brachionus calyciflorus

ROTATORIA

BRACHIONIDAE

morphology

dimensions: $180-600 \times 124-300 \mu m$ carapace with 4 identical teeth posterior: 2 sidelong mobile spines

feeding

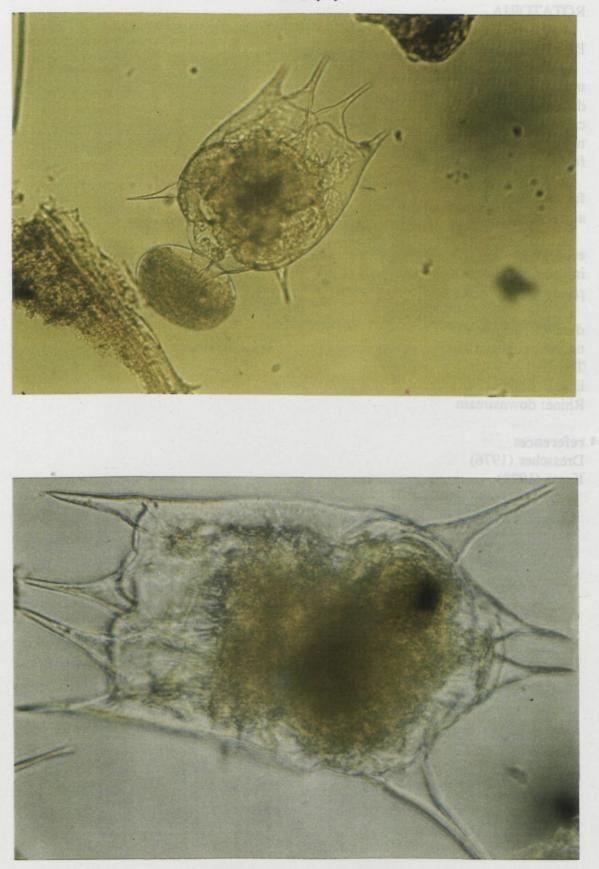
algae, bacteria

ecology

euplanktonic in fresh and brackish water eutrophic pH: 7-9

distribution

cosmopolitan in rivers, shallow waters, ponds and canals Rhine: maximum in number downstream


remarks

B. calyciflorus is the commonest rotifer in the Rhine from March to November

references

Koste (1978)

Brachionus calyciflorus

BRACHIONIDAE

morphology

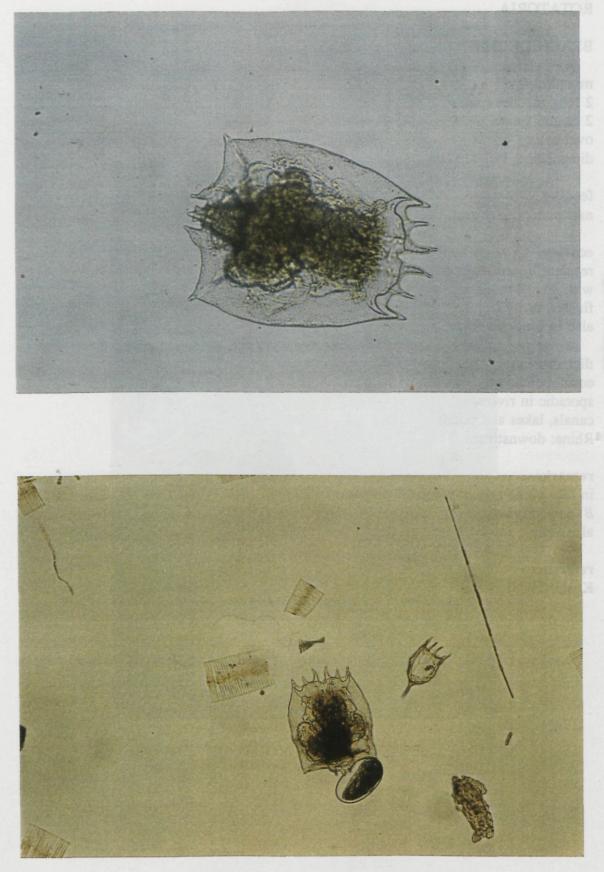
dimensions: 200-290 µm carapace at rear with truncated spines foot opening with 3 spines

feeding

algae, detritus

ecology

in littoral of larger bodies of water, ponds and flushed into flowing water


distribution

no common species The Netherlands: IJsselmeer and Loosdrecht Rhine: downstream

references

Dresscher (1976) Koste (1978)

Brachionus leydigi f. tridentatus

Brachionus quadridentatus

ROTATORIA

BRACHIONIDAE

morphology

2 long median spines 2 caudal spines oval belly dimensions: 160-415 μm

feeding

nanoplankton, detritus

ecology

resident in sediment in water with abundant plant growth flushed away in plankton also in brackish water

distribution

cosmopolitan sporadic in rivers, canals, lakes and ponds Rhine: downstream

remarks

in the photo one of the median spines is bent *B. calyciflorus* and *Keratella cochlearis* also visible in the photo

references

Koste (1978)

Brachionus quadridentatus

Brachionus quadridentatus f. cluniorbicularis

BRACHIONDAE

morphology

dimensions: 160-290 µm caudal edge of carapace is rounded off rounded belly anterior spines almost equal in length

feeding

nanoplankton, detritus

ecology

among plants also in brackish water in in ponds and river banks

distribution

Netherlands: the Meuse and IJssel rivers Rhine: sporadic

remarks

characteristic of the Rhine distinguishable transitional forms similar to B, quadridentatus f. rhenanus in which the caudal edge is asymmetric photos show 2 specimens with one truncated caudal spine

references

Koste (1978) De Maeseneer (1980)

BRACHIONIDAE

morphology

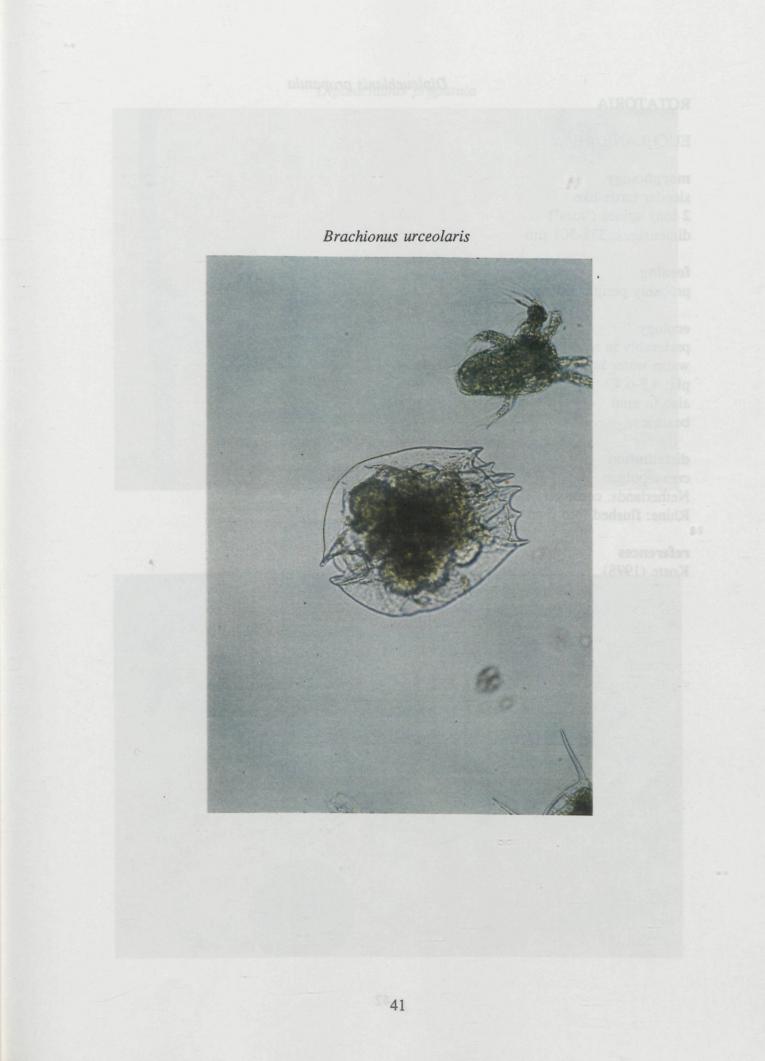
dimensions 150-290 μ m 6 identical truncated teeth (anterior), almost in a single row

feeding

single-cell green algae

ecology

benthic freshwater oligo-halines eutrophic


distribution

cosmopolitan often accompanied by *B. calyciflorus* but fewer in number Netherlands: in practically all waters Rhine: sporadic downstream

remarks

B. urceolaris can be confused with B. leydigi var. rotundatus as the third tooth is missing in foot opening (see photo); the specimen in the photo may be a transitional form of both species; the teeth are not in a row as in B. urceolaris but 'frames' on carapace are typical of B. leydigi var. rotundatus

references

Dipleuchlanis propatula

ROTATORIA

EUCHLANIDAE

morphology

slender turtle-like 2 long spines ('toes') dimensions: 338-508 µm

feeding

probably periphyton

ecology

preferably in relatively warm water in pools and swamps pH: 4.5-6.4 also in mud benthic

distribution

cosmopolitan Netherlands: common Rhine: flushed into river

references

Dipleuchlanis propatula

EUCHLANIDAE

morphology

turtle-shaped with transparent edges variable shape dimensions: 150-320 µm

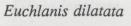
feeding

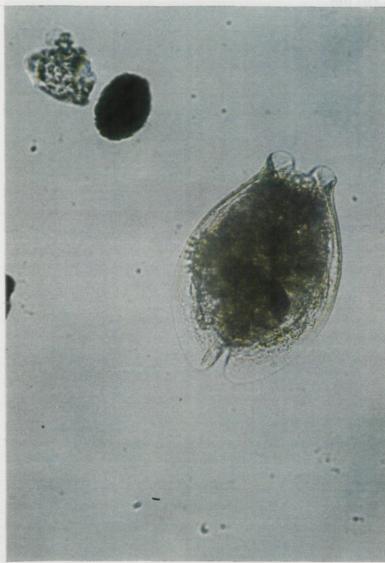
periphyton

ecology

in littoral sometimes in plankton sometimes abundant in algae blooms

distribution


cosmopolitan few in brackish water and rivers Rhine: sporadic


references

Koste (1978) De Ridder (1962)

TESTUDINELLIDAE

morphology (1 egg or spindle-shaped 2 long lateral springy brit 1 caudal long bristle

Filinia longiseta

ROTATORIA

TESTUDINELLIDAE

morphology

egg or spindle-shaped 2 long lateral springy bristles 1 caudal long bristle dimensions: 130-250 µm

feeding

detritus, bacteria algae

ecology in plankton from ponds and lakes eutrophic

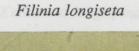
distribution cosmopolitan Netherlands: in various waters sometimes in abundance Rhine: sporadic

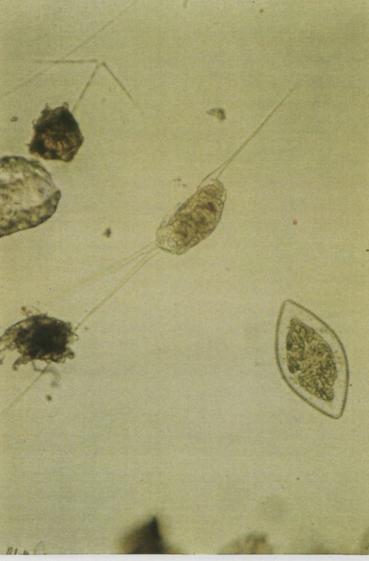
references

Koste (1978) Pontin (1978) Pourriot (1977) Kellicoma longispina

ROTATORIA

BRACHIONIDAE


morphology (1 6 anterior spines of unever 1 long posterior spine dimensions: 380-1000 um


> feeding cats detritus w attached to it a extent algae

ecology in plankton frt shallow water oligotrophic au also in brackis

distribution cosmopolitan Netherlands: i Rhina: in sma

references Bosch and Ri Koste (1978) Pouniot (196 Pouniot (197

BRACHIONIDAE

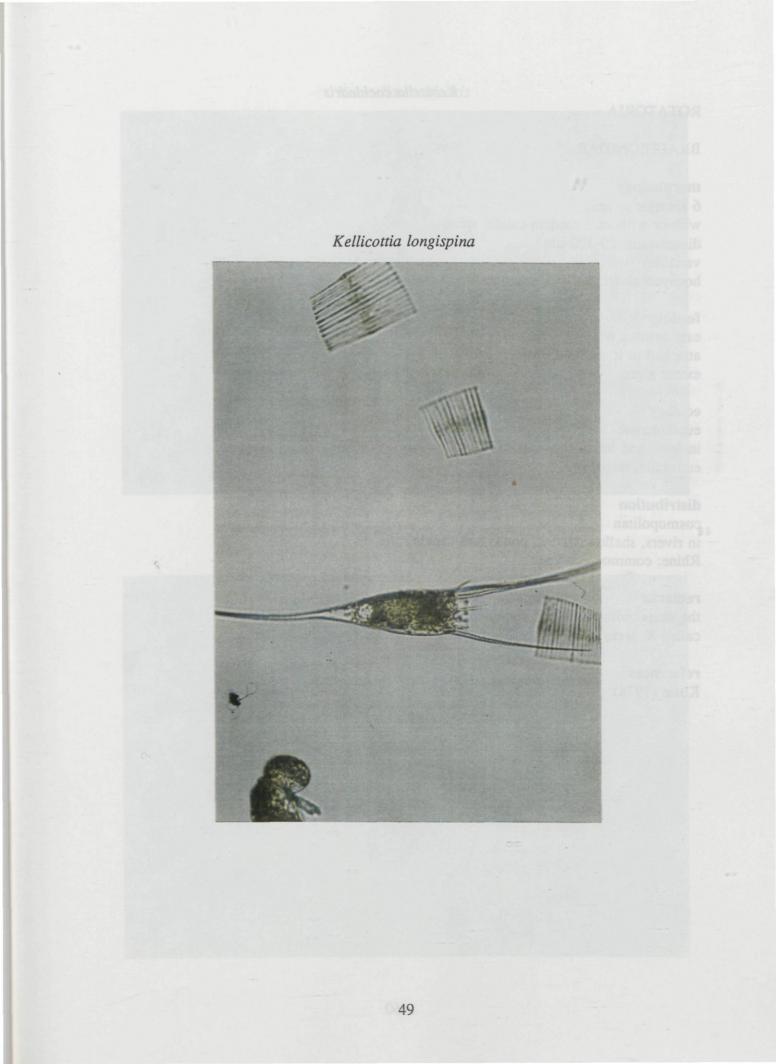
morphology

6 anterior spines of uneven length 1 long posterior spine dimensions: 380-1000 μm

feeding

eats detritus with bacteria attached to it and to a lesser extent algae

ecology


in plankton from deep and shallow waters oligotrophic and eutrophic, also in brackish water

distribution

cosmopolitan Netherlands: in various waters Rhine: in small numbers

references

Bosch and Ringelberg (1985) Koste (1978) Pourriot (1965) Pourriot (1977)

•

ROTATORIA

BRACHIONIDAE

morphology

6 anterior spines, with or without 1 median caudal spine dimensions: 80-320 μ m variable honeycomb structure on carapace

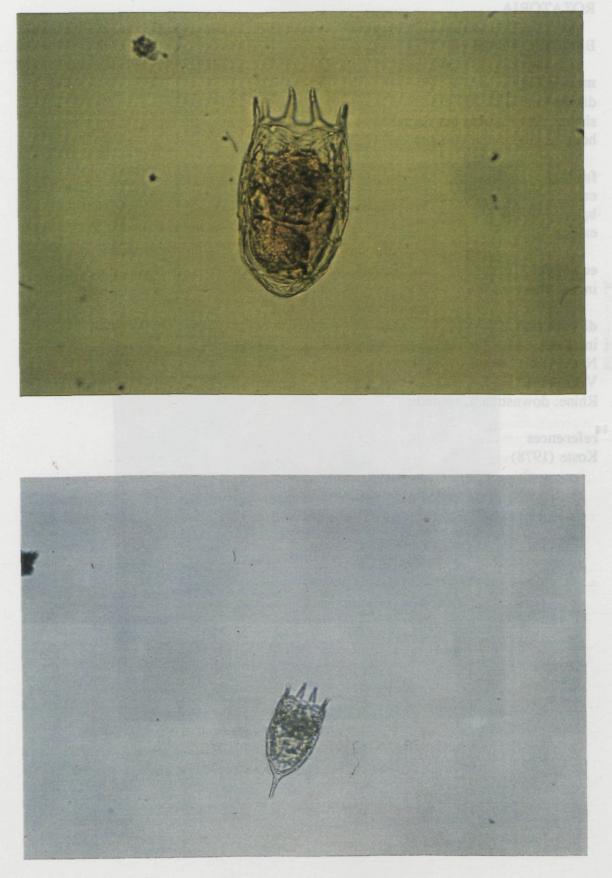
feeding

eats detritus with bacteria attached to it and to a lesser extent algae

ecology

euplanktonic in fresh and brackish water eutrophic, oligotrophic

distribution


cosmopolitan in rivers, shallow waters, ponds and canals Rhine: common ecotypes

remarks

the shape without caudal spine is often called K. tecta

references

Keratella cochlearis

Keratella cruciformis

ROTATORIA

BRACHIONIDAE

morphology

dimensions: 175-203 μ m shaped like K. tecta but dorsal honeycomb structure vague

feeding

eats detritus with attached bacteria and to a lesser extent algae

ecology in salt and brackish coastal waters

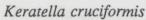
distribution

in coastal seas and estuaries Netherlands: Wadden Sea, Dollart, Veersemeer Rhine: downstream, sporadic

references

BRACHIONIDAE

morphology anterior edge with 4 spines caudal edge with 2 spines hexagonal honevcomb stru


in the median dimensions: 1

feeding algae, bacteria flagollates

ecology euplanktonic in fresh and i eutrophic distribution cosmopolitan epin rivers, shal ponds and ca il hine: comm

reimarks K valga and are rare

> references Koste (197

BRACHIONIDAE

morphology

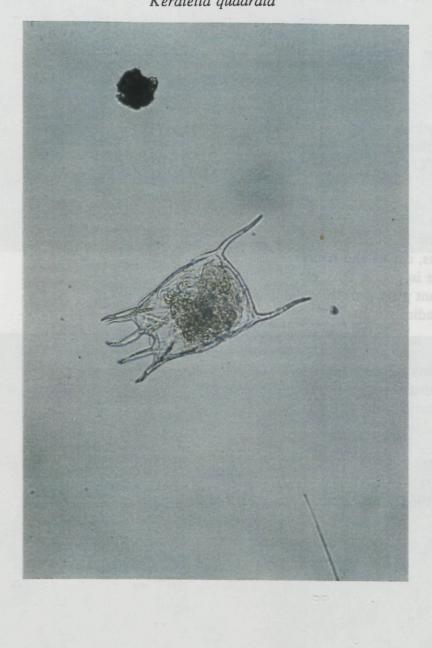
anterior edge with 4 spines caudal edge with 2 spines hexagonal honeycomb structure in the median area dimensions: 150-250 µm

feeding

algae, bacteria flagellates

ecology

euplanktonic in fresh and brackish water eutrophic


distribution

cosmopolitan in rivers, shallow waters, ponds and canals Rhine: common in many ecotypes

remarks

K. valga and K. tropica species are rare

references

Keratella quadrata

LECANIDAE

morphology

oval, curved inwards (anterior) long toe dimensions: 100-133 x 74-105 μm

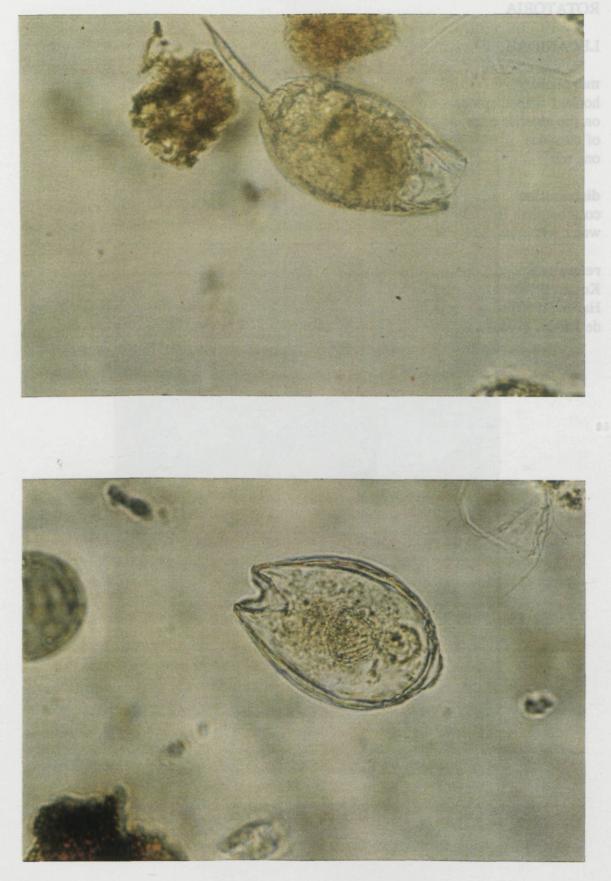
feeding

nanoplankton

ecology

pH tolerant in fresh, brackish, salt and sulphur-containing waters temp. 10-32°C pH: 5.6-8.5

distribution


most common in small numbers for plankton in lakes, fens, canals and rivers most species in ponds, fens, etc. with abundant plant growth Rhine: sporadic

remarks

there are many *Lecane* species with various carapace shapes, wholly or partially deformed talons

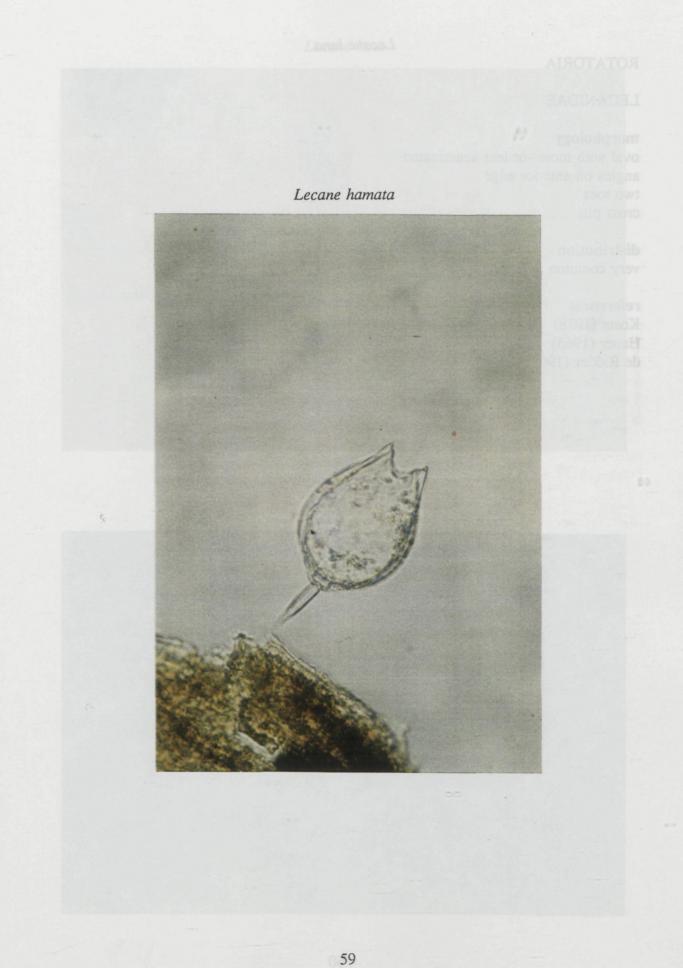
references

Koste (1978) Hauer (1963) de Ridder (1962) Lecane bulla

LECANIDAE

morphology

hooked-shaped spines on the anterior edge of carapace one toe


distribution

cosmopolitan in shallow water with abundant plant growth

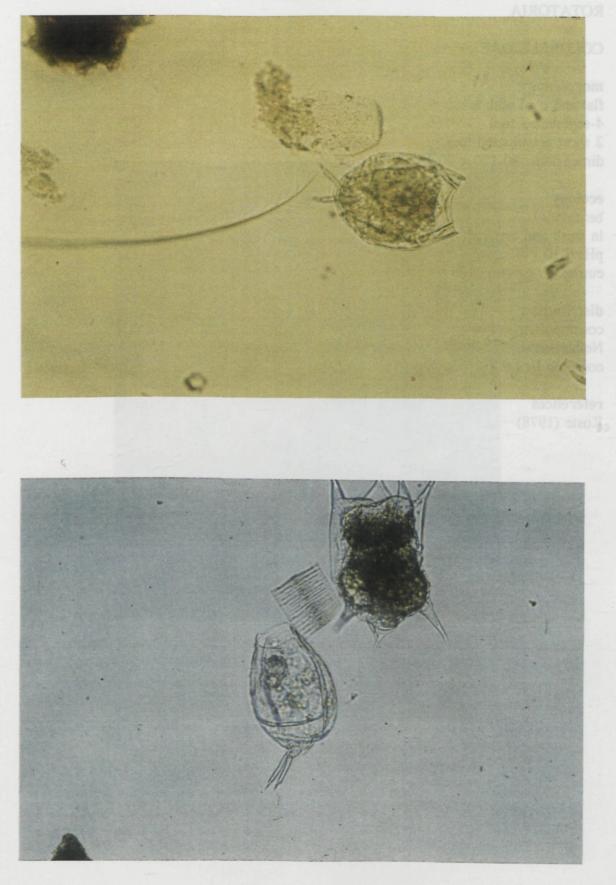
references

.

Koste (1978) Hauer (1963) de Ridder (1962)

LECANIDAE

morphology


oval with more -or-less acuminated angles on anterior edge two toes cross pits

distribution

very common in littoral

references

Koste (1978) Hauer (1963) de Ridder (1962) Lecane luna

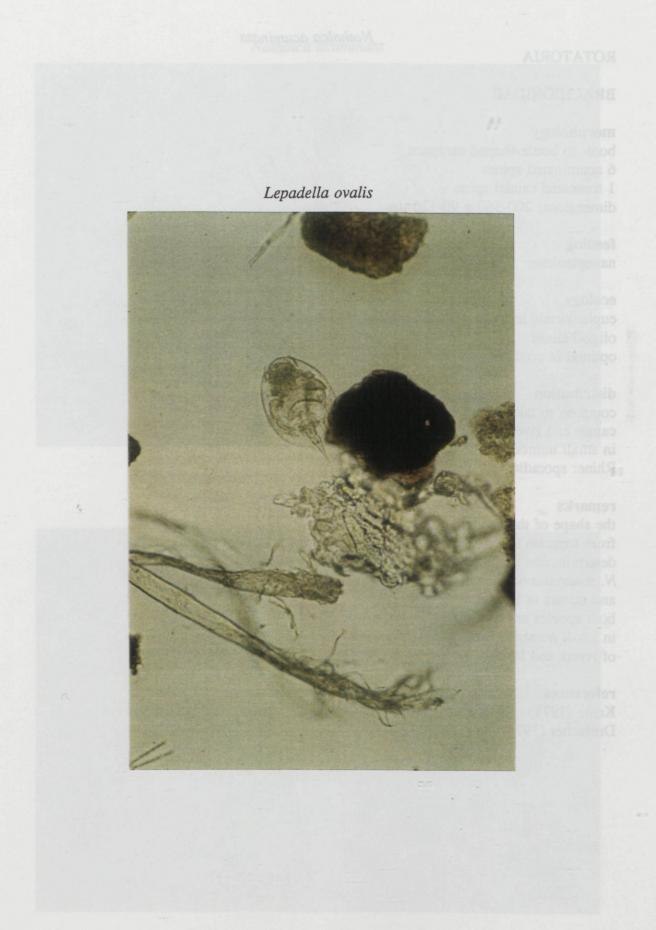
Lepadella ovalis

ROTATORIA

COLURELLIDAE

morphology

flat and oval with a 4-segmented foot 2 short acuminated toes dimensions: 90-170 x 70-140 μm


ecology

benthic in fresh and brackish water pH: 6-10 eutrophic

distribution

cosmopolitan Netherlands: common in various waters

references

BRACHIONIDAE

morphology

boot- to bottle-shaped carapace 6 acuminated spines 1 truncated caudal spine dimensions: 200-360 x 90-120 μm

feeding

nanoplankton

ecology

euplanktonic in fresh water and oligo-halines optimal in cold seasons

distribution

common to lakes, fens, canals and rivers in small numbers Rhine: sporadic

remarks

the shape of the caudal spine can vary from truncate to acuminate so that determination of species is difficult *N. squamula* has a round posterior and occurs in littoral; both species are found regularly in small numbers in the plankton of rivers and lakes

references

Koste (1978) Dresscher (1976) Notholca acuminata

Polyarthra sp.

ROTATORIA

SYNCHAETIDAE

morphology

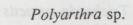
cylindrical, pocket- or square-shaped, with leaf or sword-shaped appendages dimensions: $60-200 \ \mu m$

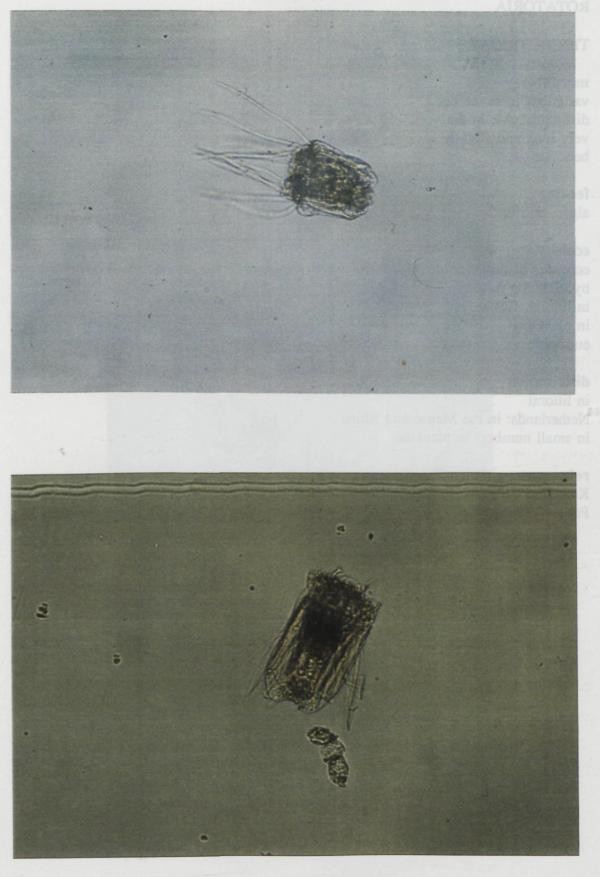
feeding

nanoplankton

ecology

in plankton from ponds, lakes and river banks eurythermal eutrophic


distribution


cosmopolitan Netherlands: is common in various waters Rhine: in small numbers

remarks

difficult to identify in fixed situation; many shapes can be distinguished into subspecies

references

TRICHOTRIDAE

morphology

variations in shape but distinguishable in the very long and slightly bent toe

feeding

algae, detritus

ecology


ecotypes distinguishable by variation in shape in littoral, flushed in plankton eutrophic

distribution

in littoral Netherlands: in the Meuse and Rhine in small numbers in plankton

references

Koste (1978) Pejler (1977)

Trichotria tetractis

CRUSTACEA

CRUSTACEA

GENERAL

Cladocera

Species of the family Bosminidae are smaller than the species of the family Daphniidea and are easily recognized by their long 'elephant-like snout'. The genus *Daphnia*, family Daphniidae is subdivided in the subgenera *Ctenodaphnia* and *Daphnia*. The species *Ctenodaphnia magna* is most commonly found in stagnant shallow waters, often forming red coloured swarms. The other two *Ctenodaphnia* species are rare. *C. magna* is relatively robust, the endclaw has two combs and a characteristic incission. If found in Rhine zooplankton samples it has been transported from stagnant backwaters. *Daphnia* species are more transparant and not so robust as *C. magna*.

Ceriodaphnia species are distinctly different from *Daphnia* sp. by absence of a rostrum. Species of the family Chydoridae are small rounded forms of Cladocera which prefer living at the bottom.

Copepoda

In the group of Copepoda three types are distinguished:

- Calanoidae: long antennae, one eggcapsule and a slender torpedo-like body. They are floating in plankton and scarce or absent in flowing waters.
- Cyclopoidae: short antennae, two eggcapsules and a more spindle-like body. They are often found in river plankton.
- Harpacticidae: very short antennae, tiny creeping bottom species. Seldom found in plankton.

Bosmina longirostris Bosmina coregoni

CRUSTACEA

CLADOCERA

BOSMINIDAE

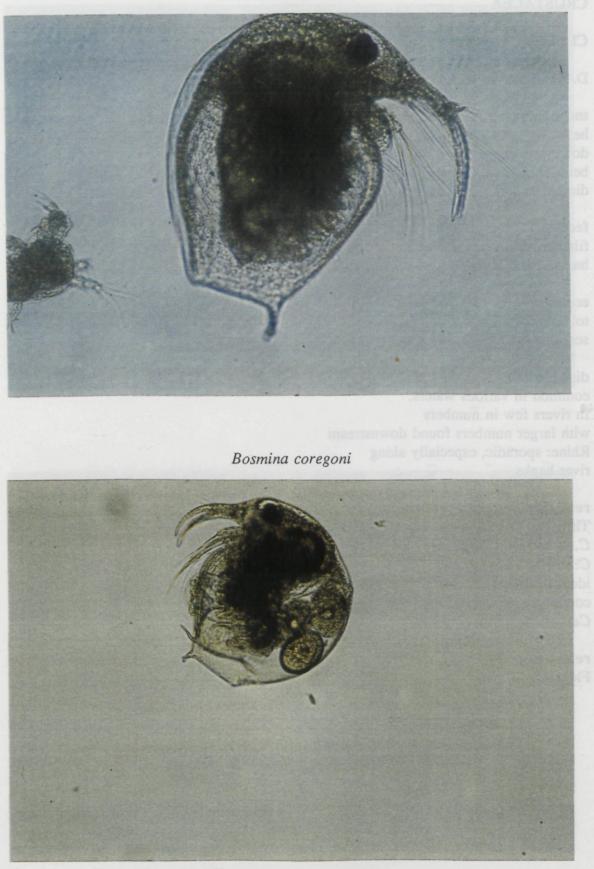
morphology rounded with long proboscis dimensions: 0.4-1.2 mm, brown transparent carapace variable shape

feeding

filters fine material, algae, bacteria and detritus

ecology common in plankton

distribution


common in large and small bodies of water in rivers downstream in large numbers Rhine: in small numbers from May - December

remarks

both species are often difficult to distinguish from one another (endclaw is often not visible) B. longirostris: fine-bristled tail-fork, feelers near ocellus B. coregoni: short-spined tail-fork, feelers nearer end of rostrum (often absent), B. coregoni is usually smaller than B. longirostris when counting samples mention only genus Bosmina

N.B. The *Bosmina longispina* species occurs in the Netherlands in oligotrophic fens. It is further found in lime-deficient freshwater large lakes and rivers. This species can be carried down the Rhine from Lake Constance but is probably not viable downstream.

references Flößner (1972) Bosmina longirostris

CRUSTACEA

CLADOCERA

DAPHNIIDAE

morphology

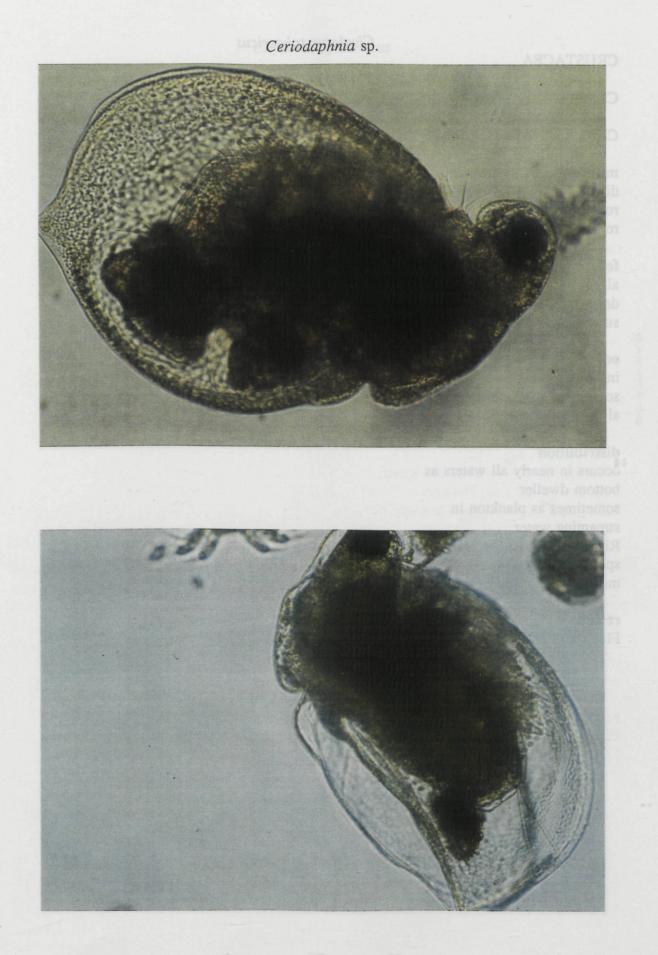
head without rostrum and a downward incision between head and body dimensions: 0.4-0.8 mm

feeding

filters especially bacteria and algae

ecology tolerant to salt sometimes in plankton

distribution


common in various waters. In rivers few in numbers with larger numbers found downstream Rhine: sporadic, especially along river banks

remarks

Three species are most common: C. pulchella, C. quadrangularis and C. reticulata identification is often difficult, when counting samples, mention only genus Ceriodaphnia sp.

references

Flößner (1972)

Chydorus sphaericus

CRUSTACEA

CLADOCERA

CHYDORINAE

morphology

dimensions: 0.3-0.5 mm round to oval rounded caudal edge on carapace

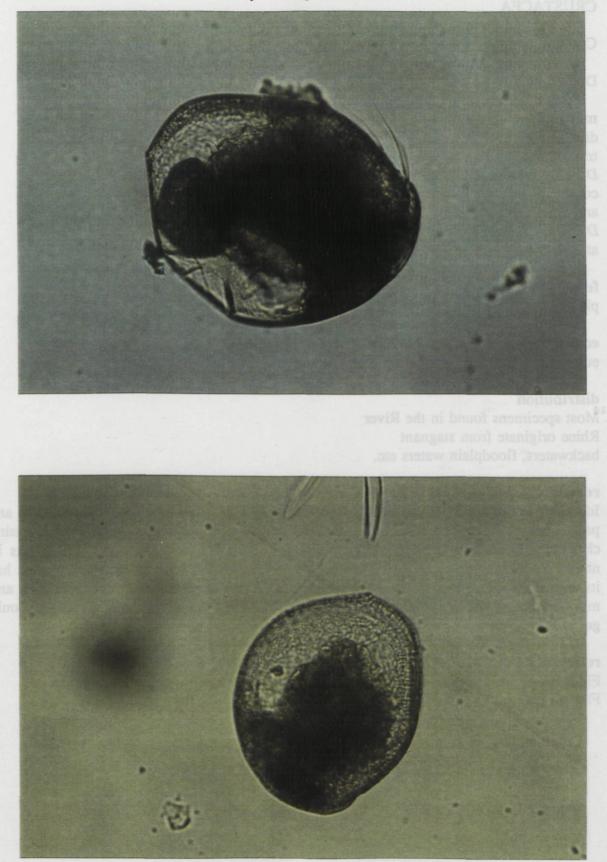
feeding

algae, bacteria detritus substrate filtration

ecology

in littoral between plants sometimes in plankton also in acid and brackish waters

distribution


occurs in nearly all waters as bottom dweller sometimes as plankton in streaming water Rhine: along shallow river banks with stagnant water sporadic in the mainstream more frequent downstream

references

Flößner (1972)

ŧ

Chydorus sphaericus

CLADOCERA

DAPHNIIDAE

morphology

dimensions: 1.0-3.0 mm transparent *D. longispina* group: no combs at endclaw, slender and more transparent *D. pulex* group: two combs at endclaw

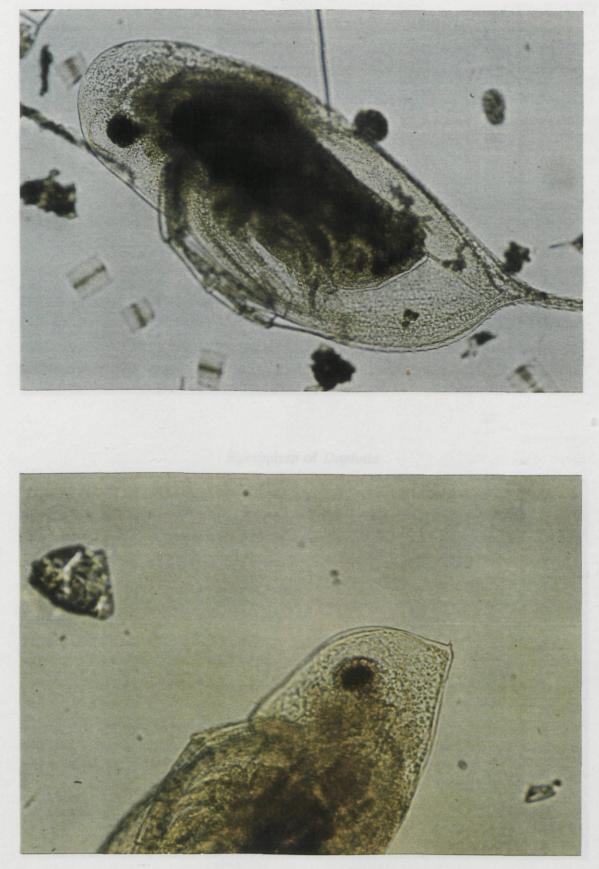
feeding plankton algae, detritus

ecology eutrophic

distribution

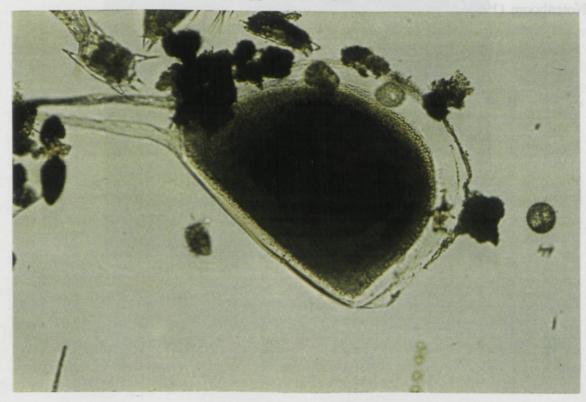
Most specimens found in the River Rhine originate from stagnant backwaters, floodplain waters etc.

remarks


Identification of the *D. longispina* group is difficult as a result of a wide hybridization and parthenogenetic reproduction. Therefore identification is performed using and assessing characteristics of one species together with those from another species. This results in names like *D. cucullata x hyalina* which is a hybride of *D. cucullata* etc. A lake often has its own *Daphnia* strain. In the lower course of a river several strains enter the area and may proceed to multiply locally as a population. When counting samples, mention only genus *Daphnia*.

references

Flößner (1972) Flößner and Kraus (1986) Daphnia sp.



Daphnia sp.

Ephippium of Daphnia

Diaphanosoma brachyurum

CRUSTACEA

CLADOCERA

SIDIDAE

morphology

dimensions: 3-4 mm colourless, transparent

feeding filters fine debris

ecology

in plankton originating from lakes

distribution

Netherlands: widespread Rhine: scarce, originating from stagnant floodplain waters

references

Flößner (1972) Notenboom (1981)

Diaphanosoma brachyurum

87

CLADOCERA

CHYDORINAE

morphology

more-or-less elongated striped carapace long acuminated rostrum dimensions: 0.4-0.65 mm ocellus nearly as large as compound eye

feeding

filters fine debris

ecology

resident in sediment usually in larger eutrophic waters on mud along the bank

distribution

in littoral of larger bodies of water not in flowing water Rhine: flushed in plankton from muddy banks

references

Flößner (1972) Notenboom (1981)

A

Disparalona rostrata

CLADOCERA

MACROTHRICIDAE

morphology

long and mobile antennulae ventral edge of carapace covered hair dimensions: 0.3-0.7 mm back lightly serrated

feeding

fine detritus

ecology resident in sediment

in small numbers

distribution

in the mud of ditches and shallow fens along the large rivers Rhine: where mud forms sediment sometimes flushed in river plankton from banks

references

Flößner (1972) Notenboom (1981)

Macrothrix laticornis

Eucyclops macruroides

CRUSTACEA

COPEPODA

CYCLOPIDAE

morphology

tail clearly contrasted from body slender furcal branches with "sawteeth"

feeding small organisms

ecology eutrophic in littoral but also pelagic

distribution common in various waters Rhine: sporadic

remarks

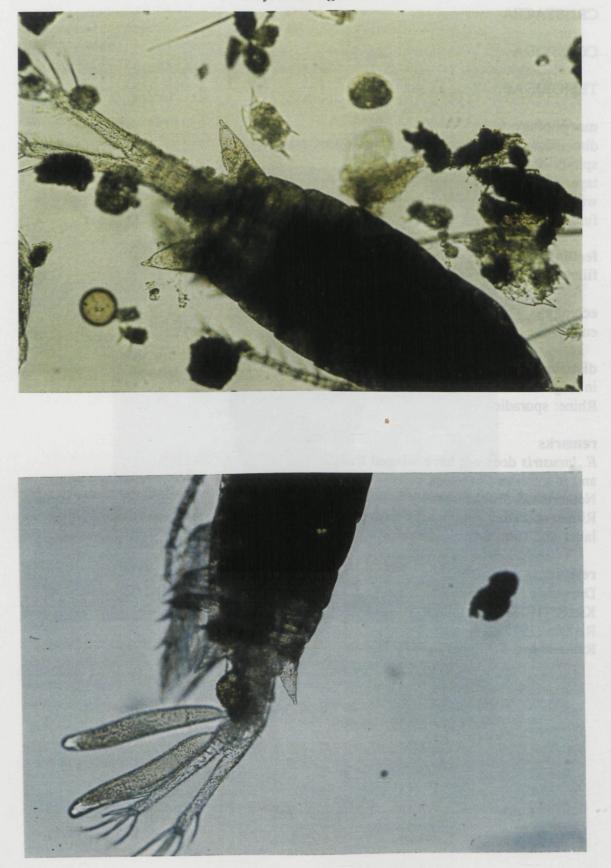
furcal with "sawteeth" on the outer edge shown on photo many similarities to *E. serrulatus*, which can occur accompanied by *E. macruroides*

references Dresscher (1976) Kiefer (1978) Redeke (1975) Remane and Schlieper (1971) Eucyclops macruroides

COPEPODA

TEMORIDAE

morphology


dimensions: 1.0-1.7 mm spindle-shaped body converging in the tail winged thorax furcal branches with spines

feeding filters fine material

ecology eutrophic especially in coastal waters euryhaline

distribution especially in coastal waters (river mouths)

references Drescher (1976) Kiefer (1978) Redeke (1975) Remane and Schlieper (1971) Eurytemora affinis

COPEPODA

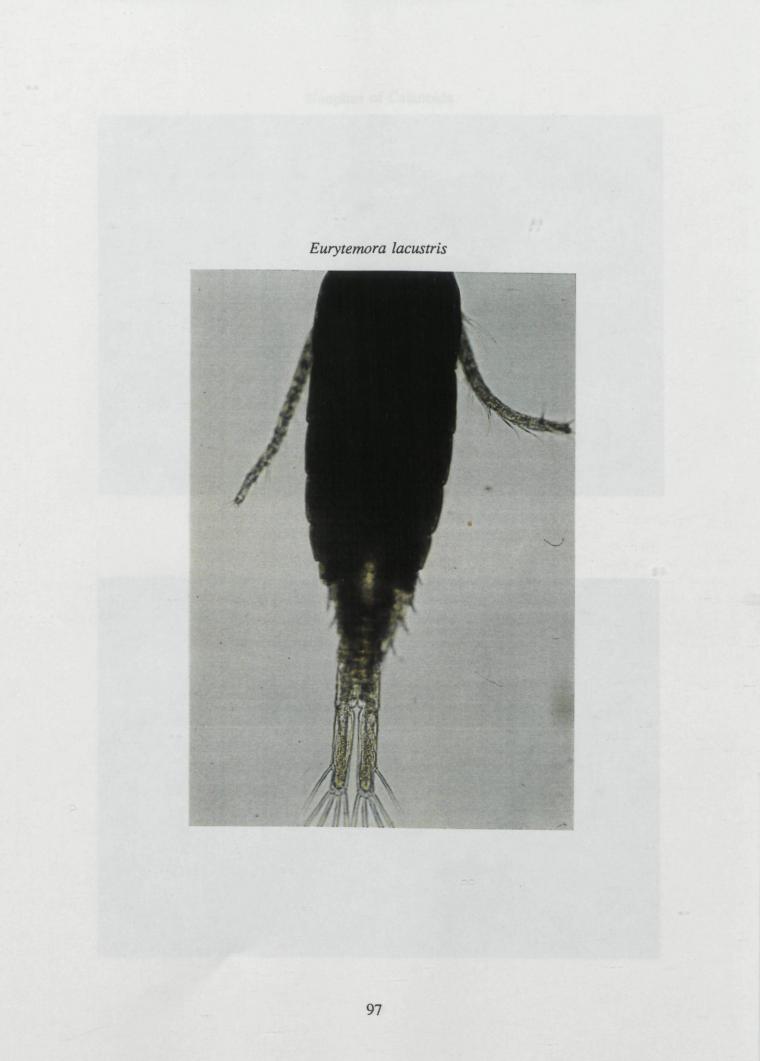
TEMORIDAE

morphology

dimensions: 1.0-1.7 mm spindle-shaped body tapering into tail winged thorax (see remarks below) furcal branches with spines

feeding filters fine debris

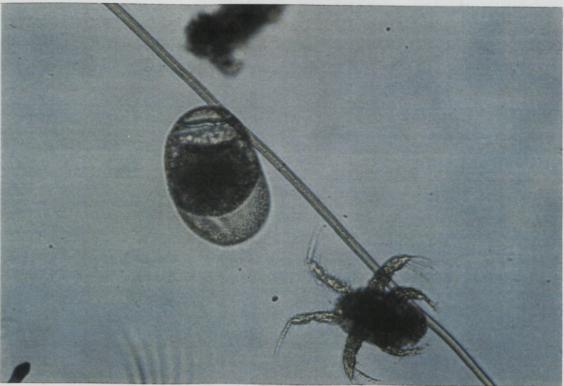
ecology eutrophic


distribution in large and small bodies of water Rhine: sporadic

remarks

E. lacustris does not have winged thorax and is a freshwater species Netherlands: Brielsemeer Rhine: sporadic; supplied from large lakes and former river courses

references


Dresscher (1976) Kiefer (1978) Redeke (1975) Remane and Schlieper (1971)

Nauplius of Calanoida

Nauplius of Cyclopoida

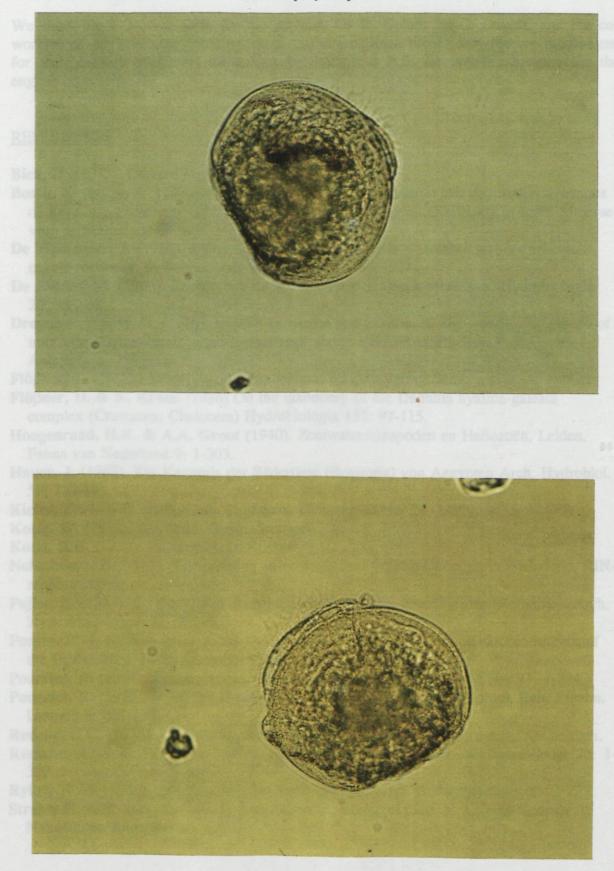
MOLLUSCA

MOLLUSCA

GENERAL

Mollusca belong to the group of macroinvertebrates. However, larvae of the Zebra mussel (Dreissena polymorpha) may be found in high densities in the river zooplankton.

Dreissena polymorpha


LAMELLIBRANCHIATA

DREISSENIDAE

The larvae of the Zebra mussel reside temporarily in plankton.

The animal swims with a ciliary whorl with which it also guides food to itself. After a number of weeks the (veliger) larva develops a shell (trochophora), and then sinks and attaches itself to the bottom.

Dreissena polymorpha larva

ACKNOWLEDGEMENTS

We thank Dr G.M. van Dijk for her support, Dr R. Gulati, Dr C. Davids, and the coworkers of the institutes participating in the international planktonmonitoring programme for their critical comments on an earlier draft, and R.E. de Wijs-Christensen for the english translation.

<u>REFERENCES</u>

Bick, H. (1972). Ciliated Protozoa. WHO. Geneva.

- Bosch, F. van de & J. Ringelberg (1985). Seasonal succession and population dynamics of *Keratella cochlearis* (EHBR) and *Kellicottia longispina* (Kellicott) in Lake Maarsseveen I (Netherlands). Arch. Hydrobiol. 103: 273-290.
- De Maeseneer, J. (1980). Morphologische en ekologische waarnemingen betreffende enkele rotatoriën in Belgie. Nat. Wet. Tijds. 61: 108-131.
- De Ridder, M. (1962). Recherches sur les Rotifères des eaux saumâtres. Hydrobiologia 20: 92-104.
- **Dresscher, Th. G. N.** (1976). INDEX of names and location of algae and some groups of micro-organisms found in the Netherlands water. KNAW. North-Hol. Publ Comm. Amsterdam
- Flößner, D. (1972). Branchiopoda, Branchiura. Fischer Verlag, Jena.
- Flöβner, D. & K. Kraus (1986) On the taxonomy of the Daphnia hyalina-galeata complex (Crustacea: Cladocera) Hydrobiologia 137: 97-115.
- Hoogenraad, H.R. & A.A. Groot (1940). Zoetwaterrhizopoden en Heliozoën, Leiden. Fauna van Nederland 9: 1-303.
- Hauer, J. (1963). Zur Kenntnis der Rädertiere (Rotatoria) von Aegypten Arch. Hydrobiol. 59: 162-195.
- Kiefer, Fr. (1978). Freilebende Copepoda. Binnengewässer 26: 1-380.
- Koste, W. (1978). Rotatoria, Berlin, Stuttgart.
- Kudo, R.R. (1954). Protozoologie. Illinois.
- Notenboom, E. (1981). Verspreiding en ecologie van de Branchiopoda in Nederland. RINrapport 81/14.
- Pejler, B. (1977). On the global distribution of the family Brachionidae (Rotatoria). Arch. Hydrobiol. Suppl. 53: 255-307.
- Pontin, R.M. (1978). A key to the freshwater planktonic and semi-planktonic rotifera of the British Isles. FBA, Scientific Publication no. 38.
- Pourriot, R. (1965). Recherches sur l'écologie des Rotifères. Vie et Milieu 21: 1-224.
- Pourriot, R. (1977). Food and Feeding habits of Rotifers. Arch. Hydrobiol. Beh. Ergebn. Limnol. 8: 243-260.
- Redeke, H.C. (1975). Hydrobiologie van Nederland. Backhuys en Meesters, Amsterdam.
- Remane, A. & C. Schlieper (1971). Biology of Brackish Water. Binnengewässer 25: 1-372.
- Rylov, W.M. (1935). Das Zooplankton der Binnengewässer. Binnengewässer 15: 1-272.
- Streble H. & D. Krauter (1988). Das Leben im Wassertropfen. 8. Auflage Kosmos Naturführer, Stuttgart.

PUBLICATIES EN RAPPORTEN VAN HET PROJECT "ECOLOGISCH HERSTEL RIN EN MAAS"

- 1 1988 Ecological rehabilitation of the river Rhine: a proposal for a Netherlands research programme. (RIZA, RIVM, RIVO-DLO)
- 2 1988 Fish and their environment in large european river ecosystems; the Dutch part of the river Rhine, W.G. Cazemier, Science de l'Eau 7, 95-114 (1988). (RIVO-DLO)
- 3 1988 High rates of denitrification in a storage reservoir fed with water of the river Rhine. W Admiraal and J.C. van der Vlugt, Arch. Hydrobiol. 113, 593-605 (1988). (RIVM)
- 4 1988 Impact of biological activity on detritus transported in the lower river Rhine: an excercise in ecosystem analysis. W. Admiraal en B. van Zanten, Freshwater Biology 20, 215-225 (1988). (RJVM)
- 5 1988 Continue signalering van toxische stoffen in het aquatische milieu met behulp van biologische bewakingssystemen - literatuurstudie. J. Botterweg, 31 pp., Den Haag (1988) (RIZA)
- 8861 9 Environmental stress in five aquatic ecosystems in the floodplain of the river Rhine. W Admiraal, E.D. de Ruyter van Steveninck en H.A.M. de Knujf. The Science of the Total Environment 78, 59-75 (1988). (RIVM)
- 7 1989 aromatic hydrocarbons. F. van der Valk, H. Pieters en R.C.C. Wegman. (RIVO-DLO) Dutch branches of the Rhine- mercury, organochlorine compounds and polycyclic Bioaccumulation in yellow eel (Anguilla anguilla) and perch (Perca fluviatilis) from the
- 6861 8 Becordeling en evaluatie van biologische alanneringssystemen op het meetstation Lobith Bio-alarm projekt fase I. J. Botterweg. (RIZA)
- 6861 6 Ecologisch herstel Rijn - beleid en onderzoek. Symposium- verslag 26 mei. E.C.L Maneijn (red.). (RIZA)
- 10 1989 Summary of results and conclusions from the first phase (1988-1989) of the Netherlands research programme "Ecological Rehabilitation Rhine". J.A.W. de Wit, W. Admiraal, C. van der Guchte and W.G. Cazemier. (RIZA)
- 11 1989 Literature survey into the possibility of restocking the River Rhine and its tributaries with Atlantic salmon (Salmo salar). S.J. de Groot. (RIVO-DLO)
- 12 1989 Literature survey into the possibility of restocking the River Rhine and its tributaries with
- 13 1989 Water- en oeverplanten in het zomerbed van de Nederlandse grote rivieten in 1988. Hun voorkomen en relatie met algemene fysische en chemische parameters. M.M.J. Maenen sea trout (Salmo trutta trutta). S.J. de Groot. (RIVO-DLO)
- 14 1989 Ecologisch herstel van de Rijnmakrofauna. B. van Dessel. (RIZA) (RIZA)
- 15 1989 Comparison of nitrification rates in three branches of the lower river Rhine
- 16 1990 Vegetatie in de uiterwaarden: de invloed van hydrologie, beheer en substraat. M.C.C. de Biogeochemistry 8, 135-151. W. Adminaal and YJ.H. Botermans. (RIVM)
- **17** -1990 Chemicals affecting the spawning migration of anadromous fish by causing avoidance Graaf, H.M. van de Steeg, L.A.C.J. Voesenek en C.W.P.M. Blom. (RIZA)
- Rhine. T.C. van Brummelen. (RIZA) responses or orientational disability, with special reference to concentrations in the River
- 18 1990 Biomonitoring met de larven van Chironomiden en kokerjuffers. F. Heinis en T. Krommentuijn. (RIZA)

- 19 1990 Changes in plankton communities in regulated reaches of the lower River Rhine. E.D. de Ruyter van Steveninck, W. Admiraal and B. van Zanten. (RIVM)
- 20 1990 Fixation of dissolved silicate and sedimentation of biogenic silicate in the lower River Rhine during diatom blooms. W. Admiraal, P. Breugem, D.M.L.H.A. Jacobs and E.D. de
- 21 1990 On the potential of basing an ecological typology of aquatic sediments on the nematode fauna: an example from the River Rhine. T. Bongers and J. van de Haar. (RIVM) Ruyter van Steveninck. (RIVM)
- 22 1990 Monitoring the toxicity of organic compounds dissolved in Rhine water. D. de Zwart and A.J. Folkens. (RIVM)
- 23 1990 The kinetics of the degradation of chloroform and benzene in unaerobic sediment from
- 24 1990 Phases in the development of riverine plankton; examples from the rivers Rhine and the River Rhine. P. van Beelen and F. van Keulen. (RIVM)
- 25 1990 Typologie en waardering van stagnante wateren langs de grote rivieren in Nederland, op Meuse. E.D. de Ruijter van Steveninck, B. van Zanten and W. Admiraal. (RIVM) grond van waterplanten, plankton en macrofauna, in relatie tot fysisch-chemische
- 26 1990 Ecologische ontwikkelingsrichting grote rivieren. Aanzet tot kwantitatieve uitwerking van ecologische doelstellingen voor de grote rivieren in Nederland. J.A.M. Vanhemelnijk en A.L.M. van Broekhoven. (RIZA) parameters, F.W.B, van den Brink. (RIZA)
- 27 1991 Monitoring macroinvertebrates in the River Rhine. Results of a study made in 1988 in the Dutch part. A. bij de Vaate and M. Greijdanus-Klaas. (RIZA)
- 1991 Voedselecologie van vissen in de Nederlandse Rijntakken. P.J.M. Bergers. (RIZA)
 1991 Natuurontwikkeling in uiterwaarden. Perspectieven voor het vergroten van rivierdynamiek en het ontwikkelen van ooibossen in de uiterwaarden van de Rijn. H. Duel. (RIZA)
- 30 1991 Phytoplankton in the river Rhine, 1989. Companison between Lobith and Maassluis. R. Bijkerk. (RIVM)
- 31 1991 Inventatisatie van en verbeteringsplanning voor de fysieke belemmeringen voor migratic van vis op de grote Nederlandse rivieren. A.W. de Haas. (RIZA) ۾
- 32 1991 Visintrekmogelijkheden in de Rijn in Nederland. J.A.M. Vanhemelnjk. (RIZA)
- 33 1991 Nevengeulen onderzoek naar de mogelijkheden, de consequenties en de te stellen eisen
- 34 1991 The Asiatic clam, Corbicula fluminea (Müller, 1774), a new immigrant in the River bij de sanleg van nevengeulen in de uiterwaarden. A.W. de Haas. (RIZA) Rhine. A. bij de Vaate (ed.). (RIZA)
- 35 1991 The effects of micropollutants on components of the Rhine ecosystem. Ed. J.A.W. de Wit et al., (RUZA)
- 36 1991 Aquatische makro-eventebraten in de Duursche Waarden 1989- 1991. A. Klink, E. Maneijn, J. Mulder en B. bij de Vaate. (RIZA)
- 37 1991 Sensitivity of bacterioplankton in the Rhine river to various toxicants measured by thymidine incorporation and activity of excenzymes. D.M.J. Tubbing and W. Admiraal (RIVM)

- 38 1992 Schatting van risico's van microverontreinigingen in de Rijn voor groepen organismen van de rivier-AMOEBE. J.W. Dogger, F. Balk, L.L. Bijlmakers en A.J. Hendriks (RIZA)
- 39 1992 Macrofauna in de diepe waterbodern van het noordelijk Deltabekken. H.C. Dudok van Heel, H. Smit en S.M. Wiersma. (RIZA)
- 1992 Ecological rehabilitation of the Rivers Rhine and Meuse: Netherlands research programme(1992-1995). Anonymous. (RIZA, RIVM, IBN-DLO, RIVO-DLO, SC-DLO).
- 41 1992 Projekt Ecologisch Herstel Maas. J. Botterweg en W. Silva (RIZA).
- 42 1992 Groei en overleving van Vlottende waterranonkel (Ranunculus Fluitans Lam.) in de Maas: transplantatie en semi-veldexperimenten. M. de la Haye (RIZA).
- 43 1992 Microverontreiniging in Blankvoorns en schelpdieren uit de Maas en Maasplassen, 1991
 B. van Hattern en S. Dirksen (RIZA).
- 44 1992 Vegetaties en het oevermilieu van de Grensmaas: I Veldopname en verwerking van gegevens. D. de Boer (RIZA).
- gegevens. D. de Boer (RIZA). 45 - 1992 Waterplanten en de Maasplassen: inventarisatie 1990 - 1991. B. Paffen, P. van Avesaath en W. Overmars (RIZA).
- 46 1992 De visstand in de Grensmaas. T. Vriese (RIZA).
- 47 1992 Methode voor de schatting van milleunisico's in de Gelderse uiterwaarden (RIZA).
- 48 1993 Macro-evenebraten op de bodem van het Hollandsch Diep Haringvliet. A. Klink en H.C. Dudok van Heel. (RIZA)
- 49 1993 De morfodynamiek van rivierduinen langs de Waal en de Lek. R.F.B. Isarin en H.J.A. Berendsen. (RIZA)
- 1993 Ecologisch herstel van de Rijn, van onderzoek naar beleid (1988-1992). Ecological rehabilitation of the River Rhine, The Netherlands summary report (1988-1992). G.M. van Dijk en E.C.L. Marteijn (eds.). (RIZA, RIVM, IBN-DLO, RIVO-DLO, SC-DLO)
- 51 1993 Documentation of zooplankton species in the Lower River Rhine. B. van Zanten and P. Leentvaar. (RIVM)

Aanvragen/requests:

(RIZA): Institute for Inland Water Management and Waste Water Treatment, P.O. Box 17, 8200 AA I-lystad The Netherlands

AA Lelystad, The Netherlands. (RIVM): National Institute for Public Health and Environmental Protection, P.O. Box 1, 3720 BA

Bilthoven, The Netherlands. (RIVO-DLO): Netherlands Institute for Fishery Investigations, P.O. Box 68, 1970 AB Ilmuiden. The Netherlands.

(IBN-DLO): Institute for Forestry and Nature Research, P.O. Box 9201, 6800 HB Amhem, The Netherlands.

(SC-DLO): The Winand Staring Centre for Integrated Land, Soil and Water Research, P.O. Box 125, 6700 AC Wageningen, The Netherlands.