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Stellingen bij het proefschrift 
'On the Mechanism of Piping under Impervious Structures': 

1. Het succes van de Oosterschelde Stormvloedkering heeft aangetoond 
dat het verplaatsingsgedrag van monolitische constructies zeer 
betrouwbaar geschat kan worden met behulp van een combinatie van 
normaal- en schuifveren. 

2. Voor de toepassing van Geotextielen als belastingspreider bestaat 
een ontwerpregel, waarin zowel aan evenwicht als aan vormverandering 
is voldaan. Dit is bereikt door simulatie met een verend ondersteund 
membraan. 

3. Wetenschappelijk onderzoek is in wezen ambivalent. Het heeft de 
neiging alles wat nog niet zichtbaar gemaakt is van de hand te 
wijzen, terwijl het juist de bedoeling van onderzoek is om iets te 
ontdekken wat nog niet bekend is. 

4. In de huidige tijd wordt denken voornamelijk gerelateerd aan de 
ratio en is iets als intuïtie verdacht. Een onderwerp dat langer dan 
een halve eeuw meer intuïtief dan deductief bestudeerd is is piping. 
Er zijn geen gevallen bekend die hierdoor geleid hebben tot een 
catastrofe. 

5. Het grootste probleem van wetenschappelijk onderzoek is het creëren 
van een helder begrippenkader. De natuurkunde is hier ondanks de 
stormachtige ontwikkelingen redelijk in geslaagd. In de psychologie 
kan men beter opnieuw beginnen. 

6. De medische wetenschap heeft haar grootste successen geboekt op 
onderwerpen die relatief weinig aan de orde komen in een dokters 
spreekkamer. 



7. Het is buitengewoon verontrustend te constateren dat in het 
vakgebied der psychologie aan de menselijke psyche een aanmerkelijk 
kleinere standaardafwijking wordt toegekend dan gewoonlijk voor 
grond gehanteerd wordt. 

8. De woorden intelligent en intellectueel worden vaak gehanteerd als 
synoniem. Zij hebben echter eerder een tegenovergestelde betekenis. 
Een intellectueel is iemand die voor een trivialiteit een moeilijk 
woord verzint en daarom bijdehand lijkt. Iemand die intelligent is 
verklaart met eenvoudige begrippen gecompliceerde problemen en lijkt 
daarom dom. 

9. Het toppunt van intellectualisme is het feit dat vijflettergrepig 
zichzelf omschrijft en tweelettergrepig niet. Overigens heeft alleen 
vijf deze eigenschap. 

10. Anno 1988 wordt nog steeds niet algemeen ingezien dat, als twee 
opponenten bidden voor de overwinning, zelfs God er slechts één kan 
laten winnen. 
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1■ Introduction 

In delta areas - as for example in large parts of The Netherlands 
the land is protected from floods and high tides by dikes. In 

general these are constructed of impervious clays and built on a 
sandy aquifer as subsoil. Such structures are vulnerable to an 
erosion effect called piping. In this thesis a mathematical model 
is proposed which deals with the mechanism of piping. The model is 
basically analytical but employs a numerical method to refine the 
results. The outcome is presented in a standardised form to be 
used as a design rule. 

Piping is a form of seepage erosion - the general name for the 
adverse effects of groundwater flow on soil stability. High 
seepage pressures may remove soil material to such an extent that 
geotechnical structures may, and do, collapse. Several terms have 
been used in the literature to classify this seepage erosion. For 
instance 'heave' ( a substantial soil volume which is 
simultaneously raised by seepage flow, Terzaghi (1967), V. Zyl 
(1981) ), 'karst-piping' ( the removal of material due to 
weathering, Dykhovichnyi (1979) ). 'hydraulic fracturing ( the 
process of soil being locally pushed apart by porewater pressures, 
Seed (1981) ), and 'internal erosion' ( the transport of small 
particles through a matrix of larger ones, Lubochkov (1962), 
V. Zyl (I98I) ). 

The actual word 'piping' refers to the development of channels, 
which begins at the downstream side of the structure where the 
flow lines converge. Associated with this, high seepage pressure 
occurs. The subsequent erosion process develops backwards and due 
to the natural non-homogeneity in the soil the channels are 
irregularly shaped. If the process continues the structure may in 
the end collapse. 

It is clear why this phenomenon should be studied: society's well-
being and the economy are of nationwide interest. The safety of 
water retaining structures is these days being argued, especially 
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since design rules to date are empirical and appropriate to quite 
different geographical locations. Often they are inadequate. 

The whole mechanism is quite complex and use is made of branches 
of soil mechanics (both continuum approaches and particulate 
aspects), groundwater flow and hydraulics. A certain amount of 
simplification has to be introduced so as to make the problem 
suitable for mathematical analysis. Inspiration is drawn from 
simple visual tests. 

The model is essentially two-dimensional. It is believed that this 
does not seriously affect the validity of the results. The design 
rules obtained allow for a great variety of geotechnical 
conditions. The analysis gives insight into the safety factor of 
the design. 

This thesis basically consists of three parts. The first one is 
formed by chapters 1 ... 4 and is meant as introduction and 
preparation for the modelling of the piping phenomenon. The second 
part is the modelling itself and is worked out in chapters 5 
10 and appendices A ... C . This portion is entirely of 
theoretical nature. The last part consists of chapter 11 which is 
mainly practical. It is meant as stand alone for engineers who do 
not care too much about theoretical elaboration, but are more 
interested in effective and economical design of water retaining 
structures. 
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2. Historical notes 

Piping has been studied since the turn of the century. It is 
mentioned in the context of weir and dam design on sandy 
foundations where, in addition to the usual design problems 
encountered in civil engineering, seepage erosion plays an 
important role. As a result of research an empirical rule relates 
the hydraulic head across the structure, H , to the length of 
seepage, L . For simple structures L can be assumed to be equal 
to the length of the weir or dam. The rule reads as follows: 

L = E H (2.01) 

where E is a coefficient that depends on the geometry and soil 
parameters. 

The relation (2.01) appears in the work by Clibborn and Beresford 
(1902) . Bligh (1910) followed this concept and defined L as 
seepage length, i.e. the length of the path along the structure 
that is followed by the groundwater. This same idea, also called 
line of creep method, was suggested by Griffith (1913). Another 
approach that has been advocated to some extent is called shortest 
path method, implying that L must be the shortest route the 
water can take under the structure. 

So far investigations have referred only to small structures. Once 
the scale was enlarged, the value of L quickly exceeded 
realistic dimensions when referred to the length of the structure. 
Attempts were made to reduce this value artificially. Heel and toe 
sheetings were applied, and at the same time methods were refined 
to determine the groundwater flow pattern. Harza (1935) proposed 
the electric analogy method. Lane (1935) introduced the weighted 
seepage method in order to include the difference in horizontal 
and vertical permeability. 

From a design point of view the use of heel and toe sheetings may 
be acceptable and there is no general objection to the use of the 
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type (2.01) rule. But it must be realized that in the case of a 
heel sheeting the character of the seepage erosion changes. The 
problem is no longer piping, but heave. In the literature there is 
often no clear distinction made between these two phenomena. 
Terzaghi (1967) for example talks about piping due to heave. 

Up to the late 1970's research had been concentrated on the heel 
sheeting type of structure but piping had been mentioned in only a 
few articles. Laboratory tests were carried out in Germany and in 
The Netherlands. Miesel (1978) , Müller-Kirchenbauer (1978) and 
Hannes et al. (1985) performed model tests on piping from holes 
made at the top of a confined layer. De Wit et al. (1981) 
reported experiments in partly covered sand layers. 

Theoretical methods which have contributed to the understanding of 
piping have been reported. Both MUller-Kirchenbauer (1978) and 
Sellmeijer (1981) used solutions for steady flow and applied 
conformal mapping; Hannes et al. (1985) worked with a numerical 
method. Seepage erosion is not an integral part of these 
calculations and so the actual mechanism is not adequately 
described. Nevertheless, it might be possible to use these 
solutions when designing against piping. 

In this analysis a theoretical description is presented which does 
take the erosion mechanism into account. 
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3. Simple visual tests 

As mentioned in the introduction the configuration under 
investigation is an impervious structure on top of a granular 
material. If the function of the structure is to retain water, 
groundwater flow will occur through the granular material due to 
the hydraulic head across the structure. It is known that piping 
takes place due to the effects of high seepage pressure on the 
downstream side of the structure. The question is how to describe 
this erosion problem. 

In order to obtain qualitative understanding of the phenomenon 
simple laboratory visual tests have been carried out. A perspex 
container was filled with sand and partly covered by a perspex lid 
which simulates the impervious structure. The set-up is sketched 
in figure 3-1 where the applied hydraulic head is also 
indicated. During the tests the hydraulic head is gradually 

hydraulic head 

water 

'•'.• -'sahdboil'■■'■] •_. s l i t '•• 
'.• -'. .•'.•; • •' fluidized' •.'•'. ' 

filter 

;: sand • • .' 

Fig. 3-1 : Model for laboratory test 
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increased in steps and the behaviour of the sand is observed. 

At a certain stage it is noticed that sandboils appear in the 
outflow region. These "boils" consist of sand transferred from 
below the lid. The sand is fluidized in the center of the boils, 
allowing water to flow out. There is no net outflow of sand. But, 
if the hydraulic head is increased in a subsequent step, sand is 
transferred until again an equilibrium state is reached. Below the 
lid slits with a depth of several times the grain size develop. 
They look like meandering rivers which join up in an estuary. 

It is obvious that the sandboils and slits limit the seepage 
pressures to a physically maximum possible level. Their height, 
length and depth increase with the hydraulic head. At a certain 
stage the seepage flow reaches a critical value which is 
associated with progressive erosion. At this point the seepage 
gradients apparently increase out of all proportion, unrestrained 
by changes in the flow pattern. The process then results in 
failure of the sandy aquifer. 

These observations are the basis for a theoretical description of 
piping. 
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4. Physical principles of the model 

During the visual tests it was observed that in the presence of 
high seepage gradients sand is transferred from underneath the 
structure being tested to the outflow region. This process results 
in the appearance of sandboils and slits. It was noticed that 
equilibrium state conditions are possible as long as the sandboils 
and slits restrict the seepage gradients below a critical value. 
This critical value is believed to coincide with the point of 
failure of the sand. Beyond, progressive erosion begins and leads 
to the collapse of the geotechnical structure. 

It is clear that the precise distribution of granular material in 
the outflow region is of great relevance to the analysis of 
piping. In figure 4.1 a plausible geometry - inspired by 
observations made in the tests - is shown. The sandboil is 
indicated by AB ; the slit by BC . At point B the sand is 

Fig. 4.1 : Plausible geometry in the outflow region 
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fluidized. The character D denotes infinity which mathematically 
speaking is an expanded point. The direction of the seepage flow 
is towards the free water surface. 

In reality the problem is three-dimensional, however, to achieve 
the primary goal - a description of the mechanism of piping - a 
two-dimensional approach is presented. Such a description is 
believed to still capture the main mechanical features and not to 
invalidate the quality of the results. By implication it will now 
be impossible to include the meandering of the slits in the 
investigation. Meandering is due to the search for weak links in 
the granular structure of the sand. It is associated with the non-
homogeneity of the sand properties and is therefore not an 
essential but an added feature of the piping problem. 

During the visual tests it appeared that a new steady state 
seepage flow could be reached after an increase of the hydraulic 
head. This means that the steady state flow equation can be 
applied to describe the flow. Computational results, however, 
depend very much on the appearance of the sandboils and slits. 
Their geometry is erratic but can be simplified as follows. 

The function of the slit is to conduct seepage water. Its depth is 
a few times the grain size and geometrically irrelevant. The 
sandboil provides resistance in the outflow region and therefore 
its dimensions do matter. But it is no problem to consider the 
seepage through AB in figure 4.1 . Therefore the groundwater 
flow may be studied in the lower half-plane DABCDD . However, in 
addition the seepage in the sandboil itself must be determined. 

The flow can be solved if the boundary conditions are known. At 
DA the head is constant due to the presence of the free water 
surface; at CD there is no vertical discharge, because the 
structure there is impervious. But at ABC the boundary 
conditions depend on the erosion process. During the visual tests 
it was observed that an increase in the hydraulic head caused some 
sand transport, resulting in a new steady state. Therefore, it is 
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plausible that this state is defined by the condition of limit 
equilibrium of the sand. 

The problem now is how to incorporate this condition in the flow 
calculations. The following scheme proved fruitful: indicate the 
value of the head at ABC by the variable P ; then solve the 
groundwater flow expressing all important flow features in the yet 
unknown value P . Knowledge about the soil response can be used 
to evaluate the variable P . 

It would appear that piping contains two features: seepage flow 
and limit equilibrium of the sand. The latter must be determined 
both in the sandboil and in the slit. In the following chapters 
these aspects will be elaborated upon and unified into one 
mathematical model to describe the phenomenon of piping. 
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5. Groundwater flow 

One of the major mechanisms controlling piping appears to be 
groundwater flow. This may be studied in the lower halfplane 
DABCDD of figure 4.1 . In this chapter the head of the 
groundwater flow will be determined under the following 
conditions: the flow is steady and is regarded as two-dimensional. 
The head is denoted by ♦ being a function of the coordinates x 
and y . During calculations it turns out to be convenient to work 
with the gradient of ♦ . Consequently the boundary conditions are 
expressed in this dimension. They are indicated in figure 5.1 
which shows the same geometry as figure 4.1 . 

At DA the value of the horizontal gradient 3*/3x is zero due 
to the presence of the free water surface. At ABC the latter is 
indicated by p = dP/dx , where P represents the yet unknown 
value of the head. In a later stage this head will be defined by 

Fig. 5.1 : Geometry in the outflow region 



- 12 -

the condition of limit equilibrium. At CD the vertical gradient 
vanishes, since no vertical discharge takes place. 

The process of steady flow is characterized by the steady flow 
equation or Laplacean. For a homogeneous and isotropic coefficient 
of permeability this equation reads: 

The task is to solve equation (5.01) in the region of the lower 
halfplane DABCDD for the afore mentioned boundary conditions, 
i.e. 3*/3x = 0 for x < 0 , 3*/3x = p for 0 < x < g and 
3*/3y = 0 for x > g . 

There are two suitable methods which lead to a solution. Both make 
use of the complex variable theory. To that end the geometrical 
plane in figure 5-1 will be described by the complex variable 
z = x + iy. Here i is the imaginary unit /(-l) . Also the head 
<t> will be extended with the stream function ty to the complex 
potential eo = ♦ + ity . Usually in complex flow theory the head, 
stream function and complex potential are multiplied by the 
permeability coefficient and indicated by $ , ¥ and Q 
respectively, but here these variables per unit permeability are 
preferred. 

According to complex variable theory any analytical function io(z) 
contains a head * satisfying equation (5.01). That means that 
the problem is reduced to the determination of the boundary 
conditions only. Two methods to do so may be considered: the 
Cauchy integral formula and the theory of conformal mapping. These 
methods lead to perfectly equal answers in an entirely different 
mathematical representation. 

At first the Cauchy integral formula will be dealt with. 
Polubarinova-Kochina (1962) presents an elaboration (chapter VI) 
of this formula appropriate to the present problem. The formula 
states that in case of a lower halfplane any analytical function 
f can be represented by: 
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f(z) = r i | R e [ f ( r ) ] f f i (5.02) 

Re stands for real part, r is an integration variable along the 
line DABCD in figure 5.1 . 

The equation (5-02) implies that boundary conditions in terms of 
f are available along the entire line DABCD . In order to meet 
the requirement for this problem a special function f is 
considered: du/dz / J(i-z) , where £ indicates the combined 
length of sandboil and slit, called erosion length. Thus the 
equation (5-02) is turned into, 

dm/dz - f 1 1 J 
Re dü)/dri dr 

J(C-r)' r-z (5.03) 

What is the advantage of the representation (5.03)? 

In complex theory it is known that the derivative of u> = * + ii|i 
is equal to d<o/dz = 3*/3x - i 3*/3y . On the one hand, along the 
line DA where r < 0 , the gradient 3*/3x vanishes and thus 
the value of Re[do>/dr / /(£-r)] is zero. On the other hand, 
along the line CD where r > S. , the gradient 3*/3y vanishes 
and therefore the value of Re[dw/dr / /(2-r)] is zero too. 
Keeping in mind that for 0 < r < Q. 3<t>/3x = p and J(i-r) is 
real, equation (5-03) may be rewritten as: 

ÏÏ = S I PW Hg* fc = ïlj ><*> ̂  fe * Si) *' 
(5-04) 

For a proper function p this equation states that u is an 
analytical function of z and therefore <t> satisfies the flow 
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equation (5.01). Quite simply it can be checked that the boundary 
conditions have been met, and so equation (5.04) is a suitable 
representation of the solution of the flow equation (5.01). The 
expression for co itself vfollows by integration over z . To 
perform this integration the second integral of the right hand 
expression of (5.04) will be rewritten by partial integration with 
respect to r , 

do 
dz £ J **>'(&) fe- £Jp<'>É?Mf3£i<* 

Integration of the first integral over z is simple. The second 
integral shows a special property. Integration with respect to z 
compensates a great deal the differentiation with respect to r . 
This can be seen as follows, 

d_ [ / (£ZTJ _L_j dz . . J_ 
dr i-z r-z i-r 

[![*=*) —Wl -(IS dl-7—I i-z 1 - - — lK-z' i-z 

Therefore integration with respect to z results in, 

0 0 

No integration constant is needed since the real part of (5-05) 
vanishes in z = 0 and the imaginary part in z = i . 

Formula (5-05) describes perfectly well the defined flow problem. 
It would appear that this equation is quite helpful for deriving 
certain particular shape functions to build up the total solution. 
However, general shape functions are better expressed differently. 
Another approach to the flow problem (5-01) will be tried from a 
different viewpoint. 
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A well-known method of solving complex potentials is 
transformation by conformal mapping. This method can be applied 
successfully. Now the geometrical z-plane is transformed into a 
strip. This strip, which is denoted by the complex variable 
C = C + in , is shown in figure 5.2 . The letters A to D 
inclusive correspond with the ones in figure 5.1 . 

There is a one-to-one relationship between the original and the 
transformed plane . The form of an infinitesimal element remains 
unaltered; only the size and orientation change. Because of this, 
the term 'conformal mapping' is used.. The relationship between the 
geometrical plane and the strip can be determined by the technique 
of Schwarz-Christoffel transformations, as described in, for 
example, Churchill (I960), Verruijt (1970). The result is as 
follows: 

q = 2/n arcsin/(z/e) (5.06) 

1 

Fig. 5-2 : Transformed geometrical plane 
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In a strip the concept of Fourier series comes readily to mind and 
an exponential transformation of t; is obvious. Since CD is a 
streamline and DA an equipotential line the mapping function 
exp{̂ -ni - (n+J-) rrit;} is appropriate, for this function yields 
real values along CD and imaginary values along DA . In order 
to arrive at a solution which satisfies the condition along ABC , 
the Fourier series (5.07) is introduced: 

I = I An expftni - (n+l-) niq} (5.07) 
n=0 

In this representation the yet unknown horizontal gradient p is 
characterised by the coefficients A 

From equation (5-07) an expression for to can be determined by 
integration. In so doing, it is helpful to consider <i> as 
function of C instead of z . From the transformation (5.06) it 
follows that, 

| | = f l Z s i n ( n q ) = - | ± f {exp(niC) - exp( -n iq )} (5.08) 

Thus, relation (5-07) may be written as: 

dT = I A | f [exp(- (n-H niq) - exp(- (n+fr) niq}] (5.09) 
a^ n=0 

The function <o is now easily obtained by the integration of 
(5-09) with respect to t; : 

» = I A g [exp{- (n-fr) nit;} . exp{- (n.f) ni^j ( } 

The expansion (5-10) also describes the flow problem very well. 
Basically the previous result (5-05) is different in that the 
function P there is the fundamental unknown to settle the flow 
problem, but here the solution is embedded in Fourier coefficients 
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A . Fourier series are best used if the coefficients can be n 
obtained from integration. If this is not the case, special care 
must be taken, particularly when the behaviour is not smooth. 
Solution (5-10) will be used as a set of general shape functions. 
Together with particular shape functions of a wilder nature 
through solution (5-05) they will construct the total solution. 

Two results are now obtained, which describe the seepage problem 
perfectly well: the integral representation (5-05) and the Fourier 
series (5-10). They are identical, although mathematically they 
have an entirely different form. It is possible to prove by 
substitution that they are equal, but it is beyond the scope of 
this presentation to work this out. 

From the results all relevant flow features may be obtained. In 
the sandboil and slit the following ones are considered: the 
horizontal and vertical gradients indicated by p and -q 
respectively; the head P and the discharge through the slit per 
unit of permeability denoted by Q ; and the head along the 
geotechnical structure indicated by $. The value of Q equals 
the reverse value of t|i for z = x , which represents the total 
discharge through the slit. 

Since dw/dz = 3*/3x - i 3*/3y , the values of p and q simply 
equal the real and imaginary parts of equation (5.04) or (5-07) in 
the sandboil and slit. The following relations are obtained: 

CO 

p = g = I A n sin( (n+H i,E J 
n=0 

(5-11) 

Here the value of | is specified by transformation (5.06), 

5 = 2/n arcsinV(x/e) 0 < x < S. (5-12) 
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If the pole r = x is involved, integration in (5.11) is carried 
out according to Cauchy's principle. The integral is also useful 
for x < 0 without need of Cauchy's principle. 

The values of P and -Q are equal to the real and imaginary 
parts of the potential u in the sandboil and slit. Therefore, 
with the aid of equations (5-05) and (5-10) the following holds: 

P = 
n=0 
r . 1 rsin((n-n ng} _ sin{(n+j-) ng}-, 
tQ

 An 4 I (n-H (n+n J 

O _ _ y A i rcosf(n-H ng} _ cos{(n»fr) tig)-, 
Q " n

l
=0
 An 4 I (n-H (n+n J 

(5-13) 

0 

The obtained results (5-11) and (5-13) may be checked by the 
conditions p = dP/dx and q = -dQ/dx . 

The derived quantities P , Q , p and q concern the sandboil 
and slit. Besides, the head along the structure is of importance 
too, because at a distance L from the outflow region this head 
represents the hydraulic head. Its value is directly obtained from 
the real part of the relation (5-10), realizing that at CD in 
figure 5•1 the value of C is in the range, 

t; = 1 + in = 1 - i 2/n arccosh/(x/g) 

with, exp(- J-n n) = J(x/l) + /(x/C - 1) 
x > e (5-11») 

The integral representation is simply equal to the real part of 
(5.05). For the head * along the structure then the following 
relation is arrived at, 
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(5-15) 

a - T f--nn A e rexp{(n+j-) nn} exp{(n-H nn}i 
" n=0 n k (n+F) ( n _^ 

o o 

The value of n is determined by relation (5.14). 

The groundwater flow is sufficiently described by the equations 
(5.11), (5.13) and (5-15)- Both representations, the integral 
equation and the Fourier expansion will be used in the numerical 
elaboration. 

Complex calculus leads to a solution for the groundwater flow 
field in an elegant manner. To include the sandboil in the 
description - thereby slightly modifying the geometry - an 
analytical continuation is put forward. Here particularly the 
power of the complex variable method is apparent, since it may be 
simply written, 

— = i — = p(z) + i q(z) (5.I6) 
dz 3x 3y v ' \J 1 

The boundary conditions are satisfied because for z = x it holds 
that a*/3x = p(x) and 3t/3y = -q(x) and the steady flow 
equation is valid too, as long as p(z) and q(z) are analytic 
functions. 

At the leading edge there are two flow features and one geometric 
property to be determined: the horizontal and vertical gradients 
and the height of the boil as function of position h(x) . On the 
surface of the sandboil the head ♦ vanishes. This requirement 
will lead to a condition for h(x) . The equality * = 0 is 
equivalent to Re{co(x+ih)} = 0 . To obtain h in explicit form 
this equation may be differentiated with respect to x . Using the 
chain rule, the following is arrived at, 
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_ r f 3 * . 3 * » /. . dhi i 
L l3x 3y' ' dx' -1 

or, 

dx " l3*/3yJ(y=h) (5-17) 

This is not a surprising result; it implies that the flow lines 
are perpendicular to the surface of the sandboil. 

The right-hand side of equation (5-17) is determined by (5.16). 
Though compactly expressed this equation is actually quite 
complicated. However, it is sufficient to consider a first order 
approach to the problem and to assume, 

30 a$ 
ix" • P(*> ip- • - «(x) (5.18) 

Automatically the above-mentioned flow features are found now. 
With the aid of equation (5.17) the following approximate value of 
h is obtained: 

dh „ P ix l P ix i 
dx q(x) h q(x) ( 5 < 1 9 ) 

Relations (5-18) and (5-19) are sufficient to proceed to describe 
stability characteristics, as will be shown in the following 
chapter. 



- 21 -

6. Limit state equilibrium in the sandboil 

Sandboils are due to particle transport caused by outflowing 
groundwater. In the previous chapter this flow is well described 
assuming a yet unknown distribution of the head in the sandboil 
and slit. In this chapter a condition will be derived in order to 
fix this head in the sandboil. It will appear later that the 
characteristics of the sandboils do not influence the ultimate 
result very much. Yet, if sandboils are not taken into account it 
is not possible to describe the piping process as a stable one. 
This will be demonstrated at the end of this chapter. At the 
juncture of sandboil and slit a gradient is required to move water 
from the slit. The presence of the sandboil takes care of this. 

Information on the stress state in the sandboil is necessary so as 
to determine the groundwater flow. The sand is believed to be in a 
state of limit equilibrium. A general calculation of the stresses 
in the sandboil is quite intractable but a simplified approach 
will lead to manageable and realistic results. In figure 6.1 an 
element KLMN at the surface of the sandboil is considered. It 
contains a great number of sand particles, so that the principles 
of continuum mechanics may be applied. 

The following forces per unit volume and per unit weight of water 
act on this element: 

- submerged unit weight of the soil element per unit weight of 
water, T*/T ; s w 

- horizontal gradient of the seepage flow; according to relation 
(5-18) a first order approximation is p ; 

- vertical gradient of the seepage flow; according to relation 
(5-18) a first order approximation is -q ; 

- normalized force at the bottom of the element, resolved into a 
vertical component, S, , and a component parallel to LM , S2 ; 

- normalized force at the left side of the element, S3 ; 
- normalized force at the right side of the element, S, . 
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The normal force per unit volume and per unit weight of water is 
indicated by s , the shearing force per unit volume and per unit 
weight of water is denoted by t . The sand has an angle of 
internal friction, 9 . The slope angle, 8 , is related to the 
height h(x) by the equation tan9 = dh/dx . As a first order 
approach equation (5-19) yields the relation: 

tan6 = fï- = E. (6>01) 
dx q ' 

The system of soil forces S, ... S, is statically undetermined 
and information from the entire field is required, which would 
demand finite element type calculations. But, if the influence of 
variations along the surface of the sandboil is neglected, the 
system can be forced into a unique solution. To this end the 
forces at the right and left sides of the element will be supposed 
to be of equal magnitude and opposite direction. 

Fig. 6.1 : Stress state in the sandboil 
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The soil forces" per unit volume and per unit weight of water at 
LM are now specified. Horizontal and vertical conditions of 
equilibrium of the soil element KLMN result in the following: 

S. = r/T - q - p tanB 1 s w 
(6.02) 

S2 = P / cos8 

These forces are related to each other by the condition of limit 
equilibrium. If the soil is in a limit stress state then the 
effective soil force must lie on the Mohr-Coulomb envelope as 
plotted in the s-t diagram in figure 6.1 . Applying the sine 
law this gives the following relation between St and S2 : 

^ — = ^ (6 01) sin(J-ir - 6) cos9 sin(6-9) 

Substitution of equations (6.02) into condition (6.03) relates the 
horizontal and vertical gradient to the slope angle, 

{T*/T - q - P tan6} sin(9-6) = p cosS / cos8 

or, 

T/r = q + p cot(e-e) (6.o4) 

This simple relation together with (6.01) describes the limit 
stress state of the sandboil. Elimination of the slope angle by 
substitution of (6.01) yields a relation between p and q only: 

q + p2/q t'a 

1 - p/q cotG T w 

Since this equation is based on a first order approximation the 
quadratic term is not appropriate. Without it, the final result is 
as follows: 



- 2h -

Y /Y' q + p/q COt0 = 1 w s (6.05) 

It is indeed a simple formula. However, it should be noted that 
this relation is not linear. Condition (6.05) will be used to 
determine the values of the head in the sandboil. 

It is interesting to visualize the relation (6.05) between p and 
q . For this purpose this equation is rearranged as, 

Y /T' p cote w s (Y /T q w s \Y (6.06) 

The relation obviously represents a parabola, as shown in 
figure 6.2 . The influence of the slope of the sandboil is given 
by the difference between the straight line and the parabola. It 
is seen that the maximum value of p is k Y*/Y tan0 . 

* s w 

Y /T q w s 

parabola linear 

Y IT p cote 
w s 

Fig. 6.2 : Relation between p and q in the sandboil 
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The necessity of the sandboil for the stability of the problem is 
now easily understood. Without it p is discontinuous, as its 
value vanishes along line DA while a gradient in point B is 
required for the water to flow out of the slit (see fig. 4.1). 
According to (5-H) q would become infinite then, thus violating 
(6.05). Now that it is present q remains finite and a solution 
for (6.05) is always possible for continuous p . 





- 27 -

7- Flow in the slit 

The sandboil in the outflow region is a result of material which 
has been moved from underneath the structure. This erosion process 
is associated with the formation of a slit. As the slit becomes 
longer, locally the permeability increases and the gradients 
reduce. There comes a point when for a given overall hydraulic 
head equilibrium is restored. The particles at the bottom will 
then be in limit equilibrium. 

This state of limit equilibrium is the condition to fix > the yet 
unknown head of the flow in the slit. To investigate the limiting 
condition two aspects must be dealt with: the interparticle 
forces, and the force on the particles which is exerted by the 
flow. In this chapter the latter is discussed. The character of 
the interparticle forces is investigated in chapter 8 . 

/////,„//// structure 

slit 

sand 

Fig. 7-1 : Flow in the slit 
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In figure 7.1 a detail of the geometry of the slit is shown. The 
depth of the slit is denoted by a(x) . The character of the flow 
in the slit, whether laminar or turbulent, depends on the Reynolds 
number. The product of average velocity and slit depth is equal to 
the total discharge through the slit and so the Reynolds number is 
R = kQ/v . Here the coefficient of permeability is denoted by 
k , the kinematic viscosity by v . If R < 600 to 800 then the 
flow is laminar. Lamb (19̂ 5)t de Vries (1979)- In practice this is 
often true. For large permeabilities and/or large structures the 
number may go beyond this range. However, in this study only the 
laminar flow condition will be analysed. 

A steady state laminar flow in general is governed by the Navier-
Stokes equations, Batchelor (1983). The water velocity will be 
denoted by u in horizontal and v in vertical direction; the 
piezometric head in the slit by ♦ . If the gravitational 
acceleration is indicated by g and the kinematic viscosity by 
v , the Navier-Stokes equations are in case of incompressible 
water, 

,a2 a2 , 

(7.01) 
,3* 32 , 

These equations consist of a convection term, a piezometric head 
term and a friction term. The convection term is quadratic, the 
other two are linear. For small Reynolds numbers the convection 
term is neglected and the equations simplify to a linear system: 

a» ± f8_f_ a' 1 
3x = g l3x* * 3y*J U 

(7-02) 
1*. _ v. flf_ + if_] 
3y = g <3x2 3y2' V 

(uix- + 
3_ 
ay' 

3<t> 

ax ay 
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As soon as u and v are determined it will be demonstrated that 
indeed the convection term is of minor influence. The set of two 
equations (7.02) contains three unknown quantities and so 
additional information is required. The equation of continuity 
must still be satisfied. In case of incompressible water it reads, 
Batchelor (1983), 

r - ' i r = 0 ' (7-03) 
3x 3y w -" 

From equations (7-02) and (7-03) the velocity and the piezometric 
head in the slit can be determined under the present boundary 
conditions. These conditions are specified in terms of the 
velocity. At the top of the slit the velocity vanishes; at the 
bottom the velocity is directed upwards and equal to kq . The 
depth of the slit is as yet unknown. Therefore, an extra condition 
is imposed, i.e. the continuity of the head, * = P . 

In order to solve the flow pattern in the slit fruitful use of 
complex calculus is made. First it is shown from equations (7-02) 
and (7-03) that the piezometric head is a harmonic function. This 
is so because differentiating the first equation of (7-02) with 
respect to x and the second one with respect to y leaves the 
Laplacean type of equation for ♦ after condition (7.03) is 
applied, 

f — + — 3̂x2 + 3y2 * = 0 (7-04) 

If the x,y-plane i s now identified with the plane of the complex 
variable z , the harmonic function ♦ can be considered to be 
the real part of a complex field o> = ♦ + it|i . The real and 
imaginary parts of this field satisfy the Cauchy-Riemann 
conditions, 
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The physical meaning of the imaginary harmonic part i)> will 
appear later. The basic functions to be determined are the 
velocity components u and v . Since the functions * and 1(1 
are harmonic and obey the Cauchy-Riemann conditions (7-05) the set 
of equations (7-02) can be rearranged into two equations of the 
Laplacean kind, 

fa2 32 , f2v *, 

f 3 2 3 2 , f2v 
(7-06) 

y ♦) = 0 

There are now three equations of similar form (7.04) and the set 
(7.06) which can be analysed using complex calculus. In the 
development two only of them need to be solved, because ♦ can be 
expressed by the following identity, which is a consequence of 
(7.03) and (7-05). 

3 I *1 3 I ,1 ^ v
 f3u 3Vi 

iy (y ♦) + ̂  (y *) - — (^ + î ) 

- k f T u ' y ; i "fe ( T v - y i ) (7-07) 
An expression for I|I is obtained by using (7-05), (7-06) and 
(7-07), 
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Hence, 

Now the physical meaning of I|I becomes clear. Working out 
equation (7-08) yields, 

* 2v ,3u _ av. _ - v. ,au _ av.| 
v g l3y ax' v g l3y 3xJ 

So i|) simply represents the vorticity of the flow, normalized by 
the parameters g and v to obtain the same dimension [m] as the 
head * . 

Generally a solution of the Laplacean may be written as the sum of 
complex analytical functions of the variables z = x + iy and its 
complex conjugate z = x - iy . This is true, since one may write: 
3/3x = 3/3z + 3/3z and 3/3y = i (3/3z - 3/3z) . By implication 
it follows that 32/3*2 + 32/3y2 = 't a2 /3z3z" , Garabedian (1967). 
The sum of the two analytical functions must be such that the 
boundary conditions are satisfied. The ones at the bottom of the 
structure are easily incorporated. Here, for y = 0 , the velocity 
vanishes so that u = 0 and v = 0 . This can be satisfied by 
subtracting two analytical functions of equal form. Bearing this 
in mind, the following relations are obtained, solving (7-06), 

2̂ /g u = y * - i {U(z) - U(I)} 
(7.09) 

2v/g v = y ♦ + i {V(z) - V(z")} 

Here U and V are analytical functions which will be determined 
later on from the remaining boundary conditions. The proposed form 
for u and v (7-09) yields expressions for ♦ and vp with the 
aid of equations (7.07) and (7.08), 
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* = V'(z) + V'(z) + i {U'(z) - U'(z)} 
(7.10) 

* = U'(z) + U'(z') - i {V'(z) - V'(z")} 

Both the flow equations (7-02) and the condition of continuity 
(7.03) as well as the boundary conditions for y = 0 are now 
satisfied. The vorticity <l> is no longer needed and can be 
disregarded. It contains no useful additional information on the 
head or the velocity field. 

The last step of the calculation consists in fitting the boundary 
condition at the bottom of the slit. An exact approach is rather 
hard to carry out, and therefore a simplified route is taken. The 
following considerations are taken into account: the depth of the 
slit is of the order of magnitude of the particle size. The length 
scale of the slit is of the order of the dimensions of the 
structure. Therefore, if variations in the x-direction are 
moderate, then a first order approximation of the solution (7-09) 
and (7.10) is suitable for this study. The following expansions 
are appropriate: 

v/g u * 2 y U' (x) + y2 V " (x) 

v/g v = - y2 U"(x) - J- y' V " (x) 

(7.11) 
* * 2 V' (x) 

In the equation for * the contribution of U is negligible. 
This is so because U will appear to be of higher order than V . 
This approximated solution (7.11) allows explicit elaboration of 
the as yet unknown functions U and V as well as the depth of 
the slit a . This is achieved by applying the remaining boundary 
condition for y = -a , which is u = 0 , v = kq and ♦ = P , to 
the solution (7.11). The following result is then obtained 
introducing the intrinsic permeability coefficient, K = kv/g , 
and bearing in mind that p = P': 



- 33 -

2 V'(x) = P 

4 U'(x) = a p 

(7.12) 

ItKq = - a2 (a p)' + |- a1 p' = - J- (a3 p) ' 

The third equation is the equivalent of the condition of 
continuity. This condition relates the depth a to the seepage 
gradients p and q . In integrated form the relation will be 
useful later on for further calculations. Since q = -dQ/dx 
integration is easily performed, 

12 K Q = a3 p (7-13) 

No integration constant appears in (7.13) because at x = £ a 
vanishes together with Q . 

Through (7.12) the calculation of the flow in the slit is 
completed. While the flow pattern itself is irrelevant for the 
piping problem it is still interesting to see the result and the 
effect that the applied approximations have had on it. Using 
(7.11), (7.12) and (7.13) the following description of the flow 
field is arrived at: 

v/g u = J- p y (y+a) 

v/g v = - J- p' y2 (y+a) + icq (y/a)2 

(7-It) 
* = P 

It is clear now why the convection term in (7.01) is not relevant. 
From the solution (7.1*4) it follows that the relative influence of 
this term is of the order of kqa/v which is a kind of Reynolds 
number for the vertical velocity. This number is always small. 
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Obviously the shape of the solution for u and 4 is very much 
like the Poisseuille solution for pipe flow (where the vertical 
velocity is absent). For these small values of the slit depth the 
vertical velocity apparently does not very much influence the 
structure of the horizontal velocity field and the piezometric 
head. It must be borne in mind, though, that p and a are 
variables which are controlled by equation (7-13)• In the 
classical Poisseuille solution the values of p and a are 
constants, see Batchelor (1983). 

For the description of the phenomenon of piping two quantities 
related to the flow in the slit are particularly relevant: The 
continuity of flow, which is adequately described by equation 
(7.13)t and the shear stress or drag force along the bottom of the 
slit, which affects the particle equilibrium. The shear stress x 
is connected to the velocity through the equation, 

; = T M i * ♦ !*} (7.15) 
w g l3y 3xJ v ' -" 

From the solution (7-09) and (7-10) and applying (7.05) and the 
approximation (7.12) it is found that the expression for this 
shear stress is as follows: 

T = Tw [y !£♦ IT(z) + U'(z)] * Tw p (y ♦ ̂ a) (7.16) 

The drag force at the bottom follows directly by substituting 
y = -a . This value is to a degree an approximation for the shear 
exerted on the bottom because the lower boundary of the slit 
slopes. But the value of a increases in the x-direction so 
slowly that no major effect is to be expected. Finally then, the 
following value of the drag force denoted by T is found, if 
T = -T : y=-a 

T = T J- p a w z (7.17) 
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A similar expression for T is also found if the classical 
Poisseuille solution for pipe flow is applied. The equations for 
the continuity of flow (7-13) and the drag force at the bottom of 
the slit (7-17) will be used for further investigation of the 
mechanism of piping. These equations are simple in structure due 
to the approximation procedure applied. It is noted that more 
elaborate approximations are unnecessary for the conformations to 
hand. 
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8. Limit state equilibrium in the slit 

This chapter deals with the second aspect of limiting stability as 
put forward at the beginning of the previous chapter: the 
interparticle forces. The question of limiting stability at the 
interface of soil and water cannot be solved by regarding the soil 
as a continuum. This is due to the fact that continuum mechanics 
allow the effective vertical stresses to vanish near the bottom of 
the slit. The shearing stress which is associated with the near 
parabolic velocity profile in the slit itself, therefore, cannot 
be dealt with then in a Coulomb manner. Failure phenomena due to 
vanishing skeleton stress need not be taken into account, since 
the vertical gradient is of minor importance. 

To carry out single particle force balance for a grain at the top 
of the interface, four distinct forces must be considered. The 
horizontal ones are the drag force due to channel flow and the 
horizontal seepage gradient. The vertical ones are the weight of a 
particle and a force associated with the vertical seepage 
gradient. The condition of limiting equilibrium must be imposed; 
this yields a connection for the forces for a given mode of 
motion. 

A heterogeneous mixture in steady state shows a landscape where 
the large grains stick out and the small ones are well buried. The 
treatment of the single particle stability analysis can be made 
arbitrarily complex by taking into account an increasing number of 
geometric features of the packing and variety in particle shapes. 
Engineering interest however must focus on a relatively simple 
criterion for limiting stability. An approach with three-
dimensional aspects using spherical particles is offered here. The 
result is a rule not unlike a Coulomb criterion. At the same time 
the preference for the rolling mode of motion is shown while the 
sensitivity to a moderate selection of geometric conditions is 
investigated. The approach is suggested by Koenders (1987) . who 
worked it out for two dimensions. 
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a: vertical section b: cross section A-A 

cosa cosa + 4y2 /d') 

cosa cosa + 4y2 /d' ) 

j-d sina cosa 

c: three-dimensional sketch of the assembly 

Fig. 8.1 : General geometry of the top particles 
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The general geometry of a spherical particle at the top of the 
soil/water interface is outlined in figure 8.1 .A top particle 
P is shown supported by particles in the bed. The vertical forces 
working on the top particle are collectively characterized by R3 
and are assumed to apply in the centre of gravity. The horizontal 
forces are united in a force with components R, and R2 with 
application point at a distance y above the centre of the grain. 
The supporting particles most likely are 3 or ^ in number. In 
limiting equilibrium, however, the force at the contact with the 
rear particle(s) vanishes while the contact force at the front, 
consisting of the resultant of the forces R, , R2 and R3 , is 
supplied by only two particles. For reasons of simplicity these 
supporting particles lie on the same level and the diameter of all 
particles is chosen equal and denoted by d . 

The geometry of this assembly is characterized by the branch 
angles a and a and the shift y . In picture 8.1.a a 
vertical section is presented in such a way that the supporting 
particles Q and R show the same projection S ; a is the 
angle between PS and the vertical. In picture 8.1.b the cross 
section AA of the vertical section is presented. Here, a is the 
angle between PQ or PR and PS . 

The limit equilibrium is only satisfied if the resultant of the 
forces Rj , R2 and R, lies in the plane TUV . Therefore, the 
angles fi and {$ are introduced. In picture 8.1.C a three-
dimensional view is presented of the tetrahedron TPVW , where {S 
is the angle between TW and the vertical and P the angle 
between TW and TV . The values of f> and $ are related to 
the branch angles a and a and the shift y . These relations 
directly follow from picture 8.1.C , 

tanfj = sina / (cosa + 2y/d seca) 

sinfi = sina cosa / /(cos2 a + 4y/d cosa cosa + ky* /dz ) 
(8.01) 

tanp" = sina / /(cos2 a + 4y/d cosa cosa + 4y2 /d2 ) 
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The first two expressions are equivalent. They are presented since 
they are both used in the results obtained later. 

The fact that the resultant of the forces Ri , R2 and R3 lies 
within the plane TUV implies that loss of stability associated 
with rolling is investigated by considering equilibrium of 
moments. Two ways of rolling appear to be relevant. The first one 
is that sphere P rolls in close contact with both spheres Q 
and R . The other one happens when spheres P and Q have lost 
contact and rolling occurs with respect to another orientation. 
This restricts the size of the force R2 . The following two 
equations are associated with this, 

Rj = R3 tanp 
(8.02) 

Rz £ Rj cscp tanp" 

Apart from the rolling mode, limiting equilibrium might occur in 
the translational mode when the normal and tangential forces at 
the contact points reach the interparticle friction angle 6 . If 
this happens, the top particle will not roll but slip backwards, 
keeping in touch with at least three supporting particles. The 
interparticle force between grains P and R is directed along 
TV , which makes an angle e with the normal along PV . The 
rolling mode will prevail if e S 6 . The value of e follows if 
applying the cosine rule in the triangle TPV of picture 8.1.c . 

cose /(l + 4y/d cosa cosa + 4y2/d2) = 1 + 2y/d cosa cosa 

which is equivalent to, 

tane = 2y/d /(l - cos2a cos2a) / (1 + 2y/d cosa cosa) 

Therefore, since rolling occurs IF e & 6 or tane £ tanó the 
following condition must be satisfied, 
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tanó £ 2y/d [/(l - cos2a cos2a) - cosa cosa tanó] 

This can be rearranged to, 

sinó 2 2y/d sin[arccos(cosa cosa) - <5] (8.03) 

This condition is always met if 2y/d S tanö . In general 
protruding particles show smaller values of the branch angles and 
the shift, while well embedded particles show the larger values. 
Since the sand mixture is heterogeneous, the sand-water interface 
never will be neatly flattened and there will always be protruding 
particles. That means that the onset of motion due to loss of 
stability of single particles will always be dominated by rolling 
and that (8.03) supplies information about the size of the branch 
angles and shift to be expected. 

It has been found that the limit stability can be expressed in a 
Coulomb manner. Using (8.02) the sensitivity to the bedding angle 
is easily investigated. This angle, which is also known as the 
angle of repose, relates the horizontal and vertical forces on a 
particle and will be indicated by 9 . If the flow angle is 
denoted by A with R2/Rj = tanA , the total horizontal hydraulic 
force is equal to R,secA . Then from (8.01) and (8.02) it 
follows: 

tanQ = R^JiecA = sina secA ( 8 o 4 ) 

R3 cosa + 2y/d seca 

The flow angle is limited by the second equation of (8.02), 
because the result (8.0*0 is valuable only if spheres P and Q 
remain in contact. If R2 is beyond its critical value then an 
analogous approach can be set up in a different orientation, 
shifted roughly 90° , if the top particle is surrounded by 't 
supporting particles. Therefore, it is sufficient to consider the 
appropriate values of A for the current orientation. 

The range of A is determined by the second equation of (8.02). 
Using (8.01) this equation can be written as, 
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R2 é R, csca tana (8.05) 

This result appears to be independent of the parameter y . Now, 
the maximum flow angle A can be expressed as tanA = R2/R, . 
Then, with the aid of (8.05) an expression is found for A , 

tanA = csca tana (8.06) 

In general packings are not regular and a variety of flow 
directions must be accounted for. It is fair to determine an 
averaged value of (8.06) with respect to A . This can be carried 
out by integration. The average value of 0 in the range from 0 
to A is defined by, 

tan9 1 sina_secA__ dA {8>07) 

A "L cosa + 2y/d seca 

The integral is a standard one to be found for instance in Grobner 
and Hofreiter (1975) part I , 331 , 9c . The result of 
integration is, 

tanê = 1 sing arctanh(sinAj {8<o8) 

A cosa + 2y/d seca 

This expression yields not yet the global average bedding angle. 
As mentioned before there are four orientations. The true average 
is therefore determined by: I A tan9 / I A , where the I sign 
indicates summation over the four orientations and I A = n . The 
average bedding angle becomes then, 

1 4 sina arctanh(sinA ) 
tan9 = - I - ^- (8.09) 

n'n=l cosa + 2y/d seca 

Quite a few geometric features of the packing are involved in this 
stage. As mentioned in the beginning of this chapter the goal is 
to obtain a reliable but simple criterion for the limiting 
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stability. Therefore, a simplification will be put forward. Right 
now the supporting particles form a quadrangle. If they form a 
rectangle, however, symmetry is obtained between orientations 1 
and 3 and between 2 and 4 so that A, + A2 = J-n . Moreover, 
from picture 8.1.c it can be seen that the length of OW in 
orientation 1 is equal to the one of VW in orientation 2 and 
vice versa. This implies that, 

sinai cosa! = sina2 

sina2 cosa2 = sinaj 
(8.10) 

These conditions, substituted in equation (8.06), indeed imply 
that A, + A2 = J-JI . 

Meanwhile, the bedding angle can be written as, 

A _ 2_ r sing, arctanh(sinA, ) sing, arctanh(sinA7 )-. .« ... 
n cosa, + 2y/d secg, cosg2 + 2y/d secg2 

It is convenient to express the items with index 2 into items 
with index 1 . The set (8.10) can be rearranged with use of (8.06) 
to, 

sina2 cosa2 = sing! cosg, tanA, 
(8.12) 

cosa2 cosa2 = cosg, cosa, 

From picture 8.1.C it may be noticed that the first' equation 
concerns the quotient of VW and OW in orientations 1 and 2 . 
The second one says that OP in both orientations must be equal. 
The bedding angle (8.11) now can be expressed in the index 1 
only, keeping in mind that Ai + A2 = J-u , 

. " _ sing rarctanh(sinA) + tanA arctanh(cosA)1 ,o .,\ 
J-JI (cosa + 2y/d seca) 
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Since from now on only one orientation is concerned, there is no 
need anymore for an index. The ultimate result of the bedding 
angle is obtained by combining (8.13) with (8.06) into, 

v a sing arcsinh(tang/sing) + tang arcsinh(sina/tang) .„ ^. 
J-n (cosg + 2y/d secg) 

The smaller branch angles indicate the more protruding particles, 
while larger ones correspond to well embedded grains. A word must 
be said about the values of the branch angles to be expected. The 
smallest value a may have is 30° . A maximum value is likely to 
be 60° , when the top particle is half embedded between the 
supporting particles. The value of a may lie in theory anywhere 
between 0 and 90 . However, particles with an angle in the 
range from 0° to 45° are relatively weak and easily moved 
away. Particles, resisting the flow will have typically an angle 
in the order of 45° to 75° • For angles beyond, there is no 
clear distinction anymore between top and supporting particles. 

The shift y is not an arbitrary parameter but depends rather on 
the current sizes of a and a . Its value will decrease when the 
branch angles become smaller and vice versa. It is quite difficult 
to derive a relation, but some qualitative aspects may be stated. 
It is obvious that the position of the crest of the supporting 
particles controls to what extent the free water flow penetrates. 
This position with respect to the centre of the top particle is 
equal to J-d - d cosg cosg . If this quantity is negative, what 
means that the crest of the supporting particles lies below the 
centre of the top particle, then the value of y virtually will 
vanish. But if all particles are well embedded, which is the case 
for a = 90° , then the top half of all the particles is in close 
contact with the free water, leading to values of y equal to 
approximately J-d . Therefore, as a rough estimate of the shift y 
the following is proposed, 
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2y/d = J- - cosa cosa i È cosa cosa 
(8.15) 

2y/d = 0 |- < cosa cosa 

Now it is the right moment to check the condition of .the rolling 
mode (8.03). Together with (8.15) this may be written, 

sinö ë (J- - cosa cosa) sin[arccos(cosa cosa) - <5] (8.16) 

It appears that there is a minimum value of cosa cosa , depending 
on the interparticle friction angle, beyond which rolling fails 
due to slip between the particles. Rowe (1962) suggests values of 
the friction angle in the order of 20° , arriving at a minimum 
size of about 0.12 for cosa cosa . This matches very well the 
afore considered range of the branch angles. 

The relation (8.14) combined with (8.15) presents a description of 
the bedding angle as function of the branch angles. Figure 8.2 

0 [DEG J 

a = 3 0, 35, ■JO, 45, 
[DEG] 

50, 55 

a [ 

, 60 

DEG] 

45 60 75 

Fig. 8.2 : Relation between bedding angle and branch angles 
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shows the result for various values of a and a , leaving a 
relatively sharp criterion for tanQ with 9 in the range of 
50° to 55° • Similar values are reported in the literature by 
experimentalists, Fernandez Luque and Van Beek (1976), White 
(19^0). For non-spherical particles higher bedding angles are to 
be expected. 

The relation (8.14) is only valuable for a top particle at the 
interface of soil and water. The behaviour of particles well 
within the bed is presented in various papers. A result found by 
Dantu (1961) as well as Rowe (1962) is, 

sine = J- + h/3 tan<5 (8.17) 

Here, the interparticle friction plays a role due to translational 
motion rather than a rolling one. Though this formula has no 
relation to the result (8.14), the value of the bedding angle 
shows the same order of magnitude, since 6 s 20° . 

The horizontal drag is a generalized shear force per unit area. 
The drag per particle depends on the amount of grains per unit 
area. Therefore, a factor C is introduced, called drag factor 
and defined as the ratio of influenced area and particle cross 
section. Its value depends very much on the particle distribution 
and the density of the top layer. During the erosion process the 
smaller particles are easily transferred, while the larger ones 
resist the flow. White (19^0) has performed experimental research 
on the equilibrium of grains on a stream bed. He found that the 
factor C ranged from 3 to k . Roughly these values correspond 
to an amount of 65# to 75# smaller grains. For the diameter d 
therefore a value between d, 5 and d7 5 must be chosen. 

An elegant and simple criterion for the ratio of horizontal and 
vertical force on a particle is defined now. Besides, the actual 
drag factor of the shearing force on a particle is specified. What 
is left to be done is the further articulation of the forces 
itself. The following forces play a role in the failure criterion: 
the drag force, the seepage gradient and the unit weight of 
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particles. In the horizontal direction the drag is defined by 
equation (7-17); the component of the gradient by p . The 
gradient gives a result similar to the buoyancy of a particle in a 
fluid. The drag per particle has already been discussed, 
introducing the drag factor C . The resulting horizontal force per 
unit volume and per unit weight of water is then p J-C a/d + p . 
The unit volume concerned is the volume of a sphere, n/6 d* . 

In the vertical direction two buoyancy type forces act: the 
gradient and the submerged weight of particles. Therefore, the 
vertical force per unit volume and per unit weight of water is 
likely to be T'/l' - q , where 7' indicates the submerged unit 
weight of particles. However, Martin (1970) bas discovered that 
the seepage force on the interfacial grains differs from the one 
on grains well within the bed. The reason is that the pressure 
gradient collapses across the top particles. Consequently, the 
seepage force on a top particle is lower than the assumed value of 
q . Martin introduces a factor C , called here surface factor, by 
which q must be multiplied in order to obtain a realistic 
seepage force. Values of C ranging from 0.35 to 0.50 are 
determined. 

The ratio of the horizontal to the vertical force on a top 
particle is equal to tan9 . This leads to the following 
condition, 

C q ♦ p (K a/d + 1) cote = Y'/T (8.18) 
p w 

Here, a is defined by equation (7-13), 

p a' = 12 K Q (8.19) 

Relation (8.18) together with (8.19) serves to select a particular 
solution for the flow in the slit, just as equation (6.05) does 
for the sandboil. 
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9. Evaluation 

In the previous chapters elements of the analysis of piping under 
a geotechnical structure have been studied. These are now put 
together. First a short review of the intermediate results is 
given. The starting point is the condition of limit equilibrium in 
the sandboil represented by equation (6.05), 

Tw/Ts q + p / q c o t 9 = 1 (9-01) 

In the slit, similarly limiting equilibrium and continuity of flow 
are expressed by relations (8.18) and (8.19), 

C q + p (}C a/d + 1) cote = r/Yw 

(9-02) 
pa' = 12 K Q 

In these equations the horizontal and vertical gradients, p and 
q , as well as the head P and the flow function Q are related 
to each other. The groundwater flow problem as solved in chapter 5 
may still assume a great variety of forms depending on the choice 
of the coefficient A in equations (5-H) and (5-13). 
Specifically for 0 < x < £ these equations are, 

dP 
d x = I An sin{(n+fr) n?} 

n=0 

i n=0 

(9.03) 
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p _ y « I rsin{(n-S-) n£) _ sin{(n+?-) ng}, 
" n=0 n U (n-i,) (n+|-) 

(9-04) 

_ y 2 rCos{(n-j-) nS} _ cos{(n+j-) n£}-. 
~ n=0 n ^ ( n" H (n+^> 

. i(p/(i-] dr_ . 2 /( [dj! dr 
u J v ve-r' r-x n v J dr V(e-r) 
0 0 

Here, the transformed value £ is copied from (5-12), 

? = 2/n arcsin/(x/e) (9-05) 

Alternatively instead of giving a set for the A an influence 
function p may be prescribed. In so doing an integral type 
solution is sought rather than expressing the result in terms of 
Fourier series. It must be stressed that the two alternative 
solutions are entirely equivalent. Conditions (9-01) and (9-02) 
are employed to force (9-03) and (9.04) into a solution. 

For the calculation it is essential to know the size of the 
sandboil and the slit. It is realistic to suppose that the amount 
of sand transferred from the slit is equal to that transferred to 
the sandboil. If one ignores the fact that the density of the sand 
has changed then a fair assumption is that the volumes of sandboil 
and slit are equal. A first order value of the height of the 
sandboil follows from (5.19), h = P/q . Therefore, the width b 
of the sandboil is determined by, 

b e 
ƒ - dx = / a dx (9-06) 
0 q b 

The value of the erosion length t is related to the applied 
hydraulic head H across the structure. For reasons of simplicity 
the hydraulic head will be considered to be the value of the head 
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along the structure at a certain distance x = L , .with L > 2 . 
The value of L corresponds to the length of the structure plus 
the length of the sandboil. Since the sandboil is much smaller 
than the structure, L is roughly the length of the structure. The 
results are slightly influenced by the fact that there is no real 
free surface at x = L but rather a gradually increasing head. To 
understand the mechanism of piping this is not important. 
The head along the structure is introduced in equation (5-15)• 
Here, the value of n is given in (5.1**). Substitution of $ = H 
and x = L leads to the following condition, 

H - T f-nn A E rexp{(n+n im) exp{(n-H nn}-. H " i ' 1 ' A n M (n+fr) In-V) J 
n=0 

S. i. 
1 f D nL_2l £r_ 2 f/. ., f dP dr 

(9-07) 
dr 
-r) 

where, 

exp(- J-n n) = /(L/e) + /(L/e - 1) L > H (9-08) 

Through the system (9-01) ... (9-08) the as yet unknown influence 
function p or alternatively the coefficients A can be 
determined. Note that because of (9-07) the hydraulic head H 
cannot exceed a critical value. This will be elucidated later on. 
The general nature of the solution is investigated before 
proceeding to a large-scale numerical elaboration. If one 
considers dimensionless quantities it appears that, generally 
speaking, a relation between H/L and 6/L is put forward for a 
given set of parameters. This relation is written in shorthand as 
follows: 

H H 9. - KL J- f' d 
L = L [L : C ^ ' T tanS ' C tan9 • L • 9 • e] (9,09) 

w 
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where, 1+e = T"/Y" ; e is the void ratio. The way the soil P s 
parameters appear in the formula is such that only certain 
clusters need to be considered. But from an engineering point of 
view it is convenient to specify the parameters by their physical 
relevance. Therefore, the following relation is suggested, 

H H S. K d . T" 
L = L k : d^ ' L ' C • C • 9 ' 0 ' f • el < 9- 1 0> 

w 
The results will be plotted in the following manner: H/L on the 
ordinate and S./L on the abscissa. A curve is defined for each 
combination of parameters after the semi-colon in formula (9-10). 

In order to compute relations (9.10) a computer program has been 
written. As a first trial the procedure of collocation has been 
chosen employing the Fourier expansion of the solution. The result 
turned out to contain very unpleasant oscillations, most probably 
due to the abrupt transitions on the boundaries. Another numerical 
scheme based on descriptions of the integral representation of the 
solution suffered a similar'fate. 

Obviously a method like collocation used without further 
precautions is insufficient to deal with sharp transitions such as 
may occur at the boundaries. Therefore, a different or at least a 
modified procedure should be followed. Broken off Fourier 
expansions are a strong tool if the coefficients can be obtained 
by integration. If the collocational principle can be replaced by 
a variational principle, the broken off Fourier series becomes 
much more attractive. There is, however, the difficulty that the 
variational approach has a non-linear character and therefore this 
approach is better avoided. 

A modified numerical procedure is now outlined. It must be borne 
in mind that a description by Fourier series is general and 
arbitrary shapes can be handled. Wild curves are to be expected in 
the transition zones. The solution relies on the implementation of 
adapted shape functions in the computer program. A more thorough 
investigation of the solution in the transition zones is needed. 
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This is carried out in appendix A . In appendix B a full 
implementation is shown for all three transition zones. It is 
inconvenient to determine the special shape functions from the 
Fourier representation of the problem. Rather they are obtained 
from the integral form. 

In the appendices it is demonstrated that the abrupt behaviour is 
well captured by hypergeometric shape functions. Such functions 
can deal with any continuous characteristics. They are readily 
implemented in a numerical scheme. As was to be expected the 
oscillations disappear and a physically realistic result is 
obtained. In Sellmeijer (1986) the influence of hypergeometric 
shape functions is demonstrated under simplified conditions. 

The task of describing the mechanism of piping is now completed. 
The results may be evaluated. For a good overall picture it is 
sufficient to show three distinct cases: a massive dike with a 
length of 80 m ; a small dam with a length of 8.0 m ; and a 
laboratory test model of length 0.80 m . The soil parameters 
chosen in all three cases are equal to those assessed by De Wit 
et al. (198I) during their laboratory tests. 

Figure 9-1 shows the computed relations between H/L and S./L . 
It can be clearly seen that a critical value of H exists. Beyond 
that, equilibrium cannot be reached. To the left of the critical 
H the erosion length JZ is stable. Here a fluctuation in H is 
compensated for by a small increase in 12 . But to the right of 
the critical head a variation in 8 demands a subsequent decrease 
of H . If the hydraulic head stays constant a progressive process 
of erosion is set in motion, resulting in the total collapse of 
the dike. This behaviour - a stable situation followed by 
progressive erosion at full swing - exactly coincides with 
observations in practice. 

This qualitative outcome is encouraging, but the real interest is 
how the theoretical result relates to the measurements of the 
laboratory model tests of De Wit et al. (1981) . Model tests were 
performed in a container, where the outflow region was similar to 
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Fig. 9.1 : Relation between H/L and J/L 
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Fig. 9.2 : Distributions of p , P , q and Q for e/L = 0.4 
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that in figure 4.1 . The dike length was varied from 0.80 m to 
2.40 m and three types of sand were used. The tests were repeated 
several times. Most of the tests were performed with river sand 
for a dike length of 0.80 m with the measured critical head 
ranging from 0.25 to 0.35 m . The result of the calculation is 
0.28 m . Measurements and calculations for the other types of sand 
show the same tendency. The agreement is excellent. 

So much for the small container tests. The large tests need some 
explanation. There the development of the sandboils was 
unintentionally restricted because of the way in which the test 
was designed. The sandboil plays a somewhat ambivalent but crucial 
role. It must exist in order to ensure that water can be released 
from the slit, and once it is allowed to arise freely its 
properties do not influence the critical head significantly. When 
the sandboil's development was restricted as in the above 
mentioned large tests, the measurements hardly exceeded those 
obtained in the small container tests. Therefore the results of 
these large tests are of no use in checking the model under study. 

Figure 3.2 shows some intermediate results of p , P , q and Q . 
It can be noticed that these graphs show a rather abrupt 
transition behaviour. But due to the stable numerical procedure 
hardly any oscillations occur. A last word must be said about the 
accuracy of the calculation procedure. The conditions (9-01) and 
(9.02) are satisfied to a high degree, but the solution appears to 
have some flexibility in the relation between p and q . A 
variation in p upwards is easily compensated for by a smaller 
value for q and vice versa. This is due to the tendency to 
flatten down the transitions for a limited number of shape 
functions. There is hardly a global influence but it helps 
suppressing oscillations resulting in an ultimate accuracy of the 
order of 1% in the equilibrium conditions. This figure is not of 
great significance in the results. 
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10. Design formula 

In the previous chapters a criterion for the appearance of piping 
is successfully derived. This criterion is the critical hydraulic 
head which can appear across the geotechnical structure. A 
computer code is defined in order to determine this critical item. 
Examples of calculation are shown in figure 3.1 • The computer 
program is very useful to obtain quantitative results, but the 
code of the solution is not yet clear enough to understand the 
structure of the results. Moreover, a tractable engineering tool 
is preferred in order to design dikes and dams in practice. 

It is possible to obtain qualitative insight into the solution by 
approximation. The result will turn out to be a reliable condition 
for the appearance of piping. To achieve this the following 
starting points are taken into account: 

i ) From the results of the calculations it is seen that the 
influence exerted by the parameters of the sandboil is 
minimal, though its presence is vital. As an approximation 
the function of the sandboil may be simulated by a value 
p * 0 in x = 0 , determined by the condition in the slit. 
As a consequence the value of q will then show a 
logarithmic singular behaviour in x = 0 . It must be checked 
if this adversely affects results. 

ii ) The condition (9.02) contains the value of q . It appears 
from figure 3.2 that q is rather constant except for the 
very beginning and end values. As an approximation q may be 
replaced by the averaged value in the range of x between 0 
and S. . Thus the logarithmic singularity in x = 0 plays no 
role. 

iii) The behaviour of p will be estimated from the results of 
figure 3.2 . Attention is paid to the shapes of p and Q , 
and the value of Q/p in x = 0 . It is known that p and 
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Q are related to each other by condition (9-02) and equation 
(9-04). 

In i) and ii) the condition (9-02) is made valid in the entire 
interval 0 - 2 . This condition is written as follows: 

p {J-C (12 ic/d* Q/pd)*" + 1} = (r/Yw - C QQ/e) tanê (10.01) 

where the vertical gradient q is replaced by the average 
vertical gradient Q0/C . if Q0 is the value of Q for x = 0 . 
It is seen from this equation that the clusters of parameters 
coincide with the ones in (9.09). At first the relation (10.01) 
between p and Q will be worked out. Thereto, a normalized 
quantity like the following is introduced, 

I = f / {c (Tp/Tw - C Q0/2) tan9} (10.02) 

Here f may be replaced by either p , P , q , Q or H . The 
parameter c is defined as, 

c = JVC (ri- d«/ic d/QQ)1" (10.03) 

Accordingly, the condition (10.01) simplifies to, 

(9/g0 1/B)* ♦ C - 1/B (10.04) 

In general the value of c tends to be much smaller than unity 
and therefore the relation (10.04) may be approximately written, 

1/B = (9/QQ)1" + c (10.05) 

This parabolic result may be substituted into the second relation 
of (9-04) normalized by (10.02). Thus p and Q are defined, but 
the solution of the integral equation is cumbersome. Therefore an 
alternative method will be followed, indicated in iii) . The 
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shape of the horizontal gradient and the total discharge will be 
estimated from the computed results. The graphs of figure 9-2 
show that the following approach will do well: 

B - 1 / {(1-X)P + c} §/Q0 = (1-X)2fi (10.06) 

Here B is a parameter which will be used to adjust this approach 
as close as possible to the results of calculation. Note that the 
relation (10.05) is satisfied. 
Now the stage is set for an approximation formula. What has to be 
done is to find out if the above estimation fits the physics of 
the phenomenon of piping - in other words, if the assumption 
(10.06) meets within reasonable limits the second relation of 
(9.04). Investigating this, the value of B is determined and 
that of g 0 will follow. 
The procedure is to substitute the assumed values of (10.06) into 
the second equation of (9.04). Thereto one also needs the variable 
P which can be obtained by integration of g with respect to x 
since g = dP/dx . The details of the elaboration are to be found 
in appendix C . Making use of (C.03) the second equation of 
(9.04) can be written with the aid of (10.02) and (10.06), 

Q0 2ft 2 ' 1 1_x 
(1-x) - f 1 / ( — ) dp 

u i (i-p)p + c i-p 0 (1~p) + c !-P 6 < J. (10.07) 

. i r fl - (1-P)1-P . _ 1 - (1-p) 1' 2^ rrizX, d£_ n J l 1-B C 1-2B J ^l-p' p-X 

The integration variable here is made dimensionless. Now a value 
of B must be determined such that the equation (10.07) is met 
within reasonable limits. It will turn out that the value of B 
will be about 0.4 . Therefore both sides of the equation must 
show a more or less straight behaviour, which is to be expected. 
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To work this out is quite troublesome and does not seem to be a 
very strict condition. Much better is the following approach. The 
ratio of Q/Bp at the beginning of the slit is according to the 
results of figure 9-2 well defined and the approximation must 
reflect this to a reasonable extent. The ratio Q/êp of the 
approximation at x = 0 is equal to (1+c) Q0/2 what results 
from (10.02) and (10.06). Therefore the value of p will be 
determined callibrating the calculated values of Qn/£ from 
equation (10.07) for x = 0 with the results of figure 9.2 , 

§n 2 P X 1 

- "I B U—' 
e n i (i-p)p + c i-p 

1 
1 1 

dp 
0 (1"P)P + <= !"P p < L (io.08) 

!-P , - M . ^ 1 - 2 P . I f fl - (1-P)""P . _ 1 - ( 1 - p ) ^ 1 d 
« J l I-P 1-2P J P 7(1 

dp_ 
•P) 

It is possible to work out the integration in a closed form. The 
details of the procedure are given in appendix C . The result is 
expressed by equation (C.20), 

Q0 4 1 2JS-1 n n c 

}■ < p < j- (10.09) 
I fT(M*) - TQ-) _ _ W - 2 B ) - T(H 1 n L 1-B .1-2B J 

Here, ? is the so-called psi-function. Careful fitting of the 
calculated QQ/B values at last leads to the following value of 

B = 0.37 (1+c) (10.10) 

The values of B are limited to the range \ < B < i" due to the 
followed procedure to derive (10.09). 
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An important result is reached now. A well chosen shape of the 
horizontal gradient is determined. It consists of (10.06) together 
with (10.02), (10.03), (10.09) and (10.10). The final step of the 
procedure will be the determination of the critical head defined 
by (9-07). This equation supplies a range of values for H/L as 
function of i/L from which the maximum possible one must be 
calculated in order to obtain the critical head. One may observe 
in figure 9-1 that the desired maximum value is fairly well 
represented by the head for £ = J-L . Therefore the critical head 
will be defined as that for C = J-L . Thus using the integral 
representation (9-07) and the relations (10.06) and (C.03) the 
following is obtained, 

H(K) 1 * 1 r 1 1 
- J g / ( — ) dp ♦ 
n i (l-p)p + c 1-p 0 (1"p) ' " * " p < J- (10.11) 

_i r fi - ( i - p ) 1 - p . _ i - d-p) 1 ~ 2 p
1 _±_ dP 

2n J I 1-p c l-2p J 2-p J(l-p) 
0 

Again the details of integration are in appendix C . The result 
follows from (C.24), 

H(tL) Qn 1 Ttt-tf) - T(J-) T(ï--p) - f(H 
- E - " > F T + 2T I R c r ^ i p — J ( 1 0- 1 2> 

Here too, the values of (} are limited to the range J- < fJ < J- . 
The expression (10.12) is determined with the aid of equations 
(10.02), (10.03), (10.09) and (10.10). These are summarized once 
again here, still with the general notation £ . If applied to 
(10.12) £ has to be replaced by J-L . The normalization formula 
(10.02) is inverted. 
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90 \ * 2JT1 " 
F" = n t ï ^ p 7 + C 2p C S C ( 2 p ' + 4fJ-l ] 

1 rVfi-&) - nV) _ T(»-2B) - T t H i 
Ti L 1-P 1-2(3 J 

(10.13) 

p = 0.37 ( l + c ) (10.14) 

c = S-/C (rt d'/K d/e)1" / (Qg/e)^ (10.15) 

f = f c Y'/Y tan0 [ l - 1 / ( l + 1 / (C Q0/C c t a n ê ) ] ] (10.16) 

Here, f s t ands fo r H or Q . 

Only for reasons of comparison, the value of the hydrau l ic head 
for 2 = L i s jo ined . This value i s a l ready determined i n 
appendix C i n (C.08), 

H(L) 1 c c 2 | - 1 n it 

V = Ï T ' Ï ^ " 3FT+ c P"C S C (P" ] (10 '17) 

In this formula the values of fj must lie in the range 
|- < p < J- . The set (10.13) ••• (10.16) which is used to determine 
(10.12) must also be applied to work out (10.17). However, then 
i must be replaced by L . 

A relatively simple estimation of the critical head is found now. 
The intriguing question is how accurate these formulae (10.12) and 
(10.17) can predict piping. Therefore calculations are performed 
for the three cases studied in chapter 9 • A remarkable agreement 
is obtained. The accuracy is better than 3 % • 

Up till now a cautious and precise procedure is followed to obtain 
a very reliable approximate description of the piping phenomenon. 
One might put forward that a less accurate way could have been 
followed resulting in a more severe, but less accurate result. It 



- 63 -

is believed that this would be a mistake, because the mechanism of 
piping is rather complicated and must be treated with care. 
However, the present approximation (10.12) is quite appropriate to 
investigate the structure of the solution. It will appear that 
using the technique of curve fitting this result can be 
represented by a most elegant and short formula. 

It is observed from (10.12) ... (10.17) that three clusters of 
parameters play a role. These are, 

(d2/*: d/e)^ / C Y-/Y tan9 C tanS 
\ i i i i p' w 

The influence of the last parameter is but small, as can be seen 
from equation (10.16), because c is small. If this is omitted it 
is clear that the quantity H(£)/L / (f/Y tan©) depends only on 
the parameter, 

c(£) = (d'/K d/e)1- /C (10.18) 

Using the technique of curve fitting the following approximate 
representation can be obtained, 

H(J-L)/L = c"(J-L) T*/T tan9 0.98 (l - 0.65 c"(J-L)0,/*2) (10.19) 

For practical engineering it is a truly simple tool. The accuracy 
is excellent within the range c < 0.44 . A similar less accurate 
formula can be determined for the value of H(L) , 

H(L)/L = c"(L) T7Y tanê 0.60 c" < 0.22 (10.20) 

Due to c it is obvious that the critical hydraulic head H(J-L) 
is fairly proportional to L* rather than to be linear as is 
often assumed in the literature. If the stress state of the sand 
is not considered, proportion to 1/ should be obtained, 
Sellmeijer (1981). 
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11. Practical Aspects 

11.l;_Introduction 

The problem of piping so far has been studied in this thesis from 
a theoretical viewpoint only. It has been found that the mechanism 
can be described by combining classical theories such as 
groundwater flow, limit equilibrium, hydraulics and particle 
mechanics. In addition, a design formula has been derived which 
resembles the rules of Bligh (1910) or Lane (1935). but which is 
based on theoretical assumptions rather than empiricism. This 
formula relates soil properties to hydraulic head and seepage 
length and is presented in (10.19). Such a theoretical study 
however has value if and only if it serves practical interests. 
This chapter deals with practical aspects in general and the 
application of formula (10.19) in particular. 

The practice of dike supervision has put forward a number of 
questions: Which particular events due to piping have taken place 
during the past and under which circumstances? If the threat of 
piping is realistic at a certain location, what measures can be 
taken to reduce the probability of calamities? In case there is a 
certain governmental policy enforced for dike supervision one will 
emphasize to draft guidelines. These will also have to include 
what to do if a current location does not exactly match the 
assumptions in theory and/or codes. 

These questions will be encountered in the next three sections. 
The first one will deal with classification, the second with 
mitigative measures. The last section presents recommendations for 
guidelines. 

ll121_Classification 

In order to chart the piping problem an inventory of the relevant 
aspects has to be drawn up. These are: typical failures, scope of 
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methods, safety and relevant site investigation. They will be 
considered separately. 

ii.i?.il_Failures 
To begin with, historical disasters due to piping are mentioned. 
The majority of these piping calamities refers to dams. A great 
number is reported by Lane (1935). As these are quite instructive 
they are presented in figures 11.1 ... 11.4 , in which for each 
failure case the hydraulic head and the seepage length are 
plotted. The first graph shows all calamities grouped together 
regardless of reported soil conditions or geometry. In the 
remaining three pictures the cases of coarse (+), fine (o) and 
silty (*) subsoil conditions are separately shown. The dotted 
lines are given for reference. They are two third power functions 
of head and length and correspond to a normal variation in sandy 
soils. In chapter 10 it was found that this relation describes 
the influence of the geometry, according to the theory presented 
in this thesis. 

The scatter is mainly due to a very wide range of soil conditions. 
It is apparent that the shape of the dotted lines encloses quite 
well the reported failures. This fact supports the design rule 
(10.19). It is a matter of regret that the soil descriptions are 
insufficient. But still, interesting conclusions can be drawn. 

A possible drawback of the design formula (10.19) is that it is 
sensitive to soil parameters such as permeability, which are often 
uncertain or hard to determine. One is apt to take recourse to the 
rules of Bligh or Lane (2.01), where a fixed coefficient is 
employed, based on a visual impression of soil alone. In table I , 
which is presented in the next paragraph, these coefficients are 
summarized. Apparently it is suggested that a certain type of 
soil, e.g. medium sand, has a fixed influence on piping, 
independent of its typical soil characteristics. It is clear from 
the figures 11.1 11.4 that this would be wrong. The itemized 
graphs for a certain soil type show a scatter in the same order as 
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the combined graph without distinction with respect to soil type. 
In reality soil properties vary considerably and so should the 
coefficients of Bligh and Lane. 

And there is more to be noticed. The coarse sand picture 11.2 
contains a few questionable readings. Actually, these would fit in 
the silty sand graph much better. Many of the soil details 
suggested in figures 11.02 ... 11.Ok , however, most likely will 
have been specified without laboratory or site testing, but based 
on the experience of the site engineer alone. It is clear that 
with respect to piping this may lead to a subjective 
classification and consequently to a wrong coefficient. 
It is obvious that a great deal of attention must be paid to a 
proper determination of soil characteristics. Formula (10.19) 
specifies which soil parameters play a major role and which impact 
they have on the coefficient. Imperical estimates of the 
coefficient, as suggested in table I , are deceptive and should be 
applied with great care. As a matter of fact, the engineer should 
find an optimum between designing conservatively and a more 
balanced approach based on site investigation rather than to hide 
uncertainty behind a fixed coefficient. 

Another category of piping events concerns river and sea dikes, 
especially in delta areas. Here, occurrence of a disaster is less 
sudden, because of the appearance of the so-called sandboils, 
located often close to the inner toe of the dike. They consist of 
sand transferred from below the body of the dike. In the middle of 
these boils the sand is fluidized due to outflowing water. Under 
the dike body a slit has formed while sand is eroded away to form 
sandboils. This slit is, most likely, similar to what Lane (1935) 
calls the 'line of creep'. 

The sandboil/slit system within certain boundaries plays the role 
of a regulating valve. If the hydraulic head across the dike 
increases, the slit becomes slightly longer and deeper and the 
sandboil higher, always trying to reach the state of equilibrium. 
However, the system has its limits, when these are reached it may 
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L/H 

E 

E 

H/L 

C 

Soi] 

EMPIRICAL 

= E 

[Bligh] : ( L = Lhor.zontal ) 

Riverbeds of light silty sand 
Fine micaceous sand 
Coarse-grained sand 
Boulders or shingle and gravel and sand 

[Lane] : (L = L ... ,+ J- L. . t .) vertical horizontal 
Very fine sand or silt 
Fine sand 
Medium sand 
Coarse sand 
Fine gravel 
Medium gravel 
Coarse gravel, including cobbles 
Boulders with some cobbles and gravel 

THEORETICAL 

= r/Y tan9 c" (l - 0.65 (c")0,42) p' w l ' 
= (d2/ic 2&/L)* 1 C 

L Parameters : 

Y*/y : volumetric weight ratio _p w 
9 : bedding angle 
C : drag factor 
ic/d2 : normalized intrinsic permeability 
d : particle diameter (dt5 to d,,) 

(11.1) 

18 
15 
12 

5 to 9 

8.5 
7.0 
6.0 
5.0 
4.0 
3-5 
3.0 
2.5 

(11.2) 

Tab. I : Available design rules 
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result in collapse of the complete structure. It is good practice 
to monitor the behaviour of sandboils regularly and to be alert 
for adverse changes in the phenomenon.. Counter measures can then 
be taken in due time, since there is little time to spare when the 
equilibrium is disturbed. 

A good example of a delta area with dikes sensitive to piping is 
The Netherlands. Numerous sandboils are found along the river and 
estuary dikes. Small, big and huge sandboils are a sometimes 
threatening picture. But in history, a few disasters only are 
believed to have been caused by piping. The reason that these 
dikes are relatively safe against piping is the fact that their 
base is rather long so as to meet other design criteria such as 
stability and that the sandboil/slit valve-system appears to be 
effective. 

lli2i2_Design_methods 

The majority of the dikes and dams has been designed applying the 
rules of Bligh and Lane (2.01). These rules contain empirical 
coefficients which are summarized in table I . As mentioned in the 
previous paragraph these coefficients do not reflect the relevant 
soil characteristics but they are based on the soil type only. 
They are therefore deceptive and should be used with great care. 

Since there is a tendency for optimum design, engineers go on 
searching for methods that depend on objective parameters, which 
can be determined from site and laboratory testing. A first trial 
was performed by MUller-Kirchenbauer (1978) , de Wit et al. 
(1981) and Hannes et al. (1985) . Steady state groundwater flow 
solutions were calibrated against results of laboratory scale 
model tests. 

The method has been applied e.g. in connection with the project of 
the Oosterschelde storm surge barrier. Under extreme storm 
conditions this barrier will close off the river estuary from the 
sea exposing the inner dike-system around the basin to a stagnant 
waterlevel. During a period of several days this situation must be 
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safe against piping. It turned out that the method resulted in 
very conservative predictions due to the fact that it does not 
contain the safety valve mechanism of the sandboil/slit 
combination. 

Next, the theoretical study of the mechanism of piping, presented 
in this thesis, was undertaken. This resulted in a design formula 
of the form of equation (10.19). This formula is numerically of a 
very simple nature and more or less resembles the rules of Bligh 
and Lane. The big difference, however, is the fact that the 
coefficient E in (2.01) is now specified in terms of soil 
parameters rather than an empirical soil classification. In table 
I the rule (2.01) of Bligh and Lane is copied as (11.1) and the 
theoretical formula (10.19) is presented as (11.2). 

It has already been mentioned when discussing figures 11.1 ... 
11.4 that it is not a straightforward procedure to estimate the 
coefficient E . Also, quite often the soil parameters in (11.2) 
have to be determined by engineering judgement. But after having 
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refined the soil estimates, one will notice that formula (11.2) 
consistently allows for a higher hydraulic head across the 
structure than the one following from the empirical rules. The 
basic assumption so far has been that formula (11.2) predicts 
values at which collapse becomes a fact, that is it includes no 
safety margin. This is not clear for the rules of Bligh and Lane, 
although there are indications that the authors meant it to be 
that way. In figure 11.5 a fair comparison between the 
theoretical and empirical approach is presented. In the results 
obtained with (11.2) the influence of permeability is considered 
too, what leads to a wider range than the results obtained with 
(11.1) show. 

ll_.2131_SafetY 
An important feature of piping prediction is safety. Which safety 
is required and how is it defined? Two definitions are common. A 
deterministic one, which is simply a factor which is applied to 
the calculated ultimate strengths to obtain a certain safety 
margin. The other one is a (semi) probabilistic approach, which 
takes into account the probability of collapse. In the latter 
analysis a certain probability of failure, which depends on 
aspects of personal and economic nature, is acceptable. 

The deterministic method is the conventional one. In the Dutch 
polders the rules of Bligh and Lane have been applied successfully 
without considering additional safety coefficients. This means 
that these rules actually predict safe circumstances. It can be 
concluded from figure 11.5 that the introduction of a safety 
factor of 1.5 to 2.5 in formula (11.2) would be appropriate, if 
formula (11.2) is tuned to coincide with the rules of Bligh and 
Lane. 

A deterministic safety factor actually is a strange quantity. A 
factor of 1.5 for instance seems sufficient, but does not 
provide any information about the sensitivity of the weakest link. 
A much better method is the probabilistic approach. Here the 
variation of each parameter of the piping formula is traced and 
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taken into account. Employing statistical methods an overall 
failure probability can be determined, which has to be balanced 
against the allowable risk prescribed by law or regulation. Such 
an approach is being undertaken for formula (11.2), the results 
will be reported in the near future. 

lii^^Site^nvestigation 

In order to apply formula (11.2) fundamental knowledge of the soil 
parameters and soil condition is necessary. The essential 
parameters are, 

volumetric weight ratio, T'/Y ° p w 
bedding angle, 9 

drag factor, C 

normalized intrinsic permeability, ic/d* 

particle diameter, d (d, 5 to d,s) 
To measure the volumetric weight in the laboratory is daily 
routine. There are several techniques of more or less undisturbed 
sampling in situ. Determined values are quite reliable and hardly 
any variation has to be taken into account. The same is true for 
the particle diameter. A grain size distribution is obtained from 
sieve analysis. The three other parameters, however, require more 
effort. 

The bedding angle and drag factor should be measured in a 
laboratory test set-up. White (1940), Martin (1970) and Fernandez 
Luque and Van Beek (1976) have performed tests from which these 
quantities can be derived. These tests are no daily routine; they 
are expensive and time-consuming. Too few experimental data are 
available at this moment. Values of the bedding angle ranging from 
49° to 63° are measured and the drag factor may be interpreted 
to amount 3 to 4 . No estimation of the variability is made. In 
order to design against piping a wider range of experimental data 
is necessary. 
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More is known, however, about the intrinsic permeability. Several 
empirically or theoretically based representations are presented 
in literature. A simple and for the design of piping quite 
appropriate one is ic/dl02 = f> , Bear (1978). The value of f> is 
0.0045 for clayey sand and 0.014 for pure sand, while 0.010 is 
suggested as an average. Since the relation appears as a one third 
power in the piping criterion the variability plays a moderate 
role in a probabilistic approach. 

If there is need for a more precise estimation of the permeability 
in-situ tests must be performed. These have to be carried out in 
such a way that the total discharge of the groundwater flow is 
involved, which can be achieved by monitoring at several locations 
the head in the sandy layer during changes in the outer water 
level. In river areas this can be done during an upcoming flood; 
in tidal areas during a 13 hour period of tidal movement. The 
value of the permeability can be obtained by applying an 
appropriate flow theory (Barends 19Ö7). 

In general the dike management is not familiar with detailed soil 
investigation and therefore often reluctant to carry it out. 
Without proper soil data, however, the uncertainty in the soil 
parameters is quite large and this consequently leads to very 
massive dikes or expensive mitigative measures to cope with the 
problem of piping. The aim should be to seek the optimum of the 
total cost of engineering and soil investigation on the one hand, 
and of construction management and mitigative action on the other 
hand, given an acceptable probability of failure. A minimum of 
soil data is always required, otherwise it is not possible to 
estimate the uncertainty in the soil parameters. 

lli2i_Mjtigative_measures 

Now that the piping phenomenon has been classified into relevant 
aspects such as failure, methods, safety and soil testing, the 
next question is what can be done to avoid its threat. In a 

o 
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Fig. 11.6 : Typical dike improvement 

Fig 11.7 : Putting in textiles 
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^^m^^^m§^^s^ 

Fig. 11.8 : Use of filters 

Fig 11.9 : Application of seepage dams 
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mechanical system of equilibrium there are always two components. 
On the one hand there is the active force (load) - which in case 
of piping is the hydraulic head across the structure - and on the 
other hand the strength of the structure determined by the 
geometry and the soil parameters. The hydraulic head is usually a 
given factor. It is a statistical quantity and not really open to 
design. But the reaction strength can be modified. There are 
several effective measures which may be taken to tackle the piping 
threat. The most important ones are: 
1) extension of the seepage length 
2) application of textiles 
3) utilization of filters 
k) use of seepage dams 
5) sheet pile walls 

ad 1) The conventional method in case of dikes is to simply make 
the dike wider. This is effective as can be observed from 
formula (11.2) or from the linear rules of Bligh or Lane. 
The approach is mostly part of a major program of dike 
improvement. To meet stricter requirements regarding safety 
against overflow the dikes are raised. For stability reasons 
they should then get a wider base, which at the same time 
provides more resistance to piping. There are several other 
reasons why dikes often have a wide base. In addition to 
stability the phenomenon of overflow due to waves requires 
moderate slopes and often an inspection road at the inner 
toe of the dike is constructed. An impression of a typical 
dike improvement is presented in figure 11.6 . 

Compared to other materials soil is not particularly 
expensive, but large quantities have to be moved around and 
the result can be a very massive structure. It is not always 
desireable to extend dikes. Through the years houses have 
been built along the existing dikes and personal estates lie 
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adjacent to it. Interference with the historical situation 
is a time-consuming and painful matter. 

ad 2) Textiles are a rather new material in soil mechanics. They 
can perform a number of functions such as separation, 
filtering and reinforcement. If the location from where 
piping is initialized is known, e.g. in a ditch, then 
textiles are a possible means to prevent piping due to the 
filtration property. The application is relatively simple, 
also in the case of existing dike structures. In figure 
11.7 an example is shown. It is a cheap, effective and 
elegant solution, but it is vulnerable to mechanical 
damage. Since ditches must be cleaned up regularly, it is 
not unlikely that the textile is ruptured or torn during the 
cleaning process by mechanical means, thereby losing its 
intended function. Therefore, only textiles which have been 
protected with concrete strips or blocks should be applied. 
Maintenance must be regularly carried out. 

ad 3) An alternative is the use of a filter. This is a layer of 
granular material with increasing particle size towards the 
surface. Figure 11.8 shows the outline. Good filters are 
difficult to make. The problem is the process of suffusion. 
This is the transport of smaller particles through a matrix 
of larger ones. The intention of a filter is to increase the 
resistance to erosion at the surface by diminishing the 
seepage pressures acting against the bigger more resistent 
particles. Suffusion might hamper this process. 

Filters are much more expensive than textiles. However, they 
have an important advantage. If filters are properly 
designed, they fulfil the valve function just like the 
sandboil/slit system does. Textiles do not have this 
property. Since the pressure remains intact, the problem 
might shift to a weak location of the surface behind the 
dike. As for the problem of cleaning up ditches, filters are 
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less sensitive to damage than textiles. They are still 
effective even if minor changes to the surface are made. But 
just as for textiles maintenance of filters should be 
performed periodically. 

ad 4) The application of seepage dams is an interesting but 
somewhat odd solution. It is only relevant in vast areas 
without a specific designation. Figure 11.9 shows the 
principle. Behind the main dike a series of dikes with 
decreasing height is constructed. The soil material is semi-
permeable and more or less erosion proof. In case of 
flooding, the spaces in between the dikes will inundate, 
supplying enough counter pressure to avoid the piping 
process. In Hungary, along some parts of river Danube 
(Donau), this method has been applied successfully. In 
densely populated delta areas this method is not 
appropriate, because a lot of valuable land is lost. 

ad 5) The last method, the use of sheat pile3 is used very 
frequently in the case of dams. Lane (1935) developed his 
formula for this particular case, distinguishing between 
horizontal and vertical permeability. Terzaghi (1967) 
reported on studies employing flow net theory. Harza (1935) 
introduced the electric analogy method in dam design. If 
sheat piles are applied at the inner toe of a dam than 
piping is no longer a problem, but heave might threaten the 
structure's stability. 

For dikes and embankments, however, a solution by sheat 
piles is hardly ever applied. In the past other methods have 
been preferred, yet it is a suitable way of controlling 
piping, for example in the case of natural or artificial 
reservoirs just behind the dike. Such a situation might 
exist at a location of a previous dike collapse. Just behind 
the dike a relatively deep pond is left over after dike 
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restoration. None of the remaining mitigative measures are 
effective here. 

11 ;{}_Sugges tions_ f or_guidelines 

A challenging step forward in piping analysis is to draw up 
guidelines for the design and monitoring procedures. This should 
not be considered to be a simple matter. On the one hand an 
instruction set as detailed as possible must be drafted up, but on 
the other hand there must be room for creative design. There are a 
number of aspects which are important to define the guidelines. 
These are, 

qualified design rules and formulae 

risk analysis 

extent of site and laboratory investigation 

preferred mitigative measures 

monitoring systems 

The number of design tools is very limited. There are only two 
kinds: The empirical rules of Bligh and Lane (11.1) and the 
theoretically based formula presented in this thesis (11.2). Both 
these tools are numerically of a very simple nature. 

It is expected that in the long run formula (11.2) will yield more 
precise predictions than the empirical ones. This is due to the 
fact that specific soil parameters are more comprehensible than, 
without disrespect, sniffing at soil. At this stage, however, it 
is not wise to abolish the conventional rules completely, since a 
lot of experience has been acquired in the past. During the 
teething troubles of putting the rather new theoretical formula to 
practice, this will be of great use. 

A problem arises if the soil stratification and the geometry of 
the dike is essentially more complex than those for which the 
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mentioned formula is derived. Often an impervious sublayer exists. 
What is its impact on the predictions? This item can be included 
by modifying the followed calculus in this thesis. The analysis is 
being carried out by Delft Geotechnics. The result will be 
published in the near future. 

Other new developments have to be undertaken in close cooperation 
with the site engineers. They have to report specific wishes and 
inadequacies. If it is believed that a large impact is to be 
expected on the design formulae, their suggestions can be 
incorporated into the calculus of this thesis. However, a much 
more complex piping rule probably is then encountered - a rule of 
the shape of equations (9-01) ... (9-08) rather than of formula 
(11.2). A presentation of the results in table form may then be 
adequate. 

The next two items, safety and soil investigation, depend very 
much on the economic standards and state of technology. They are 
related to each other with respect to cost. The price of soil 
testing and site investigation often is amply counterbalanced by 
the excess construction cost. As for the safety it is advisable to 
work with the probabilistic method rather than with the 
deterministic one. The application of the theory is not 
complicated and a sophisticated picture of all the influences of 
the different soil parameters is easily obtained. The allowed 
probability of failure must be defined for a certain location by 
law or regulation. This figure has a great impact on the scope of 
the work and the extent of the soil investigation. 

A topic of interest is the kind of mitigative measures which is to 
be preferred. It is difficult to qualify a particular one as the 
best. But from a practical point of view the following notes can 
be made. A very reliable measure is to enlarge the width of the 
dike. It is technically sound and extra maintenance is not 
necessary. Often extension is already included in programs of dike 
improvement. 
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As a specific solution in certain locations one of the other types 
of measures can be applied. Textiles are cheap, effective, not 
labour intensive and not hostile to the environment. Often the use 
of a granular filter is preferred because there is a wide 
experience with their application. Sheet piles or slurry walls are 
scarcely applied to dikes; yet their use may be appropriate. 

A last remark must be made about monitoring dikes and embankments. 
Regulations about this specific task are most important. There are 
three reasons why this has to be done. First it is necessary that 
the design formula is tested in situ. Second, information must be 
obtained for future improvements. Third, in case of dike failure 
due to piping, information must be available to reconstruct the 
process leading to collapse. In the past this task has been given 
too little attention. 
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12. Conclusions 

From the fact that there is quite a good correspondence between 
the theoretical predictions and the experimental findings it may 
be concluded that the method of describing the piping phenomenon 
as put forward in this thesis has potential. Both the mechanism 
and the order of magnitude appear to be well reproduced. Simple 
design diagrams that follow from the approximations of the more 
complicated general theory will allow the design engineer to 
propose structures and to investigate the sensitivity of 
variations in the expected soil parameters and dimensions of the 
structure. 

Apparently certain weaknesses in the analysis, such as two-
dimensionality and the neglect of higher order terms, do not 
seriously affect the validity of the outcome. In spite of the fact 
that the investigation was carried out on geometries appropriate 
to the available laboratory tests, there is no reason not to 
modify the calculus to include other, in practice more frequently 
occurring, set-ups. Especially the influence of an impervious 
layer of subsoil at some depth below the structure has practical 
relevance and needs further investigation. Another rather more 
complicated situation is the one where the structure is punctured 
at some distance downstream. The latter situation contains a 
three-dimensional aspect, but the main elements discussed in this 
thesis - limiting soil stability combined with groundwater flow 
analysis and the possibility of localised particle transport -
would certainly be applicable. As such this thesis may serve as a 
worthwile case study, the salient points of which break new 
ground. 
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A. Derivation of hypergeometric shape functions 

In this appendix a possible relation for the true behaviour in the 
transition1 zones of the piping problem will be determined. There 
are three such zones; around x = 0 , x = b and x = I . It will 
appear that the character in all zones is equal. Therefore, one 
function only must be determined, for example the one around 
x = 0 . From equation (9-01) it follows that this function must 
satisfy the condition that the nature of a variation of both p 
and q around x = 0 is the same, provided x is positive. 

A straightforward derivation of the desired relation is rather 
complicated, but it is quite likely that its behaviour will be a 
power function. In order to see if such a relation meets the 
condition of equal variation the following will be put forward, 

Pc = P [j)C = P Xc 0 < X < 1 (A.01) 

The strength of this contribution is denoted by p . The 
dimensionless parameter X is introduced for reasons of 
convenience. The corresponding behaviour of q follows by 
substitution of the assumed value of p into equation (9.03). 
Two ways can be followed here. One may expand p into a Fourier 
series and determine q from the obtained coefficients. If p 

e e 
is extended to a power series this method yields good results. But 
one may also substitute p directly into the integral 
representation, which is preferred here for reasons of efficiency 
and elegance. Then a dimensionless expression is obtained by 
assuming p = r/2 , remembering that X = x/6 , 

% - ? | pe / ( f ï *k <A-02> 
0 

This result is valid for X < 1 . For the moment, only values of 
0 < X < 1 are considered. The relation (A.02) appears to be a 
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hypergeometric function. The theory of these functions, denoted by 
F , is sufficiently summarized in Abramowitch and Stegun (1Q68), 
chapter 15 . From now on all formulas starting with 15.3- refer 
to Abramowitch and Stegun (1968), chapter 15 . Expressing q in 
such a function is very suitable in order to isolate the behaviour 
around X = 0 . According to formula 15.3.1 q may be written: 

% - - ^ ^ ^ r % , ; < ^ ) F [ l , l . c ; ^ ; 1 / x ] - i P X C (A.03) 
0 < x < 1 

It must be noted that formula 15.3-1 contains a residue that has 
to be subtracted, since equation (A.02) is Cauchy integrated. The 
present shape of the relation (A.03) is not very suitable for 
numerical interpretation. Therefore, at first the complex term 
will be eliminated and the result rewritten. Using formula 
15-3-9 q may be expressed as, 

% " - f / U - * ) r ( " ^ j * e ) F[i,H;hi-x] (A.(A) 
0 < x < 1 

For, it holds that F[J-+e,0;t-;l-x] = 1 • Moreover, the value of 
the gamma function r(J-) is equal to /(TI) . The real valued 
result (A.04) can be worked out by use of formula 15-3.6 , 

qc = I/(l-X) ̂ j ^ f f l F[l,|-e;l-e;x] - p XC cot(iic) (A.05) 
0 < X < 1 

To obtain this equation use is made of the reflection formula for 
gamma functions, I"(e) r(l-e) = n csc(ne) . Moreover, according to 
formula I5.I.8 it holds that F[J-,l+c;l+c;X] is equal to 
1 / /(l-X) . Finally the result may be polished by use of formula 
15.3.3 . 
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% = f r (r{^è) ) F[-e.hl-c:x] - P XC cot(iic) (A.06) 
0 < X < 1 

Indeed this is the hoped-for result. The hypergeometric function 
in (A.06) is very smooth around X = 0 , so, if 0 < e < 1 , the 
second expression in equation (A.06) defines the variation in q 
for small values of X . And this expression has the same 
character as equation (A.01). In appendix B it will be shown how 
the value of e can be determined from the conditions of limit 
equilibrium. 

A satisfactory result has been obtained. It must be noted that the 
behaviour of q is of the order of /(1-X) . But this does not 
affect the results. After all the calculation can be performed on 
the 5-scale, defined by (9-05). After having defined the type of 
function of p all other important features can be determined. 
The integral representation of the vertical gradient (9•03) is 
also valid for x < 0 without need of Cauchy's principle. That 
means that formula (A.02) may be applied again. However, the 
hypergeometric notation does not contain a residue for X < 0 . 
Formula (A.03) now has the form, 

% - - f JÜTIr<i:)(^)*c)FEi.l*«;^c;i/x] x < 0 (A.07) 

This is a real valued function. For better understanding of its 
behaviour the expression is rewritten by use of formula 15-3-7 • 
The following is then obtained: 

qc = jj-/(l-x) ̂ {frffl F[l,fr-c;l-c;x] - P (-X)e csc(ne) (A.08) 
x < 0 

Again the reflection formula for gamma functions and formula 
I5.I.8 are applied. The equation (A.08) is a very beautiful 
result. Together with the relation (A.06) it clearly shows the 
behaviour of q around X = 0 . Unfortunately the hypergeometric 
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function in (A.08) is not fully appropriate for numerical 
interpretation, since the absolute value of the argument x can 
exceed unity. But in that case equation (A.07) can be applied 
successfully. The results (A.07) and (A.08) are rewritten using 
formula 15.3-3 and the following is obtained: 

% = f r ( r l ^ e ) ) Ft-E.*-;1'^*] - P (-X) ecsc(ne) (A.09) 
-1 < X < 0 

% = n^-b r%r*iYe) Ftt+e,hfr+e;l/X] X < - 1 (A.10) 

The vertical gradient is sufficiently defined by equations (A.06), 
(A.09) and (A.10). The next important feature to be determined is 
the discharge per unit permeability, expressed in equation (9.04). 
It contains the value of the head. Since the horizontal gradient 
is defined by assumption (A.01), the head simply follows by 
integration. Then the value of Q in dimensionless variables is 
defined by, 

Q . _fi£l£l;(I=L)d|L. + iPJL/(1_x) f pc dj, 
*e n J 1+e Vll-p' p-X n v J VU'p) 

0 0 

If one reduces the 1+e power of p in the first integral by 
replacing p by p-X + X , the result contains the expression for 
the vertical gradient defined in (A.02). This simplifies the 
expression of Q to, 

0 

Integration of the remaining integral is not difficult. It is a 
degeneration of a hypergeometric function. By use of formula 
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15.3•! the expression of Q can be further worked out, bearing 
in mind that F[0,l+e;f-+e;X] = 1 , 

Q - _ _ 2 _ q + 2pA/(l-X) r(j-) r(l+e) , . 
% 1+c qc n 1+c r(|-+e) ^ - ^ 
It turns out that once the value of the vertical gradient is 
determined, the value of the discharge can be obtained quite 
simply. 
The remaining quantity to be specified is the hydraulic head 
across the structure, defined by equation (9.07). As in the case 
of Q this feature can be worked out as follows, 

0 0 

where K denotes L/8 . Again the 1+e power in the first 
integral is reduced. Remembering the result of the second 
integral, which is the same as in (A.12) the equation (A.14) may 
be rewritten, 

1 
H - _ 2k [ _el r i h z h df>_ 2ge ƒ(*-!) r(fr) r(i+c) (A , . 
c " irj UzJ[l-p> p-A Tt 1+e r(*-+e) (A-1^I 

The remaining integral is nothing less than the value of the 
horizontal gradient in x = L . For, it follows from equation 
(5.04) that if z = L with L > I , 

0 

Choosing for p(r) the power function defined in (A.01) and 
normalizing all quantities of dimension length on to B. yields, 
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0 

Again a hypergeometric function is recognized. The same 
procedure as for q can be followed in the case of X < 0 . 
Analogous to the derivation from (A.02) via (A.07) to (A.10) the 
following expression is.obtained: 

pe<L> = v § r ( i ^ r e ) Ftt»'-**»«£] (A.18) 

This quantity can be used to determine the value of H , since it 
follows from (A.15) ... (A.17) that, 

H . J*-p(L) ♦ milhzlinY) r(i+«) (A>19) 
c 1+e c ' n 1+e r(J-+c) * ■" 

By now all important features describing the groundwater flow are 
expressed in the form of the true behaviour of the solution around 
X = 0 . In the next appendix these contributions will be worked 
out for the three different transition zones. 
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B. Application of hypergeometric shape functions 

In the previous appendix the character of the true behaviour of 
the solution around the transition zones has been determined. It 
turned out that this behaviour is well described by a set of 
hypergeometric shape functions. In this appendix it will be shown 
that these functions can be used in all transition zones. Each 
zone has its own shape parameter c . 

There are three transition zones: around x = 0 , x = b and 
x = I . The problem is to determine the value of e from the 
relation between the variations in p and q . The zones x = 0 
and x = £ are quite simple to handle; the zone x = b will turn 
out to be complicated and troublesome. 

At first the zone x = 0 is considered. There, for x > 0 , 
equation (9-01) is valid. In x = 0 the value of p is 0 and 
that of q is T*/T -If small variations in p and q are s w 
denoted by <5p and <5q , so that p = Óp and q = Y*/T - <5q , 

s w, 
then equation (9.01) yields the following relation: 

6q * óp cote (B.01) 

If a variation of p of the type (A.01) is supposed then the 
corresponding variation of q follows from (A.06). The first 
term, the hypergeometric function, is rather smooth. So the 
variation is determined by the second term. Therefore the 
following relation is valid, 

óq = óp cot(ne) (B.02) 

When comparing equations (B.01) and (B.02) the assumed variations 
prove to be well chosen, because these equations are identical if 
e = 9/n . The value of e in x = 0 will be denoted by e_ , 
with, 

e0 " e/" (B.03) 
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Thus the hypergeometric shape functions of appendix A describe 
for this value of e the behaviour of the solution around 
x = 0 . 

The next zone to be investigated is that around x = £ . At first 
it must be made clear that the solution has a symmetrical form. Up 
till now p(x) is the unknown function and all other features are 
expressed in this item. But one may also assume q(2-x) to be the 
unknown function. A similar system of relations is obtained, 
except that now for p and P read q and Q , and vice versa. 

To prove this mathematically for the integral expression some 
calculation is needed. But if one rewrites the Fourier expressions 
of (9-03) and (9-04) as function of l-£ and considers the 
transformation equation (9-05) for £-x and l-£ , then the 
reflection procedure becomes clear. 

Having realized this, the variations in the transition zone 
x = 2 can be considered. Here, for x < 2 , equation (9.02) is 
valid. In x = i the value of q is 0 and that of p is 
Y'/Y cot9 . Moreover Q vanishes. If small variations in p , q p' w 
and Q are denoted by óp , óq and <5Q respectively, so that 
p = r/Y cote - <5p , q = <5q and Q = ÓQ , then equation (9.02) p w 
yields the following relation: 

C <5q + J-C [12 K/d2 (Y'/Y ) 2 cote óQ/d? = öp cot9 (B.04) 

For reflected shape functions the variation of q is supposed to 
be of the type (A.01), but with p replaced by q and X by 
1-X . Then the variation 6Q simply follows from integration. The 
result is proportional to (1-X) . Thus the first term of 
(B.04) is of the form (1-X) and the second one of the form 
(1-X)3V ' . Since Hl+O > c . provided that e < J- (which 
must be checked later), the second term of the equation (B.04) can 
be neglected compared to the first one. That means that equation 
(B.04) may be simplified to, 

C öq = óp cote (B.05) 
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As the variations óq and óp follow from equation (A.01) and 
the second term of equation (A.06), again with p replaced by § 
and X by 1-X , it may be written, 

op * óq cot(nc) (B.06) 

The equations (B.05) and (B.06) are identical if cot(ne) is 
equal to C tan9 . If the value of c in x = S. is denoted by 
e. , the final result is, 

E = £■ - arctan(C tan9) / n (B.07) 

Indeed it holds that c. < $■ . The reflected hypergeometric shape 
functions of appendix A for this value of e describe the 
behaviour of the solution around x = i . 

Up till now the procedure has been quite straightforward. However, 
the derivation of shape functions for the third transition zone -
around x = b - will be less tractable. The procedure will be the 
same as above: first assume a possible behaviour of shape 
functions, then define the condition for the variations and 
subsequently examine if the prescribed condition is satisfied. A 
possible behaviour of shape functions will be assumed by combining 
the following functions of the normal and reflected type, 

and, 

% - -% (¥) 
Here, the subscript b denotes the zone around x = b . The first 
equation yields hypergeometric shape functions as described in 
appendix A ; the second one produces reflected ones. 

b < x < e 

(B.08) 

0 < x < b 
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After having assumed the equations (B.08) the behaviour of the 
variations around x = b can be written down. As before, a 
variation in p is denoted by op and one in q by 6q . Using 
(A.01), (A.06) and (A.08) it follows, 

<5p = % [*=*)** cot(ncb) 

6 q = " qb ("b"' " Pb W csc(ncb) 

x a rx-bi b _ fX-bi b , . ó p = pb W + % l"b~' csc(T,eb) 

6q = ~ pb © E b cot("Eb) 

lim x t b (B.09) 

lim x * b (B.10) 

The behaviour around x = b is uniquely defined by equations 
(B.09) and (B.10). The next step of the procedure will now be 
carried out: impose conditions for the variations. These 
conditions are nothing more than the equations (9.01) and (9-02). 
The first one is valid for x < b ; the second for x > b . They 
are now expressed in terms of variations and therefore a 
differentiation in the point b is carried out. It is convenient 
to multiply (9.01) by q . first. The variation of Q in (9.02) is 
of a higher order and may be neglected. The result is as follows: 

(2 Yw/Yg qfa - 1) <5q + 6p cote = 0 x < b (B.ll) 

C <5q + óp (}-C ab/d + 1) cote = 0 b < x (B.12) 

The fact that the results depend on the actual values of q and 
a in point b is a complicating factor. At the outset these are 
unknown values. 
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The last stage of the procedure consists of an examination as to 
whether conditions (B.ll) and (B.12) can be met. To that end the 
variations (B.09) and (B.10) will be substituted in these 
conditions. In so doing the following conditions are obtained, 

e, 
'b (2 y /T I - i cot(T,eb ) - ^ - h Ö ^ ^ b * (B-13) 

{ _ C tan8 c Q t } _ 1} = ^ (tb^b csc(l, } ( B l i ( ) 

J-C a,/d + 1 b 

It is noted that multiplying (B.13) and (B.14) leads to a 
condition for cot(ne, ) only. That means that a value of e, can 
be obtained independent of the weights of the shape functions. The 
fact that this value depends on q, and a, is rather 
inconvenient but not a problem. After having specified the value 
of e one condition is left which relates the weights of the 
applied shape functions. Apparently there is only one degree of 
freedom in point b just like in the other two transition points. 

In order to make the structure more transparent auxiliary 
parameters u and u are defined as follows, 

tanp = (2 1 /T' q. - 1) tan9 -9 < u < 9 
^ w s b 

(B.15) 
tanu = (J-C eL/d + 1) / C tan9 J-n - nc < u < J-n 
When assessing the range of values of p and P it is kept in 
mind that 0 < q, < T V and that a, > 0 . Remember that e„ ^b s' w D 0. 
is determined by (B.07). Applying (B.15) to (B.13) and (B.l4) the 
following set of equations is obtained: 
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- e b e b 
[ co tp c o t ( n e b ) - 1] qfe (2-b) = pfe (b) csc(ne b ) 

e, e 
[ co tu co t (ne b ) - 1] f>b (b) = 9 b (C-b) csc(ne b ) 

(B.16) 

Multiplying the first of (B.l6) by the second of (B.l6) results in 
an equation in cot(ne, ) only. Note that csc2(neh) is equal to 
1 + cot2 ("£h) . so, 

[cotp" cot (TIE ) - 1] [cotp cot(ne ) - 1] = 1 + cot2 (ne ) (B.17) 

This is a square equation and there are two solutions. One is 
e, = J- , representing the trivial solution corresponding to no 
variations. The other one is determined: 

cot(Tieb) = cotu + cotp = t a n ( u + u ) = cotd-n-p-y) (B.18) 
cotp cotp - 1 

No continuous result is guaranteed by (B.18). The difficulty 
arises for values of e, close to unity when the cotangent jumps. 
Clearly in this area the shape functions cannot be used because 
the variations as expressed by the power functions attain a linear 
character. The approximation made is then no longer valid in that 
the smooth part of the shape functions interferes and becomes of 
the same order as the variational part. It can be demonstrated 
that in this region of material parameters the whole shape 
function becomes logarithmic in character. 

Not all the information encased in equations (B.16) has been used. 
A relationship between the weights p, and q. can be ascertained. 
Multiplication of both members of the first equation of (B.16) by 
sinp sin(ne, ) yields, 

- - Cb eb -
[cosp cos(ne,) - sinp sin(ne,)] q\ (C —b) = p, (b) sinp 
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or equivalently, 

- eh cb -
cos(u+Tieb) qb (e-b) = eb (b) sinu (B.19) 

If the second equation of (B.l6) was considered rather than the 
first one then a synonymous relation would have been obtained, 

cos(u+neb) gfe (b) = % (£"*>) sinu (B.20) 

The conditions laid down in (B.l6) are met if the equations (B.18) 
and (B.19) or (B.20) are satisfied which is possible, since from 
these equations an independent value of e, can be determined. 
One degree of freedom for the weight is ensured. 

Summarizing, it can be stated that hypergeometric shape functions 
may be applied to assist in the construction of the complete 
solution in all three transition zones. In the zones around 
x = 0 and x = i the powers as they occur in equations (B.03) 
and (B.07) are known from the outset because they depend on soil 
parameters only. In the zone around x = b the power depends on 
the value of the vertical gradient and the depth of the slit as 
well. Moreover its behaviour is not always continuous and its 
application appears to be unreliable for values close to unity. In 
the latter case the shape function need not be added to the 
calculation process. 
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C. Elaboration of design formula 

In this appendix some intermediate calculations will be carried 
out to determine a clear, though approximate, description of the 
piping mechanism. At first the assumed behaviour of the horizontal 
normalized gradient g (10.06) will be integrated with respect to 
x . Thus, because g = dP/dx , the normalized head P is 
obtained. Since X = x/2 the following must be worked out, 

P p dp 
(C.01) 

2 0 (1-P) P + 

Using simple algebra by which terms are split up (C.01) may be 
arranged as, provided that B < \- , 

P 

« 

dp r dp 
J -
i (i-0 < I - P > * " C i <i-P) 2 f 5 + C

 0 

dp 

(l-p)P + c (l-p)2|i 
(C.02) 

The first two integrals are easily integrated. As the value of c 
is small the third integral may be neglected if X < 1 . So the 
head behaves like, 

P 1 - (1-X)1"^ 1 - (l-x)1"2^ 
£ 1-B l-2p 0 S X < 1 p < J- (C.03) 

But i f x = B. or X = 1 the t h i r d i n t e g r a l term in (C.02) i s 
s t i l l s i g n i f i c a n t . Therefore P(£) i s def ined by, 

P(J2) 1 c p c2 dp 
P < Ï (C.04) 

1 c p c2 df 

1-B 1-2B i ( l - p ) P ♦ c (1-p -2B J
Q (1-p)** ♦ c ( l - p ) 2 P 

The problem is to calculate the integral term of this equation. 
This will be done as follows: indicate the integral by I , split 



Appendix C - 106 -

off i n t e g r a t i o n from -•» to 0 and s u b s t i t u t e in the remaining 
1/B i n t e g r a l 1-p = c / p exp(2p) . Then the t h i r d term of (C.04) may be 

w r i t t e n a s , 

i - 1 p 2 exp{(2-5p)u} ? c ' dp 
I = cp d p - - r - (C.05) 

{ exp(pp) ♦ exp(-pu) i ( l - p ) p ♦ c ( 1 - p ) ^ 

This representation is valid only if £■ < p" < J- . After slight 
rearrangement the first integral is a standard one; the second may 
be expanded into a geometric series, 

|-1 Z exp{(2-5P)u} + exp{-(2-5P)p} - ° (-l)m cm dp 
I = cP dp i J -

m=2 J fl
oep ( p p) + exp( - p p) m=2 t (l-p)p(m+1) 

J- < p < J- (C.06) 

The first integral is found in Gröbner and Hofreiter (1975) 
part II , 311 , 11a . The second integral can be easily performed. 
Only the first term is relevant because c is small. 

1 1 
p ^ p ' 3P-I I = cp ' £ csc(£] - =ër j- < p < i (c.07) 

Eventually the final form of the head P(Ê) when substituting 
(C.07) into (0.04) becomes, 

P(e) 1 c c2 j~l n n 
j * cp - CSC(T) ^ < P < J- (C.08) e I-P i-2P 3P-I P 'P 

One wonders why so much e f f o r t i s used to ob ta in t h i s express ion . 
This can be i l l u s t r a t e d by r ea r r ang ing (C.08) in two ways as 
fo l lows : 
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P(2) 1 c p ^—^ 1-20 l-2p- c* 
[1 - c * n -r— csc(n - y - ) ] - 3^3-£ " 1-p p 1-2P L i " p *""-1, P ' J 3P-

I- < P < i- (C.09) 
i -1 

p(e) 1 cp p 3 | r l . 3&_! 3 p - i C 

nr = î p" - x - ïFï [c " n T~ csc(n-p—n - Ï^P 
Some interesting limits become transparent now, 

lim P(C) 
2 (1 + c lnc - cz) = 2 (1 + c lnc) ptj- £ 

(C.10) 
lim P(£) 
^ rL-g- = 3 (J- - c - c' lnc) » 3 (*■ - c) 

It is clearly understood that, if P is significantly smaller 
than J- , then for xtt the approximation (C.03) can be used 
successfully as well. But, if ft approaches £■ , the result 
(C.08) must be used since it incorporates the logarithmic 
behaviour, 

Next, integration of equation (10,08) is performed, 

9n 2 r 1 1 

•£ - - — Ö — / ( — ) dp -
e n J

Q (l-p)p + c 1-p 
P < V (c.ii) 

_ 1 r rl - (1-p)1'^ . 1 - (1-p)1"2^ I dfi 
n J l 1 - f t C l-2p J p J(l-p) 
0 

The first integral, which will be written Ix , is similar to 
(C.01). Provided that {• < p < J- , it will be split up into three 
terms as follows: 
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2 p dp 2 . c dp 

(C.12) 
2 r c dp 

n i (l-p)P ♦ c-(l-p) W 

Here, the first integration is easily carried out. In the second 
1/8 integral 1-p = c exp(2u) is £ 

expanded into a geometric series, 

1/8 integral 1-p = c exp(2u) is substituted. The third one is 

t 1 pè-1 r exp{(l-3B)u} 
I. = - [ c26 dp] 

n 1-26 { exp(Bp) + exp(-6u) 

-, 0 , . ,m+l m , 2 » r (-1) c dp 
- I 
n m=l 

(C.13) 

(1_p)P(m+l)+fr 

The first integral is a standard one and after a slight 
rearrangement found in Gröbner and Hofreiter (1975) part II , 
311 , 11a . From the second one only the first term is relevant, 
as c is small, 

4 1 2R-1 n n c 
*> = ^ ï ^ 2 p - + C 2&csc^ +WÏ] {°-lk) 

In order to illustrate the behaviour of I, for 8 close to J-
and J- this result is rearranged as, 

4 1 28 i ^p - 1-26 1-26 c 
Ii = »[2ïï^2ï^-c " -2T c s c ( n ^ T n + 5FT] 

fc < 6 < J- (C.15) 

4 1 c 2 ^ 26 46-1 46-1 ^ 
J> = i r t ï^p- ~w~ 4^1 f n ^p - c s c ( n ^T 1 " c ] ] 

The interesting limits are, 
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lim _ 4 , , , 
ptj. I. = 7 (" l n c + C ) 

(C.16) 
lim _. 8 , .. , v 
M i. = * (i+ c l n c > 

For p>J- the behaviour becomes logarithmic as is to be expected. 

So much for the first integral. The second one will be written I2 
and according to (C.ll) is characterized by, 

II n J l 1-p C 1-2P J pj(l-p) (C-17) 
0 

This relation will turn out to be a standard integral and is by 
substitution of 1-p = exp(-2p) transformed into, 

T - i f r_1_ 1 - exp{-2(l-&)u} _ _ c _ 1 - exp{-2(l-2p)p}1 
' " n J 11-P exp(u) - exp(-u) 1-2& exp(u) - exp(-u) J p 

0 

(C.18) 

These integrals are to be found in Gröbner and Hofreiter (1975) 
part II , 311 , 16 , 

i2 = ̂ H I - ^ H ^ K H P ) - ^ ! ] {c#19) 

Here, f is the psi-function explaned in e.g. Abramowitz and 
Stegun (1968). 

The integrals I, and I2 are now worked out. So an expression 
for the total discharge from the slit is found. Substitution of 
(C.14) and (C.19) into (C.ll) finally yields, 
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Q0 4 1 2R-1 n n c 
<T = n[I^+ C 2ë c s <%) +WÏ] + 

i- < P < I- (C.20) 
. I rT(»-P) - y ( H _ r W - 2 B ) - TQ-)i 

n L 1-p c 1-2B J 

Lastly, integration of formula (10.11) is performed in order to 
obtain the critical head. It reads, 

H(K) . 1 1 K ) . i p l l 
— = - — g — ƒ ( — 1 dp 
L n i (l-p)p + c 1-p 0 (1"p) 

(C21) 

+ _ i r f i - d - p ) 1 - p _ _ i - d -p ) 1 " 2 p
1 j _ dp 

2n J l 1-p C l-2p J 2-p V(l-p) 
0 

The first integral has already been solved and the result can be 
found in (C.l4). In the second integral 1-p = exp(-2p) will be 
substituted, 

g(i-L) 
— : = frl, + (C.22) 

i f f ^ 1 - exp{-2(l-p)p} _ ̂ _ 1 - exp(-2(l-2B)ul1 d 
n J Ll-p exp(u) + exp(-p) l-2p exp(p) + exp(-p) J 
0 

The integral has a similar shape as (C.18). It will prove useful 
to combine them. Since i! - I2 = Qn/2 (C.22) may be rearranged 

- T - = < FT + (c-23) 

" rexp(p) 1 - exp{-2(l-p)p} exp(p) 1 - exp{-2(l-2P)ph , 
1 1-B exp(2p) - exp(-2p) c 1-2$ exp(2p) - exp(-2p)J p 



Appendix C - 111 -

Again this is a standard integral. With the aid of Gröbner and 
Hofreiter (1975) part II ,311 , 16 the equation becomes, 

H(K0 Q0 1 Ht-W - ?tt) *(H*) - T(t-) 
~L~ = 'FL + 2̂ t R " C W p — ] (C-24) 

It is essential to consider the characteristic quantity 9n/J"L 
rather than QQ/L , as 2 = J-L . Due to the derivation of gn/fi 
equation (C.24) is valid for *■ < p < |- . 
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