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Latent heat flux (LE) is the key variable that provides a link between energy and water bud-
gets at the land surface. The conventional methods to estimateLE are based on point mea-
surements of energy balance components and are representative only for very local scales.
Recently a new class of techniques based on remotely sensed (RS) information has been
developed to computeLE at scales from a point to a continent. Despite their potential, es-
pecially for regional and global hydrological applications, “satellite-derived” LEsat usually
does not compare well with “in-situ measured”LEis. Both proxies of LE, however, contain
the information about the true value of this quantity. The difficulty in inferring this informa-
tion from data is due to different sources of uncertainty involved (e.g., measurement errors,
scale problems, inadequacies in physical models that transform satellite observations intoLE
estimates). In this work we seek to investigate the use of non-parametric Gaussian mixture
density models (GMDM’s) to describe the conditional uncertainty ofLEsat given LEis. This
approach does not require any a priori assumptions on the form of the conditional density
i.e. the algorithms we use in this study are completely data driven. An extra benefit from
having the conditionals described by GMDM’s is that they can further be applied to identify
the recently developed non-linear Kalman filter for ensemble data assimilation (seeAnderson
and Anderson, 1999;Torfs et al., 2002). This is the long run objective of this research.

Data and methodsLEis estimates used in this study come from seven Energy Balance Bowen Ra-
tio (EBBR) ARM/CART stations (E15, E4, E9, E20, E7, E25, E8) distributed across the Southern
Great Planes (SGP) region of the United States. These estimates are based on 30-min averaged
observations. TheLEsat estimates were obtained using SEBS (Surface Energy Balance System)
developed bySu(2002) and are based on instantaneous observations. The both types ofLE proxies
were obtained at 1 hourly resolution in the period of 1 July 2001–30 September 2001.

To describe the conditional uncertainty ofLEis given LEsat a joint probability density function
(pdf) f needs first to be fitted to bivariate sample{LEsat,k;LEis,k}K

k=1. In this work the focus is on
the use of GMDM’s (see e.g.McLachlan and Peel, 2000) which are defined as linear combinations
of Gaussian densities (see Figure 1.14), called components:

f (x) =
Nc

∑
n=1

wng(mn,Cn)(x) (1.1)

wherex is a vector of variables,Nc the number of components,g(mn,Cn) stands for the Gaussian
density with meanmn and covarianceCn. Herex = [LEsatLEis]T . Thewn’s are the component
weights and satisfywn ≥ 0 and∑wn = 1. Note that the conditional densityf (LEis|LEsat) that is
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Figure 1.14: 1D and 2D example of GMDM (in both cases as a linear combination of 3 compo-
nents).

calculated from (1.1) is also a GMDM. To fit (1.1) to the data the procedure ofFigueiredo and
Jain (2002) was applied.

First attempt To apply the above described methodology we derived the estimates ofLEsat by
forcing SEBS with the following instantaneous RS inputs: short wave radiation derived from a 50
km GOES product and 1/8 degree GOES surface temperature. The rest of the input variables that
were needed to run SEBS (seeSu, 2002) was either measured or taken from LDAS database. Next
we groupedLEsat andLEis data according to landuse. Our hypothesis here is that at regional scale
the bivariate dependency structure should be invariant within a particular landuse class. Moreover,
this step is intended to tackle the dimensionality reduction issue in non-linear ensemble Kalman
filters as described byAnderson and Anderson(1999) andTorfs et al.(2002). Figure 1.15 shows
the result of this operation. It can be seen in the figure that the dependencypatternbetweenLEis

andLEsat is not really visible. Thus, the data in Figure 1.15 would be of little use for data as-
similation purpose. The blurring effect might be due to undersampling which stems from the fact
that data availability of GOES temperature is greatly affected by the cloud cover and the algorithm
that is used to retrieve the surface temperature. Moreover, there is a spatial and temporal scaling
problem involved (we compare point values with 1/8 decimal degree values), there is a measure-
ment error inLEis values and there is an error inLEsat values. The latter might be a combination
of errors in RS inputs to SEBS and limitations of SEBS itself to reflect the complicated physical
situation in the near-surface layer of air. In what follows we address this issue by performing
Monte-Carlo sensitivity analysis of SEBS to two RS inputs that in our view greatly influence the
quality ofLEsat estimates: net radiation and surface temperature.
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Figure 1.15: Bivariate 1-hourlyLE data grouped according to landuse for the period 1 July 2001–
30 September 2001.LEsat estimates are derived from GOES products.

42



CAHMDA-II workshop Session 1 Wójcik

0 100 200 300 400 500 600 700

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

E15_E9  (cropland)

LE_is [W/m2]

co
nt

ro
l r

un
 L

E
_s

at
 [W

/m
2]

0 100 200 300 400 500 600 700

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

E15_E9 ( cropland )

LE_is [W/m2]

 s
ur

ro
ga

te
 L

E
_s

at
 [W

/m
2]

0 100 200 300 400 500 600 700

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

E7_E25_E20  (open shrubland)

LE_is [W/m2]

co
nt

ro
l r

un
 L

E
_s

at
 [W

/m
2]

0 100 200 300 400 500 600 700

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

E7_E25_E20 ( open shrubland )

LE_is [W/m2]

 s
ur

ro
ga

te
 L

E
_s

at
 [W

/m
2]

0 100 200 300 400 500 600 700

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

E8_E4  (grassland)

LE_is [W/m2]

co
nt

ro
l r

un
 L

E
_s

at
 [W

/m
2]

0 100 200 300 400 500 600 700

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

E8_E4 ( grassland )

LE_is [W/m2]

 s
ur

ro
ga

te
 L

E
_s

at
 [W

/m
2]

Figure 1.16: Bivariate 1-hourlyLE data grouped according to landuse for the period 1 July 2001–
30 September 2001. Upper panel: control run. Lower panel: surrogates.

Control run and surrogate RS dataAccordingly, SEBS was forced with net radiation calculated
from measured radiation components. Surface temperature was derived from outgoing long wave
radiation. The rest of the inputs remained the same as mentioned in the previous section. In this
way we obtained somewhat idealizedLEsat data (read: no RS error involved) which is reffered to
as the control run (see upper panel of Figure 1.16). Note the transparent non-Gaussian dependency
structure of bivariateLE data. Next, surrogateLEsat data was created by perturbing the control run
with percentual error in the net radiation (by comparing RS derived net radiation with measured
net radiation we estimated this error as 15%). Technically, each net radiation measurement in the
control run was treated as a mode of log-normal distribution and the 15% error as its coefficient of
variation. From each distribution 30 points were drawn at random and propagated through SEBS
to obtainLEsat surrogates. Those are shown in lower panel of Figure 1.16.

Then, bivariate GMDM’s were fitted to both control run and surrogate data from Figure 1.16
(for an example of fitted pdf’s see upper panel of Figure 1.17). To determine to which extent
the bivariate structure in control run was deteriorated due to sattelite error in net radiation we
compared the fitted pdf’s in terms of probabilistic similarity measure introduced byScott and
Szewczyk(2001):

sim( f1; f2) =
R

f1(x) f2(x)dx

(
R

f1(x)2dx
R

f2(x)2dx)
1
2

(1.2)

This measure is 0 if two pdf’s show no similarity and 1 if two pdf’s are just the same. For cropland,
open shrubland and grasslandsim( f1; f2) was 0.96, 0.96 and 0.98 respectively. This implies that
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Figure 1.17: An example of MDGM’s fitted to open shrublandLE data. Upper panel: joint pdf’s
f (LEis,LEsat) for control run and surrogates respectively (the similarity between the
two pdf’s is 0.96). Lower panel: conditional pdf’sf (LEis|LEsat) for control run and
surrogates. The solid line in X-Y plane represents conditional expectation and dashed
lines represent standard deviation bands.

the error in net radiation has negligible effect on probability structure in control run data.

Continuation The same analysis will be performed for the surface temperature. The results will
be shown during the poster session. In parallel we work on an uncertainty analysis ofLE mea-
surements from EBBR ARM/CART stations.
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