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Abstract 

Government policies to populate the Brazilian Legal Amazon induced an ongoing process of 

forest conversion since the 1960’s. This had big implications on climate change as enormous 

carbon stocks were released into the atmosphere. To understand the underlying forces driving 

deforestation and to assess anew carbon sequestration, knowledge of post-deforestation land 

use is crucial. The classification of land use requires multi-temporal remote sensing imagery 

to differentiate the seasonal characteristics of vegetation in target land use types. However, in 

the Amazon the availability of high resolution imagery is greatly constrained by persistent 

cloud cover, prohibiting accurate modelling of seasonal signal variations. To classify post-

deforestation land use, we tested a novel approach aggregating Landsat time series stacks into 

temporally targeted image composites (whole agricultural year, rain season, dry season). Each 

composite was supplemented with 40 bands summarizing the signal variation of land use 

classes among a wide range of spectral indices. In order to determine the effect of different 

cloud masking procedures on the final classification, two independent sets of composites were 

produced: one processed with a single-date cloud-mask (Fmask), and the other using a multi-

temporal cloud mask (Tmask). Target land use types cropland, pastures and secondary 

vegetation were classified employing a supervised machine learning approach (Random 

Forests) on temporal metrics of each composite. Better classification performance was 

achieved for image stacks that were produced with Tmask-derived cloud masks (overall 

accuracy = 88.8 %). While metrics derived from NBR time series were found to discriminate 

land use classes best, important predictors generally represented annual/seasonal mean and 

minimum values. Additionally, the classifier was tested among areas with different time lags 

since the last deforestation event. Although overall accuracy was lowest in areas with recent 

deforestation (84.1 %), results did not suggest a linear correlation between classification 

accuracy and the time lag to the last deforestation event. However, classification results may 

be strongly biased due to the strong prevalence of pastures among lag groups. Further, it was 

found that classification accuracy increased with additional observations, especially in the 

rain season. Accordingly, more accurate land use maps can be generated from data with a 

higher temporal frequency. The short revisit time and broad spectral coverage make Sentinel 

2 a promising data source to embed the method into current forest monitoring systems. 

Keywords: remote sensing, post-deforestation land use, image compositing, cloud masking, 

Random Forest, Landsat 
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1 Introduction 

1.1 Background 

In the 1960s and 1970s government policies and subsidies to develop, populate and integrate 

the Brazilian Legal Amazon (BLA) region into the rest of the country, induced extensive and 

predatory use of natural resources in that region (Araújo and Léna 2011). From that time 

onwards the rates of deforestation increased drastically, converting 17% of intact forests into 

other land uses (LU) (Azevedo-Ramos 2008).  

Concerns about the implications of deforestation in the Amazon have largely focused on the 

effects on biological diversity (Dirzo and Raven 2003), changes in regional climate and 

precipitation (Baidya Roy and Avissar 2002), and global climate change (Houghton et al. 

2000). Specifically the latter attracts strong international environmental interest as carbon 

emissions from deforestation and forest degradation are the second largest source of 

anthropogenic carbon emissions after the energy sector (IPCC 2007). About 60 to 80 billion 

tonnes of carbon are stored in the above-ground biomass of the Amazon forest, which exceeds 

global human-induced emissions in a decade (Azevedo-Ramos 2008). Due to deforestation 

about 200 million tonnes of these enormous carbon stocks are annually released to the 

atmosphere which accounts for 3% of global net carbon emissions (Numata et al. 2011).  

In the case of Brazil, 70% of the converted forests of the last decades have been replaced by 

cattle ranching (Soares-Filho et al. 2006). That process was indirectly facilitated through 

subsidies for cattle ranching, infrastructure investments, land tenure issues and low law 

enforcement (Azevedo-Ramos 2008). Nowadays, Brazil is the largest beef exporter world-

wide (FAO 2006). Due to the northward expansion of Brazilian cattle ranches, previously 

forested areas in the Amazon make up a big portion of the land (Morton et al. 2006). Despite 

the low productivity of the soil, clearing for livestock production is yet a profitable means to 

increase the value of the land (Davalos et al. 2014). Between 2005-2010, the deforestation 

rates rapidly decreased due to the expansion of protected forest areas and Brazilian land 

stewardship programmes (Nepstad et al. 2008). However, the rising international demand for 

biodiesel and soy beans recently boosted the expansion of large-scale agriculture in Brazil 

(Azevedo-Ramos 2008). This in turn caused a new rise of deforestation rates in the Amazon 

refuting the claims that cropland expansion does not go at the expense of tropical rainforest 
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(Morton et al. 2006). In order to adjust national policies to these developments, it is necessary 

to inform policy makers about the specific LU driving deforestation in the Amazon.  

The UN-program to Reduce Emissions from Deforestation and forest Degradation and 

enhancing forest carbon stocks (REDD+), which was introduced in 2007, poses a potential 

incentive to enhance Brazils monitoring efforts. In part, the program proposes compensation 

for the conservation or reestablishment of carbon stocks through appropriate forest 

management. For the REDD+ implementation on national level, changes in carbon stocks 

have to be adequately monitored as required for national Measuring Reporting and 

Verification (MRV) systems. In fact, there is already an implemented forest monitoring 

system, namely the PRODES project, providing estimates on deforestation rates and annual 

forest change maps since 1988. PRODES data allows to assess the scale of the forest 

conversion, and therefore, can be used to derive rough estimates for carbon emissions (IPCC 

2006). However, the product does not provide any information on the specific land use 

following a deforestation event, which is also required for national REDD+ strategies 

(UNFCCC 2011).  

Data of the immediate post-deforestation land use is not only relevant for the assessment of 

deforestation drivers (but also to assess anew sequestration of atmospheric carbon in the 

biomass of regrowth vegetation or in soils (Morton et al. 2006). Furthermore, the type and 

duration of land use has significant implications on the recovery of forests in case of 

abandonment (Guariguata and Ostertag 2001). 

1.2 Problem definition 

The Brazilian Institute of Geography and Statistics (IBGE) produces repeated agricultural 

census statistics, but without enough detail to determine land use at the spatial scale of 

deforestation patches. The Global Land Cover maps (2000, 2009, 2012) produced by the FAO 

are spatially explicit but the temporal coverage of these datasets is too sparse to identify 

immediate post-deforestation LU. The Moderate Resolution Imaging Spectroradiometer 

(MODIS) Land Cover (2001-2011) maps are produced annually but the coarse spatial 

resolution of 500m does not allow to capture heterogeneous LU dynamics which occur 

particularly in temporary smallholder agriculture systems in the eastern Amazon (Aguiar, 

Câmara and Escada 2007). The TerraClass project of the Brazilian National Institute for 

Space Research (INPE) explicitly mapped the follow-up land use of cleared areas in the 
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Amazon at a spatial resolution of 30m. However, the maps are only available for the years 

2008 and 2010 and the respective deforestation events date back to the year 2000. That 

implies that changes potentially occurred in the meantime and that TerraClass maps do not 

necessarily inform about immediate post-deforestation LU. Accordingly, there is currently a 

lack of repeated data demonstrating the follow-up LU after deforestation events in the 

Amazon region at adequate spatial detail.  

Optical satellite imagery has been widely employed for the classification of land cover (LC). 

Most commonly, classification approaches match the spectral information of a mapping unit 

with the spectral signature of known LC (Lu and Weng 2007). However, these approaches are 

designed to produce single-date LC maps and require new training areas for repeated 

production. Additionally, LU is defined more broad than LC integrating aspects beyond the 

biophysical properties of the land surface. Some of these aspects become apparent though 

when looking at the temporal behaviour of LC, such as annual bare soil and vegetation-

residue cycles in crop fields. In order to capture such generic cycles the seasonal signal 

variations can be modelled from multi-temporal Remote Sensing (RS) data with hyper-

temporal resolution. Many approaches model the seasonal variation of the RS signal with sine 

functions or wavelet filters and then classify LU/LC based on curve typology and additional 

statistical parameters (Conrad et al. 2011, Petitjean, Inglada and Gancarski 2012, Viovy 

2000). In order to distinguish inter-annual variations from noise, RS time series (TS) with a 

high temporal frequency are required. Recent changes in the data policy of the U.S. 

Geological Survey (USGS) and advancements in pre-processing algorithms allow to harness 

the full Landsat archive, which greatly enhances the availability of high-resolution imagery 

(30m) (Wulder et al. 2012).  

(Zhu and Woodcock 2014b) developed an approach that combines both inter-annual Landsat 

observations for the continuous classification of LULC types, and intra-annual observations 

for the detection of LULC changes. In theory, such an approach may accomplish both 

detection of deforestation and classification of follow-up LULC. However, in the tropics the 

consistency of Landsat TS is greatly constrained by persistent cloud cover, reducing the 

number of valid observations to a fractional amount of the original data (Herold 2009). 

Therefore, the temporal density of Landsat observations is too scarce to model seasonal 

variation as sine curves in the tropics. Several studies integrated radar data as supplementary 

information which is generally not impaired by cloud cover (Kuplich 2006, Lu, Batistella and 



11 

 

Moran 2007). However the optical monitoring systems of the Brazilian Amazon could not be 

complemented by radar yet, and the acquisition of dense radar TS remains very costly. For the 

characterization of post-deforestation LULC in the tropics novel approaches are required to 

condense the information of the optical RS TS in such a way, that they capture the relevant 

temporal characteristics of individual LU/LC types. (Griffiths et al. 2013) developed a method 

for the classification of agricultural LU by compositing cloud-free images from all available 

observations of Landsat images at annual key stages of crop development and quantifying the 

temporal patters among reflectance bands and vegetation indices (VI). However, complete 

cloud-free composites still require a sufficient amount of cloud-free imagery, which is hardly 

available in tropical regions.  

To gain enough reliable RS observations for the characterization of seasonal and annual 

patterns accurate cloud masking is required. Falsely unmasked clouds and cloud shadows 

influence optical sensors to a degree that the LU/LC of a pixel can be unidentifiable (Zhu and 

Woodcock 2012). Landsat land surface reflectance data provided by US Geological Survey 

(USGS) is already supplemented with a cloud and cloud shadow mask, namely the FMASK 

band. For every scene the FMASK band has been generated by a single-date algorithm 

developed by Zhu & Woodcock (2012). However, due to the limited spectral coverage of 

Landsat bands the threshold-based FMASK algorithm fails to detect identify all clouds, 

especially when different types of clouds prevail in one image (Zhu and Woodcock 2014a). 

Multi-temporal cloud detection algorithms often perform better because the magnitude of 

changes in successive images provides another indicator for the occurrence of clouds 

(Goodwin et al. 2013). On the other hand, masking pixels which underwent sudden changes in 

the spectral signature bears the possibility of masking out LC changes. Zhu & Woodcock 

(2014) developed a cloud detection methodology which excludes LC changes from cloud 

detection, namely the TMASK algorithm. The authors claim that the algorithm generates 

better cloud/cloud shadow mask than Fmask. However, Tmask was developed for Landsat TS 

with high data density. To our knowledge no research has been published where this 

algorithm has been tested in tropical regions with lower density of available imagery. 

Therefore, it is uncertain which cloud masking method is most beneficial for the spectro-

temporal classification of post-deforestation LU.  
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2 Objectives and research questions 

The main objective of this study was to develop an automatic method to classify LULC after 

deforestation events in the tropics using optical RS TS. In this context, it was aimed to assess 

different methodological choices (cloud masking approach and spectral indices) to describe 

the temporal patterns of multiple spectral indices for LULC classification. Further, we 

evaluated the performance of the developed method for classifying LU for pixels with 

different time lags to the last deforestation event. These objectives translate into the following 

research questions: 

1. Does the TMASK cloud masking algorithm yield a better classification of low 

density TS than TS processed with FMASK? 

2. Which spectral indices and temporal metrics bear the most relevant information for 

predicting LULC? 

3. Is the developed classification approach affected by the time lag to deforestation 

events? 
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3 Study area 

The LULC classification method was tested in the eastern part of Paragominas (Para, Brazil, 

Lat. 2.99° S, Long. 47.36° W, 200m above sea level) located in the south-eastern delta of the 

Amazon. The transitional climate of the region is characterized by periods of rainfall 

(December-May) and drought (July-January). The choice for this particular test site was 

legitimated by the higher availability of cloud-free RS data during the dry season compared to 

the central and western Amazon region which is denoted by higher persistency of clouds. 

In the past decades the Paragominas was marked by rapid LULC changes. During the 1960’s 

the Brazilian government encouraged cattle production in Amazonia through low-interest 

loans and other financial incentives (Hecht, Norgaard and Possio 1988). In the following 

decades Paragominas became one of the centers of the emerging cattle and timber industry 

(Verissimo et al. 1992, Nepstad 1989). However, in the course of the years many pastures 

degraded leaving behind a complex mosaic of shrubland, secondary forests and extensive 

pastures (Serrao and Toledo 1989). Nowadays, favourable market conditions are driving 

large-scale landholders to shift towards intensive soy, corn and rice production (Balazs 2001, 

Morton et al. 2006). Simultaneously, due to competitive disadvantages and the increasing 

unavailability of profitable land small landowners sell or abandon their land (Balazs 2001). 

This socio-economic framework determines a highly dynamic LU mosaic, making this area a 

suitable pilot site to set up and test the proposed LU classification method.  

 

Figure 1: Location of study area, Paragominas (Para, Brazil) 
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4 Materials 

4.1 Data 

4.1.1 Land use reference data 

As part of the TerraClass project, the Brazilian National Institute for Space Research (INPE) 

produced two LU maps for the Brazilian Legal Amazon (BLA) for the years 2008 and 2010. 

The target polygons in these maps were derived from PRODES data and indicate only the LU 

in previously deforested areas. The actual classification approach is based on a mix of 

interpreting spectral responses, texture and history of the area with the aid of grey image 

slicing. Landsat imagery was employed as input data. Consequently, the maps have a spatial 

resolution of 30m, which makes TerraClass a suitable reference for LULC analysis with 

Landsat. TerraClass maps were not generated automatically, employing high manual efforts 

and expert knowledge for visual interpretation of image composites. Assuming a high 

reliability of this approach, the accuracy of TerraClass maps was not directly assessed. 

Producers claim that the data is an accurate representation of the real LULC, which was 

verified with helicopter flights (Almeida et al. 2009). 

TerraClass distinguishes 9 different LU classes which are listed in Table 1. Not all LU types 

are present in the study area. Water bodies were not taken into account as they were masked 

from Landsat images during the pre-processing procedure. Furthermore, reforestation was not 

considered, because the class was only incorporated in the TerraClass map 2010. The 

mapping requirements are further clarified in section 5.2. Urban LU was excluded from the 

analysis as well because too few pixels of this class were present in the study area for an 

elaborate investigation. Four pasture classes distinguished by TerraClass were aggregated into 

one pasture class due to the strong prevalence of “intensive pastures” among all pastures (98.5 

%).  
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Table 1: Distribution of LU classes in the study area 

LU type Mean patch size (ha) Total area (ha) 
Share of total 

area (%) 

Agriculture 166.18 33236.06 14.8 

Pasture (aggregated) 43.38 100556.21 44.4 

Intensive pasture 55.72 99069.34 43.9 

Extensive pasture 1.73 410.45 0.1 

Degraded pasture 3.55 1076.41 0.4 

Urban 81.75 2289.13 1.0 

Secondary vegetation 8.06 89919.51 39.8 

The final LU classes which were examined in this study are described below. 

4.1.1.1 Cropland 

Biophysically, this LU type is generally characterized by bare soil in the beginning of the 

season, followed by a rapid increase in vegetation growth during the first half of the 

agricultural year. During or after harvesting the vegetation is suddenly removed, sometimes 

followed by a second cycle of cultivation within one year. In the case of double cropping 

cycles key stages in the crop development may be temporally shifted. TerraClass merges 

areas with single and double cropping cycles in one class. 

From a RS perspective, cropland is characterized by high annual signal variation of vegetation 

indices. Furthermore, the presence of bare soil is readily identifiable in the TS of most 

spectral indices and marks a major distinctive feature to other LU types with constant 

vegetative cover. 

 

Figure 2: Aerial photographs of cropland (source: Almeida, 2009) 

https://dict.leo.org/ende/index_de.html#/search=readily&searchLoc=0&resultOrder=basic&multiwordShowSingle=on
https://dict.leo.org/ende/index_de.html#/search=identifiable&searchLoc=0&resultOrder=basic&multiwordShowSingle=on
https://dict.leo.org/ende/index_de.html#/search=distinctive&searchLoc=0&resultOrder=basic&multiwordShowSingle=on
https://dict.leo.org/ende/index_de.html#/search=feature&searchLoc=0&resultOrder=basic&multiwordShowSingle=on
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4.1.1.2 Pastures 

TerraClass distinguishes 3 different pasture classes in the study area: intensive, extensive, and 

degraded pasture. The types vary especially in terms of woody vegetation cover. Depending 

on the grazing intensity (i.e. stock density per area) vegetative ground cover ranges from short 

grass to early stages of scrub encroachment. Furthermore, some pasture lands are burned or 

fertilized for temporary new growth; others are abandoned and eventually turn into either 

forest regrowth or unproductive bush fallow (Da Veiga et al. 2003).Therefore, a broader range 

of spectral and temporal characteristics might be observed for pastures.  

In contrast to cropland, annual vegetation changes of pastures come about gradually, implying 

a lower variability of the RS signal especially when looking at a smaller time frame (e.g. 

single season). Pastures might also display patches of bare soil. However, this feature is only 

present in the class “degraded pasture”(Almeida et al. 2009), which hardly exist in the study 

area (see Table 1). 

 

Figure 3: Examples of pastures (source: Almeida, 2009) 

4.1.1.3 Secondary vegetation 

Secondary vegetation refers to spontaneous forest regrowth as a consequence of land 

abandonment or longer cycles of timber production (Almeida et al. 2009). This LU class 

features an ongoing process of biomass increase and ranges from early successional stages to 

secondary forest (ibid.).  

Due to the relatively high above-ground biomass levels, secondary vegetation is characterized 

by consistently high values of vegetation indices. However, designed to respond to 

photosynthetic activity, most vegetation indices already saturate at low biomass levels. This 
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potentially hampers the differentiation to other LU types (Birdsey et al. 2013). RS literature 

suggests that spectral indices sensitive to moisture are more suitable to distinguish vegetation 

with high biomass levels (Xiao et al. 2002, Fiorella and Ripple 1993, Jin and Sader 2005). 

Therefore, it is assumed that secondary vegetation shows a more unique response in the 

shortwave-infrared (SWIR) band and related spectral indices (Frazier et al. 2014, He et al. 

2011).  

 

Figure 4: Aerial photograph of secondary vegetation (source: Almeida, 2009) 

4.1.2 Data on deforestation years 

As part of the Amazon Deforestation Monitoring Project (PRODES), digital deforestation 

maps were generated annually since 2000 at a resolution of 90m (Espaciais 2002). The 

PRODES methodology employs spectral mixing algorithms, image segmentation and 

unsupervised classification for the identification of soil, vegetation and shade fractions from 

which change maps are derived (Shimabukuro et al. 1998). 

This data complements LU data derived from TerraClass with the information of when a 

particular LU patch was deforested. Due to persistent cloud cover PRODES does not identify 

the exact year of deforestation in all areas. In these cases the maps do not indicate a single 

year of deforestation but rather a range of possible years (Câmara, de Morisson Valeriano and 

Vianei Soares 2006). This was partly resolved by reclassifying PRODES deforestation years 

into two-year intervals incorporating only pixels with certain years of deforestation and with 

an uncertainty of one year. The latter were only included in case the range of possible 

deforestation years falls exactly in the pre-defined two-year intervals. All pixels with an 

uncertainty of more than a year were excluded from the analysis. In order to match the 

resolution and origin of Landsat and TerraClass data, PRODES maps (originally 90m 

resolution) were resampled to 30m.  
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4.1.3 Remote sensing data 

Optical RS data for this study was comprised of Landsat images from the TM (Thematic 

Mapper) and ETM+ (Enhanced Thematic Mapper) sensors, provided by the USGS, for a 

period of observation between 01.07.2009 – 01.07.2010. The test site was demarked in such a 

way that it falls completely within the extent of one WRS (Worldwide Reference System) 

location (path=222; row=62). Although this area is covered completely by one WRS tile it is 

also covered partially by the neighboring tiles. Therefore, in order to maximize the amount of 

RS observations, all available images from three tiles were downloaded (path/row=222/62; 

path/row=222/63, and path/row=223/62). Landsat data was downloaded via the ESPA 

ordering interface (https://espa.cr.usgs.gov). An overview of all imagery used in this study is 

given in Annex 1. 

Due to a slight shift of satellite orbits, the coverage of Landsat images representing the same 

WRS tile is slightly variable (Huang et al. 2009a). That means observations on the edge of an 

image do not necessarily lie within the extent of another image with the same WRS location. 

In order to preserve data for processing, images were expanded to one common area mask 

encompassing all available observations. Subsequently, the expanded images were clipped to 

the extent of the study area. This procedure was conducted separately for images within the 

same WRS location or Landsat tile, producing three sets of images with matching 

geographical extent. 

At the moment of acquisition the images were already radiometrically and atmospherically 

corrected by the automated modules in the Landsat Ecosystem Disturbance Adaptive 

Processing System (LEDAPS) (Masek et al. 2006b). Thus the employed RS data contains 

scenes processed at the levels L1T (full Terrain Correction), or in case of high cloud cover or 

absence of a digital elevation model, L1G (Systematic Correction) (Roy et al. 2010). Further 

pre-processing steps implemented in this study are described in section 5.1. 

The choice for Landsat imagery was mainly based on its free availability and the relatively 

high spatial resolution of 30m which allows for the identification of fine-grain LU mosaics 

such as in smallholder agriculture. Furthermore, Landsat acquisitions cover the whole globe 

and have the longest historical record of all RS systems (Harris et al. 2012). Also the spectral 

characteristics of Landsat allow to differentiate various LU types (Griffiths et al. 2013, Yang 

and Lo 2002).  



19 

 

4.2 Software 

Most computations in this thesis were performed in the R programming environment (R Core 

Development Team 2015). For the processing of RS data mainly R-packages “BfastSpatial”, 

“zoo” and “raster” were used. The Tmask algorithm was implemented using stand-alone 

software provided via https://code.google.com/p/tmask-algorithm/ (Zhu and Woodcock 

2014a). LU classification and statistical analysis of results were performed using the R-

packages “randomForest” and “party”. Graphical outputs were mainly generated using the 

“ggplot2” packages and ArcMap software (v.10.2).   

https://code.google.com/p/tmask-algorithm/
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5 Methodology 

This chapter describes the conducted processing and analysis steps to reach the defined thesis 

objective. The main procedure is divided into three steps which are illustrated in Figure 5. 

Pre-processing (section 5.1) addresses the preparation of Landsat data for the pixel-wise 

computation of annual and seasonal summary metrics. This step produces two sets of TSS 

representing different spectral indices, which were computed with different cloud masking 

procedures. Each set was then segmented into annual and seasonal image stacks, for which 

pixel-based summary statistics were computed (section 5.2). These metrics were used as input 

variables for a Random Forest (RF) classification model (section 5.3). This classifier was 

applied to generate two post-deforestation LU maps, one from data processed with Fmask, 

and one from Tmask data. 

 

Figure 5: Main processing steps and resulting outputs 

5.1 Landsat pre-processing 

The general chain of implemented pre-processing steps is presented in Figure 6. Geometric 

correction, extraction of spectral bands and derivation of spectral indices was applied 

generically to all Landsat scenes. Subsequently, groups of partially overlapping images were 

stacked, and purged of clouds and cloud shadows. The procedures are explained in more 

detail in the following subsections. 
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Figure 6: Workflow for Landsat pre-processing and creation of Time Series Stacks  
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5.1.1 Geometric correction 

The geometric registration accuracy of all Landsat images was provided by the USGS with 

the metadata as the Root Mean Square Error (RMSE) of Ground Control Points (GCP) in x 

and y direction. High geometric accuracy is particularly important for the temporal analysis of 

RS imagery, as pixels representing exactly the same geolocation need to be stacked among 

different images. Already a shift of one pixel (~30m in x-y direction) could insert a non-

representative observation into the TS of the pixel (Townshend et al. 1992). Therefore, all 

imagery with a geometric RMSE above a threshold of half a pixel (15m) was excluded from 

further the analysis. In particular, images at processing level L1G were excluded, as they do 

not guarantee sub-pixel accuracies (Lee et al. 2004). 

For many other images no geometric accuracy information of the GCP model was available. 

These scenes suffer excessive cloud cover which precluded the possibility to detect the land 

GCP by the geometric correction algorithm used by the USGS (Gonzalez de Tanago Menaca 

2012). Also these scenes were excluded. 

5.1.2 Extraction of spectral indices 

From the raw data a multitude of vegetation indices (VI), wetness indices (WI), burn indices 

(BI) and Tasselled Cap components (TCc) were extracted. The respective indices including 

the equations from which they were derived are listed in Table 2. 

NDVI, EVI and NDMI were already provided as ready-to-use imagery with the downloaded 

data (Masek et al. 2006a). Exploiting the difference between the red and NIR band, NDVI and 

EVI are both sensitive to photosynthetic activity of vegetation (Huete et al. 1997, Xu et al. 

2011). For that reason they are frequently used for the classification of LULC (Hansen et al. 

2000). However, NDVI and EVI both tend to saturate at moderate biomass levels (Huete et al. 

2002). Therefore, they are rather suitable for the distinction of vegetation types with low-

biomass and for the detection of bare soil, such as in agricultural LU (Wardlow, Egbert and 

Kastens 2007). In contrast, NDMI incorporates the difference between Landsat SWIR and 

NIR bands, and is therefore more sensitive to moisture content rather than photosynthetic 

activity. That bears the advantage that LU classes with high biomass levels, such as different 

stages of forest succession (in this thesis defined as secondary vegetation), can be better 

discriminated (Fiorella and Ripple 1993). 
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To support the differentiation of secondary vegetation, a number of alternative spectral 

indices, commonly used in forest monitoring, were included. Normalized Burn Ratios (NBR 

and NBR2) were also provided with the downloaded data. Additionally, we performed a 

Tasseled Cap Transformations to merge information of all Landsat bands into three indices: 

Tasseled Cap Greenness (TCG), Tasseled Cap Brightness (TCB), and Tasseled Cap Wetness 

(TCW). For the transformation the coefficients defined for surface reflectance data (Crist 

1985) were used.  

Table 2: Vegetation indices and Tasseled Cap components 

Index Equation Source  

Vegetation indices 

NDVI =
NIR −  red

NIR +  red
 

(Tucker 1979) 

EVI = G ∗
NIR −  red

NIR + 𝐶1 ∗ red − 𝐶2 ∗ blue + L
 

(Huete, Justice 

and Liu 1994) 

Wetness indices 

NDMI =
NIR −  SWIR1

NIR +  SWIR1
 

(Horler and 

Ahern 1986) 

Burn indices 

NBR =
NIR −  SWIR2

NIR +  SWIR2
 

(Key and 

Benson 1999) 

NBR2 =
SWIR1 −  SWIR2

SWIR1 +  SWIR2
 

unknown 

Tasselled Cap components 

TCG 
= −0.1603 ∗ 𝑏𝑙𝑢𝑒 − 0.2819 ∗ 𝑔𝑟𝑒𝑒𝑛 − 0.4934 ∗ 𝑟𝑒𝑑 +  0.7940 ∗  𝑁𝐼𝑅 

− 0.0002 ∗ 𝑆𝑊𝐼𝑅1 − 0.1446 ∗ 𝑆𝑊𝐼𝑅2 

(Crist 1985) 

TCB 
= 0.2043 ∗ 𝑏𝑙𝑢𝑒 +  0.4158 ∗ 𝑔𝑟𝑒𝑒𝑛 +  0.5524 ∗ 𝑟𝑒𝑑 +  0.5741 ∗  𝑁𝐼𝑅

+ 0.3124 ∗ 𝑆𝑊𝐼𝑅1 + 0.2303 ∗ 𝑆𝑊𝐼𝑅2 

(Crist 1985) 

TCW 
= 0.0315 ∗ 𝑏𝑙𝑢𝑒 +  0.2021 ∗ 𝑔𝑟𝑒𝑒𝑛 +  0.3102 ∗ 𝑟𝑒𝑑 +  0.1594 ∗  𝑁𝐼𝑅 

− 0.6806 ∗ 𝑆𝑊𝐼𝑅1 − 0.6109 ∗ 𝑆𝑊𝐼𝑅2 

(Crist 1985) 
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5.1.3 Cloud masking 

Downloaded Landsat data was already provided with the Fmask band, which can be used to 

mask out clouds and cloud shadows imagery (Zhu and Woodcock 2012). The Fmask band 

originates from a single-date algorithm which employs a probability mask and a minimum 

threshold for cloud detection. Furthermore, the outside edges of identified clouds are dilated 

by 3 pixels. Therefore, the Fmask product is provided at a resolution of 90m. 

Additionally, a second cloud mask was produced, using the Tmask algorithm. Tmask benefits 

from the initial cloud masking provided by Fmask and additional multi-temporal information 

of the top-of-atmosphere (TOA) reflectance bands 2,4 and 5. Tmask employs a pixel-based 

TS model consisting of sines and cosines to estimate TOA reflectance in the respective bands. 

If an observation, initially identified as “clear” by Fmask, deviates more than 0.04 (or 400, if 

DN values are used) from the predicted/modelled TOA reflectance values the pixel is masked 

as cloud or cloud shadow. The TS model also anticipates LC change on a pixel, preventing it 

to be falsely masked. Tmask is capable of detecting thin cloud edges and their shadows, and 

therefore, was implemented without dilation. Accordingly, Tmask produced a pixel level 

cloud mask with a spatial resolution of 30m (Zhu and Woodcock). The algorithm was 

implemented separately for each overlap zone, following the instructions provided via 

https://code.google.com/p/tmask-algorithm/ (Zhu and Woodcock 2014a).  

Both downloaded Fmask and computed Tmask layers were used to mask out clouds and cloud 

shadows from raw Landsat images, producing two image stacks for each overlap zone. 

Additionally, the cloud masks for each image were further refined by filtering out small 

clumps of unmasked observations that were surrounded by masked pixels. The maximum area 

threshold for these unmasked “islands” to be deleted was 0.45 ha, equivalent to five Landsat 

pixels (see Figure 7).  

 

Figure 7: Implementation of area sieve 

https://code.google.com/p/tmask-algorithm/
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5.1.4 Outlier removal 

A number of factors introduce noise into TS derived from Landsat imagery, such as sun angle, 

sensor drift, atmospheric condition, and geometric misregistration (Kennedy, Yang and Cohen 

2010) Depending on the nature of noise and statistical descriptors of the TS, outliers may 

have significant influence on the LU classification result. Due to the low density of RS 

observations in the study area multi-temporal outlier detection or smoothing algorithms (e.g. 

sine or wavelet filtering) were not employed, in order to avoid that temporally isolated 

observations would be falsely identified as invalid. Therefore, an alternative approach was 

implemented in this study.  

Histograms were computed individually for each spectral index from a single non-cloudy 

Landsat scene. From these histograms the probability distribution was estimated using non-

parametric kernel densities (see Annex 2). Essentially, kernel density plots resemble a 

smoothed histogram from which global minimum and maximum thresholds for acceptable 

observations were determined. These thresholds were set visually, identifying only 

observations with extreme deviation from all other values, regardless of the apparent LC. 

Admittedly, this method only addresses few observations, allowing a high level of noise to 

remain in individual pixel TS. However, that enables us to compare the performance of 

Fmask and Tmask, because a number of outliers (e.g. due to cloud shadows) originate from 

deficient cloud masking. 

5.1.5 Construction of Time Series Stacks (TSS) 

Sequences of Landsat images addressing spectral bands or indices can be bundled into ready-

to-use Time Series Stacks (TSS). TSS are acquired at nominal temporal intervals for a 

specific WRS location and enable the pixel-wise computation of any type of TS analysis 

(Huang et al. 2009b). With the implementation of LEDAPS processing prior to the 

publication of downloadable data, the production of TSS including data of Landsat TM and 

ETM+ sensors became a fairly simple procedure.  

However, one important drawback of using Landsat data is the low temporal resolution. 

Despite the revisit time of 16 days, persistent cloud coverage limits the availability of valid 

surface reflectance data to a fractional amount. Therefore, only few, often temporally isolated, 

observations are recorded for the rain season. Moreover, the malfunction of the Scan Line 
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Corrector (SLC) in 2003 causes systematic data gaps in all Landsat 7 images which were used 

in this study.  

In order to enhance the data availability for the reference period, Landsat imagery of 

neighbouring WRS tiles overlapping with the study area was included. Four overlap zones 

were defined, each with a unique set of overlapping images (see Figure 8). The extent of each 

zone was outlined manually. Minima/maxima of x and y coordinates of zone extents were 

determined visually and are documented in Annex 3. Overlapping images were then cropped 

(and/or extended) to the extent of each overlap zone and stacked producing 32 TSS (8 spectral 

indices * 4 zones). Through this procedure many additional observations were gained (see 

Figure 9). The zone defined as “NE” displays the amount of data that would be available 

without the inclusion of neighbouring tiles.  

 

Figure 8: Overlap zones of Landsat images from different WRS tiles 
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Figure 9: Available Landsat images for zone-specific TSS 

5.2 Temporal segmentation and statistical summary metrics 

In this study, TSS of spectral indices were temporally segmented, producing three TSS 

representing the whole agricultural year, rain and dry season (see Figure 10). The agricultural 

year was temporally bounded by the beginning and the end of the cropping cycle, derived 

from annual minima of MODIS EVI2 TS. The onset of rain- and dry season was identified 

from TRMM (Tropical Rainfall Measuring Mission) TS. Both EVI2 and TRMM data were 

obtained using the TS visualization tool provided by INPE 

(http://www.dsr.inpe.br/laf/series/en/map.php). The segmented TSS can be conceptualized as 

extended snapshots which complement each other by specifying particular seasonal or annual 

characteristics of spectral indices.  

For the purpose of LU classification simple statistical metrics were used to characterize the 

spectral–temporal variability of target LU within each segment (see Figure 10). Altogether 

120 parameters were extracted (8 indices * 5 variables * 3 segments). The selection criteria 

for individual metrics are based on their representativeness of seasonal and annual LC 

characteristics. Seasonal minimum and maximum values were used mainly to identify bare 

http://www.dsr.inpe.br/laf/series/en/map.php
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soil (e.g. in cropland) and high biomass levels (secondary vegetation) (Hansen et al. 2011). 

Additionally, standard deviation and amplitude were extracted to characterize the variation of 

the vegetative cover due to phenology or disturbances (pasture). Annual and seasonal mean 

values were used to distinguish LU’s with generally high (secondary vegetation) and low 

(pasture) biomass levels.  

Due to the use of statistical summary metrics the dimension of time was largely eliminated 

and merely retained in the target period of each segment. This improves computation 

efficiency and potentially minimizes the influence of outliers on classification. Another 

advantage of the method is that specific seasonal characteristics (i.e. crop emergence, 

ploughing) can be identified and significantly enhance the differentiation of specifically 

cropland (Prishchepov et al. 2012).  

Conceptually, the method is closely related to the work of (Griffiths et al. 2013). For the 

purpose of agricultural LU classification they produced seasonal image composites, 

supplemented with many bands summarizing the spectral characteristics within spring, 

summer and fall. Our approach differs from the latter as it segments the year only in rain and 

dry season. Segmenting more than two seasons was not possible due to limited data 

availability. Further, we included the whole agricultural year to gain more reliable mean 

values of spectral indices. 

One limitation of our approach is that temporal segments are bounded by the agricultural year 

instead of the calendar year. Thus, unlike TerraClass maps the reference period for the 

proposed classification product spreads over two years: 2009 and 2010. TerraClass maps refer 

only to the years 2008 and 2010, which means that LU changes during the second half of 

2009 are not visible. As the proposed classification approach aims to identify a single LU type 

for the period between 01.07.2009 – 01.07.2010, only pixels with known stable LU in that 

time could be used to apply the method. Unchanged pixels were located by comparing 

TerraClass maps for 2008 and 2010. Incorporated only in TerraClass maps 2010, the LU type 

reforestation had to be completely eliminated from the analysis to avoid the introduction of 

uncertainty. 

Additionally, most of the statistical metrics require at least 2 observations in the respective 

temporal segment. Therefore, we further limited the classification approach to pixels with at 

least 2 observations in rain- and dry season.  
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Figure 10: Concept of temporally targeted Time Series Stacks 

5.3 Random forest classification 

The statistical descriptors of all three TSS were used as input variables for a Random Forest 

classification model. Among many multivariate machine learning techniques, the RF 

algorithm is one of the most robust non-parametric methods (Breiman 2001).  

RF is an ensemble method originating from Bagging or Bootstrap aggregation techniques. 

RFs fit a committee of decision trees to a training dataset, each casting a vote for the predicted 

class. Compared to other bagging methods, individual trees in the classifier don not only use a 

random subset of training samples (in-bag), but also a random subset of input variables. These 

subsets are compiled with the aim to create a diverse set of de-correlated trees. Essentially, 

each decision tree represents a noisy but unbiased model. By averaging them, variance is 

greatly reduced without a substantial increase in model bias.  

The trees consist of splitting nodes which employ different sets of predictors. In the tree 

growing procedure the most informative variables are weighted at each node and iteratively 

tuned to define the optimal path for the final prediction. Once all decision trees are grown, 

each tree is weighted and the splitting parameters among them are averaged. In this way, 

variables are selected to optimally fit the desired class. Additionally, unused training samples 

in each tree (out-of-bag) are used for internal cross-validation throughout the building of the 

classifier. Given a high level of randomness (few trees) and enough training samples this so 
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called Out-Of-Bag (OOB) error represents an unbiased estimate of classification accuracy 

(Hastie, Tibshirani and Friedman 2009, Breiman 2001).  

Unlike many other classification algorithms, RFs can effectively deal with high levels of 

variable interaction and collinearity. Given the big amount of independent variables in this 

study, it was further expected that variables demonstrate different types of distribution. Being 

a non-parametric decision tree classifier, Random Forests do not require standardization or 

any assumptions about the probability distribution of the assessed variables. (ibid.) 

Another advantage of RFs is that they correct for decision trees' habit of overfitting by 

building a large set of trees, each using different subsets of original training data (Breiman 

2001, Hastie et al. 2009). The claim that this holds generally true was contested by the 

argument that overfitting is prevented only if trees in the ensemble are limited and enough 

training samples are provided (Segal 2004, Statnikov, Wang and Aliferis 2008). More 

information is provided in section 5.3.2. 

5.3.1 Training 

Due to the availability of reference data the RF algorithm could be implemented in supervised 

mode, without time-consuming delineation of training areas. The main advantage of this 

approach is that classification results correspond to pre-defined classes and do not have to be 

interpreted (Gonzalez de Tanago Menaca 2012, Gonzales and Woods 2007). Training areas 

were derived from LU polygons in the TerraClass dataset. In order to prevent classification 

bias due to high prevalence of single LU classes an even amount of training pixels per class 

was used as input to the classifier. The size of training samples was determined by the data 

availability in different implementation scenarios (see 5.3.3). 

5.3.2 Tuning 

Random Forests are generally considered a black box. However, a few parameters of the 

classifier can be tuned in order to improve model performance and computation efficiency 

(Srivastava 2015), or to avoid overfitting (Segal 2004, Statnikov et al. 2008). The 

implemented tuning procedure is conceptualized in Figure 11 and described in detail below. 

The definite tuning parameters used in the final implementation of the RF classifier are shown 

in Annex 5. 

.  
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Mtry-parameter: 

The Mtry-parameter represents the number of variables randomly sampled as candidates at 

each split. Throughout the forest growing procedure this value is kept constant. Representing 

the degree of randomization in the model this parameter is the most important tuning 

parameter (Geurts, Ernst and Wehenkel 2006).  

The standard R implementation of the Random Forest package provides functionalities to tune 

the Mtry-parameter automatically. First, a RF model with an initial Mtry=10 was computed. 

The model was repeated, inflating and deflating the initial Mtry-parameter by a factor of 1.9. 

In each iteration, classification accuracy (expressed as OOB-error) was reported. The iteration 

stopped when the relative accuracy improvement was lower than 0.02.  

Number of trees 

Generally, more trees increase the model accuracy because this parameter reduces the 

variance of the model. However, more trees require deeper forests to balance model bias. 

Thus, while accuracy improvements gradually diminish, computation time increases 

dramatically. Consequently, an efficient implementation requires careful monitoring of the 

number of trees in the model. Furthermore, given very noisy data the number of trees needs to 

be limited to avoid overfitting (Segal 2004, Statnikov et al. 2008). 

Random forests implicitly record the OOB-error each time a new tree is added to the model. 

A model using 501 trees was built and the accuracy for any given number of trees plotted. 

The plot was used to determine the optimal number of trees by visually locating the point of 

error convergence. This criterion was chosen to balance performance and overfitting. 

Attention was paid to tune the number of trees to an odd number so that voting-ties can be 

broken.  

Input variables 

With the randomization in both sample and feature selection, the trees often use 

uninformative features for node splitting. Thus, limiting the input features to only good 

predictors prevents the introduction of noise and generates more accurate trees. This is 

especially valid when working with high-dimensionality data (Nguyen, Huang and Nguyen 

2015).  
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To identify (un-)important variables an alternative procedure was implemented using 

“conditional variable importances”. The method is explained in more detail in section 5.3.5. 

Conditional variable importances are reported as the mean decrease in model accuracy after 

the permutation of the respective variables. To compute this metric, a premature classifier was 

built using the previously tuned Mtry and Ntree parameters. Predictors with a mean accuracy 

decrease below 0 (variables that impair classification performance) were removed from the 

dataset.  

 

Figure 11: Implemented tuning procedure for Random Forest models 
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5.3.3 Analysis scenarios 

To answer the respective research questions RF models were calibrated and tested in different 

scenarios. All models were constructed following the same approaches for training, tuning 

and elimination of unimportant variables.  

A) General models to compare classification results for Fmask and Tmask data: 

For data processed with both Fmask and Tmask two independent classification models were 

calibrated. Class-specific training pixels (n=10000) were sampled randomly within the study 

area. The calibrated RF classifiers were used to create two LU maps, using data processed 

with Fmask and with Tmask.  

B) Stratified models based on data availability: 

Additionally, it was tested how well the classifiers perform under different scenarios of data 

availability. Separate training and validation datasets for Fmask and Tmask data were 

stratified based on the number of available observations in the rain and dry season. For each 

count of observations, 5000 samples were used to train a unique RF model.  

C) Isolated models with metrics of a single spectral index: 

Variable importances from the “full model” provide valuable insights into the usability of 

individual variables. However, dealing with high-dimensional data metrics from different 

spectral indices always interact or correlate to some degree. In order to test the informative 

value of individual spectral indices, RF classifiers were built using 10000 training samples 

and the respective metrics of a single index in isolation.  

D) Testing on groups with different deforestation lag: 

Additionally, the robustness of the classification model was tested with respect to different 

time lags dating back to the last deforestation event (0-4; 4-8; 8-12; 12-16 years). In this 

scenario no new classifier was calibrated, mainly because of the imbalanced prevalence of 

individual LU types (see Table 3). Moreover, too few pixels were available to train and 

validate reliable classifiers in each group. Instead, the best performing model from scenario A 

was used to predict the LU in all groups. Depending on the outcome of scenario A, test data 

was chosen to match the better classifier (either Fmask or Tmask). Subsequently, LU was 

predicted for all pixels in each group.  
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Table 3: LU-specific pixel availability among groups of deforestation lag 

Deforestation 

lag 

Prevalence of LU types (number of Landsat pixels) 

cropland pasture Secondary vegetation 

4 1351 5093 2241 

8 10315 29798 17146 

12 66630 351107 154930 

16 184 11638 1588 

5.3.4 Validation and accuracy assessment 

The accuracy of classification models in scenarios A, B and C was validated using an 

independent test set, 40% of the size of training data. For these scenarios, an even number of 

validation pixels per LU class were sampled randomly in the study area. Due to the low 

prevalence of some LU types in deforestation lag groups all available pixels were validated in 

scenario D. Predicted LU from the testsets was then compared with reference data, derived 

from TerraClass maps. Validation results were compiled in a confusion matrix from which 

classical accuracy measures were derived: overall accuracy, as well as class-specific user and 

producer accuracies (Congalton 1991). Using the internal OOB error of RF models for 

accuracy assessment was dismissed because it is biased in favor of training subsets (Mitchell 

2011). 

5.3.5 Variable importances 

RFs implicitly evaluate the importance of individual variables for the final classification. This 

functionality was harnessed to assess the usability of spectral indices and statistical TS 

descriptors for the proposed method. 

In the standard implementation of RFs (R-package: “randomForest”) the importance of 

individual variables is either reported as 1) Mean Gini Decrease or 2) Mean Accuracy 

Decrease after permuting individual variables (Breiman and Cutler 2008). Generally, the 

higher these values the more important an individual variable can be considered. However, 

these metrics are highly unreliable when using unscaled (Strobl, Boulesteix and Augustin 

2007) or correlated variables (Archer and Kirnes 2008). For a robust identification of (un-

)important variables we built an alternative RF model using all variables, conditional 

inference trees as base learners and subsampling without replacement (function cforest() in R-

package: “party”). Variable importance was then measured as Mean Accuracy Decrease but 
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with conditional permutation of predictors. Just like in the original RF implementation this 

metric quantifies the decrease in model accuracy when permuting individual variables. 

However, conditional permutation first subsets variables into groups of un-correlated 

predictors, then permutes them one-by-one within these groups. Subsequently, groups with a 

new combination of uncorrelated variables are built and the permutation procedure repeated. 

The main advantage of this method is that the loss in explained model variance can be related 

to the permuted variable and is not disguised by other correlated variables. More information 

on this alternative implementation is given in (Strobl, Hothorn and Zeileis 2009). 
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6 Results 

6.1 Effect of cloud masking on classification results 

Our results indicate that Fmask and Tmask produced different cloud masks generating pixel 

TS with different data density. Generally, more pixels were masked when using the Tmask 

band (see Figure 12). That difference became especially apparent at the edge of WRS tiles. 

Accordingly, the required minimum number of 2 observations in rain and dry season for 

classification was met less frequently using Tmask (76.6 % of pixels) compared to Fmask 

(99%) 

 

Figure 12: Available observations in pixel TS pre-processed with Fmask and Tmask 

The total accuracy of the masks produced by Fmask and Tmask was not quantified directly. 

However, visual inspection of cloud masks suggested that Tmask tended to detect more cloud 

shadows than Fmask (see Figure 13). Unmasked cloud shadows had major effects on the TS 

of individual pixels. This was especially the case for spectral indices that were derived from 

the NIR band. 

In some cases, Tmask did not detect the very edges of cloud shadows, while Fmask, using a 

3-pixel dilation, captured them. Furthermore, Tmask identified spurious cloud shadows, 

which limited the number of valid observations for classification.  
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Figure 13: Detail of cloud masks in three successive images and resulting pixel TS of spectral indices 
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The two LU maps, generated from data pre-processed with Fmask and Tmask, had an overall 

accuracy well above 85% (see Table 4). While both maps can be considered very accurate, 

classifiers constructed with Tmask data perform slightly better than with Fmask data.  

Table 4: Overall accuracy of Random Forest classifier for Fmask and Tmask dataset 

Cloud masking Accuracy (%) Kappa (%) 
Accuracy 

Lower (%) 

Accuracy 

Upper (%) 

Fmask 85.2 77.9 84.6 85.7 

Tmask 88.8 83.1 88.2 89.3 

The classification model tended to produce more accurate results with more available 

observations in pixel TS (see Figure 14). Particularly, in the rain season every additional 

observation significantly improved classification results. This trend was also visible, but less 

pronounced for pixels with more than 4 observations in the dry season. If less than 4 

observations were available in the dry season added observations decreased the overall 

accuracy of the classifier. These findings held for both models generated from Fmask and 

Tmask data. Differences between Fmask and Tmask became especially pronounced when 

many data points were available in the rain-/dry season. While the model constructed with 

Tmask data demonstrated ongoing accuracy improvements with added observations, 

classification accuracy seemed to saturate around 90 % for Fmask. 

 

Figure 14: Overall accuracy of RF classifier in different scenarios of data availability 
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Figure 15 exemplifies the influence of different cloud masking procedures on the 

classification result. Note that the developed classification algorithm requires at least two 

observations in rain- and dry season. While Tmask masked more observations preventing the 

classification of many areas, Fmask frequently produced wrong classification results for the 

same pixels. Differences between both maps are especially pronounced along stripes 

originating from Landsat 7 images without functioning SLC. This feature is particularly 

visible full maps, attached in Annex 6. Full maps also reveal that LU maps generated from 

Fmask data provide a much higher coverage, especially along the eastern edge of the north-

western overlap zone. 

 

Figure 15: Detail of LU maps generated from Fmask and Tmask 

Classification performance among individual classes is shown in Table 5. While secondary 

vegetation demonstrated highest user accuracy using Fmask data (88.2 %), cropland shows 

the highest user accuracy for Tmask data (91.8 %). Highest producer accuracies were 

achieved for cropland in both Fmask (90.7 %) and Tmask (93.1) classifiers. The classifiers 
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differed mainly in their ability to distinguish pastures from cropland which explains the 

differences in producer accuracy (Fmask = 76.6%, Tmask = 83.7%).  

Table 5:Confusion matrix of predicted pixels and reference classes 

Fmask 

                Reference 

Predicted 
Cropland Pasture Secondary vegetation 

Producer 

Accuracy (%) 

Cropland 3272 306             31 90.7 

Pasture 608 3427                   440 76.6 

Secondary vegetation 120      267              3529 90.1 

User Accuracy (%) 81.8 85.7 88.2  

Tmask 

                Reference 

Predicted 
Cropland Pasture Secondary vegetation 

Producer 

Accuracy (%) 

Cropland 3670 241 30 93.1 

Pasture 219 3467 455 83.7 

Secondary vegetation 111 292 3515 89.7 

User Accuracy (%) 91.8 86.7 87.9  

6.2 Importance of temporal metrics and spectral indices 

Among the computed temporal metrics of pixel TS, the mean value of NBR in the dry season 

was identified as the most important predictor for classification. Generally, variables 

expressing annual or seasonal mean and minimum values attained a higher importance than 

other variables. Annual and seasonal metrics seem equally important. Among the important 

predictors, summary metrics computed from NDMI TS were most prominent. Variables 

computed from NDVI, EVI and TCB TS did generally not achieve a high degree of 

importance. The majority of the least important metrics express annual and seasonal signal 

variability (standard deviation and amplitude) of spectral indices. The use of these metrics 

partly introduced noise into the classification model, which was illustrated by the higher 

model accuracy when omitting the respective variables. This was particularly the case for 
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metrics expressing NDVI variability. The importances of best and worst predictors are 

displayed in Figure 16. 

 

Figure 16: Variable importances in RF classifier  
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The accuracy of isolated models, using only metrics from one single spectral index, confirmed 

the variable importances reported from the general model (using all the different spectral 

indices tested). Highest overall classification accuracies were achieved when using metrics 

from NBR (83.7%) and NBR2 TS (82.9%). Also EVI, NDMI and NDVI achieved overall 

accuracies well above 80%. Among spectral indices TCB and TCG performed worst, 

demonstrating overall accuracies of 77.5% and 74.7% respectively (see Figure 17). Metrics 

derived from TCW had more predictive power (79.8%) than the other analysed TCc. 

 

Figure 17: Overall accuracy of isolated models using metrics from only one spectral index 

For all individual LU types, metrics from derived from NBR TS rank among the most 

explanatory variables (see Figure 18). Furthermore, TCW, NDMI, and NBR2 metrics were 

evenly good predictors for secondary vegetation. Using variables derived from NDVI TS 

produced maps with the lowest omission error for cropland. TCB and TCG had the least 

predictive power for all examined LU types. 

 

Figure 18: Classification accuracy of RF classifier with isolated spectral indices 
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6.3 LU classification with different post-deforestation lag 

 

Figure 19: Classification accuracy and prevalence of LU classes for pixels grouped based on time lag to last 

deforestation event 

For the classification of LU among different deforestation lag groups the calibrated RF model 

employing Tmask data was used.  

The classifier performed worst for areas with recent deforestation (84.1%; 0-4 years) (see 

Figure 19). Pixels in the following group (4-8 years) demonstrated the highest overall 

classification accuracy (89.6%). Classification accuracy among groups with longer 

deforestation lags was slightly lower (87.5%; 8-12 years and 87%; 12-16 years).  

Accuracy measures for individual LU types are displayed in Figure 20. Highest producer 

accuracies were achieved for pastures (93.4 – 99.3%), which corresponds with the strong 

prevalence of pastures in groups (see Table 3). Similarly, lowest producer accuracies for 

cropland and secondary vegetation were reported for the 12-16 year lag group, in which both 

classes were least abundant. Among all classes, best user accuracies were obtained for 

cropland, particularly evident in the group with the longest deforestation lag (97.8%). 

Similarly, secondary vegetation demonstrated the highest user accuracy in that group (95,2%). 

Pastures showed lowest user accuracies in the group with the most recent deforestation events 

(78.9%). Generally, the user accuracy of pastures in lag groups strongly resembled group-

specific overall accuracies displayed in Figure 19.  
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Figure 20: LU type-specific accuracies of classifiers built with data representing different deforestation time lags 
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7 Discussion and recommendations 

7.1 Effect of cloud masking on classification results 

In the framework of this study the accuracy of different cloud masking approaches was not 

quantified, as this would ideally require manual masks for every image (Zhu and Woodcock 

2012). However, post-deforestation LU maps display that Tmask-derived cloud masks 

generated TS yielding slightly better classification results than using TS masked with Fmask. 

Since both maps were generated in an identical fashion, performance discrepancies must 

originate from different cloud masks produced.  

Figure 21 displays the amount of available observations for pixels that were falsely classified 

with Fmask data and correctly classified with Tmask data. Falsely classified TS tend to 

feature more observations which suggests that less clouds or cloud shadows were masked. It 

is therefore assumed that the resulting outlying observations were propagated into computed 

temporal metrics. This hypothesis is partly supported by the findings displayed in Figure 14. 

The accuracy of Fmask classifiers saturated at 90 % regardless of the number of added 

observations. In contrast, Tmask classifiers steadily improved with every added observation to 

very high accuracies of 97 %. Following the same methodology for both classifiers, these 

findings can be explained by the comparatively high presence of unmasked outliers in Fmask. 

 

Figure 21: Probability distribution of unmasked observations in pixel TS processed with Fmask- and Tmask- derived 

cloud masks (n=24013; kernel bandwidth=1) 

The classifiers mainly differed in their ability to classify pastures correctly. The Fmask 

classifier particularly confused pastures with cropland. Potentially, low minima in seasonal or 

annual composites representing unmasked cloud shadows were falsely interpreted as bare soil, 

one of the key distinctive features between pastures and cropland (Prishchepov et al. 2012). 
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Despite the better performance of Tmask, the overall accuracy of both LU maps is not 

conspicuously different. Originally developed for dense TS, Tmask requires at least 15 

“clear” observations to estimate a robust TS model for cloud detection (Zhu and Woodcock 

2014a). In the study area this was only the case for a minor amount of 0.3 % of all pixels. For 

all pixels with less than 15 observations Tmask employs a backup algorithm, which subtracts 

the TOA band 2 reflectance of a pixel from the median value of the TS at that location. Pixels 

are identified as “clear” if that difference is below a threshold of 0.04. Aiming to derive this 

median from TS that are uncontaminated by clouds and cloud shadows, Tmask utilizes the 

Fmask band for initial cloud screening. However, undetected clouds in the Fmask band 

artificially alter the median of TOA band 2 TS. This alteration is magnified in low-density TS. 

Therefore, additional unmasked clouds or cloud shadows in the TS may not deviate enough 

from the median and are thus propagated to Tmask outputs. Moreover, the Tmask backup 

algorithm does not distinguish between LC change and clouds. Potentially, the superior 

performance of Tmask becomes more pronounced if more cloud-free observations can be 

provided in pixel-TS.  

From visual interpretation of individual images, we could identify some pixel values deviating 

strongly from spatially and temporally adjacent features (see Figure 13). These were mainly 

situated around the edges of clouds or cloud shadows. (Zhu and Woodcock 2014a) point out 

that Tmask especially outperforms Fmask regarding the detection of cloud shadows. While 

Fmask uses a complicated object-based geometry matching approach to detect shadows 

around clouds, Tmask uses location specific thresholds derived from pixel TS of TOA 

reflectance bands 4 and 5 (ibid.). Due to the darkening effect of cloud shadows on reflectance 

bands in the visible and NIR region, TS of most spectral indices were subject to the 

introduction of low outliers (Zhu and Woodcock 2012).  

For future applications, we suggest to employ Tmask as it is location specific and detects 

more clouds/cloud shadows than Fmask. Tmask particularly benefits from the provision of an 

initial cloud mask and additional multi-temporal information. At present both can be readily 

employed using Landsat data. The implementation of Tmask can be further improved, 

especially in regard of providing a minimum of 15 clear observations. As clear observations 

do not have to be within a single year (Zhu and Woodcock 2014a), this requirement can easily 

be met by extending Tmask data inputs +/- one year in tropical areas with low data density. 

Furthermore, Tmask was implemented as a pixel-based approach. While the outputs look 
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generally accurate, the very edges of cloud shadows were not accurately masked. In order to 

avoid the introduction of these respective observations, one might consider dilation of cloud 

shadows by a fixed buffer. Using only three spectral bands (green, NIR, SWIR1), Tmask-like 

algorithms are applicable to various other optical RS systems. Given the comparatively 

shorter revisit time and more spectral bands for the detection of various cloud types (Gascon, 

Martimort and Spoto 2009), applying Tmask-like algorithms to multi-temporal Sentinel 2 data 

might produce more accurate cloud masks. 

7.2 Importance of temporal metrics and spectral indices 

Mean and minimum values of annual and seasonal TS segments, especially of NBR and 

NDMI, were identified as best predictors in the classification model. Harnessing the 

difference between NIR and SWIR reflectance, both indices are sensitive to the moisture 

content of vegetation (McDonald, Gemmell and Lewis 1998). Results from the isolated 

models confirm that indices sensitive to canopy moisture (NDMI, NBR and TCW) were 

particularly good predictors of secondary vegetation. Exemplary, these indices find frequent 

application in forest monitoring due to their usefulness to distinguish vegetation classes at 

higher biomass levels (Fiorella and Ripple 1993).  

NBR stands out as it additionally characterized pastures best. Incorporating various vegetation 

types from short-grass to early stages of scrub encroachment pastures depict a high range of 

spectral-temporal characteristics. NBR was originally designed to map burned areas and fire 

severity (Key and Benson 2005). The index utilizes NIR and SWIR II bands. In terms of 

surface reflectance, vegetation and bare soil differ most in these bands (see Figure 22). 

Therefore, it is expected that NBR could specifically distinguish sparse vegetation in 

degraded or intensive pastures from bare soil, resulting in a lower confusion with croplands.  

 

Figure 22: Spectral profiles of bare soil and vegetation (grey boxes = Landsat bands; red boxes = bands used by NBR) 

(source: Siegmund, 2005) 
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Conspicuously, statistical metrics expressing standard deviation and amplitude of temporal 

segments performed poor. This holds especially for NDVI, NBR2 and TCW. As minimum 

values of these spectral indices were found to be good predictors cloud contamination can be 

discarded as an explanation for these results. Similarly, maximum values of various spectral 

indices are not impaired by clouds, cloud shadows and other sources of noise (Holben 1986). 

A realistic expression of the real annual or seasonal signal variation relies on the detection of 

positive and negative RS signal peaks in the TS (Prishchepov et al. 2012). Employing low 

density TS, the probability of capturing these peaks is relatively small.  

In this study, an extensive range of spectral indices was compared regarding their informative 

value for post-deforestation LU classification. A number of indices generated TS metrics 

which, even in isolation, produced classification results well above 80 %. Due to their 

different responses to biophysical characteristics of the earth surface, we suggest to combine a 

small set of spectral indices for LULC classification. The temporal profile of indices that are 

sensitive to photosynthetic activity (NDVI or EVI) provides an accurate representation of 

vegetation phenology (Huete et al. 2002). As these indices tend to saturate at higher biomass 

levels, they should be complemented by spectral indices responsive to canopy moisture 

(NBR, NDMI or TCW). The latter are particularly relevant for the detection of secondary 

vegetation or forest regrowth (DeVries et al. 2015). In scenarios of low data density we 

suggest to avoid the use temporal metrics expressing signal variability as TS are likely to 

obscure relevant signal peaks. Potentially, the data availability in tropical regions can be 

enhanced by using Sentinel 2 data. Sentinel 2 aims at the continuity of Landsat data which 

permits the use of comparable spectral indices with additional red channels for assessing 

vegetation characteristics. Potentially, the higher data density and more targeted bands of 

Sentinel 2 further improve the performance of the proposed classification methodology.  

7.3 LU classification with different post-deforestation lag 

When looking at individual LU types, both cropland and secondary vegetation seemed to 

show more unique spectral responses in the group with the longest deforestation lag, 

illustrated by the comparably low omission errors. Pastures were most frequently 

misclassified in the group with the shortest deforestation lag. That indicates a lower spectral 

separability of pastures to other LU types in immediate post-deforestation scenarios. 
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Despite these findings, results do not directly suggest a linear correlation between 

classification accuracy and the time since the last deforestation event. In fact, overall and 

class-specific producer accuracies are strongly biased by the dominating prevalence of 

pastures among all lag groups. Potentially, the reliability of class-specific user accuracies is 

also limited, as partly few test samples were available, especially for croplands in the 12-16 

year lag group (see Table 3). By extending the research area, enough pixels could be gained to 

use sufficient and equal sample sizes among target classes. Another limitation of this analysis 

step was the high range of years within each group of deforestation lag. In the group with 

most recent deforestation events (0-4 years) it could not be distinguished between areas with 

very recent deforestation and others. In fact, all pixels with very recent deforestation (1-2 

years) were excluded from the analysis as only pixels with stable LU between the years 2008-

2010 were examined. By using a more targeted reference dataset, enough pixels experiencing 

very recent deforestation could be gained, so that samples can be grouped by single years.  

Morton, 2006 #127 found that cropland and pastures can be detected well within one year 

after deforestation events using dense annual RS TS. Other research suggests that especially 

the detection of secondary vegetation may require longer monitoring windows after 

deforestation events (DeVries et al. 2015, Kennedy et al. 2010). That is in part due to varying 

characteristics of early succession stages and the high spatial heterogeneity in immediate post-

deforestation landscapes (Moran and Brondizio 1998). Many examples in RS literature 

suggest data-driven approaches to capture slowly evolving and highly location-specific 

processes of anew forest succession (DeVries et al. 2015, Kennedy et al. 2010, Stueve et al. 

2011). We propose to test the performance of the various TS methods for the detection of 

post-deforestation LU in scenarios with different data densities and time lags dating back to 

the last deforestation event. 

7.4 Classification methodology 

The developed classification model generated very accurate LU maps from data processed 

with both Fmask and Tmask. We demonstrated that seasonally targeted TS segments of 

various spectral indices produce metrics that are excellent predictors of post-deforestation LU, 

even in tropical areas suffering from very limited data availability. 

In general, the comparability to other LU maps is restricted, as thematic legends and mapping 

standards of other studies generally differ (Herold et al. 2008). Using a very similar approach 
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to map agricultural land change (classes cropland, pastures and forest), (Griffiths et al. 2013) 

demonstrated the usability of the method for change detection in central Europe. They 

produced a tri-temporal change map at an accuracy of 90%, which suggests that the accuracy 

of individual maps must be at least as high as our product. The approach differs from ours as 

metrics were computed for 3 seasonal segments (spring, summer, fall). Therefore, the spectral 

response of LU types is temporally more specific. This however was not possible in our case 

as much less RS data is available for the BLA.  

Other approaches circumvent constrained data availability by using lower resolution imagery. 

(Carreiras et al. 2006) used 1 km SPOT-4 VEGETATION data to map LU in Mato Grosso. 

Their LU maps display accuracies below our results (overall = 81-88%). However, more LU 

classes were incorporated in their product resulting in a higher probability of confusion. 

(Besnard 2014) contemplated the usability of different LC products for the analysis of 

deforestation drivers in South America, using 4 LC classes (see Table 6). Also compared to 

his findings our post-deforestation LU maps demonstrate higher accuracies. Performance 

differences may likely be pronounced in heterogeneous landscapes, which can be mapped 

more accurately with high-resolution imagery (Herold et al. 2008). Again, comparability is 

limited because these maps target global LU while our classification model was calibrated 

locally. 

Table 6: Accuracy of Global LC products in South America (Besnard 2014) 

LC product Resolution (m) 
Overall accuracy (%) 

(2000) (2005) 

MODIS Land Cover  ~ 463 72.9 67.1 

GLC-SHARE  ~ 1000 72.6 88.4 

CCI-LC  300 90.2 88.4 

The use of high-resolution post-deforestation LU data is especially important in the northern 

Amazon where swidden cultivation and agroforestry determine a highly complex land use 

mosaic (Moran et al. 2000). Potentially, the approach investigated in this thesis could be used 

to produce annual post-deforestation LU maps for the whole BLA. Certainly, TerraClass only 

provides training data for 2008 and 2010. Currently the Farmland Environmental Registry 

(CAR) is being developed in the area, which encourages land owners to report the use of their 
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property. RS data could be complemented with this information for annual calibration of the 

classification model.  

Due to similar spectral coverage Sentinel 2 data is an interesting data source to improve the 

proposed method. The satellite outperforms Landsat regarding both temporal and spatial 

resolution. The shorter revisit time will provide more dense TS, which has several advantages: 

 More accurate multi-temporal cloud masking procedure 

 More accurate outlier detection using TS approaches 

 Potentially enough data for three seasonal segments 

 Less exclusion of pixels with too sparse data density in segments 

Alternatively, Sentinel 2 data could be used to implement other classification approaches 

demanding high density TS. Recently, several methods combining continuous change 

detection and LULC classification were proposed (Maus 2014, Zhu and Woodcock 2014b). 

Given the lack of continuous LU data in the tropics, a comprehensive evaluation of different 

classifiers and data representations is highly recommended.  

  



52 

 

8 Conclusions 

In this thesis, it was shown that post-deforestation LU can be classified very accurately using 

Landsat TS with low temporal density. Given the current unavailability of high-resolution LU 

maps in the Amazon, our research demonstrates that such products can be produced at low 

cost, both in terms of data acquisition and manual effort. If reproduced annually, these maps 

could provide valuable information for many applications and interest groups, among others: 

- Assessment deforestation drivers   (policy making) 

- tracking post-deforestation LC trajectories and the associated fate of Carbon stocks 

(Ramankutty et al. 2007)    (climate studies) 

- Assessment of recovery potential of previous forests (Guariguata and Ostertag 

2001)      (forestry and LU planning) 

Our research also provides valuable methodological insights regarding the mapping of post-

deforestation LU in the tropics. Generating cloud masks with the Tmask algorithm enhanced 

classification results, compared with using the Fmask band provided with public Landsat data. 

For future applications we recommend to exploit a combination of spectral indices that are 

either sensitive to canopy moisture (NBR, NBR2, NDMI) or photosynthetic potential (EVI, 

NDVI) of vegetation. Given a low data density, temporal metrics expressing annual or 

seasonal mean and minimum (especially NBR) should be favoured over metrics expressing 

the variability of the RS signal (especially NDVI). In the framework of this study it could not 

be shown that classification accuracy generally corresponds with the time lag to the last 

deforestation event. Although the separability of pastures was limited in immediate post-

deforestation scenarios, more targeted sampling approaches are needed to support these 

findings. 

The classification approach in this study was mainly motivated by the limited availability of 

Landsat data. Alternatively, a number of interesting methods were developed for the 

classification of dense TS (e.g. (Maus 2014, Zhu and Woodcock 2014b). Sentinel 2 is a 

promising data source, both in terms of temporal data density and spatial resolution. Using 

Sentinel 2, potentially more advanced approaches can be implemented for cloud masking, 

outlier detection and LU classification to further enhance the accuracy and resolution of the 

produced maps.   
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10 Annexes 

Annex 1: Landsat imagery used in this study 

Path-row Acquisition date 

(day-month-year) 

Cloud Cover * 

(%) 

Data Type 

(sensor, level) 

Geometric RMSE  

(m) 

UTM 

(zone) 

222-62 1-7-2009 38.7 ETM+  L1T 5.83 23 

222-62 9-7-2009 18.08 TM L1T 4.122 23 

222-62 17-7-2009 42.56 ETM+  L1T 7.755 23 

222-62 2-8-2009 34.27 ETM+  L1T 5.921 23 

222-62 10-8-2009 0.39 TM L1T 6.071 23 

222-62 22-11-2009 40.83 ETM+  L1T 9.171 23 

222-62 14-3-2010 35.38 ETM+  L1T 10.045 23 

222-62 2-6-2010 5.34 ETM+  L1T 5.388 23 

222-62 26-6-2010 0 TM L1T 5.32 23 

222-63 1-7-2009 17.18 ETM+  L1T 4.096 23 

222-63 9-7-2009 4.44 TM L1T 4.48 23 

222-63 17-7-2009 5.02 ETM+  L1T 4.477 23 

222-63 2-8-2009 8.69 ETM+  L1T 4.588 23 

222-63 18-8-2009 29.61 ETM+  L1T 6.271 23 

222-63 3-9-2009 57.44 ETM+  L1T 2.815 23 

222-63 21-10-2009 40.72 ETM+  L1T 11.087 23 

222-63 22-11-2009 2.74 ETM+  L1T 3.825 23 

222-63 30-11-2009 32.53 TM L1T 6.721 23 

222-63 9-5-2010 16.57 TM L1T 4.627 23 

222-63 17-5-2010 48.8 ETM+  L1T 5.054 23 

222-63 2-6-2010 28.44 ETM+  L1T 3.53 23 

222-63 26-6-2010 0 TM L1T 4.763 23 

223-62 8-7-2009 19.1 ETM+  L1T 4.712 22 

223-62 1-8-2009 10.74 TM L1T 5.511 22 

223-62 9-8-2009 46.72 ETM+  L1T 4.428 22 

223-62 17-8-2009 0.08 TM L1T 4.598 22 

223-62 25-8-2009 20.61 ETM+  L1T 4.511 22 

223-62 26-9-2009 41.73 ETM+  L1T 4.416 22 

223-62 28-10-2009 52.43 ETM+  L1T 3.82 22 

223-62 21-11-2009 37.33 TM L1T 8.99 22 

223-62 29-11-2009 45.08 ETM+  L1T 3.347 22 

223-62 16-1-2010 54.22 ETM+  L1T 4.042 22 

223-62 9-2-2010 50.19 TM L1T 10.083 22 

223-62 5-3-2010 55.69 ETM+  L1G 3.478 22 

223-62 8-5-2010 27.93 ETM+  L1T 10.864 22 

223-62 25-6-2010 52.96 ETM+  L1T 3.859 22 

* approximate cloud coverage given in metadata of downloaded scenes 
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Annex 2: Probability distribution of spectral index values in a non-cloudy scene 

 

*Kernel densities were derived from Landsat scene “LT52220622009222” (sensor: TM, path-row: 222-62, date: 2009-222) 

NDVI thresholds: 

Min: 0 

Max: 10000 

EVI thresholds: 

Min: 0 

Max: 4000 

NBR thresholds: 

Min: -2500 

Max: 8000 

NBR2 thresholds: 

Min: 0 

Max: 6500 

NDMI thresholds: 

Min: -2750 

Max: 6000 

TCB thresholds: 

Min: 0 

Max: 4000 

TCG thresholds: 

Min: 0 

Max: 8000 

NBR2 thresholds: 

Min: -4000 

Max: -250 
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Annex 3: Geographic extents of overlap zones 

Zone Xmin Xmax Ymin ymax 
Overlap 

tiles 

NW Xmin (223-62) Xmax (223-62) Ymax (222-63) Ymax (222-62) 
222-62, 

223-62 

NE Xmax (223-62) Xmax (222-62) Ymax (222-63) Ymax (222-62) 222-62 

SW Xmin (223-62) Xmax (223-62) Ymin (222-63) Ymax (222-63) 

222-62, 

222-63, 

223-62 

SE Xmax (223-62) Xmax (222-62) Ymin (222-63) Ymax (222-63) 
222-62, 

222-63 

 

Annex 4: Usable pixels for LU classification after cloud masking with Fmask and Tmask 

LU 
Nr. of pixels with > 1 observation in rain and dry season 

Total >1 in both seasons (%) >2 in both seasons (%) 

Fmask 

Cropland 369141 68 22.9 

Pasture 517072 74.2 18.3 

Secondary Vegetation 80385 69.1 17 

Tmask 

Cropland 369141 22.1 7 

Pasture 517072 39.2 12.4 

Secondary Vegetation 80385 35.9 11.8 
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Annex 5: Random forest tuning parameters 

Model type Cloud masking 

approach 
mtry nTree 

Number of 

input variables 
nodesize 

Initial tuning  10 501 120 1 

Full Fmask 19 75 90 1 

Full Tmask 19 75 92 1 

Isolated NDVI Tmask 5 31 7  

Isolated EVI Tmask 5 31 3  

Isolated NBR Tmask 9 31 6  

Isolated NBR2 Tmask 3 31 3  

Isolated NDMI Tmask 5 31 7  

Isolated TCG Tmask 5 31 4  

Isolated TCB Tmask 5 31 3  

Isolated TCW Tmask 5 31 6  
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Annex 6: Full post-deforestation LU maps generated from data processed with Fmask and Tmask-derived cloud masks 



64 

 

 


