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Stellingen bij het proefschrift 
'On the Mechanism of Piping under Impervious Structures': 

1. Het succes van de Oosterschelde Stormvloedkering heeft aangetoond 
dat het verplaatsingsgedrag van monolitische constructies zeer 
betrouwbaar geschat kan worden met behulp van een combinatie van 
normaal- en schuifveren. 

2. Voor de toepassing van Geotextielen als belastingspreider bestaat 
een ontwerpregel, waarin zowel aan evenwicht als aan vormverandering 
is voldaan. Dit is bereikt door simulatie met een verend ondersteund 
membraan. 

3. Wetenschappelijk onderzoek is in wezen ambivalent. Het heeft de 
neiging alles wat nog niet zichtbaar gemaakt is van de hand te 
wijzen, terwijl het juist de bedoeling van onderzoek is om iets te 
ontdekken wat nog niet bekend is. 

4. In de huidige tijd wordt denken voornamelijk gerelateerd aan de 
ratio en is iets als intuïtie verdacht. Een onderwerp dat langer dan 
een halve eeuw meer intuïtief dan deductief bestudeerd is is piping. 
Er zijn geen gevallen bekend die hierdoor geleid hebben tot een 
catastrofe. 

5. Het grootste probleem van wetenschappelijk onderzoek is het creëren 
van een helder begrippenkader. De natuurkunde is hier ondanks de 
stormachtige ontwikkelingen redelijk in geslaagd. In de psychologie 
kan men beter opnieuw beginnen. 

6. De medische wetenschap heeft haar grootste successen geboekt op 
onderwerpen die relatief weinig aan de orde komen in een dokters 
spreekkamer. 



7. Het is buitengewoon verontrustend te constateren dat in het 
vakgebied der psychologie aan de menselijke psyche een aanmerkelijk 
kleinere standaardafwijking wordt toegekend dan gewoonlijk voor 
grond gehanteerd wordt. 

8. De woorden intelligent en intellectueel worden vaak gehanteerd als 
synoniem. Zij hebben echter eerder een tegenovergestelde betekenis. 
Een intellectueel is iemand die voor een trivialiteit een moeilijk 
woord verzint en daarom bijdehand lijkt. Iemand die intelligent is 
verklaart met eenvoudige begrippen gecompliceerde problemen en lijkt 
daarom dom. 

9. Het toppunt van intellectualisme is het feit dat vijflettergrepig 
zichzelf omschrijft en tweelettergrepig niet. Overigens heeft alleen 
vijf deze eigenschap. 

10. Anno 1988 wordt nog steeds niet algemeen ingezien dat, als twee 
opponenten bidden voor de overwinning, zelfs God er slechts één kan 
laten winnen. 
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1■ Introduction 

In delta areas - as for example in large parts of The Netherlands 
the land is protected from floods and high tides by dikes. In 

general these are constructed of impervious clays and built on a 
sandy aquifer as subsoil. Such structures are vulnerable to an 
erosion effect called piping. In this thesis a mathematical model 
is proposed which deals with the mechanism of piping. The model is 
basically analytical but employs a numerical method to refine the 
results. The outcome is presented in a standardised form to be 
used as a design rule. 

Piping is a form of seepage erosion - the general name for the 
adverse effects of groundwater flow on soil stability. High 
seepage pressures may remove soil material to such an extent that 
geotechnical structures may, and do, collapse. Several terms have 
been used in the literature to classify this seepage erosion. For 
instance 'heave' ( a substantial soil volume which is 
simultaneously raised by seepage flow, Terzaghi (1967), V. Zyl 
(1981) ), 'karst-piping' ( the removal of material due to 
weathering, Dykhovichnyi (1979) ). 'hydraulic fracturing ( the 
process of soil being locally pushed apart by porewater pressures, 
Seed (1981) ), and 'internal erosion' ( the transport of small 
particles through a matrix of larger ones, Lubochkov (1962), 
V. Zyl (I98I) ). 

The actual word 'piping' refers to the development of channels, 
which begins at the downstream side of the structure where the 
flow lines converge. Associated with this, high seepage pressure 
occurs. The subsequent erosion process develops backwards and due 
to the natural non-homogeneity in the soil the channels are 
irregularly shaped. If the process continues the structure may in 
the end collapse. 

It is clear why this phenomenon should be studied: society's well-
being and the economy are of nationwide interest. The safety of 
water retaining structures is these days being argued, especially 
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since design rules to date are empirical and appropriate to quite 
different geographical locations. Often they are inadequate. 

The whole mechanism is quite complex and use is made of branches 
of soil mechanics (both continuum approaches and particulate 
aspects), groundwater flow and hydraulics. A certain amount of 
simplification has to be introduced so as to make the problem 
suitable for mathematical analysis. Inspiration is drawn from 
simple visual tests. 

The model is essentially two-dimensional. It is believed that this 
does not seriously affect the validity of the results. The design 
rules obtained allow for a great variety of geotechnical 
conditions. The analysis gives insight into the safety factor of 
the design. 

This thesis basically consists of three parts. The first one is 
formed by chapters 1 ... 4 and is meant as introduction and 
preparation for the modelling of the piping phenomenon. The second 
part is the modelling itself and is worked out in chapters 5 
10 and appendices A ... C . This portion is entirely of 
theoretical nature. The last part consists of chapter 11 which is 
mainly practical. It is meant as stand alone for engineers who do 
not care too much about theoretical elaboration, but are more 
interested in effective and economical design of water retaining 
structures. 
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2. Historical notes 

Piping has been studied since the turn of the century. It is 
mentioned in the context of weir and dam design on sandy 
foundations where, in addition to the usual design problems 
encountered in civil engineering, seepage erosion plays an 
important role. As a result of research an empirical rule relates 
the hydraulic head across the structure, H , to the length of 
seepage, L . For simple structures L can be assumed to be equal 
to the length of the weir or dam. The rule reads as follows: 

L = E H (2.01) 

where E is a coefficient that depends on the geometry and soil 
parameters. 

The relation (2.01) appears in the work by Clibborn and Beresford 
(1902) . Bligh (1910) followed this concept and defined L as 
seepage length, i.e. the length of the path along the structure 
that is followed by the groundwater. This same idea, also called 
line of creep method, was suggested by Griffith (1913). Another 
approach that has been advocated to some extent is called shortest 
path method, implying that L must be the shortest route the 
water can take under the structure. 

So far investigations have referred only to small structures. Once 
the scale was enlarged, the value of L quickly exceeded 
realistic dimensions when referred to the length of the structure. 
Attempts were made to reduce this value artificially. Heel and toe 
sheetings were applied, and at the same time methods were refined 
to determine the groundwater flow pattern. Harza (1935) proposed 
the electric analogy method. Lane (1935) introduced the weighted 
seepage method in order to include the difference in horizontal 
and vertical permeability. 

From a design point of view the use of heel and toe sheetings may 
be acceptable and there is no general objection to the use of the 
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type (2.01) rule. But it must be realized that in the case of a 
heel sheeting the character of the seepage erosion changes. The 
problem is no longer piping, but heave. In the literature there is 
often no clear distinction made between these two phenomena. 
Terzaghi (1967) for example talks about piping due to heave. 

Up to the late 1970's research had been concentrated on the heel 
sheeting type of structure but piping had been mentioned in only a 
few articles. Laboratory tests were carried out in Germany and in 
The Netherlands. Miesel (1978) , Müller-Kirchenbauer (1978) and 
Hannes et al. (1985) performed model tests on piping from holes 
made at the top of a confined layer. De Wit et al. (1981) 
reported experiments in partly covered sand layers. 

Theoretical methods which have contributed to the understanding of 
piping have been reported. Both MUller-Kirchenbauer (1978) and 
Sellmeijer (1981) used solutions for steady flow and applied 
conformal mapping; Hannes et al. (1985) worked with a numerical 
method. Seepage erosion is not an integral part of these 
calculations and so the actual mechanism is not adequately 
described. Nevertheless, it might be possible to use these 
solutions when designing against piping. 

In this analysis a theoretical description is presented which does 
take the erosion mechanism into account. 
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3. Simple visual tests 

As mentioned in the introduction the configuration under 
investigation is an impervious structure on top of a granular 
material. If the function of the structure is to retain water, 
groundwater flow will occur through the granular material due to 
the hydraulic head across the structure. It is known that piping 
takes place due to the effects of high seepage pressure on the 
downstream side of the structure. The question is how to describe 
this erosion problem. 

In order to obtain qualitative understanding of the phenomenon 
simple laboratory visual tests have been carried out. A perspex 
container was filled with sand and partly covered by a perspex lid 
which simulates the impervious structure. The set-up is sketched 
in figure 3-1 where the applied hydraulic head is also 
indicated. During the tests the hydraulic head is gradually 

hydraulic head 

water 

'•'.• -'sahdboil'■■'■] •_. s l i t '•• 
'.• -'. .•'.•; • •' fluidized' •.'•'. ' 

filter 

;: sand • • .' 

Fig. 3-1 : Model for laboratory test 
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increased in steps and the behaviour of the sand is observed. 

At a certain stage it is noticed that sandboils appear in the 
outflow region. These "boils" consist of sand transferred from 
below the lid. The sand is fluidized in the center of the boils, 
allowing water to flow out. There is no net outflow of sand. But, 
if the hydraulic head is increased in a subsequent step, sand is 
transferred until again an equilibrium state is reached. Below the 
lid slits with a depth of several times the grain size develop. 
They look like meandering rivers which join up in an estuary. 

It is obvious that the sandboils and slits limit the seepage 
pressures to a physically maximum possible level. Their height, 
length and depth increase with the hydraulic head. At a certain 
stage the seepage flow reaches a critical value which is 
associated with progressive erosion. At this point the seepage 
gradients apparently increase out of all proportion, unrestrained 
by changes in the flow pattern. The process then results in 
failure of the sandy aquifer. 

These observations are the basis for a theoretical description of 
piping. 
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4. Physical principles of the model 

During the visual tests it was observed that in the presence of 
high seepage gradients sand is transferred from underneath the 
structure being tested to the outflow region. This process results 
in the appearance of sandboils and slits. It was noticed that 
equilibrium state conditions are possible as long as the sandboils 
and slits restrict the seepage gradients below a critical value. 
This critical value is believed to coincide with the point of 
failure of the sand. Beyond, progressive erosion begins and leads 
to the collapse of the geotechnical structure. 

It is clear that the precise distribution of granular material in 
the outflow region is of great relevance to the analysis of 
piping. In figure 4.1 a plausible geometry - inspired by 
observations made in the tests - is shown. The sandboil is 
indicated by AB ; the slit by BC . At point B the sand is 

Fig. 4.1 : Plausible geometry in the outflow region 
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fluidized. The character D denotes infinity which mathematically 
speaking is an expanded point. The direction of the seepage flow 
is towards the free water surface. 

In reality the problem is three-dimensional, however, to achieve 
the primary goal - a description of the mechanism of piping - a 
two-dimensional approach is presented. Such a description is 
believed to still capture the main mechanical features and not to 
invalidate the quality of the results. By implication it will now 
be impossible to include the meandering of the slits in the 
investigation. Meandering is due to the search for weak links in 
the granular structure of the sand. It is associated with the non-
homogeneity of the sand properties and is therefore not an 
essential but an added feature of the piping problem. 

During the visual tests it appeared that a new steady state 
seepage flow could be reached after an increase of the hydraulic 
head. This means that the steady state flow equation can be 
applied to describe the flow. Computational results, however, 
depend very much on the appearance of the sandboils and slits. 
Their geometry is erratic but can be simplified as follows. 

The function of the slit is to conduct seepage water. Its depth is 
a few times the grain size and geometrically irrelevant. The 
sandboil provides resistance in the outflow region and therefore 
its dimensions do matter. But it is no problem to consider the 
seepage through AB in figure 4.1 . Therefore the groundwater 
flow may be studied in the lower half-plane DABCDD . However, in 
addition the seepage in the sandboil itself must be determined. 

The flow can be solved if the boundary conditions are known. At 
DA the head is constant due to the presence of the free water 
surface; at CD there is no vertical discharge, because the 
structure there is impervious. But at ABC the boundary 
conditions depend on the erosion process. During the visual tests 
it was observed that an increase in the hydraulic head caused some 
sand transport, resulting in a new steady state. Therefore, it is 
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plausible that this state is defined by the condition of limit 
equilibrium of the sand. 

The problem now is how to incorporate this condition in the flow 
calculations. The following scheme proved fruitful: indicate the 
value of the head at ABC by the variable P ; then solve the 
groundwater flow expressing all important flow features in the yet 
unknown value P . Knowledge about the soil response can be used 
to evaluate the variable P . 

It would appear that piping contains two features: seepage flow 
and limit equilibrium of the sand. The latter must be determined 
both in the sandboil and in the slit. In the following chapters 
these aspects will be elaborated upon and unified into one 
mathematical model to describe the phenomenon of piping. 
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5. Groundwater flow 

One of the major mechanisms controlling piping appears to be 
groundwater flow. This may be studied in the lower halfplane 
DABCDD of figure 4.1 . In this chapter the head of the 
groundwater flow will be determined under the following 
conditions: the flow is steady and is regarded as two-dimensional. 
The head is denoted by ♦ being a function of the coordinates x 
and y . During calculations it turns out to be convenient to work 
with the gradient of ♦ . Consequently the boundary conditions are 
expressed in this dimension. They are indicated in figure 5.1 
which shows the same geometry as figure 4.1 . 

At DA the value of the horizontal gradient 3*/3x is zero due 
to the presence of the free water surface. At ABC the latter is 
indicated by p = dP/dx , where P represents the yet unknown 
value of the head. In a later stage this head will be defined by 

Fig. 5.1 : Geometry in the outflow region 
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the condition of limit equilibrium. At CD the vertical gradient 
vanishes, since no vertical discharge takes place. 

The process of steady flow is characterized by the steady flow 
equation or Laplacean. For a homogeneous and isotropic coefficient 
of permeability this equation reads: 

The task is to solve equation (5.01) in the region of the lower 
halfplane DABCDD for the afore mentioned boundary conditions, 
i.e. 3*/3x = 0 for x < 0 , 3*/3x = p for 0 < x < g and 
3*/3y = 0 for x > g . 

There are two suitable methods which lead to a solution. Both make 
use of the complex variable theory. To that end the geometrical 
plane in figure 5-1 will be described by the complex variable 
z = x + iy. Here i is the imaginary unit /(-l) . Also the head 
<t> will be extended with the stream function ty to the complex 
potential eo = ♦ + ity . Usually in complex flow theory the head, 
stream function and complex potential are multiplied by the 
permeability coefficient and indicated by $ , ¥ and Q 
respectively, but here these variables per unit permeability are 
preferred. 

According to complex variable theory any analytical function io(z) 
contains a head * satisfying equation (5.01). That means that 
the problem is reduced to the determination of the boundary 
conditions only. Two methods to do so may be considered: the 
Cauchy integral formula and the theory of conformal mapping. These 
methods lead to perfectly equal answers in an entirely different 
mathematical representation. 

At first the Cauchy integral formula will be dealt with. 
Polubarinova-Kochina (1962) presents an elaboration (chapter VI) 
of this formula appropriate to the present problem. The formula 
states that in case of a lower halfplane any analytical function 
f can be represented by: 
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f(z) = r i | R e [ f ( r ) ] f f i (5.02) 

Re stands for real part, r is an integration variable along the 
line DABCD in figure 5.1 . 

The equation (5-02) implies that boundary conditions in terms of 
f are available along the entire line DABCD . In order to meet 
the requirement for this problem a special function f is 
considered: du/dz / J(i-z) , where £ indicates the combined 
length of sandboil and slit, called erosion length. Thus the 
equation (5-02) is turned into, 

dm/dz - f 1 1 J 
Re dü)/dri dr 

J(C-r)' r-z (5.03) 

What is the advantage of the representation (5.03)? 

In complex theory it is known that the derivative of u> = * + ii|i 
is equal to d<o/dz = 3*/3x - i 3*/3y . On the one hand, along the 
line DA where r < 0 , the gradient 3*/3x vanishes and thus 
the value of Re[do>/dr / /(£-r)] is zero. On the other hand, 
along the line CD where r > S. , the gradient 3*/3y vanishes 
and therefore the value of Re[dw/dr / /(2-r)] is zero too. 
Keeping in mind that for 0 < r < Q. 3<t>/3x = p and J(i-r) is 
real, equation (5-03) may be rewritten as: 

ÏÏ = S I PW Hg* fc = ïlj ><*> ̂  fe * Si) *' 
(5-04) 

For a proper function p this equation states that u is an 
analytical function of z and therefore <t> satisfies the flow 
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equation (5.01). Quite simply it can be checked that the boundary 
conditions have been met, and so equation (5.04) is a suitable 
representation of the solution of the flow equation (5.01). The 
expression for co itself vfollows by integration over z . To 
perform this integration the second integral of the right hand 
expression of (5.04) will be rewritten by partial integration with 
respect to r , 

do 
dz £ J **>'(&) fe- £Jp<'>É?Mf3£i<* 

Integration of the first integral over z is simple. The second 
integral shows a special property. Integration with respect to z 
compensates a great deal the differentiation with respect to r . 
This can be seen as follows, 

d_ [ / (£ZTJ _L_j dz . . J_ 
dr i-z r-z i-r 

[![*=*) —Wl -(IS dl-7—I i-z 1 - - — lK-z' i-z 

Therefore integration with respect to z results in, 

0 0 

No integration constant is needed since the real part of (5-05) 
vanishes in z = 0 and the imaginary part in z = i . 

Formula (5-05) describes perfectly well the defined flow problem. 
It would appear that this equation is quite helpful for deriving 
certain particular shape functions to build up the total solution. 
However, general shape functions are better expressed differently. 
Another approach to the flow problem (5-01) will be tried from a 
different viewpoint. 
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A well-known method of solving complex potentials is 
transformation by conformal mapping. This method can be applied 
successfully. Now the geometrical z-plane is transformed into a 
strip. This strip, which is denoted by the complex variable 
C = C + in , is shown in figure 5.2 . The letters A to D 
inclusive correspond with the ones in figure 5.1 . 

There is a one-to-one relationship between the original and the 
transformed plane . The form of an infinitesimal element remains 
unaltered; only the size and orientation change. Because of this, 
the term 'conformal mapping' is used.. The relationship between the 
geometrical plane and the strip can be determined by the technique 
of Schwarz-Christoffel transformations, as described in, for 
example, Churchill (I960), Verruijt (1970). The result is as 
follows: 

q = 2/n arcsin/(z/e) (5.06) 

1 

Fig. 5-2 : Transformed geometrical plane 
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In a strip the concept of Fourier series comes readily to mind and 
an exponential transformation of t; is obvious. Since CD is a 
streamline and DA an equipotential line the mapping function 
exp{̂ -ni - (n+J-) rrit;} is appropriate, for this function yields 
real values along CD and imaginary values along DA . In order 
to arrive at a solution which satisfies the condition along ABC , 
the Fourier series (5.07) is introduced: 

I = I An expftni - (n+l-) niq} (5.07) 
n=0 

In this representation the yet unknown horizontal gradient p is 
characterised by the coefficients A 

From equation (5-07) an expression for to can be determined by 
integration. In so doing, it is helpful to consider <i> as 
function of C instead of z . From the transformation (5.06) it 
follows that, 

| | = f l Z s i n ( n q ) = - | ± f {exp(niC) - exp( -n iq )} (5.08) 

Thus, relation (5-07) may be written as: 

dT = I A | f [exp(- (n-H niq) - exp(- (n+fr) niq}] (5.09) 
a^ n=0 

The function <o is now easily obtained by the integration of 
(5-09) with respect to t; : 

» = I A g [exp{- (n-fr) nit;} . exp{- (n.f) ni^j ( } 

The expansion (5-10) also describes the flow problem very well. 
Basically the previous result (5-05) is different in that the 
function P there is the fundamental unknown to settle the flow 
problem, but here the solution is embedded in Fourier coefficients 
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A . Fourier series are best used if the coefficients can be n 
obtained from integration. If this is not the case, special care 
must be taken, particularly when the behaviour is not smooth. 
Solution (5-10) will be used as a set of general shape functions. 
Together with particular shape functions of a wilder nature 
through solution (5-05) they will construct the total solution. 

Two results are now obtained, which describe the seepage problem 
perfectly well: the integral representation (5-05) and the Fourier 
series (5-10). They are identical, although mathematically they 
have an entirely different form. It is possible to prove by 
substitution that they are equal, but it is beyond the scope of 
this presentation to work this out. 

From the results all relevant flow features may be obtained. In 
the sandboil and slit the following ones are considered: the 
horizontal and vertical gradients indicated by p and -q 
respectively; the head P and the discharge through the slit per 
unit of permeability denoted by Q ; and the head along the 
geotechnical structure indicated by $. The value of Q equals 
the reverse value of t|i for z = x , which represents the total 
discharge through the slit. 

Since dw/dz = 3*/3x - i 3*/3y , the values of p and q simply 
equal the real and imaginary parts of equation (5.04) or (5-07) in 
the sandboil and slit. The following relations are obtained: 

CO 

p = g = I A n sin( (n+H i,E J 
n=0 

(5-11) 

Here the value of | is specified by transformation (5.06), 

5 = 2/n arcsinV(x/e) 0 < x < S. (5-12) 
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If the pole r = x is involved, integration in (5.11) is carried 
out according to Cauchy's principle. The integral is also useful 
for x < 0 without need of Cauchy's principle. 

The values of P and -Q are equal to the real and imaginary 
parts of the potential u in the sandboil and slit. Therefore, 
with the aid of equations (5-05) and (5-10) the following holds: 

P = 
n=0 
r . 1 rsin((n-n ng} _ sin{(n+j-) ng}-, 
tQ

 An 4 I (n-H (n+n J 

O _ _ y A i rcosf(n-H ng} _ cos{(n»fr) tig)-, 
Q " n

l
=0
 An 4 I (n-H (n+n J 

(5-13) 

0 

The obtained results (5-11) and (5-13) may be checked by the 
conditions p = dP/dx and q = -dQ/dx . 

The derived quantities P , Q , p and q concern the sandboil 
and slit. Besides, the head along the structure is of importance 
too, because at a distance L from the outflow region this head 
represents the hydraulic head. Its value is directly obtained from 
the real part of the relation (5-10), realizing that at CD in 
figure 5•1 the value of C is in the range, 

t; = 1 + in = 1 - i 2/n arccosh/(x/g) 

with, exp(- J-n n) = J(x/l) + /(x/C - 1) 
x > e (5-11») 

The integral representation is simply equal to the real part of 
(5.05). For the head * along the structure then the following 
relation is arrived at, 
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(5-15) 

a - T f--nn A e rexp{(n+j-) nn} exp{(n-H nn}i 
" n=0 n k (n+F) ( n _^ 

o o 

The value of n is determined by relation (5.14). 

The groundwater flow is sufficiently described by the equations 
(5.11), (5.13) and (5-15)- Both representations, the integral 
equation and the Fourier expansion will be used in the numerical 
elaboration. 

Complex calculus leads to a solution for the groundwater flow 
field in an elegant manner. To include the sandboil in the 
description - thereby slightly modifying the geometry - an 
analytical continuation is put forward. Here particularly the 
power of the complex variable method is apparent, since it may be 
simply written, 

— = i — = p(z) + i q(z) (5.I6) 
dz 3x 3y v ' \J 1 

The boundary conditions are satisfied because for z = x it holds 
that a*/3x = p(x) and 3t/3y = -q(x) and the steady flow 
equation is valid too, as long as p(z) and q(z) are analytic 
functions. 

At the leading edge there are two flow features and one geometric 
property to be determined: the horizontal and vertical gradients 
and the height of the boil as function of position h(x) . On the 
surface of the sandboil the head ♦ vanishes. This requirement 
will lead to a condition for h(x) . The equality * = 0 is 
equivalent to Re{co(x+ih)} = 0 . To obtain h in explicit form 
this equation may be differentiated with respect to x . Using the 
chain rule, the following is arrived at, 
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_ r f 3 * . 3 * » /. . dhi i 
L l3x 3y' ' dx' -1 

or, 

dx " l3*/3yJ(y=h) (5-17) 

This is not a surprising result; it implies that the flow lines 
are perpendicular to the surface of the sandboil. 

The right-hand side of equation (5-17) is determined by (5.16). 
Though compactly expressed this equation is actually quite 
complicated. However, it is sufficient to consider a first order 
approach to the problem and to assume, 

30 a$ 
ix" • P(*> ip- • - «(x) (5.18) 

Automatically the above-mentioned flow features are found now. 
With the aid of equation (5.17) the following approximate value of 
h is obtained: 

dh „ P ix l P ix i 
dx q(x) h q(x) ( 5 < 1 9 ) 

Relations (5-18) and (5-19) are sufficient to proceed to describe 
stability characteristics, as will be shown in the following 
chapter. 
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6. Limit state equilibrium in the sandboil 

Sandboils are due to particle transport caused by outflowing 
groundwater. In the previous chapter this flow is well described 
assuming a yet unknown distribution of the head in the sandboil 
and slit. In this chapter a condition will be derived in order to 
fix this head in the sandboil. It will appear later that the 
characteristics of the sandboils do not influence the ultimate 
result very much. Yet, if sandboils are not taken into account it 
is not possible to describe the piping process as a stable one. 
This will be demonstrated at the end of this chapter. At the 
juncture of sandboil and slit a gradient is required to move water 
from the slit. The presence of the sandboil takes care of this. 

Information on the stress state in the sandboil is necessary so as 
to determine the groundwater flow. The sand is believed to be in a 
state of limit equilibrium. A general calculation of the stresses 
in the sandboil is quite intractable but a simplified approach 
will lead to manageable and realistic results. In figure 6.1 an 
element KLMN at the surface of the sandboil is considered. It 
contains a great number of sand particles, so that the principles 
of continuum mechanics may be applied. 

The following forces per unit volume and per unit weight of water 
act on this element: 

- submerged unit weight of the soil element per unit weight of 
water, T*/T ; s w 

- horizontal gradient of the seepage flow; according to relation 
(5-18) a first order approximation is p ; 

- vertical gradient of the seepage flow; according to relation 
(5-18) a first order approximation is -q ; 

- normalized force at the bottom of the element, resolved into a 
vertical component, S, , and a component parallel to LM , S2 ; 

- normalized force at the left side of the element, S3 ; 
- normalized force at the right side of the element, S, . 
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The normal force per unit volume and per unit weight of water is 
indicated by s , the shearing force per unit volume and per unit 
weight of water is denoted by t . The sand has an angle of 
internal friction, 9 . The slope angle, 8 , is related to the 
height h(x) by the equation tan9 = dh/dx . As a first order 
approach equation (5-19) yields the relation: 

tan6 = fï- = E. (6>01) 
dx q ' 

The system of soil forces S, ... S, is statically undetermined 
and information from the entire field is required, which would 
demand finite element type calculations. But, if the influence of 
variations along the surface of the sandboil is neglected, the 
system can be forced into a unique solution. To this end the 
forces at the right and left sides of the element will be supposed 
to be of equal magnitude and opposite direction. 

Fig. 6.1 : Stress state in the sandboil 
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The soil forces" per unit volume and per unit weight of water at 
LM are now specified. Horizontal and vertical conditions of 
equilibrium of the soil element KLMN result in the following: 

S. = r/T - q - p tanB 1 s w 
(6.02) 

S2 = P / cos8 

These forces are related to each other by the condition of limit 
equilibrium. If the soil is in a limit stress state then the 
effective soil force must lie on the Mohr-Coulomb envelope as 
plotted in the s-t diagram in figure 6.1 . Applying the sine 
law this gives the following relation between St and S2 : 

^ — = ^ (6 01) sin(J-ir - 6) cos9 sin(6-9) 

Substitution of equations (6.02) into condition (6.03) relates the 
horizontal and vertical gradient to the slope angle, 

{T*/T - q - P tan6} sin(9-6) = p cosS / cos8 

or, 

T/r = q + p cot(e-e) (6.o4) 

This simple relation together with (6.01) describes the limit 
stress state of the sandboil. Elimination of the slope angle by 
substitution of (6.01) yields a relation between p and q only: 

q + p2/q t'a 

1 - p/q cotG T w 

Since this equation is based on a first order approximation the 
quadratic term is not appropriate. Without it, the final result is 
as follows: 
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Y /Y' q + p/q COt0 = 1 w s (6.05) 

It is indeed a simple formula. However, it should be noted that 
this relation is not linear. Condition (6.05) will be used to 
determine the values of the head in the sandboil. 

It is interesting to visualize the relation (6.05) between p and 
q . For this purpose this equation is rearranged as, 

Y /T' p cote w s (Y /T q w s \Y (6.06) 

The relation obviously represents a parabola, as shown in 
figure 6.2 . The influence of the slope of the sandboil is given 
by the difference between the straight line and the parabola. It 
is seen that the maximum value of p is k Y*/Y tan0 . 

* s w 

Y /T q w s 

parabola linear 

Y IT p cote 
w s 

Fig. 6.2 : Relation between p and q in the sandboil 
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The necessity of the sandboil for the stability of the problem is 
now easily understood. Without it p is discontinuous, as its 
value vanishes along line DA while a gradient in point B is 
required for the water to flow out of the slit (see fig. 4.1). 
According to (5-H) q would become infinite then, thus violating 
(6.05). Now that it is present q remains finite and a solution 
for (6.05) is always possible for continuous p . 





- 27 -

7- Flow in the slit 

The sandboil in the outflow region is a result of material which 
has been moved from underneath the structure. This erosion process 
is associated with the formation of a slit. As the slit becomes 
longer, locally the permeability increases and the gradients 
reduce. There comes a point when for a given overall hydraulic 
head equilibrium is restored. The particles at the bottom will 
then be in limit equilibrium. 

This state of limit equilibrium is the condition to fix > the yet 
unknown head of the flow in the slit. To investigate the limiting 
condition two aspects must be dealt with: the interparticle 
forces, and the force on the particles which is exerted by the 
flow. In this chapter the latter is discussed. The character of 
the interparticle forces is investigated in chapter 8 . 

/////,„//// structure 

slit 

sand 

Fig. 7-1 : Flow in the slit 
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In figure 7.1 a detail of the geometry of the slit is shown. The 
depth of the slit is denoted by a(x) . The character of the flow 
in the slit, whether laminar or turbulent, depends on the Reynolds 
number. The product of average velocity and slit depth is equal to 
the total discharge through the slit and so the Reynolds number is 
R = kQ/v . Here the coefficient of permeability is denoted by 
k , the kinematic viscosity by v . If R < 600 to 800 then the 
flow is laminar. Lamb (19̂ 5)t de Vries (1979)- In practice this is 
often true. For large permeabilities and/or large structures the 
number may go beyond this range. However, in this study only the 
laminar flow condition will be analysed. 

A steady state laminar flow in general is governed by the Navier-
Stokes equations, Batchelor (1983). The water velocity will be 
denoted by u in horizontal and v in vertical direction; the 
piezometric head in the slit by ♦ . If the gravitational 
acceleration is indicated by g and the kinematic viscosity by 
v , the Navier-Stokes equations are in case of incompressible 
water, 

,a2 a2 , 

(7.01) 
,3* 32 , 

These equations consist of a convection term, a piezometric head 
term and a friction term. The convection term is quadratic, the 
other two are linear. For small Reynolds numbers the convection 
term is neglected and the equations simplify to a linear system: 

a» ± f8_f_ a' 1 
3x = g l3x* * 3y*J U 

(7-02) 
1*. _ v. flf_ + if_] 
3y = g <3x2 3y2' V 

(uix- + 
3_ 
ay' 

3<t> 

ax ay 
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As soon as u and v are determined it will be demonstrated that 
indeed the convection term is of minor influence. The set of two 
equations (7.02) contains three unknown quantities and so 
additional information is required. The equation of continuity 
must still be satisfied. In case of incompressible water it reads, 
Batchelor (1983), 

r - ' i r = 0 ' (7-03) 
3x 3y w -" 

From equations (7-02) and (7-03) the velocity and the piezometric 
head in the slit can be determined under the present boundary 
conditions. These conditions are specified in terms of the 
velocity. At the top of the slit the velocity vanishes; at the 
bottom the velocity is directed upwards and equal to kq . The 
depth of the slit is as yet unknown. Therefore, an extra condition 
is imposed, i.e. the continuity of the head, * = P . 

In order to solve the flow pattern in the slit fruitful use of 
complex calculus is made. First it is shown from equations (7-02) 
and (7-03) that the piezometric head is a harmonic function. This 
is so because differentiating the first equation of (7-02) with 
respect to x and the second one with respect to y leaves the 
Laplacean type of equation for ♦ after condition (7.03) is 
applied, 

f — + — 3̂x2 + 3y2 * = 0 (7-04) 

If the x,y-plane i s now identified with the plane of the complex 
variable z , the harmonic function ♦ can be considered to be 
the real part of a complex field o> = ♦ + it|i . The real and 
imaginary parts of this field satisfy the Cauchy-Riemann 
conditions, 
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The physical meaning of the imaginary harmonic part i)> will 
appear later. The basic functions to be determined are the 
velocity components u and v . Since the functions * and 1(1 
are harmonic and obey the Cauchy-Riemann conditions (7-05) the set 
of equations (7-02) can be rearranged into two equations of the 
Laplacean kind, 

fa2 32 , f2v *, 

f 3 2 3 2 , f2v 
(7-06) 

y ♦) = 0 

There are now three equations of similar form (7.04) and the set 
(7.06) which can be analysed using complex calculus. In the 
development two only of them need to be solved, because ♦ can be 
expressed by the following identity, which is a consequence of 
(7.03) and (7-05). 

3 I *1 3 I ,1 ^ v
 f3u 3Vi 

iy (y ♦) + ̂  (y *) - — (^ + î ) 

- k f T u ' y ; i "fe ( T v - y i ) (7-07) 
An expression for I|I is obtained by using (7-05), (7-06) and 
(7-07), 
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Hence, 

Now the physical meaning of I|I becomes clear. Working out 
equation (7-08) yields, 

* 2v ,3u _ av. _ - v. ,au _ av.| 
v g l3y ax' v g l3y 3xJ 

So i|) simply represents the vorticity of the flow, normalized by 
the parameters g and v to obtain the same dimension [m] as the 
head * . 

Generally a solution of the Laplacean may be written as the sum of 
complex analytical functions of the variables z = x + iy and its 
complex conjugate z = x - iy . This is true, since one may write: 
3/3x = 3/3z + 3/3z and 3/3y = i (3/3z - 3/3z) . By implication 
it follows that 32/3*2 + 32/3y2 = 't a2 /3z3z" , Garabedian (1967). 
The sum of the two analytical functions must be such that the 
boundary conditions are satisfied. The ones at the bottom of the 
structure are easily incorporated. Here, for y = 0 , the velocity 
vanishes so that u = 0 and v = 0 . This can be satisfied by 
subtracting two analytical functions of equal form. Bearing this 
in mind, the following relations are obtained, solving (7-06), 

2̂ /g u = y * - i {U(z) - U(I)} 
(7.09) 

2v/g v = y ♦ + i {V(z) - V(z")} 

Here U and V are analytical functions which will be determined 
later on from the remaining boundary conditions. The proposed form 
for u and v (7-09) yields expressions for ♦ and vp with the 
aid of equations (7.07) and (7.08), 


