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Abstract 

Wientjes, Y.C.J. (2016). Multi-population genomic prediction. PhD thesis, 

Wageningen University, the Netherlands 

 

In genomic selection, genotype information is used to select the genetically best 

animals to produce the next generation. To identify the best animals, genotypes for 

single-nucleotide polymorphisms (SNPs) of selection candidates are combined with 

SNP effects, estimated in a reference population containing individuals with known 

phenotypes and SNP genotypes, to estimate genomic breeding values. For 

numerically small populations, the size of the reference population is often limited, 

which results in a low accuracy of genomic prediction. Enlarging the reference 

population by adding individuals from another population is an attractive approach 

to increase the accuracy. This thesis aimed to investigate the accuracy of multi-

population genomic prediction, by 1) investigating the effect of different factors on 

the accuracy, and 2) deriving deterministic equations to predict the accuracy. 

Results show that the level of family relationships between reference and selection 

individuals has a higher effect on the accuracy of genomic prediction than the 

strength of linkage disequilibrium (LD) between quantitative trait loci (QTL) and 

SNPs. The accuracy of across-population genomic prediction is proportional to the 

genetic correlation between the populations. The consistency of multi-locus LD 

across populations can be calculated using selection index theory, and is highly 

related to the accuracy of across-population genomic prediction. The SNPs close to 

a QTL have a higher consistency in LD with the QTL across populations, which 

indicates that focusing on those SNPs could potentially improve the accuracy. It 

was also demonstrated that QTL properties, such as allele frequency pattern and 

distribution of allele substitution effects, are key parameters determining the 

accuracy of single- and multi-population genomic prediction. Moreover, two 

deterministic equations to predict the accuracy of multi-population genomic 

prediction were derived. The first equation is based on genomic relationships and 

was able to accurately predict the accuracy. The second equation is using population 

parameters, such as the number of effective chromosome segments across 

populations and the genetic correlation between populations, and can accurately 

predict the accuracy when the proportion of the genetic variance in the selection 

candidates captured by the SNPs in the reference population is known. Using this 

equation, it was shown that combining populations in one reference population 

can increase the accuracy when populations are closely related, the initial 

reference population is small, and a large number of animals is added.  
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1.1 Dairy cattle breeding 
The general aim of animal breeding is to improve the performance of future 

generations by selecting the genetically best animals in the current generation to 

produce the next generation. For many years, the genetically best animals were 

identified based on estimated breeding values, calculated using the performance of 

the animals themselves, their relatives, or a combination of both. In dairy cattle, for 

example, selection of bulls was based on the performance records of many 

daughters, which was first implemented in Denmark, but soon applied in other 

countries as well (Johansson 1960). The process of collecting performance records, 

known as phenotypes, is time-consuming and sometimes costly, especially for traits 

that are expressed late in life or that are difficult to measure. Moreover, not all 

traits can be measured on the selection candidates themselves, since some traits 

are only expressed in one sex or can only be measured after slaughtering the 

animal. Those factors influence the accuracy of identifying the genetically best 

animals, thereby affecting the genetic improvement of future generations. 

The DNA carried by an animal determines whether an animal has a high genetic 

merit or not. Therefore, the possibility to use DNA information in selection 

strategies to select the genetically best animals was investigated since the second 

half of the last century (e.g., Smith 1967; Soller 1978). At first, only information of a 

few markers related to quantitative trait loci (QTL), i.e., the regions on the DNA 

that affect a quantitative trait, associated with a specific trait was used to estimate 

breeding values for that trait. Those breeding values were used for selecting the 

best animals, a strategy that is known as marker-assisted selection (e.g., Fernando 

and Grossman 1989; Dekkers 2004). In dairy cattle, marker-assisted selection was 

first introduced in breeding programs in the beginning of this century in France and 

Germany (Boichard et al. 2002; Bennewitz et al. 2003). Most quantitative traits are 

influenced by many QTL with small effects, making it very difficult to identify all 

QTL affecting a trait. Therefore, marker-assisted selection only had a limited effect 

on the genetic improvement of populations (Dekkers 2004).  

In the beginning of this century, Meuwissen et al. (2001) proposed to use 

thousands of genome-wide markers simultaneously, regardless of the correlation 

to the trait, for the prediction of genomic estimated breeding values (GEBVs) to 

select the best animals, a strategy known as genomic selection. In contrast to 

marker-assisted selection, genomic selection does not require that all QTL are 

identified. In dairy cattle, genomic selection has the potential to double the genetic 

improvement per year, for a review see Pryce and Daetwyler (2012) or Bouquet 

and Juga (2013). This increase in genetic improvement is mainly a result of an 
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increase in accuracy of estimating breeding values for young animals for which 

accurate phenotypes are not yet available (e.g., Calus et al. 2008; VanRaden 2008). 

The higher accuracy for those young animals results in the possibility to start 

selecting the best animals at a younger age and, thereby, reduces the generation 

interval (Schaeffer 2006). Due to the high potential of genomic selection, it is 

currently successfully implemented in bull breeding programs of Holstein Friesian 

dairy cattle populations worldwide, in which indeed a doubling of the genetic gain 

is obtained (Patry 2015).  

 

1.2 Genomic prediction 
The process of calculating GEBVs, that are used in genomic selection to select 

the best selection candidates, is known as genomic prediction. The GEBVs are 

calculated based on genotypes of markers, spread across the whole genome, and 

estimated effects of those markers, estimated simultaneously in a reference 

population containing individuals with both phenotypes and marker genotypes 

(Meuwissen et al. 2001). Single-nucleotide polymorphism (SNP) markers are 

commonly used for genomic prediction, based on the assumption that the SNPs are 

in linkage disequilibrium (LD) with the QTL influencing the trait. Therefore, the 

SNPs can be used to explain the QTL variation. The stronger the LD between SNPs 

and QTL, the more accurate the SNPs can explain the QTL variation, and the higher 

the accuracy of genomic prediction (Calus et al. 2008; Solberg et al. 2008). Besides 

the strength of LD between SNPs and QTL, the accuracy of genomic prediction also 

depends on the size of the reference population, i.e., the number of individuals 

with known phenotypes and genotypes used for estimating SNP effects. The larger 

the size of the reference population, the higher the accuracy of estimating SNP 

effects and the higher the accuracy of genomic prediction (e.g., Meuwissen et al. 

2001; Daetwyler et al. 2008; VanRaden et al. 2009). Moreover, the accuracy is 

higher for individuals that are more closely related to the reference population 

(Habier et al. 2007; Habier et al. 2010). 

The accuracy of genomic prediction also varies with the model used to estimate 

breeding values. At the moment, the commonly used models can roughly be 

divided in two different types; genomic best linear unbiased prediction (GBLUP) 

models and Bayesian variable selection models. The original GBLUP model, as 

described by Meuwissen et al. (2001), assumes that all SNPs explain an equal 

amount of the genetic variance, so basically assumes an infinitesimal model, and 

uses a genomic relationship matrix to estimate breeding values. A Bayesian variable 

selection model accommodates for some SNPs explaining a larger part of the 
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genetic variance compared to other SNPs (Meuwissen et al. 2001). Therefore, a 

subset of SNPs is eligible to have a large effect and the other SNPs only have a small 

or no effect on the trait. In general, the accuracy of both models is very 

comparable, unless the trait is mainly influenced by a few QTL with a large effect 

that can be explained by a subset of the SNPs, which results in an advantage of the 

Bayesian variable selection model (Daetwyler et al. 2010). 

 

1.3 Multi-population genomic prediction 
For numerically small populations, establishing a reference population with a 

sufficient size is impossible, which limits the accuracy of genomic prediction for 

those populations. This might result in a lower rate of genetic improvement in 

those populations compared to numerically larger populations. Enlarging the 

reference population of a numerically small population by adding individuals from 

other populations is an attractive approach to increase the accuracy of genomic 

prediction. The value of a reference individual from another population might, 

however, be lower than the value of a reference individual from the same 

population, due to differences between the populations. At least four possible 

differences between populations are known that can influence the value of 

individuals from another population, which are described hereafter.  

The first possible difference between populations is the difference in LD 

pattern. In a different population, the QTL might be in high LD with another SNP or 

the linkage phase between SNP and QTL might be reversed. Different studies have 

shown differences in the pattern of LD across different populations (e.g., Heifetz et 

al. 2005; Gautier et al. 2007; De Roos et al. 2008). At short distances on the 

genome, however, the consistency in LD is found to be reasonably high (Andreescu 

et al. 2007; De Roos et al. 2008; Zhou et al. 2013). Therefore, a high SNP density, 

with around 300,000 SNPs evenly spread across the genome in cattle (De Roos et 

al. 2008), is suggested to be able to overcome the differences in LD pattern 

between populations. 

The second possible difference between populations is the difference in allele 

frequencies of both QTL and SNPs. In an extreme case, QTL might only segregate in 

one of the populations (Kemper et al. 2015a), indicating that another population is 

not going to improve the prediction of that specific QTL. When the SNPs 

surrounding that population-specific QTL are segregating in both populations, the 

apparent effect of the SNPs might be different across the populations. Moreover, 

the QTL that explain a large part of the genetic variance are most accurately 

estimated and most important for genomic prediction (Daetwyler et al. 2008). The 
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genetic variance explained by a QTL depends on the size of the effect as well as on 

its allele frequency. Due to differences in QTL allele frequencies between 

populations, differences exist in the genetic variance explained by a QTL. When the 

genetic variance explained by a QTL is very low in one population, this population is 

not going to greatly improve the accuracy of estimating the effect of this QTL. 

Therefore, the benefit of adding another population can be expected to depend on 

the differences in allele frequencies of QTL between the populations. 

The third possible difference between populations is the difference in allele 

substitution effects of QTL. Due to the presence of non-additive effects in 

combination with differences in allele frequencies, the average allele substitution 

effects might be different across populations (Falconer and Mackay 1996; Huang et 

al. 2012). An example of a gene with population-specific effects in dairy cattle is 

DGAT1 (diacylglycerol O-acyltransferase 1), for which the effect on milk yield of the 

causal mutation in Jersey and Fleckvieh was found to be only 80% (Spelman et al. 

2002) and 70% (Thaller et al. 2003), respectively, of the effect in Holstein Friesian 

cattle. This shows that the effects estimated in one population cannot directly be 

used in another population. The correlation between allele substitution effects of 

QTL across populations is commonly referred to as the genetic correlation between 

the populations (Bohren et al. 1966; Falconer and Mackay 1996). 

The fourth possible difference between populations is the level of family 

relationships, which is much lower, or even non-existing, between populations than 

within populations. This indicates that adding individuals from another population 

to the reference population does not increase the relatedness between selection 

candidates and reference population. Since the accuracy of genomic prediction is 

much higher for individuals that are more closely related to the reference 

population (Habier et al. 2007; Habier et al. 2010), adding unrelated individuals to 

the reference population has a smaller impact on the accuracy than adding related 

individuals from the same population. 

At the start of this thesis, the effect of each of the four possible differences 

between populations on the accuracy of multi-population genomic prediction, 

where different populations are combined in the reference population, was not 

quantified. Therefore, it was difficult to realistically predict the potential to 

increase the accuracy of genomic prediction by adding information from other 

populations. 
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1.4 Expected potential of multi-population genomic prediction at 

the start of this thesis  
The potential of multi-population genomic prediction was first investigated 

using simulations. Those simulation studies have shown that already at a low SNP 

density, it is beneficial for the accuracy to combine populations that separated only 

a few generations ago and have a highly consistent LD pattern (De Roos et al. 2009; 

Ibánẽz-Escriche et al. 2009). By increasing the SNP density, an increase in accuracy 

could be observed when combining populations that separated more than 300 (De 

Roos et al. 2009) or 550 (Ibánẽz-Escriche et al. 2009) generations ago. In another 

simulation study, using real genotypes and simulated phenotypes from very diverse 

cattle breeds, no benefit of combining populations for genomic prediction was 

observed (Kizilkaya et al. 2010). This was suggested to be a result of the used SNP 

density, which was too low to find a consistent LD pattern across the populations. 

Based on the results of those simulation studies, it was expected that combining 

information from different populations is an effective way to increase the accuracy 

of genomic prediction, provided that the marker density is high enough to find a 

consistent LD pattern between QTL and SNPs across populations.  

In a study using real data, it was shown that combining four closely related 

Holstein Friesian populations from different European countries resulted in an 

average increase in accuracy of 10% compared to an analysis within country (Lund 

et al. 2011). Combining closely related breeds with only a small number of 

genotyped animals each, like the Danish, Swedish, and Finnish Red dairy cattle 

breeds, in one reference population resulted in an average increase in accuracy of 

14% compared to single-breed genomic evaluation (Brøndum et al. 2011). The 

benefit of combining the distantly related Holstein Friesian and Jersey cattle breeds 

was lower, and sometimes even a decrease in accuracy was observed (Hayes et al. 

2009; Harris and Johnson 2010; Pryce et al. 2011). Furthermore, extending an 

Australian Holstein Friesian and Jersey reference population with a Fleckvieh 

population from Germany and Austria did not result in an increase in accuracy of 

genomic prediction (Pryce et al. 2011). The benefit was slightly larger when a 

Bayesian variable selection model was used compared to a GBLUP model, although 

the benefit was generally low for both models (Hayes et al. 2009; Pryce et al. 2011). 

This is probably due to the possibility in the Bayesian model to give a higher weight 

to the SNPs with a consistent LD with the QTL across breeds compared to GBLUP. 

Those SNPs are in general located closer to the QTL and also have a higher LD with 

the QTL within breed (Hayes et al. 2009). Genotypes of only ~50,000 SNPs were 

used in all the mentioned studies using real data, which might indicate that the SNP 
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density was too low to find a consistent LD phase between the investigated 

populations. Therefore, this low SNP density was suggested to be the reason for 

the relatively low benefit of combining populations found in empirical studies 

compared to simulation studies, and a higher SNP density was expected to be able 

to increase the potential of combining populations (Pryce et al. 2011).  

So, at the start of this thesis four years ago, a high potential of combining 

populations for genomic prediction was expected based on the results described 

above. Even combining populations from different breeds was expected to result in 

an increase in accuracy, provided that the marker density was high enough to find a 

consistent linkage phase between the populations (>300,000 SNPs in cattle; De 

Roos et al. 2008). 

 

1.5 Recent studies regarding multi-population genomic prediction 
In the last four years, a lot of research has focused on multi-population genomic 

prediction. In dairy cattle, the studies can roughly be divided in studies combining 

populations from the same breed from different countries and studies combining 

populations from different breeds.  

The first group of studies focused on combining populations from the same 

breed from different countries, for example by combining different Holstein 

Friesian populations (De Haas et al. 2012; VanRaden et al. 2012; Zhou et al. 2013; 

De Haas et al. 2015; Haile-Mariam et al. 2015), Jersey populations (Haile-Mariam et 

al. 2015; Wiggans et al. 2015), and Brown Swiss populations (Zumbach et al. 2010; 

Jorjani et al. 2011). In general, those studies showed a higher accuracy of genomic 

prediction when populations were combined in one reference population 

compared to using a within-country reference population, both using 50,000 SNPs 

(De Haas et al. 2012; Zhou et al. 2013; Haile-Mariam et al. 2015; Wiggans et al. 

2015) and using 777,000 SNPs (VanRaden et al. 2012; De Haas et al. 2015). The 

highest accuracies were obtained when a multi-trait model was used, in which the 

same trait in the different countries was modelled as a different trait to account for 

factors like genotype by environment interactions, differences in trait definitions 

and differences in measurement method of the trait across countries (De Haas et 

al. 2012; De Haas et al. 2015). Moreover, the increase in accuracy was more 

pronounced for the population with the lowest number of genotyped individuals 

(De Haas et al. 2015; Wiggans et al. 2015), and for individuals that were least 

related to the reference population from the country itself (Haile-Mariam et al. 

2015). 
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The second group of studies focused on combining populations from different 

breeds. In general, a lower benefit was obtained for combining populations from 

different breeds than for combining populations from different countries, see also 

Lund et al. (2014) for a review. Combining the closely related Nordic Red breeds 

resulted in a higher increase in accuracy (Zhou et al. 2014a) compared to 

combining the more distantly related Holstein Friesian breed with either Nordic 

Red breeds (Zhou et al. 2014b), different French cattle breeds (Karoui et al. 2012; 

Hozé et al. 2014a), Ayrshire breed (Chen et al. 2014), or the Jersey breed (Erbe et 

al. 2012; Olson et al. 2012), for which the increase in accuracy was almost 

negligible. In contrast to the expectations, the use of a higher density SNP chip 

(777,000 versus 50,000 SNPs) only resulted in a slight increase in the benefit of 

combining populations from different breeds (Erbe et al. 2012; Hozé et al. 2014a; 

Kemper et al. 2015b). Those results found in dairy cattle are in agreement with the 

results found in beef cattle and other livestock species. In beef cattle, for example, 

the increase in accuracy obtained by combining different breeds was low or 

negative as well (Chen et al. 2013; Kachman et al. 2013; Boerner et al. 2014), even 

when a high-density (777,000 SNPs) SNP chip was used (Bolormaa et al. 2013). In 

sheep, combining different breeds in one reference population had either no or a 

negative effect on the accuracy of genomic prediction (Legarra et al. 2014; 

Moghaddar et al. 2014), even when crossbred individuals that partly originated 

from the same breed were added (Moghaddar et al. 2014). In chicken, the effect on 

the accuracy of combining different lines was also shown to be absent or at most 

limited (Simeone et al. 2012; Calus et al. 2014; Huang et al. 2014), even when 

closely related lines were combined (Calus et al. 2014; Huang et al. 2014). 

The different studies showed that the increase in accuracy was slightly higher 

for the breed with the lowest number of genotyped individuals (Hozé et al. 2014a), 

and for the individuals that were least related to the reference population from 

their own breed (Hozé et al. 2014a; Zhou et al. 2014b). Some studies showed 

higher accuracies of multi-population genomic prediction when a Bayesian variable 

selection model was used compared to a GBLUP model (Erbe et al. 2012; Bolormaa 

et al. 2013; Zhou et al. 2014a; Kemper et al. 2015b). Other studies, however, 

showed higher accuracies when a GBLUP model was used (Chen et al. 2013; Calus 

et al. 2014). For all studies, the differences in accuracies obtained with both models 

were generally small. 

Different methods have been proposed to account for the differences in SNP 

effects across breeds, that are a result of differences in allele substitution effects of 

QTL and differences in LD between SNPs and QTL. Karoui et al. (2012) and Olson et 

al. (2012), for example, proposed a multi-trait GBLUP model, where the same trait 
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in different breeds was modelled as a different, but correlated trait. The genetic 

correlation was generally estimated with a high standard error (Karoui et al. 2012; 

Huang et al. 2014) and the benefit of using a multi-trait model in combination with 

the estimated genetic correlation was low (Karoui et al. 2012; Huang et al. 2014; 

Legarra et al. 2014). Assuming a genetic correlation of 0.3 between breeds, 

however, resulted in a slightly higher accuracy of multi-breed genomic prediction 

(Olson et al. 2012). Chen et al. (2014) introduced a multi-task Bayesian variable 

selection approach, in which the breeds are combined to select the SNPs to be 

included in the model with a large effect, but SNP effects were estimated within 

breed. This multi-task Bayesian variable selection approach was shown to be able 

to increase the accuracy of genomic prediction for a small breed, even in situations 

where pooling the data resulted in a decrease in accuracy compared to within- 

population genomic prediction (Chen et al. 2014). Another approach that was 

investigated is to give a higher weight to the SNPs that explain a large part of the 

genetic variance in another population in the model of estimating SNP effects. This 

approach was shown to be able to slightly increase the accuracy of genomic 

prediction for a numerically small population (Brøndum et al. 2012; Hozé et al. 

2014b; Khansefid et al. 2014). 

Altogether, those recent findings in literature indicate that the expectation that 

combining distantly related breeds in one reference population can be beneficial as 

long as the marker density is high enough, was too optimistic. In the last four years, 

more and more information became available indicating that also other differences 

between populations, like differences in allele substitution effects of QTL and the 

presence of population-specific QTL, have to be taken into account for multi-

population genomic prediction. 

 

1.6 Predicting the accuracy of genomic prediction 
Since the accuracy of predicting breeding values determines the response to 

selection, it is important to be able to predict the accuracy of genomic prediction 

before individuals are genotyped to be able to optimize breeding programs. As 

described in the previous paragraphs, different factors can affect the accuracy of 

multi-population genomic prediction, but the effect of each of those factors was 

not quantified at the start of this thesis. Therefore, it was difficult to realistically 

predict the potential accuracy of multi-population genomic prediction. A few 

different equations were, however, available to estimate the accuracy of genomic 

prediction within a population (e.g., Daetwyler et al. 2008; VanRaden 2008; 

Goddard 2009; Daetwyler et al. 2010). One type of equation can be derived both 
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from selection index theory and from prediction error variance of the mixed model 

equations. This equation uses the genomic relationships within the reference and 

between reference and selection individuals to estimate the accuracy of genomic 

prediction (VanRaden 2008). Since genomic relationships between selection and 

reference individuals are needed, this equation cannot be used to predict the 

accuracy before individuals are genotyped. Another type of equation is using 

population parameters, such as the heritability of the trait, the number of 

individuals in the reference population and the effective number of chromosome 

segments (Daetwyler et al. 2008; Daetwyler et al. 2010). When estimates of the 

input parameters are available, the equation can be used to predict the accuracy 

before individuals are genotyped. All of the aforementioned equations can, 

however, only be used when breeding values are estimated for individuals from the 

same population as the reference population. 

 

1.7 Objective and outline of this thesis 
The overall objective of this thesis was to investigate the accuracy of multi-

population genomic prediction in dairy cattle. This overall objective was divided in 

two sub-objectives. The first sub-objective was to investigate the effect of different 

factors on the accuracy of genomic prediction, such as the absence of close family 

relationships and differences across populations in LD patterns, allele frequencies, 

and allele substitution effects. The second sub-objective was to derive 

deterministic equations to predict the accuracy of multi-population genomic 

prediction. 

In Chapter 2, the effect of absence of close family relationships between 

reference and selection individuals on the accuracy of genomic prediction was 

investigated. Moreover, it was investigated if deterministic prediction equations for 

the accuracy of genomic prediction, developed assuming populations of unrelated 

individuals, could be used to predict the accuracy in a population with a complex 

family structure. In Chapter 3, two deterministic equations to estimate the 

accuracy of across-population genomic prediction were derived. Furthermore, the 

effect of genetic correlations between populations lower than 1 and the number of 

QTL underlying the trait on across-population genomic prediction accuracy was 

investigated. The focus of this chapter was across-population genomic prediction, 

where the population of the selection candidates is not included in the reference 

population. In Chapter 4, the consistency of multi-locus LD across populations and 

its relationship with the accuracy of across-population genomic prediction was 

investigated. Here, it was expected that multi-locus LD was a better predictor for 
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the potential of combining populations than consistency of LD between 

neighboring loci, since the effect of a QTL is distributed among a number of SNPs in 

genomic prediction models. Chapter 5 studied the effect of QTL properties, such as 

allele frequency pattern and distribution of allele substitution effects, on accuracy 

of multi-breed genomic prediction. The objective of Chapter 6 was to develop and 

validate a deterministic equation to predict the accuracy of genomic prediction 

when multiple populations are combined in the reference population.  

The general discussion in Chapter 7 of this thesis discusses five different topics, 

related to the studies in the earlier Chapters. As a first topic, the potential of multi-

population genomic prediction is discussed by considering different scenarios, such 

as combining populations from the same breed from different countries, closely 

related breeds, or distantly related breeds. As a second topic, the impact of the 

model used to estimate GEBVs on the accuracy of multi-population genomic 

prediction is discussed. As a third topic, the possibility to estimate the genetic 

correlation based on SNP information is discussed. As a fourth topic, the relation 

between different measures for the consistency of LD across populations, namely 

the effective number of chromosome segments and the consistency in multi-locus 

LD, influencing the accuracy of multi-population genomic prediction is discussed. As 

a fifth topic, research directions for multi-population genomic prediction are 

discussed, focusing on the use of sequence data in genomic prediction, the 

identification and use of significant regions across populations, and the potential of 

including non-additive effects in genomic prediction models. 
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Abstract 
Although the concept of genomic selection relies on linkage disequilibrium (LD) 

between quantitative trait loci and markers, reliability of genomic predictions is 

strongly influenced by family relationships. In this study, we investigated the 

effects of LD and family relationships on reliability of genomic predictions and the 

potential of deterministic formulas to predict reliability using population 

parameters in populations with complex family structures. Five groups of selection 

candidates were simulated taking different information sources from the reference 

population into account: 1) allele frequencies; 2) LD pattern; 3) haplotypes; 4) 

haploid chromosomes; 5) individuals from the reference population, thereby 

having real family relationships with reference individuals. Reliabilities were 

predicted using genomic relationships among 529 reference individuals and their 

relationships with selection candidates and with a deterministic formula where the 

number of effective chromosome segments (Me) was estimated based on genomic 

and additive relationship matrices for each scenario. At a heritability of 0.6, 

reliabilities based on genomic relationships were 0.002±0.0001 (allele frequencies), 

0.022±0.001 (LD pattern), 0.018±0.001 (haplotypes), 0.100±0.008 (haploid 

chromosomes) and 0.318±0.077 (family relationships). At a heritability of 0.1, 

relative differences among groups were similar. For all scenarios, reliabilities were 

similar to predictions with a deterministic formula using estimated Me. So, 

reliabilities can be predicted accurately using empirically estimated Me and level of 

relationship with reference individuals has a much higher effect on the reliability 

than linkage disequilibrium per se. Furthermore, accumulated length of shared 

haplotypes is more important in determining the reliability of genomic prediction 

than the individual shared haplotype length.  

 

Key words: genomic prediction, linkage disequilibrium, family relationships, 

reliability, effective chromosome segments   
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2.1 Introduction 
Currently, it is feasible in most plant and animal breeding programs to genotype 

individuals at low costs for many thousands of single-nucleotide polymorphisms 

(SNPs) spread across the whole genome. With a sufficiently large reference 

population containing individuals with phenotypes and genotypes, SNP effects can 

be estimated. Subsequently, estimated SNP effects and an individual’s genotype for 

each SNP can be used for genomic prediction of breeding values. Selection based 

on those genomic breeding values is called genomic selection (Meuwissen et al. 

2001) and this method has high potential both in animal (e.g., Hayes et al. 2009a) 

and plant breeding (e.g., Heffner et al. 2009; Jannink et al. 2010). Many studies 

demonstrated higher reliabilities for direct genomic breeding values compared to 

breeding values based on pedigree information only, especially for juvenile 

individuals without phenotypic information (e.g., Meuwissen et al. 2001; Calus et 

al. 2008; VanRaden 2008).  

The response to genomic selection relies on linkage disequilibrium (LD) 

between specific alleles of SNPs and quantitative trait loci (QTL) (Meuwissen et al. 

2001); the stronger the LD, the higher the reliability of genomic predictions (Calus 

et al. 2008; Solberg et al. 2008). Since LD between QTL and SNPs will decrease over 

generations, reliability of genomic prediction is expected to decrease without re-

estimating SNP effects in more recent generations (Muir 2007). However, the 

observed decrease in reliability of genomic predictions over generations following 

the generation in which SNP effects are estimated is higher than the expected 

decrease due to the decay of LD between SNPs and QTL alone (Habier et al. 2007; 

Habier et al. 2010). This higher decrease in reliability is a result of decreasing family 

relationships (i.e., all non-zero additive genetic relationships) over generations of 

the selection candidates with the reference population, indicating that SNPs used 

for genomic selection not only capture LD between SNP and QTL, but capture 

family relationships among individuals as well (Habier et al. 2007; Gianola et al. 

2009; Habier et al. 2010). Indeed, several studies already showed higher reliabilities 

for genomic predictions when selection candidates were more closely related to 

the reference population (e.g., Meuwissen 2009; Habier et al. 2010; Makowsky et 

al. 2011).  

Separating effects of LD and family relationships on the reliability of genomic 

predictions is difficult because LD and family relationships are entangled. The 

extent of LD in a population is related with effective population size (Ne) (Sved 

1971); the lower the Ne, the higher the kinship level among individuals and the 

higher the extent of LD (Falconer and Mackay 1996). Besides that, LD can differ 
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between families within breed (Dekkers 2004) and differs even more between 

diverged populations or breeds (De Roos et al. 2008; De Roos et al. 2009). A high 

marker density may enable achievement of similar LD between markers and QTL 

across breeds (De Roos et al. 2008), however, family relationships are still absent. 

Thus far, little is known about the effect of LD in situations without family 

relationships on the reliability of genomic predictions.  

 Deterministic formulas for predicting reliability of genomic prediction using 

population and trait parameters, which can be used before data on selection 

candidates are collected, are derived by Daetwyler et al. (2008) and Goddard 

(2009). Both formulas assume that selection candidates are unrelated to individuals 

from the reference population. Hayes et al. (2009d) applied the formula of 

Goddard (2009) to individuals that were related to the reference population, 

however, only simple family structures were used, such as selection candidates 

with full-sibs, half-sibs or double first cousins in the reference population. A 

deterministic method for predicting the reliability of genomic prediction that 

accounts for any type of family structure, by using all relationships among animals 

in a population, was derived by VanRaden (2008). However, the method of 

VanRaden (2008) uses genotypes of selection candidates and reference individuals 

to predict individual reliabilities instead of population parameters to predict the 

average reliability for a population. Therefore, this formula can be applied only 

after genotypic data are collected on selection candidates in contrast to the 

previous two deterministic formulas (Goddard et al. 2011). Family structures occur 

in real data and, so far, possibilities of applying deterministic formulas based on 

population parameters to predict reliability of genomic prediction are limited in 

such situations.  

The first objective of this study was to examine the effects of LD and family 

relationships on the reliability of genomic predictions. The second objective of this 

study was to investigate whether deterministic prediction formulas for the 

reliability of genomic prediction based on population parameters can be used in 

real data sets with a complex family structure between selection candidates and 

individuals in the reference population. This article is organized as follows; first, we 

start by describing a real reference population set and the different sets of 

selection candidates simulated based on information from the reference 

population. Thereafter, the different methods to predict the reliabilities of the 

selection candidates are explained. Finally, results are presented and discussed. 
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2.2 Materials and methods 
In this study, reliability of genomic prediction was predicted for five scenarios 

with simulated genotypes for selection candidates and using a reference 

population composed of real individuals with genotypic information. To create 

differences in LD and family relationships among the five scenarios, genotypes for 

the selection candidates were simulated using allele frequency, LD pattern, 

haplotypes, chromosomes, or family relationships from the reference population 

(Table 2.1). Finally, reliability of genomic prediction for each of the five scenarios 

was determined using two methods, namely those presented by: 1) VanRaden 

(2008), which explicitly accounts for family relationships between selection 

candidates and reference individuals, and 2) Daetwyler et al. (2008), where we 

aimed to account for family relationships by using an alternative way to estimate 

one of the parameters. For the last scenario, reliability was also empirically 

evaluated using observed phenotypic data and leave-one-out cross-validation.  

 

Table 2.1 Overview of the information from the reference population used in the simulations 

of the different scenarios. 
 

 Allele 

frequencies 

LD-pattern Haplotypes Chromosomes Family 

relationships 

FREQ X     

LD X X    

HAP X X X   

CHR X X X X  

FAM X X X X X 
 

 

2.2.1 Reference population 

The reference population consisted of 529 genotyped Holstein Friesian cows 

from the Netherlands. The cows were genotyped using the Illumina 50K SNP chip 

(Illumina, San Diego, CA), containing 54,001 SNPs. During a quality check, 

performed on a larger data set including those 529 cows, SNPs with a GCscore ≤0.2, 

a GTscore ≤0.55, a call rate ≤95%, a minor allele frequency ≤1%, deviating from 

Hardy-Weinberg equilibrium (X
2
 ≥600), and SNPs that could not be assigned to a 

location on one of the chromosomes or were assigned to the X chromosome using 

the UMD3.0 bovine genome assembly from the University of Maryland were 

deleted. Individuals with Mendelian inconsistencies (Calus et al. 2011) between 

SNP data and pedigree in genotyped parent-offspring pairs and among sibs were 

removed. The software package Beagle (Browning and Browning 2007) was used to 
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simultaneously phase the SNP data and impute any missing genotypes due to low 

call rates using the larger data set. One of the SNPs from each SNP pair with very 

high LD (i.e., r
2
 >0.99) within the population of 529 individuals was deleted as well, 

to avoid problems of non-positive definite matrices during the analyses. Finally, 

35,002 SNPs remained for the purpose of the study.  

The data set used in this study contained many close family relationships. In 

total, the population contained 117 mother-daughter pairs, 48 full-sib families with 

on average 2.27 individuals per family, 69 paternal half-sib families with on average 

7.23 individuals per family and 65 maternal half-sib families with on average 2.65 

individuals per family. 

 

2.2.2 Simulation of selection candidates 

In this study, five different scenarios were considered in which genotypes of 

529 selection candidates for 35,002 SNPs were simulated, using either the allele 

frequency, LD pattern, haplotypes, chromosomes, or family relationships from the 

reference population. The deterministic equations used to predict the individual 

reliabilities only used genotype information and considered variance components, 

so no phenotypes were simulated for the selection candidates. The last scenario 

was an exception to this, where we also used observed phenotypes for an empirical 

evaluation of the reliability. 

 

2.2.2.1 FREQ 

The first scenario (FREQ) simulated selection candidates using only allele 

frequencies of the reference population to show the potential reliability of genomic 

prediction in the absence of LD and family relationships. This scenario allocated 

genotypes to the simulated individuals with probabilities calculated by using the 

observed allele frequencies in the reference population, assuming that the loci 

were independent and that the population was in Hardy-Weinberg equilibrium.  

 

2.2.2.2 LD  

The second scenario (LD) used allele frequency and LD pattern between the 

SNPs of the reference population to simulate selection candidates, resulting in the 

potential reliability due to LD in the absence of family relationships. Only the 50 

surrounding SNPs of a certain SNP were taken into account. To achieve this, a 

multivariate normal distribution was simulated by drawing one random number 

per SNP for each individual from a standard normal distribution, i.e., N(0,1). Those 

random numbers were multiplied with the Cholesky decompositions of the 

correlation matrices between the SNPs per chromosome from the reference 
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population. Whenever this correlation matrix was not positive definite, it was 

bended following Jorjani et al. (2003). The correlation matrices were calculated 

from the phased allelic data and represent LD, i.e., the square of those values is the 

well-known LD measure r
2
 (Hill and Robertson 1968).  

The random numbers drawn from the multivariate normal distribution were 

translated into genotypes by calculating two cut-off values on the normal 

distribution for each SNP using the allele frequency (pi) of the reference 

population: 1) a cut-off value with an area of size (1-pi)
2
 to the left of it, and 2) a 

cut-off value with an area of size (pi)
2
 to the right of it. When the random number 

was below the first cut-off value (above the second cut-off value), the genotype of 

the individual for that SNP was set to -1 (1). When the random number was in 

between the two cut-off values, which was the case for a proportion of 2pi(1-pi) of 

the individuals, the genotype was set to 0. 

 

2.2.2.3 HAP 

Two individuals coming from the same population are expected to share some 

haplotypes, even if they do not share a common ancestor in the recent past. In this 

third scenario (HAP), the reliability due to sharing haplotypes with individuals in the 

reference population was investigated. The number of haplotypes used was equal 

to the number of effective chromosome segments, Me, present in the reference 

population (estimation of Me is explained later). For simplicity, all haplotypes were 

assumed to have an equal length in base pairs, although in reality haplotype length 

depends on LD structure of the genome. For each haplotype, 1058 (529*2) haploid 

copies were present in the reference population. Simulating selection candidates 

was done by randomly drawing two copies per haplotype from those 1058 copies 

and combining them across haplotypes to form the genome of the simulated 

individual. The number of haploid haplotypes shared between a simulated 

individual and a specific reference individual was divided equally over the 529 

reference individuals. Note that this scenario is a theoretical scenario and used as 

an intermediate between the LD and FAM scenario. 

 

2.2.2.4 CHR  

VanRaden (2009) suggested a hypothetical scenario in which individuals are 

created by combining the best chromosomes present in a population to further 

increase the genetic progress. Although, e.g., chromosome substitution lines exist 

in mice by successive backcrossing of inbred lines (Nadeau et al. 2000; Singer et al. 

2004), the scenario suggested by VanRaden (2009) is currently not feasible in 

practice for most animal and plant species. The reliability of those hypothetical 
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individuals was investigated in this fourth scenario (CHR). As an alternative to 

picking the best chromosomes, we simulated individuals by randomly picking 

chromosomes from the reference population. Selection candidates in this scenario 

were in general simulated in the same way as in the HAP scenario, but instead of 

haplotypes, haploid chromosomes were used. The maximum number of haploid 

chromosomes shared between a simulated individual and a reference individual 

was restricted to one.  

 

2.2.2.5 FAM 

For this last scenario (FAM), instead of simulating genotypes of selection 

candidates, genotypes of real individuals were used to include family relationships. 

Each of the selection candidates had at least one genomic relationship of at least 

0.125 with one of the individuals in the reference population, which is equal to the 

relationship of an individual with its great-grandparent. Reliabilities for this 

scenario were predicted by deleting each individual once from the reference 

population and using the remaining 528 individuals as reference population. This 

approach is also known as leave-one-out cross-validation and the effect due to 

differences of the composition of the reference population by one individual on the 

reliability is expected to be negligible.  

For an empirical evaluation of the reliability of genomic prediction in this 

scenario, pre-corrected phenotypes on milk production were used. For all 529 cows 

used as selection candidate and reference individual, pre-corrected phenotypes 

were available. A detailed description of the pre-correction is given by Veerkamp et 

al. (2012). 

All scenarios were set up such that allele frequencies across simulated selection 

candidates were expected to be similar to the allele frequencies observed in the 

reference population. Inspection of the simulated data showed that this was 

indeed the case.  

 

2.2.3 Predicting reliability 

Reliabilities were predicted in all scenarios using two different deterministic 

methods at a heritability of 0.1 and 0.6. One of the deterministic methods was also 

used to study the effect of the size of the reference population on the magnitude 

of effects of LD versus family relationships on the reliability of genomic prediction.  

Besides both deterministic methods, reliabilities were also predicted using milk 

production phenotypes in the FAM scenario. For a good comparison of the 

empirical and deterministic predicted reliabilities, the estimated heritability for 

milk production based on the empirical data was used as well to predict the 
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reliability of genomic prediction in the FAM scenario using the deterministic 

methods.  

 

2.2.3.1 VanRaden (2008) 

The first method to predict reliability was derived by VanRaden (2008) and 

predicted reliability of genomic prediction separately for each selection candidate 

as:  
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,          (2.1) 

in which c is a vector of genomic relationships of the selection candidate with each 

of the individuals in the reference population, G is the genomic relationship matrix 

of the reference population, I is an identity matrix, 2
e  is the residual variance and 

2
a  is the additive genetic variance. The heritability (h

2
) of the trait is reflected by 
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The genomic relationship matrix is calculated as 
n

'XX
G   (Yang et al. 2010), in 

which n is the number of SNPs. The X matrix contains standardized genotypes 

calculated as 
 

 ii

iij
ij

pp

pg
x






12

5.02
, in which gij codes the genotype at SNP locus i 

for individual j as -1 for a homozygote, 0 for the heterozygote and 1 for the 

opposite homozygote and pi is the allele frequency of the second allele at locus 𝑖 

(for which the homozygote genotype is coded 1). Subtraction of  5.02 ip  from 

the genotype code sets the average value of the estimated allele effects per locus 

to zero. Division by  ii pp 12  results in unbiased estimates of the relationships 

among individuals using XX’. Diagonal elements were calculated in the same way as 

off-diagonal elements, following Goddard et al. (2011) and Meuwissen et al. 

(2011). 

Another common approach is to calculate G as 
   ii pp 12

'ZZ
, in which Z is 

calculated as  5.02  iij pg  (e.g., VanRaden 2008; Legarra et al. 2009). This 

approach gives less weight to alleles with a low allele frequency, resulting in a 

weighted G. Meuwissen et al. (2011) suggested that the approach of Yang et al. 
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(2010), i.e., 
n

'XX
G  , would result in the best, unweighted, estimate of G when a 

high proportion of loci with low minor allele frequencies are used. Therefore, the 

approach of Yang et al. (2010) was used to calculate G in this study. 

The vector including genomic relationships of the selection candidate with each 

of the individuals in the reference population is computed as 
n

'2Xx
c   (VanRaden 

2008; Yang et al. 2010). In this calculation, X is the X matrix of the reference 

population and x2 is the X matrix of the selection candidates, which becomes a 

vector when only one selection candidate at a time is evaluated. Similarly, c 

becomes a vector as well.  

The calculated G and c are biased, because G and c are based on a sample of 

segregating loci from the whole genome of an individual (Powell et al. 2010; 

Goddard et al. 2011). For an unbiased estimate of G (i.e., Ĝ ), we assume that (Yang 

et al. 2010): 

EAGAEGG  )(ˆ ,            (2.2) 

in which E is a matrix with error terms due to sampling of the SNPs from the 

genome. The variances for those matrices are )()()ˆ( EAGAG VarVarVar   in 

which )(EVar  is equal to 
n

1
.  

The unbiased Ĝ  was calculated by regressing G back to A as (Yang et al. 2010; 

Goddard et al. 2011): 

)(ˆ AGAG  b ,     (2.3) 

in which  
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b .          (2.4) 

The sampling error on the elements in Ĝ  depends on the level of family 

relationships, which is accounted for by calculating the regression coefficient b 

separately for bins of family relationships in A (0-0.10, >0.10-0.25, >0.25-0.50 and 

>0.50) with calculated b’s of respectively 0.973, 0.976, 0.990 and 0.997. All parent-

offspring relationships were expected to be 0.5 and those relationships were 

excluded from the regression. Besides that, only off-diagonal elements were 

regressed. 

Elements of c were regressed back to A as well, resulting in unbiased ĉ . For the 

FAM scenario, the regression for c was done in the same way as for G, because ĉ  
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was directly obtained from Ĝ . For the other scenarios, all family relationships 

between selection and reference individuals were zero, resulting in an A matrix 

where all elements were zero. Therefore the regression coefficient used for 

regressing c reduced to 









n
VarVarb

1
)()( CC , in which C is a matrix containing 

all c vectors with genomic relationships between selection and reference 

individuals.  

 

2.2.3.2 Daetwyler et al. (2008) 

The second formula for predicting the reliability of genomic predictions was 

derived by Daetwyler et al. (2008):  
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2 ,     (2.5) 

in which h
2
 is the heritability of the trait, Np is the number of individuals in the 

reference population, and Ng is the number of independent loci underlying the 

trait. Assumptions underpinning this equation were: 1) loci are independent, 2) all 

loci have an effect, and 3) there are no family relationships between selection 

candidates and reference population. To account for the fact that segregating loci 

in real population are not independent, Ng was replaced by Me in our study, as 

suggested by Daetwyler et al. (2008; 2010). Estimation of Me is explained later. The 

formula of Daetwyler et al. (2008) provides one reliability that applies to the whole 

group of selection candidates, whereas 
2

VRr  provides a single reliability for each 

selection candidate. 

 

2.2.3.3 Impact of reference population size 

The size of the reference population affects reliability of direct genomic values 

and, therefore, may also affect the magnitude of the effect of LD versus family 

relationships on the reliability. For this reason, we predicted the reliability using the 

formula of Daetwyler et al. (2008) for all five scenarios with different reference 

population sizes, ranging from 100 to 60,000 individuals. Heritability and Me were 

assumed to be constant across different sizes of the reference population, 

reflecting a situation where reference individuals and selection candidates are a 

representative sample of the whole population.  
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2.2.3.4 Empirical estimation 

In the FAM scenario, reliability of genomic prediction was empirically evaluated 

using pre-corrected phenotypes on milk production. Genomic breeding values for 

milk production were calculated for all individuals using a GBLUP-model in ASReml 

(Gilmour et al. 2009) and leave-one-out cross-validation. The GBLUP-model used 

the same genomic relationship matrix as used for the deterministic prediction of 

the reliabilities and explicitly estimated variances for the trait in the model. The 

average reliability across all individuals in the reference population was calculated 

as the squared correlation between the phenotypes and the genomic breeding 

values, divided by the heritability, as explained in Verbyla et al. (2010). The 

heritability for this trait was estimated from the same GBLUP model when all 529 

reference individuals were included.  

 

2.2.4 Estimating Me 

The Me was estimated for each scenario using the genomic relationship matrix 

and the additive genetic relationship matrix. Only for the last scenario, FAM, we 

estimated Me based on the estimated Ne as well, because this was the only scenario 

with a generation structure. 

 

2.2.4.1 Based on the G and A matrix 

Goddard et al. (2011) showed that the variance of off-diagonal elements of G 

for unrelated individuals, all having expected values of zero, is about equal to the 

average of 
2

LDr  (i.e., 
2

LDr ) as a measure of LD over all pairs of loci. This 
2

LDr , and 

therefore the variance of G as well, is related with Me as 
)(

11
2 GVarr

M
LD

e  . For 

related individuals, we can use AGD  , in which G is the genomic relationship 

matrix and A the additive genetic relationship matrix, where the expected values 

for all elements of D are zero. This suggests that )(DVar  is related to 
2

LDr  over all 

pairs of loci and, therefore, that Me for a specific population with related 

individuals can be estimated as:  

)(

1

DVar
Me  .     (2.6) 

In the formula for calculating D, G should contain the genomic relationships 

between reference individuals and selection candidates (Goddard et al. 2011). 

Following our earlier notation, here we use the Ĉ  matrix, containing all ĉ  vectors 

with the relationships between selection and reference individuals. For the FAM 
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scenario, A was calculated based on the pedigree. In the other scenarios, 

individuals were simulated without family relationships with the reference 

individuals and therefore lacked pedigree information. For those scenarios, 

additive genetic relationships between selection candidates and reference 

individuals were assumed to be zero. 

 

2.2.4.2 Based on Ne 

 For the FAM scenario, Me was also estimated based on Ne. In this study, we 

used the two most frequently used formulas, namely 
 LN

LN
M

e

e
e

4ln

2
  (Goddard 

2009) and LNM ee 2  (Hayes et al. 2009d). In those formulas, L was the genome 

size that was assumed to be 31.6 M (Ihara et al. 2004). The required value for Ne 

was estimated for the reference population. For each t generations back, Ne is 

correlated with a mean 2
LDr  (i.e., 2

LDr ) as a measure of LD over a chromosome 

segment with length 
t

c
2

1
  (Hayes et al. 2003), in which c is the length of the 

chromosome segment in morgans. All 
2

LDr  of SNP intervals in between the 

chromosome segment length using  1.0t  and  1.0t  and assuming 1 cM = 1 

Mb were averaged to calculate 2
LDr , which is used to estimate Ne following 

14

12




cN
r

e
LD  (Sved 1971). For t the values 1-5 were used and the final Ne of the 

population was estimated as the mean Ne over those last 5 generations. 

 

2.3 Results 

2.3.1 Reliabilities of the different scenarios 

The different scenarios showed predicted reliabilities of 0.002 ± 0.0001 (FREQ), 

0.022 ± 0.001 (LD), 0.018 ± 0.001 (HAP), 0.100 ± 0.008 (CHR) and 0.318 ± 0.077 

(FAM) using the formula of VanRaden (2008) at a heritability of 0.6 (rel_VR; Figure 

2.1A). This indicates that reliability of selection candidates that share only allele 

frequencies with the reference population was almost zero. Adding the LD pattern 

or haplotype information as information source used for simulating selection 

candidates slightly increased the reliability. Using chromosomes from the reference 

population to simulate selection candidates showed an increase in reliability of 

about 0.1. Adding family relationships between selection candidates and reference 

individuals resulted in a relatively high increase in reliability compared to the other  
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scenarios (an increase of >0.3 compared to the FREQ scenario and >0.2 compared 

to the CHR scenario). So, the average reliabilities of genomic predictions increased 

by simulating selection candidates using an increasing amount of information from 

the reference population and this increase was highest when family relationships 

were added as an information source. 

 

 
 

Figure 2.1 Histograms depicting distributions of reliabilities of genomic preditions using a 
reference population of 529 genotyped individuals at a heritability of 0.6 (A) and 0.1 (B) over 
the five different scenarios using different information sources from the reference 
population (from left to right): ■ = Selection candidates simulated based on allele frequency 
of the reference population (FREQ); ■ = Selection candidates simulated based on 837 
haplotypes of equal length segregating in the reference population (HAP); ■ = Selection 
candidates simulated based on LD pattern of the reference population (LD); ■ = Selection 
candidates simulated based on haploid chromosomes segregating in the reference 
population (CHR); ■ = Individuals from the reference population (FAM). 

 

 

Next to the increase in reliability when more information from the reference 

population was used to simulate selection candidates, variation in reliability among 

selection candidates increased as well (Figure 2.1A). Especially the variation in the 

FAM scenario, using family relationships between selection candidates and 



2. Linkage disequilibrium versus family relationships 

    

 

41 

 

 2  

reference individuals, was high compared to the other scenarios and the 

reliabilities in that scenario ranged from 0.13 to 0.72. The distributions of the 

reliabilities overlapped between the LD and HAP scenario. For the other scenarios, 

the distributions were not overlapping.  

For all scenarios, rel_VR was lower at a heritability of 0.1 compared to a 

heritability of 0.6, but relative differences between and standard deviations of 

reliabilities within groups were similar to those observed at a heritability of 0.6 

(Figure 2.1B). 

 

2.3.2 Applying the formula of Daetwyler et al. (2008) to populations with 

a complex family structure 

Another method used to predict reliability of genomic prediction is the formula 

of Daetwyler et al. (2008). A disadvantage of this formula is the inability to predict 

reliabilities for populations with a complex family structure. In this study, this 

disadvantage was overcome by estimating Me in the formula based on the genomic 

and additive genetic relationship matrix. At the same heritability, reliabilities 

predicted with the formula of Daetwyler et al. (2008), denoted as rel_D hereafter, 

were in good agreement with rel_VR presented before, being: 0.003 (FREQ), 0.027 

(LD), 0.021 (HAP), 0.129 (CHR) and 0.275 (FAM; Table 2.2). Those predicted rel_D 

values at a heritability of 0.6 were almost equal to rel_VR for the FREQ scenario 

and the difference was highest for the FAM scenario (0.043). At a heritability of 0.1, 

predicted rel_D and rel_VR were equal for the FREQ and LD scenario and the 

maximum difference was 0.044 (FAM). 

The formula of Daetwyler et al. (2008) was also applied to study the effect of 

size of the reference population on the magnitude of effects of LD versus family 

relationships on the reliability of genomic prediction. Reliabilities at a heritability of 

0.6 of all five scenarios using different sizes of the reference population are shown 

in Figure 2.2. For the FAM scenario, reliability shows a steep marginal increase by 

increasing reference population size at small initial sizes of the reference 

population. At reference population sizes of about 5000-10,000, when reliability 

approaches the maximum reliability of 1, the marginal increase in reliability starts 

to decline. For the LD scenario, the marginal increase is more gradual; so less steep 

at small sizes of the reference population and more steep at bigger sizes of the 

reference population. The increase in reliability is, however, still higher at small 

initial sizes of the reference population compared to bigger sizes. For the CHR, the 

pattern is in between the ones from the FAM and LD scenario, and for the HAP 

scenario, the pattern is more or less the same as for the LD scenario. For the FREQ 
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scenario, the increase in reliability is almost linear across the considered range of 

reference population sizes. Those results indicate that the effect of LD versus family 

relationship does indeed depend on the size of the reference population.  

 

2.3.3 Empirical estimation 

In the FAM scenario, empirical estimation of the reliability using leave-one-out 

cross-validation for milk production resulted in an estimated reliability of 0.291. At 

the heritability estimated for milk production in this data set (0.56), the FAM 

scenario showed a rel_VR of 0.305 and rel_D of 0.261. So, both deterministic 

predictions were very close to the empirically estimated reliability.  

 
 
 
Table 2.2 Comparison of average reliabilities of genomic predictions at different heritabilities 

for five different scenarios obtained with the deterministic formulas of VanRaden (2008) 

(rel_VR) and Daetwyler et al. (2008) (rel_D), using the estimated number of effective 

chromosome segments (Me). 
 

h
2
 Scenario Me

a 
Rel_VR Rel_D 

0.6 FREQ 122116
 

0.002 0.003 

0.6 LD 11458
 

0.022 0.027 

0.6 HAP 14627 0.018 0.021 

0.6 CHR 2139
 

0.100 0.129 

0.6 FAM 837
 

0.318 0.275 

  
805

b 

 
0.283 

  

7774
c 

 

0.039 

0.1 FREQ 122116
 

0.0004 0.0004 

0.1 LD 11458
 

0.004 0.005 

0.1 HAP 14627 0.003 0.004 

0.1 CHR 2139
 

0.021 0.024 

0.1 FAM 837
 

0.104 0.059 

  
805

b 

 
0.062 

    7774
c   0.007 

 

a
 Me estimated as 

)(

1

DVar
Me  ; 

b
 Me estimated as 

 LN

LN
M

e

e
e

4ln

2
  (Goddard 2009); 

c
 Me estimated as LNM ee 2  (Hayes et al. 2009d). 
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Figure 2.2 Predicted reliability of genomic prediction, at a heritability of 0.6 and different 
sizes of the reference population, obtained with the deterministic formula of Daetwyler et 
al. (2008) for the five different scenarios using different information sources from the 
reference population: = Selection candidates simulated based on allele 
frequency of the reference population (FREQ); = Selection candidates simulated 
based on LD pattern of the reference population (LD); = Selection candidates 
simulated using 837 haplotypes of equal length segregating in the reference population 
(HAP); = Selection candidates simulated based on haploid chromosomes 
segregating in the reference population (CHR); = Individuals from the 
reference population (FAM). 

 

 

 

2.3.4 Calculating Ne and Me 

The Ne of the reference population was estimated to be 123 and this value was 

used to approximate the Me of the FAM scenario using two different formulas. The 

first formula, 
 LN

LN
M

e

e
e

4ln

2
  (Goddard 2009), resulted in almost the same Me as 

based on the genomic and additive genetic relationship matrix and, therefore, 

predicted reliability using this value was in good agreement with rel_VR and rel_D 

(Table 2.2). The second formula, LNM ee 2  (Hayes et al. 2009d), showed an almost 

10 times higher value for Me, resulting in a much lower predicted reliability 

compared to rel_VR and rel_D.  
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2.3.5 Genomic relationship versus reliability 

Since the reliability predicted with the formula of VanRaden (2008) was 

predicted separately for each individual, it was possible to evaluate the relation 

between genomic relationship and reliability. Average squared genomic 

relationship, which was found to be an accurate indicator of reliability in the study 

of Pszczola et al. (2012), also showed a high correlation with reliability in our study 

(Figure 2.3); the higher the average squared relationship with the reference 

population, the higher the reliability of genomic prediction. Fitting a linear 

regression line through the data presented in Figure 2.3A resulted in a model R
2
 

ranging from 0.51 to 0.60 (FREQ=0.57, LD=0.54, HAP=0.58, CHR=0.60, FAM=0.51) at 

a heritability of 0.6. The mean and variance of the average squared genomic 

relationship within a scenario were both affected by the relationship with the 

reference population, i.e., using more information from the reference population 

to simulate the selection candidates resulted in a higher mean and variance of the 

average squared genomic relationship.  

The relation between average squared relationships and reliability at 

heritability values of 0.1 and 0.6 was very similar (Figure 2.3B). Nevertheless, 

average squared relationship predicted the reliabilities more accurately at a 

heritability of 0.1, with a R
2
 of the regression model ranging from 0.92 to 0.94 

(FREQ=0.92, LD=0.92, HAP=0.92, CHR=0.94, FAM=0.93). 

 

2.4 Discussion 

2.4.1 Effect of LD and family relationships on reliability 

The first aim of this study was to investigate the effects of LD and family 

relationships on the reliability of direct genomic values. The results indicate that 

family relationships between selection candidates and reference population can 

have a large effect on the reliability of genomic predictions compared to linkage 

disequilibrium per se.  

The difference in reliability between selection candidates distantly and closely 

related to the reference population in our study was >0.5 at a heritability of 0.6. 

For breeding practices, it is therefore advisable to predict reliability for each 

selection candidate individually. However, it should be noted that both the general 

level and the variation of relationships within the data set used in our study was 

high, and the reference population was small. In data sets used for breeding 

practices, the difference in relationships among selection candidates may be lower 

and the size of the reference population may be higher, resulting in smaller 

differences in reliability. 



2. Linkage disequilibrium versus family relationships 

    

 

45 

 

 2  

 
      Figure 2.3 Average squared relationships to the reference population versus the reliability of 

genomic predictions at a heritability of 0.6 (A) and 0.1 (B) for the five different scenarios 

using different information sources from the reference population (from left to right): ■ = 

Selection candidates simulated based on allele frequency of the reference population 

(FREQ); ▲ = Selection candidates based on 837 haplotypes of equal length segregating in 

the reference population (HAP); ● = Selection candidates simulated based on LD pattern of 

the reference population (LD); ♦ = Selection candidates simulated based on haploid 

chromosomes segregating in the reference population (CHR); ▼ = Individuals from the 

reference population (FAM). 
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The size of the reference population influences the relative effect of LD and 

family relationships on the reliability of genomic prediction; small reference 

populations result in a higher effect of family relationships compared to LD, and 

larger reference populations result in a higher effect of LD on reliability. Those 

results are in agreement with the results of Clark et al. (2012), who stated that the 

effect of family relationships is reduced at an increasing size of the reference 

population. Size of the reference population combined with the high general level 

of relationships between selection candidates and reference individuals in our 

study also explains at least part of the difference between our results and results of 

Habier et al. (2007), who found that less than half of the reliability of a population 

one generation younger than the reference population, including both parents, was 

due to family relationships. 

Both deterministic approaches used in this study to predict the reliability of 

genomic prediction are based on a genomic relationship matrix. The genomic 

relationship matrix is quite consistent over different numbers of SNPs, with a 

correlation >0.98 when anywhere between ~10,000 and 40,000 SNPs are used to 

set up the matrix (Rolf et al. 2010). Therefore, the conclusions of our study are 

supposed to be independent from the number of SNPs used to set up the genomic 

relationship matrix, provided that at least 10,000 SNPs are used.  

The reliabilities achieved in the LD and HAP scenario are very similar. This 

indicates that most of the information coming from the considered haplotypes in 

the HAP scenario coincides with the information captured by the LD pattern in our 

data. Decreasing the number of haplotypes, and thereby increasing the haplotype 

length, will result in a higher additional amount of information captured in the HAP 

scenario compared to the LD scenario. The most extreme scenario of haplotypes in 

terms of their length is represented by the CHR scenario, which showed a 

considerably higher reliability than LD and HAP.  

Length of haplotypes identical by descent between two individuals is related to 

the number of generations diverged from the common ancestor (Chapman and 

Thompson 2003; Browning 2008). The length of chromosome segments shared 

between individuals is, therefore, expected to be correlated with the level of family 

relationships between individuals (Sved 1971; VanRaden et al. 2011); and also with 

the reliability of genomic prediction. The results in our study do not completely 

agree with these expectations. In the CHR scenario, simulated individuals shared 

whole un-recombined chromosomes with the reference population. The genomic 

relationship and reliability was, however, lower than achieved in the FAM scenario, 

where individuals had shorter haplotypes in common with reference individuals. In 

the CHR scenario, selection candidates had only one long haplotype in common 
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with any one reference individual; while in the FAM scenario, more shorter 

haplotypes were shared between a selection candidate and the same reference 

individual resulting in a higher relationship due to a higher accumulated length of 

shared haplotypes and, therefore, a higher reliability of genomic prediction. 

Moreover, this indicates that reliabilities of individuals composed of the best 

chromosomes present in a population, assuming this would be possible without 

going through the usual process of meiosis and recombination, as suggested by 

VanRaden (2009) and Cole and VanRaden (2011), may be substantially lower 

compared to individuals that have some degree of family relationship to one or 

more reference individuals. So, accumulated length of shared haplotypes between 

selection candidates and individuals in the reference population is more important 

than individual length of shared haplotypes.  

 

2.4.2 Predicting the reliability for populations with a complex family 

structure 

The second aim of this article was to investigate whether deterministic 

prediction formulas for the reliability of genomic prediction using population 

parameters can be used in situations with a complex family structure between 

selection candidates and the reference population. The results show that the 

formula of Daetwyler et al. (2008), using Me estimated based on the difference 

between genomic and additive genetic relationship matrices, yields similar 

predicted reliabilities for populations with a complex pedigree structure as using 

the formula of VanRaden (2008) and a cross-validation method based on observed 

phenotypes. 

The formula of VanRaden (2008) can be used to predict the reliability of 

genomic prediction for populations with a complex family structure. Previous 

studies that performed an empirical evaluation of the formula of VanRaden (2008), 

which is equal to predicting the reliability based on the prediction error variance as 

shown by Strandén and Garrick (2009), in general overestimated the reliability 

(Hayes et al. 2009b; Lund et al. 2009; Thomasen et al. 2012). This overestimation 

can be reduced by regressing the genomic relationship matrix back to the additive 

genetic relationship matrix calculated from pedigree information (Goddard et al. 

2011). In our study, using such regressed genomic relationship matrix resulted in 

good agreement between the reliability predicted with the formula of VanRaden 

(2008) and the empirically estimated reliability.  

Previous empirical evaluations of the formula of Daetwyler et al. (2008) all 

showed good agreement between empirically and deterministically derived 
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reliabilities (Hayes et al. 2009c; Clark et al. 2012; Pryce et al. 2012). This formula 

assumes that selection candidates and reference individuals are unrelated. In our 

study, family structure between reference and selection individuals was taken into 

account in the prediction of Me. Agreement between empirically estimated 

reliability and the reliabilities predicted with the formulas of VanRaden (2008) and 

Daetwyler et al. (2008) shows that the formula of Daetwyler et al. (2008) can also 

be applied to populations with a complex family structure, by using a value for Me 

that represents the family structure in the population. 

The Me estimated as LNe2  (Hayes et al. 2009d) was much higher, resulting in 

an unrealistically low reliability, compared to the Me and reliability estimated with  

)(

1

AG


Var
Me . The other formula used to estimate Me, 

 LN

LN
M

e

e
e

4ln

2


(Goddard 2009), resulted in a similar value for Me as using 
)(

1

AG


Var
Me , 

indicating that the reliabilities of genomic prediction using 
)(

1

AG


Var
Me  were 

similar to those using 
 LN

LN
M

e

e
e

4ln

2
  in the formula of Daetwyler et al. (2008). 

 

2.4.3 Implications 

Currently, more and more research is focused on the use of multi-breed or 

multi-line reference populations to enable genomic selection for smaller breeds or 

lines. Compared to within-breed genomic prediction, reliability of across-breed 

predictions may be lower due to differences in allele frequencies, LD pattern, and 

haplotypes among breeds (e.g., De Roos et al. 2008; Pryce et al. 2010; Goddard 

2012) and because family relationships among full-bred individuals of different 

breeds are absent (VanRaden et al. 2011). In addition, breed-specific allele effects 

might exist (Spelman et al. 2002; Thaller et al. 2003), which further reduces the 

reliability of genomic prediction for multi-breed populations.  

A high marker density is expected to increase the consistency of LD between 

SNPs and QTL across breeds and the corresponding reliability (De Roos et al. 2008; 

Ibánẽz-Escriche et al. 2009). The problem of different allele frequencies and breed-

specific allele effects can, however, not be solved by a higher marker density. 

Therefore, the expected reliability using a reference population of another breed is 

supposed to be lower than the reliability in the LD scenario in our study. Estimating 

Me for such scenarios, as shown in this study for populations with a complex family 
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structure, is a potential starting point for predicting the reliability for those multi-

breed population structures.  

 

2.5 Conclusion 
In conclusion, our results showed that the level of family relationships between 

selection candidates and the reference population has a higher effect on the 

reliability of direct genomic values than linkage disequilibrium per se. Furthermore, 

accumulated length of shared haplotypes across a reference individual and a 

selection candidate are more important in determining the reliability of genomic 

prediction than individual length of shared haplotypes. And finally, existing 

deterministic formulas using population parameters can accurately predict the 

reliability of genomic prediction using reference populations with complex family 

structures by estimating the number of effective chromosome segments based on 

genomic and additive genetic relationship matrices.   
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Abstract 
Background: Differences in linkage disequilibrium and in allele substitution 

effects of quantitative trait loci (QTL) may hinder genomic prediction across 

populations. Our objective was to develop a deterministic formula to estimate the 

accuracy of across-population genomic prediction, for which reference individuals 

and selection candidates are from different populations, and to investigate the 

impact of differences in allele substitution effects across populations and of the 

number of QTL underlying a trait on the accuracy. 

Methods: A deterministic formula to estimate the accuracy of across-population 

genomic prediction was derived based on selection index theory. Moreover, 

accuracies were deterministically predicted using a formula based on population 

parameters and empirically calculated using simulated phenotypes and a GBLUP 

(genomic best linear unbiased prediction) model. Phenotypes of 1033 Holstein 

Friesian, 105 Groningen White Headed and 147 Meuse-Rhine-Yssel cows were 

simulated by sampling 3000, 300, 30 or 3 QTL from the available high-density 

single-nucleotide polymorphism (SNP) information of three chromosomes, 

assuming a correlation of 1.0, 0.8, 0.6, 0.4, or 0.2 between allele substitution 

effects across breeds. The simulated heritability was set to 0.95 to resemble the 

heritability of deregressed proofs of bulls. 

Results: Accuracies estimated with the deterministic formula based on selection 

index theory were similar to empirical accuracies for all scenarios, while accuracies 

predicted with the formula based on population parameters overestimated 

empirical accuracies by ~25 to 30%. When the between-breed genetic correlation 

differed from 1, i.e., allele substitution effects differed across breeds, empirical and 

deterministic accuracies decreased in proportion to the genetic correlation. Using a 

multi-trait model, it was possible to accurately estimate the genetic correlation 

between the breeds based on phenotypes and high-density genotypes. The 

number of QTL underlying the simulated trait did not affect the accuracy. 

Conclusions: The deterministic formula based on selection index theory 

estimated the accuracy of across-population genomic predictions well. The 

deterministic formula using population parameters overestimated the across-

population genomic prediction accuracy, but may still be useful because of its 

simplicity. Both formulas could accommodate for genetic correlations between 

populations lower than 1. The number of QTL underlying a trait did not affect the 

accuracy of across-population genomic prediction using a GBLUP method. 

 

Key words: genomic prediction, accuracy, across-population genomic prediction, 

prediction equation  
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3.1 Background 
For genomic prediction, a reference population that consists of individuals with 

phenotypes and marker genotypes is used to estimate marker effects and to 

predict breeding values for another group of genotyped individuals, called selection 

candidates. The accuracy of predicting breeding values for selection candidates 

within one population is influenced by the level of linkage disequilibrium (LD) 

between markers, i.e., single-nucleotide polymorphisms (SNPs), and quantitative 

trait loci (QTL) that influence the trait, and by the level of family relationships 

(Daetwyler et al. 2008; VanRaden 2008; Zhong et al. 2009; De los Campos et al. 

2013). Across populations, there are differences in LD, allele frequencies (De Roos 

et al. 2008; Zhong et al. 2009; De los Campos et al. 2012), and allele substitution 

effects of QTL (Spelman et al. 2002; Thaller et al. 2003), and close family 

relationships between individuals of different populations are absent. Therefore, 

the potential accuracy of predicting breeding values when the predicted population 

is not included in the reference population is likely to be limited. Indeed, in dairy 

cattle breeding, several empirical studies showed that the potential of using 

information across breeds was limited (e.g., Hayes et al. 2009; Pryce et al. 2011; 

Schrooten et al. 2013). The concept of combining individuals of different breeds in 

cattle is essentially similar to combining individuals from different lines in other 

animal and plant species (e.g., Ibánẽz-Escriche et al. 2009; Zhong et al. 2009; 

Simeone et al. 2012) or from different subpopulations in humans (e.g., De los 

Campos et al. 2012; De los Campos et al. 2013) because close family relationships 

are absent and the extent of LD is limited across breeds, lines, and subpopulations. 

A higher marker density may increase the consistency in LD phase across 

populations, since at short distances (5 to 30 kb) LD phases are conserved across 

populations (De Roos et al. 2008). However, several empirical studies showed that 

an increase in marker density resulted only in a small increase in accuracy using 

multiple populations in the reference population (Harris et al. 2011; Erbe et al. 

2012). This small effect of marker density on accuracy indicates that other factors 

are also important, such as differences in segregating QTL or in the effect of QTL 

across populations due to differences in genetic background between populations 

(Spelman et al. 2002; Thaller et al. 2003). DGAT1 (diacylglycerol O-acyltransferase 

1) is one example of a gene with different effects across populations in dairy cattle. 

Allele substitution effects of a QTL in the DGAT1 locus on milk yield and fat yield 

have been found to be on average 0.8 and 0.5 times, respectively, as large in Jersey 

than in Holstein Friesian populations in New Zealand (Spelman et al. 2002) and 0.7 

and 1.2 times, respectively, as large in Fleckvieh than in Holstein Friesian 
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populations in Germany (Thaller et al. 2003). Since the SNP that was analyzed is 

considered to be the causal polymorphism, which rules out incomplete LD, these 

results demonstrate that large differences in allele substitution effects can exist 

across populations. 

Another factor that may affect accuracy of genomic prediction across 

populations is the number of QTL underlying the trait. For genomic prediction 

based on one population, accuracy is shown to be independent of the number of 

QTL underlying the trait when a genomic best linear unbiased prediction method 

(GBLUP) is used (Daetwyler et al. 2010; Clark et al. 2011), at least in situations for 

which there are no QTL that explain an extremely large part of the genetic variance. 

However, those studies only looked at the effect of the number of QTL on accuracy 

of genomic prediction within one population and not across populations. 

For genomic prediction within one population, different deterministic formulas 

have been proposed to calculate the accuracy (Daetwyler et al. 2008; VanRaden 

2008). The formula of Daetwyler et al. (2008) uses population and trait parameters, 

i.e., size of the reference population, heritability and number of effective 

chromosome segments. If the number of effective chromosome segments is 

calculated from the variation of genomic relationships around their expectations 

based on pedigree information, the formula of Daetwyler et al. (2008) can also be 

applied for populations with a complex family structure (Wientjes et al. 2013). The 

formula of VanRaden (2008) can be derived both from selection index theory and 

prediction error variance of the mixed model equation and it estimates the 

accuracy using the relationships within the reference population and between 

selection candidates and the reference population. Hayes et al. (2009) showed that 

applying the formula based on prediction error variance in multi-population 

situations without rescaling the genomic relationships across populations resulted 

in overestimation of the accuracy. This indicates that formulas for estimating the 

accuracy of genomic prediction using multiple populations need further 

investigation to define the best way to calculate genomic relationships across 

populations. 

The first objective of this study was to develop a deterministic formula to 

estimate the accuracy of across-population genomic prediction. The second 

objective was to investigate the effect of differences in allele substitution effects of 

QTL across populations on accuracy of across-population genomic prediction. The 

last objective was to investigate the effect of the number of QTL underlying a trait 

on accuracy of across-population genomic prediction. Two deterministic formulas 

were evaluated and empirical accuracies were calculated using simulated 

phenotypes based on real genotypes from three cattle breeds representing 
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different populations. Phenotypes were simulated using different correlations 

between allele substitution effects across breeds and different numbers of QTL 

underlying the trait. The reason for simulating the phenotypes of the individuals 

was to be able to investigate the actual effects of differences in allele substitution 

effects of QTL across populations and of the number of QTL by changing one factor 

at a time without changing the other factors, which would not be possible with real 

data. 

 

3.2 Methods 

3.2.1 Across-population genomic prediction 

For genomic prediction based on one population, breeding values are predicted 

for individuals using a reference population of individuals from the same 

population. In most genomic prediction models, the QTL effects that underlie the 

traits of interest are assumed to be additive (e.g., Meuwissen et al. 2001). For 

across-population genomic prediction, breeding values are predicted for individuals 

using a reference population of individuals from one or more different populations. 

Due to differences in allele frequencies across populations, the presence of non-

additive effects can result in differences in allele substitution effects of QTL 

(Falconer and Mackay 1996). Therefore, the models used for across-population 

genomic prediction should include non-additive effects or allow for differences in 

allele substitution effects across populations. Since it is difficult to accurately 

estimate non-additive effects (e.g., Wittenburg et al. 2011; Su et al. 2012), 

assuming additive gene action and, at the same time, allowing for differences in 

allele substitution effects may be a good first step and is the focus of this study. 

The correlation between allele substitution effects across populations can be 

considered as the genetic correlation between the populations (Bohren et al. 1966; 

Falconer and Mackay 1996). 

Based on the assumption of additive QTL effects and using selection index 

theory, the breeding value of individual i of population A can be predicted using 

reference population B as: 

  BBBABABA VaraCova
ii

yyyyb 1)(),('ˆ 
 ,  (3.1) 

where 
iAâ  is the predicted breeding value of individual i of population A, bAB is a  

nB x1 vector with partial regression coefficients of breeding values of population A 

on phenotypes of population B, yB is a nB x1 vector with phenotypes corrected for 

fixed effects of individuals from population B, 
iAa  is the true breeding value of 
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individual i of population A, and nB is the number of individuals in reference 

population B. 

The covariance between the true breeding value (TBV) of individual i of 

population A and the phenotypes of individuals from population B is: 

),(),(),(),( BABABBABA iiii
aCovaCovaCovaCov eaeay  , (3.2) 

where aB is a nB x1 vector with TBV of individuals from population B and eB is a nB x1 

vector with environmental effects of individuals from population B. In an additive 

model 0),( eaCov , Equation 3.2 reduces to: 

BAaaGBABA iBAABii
raCovaCov ,'),(),( gay  ,             (3.3) 

where 
ABGr  is the genetic correlation between population A and population B, 

Aaσ  and 
Baσ  are the genetic standard deviations in populations A and B, 

respectively, ,BAi
g  is a nB x1 vector with genomic relationships between individual i 

of population A and reference individuals of population B. 

Under the assumption that SNPs are representative of QTL, i.e., that 

characteristics such as allele frequency are the same for SNPs and QTL, resulting in 

usable LD between SNPs and QTL, a genomic relationship matrix based on SNPs can 

be used to represent the relationships between breeding values of the individuals. 

To calculate the genomic relationships, covariances between the individuals of 

both populations need to be calculated. The mathematical definition of a 

covariance,    yyxxEyxCov ),( , indicates that both components are 

corrected for their own mean. For the genomic relationships, this can be achieved 

by correcting the SNP genotypes of the individuals using the allele frequencies of 

their own population. Thus, the genotype of individual i from population j at locus 

k, gijk, is standardized as 

 jkjk

jkijk
ijk

pp

pg
x






12

2
, where pjk is the allele frequency of 

population j at locus k, and the standardized genotypes are used to calculate the 

genomic relationship matrices using the method of Yang et al. (2010), which will be 

described later. 

Hence, Equation 3.1 can be written as: 

  BB,BAaaGA Varra
iBAABi

yyg 1)('σσˆ 
 .       (3.4) 

This expression for the estimated breeding value (EBV) will subsequently be used in 

the next section to derive the accuracy. 
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3.2.1.1 Deterministic accuracy of across-population genomic prediction based on 

selection index theory 

The general formula to calculate the accuracy of prediction of a breeding value 

is (Falconer and Mackay 1996): 

)ˆ()(

),ˆ(

ii

ii

i

AA

AA
A

aVaraVar

aaCov
r  .    (3.5) 

In single-population situations, it is well known that )ˆ(),ˆ(
iii AAA aVaraaCov   

(Falconer and Mackay 1996). This is also correct for across-population genomic 

prediction, as shown in the Appendix. Therefore, the expression for the accuracy of 

across-population genomic prediction reduces to: 

)(

),ˆ(

i

ii

i
A

AA
A

aVar

aaCov
r  .                   (3.6) 

The covariance between the predicted and true breeding value of individual i of 

population A can be calculated as (see Appendix): 

  BABBAaaGAA iiBAABii
VarraaCov ,

1
,

222 )('σσ),ˆ( gyg  .     (3.7) 

Hence: 
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 .   (3.8) 

Equation 3.8 contains the variance of the phenotypes of individuals from 

population B, which can be written as: 

22 σσ)()(),()(
BB eBaBBBBBB VarVarCovVar RGeayyy  ,       (3.9) 

where GB is the nB x nB genomic relationship matrix of reference individuals of 

population B, 2σ
Ba  is the genetic variance in population B, RB is a nB x nB 

standardized matrix that describes the correlations between environmental effects 

of individuals from population B, and 2σ
Be  is the environmental variance in 

population B. Substituting Equation 3.9 into Equation 3.8 results in: 
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3.2.1.2 Deterministic accuracy of across-population genomic prediction using 

multiple populations in the reference population based on selection index theory 

Equation 3.10 is valid when there is only one reference population. However, it 

may be interesting to combine reference populations to predict breeding values for 

individuals from another population. Based on a combined reference population 

from two populations, i.e., population B and C, the breeding value for a selection 

candidate i of population A can be predicted as: 
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where bAC is a nC x1 vector with partial regression coefficients of breeding values of 

individuals from population A on phenotypes of population C, yC is a nC x1 vector 

with phenotypes corrected for fixed effects of individuals from population C. 

Following Equation 3.3, the covariance between the TBV of individual i of 

population A and the phenotypes of individuals from population B and C is: 
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,        (3.12) 

where 
ACGr  is the genetic correlation between population A and population C, 

Caσ  

is the genetic standard deviation in population C, and ,CAi
g  is a nC x1 vector of 

genomic relationships between individual i of population A and reference 

individuals of population C. 

Hence, Equation 3.11 can be written as: 
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In this situation, Equation 3.6 can also be used to calculate the accuracy. The 

covariance between the predicted and true breeding value of individual i of 

population A based on a reference population of individuals from population B and 

C is: 
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Using this expression in Equation 3.6, the accuracy of genomic prediction 

becomes: 

  

































CAaG

BAaG

C

B
CAaGBAaGA

iCAC

iBAB

iCACiBABi r

r
Varrrr

,

,
1

,, σ

σ
'σ'σ

g

g

y

y
gg .          (3.15) 

The (co-)variances of the phenotypes of the reference individuals of population B 

and C in Equation 3.15 can be written as: 
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The variance of the phenotypes within one population follows from Equation 3.9. 

The covariance of the phenotypes across the two populations is: 

BCaaGCBCCBBCB CBBC
rCovCovCov Gaaeaeayy σσ),(),(),(  .   (3.17) 

Combining Equations 3.9, 3.16, and 3.17 yields: 
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Substituting this result into Equation 3.15 yields 
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Although Equation 3.19 is derived for across-population genomic prediction, 

this formula can also be applied to estimate the accuracy of multi-population 

genomic prediction for which one of the reference populations is the population of 

the selection candidates. Moreover, it is interesting to note that when one 

population is included in the reference population and selection candidates are 

from the same population as the reference individuals, Equation 3.19 becomes 

equivalent to the expression derived by VanRaden (2008). 

 

3.2.1.3 Deterministic accuracy of across-population genomic prediction based on 

population parameters 

In general, the accuracy with which an effect is predicted equals the square root 

of the proportion of variance explained by the effect. The accuracy of a sire’s EBV 
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based on progeny information, for example, equals 
napa
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, 

where the numerator is the variance due to the sire, and the denominator the 

variance of the average of n progeny (Falconer and Mackay 1996). In the same way, 

when each chromosome segment explains an amount of variance equal to ea M/σ2 , 

in which Me is the effective number of chromosome segments (Goddard et al. 

2011), the accuracy of the predicted segment effect equals: 
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 ,   (3.20) 

where 
2σp  is the phenotypic variance and Np is the size of the reference population. 

In the denominator, it is assumed that a single segment explains very little 

variance, so that 
222 σ/σσ peap M  . When the accuracy is the same for all effective 

segments, this is also the accuracy of genomic prediction. Multiplying both 

numerator and denominator of Equation 3.20 by 
2σ/ pepMN  yields a simple 

expression for the accuracy of genomic prediction for all selection candidates of the 

same population: 
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,             (3.21) 

where h
2
 is the heritability of the trait. This result was originally derived by 

Daetwyler et al. (2008; 2010), but with a more complex derivation. 

For within-population genomic prediction, Me follows from Goddard et al. 

(2011):  
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where 
ijRPG  is the genomic relationship between individuals i and j from the 

reference population, 
ijRPA  is the corresponding pedigree relationship, and the 

variance is taken over all pairs ij in the reference population. For across-population 

genomic prediction, we propose the following analogy: 
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 ,       (3.23) 

in which the index RPi,SKj refers to reference individual i and selection candidate j, 

and the variance is taken over all the pair-wise relationships between reference 
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individuals and selection candidates. As explained by Goddard et al. (2011), the 

expectation of the genomic relationships for unrelated animals should be 0. This 

can be achieved by using population-specific allele frequencies to rescale the 

genotypes for setting up 
ji SKRP ,G , as explained before for the expression based on 

selection index theory. 

For across-population genomic prediction, the genetic correlation between 

populations has to be taken into account, because it limits the part of the genetic 

variance in the selection candidates that can be explained by the reference 

population. Therefore, the genetic correlation between the reference population 

and the selection candidates, 
SKRPGr ,

, was incorporated into Equation 3.21, giving: 
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2

,
.       (3.24) 

 

3.2.2 Simulations 

3.2.2.1 Genotypes 

Genotypes were available for 1285 dairy cows from the Netherlands that 

originated from three breeds (1033 Holstein Friesian (HF), 105 Groningen White 

Headed (GWH), and 147 Meuse-Rhine-Yssel (MRY)). All individuals were pure-bred 

animals since at least 87.5% of their genes originated from one of the three breeds. 

Individuals from the breeds GWH and MRY were genotyped with the Illumina 

BovineHD Beadchip (777k, Illumina, San Diego, CA). Quality controls consisted in 

removing genotypes with a GenCall (GC) score lower than 0.2, SNPs with a call rate 

smaller than 95% in one of the breeds and SNPs with an unknown map position or 

located on the sex chromosomes. The HF individuals were genotyped with the 

Illumina BovineSNP50 Beadchip (50k, Illumina, San Diego, CA), and imputed to 

high-density (777k) using a reference population of 3150 HF individuals as 

described by Pryce et al. (2014). Quality control consisted in removing SNPs with a 

call rate smaller than 95% or with an unknown map position or located on the sex 

chromosomes. After editing the imputed genotypes, the mean Beagle R
2
 value, 

which reflects the accuracy of imputation, was equal to 0.96 across imputed loci, 

which indicates that imputation was highly accurate. 

Loci for which the genotypes passed the quality control of both the HF dataset 

and the combined GWH and MRY dataset were retained in the entire dataset. From 

this entire dataset, SNPs with a minor allele frequency equal to or lower than 0.5%, 

SNPs for which only two genotypes were observed, and SNPs in complete LD         

(r
2
 = 1) with an adjacent SNP were removed. To increase the power of accurately 
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estimating genomic breeding values, arbitrarily, we took only three chromosomes, 

namely chromosomes 13, 23 and 28 that contained about 10% of the remaining 

high-density SNPs into account. According to the literature, the LD pattern of those 

chromosomes is comparable to the LD pattern of the entire cattle genome (McKay 

et al. 2007; Khatkar et al. 2008). After editing, a total of 31,503 SNPs remained 

across the three chromosomes. 

 

3.2.2.2 Simulation of phenotypes 

Phenotypes of the individuals were simulated using different scenarios with two 

variables i.e., 1) the number of QTL underlying the simulated trait and 2) the 

correlation between allele substitution effects of the QTL underlying the simulated 

trait in the different populations, i.e., the genetic correlation between populations 

(Bohren et al. 1966; Falconer and Mackay 1996). From the 31,503 SNPs available 

after editing, 5000 were randomly selected to become candidate QTL, regardless of 

the chromosome. In each replicate, the actual QTL with an effect on the trait were 

randomly sampled from those candidate QTL. The remaining (31,503 – 5000 =) 

26,503 SNPs composed the group of markers used in all analyses. Using this 

approach allowed us to keep the set of markers constant across all replicates but 

still made it possible to randomly select the QTL from the group of candidate QTL 

within each replicate. The numbers of QTL underlying the simulated trait were 

equal to 3000 (~10% of all SNPs), 300 (~1%), 30 (~0.1%) or 3 (~0.01%). 

The allele substitution effects of QTL were sampled from a multinormal 

distribution with mean 0 and standard deviation 1, assuming a correlation of 1, 0.8, 

0.6, 0.4, or 0.2 between the allele substitution effects across all three pairs of 

breeds. This was simulated by sampling random numbers from a normal 

distribution with mean 0 and standard deviation 1 and multiplying those numbers 

with the Cholesky decomposition of the covariance matrix between the allele 

substitution effects of the breeds. 

For each of the individuals, the TBV was calculated by multiplying the simulated 

allele substitution effects with the genotypes of the 3000, 300, 30, or 3 QTL coded 

as 0, 1, and 2. Only additive effects and no dominance effects or epistatic 

interactions were simulated, therefore, the effects were summed over all QTL. 

Finally, TBV of all individuals of the three breeds were rescaled to a mean of 0 and 

variance of 1 across breeds. By rescaling the TBV in this way, their mean and 

variance were the same for each replicate and for the different numbers of QTL, 

which indicates that when the number of QTL was higher, each QTL explained a 

smaller part of the variance. 
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Allele frequencies for simulated QTL (sampled from the SNPs) differed for each 

of the three breeds, resulting in differences in average TBV between the breeds. To 

simulate environmental effects for each individual assuming equal heritability for 

the three breeds, TBV were first adjusted by subtracting the average TBV of the 

individual’s breed before the genetic variance across TBV was calculated. 

Thereafter, the environmental effect per individual was sampled for the three 

breeds from a normal distribution with mean 0 and variance 







1

1
2h

*(variance of 

TBV corrected for mean TBV within breed). For each individual, the phenotype was 

calculated as the sum of its TBV and the randomly sampled environmental effect. 

Note that the within-breed TBV means were only subtracted from the TBV to 

calculate the environmental variance, the TBV itself, and therefore the phenotypes 

as well, still included the within-breed TBV mean. 

For each scenario, simulations were replicated 100 times using a heritability of 

0.95 to simulate phenotypes in each of the three breeds and for each number of 

QTL underlying the trait. A high heritability of 0.95 was chosen to increase the 

achieved accuracies and to make the differences in accuracies between the 

different scenarios more pronounced for the size of reference population used. In 

dairy cattle breeding, a heritability of 0.95 can be achieved by using deregressed 

proofs of bulls for a trait with a heritability of 0.25 based on 285 daughters, 

following (Mrode and Thompson 2005): 

)4( 22

2

hnh

nh
r


 ,             (3.25) 

where r is the accuracy for a sire’s breeding value, n is the number of daughters of 

that sire, and h
2
 is the heritability of the trait. 

 

3.2.2.3 Scenarios to evaluate accuracy of genomic prediction 

Mean accuracy of genomic prediction was empirically and deterministically 

evaluated for five different scenarios. The first scenario, i.e., the base scenario, 

which represented single-population genomic prediction, used HF animals as 

reference population and selection candidates. In the other scenarios, the 

reference population consisted of one or two populations and breeding values 

were predicted for individuals from another population, which means that across-

population genomic prediction was applied (Table 3.1). For the across-population 

scenarios, the reference population was the same for all selection candidates of a 

specific population. In the scenario with HF individuals both as reference 

population and selection candidates, the deterministic accuracies (Equations 3.19 
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and 3.24) were calculated for a single HF individual using a reference population 

consisting of all remaining HF individuals. The empirical accuracy was calculated 

using 20-fold cross-validation, where in each replicate, individuals were randomly 

divided in 20 equally-sized groups using each group once as selection candidates 

and the remaining 19 as reference population. 

 

Table 3.1 Overview of the breeds used in the different reference populations and as 
selection candidates. 
 

 
Reference population 

 
Predicted individuals 

Scenario Breed(s) 
Nb of 

individuals  
Breed 

Nb of 
individuals 

Base HF 1032 / 981-982
a 

 HF 1 / 51-52
a 

1 HF 1033 
 

GWH 105 

2 HF + MRY 1180 
 

GWH 105 

3 HF 1033 
 

MRY 147 

4 HF + GWH 1138 
 

MRY 147 
 

a
Deterministic formulas used leave-one-out cross-validation, empirical calculations used 20 

fold cross-validation using 20 groups of 51 or 52 individuals due to computational reasons; 
HF = Holstein Friesian; GWH = Groningen White Headed; MRY = Meuse-Rhine-Yssel. 

 

3.2.2.4 Empirical accuracy based on simulated phenotypes 

For the empirical estimation of the accuracy, a GBLUP-model type, called 

GREML, was run in ASReml (Gilmour et al. 2009). This GREML model used a 

genomic relationship matrix (G) and simulated phenotypes based on 3000, 300, 30 

or 3 QTL underlying the simulated trait. In this model, breed was included as a fixed 

effect. This model is termed GREML, because it has the same features as the 

commonly known GBLUP model, however variances were not assumed to be 

known but were estimated simultaneously with the breeding values using REML. 

Accuracy was calculated for each population as the correlation between EBV from 

this model and TBV. Since simulated phenotypes were different per replicate, 

averages and standard errors of empirical accuracies were calculated across 

replicates. 

The G matrix used in GREML contained all reference individuals and selection 

candidates and was calculated based on the method of Yang et al. (2010); 

n
SNPs

'XX
G  . In this equation, n represents the number of SNPs (26,503) and the X 

matrix contains standardized genotypes (one locus per column) of each individual 

(one individual per row). For the empirical estimation of the accuracy, standardized 
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genotypes were calculated as 
)1(2
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jj

jij
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 , where gij codes the genotype for 

individual i at marker locus j as 0, 1 and 2, and pj is the allele frequency at marker 

locus j for the second allele averaged over all breeds. To calculate the average 

allele frequency per locus, the allele frequency per locus was calculated per breed 

and thereafter averaged over the three breeds, with an equal weight for each of 

the breeds. In that way, average allele frequency is not dominated by the breed 

with the largest number of genotyped individuals. Note that for each scenario, the 

GSNPs matrix contained only the reference individuals and selection candidates (and 

the SNPs segregating in that group), so four different GSNPs matrices were calculated 

that contained 1) all HF individuals (26,486 SNPs), 2) all HF and GWH individuals 

(26,500 SNPs), 3) all HF and MRY individuals (26,498 SNPs), and 4) all HF, GWH and 

MRY individuals (26,503 SNPs). 

In the calculation of GSNPs, allele frequencies of the current population were 

used, which means that the current population was used as the base population. 

This indicates that the inbreeding level in GSNPs differed from the inbreeding level in 

the pedigree-based relationship matrix, A, and that GSNPs and A were not 

compatible. To rescale the inbreeding level in GSNPs to the inbreeding level of A, the 

following adjustment was made to within-breed genomic relationships (Powell et 

al. 2010): 

  JGG bSNPsbSNPs FF 21*  ,    (3.26) 

where Fb was the average inbreeding coefficient of all individuals of breed b based 

on the pedigree and J was a matrix filled with ones. 

Due to only three chromosomes being selected for this study and due to 

sampling variance of the SNPs on the chip, )|( *
SNPsE GG  is not *

SNPsG  (Powell et al. 

2010; Goddard et al. 2011). Therefore, we regressed the *
SNPsG  matrix back to the 

A matrix, which is the additive genetic relationship matrix based on the pedigree, 

following Yang et al. (2010) and Goddard et al. (2011): 

 AGAG  *ˆ
SNPsb ,             (3.27) 

where 
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Since the level of family relationships influences the sampling error on the 

elements in G, the regression coefficient b was calculated separately for bins of 

family relationships in A (0-0.10, >0.10-0.25, >0.25-0.50 and >0.5) within each 
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breed and for each combination of breeds. Across-breed relationships were indeed 

0 in A, so in that case  AGˆVar  approximately reduced to  ĜVar . Parent-

offspring relationships and self-relationships were not or hardly affected by 

sampling error and therefore excluded from the regression. The regression 

coefficient b was always above 0.95, and, in most cases, even above 0.99. 

Therefore, the effect of regressing the G matrix back to the A matrix was limited. 

The inbreeding level in A depends on the depth of the pedigree, which indicates 

that different pedigree depths across populations can cause differences in 

inbreeding levels across the populations. To remove these differences in pedigree 

depth, the pedigree was cut off at seven generations for all individuals. Based on 

the pedigree, small relationships between some animals of the different breeds 

occurred, with a maximum relationship of 0.035 between HF and GWH, 0.034 

between HF and MRY, and 0.029 between GWH and MRY. These relationships 

resemble more or less the relationship between an individual and one of its 

ancestors five generations back. 

 

3.2.2.5 Deterministic accuracies of genomic prediction 

For each scenario, accuracies of genomic prediction were deterministically 

derived using the two methods explained before; one method based on selection 

index theory (Equation 3.19) and one method based on population parameters 

(Equation 3.24). It is interesting to note that the formula based on selection index 

theory provides a single accuracy for each selection candidate, while the formula 

using population parameters provides an accuracy that applies to all selection 

candidates of the same population. Both deterministic methods calculate the 

accuracy based on genomic relationships and do not use phenotypes. Since the 

subset of SNPs was constant across all replicates and scenarios with different 

numbers of QTL, only one accuracy was calculated that applied to all replicates and 

numbers of QTL. Therefore, it was not possible to calculate standard errors across 

replicates for the deterministic accuracies. 

 

3.2.2.6 Estimating genetic correlations between populations 

In this simulation study, the genetic correlation between populations was 

known. In studies using real data, this is usually not the case and the genetic 

correlation needs to be estimated from the data. We investigated how accurate the 

genetic correlations between HF and GWH, and between HF and MRY are 

estimated using a multi-trait model in ASReml (Gilmour et al. 2009) in which the 

same trait in different breeds was treated as different traits. Within the multi-trait 
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model, the same G matrix was used as in the GBLUP model, the environmental 

correlation was set to 0 and genetic and environmental variances of GWH and MRY 

animals were fixed at the simulated values, because the small number of animals in 

those breeds made it difficult to estimate variance components reliably. 

 

3.3 Results 

3.3.1 Differences between populations 

In this study, accuracy of genomic prediction was evaluated by using genotypes 

of three cattle breeds. In cases where allele substitution effects were equal across 

breeds, differences in accuracy between single- and across-breed genomic 

predictions were due to differences in allele frequencies, relationships and LD 

pattern across breeds. The correlation between allele frequencies of all 26,503 

SNPs was 0.67 for HF and GWH, 0.73 for HF and MRY, and 0.65 for GWH and MRY. 

Correlations of allele frequencies of SNPs and candidate QTL across breeds were 

similar. 

Based on pedigree information, there were few differences in average 

relationships between breeds with average relationships of 0.0004 between HF and 

GWH (ranging from 0 to 0.035), 0.0004 between HF and MRY (ranging from 0 to 

0.034), and 0.0005 between GWH and MRY (ranging from 0 to 0.029). Based on 

genotype data, differences in average relationships across breeds became more 

pronounced, with average relationships of -0.084 between HF and GWH (ranging 

from -0.194 to +0.115), -0.050 between HF and MRY (ranging from -0.151 to 

+0.125), and -0.098 between GWH and MRY (ranging from -0.184 to +0.088). 

 

3.3.2 Equal allele substitution effects across populations 

Accuracies of genomic prediction are shown in Figure 3.1 for scenarios with 

equal allele substitution effects for the three breeds. Figure 3.1 shows that 

standard errors for all empirically calculated accuracies were small. Since both 

deterministic accuracies did not use replicates, there are no standard errors across 

replicates. However, the method based on selection index theory estimates 

accuracy per individual and this accuracy depended on the relationships of the 

selection candidate with the reference individuals. For each scenario, standard 

errors of the accuracy were calculated over all individuals and were equal to (mean 

and standard errors) 0.934 ± 0.001 (base scenario), 0.467 ± 0.006 (scenario 1), 

0.492 ± 0.006 (scenario 2), 0.437 ± 0.003 (scenario 3), and 0.458 ± 0.003 (scenario 

4). 
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Figure 3.1 Empirical and deterministic accuracies of genomic prediction (± standard error) 
with a heritability of 0.95 and using equal allele substitution effects of the QTL underlying 
the simulated trait in the three breeds for five different scenarios; Base = reference HF 
(Holstein Friesian) population, selection candidates HF; 1 = reference population HF, 
selection candidates GWH (Groningen White Headed); 2 = reference population HF and MRY 
(Meuse-Rhine-Yssel), selection candidates GWH; 3 = reference population HF, selection 
candidates MRY; 4 = reference population HF and GWH, selection candidates MRY. 

 

 

Accuracies for the base scenario, for which breeding values of HF individuals 

were predicted using a reference population of HF individuals, were very high (> 

0.9). Empirically derived accuracies were the same for the different numbers of QTL 

underlying the trait, which indicates that the number of QTL did not affect 

empirical accuracy in single-breed genomic prediction. With both deterministic 

methods, accuracies were in good agreement with the empirically-derived 

accuracies. 

Accuracies with the other four scenarios, for which across-breed genomic 

prediction was applied, were much lower than those with the base scenario, but 

still ranged from 0.4 to 0.5. In each scenario, empirical accuracies using different 

numbers of QTL underlying the trait were very similar, which indicates that there is 

no effect of number of QTL on empirical accuracy. As with single-breed genomic 

prediction, estimated accuracies based on selection index theory were in good 
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agreement with empirical accuracies for all four scenarios of across-breed genomic 

prediction. The deterministic prediction formula using population parameters 

overestimated empirical accuracies by about 25%. 

Empirical accuracies as well as deterministic accuracies were slightly higher for 

selection candidates from breed GWH than for those from breed MRY. For both 

breeds, empirical and deterministic accuracies slightly increased when the other 

breed was added to the HF reference population, thus maintaining a near constant 

difference in accuracy between GWH and MRY individuals. 

 

3.3.3 Different allele substitution effects across populations 

Accuracies of genomic prediction are shown in Figure 3.2 for scenarios with a 

correlation of allele substitution effects across breeds equal to A) 0.8, B) 0.6, C) 0.4, 

or D) 0.2. Standard errors for the empirical accuracies were low as with scenarios 

with equal allele substitution effects across breeds. The average estimated 

accuracies based on selection index theory and the variances across all individuals 

decreased for each scenario, the reduction being proportional to the correlation 

between allele substitution effects across populations. 

As expected, deterministic and empirical accuracies were about equal to the 

accuracies obtained with equal allele substitution effects across breeds multiplied 

by the correlation between allele substitution effects. Empirical accuracies across 

the different numbers of QTL underlying the trait were again very similar, although 

those obtained with the 3-QTL scenario seemed to differ slightly from the other 

scenarios. This is in agreement with the much higher standard error across the 

replicates obtained with the 3-QTL scenario than with the 3000-, 300- or 30-QTL 

scenarios. 

As in scenarios with equal allele substitution effects across breeds, accuracies 

obtained with the formula based on selection index theory were in good 

agreement with empirical accuracies. This indicates that this formula can be used 

to estimate the accuracy even when the genetic correlation between populations 

differs from 1. The formula using population parameters overestimated empirical 

accuracies by about 25% to 30%, regardless of the genetic correlation between 

breeds. 
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Figure 3.2 Empirical and deterministic accuracies of genomic prediction (± standard error) at 
a heritability of 0.95 using a correlation of (A) 0.8, (B) 0.6, (C) 0.4, or (D) 0.2 between allele 
substitution effects of the QTL underlying the simulated trait in the different breeds for four 
different scenarios. 1 = reference population HF (Holstein Friesian), selection candidates 
GWH (Groningen White Headed); 2 = reference population HF and MRY (Meuse-Rhine-
Yssel), selection candidates GWH; 3 = reference population HF, selection candidates MRY; 4 
= reference population HF and GWH, selection candidates MRY. 

 

 

 

 

3.3.4 Estimated genetic correlations between populations 

Estimated genetic correlations are shown in Table 3.2 for the different 

scenarios. When the simulated genetic correlation was 1, the genetic correlations 

between the breeds were slightly underestimated and ranged from 0.85 to 0.92. 

When the simulated genetic correlation was different from 1, estimated and 

simulated genetic correlations between the breeds were in good agreement for the 

3000-, 300- and 30-QTL scenarios. The estimated genetic correlation for the 3-QTL 

scenario was generally much lower than the simulated value, which is in agreement 

with the results found for the empirical accuracies and is probably due to the 

higher sampling error on the correlation in this scenario. 
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Table 3.2 Simulated and estimated genetic correlations (standard errors across replicates) 
between the populations. 
 

 
Simulated 

genetic 
correlation 

Estimated genetic correlation (s.e.) 

Populations 3000 QTL 300 QTL 30 QTL 3 QTL 

HF - GWH 1.0 0.91 (0.01) 0.92 (0.01) 0.89 (0.01) 0.86 (0.02) 

HF - GWH 0.8 0.79 (0.02) 0.79 (0.01) 0.77 (0.02) 0.56 (0.05) 

HF - GWH 0.6 0.61 (0.02) 0.60 (0.02) 0.57 (0.03) 0.53 (0.05) 

HF - GWH 0.4 0.47 (0.02) 0.51 (0.03) 0.44 (0.03) 0.31 (0.06) 

HF - GWH 0.2 0.19 (0.03) 0.22 (0.03) 0.20 (0.04) 0.16 (0.07) 

HF - MRY 1.0 0.89 (0.01) 0.89 (0.01) 0.91 (0.01) 0.85 (0.02) 

HF - MRY 0.8 0.81 (0.02) 0.78 (0.02) 0.81 (0.02) 0.69 (0.04) 

HF - MRY 0.6 0.61 (0.02) 0.69 (0.02) 0.62 (0.02) 0.46 (0.05) 

HF - MRY 0.4 0.44 (0.02) 0.45 (0.03) 0.44 (0.03) 0.28 (0.06) 

HF - MRY 0.2 0.24 (0.02) 0.25 (0.03) 0.24 (0.04) 0.24 (0.06) 
 

HF = Holstein Friesian; GWH = Groningen White Headed; MRY = Meuse-Rhine-Yssel. 

 

 

3.4 Discussion 

3.4.1 Deterministic accuracy of across-population genomic prediction 

The first objective of this study was to develop a deterministic formula to 

investigate the accuracy of across-population genomic prediction. Our study as 

other previous studies (VanRaden 2008; Clark et al. 2012; Wientjes et al. 2013) 

shows that the formula based on selection index theory (Equation 3.19) and the 

formula using population parameters (Equation 3.24) can accurately estimate the 

accuracy of genomic prediction within one population using relationship matrices. 

By setting up across-population genomic relationship matrices based on 

population-specific allele frequencies, it was also possible to accurately estimate 

the accuracy of across-population genomic prediction based on selection index 

theory. The application of the prediction formula using population parameters, as 

described in our study, overestimated the empirical accuracy for across-population 

genomic prediction in all scenarios by about 25 to 30%. 

The genetic correlation in the deterministic formulas accounts for differences in 

allele substitution effects across populations. These differences may also lead to 

differences in genetic variances across populations, i.e., heterogeneous variances. 

For example, among populations, the genetic variance tends to be larger for the 

population with the highest mean for a given trait (Legates 1962; Boldman and 

Freeman 1990). In addition, differences in allele frequencies across populations 
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may also lead to heterogeneous variances; for example, a QTL may only segregate 

in one of the populations, which results in differences in the genetic variance 

explained by that QTL across populations although the actual allele substitution 

effects could be the same. Moreover, environmental variances may be different 

across populations when deregressed proofs of bulls are used as phenotypes, since 

the heritability of those proofs depends on the number of daughters of the bull, 

which can differ across populations. Heterogeneous variances across populations, 

which are not properly accounted for, may affect bias and accuracy of EBV. The 

deterministic formula based on selection index theory can take those 

heterogeneous variances into account as well, in contrast to the application of the 

formula based on populations parameters described here. Makgahlela et al. (2013) 

empirically showed that accuracies of multi-breed genomic prediction can be 

increased by accounting for those heterogeneous variances across breeds in a 

multi-trait random regression model (Makgahlela et al. 2013; Strandén and 

Mäntysaari 2013). 

The genomic relationship matrix used in the deterministic formulas was 

calculated based on population-specific allele frequencies. Harris and Johnson 

(2010) already mentioned that differences in allele frequencies should be taken 

into account to calculate genomic covariances and relationships between 

individuals of different populations. Not using population-specific allele frequencies 

results in average genomic relationships across populations different from 0 

(Karoui et al. 2012), large differences in average diagonal elements across 

populations (Harris and Johnson 2010; Simeone et al. 2012) and overestimation of 

the accuracies (Hayes et al. 2009). In our study, using population-specific allele 

frequencies resulted in average genomic relationship close to 0, i.e., equal to 

0.00003 with a standard deviation of 0.023 between HF and GWH, and 0.00003 

with a standard deviation of 0.020 between HF and MRY. 

The deterministic formula based on selection index theory (Equation 3.19) 

estimated the accuracy of across-population genomic prediction accurately for all 

scenarios. With a genetic correlation of 0.8, 0.6, 0.4, or 0.2, empirical and 

deterministic accuracies were respectively 80%, 60%, 40%, or 20% of the accuracies 

achieved with a genetic correlation of 1. This indicates that the deterministic 

formula can be used to estimate genetic correlations between populations (but 

does not provide information about the mechanism underlying this correlation); for 

example when the empirical accuracy is only 60% of the accuracy estimated 

assuming a genetic correlation of 1, the actual genetic correlation between 

populations is expected to be 0.6. Using this deterministic formula to estimate the 
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genetic correlation between populations can be especially attractive when only one 

of the populations has a small number of genotyped individuals. 

Overestimation of accuracies with the formula using population parameters for 

the across-population scenarios is probably due to the inability of the SNPs to 

capture all the genetic variance in the selection candidates (Daetwyler 2009; Erbe 

et al. 2013), which is an underlying assumption of this formula. The empirical 

accuracy was about 80% of the predicted accuracy, both when GWH individuals or 

MRY individuals were used as selection candidates. This indicates that only 80% of 

the genetic variance in the selection candidates was captured by the markers in the 

reference population, due to differences in LD and allele frequencies of QTL 

between the reference population and the selection candidates. This proportion of 

the genetic variance in the selection candidates captured by SNPs in the reference 

population is the maximum accuracy of genomic prediction for those populations 

based on the used SNP chip (Daetwyler 2009). 

By using an estimation of the genetic variance in the validation population that 

can be captured by SNPs in the reference population, the formula based on 

population parameters becomes a useful formula to predict the accuracy of across-

population genomic prediction. This formula is very simple to use and can assess 

expected accuracies before individuals are genotyped. However, an important 

question remains regarding which values to use for Me and the genetic correlation. 

In this study, Me were estimated based on the variation in genomic relationships 

between reference and selection individuals around their expectations based on 

pedigree information. Similarly to the single-population scenario, Me of the across-

population scenarios were estimated based on the relationships across population. 

Using this approach, an Me of about 1800 was estimated when GWH individuals 

were used as selection candidates, and 2400 when MRY individuals were used as 

selection candidates, both when HF individuals were used as reference population. 

Since only 10% of the genome was taken into account, this Me should be multiplied 

by 10 to get the actual Me across those populations. In a previous study, an Me of 

11,500 was obtained when reference individuals and selection candidates shared 

allele frequencies and LD patterns and of 122,000 when reference individuals and 

selection candidates shared only allele frequencies (Wientjes et al. 2013). Across 

breeds, allele frequencies are different, but LD patterns may be partly the same, 

therefore, Me across breeds was indeed to fall within the values of those groups. 

This suggests that perhaps an Me of about 20,000 could be used to predict the 

accuracy of across-population genomic prediction for closely related cattle breeds 

and an Me of about 40,000 or more for more distantly related cattle breeds. 
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The actual genetic correlation between populations, which is needed in the 

prediction formula, is in practice not known and depends on the traits and 

populations of interest. However, we showed that this genetic correlation can be 

estimated quite accurately using a multi-trait model and high-density genotypes. 

Thus, it may be possible to estimate this genetic correlation in a limited number of 

animals and to use it to predict the accuracies of genomic selection for different 

scenarios. 

 

3.4.2 Empirical accuracies of genomic prediction 

The second objective of this study was to investigate the effect of differences in 

allele substitution effects of QTL between populations, i.e., genetic correlations 

that differ from 1, on accuracy of across-population genomic prediction. Our results 

showed that genetic correlations between populations that are smaller than 1 

resulted in a reduced accuracy of across-population genomic prediction that is 

proportional to the genetic correlation. 

In this study, it was assumed that SNPs are representative of QTL, i.e., that SNPs 

and QTL have the same characteristics. Regarding this assumption, we know that 

for most complex traits, QTL minor allele frequencies are expected to be low 

(Goddard and Hayes 2009; Yang et al. 2010; Kemper and Goddard 2012). However, 

the SNPs on the chip were selected to have an intermediate allele frequency 

(Matukumalli et al. 2009), resulting in ascertainment bias of these SNPs. These 

differences in allele frequencies indicate that, in practice, QTL and SNPs have other 

characteristics, thereby reducing LD between QTL and SNPs in empirical studies. In 

our study, QTL were selected from the SNPs on the chip, which did not completely 

cover the range of expected allele frequencies of the actual QTL. Therefore, LD 

between QTL and SNPs may be overestimated, which results in higher accuracies of 

genomic prediction. In a future study, we will investigate the effect of different QTL 

allele frequencies on the accuracy of multi-population genomic prediction using 

loci with different allele frequencies and representative of the whole genome. 

Another assumption used in this study was that the trait of interest was only 

influenced by additive effects. Due to the existence of non-additive effects, the 

average effects of allele substitution depend on the QTL allele frequencies 

(Falconer and Mackay 1996), and might therefore be different across populations. 

In this study, different effects were considered by simulating genetic correlations 

between populations that differed from 1. In general, empirical studies use additive 

models for across-population genomic prediction and provide much lower 

accuracies than those obtained in this study for a genetic correlation of 1 (e.g., 

Hayes et al. 2009; Pryce et al. 2011). This suggests that either SNPs do not 
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represent QTL or that non-additive effects are important for the traits of interest in 

empirical studies, or a combination of both, which is important biological 

information. 

In this study, genetic correlations between populations of 1, 0.8, 0.6, 0.4, and 

0.2 were used to simulate phenotypes. Our results showed that genetic 

correlations between populations can be estimated quite accurately from the data 

using a multi-trait model. To date, this was done only in a few empirical studies 

(Karoui et al. 2012; Legarra et al. 2014). Karoui et al. (2012) reported estimated 

genetic correlations between French dairy cattle breeds that ranged from 0 

(fertility; Montbéliarde – Normande) to 0.79 (milk; Montbéliarde – Holstein), with 

only two out of nine estimated genetic correlations above 0.6. These empirical 

results show that genetic correlation between populations can differ from 1 and 

depends on the trait of interest. 

Results of this study clearly show that genetic correlation between populations 

is an important parameter for across-population genomic prediction. The true 

genetic correlation between populations is not influenced by differences in LD 

between QTL and SNPs. It is worth noting that apart from differences in allele 

substitution effects, the genetic correlation can also differ from 1 because of 

different QTL for the same trait. In terms of accuracy, the value of the genetic 

correlation is important and not the underlying cause of this genetic correlation. In 

fact, the genetic correlation specifies the maximum accuracy that can be obtained 

with across-population genomic prediction, provided that the reference population 

is very large and the number of SNPs is large enough to find a consistent linkage 

phase across populations. 

 

3.4.3 Effect of number of QTL 

The third objective of this study was to investigate the effect of the number of 

QTL underlying a trait on accuracy of across-population genomic prediction, which 

was studied using a GBLUP method. The results showed that changing the number 

of QTL without changing any other parameter had no effect on the accuracy. 

In the case of genomic prediction within one population, different studies have 

already shown that accuracies of genomic prediction using GBLUP do not depend 

on number of QTL underlying the trait (Daetwyler et al. 2010; Clark et al. 2011). If 

variable selection models were used for genomic prediction, higher numbers of 

QTL resulted in lower accuracies (Coster et al. 2010; Daetwyler et al. 2010; Clark et 

al. 2011). One of these studies also showed that variable selection models have an 

advantage over GBLUP when the number of QTL is below Me in genomic prediction 

within one population (Daetwyler et al. 2010). In across-population situations, Me is 
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much larger than within one population (Wientjes et al. 2013), which suggests that, 

in those situations, it will be easier to have a number of QTL smaller than Me and, 

thus it is expected that the use of variable selection models will be beneficial. 

 

3.5 Conclusions 
The deterministic formula based on selection index theory, that was derived in 

this study, can accurately estimate the accuracy of across-population genomic 

prediction by using population-specific allele frequencies to set-up genomic 

relationship matrices. Another deterministic formula using population parameters 

overestimates the accuracy of across-population genomic prediction, because the 

SNPs in the reference population cannot capture all of the genetic variance in the 

selection candidates. However, this formula may still be useful because of its 

simplicity, and is expected to be much more accurate when the proportion of 

genetic variance in the selection candidates is known with reasonable accuracy and 

included in the formula. Moreover, the results of this study show that differences 

in allele substitution effects across populations reduce the accuracy of across-

population genomic prediction, with a proportion equal to the correlation between 

allele substitution effects across populations. The number of QTL underlying a trait 

does not affect the accuracy of across-population genomic prediction when a 

GBLUP method is used. 
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3.7 Appendix 

Proving that )ˆ(),ˆ(
iii AAA aVaraaCov   is correct for across-population genomic 

prediction 

The covariance between the predicted and true breeding value of individual i of 

population A using a reference population of population B is: 
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The variance of the predicted breeding value of individual i of population A 

using a reference population of population B is: 
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Combining Equation A3.1 and A3.2, results in:   

)ˆ(),ˆ(
iii AAA aVaraaCov  .              (A3.3) 
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Abstract 
Background: The potential of combining multiple populations in genomic 

prediction is depending on the consistency of linkage disequilibrium (LD) between 

SNPs and QTL across populations. We investigated consistency of multi-locus LD 

across populations using selection index theory and investigated the relationship 

between consistency of multi-locus LD and accuracy of genomic prediction across 

different simulated scenarios. In the selection index, QTL genotypes were 

considered as breeding goal traits and SNP genotypes as index traits, based on LD 

among SNPs and between SNPs and QTL.  

Methods: The consistency of multi-locus LD across populations was computed 

as the accuracy of predicting QTL genotypes in selection candidates using a 

selection index derived in the reference population. Different scenarios of within- 

and across-population genomic prediction were evaluated, using all SNPs or only 

the four neighboring SNPs of a simulated QTL. Phenotypes were simulated using 

different numbers of QTL underlying the trait. The relationship between the 

calculated consistency of multi-locus LD and accuracy of genomic prediction using a 

GBLUP type of model was investigated. 

Results: The accuracy of predicting QTL genotypes, i.e., the measure describing 

consistency of multi-locus LD, was much lower for across-population scenarios 

compared to within-population scenarios, and was lower when QTL had a low 

minor allele frequency compared to QTL randomly selected from the SNPs. 

Consistency of multi-locus LD was highly correlated with the realized accuracy of 

genomic prediction across different scenarios and the correlation was higher when 

QTL were weighted according to their effects in the selection index instead of 

weighting QTL equally. By only considering neighboring SNPs of QTL, accuracy of 

predicting QTL genotypes within population decreased, but it substantially 

increased the accuracy across populations. 

Conclusions: Consistency of multi-locus LD across populations is a characteristic 

of the properties of the QTL in the investigated populations and can provide more 

insight in underlying reasons for a low empirical accuracy of across-population 

genomic prediction. By focusing in genomic prediction models only on neighboring 

SNPs of QTL, multi-locus LD is more consistent across populations since only short-

range LD is considered, and accuracy of predicting QTL genotypes of individuals 

from another population is increased. 

 

Key words: Multi-locus LD, consistency of LD, genomic prediction, across-

population genomic prediction, accuracy, selection index theory  
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4.1 Background 
In genomic prediction, marker information is used to predict breeding values for 

selection candidates based on estimated marker effects in a reference population 

consisting of individuals with phenotypes and marker genotypes. The accuracy of 

predicting genomic breeding values depends on the size of the reference 

population, the heritability of the trait, and on the level of family relationships 

between the reference population and selection candidates (e.g., Daetwyler et al. 

2008; Habier et al. 2010; Wientjes et al. 2013). Moreover, the accuracy is 

influenced by the level of linkage disequilibrium (LD), i.e., non-random associations, 

between the single-nucleotide polymorphism (SNP) markers and quantitative trait 

loci (QTL) influencing the trait of interest (Meuwissen et al. 2001). The higher the 

level of LD, the more accurate breeding values can be predicted for the selection 

candidates (Goddard 2009). Therefore, the consistency of linkage phase between 

SNPs and QTL across populations has been suggested to be an important factor 

determining the success of across- and multi-population genomic prediction (De 

Roos et al. 2009; Hayes et al. 2009). Within a population, the level of LD between a 

QTL and a SNP depends on the effective population size, the recombination rate, 

the distance between the QTL and SNP on the genome, and the difference in allele 

frequency between the QTL and SNP (Hill and Robertson 1968). Several studies 

showed different LD patterns across different cattle (Gautier et al. 2007; De Roos et 

al. 2008), chicken (Heifetz et al. 2005; Andreescu et al. 2007), pig (Veroneze et al. 

2013) and human (Sawyer et al. 2005) populations. In different livestock species, 

however, the consistency of linkage phase across populations is found to be 

reasonable high at short distances on the genome (Andreescu et al. 2007; De Roos 

et al. 2008; Zhou et al. 2013), and depending on the degree of relatedness between 

the populations; the higher the relatedness between the populations, the higher 

the consistency of LD (Andreescu et al. 2007).  

The studies investigating the consistency of LD across populations focused on 

the LD between two loci. However, genomic prediction models trained within 

populations are expected to use more than one SNP to capture the genetic 

variance explained by one QTL (Erbe et al. 2012). Hayes et al. (2007) for example 

showed a substantial increase in the proportion of the QTL variance captured by 

the SNPs when going from haplotypes based on 2 SNPs per haplotype to 4 SNPs per 

haplotype and from 4 SNPs per haplotype to 6 SNPs per haplotype. Moreover, the 

proportion of the QTL variance explained by haplotypes with more than 2 SNPs was 

higher than the proportion that could be explained by the SNP in highest LD with 

the QTL (Hayes et al. 2007). Also for fine mapping QTL, the use of haplotypes 
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consisting of multiple SNPs is shown to be beneficial compared to using one SNP at 

a time (Meuwissen and Goddard 2000; Grapes et al. 2006; Calus et al. 2009). This 

indicates that SNPs in less strong LD with the QTL might be helpful in genomic 

prediction, and linear combinations of several linked SNPs form the within-

population prediction equation. Therefore, a measure of multi-locus LD, compared 

to the average LD between two adjacent loci, might be better able to explain the 

contribution of LD to the accuracy of genomic prediction. This might especially be 

important for situations with multiple populations, because the consistency of LD 

across populations is decreasing more rapidly at increasing distances on the 

genome (Gautier et al. 2007; De Roos et al. 2008; Abasht et al. 2009).  

The first objective of this study was to investigate the consistency of multi-locus 

LD across different populations using selection index theory. The consistency of 

multi-locus LD is one of the components of the accuracy of genomic prediction, 

therefore, the second objective was to investigate the relationship between 

consistency of multi-locus LD and accuracy of genomic prediction across different 

simulated within- and across-population genomic prediction scenarios. Three 

different cattle breeds with real SNP genotype information were used to represent 

different populations. Phenotypes of the individuals were simulated by sampling 

QTL from the SNPs, such that the actual QTL genotypes influencing the phenotypes 

were known.  

 

4.2 Methods 

4.2.1 Prediction accuracies 

4.2.1.1 Using selection index theory to predict QTL genotypes 

In this study, the consistency of multi-locus LD across different populations is 

investigated using selection index theory (Smith 1936; Hazel and Lush 1942; Hazel 

1943), which is equivalent to multiple regression of the QTL genotypes on the SNP 

genotypes. In the selection index calculations, a regression equation to predict the 

QTL genotypes (i.e., the breeding goal traits) using SNP genotypes (i.e., the index 

traits) was derived in population A and the accuracy of this equation to predict the 

QTL genotypes in population B was investigated. This approach is different from 

other studies investigating the consistency of LD across populations (e.g., Gautier et 

al. 2007; De Roos et al. 2008; Zhou et al. 2013), where the consistency of LD was 

calculated using the correlation of the LD measure r between two single loci across 

populations. The advantage of our selection index method is that a measure is 

obtained of explaining the QTL genotypes using the information of multiple SNPs 

instead of a single SNP.  
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In population A, a selection index can be derived to predict the QTL genotype 

for a single individual using all SNP genotypes of that same individual, following:  

iAiI xb' ,              (4.1) 

in which Ii forms the selection index for individual i, bA is a vector containing 

regression coefficients on the SNP genotypes to predict Ii, and xi is a vector 

containing all SNP genotypes of individual i.  

Rather than predicting Ii, the aim is to predict the aggregated genotype 

including all QTL: 

iiH gv' ,         (4.2) 

in which Hi is the aggregate genotype of individual i, v is a vector with weighting 

factors for each of the QTL genotypes and gi is a vector containing the genotype for 

each QTL of individual i.  

The regression coefficients on the SNP genotypes that would optimize the 

prediction accuracy of H can be calculated as (Kempthorne and Nordskog 1959):  

vGPb AAA
1 ,           (4.3) 

in which PA is the covariance matrix (based on LD) between all SNPs in population A 

and GA is the covariance matrix between SNPs and QTL in population A. Then the 

prediction accuracy of predicting the QTL genotype in another population, i.e., 

population B, using bA can be calculated as (Lin 1978): 

vCvbPb

vGb

BABA

BA
IHr

''

'
 ,       (4.4) 

in which GB is the covariance matrix between SNPs and QTL in population B, PB is 

the covariance matrix of SNPs in population B and CB is the covariance matrix of 

QTL in population B.  

 

4.2.1.2 Using a genomic best linear unbiased prediction model to estimate breeding 

values 

To investigate the relationship between the prediction accuracies of the QTL 

genotypes and the accuracies of predicting genomic breeding values, the following 

Genomic-relationship-matrix Residual Maximum Likelihood (GREML) model was 

used: 

eZgXby  ,             (4.5) 

in which y is a vector containing phenotypes, b is a vector containing fixed effects, 

X is an incidence matrix that allocates the fixed effects to the individuals, g is a 

vector containing the predicted genomic breeding values ~N(0,GRM 2σg ), GRM is a 

genomic relationship matrix based on SNPs (calculation of GRM is explained later), 
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Z is an incidence matrix that allocates the genomic breeding values to the 

individuals and e is a vector containing the residuals ~N(0,I 2σe ). The GREML model 

is equivalent to the commonly known genomic best linear unbiased prediction 

(GBLUP) model, except that it estimates the variances using residual maximum 

likelihood (REML) instead of assuming that the variances are known. 

 

4.2.2 Simulations to investigate the prediction accuracies 

4.2.2.1 Genotypes  

Genotypes of 1285 dairy cows from the Netherlands were used, originating 

from three different breeds (1033 Holstein Friesians (HF), 105 Groningen White 

Headed (GWH), and 147 Meuse-Rhine-Yssel (MRY)). The genotypes of MRY and 

GWH animals were obtained by isolating DNA from whole blood samples of the 

animals. Blood samples were collected in accordance with the guidelines for the 

care and use of animals as approved by the ethical committee on animal 

experiments of ID-LELYSTAD (protocol: 2011062). No approval was obtained for the 

HF genotypes, because these genotypes were obtained from an existing database. 

All animals originated for at least 87.5% from one of the three breeds, so were 

considered to be pure-bred animals. The HF animals were genotyped with the 

Illumina BovineSNP50 Beadchip (50k, Illumina, San Diego, CA), and genotypes were 

imputed to high-density (777k) using 3150 HF animals in the reference population 

as described in Pryce et al. (2014). The GWH and MRY animals were genotyped 

with the Illumina BovineHD Beadchip (777k, Illumina, San Diego, CA). The quality 

checks and the criteria for including the SNP genotypes in the combined dataset of 

the three breeds are described in Wientjes et al. (2015b). For each of the 

individuals, both genotype (coded as 0, 1 and 2) and phased allele information 

(coded as 0 and 1) was available. Phasing of the allele genotypes was done using 

the software package Beagle (Browning and Browning 2009). From those high-

density genotypes, arbitrarily the SNP genotypes of three chromosomes (Bos 

Taurus chromosome 13, 23 and 28) were selected to reduce computation time and 

to increase the power of the study to estimate breeding values. The three selected 

chromosomes contained 31,503 SNPs, which was about 10% of the SNPs from the 

entire combined dataset. The characteristics of the 31,503 SNPs used in this study 

are shown in Table 4.1. 

From all 31,503 SNPs, randomly 5000 SNPs were selected to become candidate 

QTL from which the actual QTL were sampled. The other 26,503 SNPs were used as 

SNP markers in this study. With this approach, it was possible to randomly sample 

QTL from the candidate QTL in each of the replicates, while keeping the set of SNP 
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markers constant across the replicates to reduce the computational demands. To 

limit the number of possible singularities in the matrices needed for the selection 

index calculations, SNPs with a correlation above 0.85 or below -0.85 with another 

SNP on the same chromosome were deleted, irrespective of their allele frequency. 

Moreover, SNPs that were not segregating in one of the breeds were deleted as 

well. Deleting those SNPs reduced the total number of SNPs from 26,503 to 4541, 

of which 1655 SNPs were located on BTA 13, 1515 on BTA 23, and 1371 on BTA 28.  

 

Table 4.1 Characteristics of the SNPs in each of the different breeds. 
 

Characteristics of the SNPs HF
 

GWH
 

MRY
 

Number of segregating SNPs 31,483 30,449 31,262 

Number of breed-specific SNPs 14 6 3 

Average MAF
a
 of all SNPs 0.279 0.251 0.266 

Average MAF
a
 of segregating SNPs 0.279 0.260 0.268 

Number of SNPs with MAF
a
 ≤ 0.1 4266 6530 5308 

Number of SNPs with 0.1 < MAF
a
 ≤ 0.2 5587 5803 5609 

Number of SNPs with 0.2 < MAF
a
 ≤ 0.3 6558 5745 6623 

Number of SNPs with 0.3 < MAF
a
 ≤ 0.4 7430 6718 6657 

Number of SNPs with 0.4 < MAF
a
 ≤ 0.5 7662 6707 7306 

 

a
MAF = Minor allele frequency; 

HF = Holstein Friesian; GWH = Groningen White Headed; MRY = Meuse-Rhine-Yssel. 

 

 

4.2.2.2 Phenotypes 

Phenotypes were simulated for each individual by randomly sampling 3000, 

300, 30, or 3 QTL from the group of 5000 candidate QTL and by sampling their 

allele substitution effects from N(0,1), using the same effects for each of the 

breeds. An additive model, without considering epistatic interactions or dominance 

effects, was assumed. The simulated allele substitution effects were multiplied with 

the QTL genotypes, coded as 0, 1 and 2, to calculate a true breeding value (TBV) for 

each of the individuals. Those TBVs were rescaled to a mean of 0 and a variance of 

1 across breeds for all of the scenarios. Thus, when the number of QTL underlying 

the trait was lower, each QTL explained a larger part of the genetic variance. For 

each individual, an environmental effect was sampled from N(0, 







1

1
2h

*variance 

of TBV corrected for mean TBV within breed), in which 2h  is the heritability of the 

simulated trait. This approach enables to sample the environmental term from the 
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same distribution for each individual, independent of the breed, and to keep the 

heritability more or less constant across the breeds (Wientjes et al. 2015b). The 

phenotype for each individual was calculated as the sum of its TBV and its 

randomly sampled environmental effect. Please note that the TBVs were only 

corrected for the mean TBV to calculate the environmental variance, the TBVs and 

the phenotypes still contained the breed effect.  

Two different heritabilities were used to simulate phenotypes, namely 0.3 and 

0.95. The same subsets of QTL were used to simulate phenotypes for the two 

heritabilities, but allele substitution effects and environmental effects were 

different. For all scenarios, simulations were replicated 100 times for each scenario. 

A more detailed description of the simulations of phenotypes can be found in 

Wientjes et al. (2015b). 

In general, QTL underlying complex traits are expected to have a lower minor 

allele frequency (MAF) than the SNPs, due to ascertainment bias of the SNPs on the 

chip (Matukumalli et al. 2009; Kemper and Goddard 2012). To investigate if 

selecting QTL randomly from the SNPs could affect our results, phenotypes were 

also simulated by selecting QTL from the 5000 candidate QTL with an average MAF 

across the breeds below 0.1. The average MAF across the breeds was calculated by 

giving an equal weight to each of the three breeds, indicating that the allele 

frequency in each of the breeds ranged between 0 and 0.3, resulting in sampling 

QTL from 480 candidate QTL. Simulating phenotypes by selecting QTL with a low 

MAF was only done using 3 QTL underlying the trait and a heritability of 0.95 using 

100 replicates.  

 

4.2.2.3 Scenarios 

The consistency of multi-locus LD and accuracy of genomic prediction were 

evaluated in five different scenarios (Table 4.2). In the base scenario, within 

population genomic prediction was applied, using HF individuals both in the 

reference population and as selection candidates. The other four scenarios used 

across-population genomic prediction, indicating that the population of the 

selection candidates (GWH or MRY) was not included in the reference population, 

and that all individuals of the predicted population were used for the validation. To 

perform validation in the within-population scenario, 10-fold cross validation was 

used in which the individuals were randomly divided in 10 equally sized groups 

using each group once as selection candidates and the other groups as reference 

population. In each replicate, the division of the individuals over the groups was 

the same.  
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Table 4.2 Overview of the breeds used in the different reference populations and as 
selection candidates. 
 

 
Reference population 

 
Predicted individuals 

Scenario Breed(s) 
Nb of 

individuals  
Breed 

Nb of 
individuals 

Base HF 928-929
 

 HF 103-104
 

1 HF 1033 
 

GWH 105 

2 HF + MRY 1180 
 

GWH 105 

3 HF 1033 
 

MRY 147 

4 HF + GWH 1138 
 

MRY 147 
 

HF = Holstein Friesian; GWH = Groningen White Headed; MRY = Meuse-Rhine-Yssel. 

 

4.2.2.4 Selection index calculations 

The selection index calculations were performed for each scenario by defining a 

selection index to predict QTL genotypes in the reference population (Equation 4.3) 

and to calculate the prediction accuracy of this selection index in the selection 

candidates (Equation 4.4). In the P-, G-, and C-matrices (Equation 4.3 and 4.4), we 

used the correlations between SNPs and QTL that were calculated based on the 

phased alleles of SNPs and QTL of all individuals in either the reference population 

or the group of selection candidates. By using correlations instead of covariances, 

each SNP explains an equal amount of the genetic variance, similar to the 

commonly used assumption in GREML. Moreover, the square of the correlation 

between phased alleles at two loci, r
2
, is commonly used as a measure for LD 

between loci (Hill and Robertson 1968).  

Across the different replicates, the subset of SNPs was constant, as indicated 

previously. This indicates that the P-matrices within both the reference population 

and the selection candidates were constant across the replicates. The set of QTL 

differed for each replicate, so both the G- and C-matrices were specific for each of 

the replicates. Correlations among SNPs and QTL and between SNPs and QTL on 

different chromosomes were taken into account as well to make the analyses 

consistent with the GREML analyses that did not differentiate between the 

chromosomes. To prevent problems due to non-positive definiteness of the final 

matrices, the P- and C-matrices were bended following the unweighted bending 

procedure described by Jorjani et al. (2003) by setting the eigenvalues of the matrix 

lower than 10e
-6

 to 10e
-6

. 

Two different weightings of the QTL in the overall breeding goal, vector v in 

Equation 4.2, 4.3 and 4.4, were used; either QTL were weighted equally (v is a 

vector of ones), or each QTL was weighted based on its simulated allele 
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substitution effect to take into account that it is more important to accurately 

predict the QTL genotype of QTL with large effects than for QTL with small effects. 

Weighting the QTL based on their allele substitution effects was only performed for 

the phenotypes simulated using a heritability of 0.95, both when QTL were 

randomly selected and when QTL were selected with a low MAF.  

In the analyses described above, all SNPs across the whole genome were taken 

into account to explain the QTL genotypes. The SNPs more closely located to a QTL 

are supposed to have a higher and more consistent LD with the QTL across 

populations (e.g., Andreescu et al. 2007; De Roos et al. 2008; Zhou et al. 2013). To 

investigate if the accuracy of predicting QTL genotypes would be increased when 

focusing only on the SNPs surrounding a QTL, the analyses with 3 randomly 

selected QTL underlying the trait were repeated using only the four surrounding 

SNPs (two at either side) of each QTL. When the number of SNPs from one side of 

the QTL was insufficient, i.e., when the QTL was located at the end of a 

chromosome, more SNPs from the other side of the QTL were added to obtain four 

SNPs per QTL. Those analyses were only performed by using an equal weight of the 

QTL in the overall breeding goal.  

 

4.2.2.5 Estimating breeding values using GREML 

To estimate breeding values for the individuals, the GREML model (Equation 

4.5) was run in ASReml (Gilmour et al. 2009), including breed as the only fixed 

effect. The GRM matrix that was used in the model was calculated as 
n

'XX
GRM  

(VanRaden 2008; Yang et al. 2010), in which n represents the number of SNP 

markers (n = 4541) and the X-matrix contains standardized genotypes, calculated as 

)1(2

2

jj

jij
ij

pp

pg
x




 , in which gij codes the genotype for individual i at marker locus j 

as 0, 1 and 2, and pj is the allele frequency at marker locus j for the second allele 

(for which the homozygote genotype is coded 2) averaged over the three breeds. 

After adjusting the inbreeding level in GRM to the inbreeding level in the pedigree 

based relationship matrix A, the GRM matrix was regressed back to the A matrix to 

reduce the effect of sampling the SNPs on the chip. For each of the scenarios, a 

different GRM matrix was calculated, containing only the individuals included in 

that scenario. For a more detailed description of calculating GRM, see Wientjes et 

al. (2015b).  

For each population, the accuracy of genomic prediction was calculated as the 

correlation between the estimated breeding values and the simulated TBVs. 
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Averages and standard errors of the accuracies of genomic prediction were 

calculated across replicates. 

 

4.3 Results 

4.3.1 Regression coefficients  

The regression coefficients on the SNP genotypes to predict the QTL genotypes 

derived in the Holstein Friesian reference population using selection index 

calculations (Equation 4.3; bRP) are presented in Figure 4.1 for one of the replicates 

with 3 randomly selected QTL underlying the trait. This figure clearly shows that 

the SNPs surrounding a QTL were given a higher weight to predict the QTL 

genotypes, due to the greater correlations between those SNPs and the QTL. When 

QTL were weighted based on their different allele substitution effects, mainly the 

SNPs surrounding the QTL with a large effect were given a higher weight. The same 

patterns were also seen when the number of QTL was higher, although the pattern 

was less clear due to the higher number of QTL (see Appendix Figure A4.1, Figure 

A4.2, and Figure A4.3), and when the MAF of QTL was lower (see Appendix Figure 

A4.4).  

 
4.3.2 Accuracy of predicting QTL genotypes using selection index theory  

Accuracies of predicting the QTL genotypes for the selection candidates, using a 

selection index derived in the reference population based on all SNPs, are shown in 

Figure 4.2 when QTL were randomly sampled. Since this prediction accuracy is a 

measure of the consistency of multi-locus LD (MLLD) between the selection 

candidates and the reference population, hereafter this accuracy will be referred to 

as acc_MLLD. In the within-population scenarios, average acc_MLLD was around 

0.94. As expected, average acc_MLLD was much lower for the across population 

scenarios due to differences in LD across populations with an average acc_MLLD of 

~0.37 for GWH and ~0.34 for MRY using HF as reference population. Adding 

another population to the HF reference population did not affect the prediction 

accuracy.  
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Figure 4.1 Absolute estimated regression coefficients (b-values) for each SNP to predict the 
QTL genotypes of 3 randomly selected QTL. Absolute regression coefficients for each of the 
SNPs estimated in a Holstein Friesian reference population (bRP) to predict the QTL 
genotypes of 3 randomly selected QTL with (A) equal weight for each of the QTL, or (B) QTL 
weighted differently, based on their allele substitution effects, in the overall breeding goal. 
The size of the triangle represents the weight of the QTL in the overall breeding goal of the 
selection index calculations, i.e., the allele substitution effect in (B).  
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Figure 4.2 Accuracies of predicing genotypes of randomly sampled QTL using selection index 
theory. Violin plot depicting the accuracies of selection index theory to predict the QTL 
genotypes of randomly sampled QTL using (A) equal weight for each of the QTL, or (B) QTL 
weighted differently, based on their allele substitution effects, in the overall breeding goal 
for five different scenarios. Base = reference population Holstein Friesian (HF), selection 
candidates HF; 1 = reference population HF, selection candidates Groningen White Headed 
(GWH); 2 = reference population HF and Meuse-Rhine-Yssel (MRY), selection candidates 
GWH; 3 = reference population HF, selection candidates MRY; 4 = reference population HF 
and GWH, selection candidates MRY.  
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The average acc_MLLD seems to be independent from the number of QTL 

underlying the trait for the within- as well as for the across-population scenarios, 

both when QTL had an equal weight and when QTL were weighted based on their 

allele substitution effects. Only when 3000 QTL were underlying the trait and QTL 

had an equal weight in the breeding goal, acc_MLLD was slightly lower compared 

to the across-population scenarios with fewer QTL. Standard errors were in general 

very small, but tended to be slightly larger for the scenarios with a lower number of 

QTL. 

Weighting the QTL equally or based on their allele substitution effects resulted 

in similar values for acc_MLLD, both for the within- and across-population 

scenarios. This was also expected beforehand, since the consistency of multi-locus 

LD across populations was supposed to be a characteristic of the investigated 

populations. Giving different weights to the QTL only resulted in giving more 

emphasis on predicting QTL with a large effect, but it had no effect on the LD 

structure of that QTL with the surrounding SNPs. The only exception to this pattern 

was again the across-population scenario with 3000 QTL underlying the trait, where 

acc_MLLD was higher when QTL were weighted differently compared to weighting 

the QTL equally. 

By focusing only on the four SNPs surrounding a QTL, the accuracy of predicting 

the QTL genotypes of the selection candidates decreased by 19% for the within-

population scenario (Table 4.3). For the across-population scenarios, however, the 

prediction accuracy increased by approximately 53% (Table 4.3). As a consequence, 

the difference in prediction accuracy of the QTL genotypes between the within- 

and across-population scenarios was substantially reduced compared to the 

analyses using all SNPs.  

In Figure 4.3, the values for acc_MLLD are shown when 3 QTL were underlying 

the trait and when QTL were sampled with a low MAF. The results show that 

acc_MLLD was lower for all scenarios when the MAF of the QTL was lower, 

confirming the expectation that the strength of LD is reduced when the MAF of the 

QTL is lower. The decrease in acc_MLLD was, however, much lower for the within-

population scenario where acc_MLLD was around 95% of the acc_MLLD with QTL 

randomly sampled, than for the across-population scenarios where acc_MLLD was 

around 60 – 70% of the acc_MLLD with QTL randomly sampled. 
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Table 4.3 Average prediction accuracies of QTL genotypes using all SNPs or only the 
neighboring SNPs of the QTL. The results are for different within- and across-population 
scenarios with 3 QTL underlying the trait and with an equal weight of the QTL in the overall 
breeding goal. 
 

 
Reference 
population 

Selection 
candidates 

Average prediction accuracy (s.e.) 

Scenario All SNPs 
Four surrounding 

SNPs 

Base HF
 

HF 0.942 (0.003) 0.766 (0.011) 

1 HF GWH 0.378 (0.018) 0.569 (0.020) 

2 HF + MRY
 

GWH 0.377 (0.017) 0.579 (0.020) 

3 HF MRY 0.362 (0.018) 0.562 (0.020) 

4 HF + GWH
 

MRY 0.373 (0.018) 0.567 (0.021) 
 

HF = Holstein Friesian; GWH = Groningen White Headed; MRY = Meuse-Rhine-Yssel. 

 

 

 

 

 
 

Figure 4.3 Accuracies of predicing genotypes of QTL with low MAF using selection index 
theory. Violin plot depicting the accuracies of selection index theory to predict the QTL 
genotypes of three QTL with low MAF using an equal weight for each of the QTL, or different 
weights for each QTL, based on their allele substitution effects, in the overall breeding goal 
for five different scenarios. Base = reference population Holstein Friesian (HF), selection 
candidates HF; 1 = reference population HF, selection candidates Groningen White Headed 
(GWH); 2 = reference population HF and Meuse-Rhine-Yssel (MRY), selection candidates 
GWH; 3 = reference population HF, selection candidates MRY; 4 = reference population HF 
and GWH, selection candidates MRY. 
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4.3.3 Accuracy of genomic prediction 

Accuracies of predicting genomic estimated breeding values, hereafter denoted 

as acc_GEBV, achieved with a GBLUP type of model are shown in Figure 4.4, for a 

heritability of 0.95 (A) and a heritability of 0.3 (B). At a heritability of 0.95, the 

average acc_GEBV for the within-population scenario was around 0.95, and was 

much lower and in the range of 0.3 – 0.4 across populations. At a heritability of 0.3, 

average acc_GEBV was lower for all scenarios, with values around 0.75 for the 

within-population scenario and values around 0.2 for the across-population 

scenarios. For all scenarios, acc_GEBV was independent from the number of QTL 

underlying the trait and standard errors were reasonably small, although slightly 

larger for the across-population scenarios compared to the within-population 

scenarios.  

The acc_GEBV for GWH individuals were somewhat higher (~0.04 at a 

heritability of 0.95; and ~0.005 at a heritability of 0.3) than predicting MRY 

individuals using a HF reference population. When the reference population was 

extended with the other population, acc_GEBV increased slightly, although not 

significantly, for both populations (~0.015). 

Table 4.4 shows the average acc_GEBV when 3 QTL were underlying the trait 

with QTL randomly selected and QTL selected to have a low MAF for a heritability 

of 0.95. Those results show that average acc_GEBV was in all scenarios lower when 

QTL had a low MAF compared to randomly selected QTL. The accuracies achieved 

for QTL with a low MAF were 98% and 65% of the accuracies for randomly selected 

QTL for respectively the within- and across-population scenarios, indicating that the 

decrease in accuracy was smaller for the within-population scenario compared to 

the across-population scenarios. 

 

Table 4.4 Average accuracies (s.e.) of genomic prediction using QTL randomly sampled or 
QTL with low minor allele frequency (MAF). The results are for different within- and across-
population scenarios with 3 QTL underlying the trait and a heritability of 0.95. 
 

 
Reference 
population 

Selection 
candidates 

Average prediction accuracy (s.e.) 

Scenario 
QTL randomly 

sampled 
QTL with low MAF 

Base HF
 

HF 0.949 (0.001) 0.932 (0.002) 

1 HF GWH 0.341 (0.021) 0.233 (0.022) 

2 HF + MRY
 

GWH 0.361 (0.022) 0.246 (0.022) 

3 HF MRY 0.304 (0.020) 0.186 (0.018) 

4 HF + GWH
 

MRY 0.310 (0.021) 0.189 (0.019) 
 

HF = Holstein Friesian; GWH = Groningen White Headed; MRY = Meuse-Rhine-Yssel. 



4. Consistency of multi-locus LD 

 

 

103 

 

 4  

 
 

Figure 4.4 Accuracies of predicting genomic breeding values using GREML for different 
scenarios using multiple populations. Violin plot depicting the accuracies of genomic 
prediction using GREML and a (A) heritability of 0.95, or (B) heritability of 0.3 for five 
different scenarios. Base = reference population Holstein Friesian (HF), selection candidates 
HF; 1 = reference population HF, selection candidates Groningen White Headed (GWH); 2 = 
reference population HF and Meuse-Rhine-Yssel (MRY), selection candidates GWH; 3 = 
reference population HF, selection candidates MRY; 4 = reference population HF and GWH, 
selection candidates MRY.   
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4.3.4 Accuracy of predicting genomic breeding values (acc_GEBV) versus 

accuracy of predicting QTL genotypes (acc_MLLD) 

To investigate the relationship between acc_MLLD and acc_GEBV across 

different across-population genomic prediction scenarios, the average acc_GEBV 

are plotted against the average acc_MLLD in Figure 4.5 for the four across-

population scenarios with 3 QTL underlying the trait. As expected, the average 

acc_MLLD was for most scenarios equal or higher than the average acc_GEBV. 

When the heritability was 0.95 and QTL were randomly sampled, the average 

acc_MLLD was ~0.03 higher than acc_GEBV in the across-population scenarios, and 

the average acc_MLLD and acc_GEBV were similar in the within-population 

scenarios. The differences were larger when the heritability was 0.3 (~0.17 in the 

across-population scenarios, and ~0.20 in the within-population scenarios). When 

QTL were sampled with a low MAF, the differences were comparable to the 

differences with QTL randomly sampled at a heritability of 0.95 for the across-

population scenarios. In the within-population scenarios, however, the average 

acc_GEBV was ~0.04 higher than acc_MLLD. 

The correlation between acc_GEBV and acc_MLLD was expected to be high and 

positive, since a high consistency of multi-locus LD across reference individuals and 

selection candidates is supposed to be very important in getting a high accuracy of 

genomic prediction. Across the four different across-population scenarios and at 

the same number of randomly sampled QTL underlying the trait and a heritability 

of 0.95, the average correlation between acc_GEBV and acc_MLLD was 0.91 (range 

0.76 to 1.00) when each QTL had an equal weight in the breeding goal, and on 

average 0.94 (range 0.86 to 1.00) when each QTL had a different weight, based on 

their different allele substitution effects. When the heritability was only 0.3, the 

average correlation was lower (0.79). At a heritability of 0.95 and 3 QTL sampled 

with a low MAF, the correlations were 0.33 and 0.95 when QTL were respectively 

equally weighted or weighted based on their different allele substitution effects. 

Altogether, those results show that the measure for consistency of multi-locus LD, 

acc_MLLD, as calculated in this study using selection index theory, is highly related 

to the accuracy of genomic prediction obtained with GBLUP.  
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Figure 4.5 Average accuracies of genomic prediction (Acc_GEBV) versus average accuracies 
of predicting QTL genotypes (Acc_MLLD) with 3 QTL. Average accuracies of genomic 
prediction (Acc_GEBV) versus average accuracies of selection index theory to predict the QTL 
genotypes (Acc_MLLD) with (A) equal weight for each of the QTL, or (B) QTL weighted based 
on their allele substitution effects in the overall breeding goal and with 3 QTL underlying the 
trait randomly sampled using a heritability of 0.95 (black) or 0.3 (dark grey), or QTL selected 
with a low MAF and a heritability of 0.95 (light grey) for four different scenarios; HF = 
Holstein Friesian; MRY = Meuse-Rhine-Yssel; GWH = Groningen White Headed.  
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4.4 Discussion 

4.4.1 Using selection index theory to investigate the consistency of multi-

locus LD 

The first objective of this study was to investigate the consistency of multi-locus 

LD across different populations using selection index theory. Our results indicate 

that the strength of LD reduces when the MAF of the QTL reduces and that LD 

between QTL and SNPs is at least partly different across populations, especially for 

loci with a low MAF, resulting in a lower accuracy of predicting the QTL genotypes 

of selection candidates from another population. When focusing in genomic 

prediction models only on the SNPs closely located to a QTL, the accuracy of 

predicting the QTL genotypes of individuals from another population increased, 

indicating that consistency of LD across populations is higher at shorter distances 

on the genome. Those findings are in agreement with other studies investigating 

the consistency of linkage phase between pairs of markers across populations 

(Gautier et al. 2007; De Roos et al. 2008), but provide a more complete picture as it 

considers multi-locus LD. Moreover, the measure for the consistency of multi-locus 

LD seems to be independent from the number of QTL underlying the trait and the 

weighting of the QTL in the overall breeding goal of the selection index calculations, 

but it is depending on the properties of the QTL like allele frequency pattern. 

Therefore, the consistency of multi-locus LD, as calculated with selection index 

theory using all SNPs, can be seen as a characteristic of the properties of the QTL 

for the investigated populations. 

 

4.4.2 Consistency of multi-locus LD and accuracy of genomic prediction 

The second objective of this paper was to investigate the relationship between 

consistency of multi-locus LD and accuracy of genomic prediction across different 

within- and across-population genomic prediction scenarios. As expected, the 

correlation between average consistency of multi-locus LD and average accuracy of 

genomic prediction across the different across-population scenarios was positive 

and strong, both at a heritability of 0.95 and 0.3, and when QTL were randomly 

selected or selected to have a low MAF. The correlations were slightly stronger 

when QTL were weighted based on their allele substitution effects in the overall 

breeding goal, since it is more important that the linkage phases between SNPs and 

QTL with a high effect are consistent across reference and selection individuals 

compared to QTL with a small effect.  

At a heritability of 0.95 and with QTL randomly selected, the correlations 

between consistency of multi-locus LD and accuracy of genomic prediction were 



4. Consistency of multi-locus LD 

 

 

107 

 

 4  

around 0.9. This indicates that around 81% of the variance in accuracy of genomic 

prediction could be explained by differences in consistency of multi-locus LD. The 

remaining part of the variance might be explained by the accuracy of estimating 

SNP effects, which influenced the accuracy of genomic prediction, but not the 

consistency of multi-locus LD. The accuracy of estimating SNP effects in the 

reference population depends on the allele frequency of the QTL, the number of 

QTL underlying the trait, the heritability of the trait and the size of the reference 

population (Meuwissen et al. 2001; Daetwyler et al. 2008; Goddard 2009). In 

general, estimated SNP effects are less accurate for traits with a low heritability 

and for SNPs linked to QTL with a low frequency. This is confirmed by the lower 

correlations between consistency of multi-locus LD and accuracy of genomic 

prediction found in this study when the heritability was only 0.3 and when QTL 

were selected to have a low MAF. The difference in accuracy obtained when QTL 

were randomly selected compared to selecting QTL with a low MAF was higher for 

the across-population scenarios compared to the within-population scenarios. This 

can be explained by the fact that QTL with a low MAF in the reference population 

explain only a small part of the genetic variance within the selection candidates 

when they are from the same population (Daetwyler et al. 2008). Due to 

differences in allele frequencies across populations, the penalty of incorrectly 

estimating the effects of SNPs linked to QTL with a low MAF might be much higher 

when selection candidates are from a different population (Daetwyler et al. 2008). 

Combining two or more populations in the reference population might increase the 

probability that the QTL explaining a large part of the genetic variance in the 

selection candidates are segregating at reasonable allele frequencies in the 

reference population. This could explain the slight increase in accuracy of across-

population genomic prediction when another population was added to the 

reference population, as seen in this study as well as in other studies (Hayes et al. 

2009; Pryce et al. 2011; Wientjes et al. 2015b). Another explanation for the slight 

increase in accuracy when combining multiple populations in the reference 

population could be the assigning of the effect of QTL to SNPs that are more closely 

located to the QTL (Hayes et al. 2009), for which the consistency of LD across 

populations is higher (Andreescu et al. 2007; De Roos et al. 2008; Zhou et al. 2013). 

This latter explanation is, however, not confirmed by the values for the consistency 

of multi-locus LD calculated in this study. 

Both the accuracy of predicting the QTL genotype and accuracy of genomic 

prediction were very high in the single population scenario. Those high values 

might indicate a strong level of LD within the population, but might also be caused 

by a high level of family relationships within the population, since family 
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relationships and level of LD are entangled (Falconer and Mackay 1996). Both 

population level LD and LD due to family relationships are helpful in predicting the 

QTL genotype, resulting in higher accuracies of genomic prediction when the level 

of family relationships between reference and selection candidates is higher, as 

was already shown in other studies (Habier et al. 2007; Wientjes et al. 2013). 

Across populations, close family relationships are in general absent, so across-

population genomic prediction is only depending on the level of LD across the 

populations, resulting in lower accuracies of genomic prediction. Both the accuracy 

of predicting the QTL genotype and accuracy of genomic prediction decreased 

when the MAF of QTL was lower, with a much smaller decrease in the within-

population scenario compared to the across-population scenarios. This might be a 

result of the possibility to tag QTL with low MAF by the SNPs within a population 

due to the high level of family relationships. Across populations, it is much more 

difficult to tag those QTL by the SNPs, since only the level of LD across the 

populations can be used. This indicates that the effect of the MAF of QTL might be 

much larger for across-population genomic prediction compared to within-

population genomic prediction. 

By focusing only on the four neighboring SNPs of a QTL, the accuracy of 

predicting the QTL genotype of the selection candidates substantially decreased 

within a population, but substantially increased in the across-population scenarios. 

This indicates that SNPs further away from the QTL on the genome can be helpful 

in predicting the QTL genotype within a population, but can be detrimental for 

across-population settings, due to the lower consistency of LD across populations 

(Andreescu et al. 2007; De Roos et al. 2008; Zhou et al. 2013). The potential of 

combining populations using the current methods of genomic prediction based on 

all SNPs would therefore be overestimated by only considering the consistency of 

LD across populations at short distances on the genome. On the other hand, the 

results do show that the accuracy of across- and multi-population genomic 

prediction could potentially be increased by focusing only on the neighboring SNPs 

of a QTL, for which the consistency of LD is higher across populations. 

Within this study, different numbers of QTL were selected and allele 

substitution effects were drawn from a normal distribution. The actual distribution 

of allele substitution effects may perhaps be closer to a gamma distribution (Hayes 

and Goddard 2001), showing few QTL with large effects and many QTL with small 

effects. In such case, the achieved accuracy mainly depends on the ability to tag 

those few QTL (Calus et al. 2008), so effectively is rather similar to our simulations 

with only 3 QTL underlying the trait. Since the number of QTL underlying the trait 

had no effect on the consistency of multi-locus LD and the accuracy of genomic 
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prediction in the GBLUP model, we expect that the results of our study are also 

valid when QTL effects follow a gamma distribution. 

Altogether, the results of this study show that consistency of multi-locus LD can 

be used to get more insight in possible underlying reasons and potential ways to 

increase the low empirical accuracies of across-population genomic prediction 

described in literature (e.g., Pryce et al. 2011; Erbe et al. 2012; Calus et al. 2014), as 

follows. When a low accuracy of across-population genomic prediction is 

accompanied by a low consistency of multi-locus LD, a higher marker density might 

be used to increase the accuracy of genomic prediction. When a low accuracy is not 

accompanied by a low consistency of multi-locus LD, it indicates that the accuracy 

of estimating SNP effects is low. This might be caused by differences in allele 

substitution effects across populations, due to the presence of non-additive effects 

and differences in allele frequencies across populations (Falconer and Mackay 

1996). In genetic analyses, those differences can be taken into account by 

estimating the genetic correlation across the populations (Karoui et al. 2012; 

Wientjes et al. 2015b). Another reason for the low accuracy of estimating SNP 

effects might be that the allele frequency of the QTL explaining a large part of the 

genetic variance in the selection candidates is too low in the reference population, 

the effect of this might be reduced by including another population to the 

reference population.  

 

4.4.3 Potential applications 

Our results showed that consistency of multi-locus LD across populations was 

not influenced by the number of QTL nor by the weighting of QTL in the overall 

breeding goal. This indicates that the consistency of multi-locus LD is not trait-

dependent and that, even when the actual QTL are unknown, reliable estimates of 

the consistency of multi-locus LD can be obtained by sampling loci from the SNPs. 

The characteristics of the QTL, such as allele frequency, however, influenced the 

consistency of multi-locus LD and accuracy of genomic prediction. The effect of 

MAF of QTL on accuracy was already shown in other studies (Daetwyler et al. 2013; 

Wientjes et al. 2015a), but the results of this study confirm the hypothesis that this 

effect was due to a reduction in the strength of LD between SNPs and QTL. 

Therefore, it is highly recommended, assuming that the knowledge about the 

distribution of allele frequencies of QTL increases in the next decade, to select loci 

that have comparable allele frequencies as the actual QTL underlying the trait of 

interest in future applications. Since the main conclusions of this study remain valid 

when the characteristics of the QTL are taken into account, we expect that those 
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conclusions are also valid for traits with other characteristics, for other breeds and 

even for other species. 

The computational demands for the selection index calculations would be high 

when including all SNPs on the genome. For practical applications, it might 

therefore be beneficial to only include a subset of the chromosomes in the analyses 

which have a representative LD pattern for the whole genome. Computational 

demands can also be reduced by decreasing the number of QTL, which also reduces 

the number of potential singularities in the correlation matrices between QTL, 

since the number of QTL did not have a large impact on the accuracy of predicting 

the QTL genotype. The number of QTL did, however, influence the variance across 

the replicates. Therefore, multiple replicates would be necessary when a rather 

small number of QTL is selected.  

 

4.5 Conclusions 
In this paper, selection index theory was used to obtain a measure for the 

consistency of multi-locus LD across the reference and selection populations. As 

expected, the consistency of multi-locus LD across populations, when reference 

and selection candidates were from different populations, was much lower 

compared to the consistency of multi-locus LD within a population, when reference 

and selection individuals belonged to the same population. Moreover, the 

consistency of multi-locus LD was much lower for QTL with a low MAF compared to 

randomly selected QTL. The average consistency of multi-locus LD is shown to be 

independent from the number of QTL and the weighting of the QTL in the overall 

breeding goal of the selection index. Therefore, consistency of multi-locus LD can 

be seen as a characteristic of the properties of the QTL for the investigated 

populations. Across different across-population scenarios, consistency of multi-

locus LD was highly correlated with the achieved accuracy of genomic prediction 

using a GBLUP type of model, confirming that consistency of LD is an import factor 

determining the accuracy of across-population genomic prediction. Therefore, the 

consistency of multi-locus LD can provide more insight in underlying reasons for a 

low empirical accuracy of across-population genomic prediction. By focusing only 

on the SNPs closely located to a QTL, the accuracy of predicting the QTL genotypes 

of individuals from another population increased. This shows that accuracy of 

across- and multi-population genomic prediction could be increased by focusing 

only on the neighboring SNPs of a QTL, for which the consistency of LD is higher 

across populations. 
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4.7 Appendix 

 
 

Figure A4.1 Absolute estimated regression coefficients (b-values) for each SNP to predict the 
QTL genotypes of 30 randomly selected QTL. Absolute regression coefficients for each of the 
SNPs estimated in a Holstein Friesian reference population (bRP) to predict the QTL 
genotypes of 30 randomly selected QTL with (A) equal weight for each of the QTL, or (B) QTL 
weighted differently, based on their allele substitution effects, in the overall breeding goal. 
The size of the triangle represents the weight of the QTL in the overall breeding goal of the 
selection index calculations, i.e., the allele substitution effect in (B).  
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Figure A4.2 Absolute estimated regression coefficients (b-values) for each SNP to predict the 
QTL genotypes of 300 randomly selected QTL. Absolute regression coefficients for each of 
the SNPs estimated in a Holstein Friesian reference population (bRP) to predict the QTL 
genotypes of 300 randomly selected QTL with (A) equal weight for each of the QTL, or (B) 
QTL weighted differently, based on their allele substitution effects, in the overall breeding 
goal. The size of the triangle represents the weight of the QTL in the overall breeding goal of 
the selection index calculations, i.e., the allele substitution effect in (B).  
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Figure A4.3 Absolute estimated regression coefficients (b-values) for each SNP to predict the 
QTL genotypes of 3000 randomly selected QTL.Absolute regression coefficients for each of 
the SNPs estimated in a Holstein Friesian reference population (bRP) to predict the QTL 
genotypes of 3000 randomly selected QTL with (A) equal weight for each of the QTL, or (B) 
QTL weighted differently, based on their allele substitution effects, in the overall breeding 
goal. The size of the triangle represents the weight of the QTL in the overall breeding goal of 
the selection index calculations, i.e., the allele substitution effect in (B).  
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Figure A4.4 Absolute estimated regression coefficients (b-values) for each SNP to predict the 
QTL genotypes of 3 QTL with a low MAF. Absolute regression coefficients for each of the 
SNPs estimated in a Holstein Friesian reference population (bRP) to predict the QTL 
genotypes of 3 QTL with a low MAF with (A) equal weight for each of the QTL, or (B) QTL 
weighted differently, based on their allele substitution effects, in the overall breeding goal. 
The size of the triangle represents the weight of the QTL in the overall breeding goal of the 
selection index calculations, i.e., the allele substitution effect in (B).  
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Abstract 
Background: Although simulation studies show that combining multiple breeds 

in one reference population increases accuracy of genomic prediction, this is not 

always confirmed in empirical studies. This discrepancy might be due to the 

assumptions on quantitative trait loci (QTL) properties applied in simulation 

studies, including number of QTL, spectrum of QTL allele frequencies across breeds, 

and distribution of allele substitution effects. We investigated the effects of QTL 

properties and of including a random across- and within-breed animal effect in a 

genomic best linear unbiased prediction (GBLUP) model on accuracy of multi-breed 

genomic prediction using genotypes of Holstein Friesian and Jersey cows. 

Methods: Genotypes of three classes of variants obtained from whole-genome 

sequence data, with moderately low, very low or extremely low average minor 

allele frequencies (MAF), were imputed in 3000 Holstein Friesian and 3000 Jersey 

cows that had real high-density genotypes. Phenotypes of traits controlled by QTL 

with different properties were simulated by sampling 100 or 1000 QTL from one 

class of variants and their allele substitution effects either randomly from a gamma 

distribution, or computed such that each QTL explained the same variance, i.e., 

rare alleles had a large effect. Genomic breeding values for 1000 selection 

candidates per breed were estimated using GBLUP models including a random 

across- and a within-breed animal effect. 

Results: For all three classes of QTL allele frequency spectra, accuracies of 

genomic prediction were not affected by the addition of 2000 individuals of the 

other breed to a reference population of the same breed as the selection 

candidates. Accuracies of both single- and multi-breed genomic prediction 

decreased as MAF of QTL decreased, especially when rare alleles had a large effect. 

Accuracies of genomic prediction were similar for the models with and without a 

random within-breed animal effect, probably because of insufficient power to 

separate across- and within-breed animal effects. 

Conclusions: Accuracy of both single- and multi-breed genomic prediction 

depends on the properties of the QTL that underlie the trait. As QTL MAF 

decreased, accuracy decreased, especially when rare alleles had a large effect. This 

demonstrates that QTL properties are key parameters that determine the accuracy of 

genomic prediction. 

 

Key words: accuracy, multi-breed genomic prediction, allele frequency, QTL 

property, allele substitution effect 
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5.1 Background 
In livestock breeding programs, genomic information is widely used to estimate 

genomic breeding values for selection candidates. Genomic estimated breeding 

values (GEBV) are calculated from marker effects estimated in a reference 

population that consists of animals with phenotypes and marker genotypes. 

Accuracy of GEBV for selection candidates, that typically have no phenotypes of 

their own, depends on the size of the reference population i.e., the larger the size of 

the reference population, the more accurately breeding values can be predicted (e.g., 

Meuwissen et al. 2001; Daetwyler et al. 2008; VanRaden et al. 2009). For numerically 

small breeds, assembling such a large reference population is challenging, therefore, 

an attractive approach would be to combine purebred reference populations from 

different breeds or lines to establish large reference populations (De Roos et al. 2009; 

Zhong et al. 2009; Erbe et al. 2012; Simeone et al. 2012). However, the benefit of 

adding another breed or line to the reference population may be reduced by the 

inconsistency in allele substitution effects across breeds (Spelman et al. 2002; Thaller 

et al. 2003; Wientjes et al. 2015), by between-breed differences in linkage 

disequilibrium (LD) between single-nucleotide polymorphisms (SNPs) and 

quantitative trait loci (QTL) that influence a trait across breeds or lines (e.g., De 

Roos et al. 2008; Zhong et al. 2009; Pryce et al. 2011), as well as by the absence of 

close family relationships between breeds or lines (Wientjes et al. 2013). In addition, 

the accuracy of prediction using both single-breed and multi-breed reference 

populations may be affected by the properties of the QTL that control a trait, i.e., 

number of QTL for the trait, joint distribution of QTL allele frequencies across breeds, 

and distribution of QTL effects. 

In Bos taurus cattle populations, LD phase is conserved across breeds among 

SNP alleles at short distances (5 to 30 kb) (De Roos et al. 2008). Therefore, a high 

marker density might overcome the problem of differences in LD between SNPs 

and QTL across breeds or lines (De Roos et al. 2008). Indeed, simulation studies 

using high-density markers showed that prediction accuracy increased when 

reference populations were combined across breeds compared to single-breed 

reference populations (De Roos et al. 2009; Ibánẽz-Escriche et al. 2009). However, 

in empirical studies, the increase in prediction accuracy was smaller and sometimes 

absent (Hayes et al. 2009; Pryce et al. 2011; Calus et al. 2014), even when more 

than 600,000 SNPs were used (Harris et al. 2011; Erbe et al. 2012; Bolormaa et al. 

2013). Part of this difference between accuracies obtained from simulation and 

empirical studies could be explained by the assumptions made in simulation studies 

on the properties of the QTL that underlie a trait, which may not completely reflect 
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the reality. One of these QTL properties that could affect prediction accuracy is the 

pattern of QTL allele frequencies. For most complex traits, the QTL that underlie a 

trait have a low minor allele frequency (MAF) (Goddard and Hayes 2009; Yang et al. 

2010; Kemper and Goddard 2012). Due to ascertainment bias of SNP chips 

(Matukumalli et al. 2009), SNPs tend to have higher MAF than QTL, which reduces 

the LD between QTL and SNPs and therefore the accuracy of genomic prediction, 

particularly across breeds and lines. Besides differences in allele frequencies 

between SNPs and QTL, differences in allele frequencies of QTL across breeds may 

also influence prediction accuracy. In extreme cases, QTL may even only segregate 

in one of the breeds. When the SNPs that flank a breed-specific QTL are segregating 

across breeds, the apparent effect of SNPs may vary across breeds. The above 

examples show that the properties of QTL that underlie a trait are likely to affect 

the accuracy of multi-breed or line genomic prediction. 

In spite of potential differences in QTL properties across breeds, most studies 

on multi-breed genomic prediction estimate only one effect for each SNP across all 

breeds, (e.g., Hayes et al. 2009; Brøndum et al. 2011; Erbe et al. 2012). Olson et al. 

(2012) and Makgahlela et al. (2013) accounted for differences in SNP effects across 

breeds by fitting a multi-trait model in which the same trait in different breeds was 

treated as a different trait and both studies showed a minor increase in prediction 

accuracy using ~40,000 SNPs. Another way to account for breed-specific SNP 

effects and at the same time benefit from increasing the size of the reference 

population by adding another breed could be to estimate an across-breed SNP 

effect and a within-breed SNP effect. Khansefid et al. (2014) showed that this can 

be done by including a random across-breed animal effect and a within-breed 

animal effect in a genomic best linear unbiased prediction (GBLUP) model. 

The first objective of this study was to investigate the effect of the properties of 

the QTL that underlie the trait on the accuracy of multi-breed genomic prediction. 

The second objective was to investigate the effect of a GBLUP model with a 

random across-breed animal and a within-breed animal effect on the accuracy of 

multi-breed genomic prediction. In this study, real genotypes of Holstein Friesian 

and Jersey dairy cows were used. Phenotypes were simulated using different 

properties of QTL by sampling 100 or 1000 QTL from three different classes of 

markers with average MAF that ranged from moderately low (representing allele 

frequencies expected under a neutral model) to extremely low values, and by 

simulating allele substitution effects using two different models. 
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5.2 Methods 
For this study, two different datasets were used. For the first dataset, including 

genotypes of Australian cows, samples were collected for DNA extraction as 

approved by the Department of Primary Industries Victoria Animals Ethics 

Committee (protocol: 2010-19). For the second dataset, sequence information 

from the 1000 bull genomes project was used, for which DNA for most animals was 

extracted from semen. Only for Angus animals, samples were collected for DNA 

extraction as approved by the New South Wales Department of Primary Industries 

Animals Ethics Committee. 

 

5.2.1 Genotypes 

Genotypes were available for 3000 Holstein Friesian cows and 3000 Jersey cows 

from Australia. Individuals were genotyped with the Illumina BovineHD Beadchip 

(777k, Illumina, San Diego, CA) or the Illumina BovineSNP50 Beadchip (50k, 

Illumina, San Diego, CA). Animals genotyped at the lower density (50k) were 

imputed to high-density (777k) using the software package Beagle 3.0 (Browning 

and Browning 2009) and a reference population of 1072 animals (Holstein Friesian 

and Jersey) that were genotyped with the 777k chip. Quality was checked using a 

larger dataset that included those 6000 individuals. SNPs of low quality based on 

the same criteria as described in Erbe et al. (2012) were removed, leaving 606,384 

SNPs for the analyses. 

In order to obtain plausible QTL allele frequencies that ranged from frequencies 

of loci that are effectively neutral to frequencies of loci that are expected to have 

large pleiotropic effects on fitness, sequence data of variants in annotated classes 

from the 1000 bull genomes project (Daetwyler et al. 2014) were used. This 

included sequence information of 129 Holstein Friesian, 15 Jersey, 47 Angus and 43 

Simmental animals. Variants in this dataset were annotated as either synonymous 

mutations (80,515 mutations), missense mutations (97,296 mutations), and 

premature stop codon mutations (4064 mutations), with about the same number 

of variants in each class as presented in Daetwyler et al. (2014). More information 

about the samples, alignment, variant calling and filtering, and annotation of the 

sequenced animal genomes is in Daetwyler et al. (2014). 
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Table 5.1 Characteristics of different classes of variants used to simulate QTL. 
 

Characteristic per class 
Holstein 
Friesian

 Jersey
 

Total 

Moderately low average MAF
a
    

Segregating variants 63,119 55,363 65,920 

Number of breed-specific variants 10,557 2801 13,358 

Percentage of breed-specific variants 16.0 4.2 20.3 

Average MAF of the 65,920 segregating     
     variants (± standard deviation) 

0.130 ± 0.169 0.115 ± 0.168 0.122 ± 0.146 

    

Very low average MAF
b
    

Segregating variants 61,302 49,473 67,097 

Number of breed-specific variants 17,624 5795 23,419 

Percentage of breed-specific variants 26.3 8.6 34.9 

Average MAF of the 67,097 segregating  
     variants (± standard deviation) 

0.082 ± 0.146 0.072 ± 0.142 0.077 ± 0.127 

    

Extremely low average MAF
c
    

Segregating variants 1804 1245 2142 

Number of breed-specific variants 897 338 1235 

Percentage of breed-specific variants 41.9 15.8 57.7 

Average MAF of the 2142 segregating  
     variants (± standard deviation) 

0.017 ± 0.067 0.015 ± 0.066 0.016 ± 0.059 
 

a
annotated as synonymous mutations;  

b
annotated as missense mutations; 

 
c
annotated as premature stop codon mutations; 

MAF = minor allele frequency. 
 
 

Our aim was to simulate different groups of QTL that had decreasing MAF and 

that were increasingly more difficult to tag with SNPs on the SNP chip and were 

equally distributed across the whole genome. Therefore, the three classes of 

annotated variants that varied in average MAF (Table 5.1) and MAF pattern (see 

Appendix Figure A5.1 and Figure A5.2), were used to represent different patterns 

of QTL MAF; the synonymous mutations represented QTL with on average a 

moderately low MAF (average MAF of 0.122), the missense mutations represented 

QTL with on average a very low MAF (average MAF of 0.077), and the premature 

stop codon mutations represented QTL with on average an extremely low MAF 

(average MAF of 0.016). It should be noted that these classes of variants were only 
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used to represent differences in patterns of QTL MAF and not differences in 

biological functions of the QTL. 

Genotypes for the three classes of variants were imputed in 3000 Holstein 

Friesian and 3000 Jersey animals with real high-density SNP genotypes (Browning 

and Browning 2009). Imputation was done using all sequenced animals from the 

reference population, which included the Angus and Simmental animals, since it 

has been shown that using animals from other breeds improves imputation 

accuracy (Brøndum et al. 2012; Daetwyler et al. 2014). Allele frequency patterns of 

the imputed variants were similar to the allele frequency patterns in sequenced 

animals (see Appendix Figure A5.1 and Figure A5.2). Other characteristics of the 

three classes of imputed variants are shown in Table 5.1. For imputed and real 

sequence data, the number of segregating variants was much smaller for the Jersey 

population than for the Holstein Friesian population. This is probably due to the 

small number of Jersey sequenced genomes in the dataset, since more 

polymorphic SNPs are detected when the group of genotyped individuals is larger 

(Li and Leal 2009; The International HapMap 3 Consortium 2010; Jansen et al. 

2013). Reliabilities (i.e., R
2
 values) of imputation were low (average reliabilities 

estimated by Beagle were equal to 0.67 for variants with on average a moderately 

low MAF, 0.51 for variants with on average a very low MAF, and 0.32 for variants 

with on average an extremely low MAF), which probably results from the relatively 

small number of animals with sequence data in combination with the low MAF of 

the variants. This decrease in reliabilities of imputation as average MAF of variants 

decreases confirms the assumption that LD between variants with a low MAF and 

neighboring SNPs on the commercial SNP chip decreases, i.e., that tagging the 

variants with SNPs on the chip was increasingly more difficult. 

 

5.2.2 Simulation of phenotypes 
Traits that were controlled by QTL with different properties were simulated by 

varying: 1) the average MAF of the QTL that underlie the trait, by sampling QTL 

from one of the three classes described above, 2) the number of QTL that underlie 

the trait, and 3) the distribution of allele substitution effects. In each simulation, 

100 or 1000 QTL were sampled assuming that they followed one of the three QTL 

MAF patterns i.e., moderately low average MAF, very low average MAF, or 

extremely low average MAF. All variants that segregated in the entire dataset, 

consisting of 3000 Holstein Friesian and 3000 Jersey individuals, were considered as 

potential QTL, which resulted in 65,920 potential QTL with a moderately low 

average MAF, 67,097 with a very low average MAF, and 2142 with an extremely 
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low average MAF. It should be noted that the percentage of breed-specific variants 

increased as the MAF of the variants decreased (Table 5.1). 

Allele substitution effects were sampled using two different models: 1) a 

pseudo-infinitesimal model, where small allele substitution effects were randomly 

assigned to QTL independently of allele frequency (RANDOM model), and 2) a ‘rare 

allele, large effect’ model, where larger allele substitution effects were assigned to 

QTL with a lower MAF such that each QTL explained an equal amount of the total 

genetic variance (VAR model). Under the RANDOM model, allele substitution effects 

were randomly sampled from a gamma distribution with a shape parameter of 0.4 

and a scale parameter of 1.66, following Meuwissen et al. (2001). Under the VAR 

model, the variance explained by each QTL was kept constant across all QTL by 

computing allele substitution effects as 
)1(2

)(

pp

QTLVar
a


 , where a  is the allele 

substitution effect assuming a purely additive model, )(QTLVar  is the variance of the 

QTL which is constant across the QTL and was set to 1, and p is the allele frequency 

of the QTL across all 6000 individuals (3000 Holstein Friesian and 3000 Jersey cows). 

Under the two models, both alleles at a given QTL had an equal chance to have a 

positive or a negative effect on the simulated trait and the effect was the same in 

both breeds. The simulated allele substitution effects were multiplied by the 

genotype codes (0, 1, or 2) to calculate a true breeding value (TBV) for each 

individual. Over all individuals and across the breeds, TBV were rescaled to a mean of 

0 and a variance of 1. 

Allele frequencies for the loci selected as QTL differed between the two breeds 

(see Appendix Figure A5.3). These differences in allele frequencies resulted in 

differences in average TBV between breeds. To calculate the genetic variance as 

the variance across TBV, breed effects were first subtracted from all TBV to avoid 

breed effects influencing the simulated heritability. Thereafter, the environmental 

effect per individual was sampled from a normal distribution with a mean of 0 and 

variance 







1

1
2h

*(variance of TBV corrected for breed effect). For each 

individual, the phenotype was calculated as the sum of its TBV, including its breed 

effect and the randomly sampled environmental effect. 

In this study, a rather simple situation was simulated to be able to investigate 

the effect of QTL properties on the accuracy of both single- and multi-breed 

genomic prediction. Heritabilities and allele substitution effects were assumed to 

be the same across breeds, such that phenotypic differences between breeds were 

only due to differences in QTL allele frequencies. Phenotypes were simulated using 
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a heritability of 0.8, which is similar to the heritability of daughter yield deviation of 

a bull for milk yield if the bull has approximately 100 daughters. We chose this 

rather high heritability value to achieve high accuracies of genomic prediction, 

which resulted in more pronounced differences in accuracies between the different 

scenarios for the small reference population size used in the simulations. According 

to the formula of Daetwyler et al. (2008; 2010), a trait with a heritability of 0.8 is 

expected to yield the same accuracy as a trait with a heritability of 0.25 but using a 

reference population that includes 3.2 times more animals. 

To decide on the number of replicates, the variance of the squared accuracy (r
2
) 

was calculated from the sampling variance of a correlation coefficient as (Fisher 

1954): 

1

)1(
)(

22
2






N

r
rVar ,                (5.1) 

where N is the number of selection candidates. Thereafter, the required number of 

replicates (n) was calculated as (Ott and Longnecker 2001): 

 
2

22

02.0

)(*96.1 rVar
n  ,      (5.2) 

where 1.96 refers to the z-value on the standard normal distribution relating to a 

confidence interval of 95%, and 0.02 is the maximum allowable difference between 

the estimated and true mean. This resulted in a maximum required number of 

replicates of 9.62 with an actual accuracy of 0, and a minimum required number of 

replicates of 0.004 with an actual accuracy of -0.99 or 0.99. Thus, 10 replicates are 

sufficient to cover the whole spectrum of possible accuracies. 

 

5.2.3 Investigating the accuracy of genomic prediction 
For each replicate, the accuracy of genomic prediction was empirically 

calculated for a fixed group of 1000 Holstein Friesian and 1000 Jersey selection 

candidates that were selected from the 3000 animals per breed that were used in 

this study. Due to the presence of overlapping generations and the use of cow data 

with small progeny groups, selection candidates were randomly sampled from the 

full dataset. The other 2000 Holstein Friesian and 2000 Jersey cows were used as 

reference animals in seven reference populations (Table 5.2), with different 

numbers of Holstein Friesian and Jersey individuals that ranged from a single-breed 

reference population to a multi-breed reference population with equal numbers of 

animals of both breeds. Each of the smaller reference populations was a random 

subset from the larger reference populations. 
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Table 5.2 Overview of the different reference populations. 
 

 Reference population 

Scenarios Number of Holstein Friesian
 

Number of Jersey
 

1 2000 2000 

2 2000 500 

3 2000 100 

4 2000 0 

5 500 2000 

6 100 2000 

7 0 2000 

 

 

Since LD pattern between QTL and SNPs differed across breeds and some QTL 

segregated only in one of the breeds, SNP effects were expected to differ across 

breeds. To account for these differences in SNP effects, a Genomic-relatedness-

matrix Residual Maximum Likelihood model (GREML) including both a random 

across-breed animal effect and a within-breed animal effect was run in ASReml 

(Gilmour et al. 2009). A GREML model has the same features as the commonly 

known GBLUP model (assuming a normal distribution of SNP effects), but it 

estimates the variances and the breeding values simultaneously using REML. This 

was done using the following model, hereafter called the base model: 

eZgZg1y  wan ,    (5.3) 

where y is a vector containing the simulated phenotypes, 1n is a vector of ones, μ is 

the overall mean across breeds, ga and gw are vectors of the genomic breeding 

values predicted either across-breeds or within-breeds (ga ~ )σ,0( 2

agaN G and           

gw ~ )σ,0( 2

wgwN G ), Z is an incidence matrix that allocates genomic breeding values 

(both ga and gw) to the individuals and e is a vector containing the residuals              

~ )σ,0( 2
eN I . Note that only one 

2σ
ag  and one 

2σ
wg  was estimated, which reflect the 

variances in the base population of the genomic relationship matrices (Ga and Gw), 

which was set to be the population immediately before Holstein Friesian and Jersey 

breeds diverged by using the method of Erbe et al. (2012). As a first step to 

calculate Ga and Gw, the G matrix was calculated as (Erbe et al. 2012): 







n

j
jj pp

1

)1(2

'WW
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where n is the number of loci, W is a matrix of standardized genotypes for 

individual i at locus j calculated as jijij pgw 2 , where gij codes the genotype as 

0, 1 and 2, and pj is the allele frequency for the second allele (for which the 

homozygote genotype is coded 2) calculated as JerjHFjj ppp ,, )1(   . In this 

last equation, HFjp ,  is the allele frequency in the Holstein Friesian population, 

Jerjp ,  is the allele frequency in the Jersey population and   is calculated as 

HFJer

Jer

FF

F


 , and represents the proportion of Holstein Friesian haplotypes in 

the ancestral population. The inbreeding coefficient for the Jersey population was 

calculated as: 

 












n
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HFjJerjJerjHFj

n
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JerjJerj
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pppp
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F

1
,,,,

1
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)1()1(

)1(2

1 .     (5.5) 

The inbreeding coefficient for the Holstein Friesian population was calculated in the 

same way by substituting the two breeds accordingly. As described by Erbe et al. 

(2012), inbreeding in G can be adjusted for the inbreeding that occurred relative to 

the base set at the time of divergence of the two breeds as FF 2)1(* GG . In 

this equation, F is the inbreeding relative to an F1 base population calculated as 

HFJer

HFJer

FF

FF
F


 . The relationship matrix based on the pedigree, A, was rescaled to 

the same base by rescaling the within-Holstein Friesian block as 

   HFHFHFHF fFfF  2)(1* AA , in which fHF is the amount of inbreeding in the 

Holstein Friesian population since the base of the pedigree. The within-Jersey block 

was rescaled in the same way and the across-breed block was set to 0. Thereafter, 

the rescaled *G  matrix was regressed back to the rescaled *A  matrix following 

Yang et al. (2010) and Goddard et al. (2011) to calculate Ga. The regression was 

done separately across- and within-breed as well as per bin of pedigree relationship 

(< 0.10, 0.10-0.25, 0.25-0.50, >0.5), because the sampling error on elements of *G  

depends on the level of family relationships. Across these bins of relationships, the 

different regression coefficients ranged from 0.994 to 0.999 when all 606,384 SNPs 

were used to calculate Ga. The Gw matrix was formed from the Ga matrix by setting 

the elements between individuals of different breeds to zero, while the within-

breed elements of Gw were equal to the corresponding elements in Ga. 
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In this base model, genomic breeding values were predicted across breeds as 

well as within breeds. For each selection candidate, the genomic breeding values 

across- and within-breed were summed to calculate the total genomic breeding 

value. The accuracy of genomic prediction was calculated per breed as the 

correlation between the total genomic breeding values and the simulated true 

breeding values of all selection candidates of that breed. 

Analyses were performed using different numbers of SNPs to set-up Ga and Gw, 

namely: 1) 606,384 SNPs, 2) 60,000 SNPs, 3) 606,384 SNPs plus the genotypes of all 

imputed variants representing QTL, and 4) 60,000 SNPs plus the genotypes of all 

imputed variants representing QTL. The 60,000 SNPs were randomly selected from 

the 606,384 SNPs to study the accuracy that could be achieved with a lower marker 

density. When genotypes for the imputed variants representing QTL were included 

in the dataset used to calculate Ga and Gw, genotypes of all imputed variants in the 

three classes were used i.e., 80,515 variants with a moderately low average MAF, 

97,296 with a very low average MAF and 4064 with an extremely low average MAF. 

In this way, the potential accuracy of genomic prediction was studied when the 

causal mutations, i.e., the QTL, were included in the marker dataset. 

The power of the base model to separate across- and within-breed animal 

effects was investigated for one of the scenarios, namely the RANDOM scenario 

with 1000 QTL and 2000 Holstein Friesian and 2000 Jersey animals in the reference 

population. Due to computational reasons, only one of the scenarios was 

investigated. The base model that included a random across-breed animal effect 

and a within-breed animal effect, was run once for each specific replicate in this 

scenario and the total genetic variance was calculated. Thereafter, the model was 

run again by fixing the within-breed variance to 1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 

99% of the total genetic variance and assigning the remaining part to the across-

breed variance. 

To test for significance, twice the difference in log-likelihood between the 

model with fixed variance components and the model with estimated variance 

components was compared with the 5% significance threshold (2.71) taken from a 

mixed Chi-square distribution with 0 and 1 degrees of freedom. 

To investigate the advantage in terms of prediction accuracy of using a GBLUP 

type of model with a random across-breed animal effect and a within-breed animal 

effect over a model with only a random across-breed animal effect, the analyses 

were repeated using a model where Zgw was removed. The effect of a fixed breed 

effect on accuracy of multi-breed genomic prediction was also studied by running 

the base model including breed as a fixed effect. Both alternative models were run 
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for the RANDOM and VAR scenario using all reference populations when 100 QTL 

controlled the trait. 

 

5.3 Results 
The results presented in this section are the averages across the 10 replicates, 

with standard errors computed across the replicates. In general, the standard 

errors across replicates were small. To further investigate if 10 replicates were 

sufficient for this study, the impact of the number of replicates was analyzed by 

comparing the averages after 10 replicates with the averages after the first five 

replicates. In general, the absolute difference in accuracy was only ~0.01 between 

the averages after five and 10 replicates for all scenarios using the base model and 

QTL with a moderately low average MAF, very low average MAF or extremely low 

average MAF. Standard errors were, as expected, slightly higher with five 

replicates. The low standard errors and the small differences in averages after five 

and 10 replicates indicate that using only 10 replicates did not affect the 

conclusions of our study. 

 

5.3.1 QTL properties 

Average accuracies for the base model using all 606,384 SNPs for the different 

reference populations are shown in Figure 5.1 when 100 QTL controlled the 

simulated trait, both for the RANDOM (A) and VAR (B) scenarios. For all reference 

populations, accuracies were greater for the RANDOM scenario than for the VAR 

scenario, regardless of the average MAF of QTL. Moreover, accuracies were slightly 

greater for Jersey selection candidates than for Holstein Friesian selection 

candidates when the number of individuals in the reference population from the 

evaluated breed was the same, which reflects the smaller effective population size 

of this breed. 

As the number of reference individuals of a breed decreased, the achieved 

prediction accuracies for the selection candidates from the same breed decreased 

as expected for all scenarios. For the RANDOM scenario, prediction accuracy 

decreased by ~0.51 for the Jersey and ~0.01 for the Holstein Friesian selection 

candidates when the number of Jersey individuals changed from 2000 to 0 in the 

reference population, and it decreased by ~0.01 for the Jersey and ~0.50 for the 

Holstein Friesian selection candidates when the number of Holstein Friesian 

individuals changed from 2000 to 0 in the reference population. For the VAR 

scenario, the decrease in accuracy due to a decreasing number of animals from the 

breed itself was also large, although this decrease was less pronounced due to 
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smaller accuracies, and the decrease in accuracy due a decreasing number of 

animals from the other breed was negligible. Thus, the effect of including another 

breed in the reference population on prediction accuracy was small for both 

scenarios. 

 

 
 

Figure 5.1 Accuracies of genomic prediction for traits that are controlled by QTL with 
different properties when 100 QTL underlie the trait. Average accuracies of genomic 
prediction (± standard errors) for Holstein Friesian (HF, solid fill) and Jersey (J, diagonal fill) 
animals using a model that included a random across-breed animal effect and a within-breed 
animal effect, 606,384 SNPs, seven different reference populations and using simulated 
allele substitution effects (A) randomly sampled from a gamma distribution or (B) with each 
QTL explaining an equal proportion of the genetic variance, when 100 QTL underlying the 
trait were sampled from variants with on average a moderately low allele frequency (black), 
very low minor allele frequency (dark grey) or extremely low minor allele frequency (light 
grey). 

 

In general, accuracies were greatest for QTL with a moderately low average 

MAF and smallest for QTL with an extremely low average MAF. The differences in 

accuracies between classes of QTL with different average MAF were more 

pronounced for the VAR scenario than for the RANDOM scenario, mainly as a result 

of a smaller accuracy for QTL with a very low average MAF and a much smaller 

accuracy for QTL with an extremely low average MAF. These results are consistent 
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with the estimated heritabilities for each scenario (Table 5.3); estimated 

heritabilities decreased when the average MAF of QTL decreased and the 

differences were more pronounced for the VAR scenario than for the RANDOM 

scenario. For all scenarios, the estimated heritability was below the simulated 

heritability, but for the RANDOM scenario, the differences were small. This 

indicates that it was difficult for the GBLUP model to capture all the genetic 

variance when the QTL that underlie the simulated trait had on average a low MAF, 

especially when rare alleles had a large effect. 

 

 

 
Table 5.3 Average estimated heritabilities of QTL with different properties. Average 
heritabilities (standard errors across replicates) estimated with a model including a random 
across-breed animal effect and a within-breed animal effect and using 606,384 SNPs to 
calculate the genomic relationship matrix using different reference populations, different 
average minor allele frequencies (MAF) of the 100 QTL that underlie the trait and using 
simulated allele substitution effects randomly sampled from a gamma distribution 
(RANDOM) or with each QTL explaining an equal proportion of the genetic variance (VAR). 
 

Scen. Nb HF Nb J 

RANDOM VAR 

Moderately 
low MAF

 

Very 
low 
MAF 

Extremely 
low MAF 

Moderately 
low MAF 

Very 
low 
MAF 

Extremely 
low MAF 

1 2000 2000 
0.78 

(0.003) 
0.77 

(0.002) 
0.72 

(0.011) 
0.60 

(0.001) 
0.44 

(0.002) 
0.21 

(0.002) 

2 2000 500 
0.76 

(0.004) 
0.75 

(0.006) 
0.70 

(0.023) 
0.54 

(0.002) 
0.38 

(0.004) 
0.18 

(0.001) 

3 2000 100 
0.75 

(0.005) 
0.75 

(0.007) 
0.70 

(0.027) 
0.54 

(0.002) 
0.36 

(0.004) 
0.18 

(0.002) 

4 2000 0 
0.75 

(0.005) 
0.75 

(0.007) 
0.70 

(0.029) 
0.54 

(0.002) 
0.37 

(0.004) 
0.18 

(0.002) 

5 500 2000 
0.79 

(0.004) 
0.78 

(0.002) 
0.70 

(0.008) 
0.64 

(0.001) 
0.47 

(0.002) 
0.22 

(0.006) 

6 100 2000 
0.78 

(0.007) 
0.76 

(0.005) 
0.62 

(0.017) 
0.62 

(0.001) 
0.44 

(0.002) 
0.19 

(0.004) 

7 0 2000 
0.78 

(0.008) 
0.76 

(0.006) 
0.58 

(0.025) 
0.61 

(0.002) 
0.42 

(0.002) 
0.17 

(0.004) 
 

Scen. = scenarios; Nb HF = number of Holstein Friesian animals; Nb J = number of Jersey 
animals; MAF = minor allele frequency. 
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For the RANDOM scenario, the number of QTL underlying a trait had a limited 

effect on prediction accuracies (Figures 5.1 and 5.2); accuracies were slightly 

greater for QTL with a very low average MAF (~0.03) or extremely low average MAF 

(~0.07) when 1000 QTL instead of 100 controlled the trait. This reduced the effect 

of the average MAF of QTL on accuracy with 1000 QTL compared to 100 QTL. For 

the VAR scenario, the effect of the number of QTL on accuracy was very small for 

all situations (Figures 5.1 and 5.2). Estimated heritabilities with 1000 QTL 

underlying the trait were similar to those with 100 QTL underlying the trait, both 

for the RANDOM and VAR scenarios (see Appendix Table A5.1). 

 

 

 
 

Figure 5.2 Accuracies of genomic prediction for traits that are controlled by QTL with 
different properties when 1000 QTL underlie the trait. Average accuracies of genomic 
prediction (± standard errors) for Holstein Friesian (HF, solid fill) and Jersey (J, diagonal fill) 
animals using a model that included a random across-breed animal effect and a within-breed 
animal effect, 606,384 SNPs, seven different reference populations and using simulated 
allele substitution effects (A) randomly sampled from a gamma distribution or (B) with each 
QTL explaining an equal proportion of the genetic variance, when 1000 QTL underlying the 
trait were sampled from variants with on average a moderately low allele frequency (black), 
very low minor allele frequency (dark grey) or extremely low minor allele frequency (light 
grey). 

 



5. Impact of QTL properties on accuracy 

 

 

137 

 

 5  

5.3.2 Marker densities and mutations 

With 100 QTL underlying the trait, average accuracies achieved with the base 

model that used genomic relationship matrices based on different marker 

densities, with or without the simulated QTL, are shown in Figure 5.3 for the 

RANDOM scenario (A) and VAR scenario (B). For both scenarios, a decrease in the 

number of SNPs used to calculate the genomic relationship matrices from 606,384 

to 60,000 resulted in similar accuracies of genomic prediction, although values 

were slightly, but consistently, lower (~0.007) with 60,000 SNPs than with 606,384 

SNPs. Estimated heritabilities using 60,000 or 606,384 SNPs were also similar (Table 

5.4). 

 

 

 
 

Figure 5.3 Accuracies of genomic prediction using different marker densities to calculate the 
genomic relationship matrix. Average accuracies of genomic prediction (± standard errors) 
for Holstein Friesian (HF, solid fill) and Jersey (J, diagonal fill) animals using a model that 
included a random across-breed animal effect and a within-breed animal effect, seven 
different reference populations and using simulated allele substitution effects (A) randomly 
sampled from a gamma distribution or (B) with each QTL explaining an equal proportion of 
the genetic variance, when 100 QTL underlying the trait were sampled from variants with on 
average a moderately low minor allele frequency. The genomic relationship matrices were 
calculated using 606,384 SNPs (black), 60,000 SNPs (dark grey), 606,384 SNPs plus all 
sampled QTL (grey), or 60,000 SNPs plus all sampled QTL (light grey). 
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Adding the genotypes of the simulated QTL to the SNPs used to calculate the 

genomic relationship matrices increased prediction accuracy (Figure 5.3), and the 

percentage of increase was higher when the average MAF of QTL was lower (see 

Appendix Figure A5.4 and Figure A5.5). This increase in accuracy was greater when 

60,000 SNPs were used (increase in accuracy of ~0.08 and ~0.06 for the RANDOM 

and VAR scenarios, respectively) than when 606,384 SNPs were used (increase in 

accuracy of ~0.02 for both scenarios). Thus, prediction accuracies were greatest 

when 60,000 SNPs plus the genotypes of the simulated QTL were used to calculate 

the genomic relationship matrices. As expected, the same pattern was observed 

with estimated heritabilities (Table 5.4). This indicates that including the simulated 

QTL in the marker set to calculate genomic relationship matrices improved the 

ability of the model to capture all the genetic variance present in the reference 

population, probably because the QTL can capture the effects without depending 

on LD between marker and QTL. 

 

 

Table 5.4 Average estimated heritabilities using different marker densities to calculate the 
genomic relationship matrix. Average heritabilities (standard errors across replicates) 
estimated with a model including a random across-breed animal effect and a within-breed 
animal effect using different reference populations, 100 QTL underlying the trait with on 
average a moderately low minor allele frequency and using simulated allele substitution 
effects randomly sampled from a gamma distribution (RANDOM) or with each QTL 
explaining an equal proportion of the genetic variance (VAR). The genomic relationship 
matrix was calculated using 606,384 SNPs (600k), 60,000 SNPs (60k), 606,384 SNPs plus all 
sampled QTL (600k + QTL), or 60,000 SNPs plus all sampled QTL (60k + QTL). 
 

Scen. Nb HF Nb J 
RANDOM VAR 

600k 60k 600k+QTL 60k+QTL 600k 60k 600k+QTL 60k+QTL 

1 2000 2000 
0.78 

(0.003) 
0.77 

(0.003) 
0.80 

(0.002) 
0.84 

(0.001) 
0.59 

(0.001) 
0.58 

(0.001) 
0.61 

(0.001) 
0.64 

(0.001) 

2 2000 500 
0.76 

(0.004) 
0.74 

(0.004) 
0.78 

(0.003) 
0.82 

(0.003) 
0.54 

(0.003) 
0.53 

(0.003) 
0.57 

(0.003) 
0.59 

(0.003) 

3 2000 100 
0.75 

(0.005) 
0.73 

(0.005) 
0.77 

(0.004) 
0.80 

(0.005) 
0.54 

(0.004) 
0.53 

(0.004) 
0.57 

(0.004) 
0.59 

(0.004) 

4 2000 0 
0.75 

(0.005) 
0.73 

(0.005) 
0.77 

(0.004) 
0.81 

(0.005) 
0.55 

(0.004) 
0.54 

(0.004) 
0.58 

(0.004) 
0.60 

(0.004) 

5 500 2000 
0.79 

(0.004) 
0.78 

(0.005) 
0.80 

(0.003) 
0.83 

(0.002) 
0.61 

(0.006) 
0.60 

(0.005) 
0.63 

(0.005) 
0.66 

(0.005) 

6 100 2000 
0.78 

(0.007) 
0.77 

(0.007) 
0.80 

(0.006) 
0.82 

(0.005) 
0.58 

(0.006) 
0.58 

(0.006) 
0.60 

(0.006) 
0.63 

(0.005) 

7 0 2000 
0.78 

(0.008) 
0.77 

(0.008) 
0.79 

(0.007) 
0.82 

(0.006) 
0.56 

(0.006) 
0.55 

(0.006) 
0.57 

(0.005) 
0.60 

(0.005) 
 

Scen. = scenarios; Nb HF = number of Holstein Friesian animals; Nb J = number of Jersey 
animals. 
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5.3.3 Different models 

The base model of this study contained a random across-breed animal effect 

and a within-breed animal effect to account for differences in SNP effects across 

breeds. For the multi-breed reference populations, the proportion of variance 

explained by the within-breed animal component was equal to ~27% and ~52% for 

the RANDOM and VAR scenarios, respectively, when QTL had a moderately low 

average MAF, ~33% and ~53% when QTL had a very low average MAF, and ~40% 

and ~63% when QTL had an extremely low average MAF. 

The power to separate across-breed animal and within-breed animal effects 

was investigated in Figure 5.4. This figure shows that for the three classes of QTL 

with different average MAF and for most of the replicates, the model that 

estimated across- and within-breed animal variances was not significantly better 

than a model without a random within-breed animal effect (P < 0.05). This is 

because the log-likelihood is rather flat. Moreover, prediction accuracies and 

heritabilities estimated with the base model that included a random across-breed 

animal effect and a within-breed animal effect were very similar to those estimated 

with a model without a random within-breed animal effect for all scenarios (results 

not shown). These results indicate that the power to separate across- and within-

breed animal effects was limited in our simulated data. Similar prediction 

accuracies were achieved with a model that included a fixed breed effect (results 

not shown). Thus, for all scenarios for which a random within-breed animal effect 

and/or fixed breed effect is included in the model, accuracies of genomic prediction 

were not affected, and therefore, they are not shown. 
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Figure 5.4 Log-likelihood comparison of models with fixed or estimated random across-
breed and within-breed animal effects. Twice the difference in log-likelihood for each of the 
10 replicates and 5% significance threshold (black dotted line) using models with fixed 
variance components for the random across-breed animal effect and a within-breed animal 
effect compared to a model that estimated both variance components. The genomic 
relationship matrix was calculated based on 606,384 SNPs, the reference population 
consisted of 2000 Holstein Friesian and 2000 Jersey animals, allele substitution effects were 
sampled from a gamma distribution, when 1000 QTL underlying the trait were sampled from 
variants with on average a (A) moderately low allele frequency, (B) very low minor allele 
frequency or (C) extremely low minor allele frequency. 
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5.4 Discussion 

5.4.1 Accuracy of multi-breed genomic prediction 

For an accurate prediction of genomic breeding values, a large group of animals 

with both genotypes and phenotypes is required (e.g., Meuwissen et al. 2001; 

Daetwyler et al. 2008; VanRaden et al. 2009). Therefore, an attractive approach is 

to enlarge small reference populations of a particular breed by using information 

from other breeds. This might be especially interesting for traits that are difficult to 

measure, such as feed efficiency and dry matter intake in dairy cattle (De Haas et 

al. 2012; Pryce et al. 2014), and for numerically small breeds. In this study, the 

effect of adding another breed to the reference population on prediction accuracy 

was investigated in different scenarios using Holstein Friesian and Jersey animals. 

Accuracy of genomic prediction was not significantly increased by adding 2000 

individuals of the other breed to a reference population of animals from the same 

breed as the selection candidates regardless of marker density. The accuracy of 

across-breed genomic prediction, i.e., using a reference population consisting only 

of individuals from the other breed, ranged from 0.01 to 0.19. The positive 

accuracies of across-breed genomic prediction indicated that useful information 

was present in the other breed, although adding animals from the other breed to 

the reference population did not increase prediction accuracy. This suggests that 

the number of reference individuals from the other breed compared to the number 

of reference individuals from the breed of the selection candidates was relatively 

too small to see an increase in accuracy, as suggested by Hozé et al. (2014). The 

benefit of using a multi-breed reference population might also depend on the 

model used to analyze the data, Bayesian models, for example, might gain more 

from multiple breeds (Kemper et al. 2015). 

 

5.4.2 Effect of QTL properties on the accuracy of genomic prediction 

The first objective of this study was to investigate the effect of properties of 

QTL that underlie the trait on the accuracy of multi-breed genomic prediction using 

Holstein Friesian and Jersey animals. Phenotypes of traits that are controlled by 

QTL with different properties were simulated by sampling 100 or 1000 QTL from 

three different classes of variants that had an average MAF ranging from 

moderately low to extremely low, and by sampling allele substitution effects either 

based on a model where effect size was independent of allele frequency 

(RANDOM) or based on a ‘rare allele, large effect’ model (VAR). The three different 

classes of variants were imputed using sequenced animal genomes, such that the 

QTL displayed characteristics that were present on the actual bovine genome. Our 
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results showed that the accuracy of both single-breed and multi-breed genomic 

prediction was influenced by the properties of the QTL that control the trait. A 

lower QTL MAF decreased prediction accuracy and this effect was more 

pronounced when QTL with the lowest MAF had the largest effect, which is 

consistent with the results from other studies that showed that the prediction 

model could better capture the genetic variance and provided a greater accuracy of 

genomic prediction when a small group of QTL explained a large part of the genetic 

variance (Goddard 2009; Hayes et al. 2010). 

A decrease in QTL MAF was expected to decrease accuracy of multi-breed 

genomic prediction, since the percentage of breed-specific variants increased when 

the MAF of the variants decreased, thereby reducing the potential benefit of 

adding another breed. Moreover, LD between SNPs and QTL decreases as the allele 

frequency of QTL becomes more extreme, due to ascertainment bias of the SNPs 

on the chip (Matukumalli et al. 2009). The existence of ascertainment bias was 

confirmed by the fact that imputation reliabilities decreased when QTL MAF 

decreased and that the prediction accuracies increased most when QTL had the 

lowest MAF and QTL genotypes were added to the markers. Moreover, the low LD 

between SNPs and QTL is reflected in the increasing underestimation of the 

heritability as the average QTL MAF decreased. This is in agreement with other 

studies, that showed that simulating QTL with a low MAF resulted in 

underestimated heritability estimates (Yang et al. 2010; De los Campos et al. 2013) 

and lower accuracy of genomic prediction (Daetwyler et al. 2013; De los Campos et 

al. 2013). QTL for many complex traits have a low MAF (Goddard and Hayes 2009; 

Yang et al. 2010; Kemper and Goddard 2012), which indicates that the probability 

of underestimating the heritability for those traits is high. Heritability may also be 

underestimated because only a subset of the animals from a population is used in 

the analyses. When QTL MAF are low and the size of the reference population is 

small, the probability that all these QTL are segregating in the reference population 

is reduced. Therefore, the increase in accuracy of genomic prediction achieved by 

enlarging the reference population, as shown by (e.g., Meuwissen et al. 2001; 

Daetwyler et al. 2008; VanRaden et al. 2009), might not only result from a more 

accurate prediction of SNP effects, but also from capturing a larger proportion of 

the alleles that segregate in the complete population. 
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Many previous simulation studies have simulated QTL based on SNP 

characteristics (De Roos et al. 2009; Ibánẽz-Escriche et al. 2009; Wientjes et al. 

2015). However, the SNPs that are commonly used on chips are selected to have a 

reasonably high MAF and to segregate in multiple breeds. In our data, the average 

MAF of the SNPs across breeds was 0.27, which is much higher than the average 

MAF of the other variants (Table 5.1). As shown in Figure 5.5, prediction accuracies 

increase as the average QTL MAF increases; therefore, it is clear that using the MAF 

pattern of SNPs to simulate QTL will result in a substantially larger expected 

accuracy of both across-breed and multi-breed genomic prediction. This can 

explain why the benefits of using information from another breed are much larger 

in other simulation studies compared to our simulation study (De Roos et al. 2009; 

Ibánẽz-Escriche et al. 2009; Wientjes et al. 2015) and compared to empirical 

studies (e.g., Hayes et al. 2009; Pryce et al. 2011; Erbe et al. 2012). 

 

 

 
 

Figure 5.5 Accuracy of across- and multi-breed genomic prediction versus average minor 
allele frequency of QTL. The average accuracy of across- and multi-breed genomic prediction 
for (A) Holstein Friesian and (B) Jersey selection candidates versus the average minor allele 
frequency of the 100 simulated QTL. Black points represent the scenarios with allele 
substitution effects randomly sampled from a gamma distribution and grey points represent 
the scenario with each QTL explaining an equal proportion of the genetic variance. The 
circles represent the accuracy for the multi-breed reference population with 2000 Holstein 
Friesian and 2000 Jersey animals, the triangles represent the accuracy of across-breed 
genomic prediction with a reference population of 2000 animals from the other breed. 
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It should be noted that there are two caveats regarding our results, but we 

consider that they do not affect the overall conclusions greatly. First, the effect of 

low MAF on accuracy and heritability may be somewhat exaggerated by the 

imperfect imputation of causal variants. This means that the QTL are not as well 

tracked by the SNPs as they should be. Second, the formula used to calculate the G 

matrix might be more appropriate for the scenario with allele substitution effects 

that are sampled independently of allele frequencies than for the scenario using 

the ‘rare allele, large effect’ model, which might be better analyzed by the G matrix 

described by Yang et al. (2010). However, for a fair comparison of the scenarios, we 

decided to use the same G matrix for both scenarios. 

 

5.4.3 Marker densities and mutations 

In this study, the data was analyzed with a GBLUP type of model using genomic 

relationship matrices based on 606,384 or 60,000 SNPs. Reducing the number of 

SNPs from 606,384 to 60,000 resulted in similar accuracies of genomic prediction. 

This is in agreement with empirical studies using dairy cattle data that showed that 

increasing the number of SNPs from 50k to high-density (777 k) had almost no 

effect on the accuracy of multi-breed genomic prediction (e.g., Harris et al. 2011; 

Erbe et al. 2012), in contrast to earlier expectations (De Roos et al. 2008). 

For all scenarios, accuracy of genomic prediction was slightly greater when the 

simulated QTL were added to the subset of markers used to calculate the genomic 

relationship matrices. This indicates that the model could better capture QTL 

effects with the markers, which led to higher estimated heritabilities and 

accuracies, when the simulated QTL were used as markers, which was also shown 

in other studies (Kizilkaya et al. 2010; Meuwissen and Goddard 2010). The increase 

in prediction accuracy due to adding the simulated QTL was larger when 60,000 

SNPs were used than when 606,384 SNPs were used. This is likely an artifact of the 

GBLUP model for which all markers are assumed to explain the same amount of 

variance. This means that as the number of markers increases, each marker effect 

is a priori smaller. Thus, with a larger number of markers, the effects of true 

markers in the dataset are diluted to a greater degree. By using sequence data in 

the analyses, the causal variants or QTL are supposed to be included in the data, as 

well as a large number of other variants. Therefore, on the one hand, the expected 

benefit of sequence data achieved with a GBLUP model is small, and smaller than 

that with Bayesian models, which allow some marker effects to be zero, as 

demonstrated by Meuwissen and Goddard (Meuwissen and Goddard 2010). On the 

other hand, our result does demonstrate that if the marker set can be enriched 

with real causative mutations from the sequence data, as we did here by including 
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the QTL in the SNP dataset, accuracies can be increased. The larger increase in 

prediction accuracy achieved with a smaller number of other variants in the dataset 

highlights the importance to filter sequence variants that are included in genomic 

prediction, for example by using biological information (MacLeod et al. 2014). 

Both in the single-breed and multi-breed scenarios using Holstein Friesian and 

Jersey animals, the percentage of increase in accuracies due to adding the QTL 

genotypes to the markers was higher when the average MAF of QTL was lower. 

This can be explained by the fact that the QTL with a lower MAF were in lower LD 

with the SNPs on the chip, particularly across breeds. Besides differences in LD 

across breeds, the accuracy of multi-breed genomic prediction might also be 

influenced by other factors, such as the absence of family relationships or 

differences in allele frequencies (e.g., Daetwyler et al. 2008; Habier et al. 2010; 

Wientjes et al. 2013). As explained by Daetwyler et al. (2008), a QTL with a large 

effect and a low allele frequency in one breed can be imprecisely estimated within 

that breed. Since that QTL only explains a small proportion of the genetic variance 

in that breed, the negative effect on the accuracy of single-breed genomic 

prediction might be small. If the estimated effect was used to predict breeding 

values for another breed, the effect on accuracy would be more detrimental when 

the allele frequency of that QTL is higher in that breed. This indicates that it is 

important that the QTL and SNPs that segregate in the selection candidate 

population are also segregating with a reasonable allele frequency in the reference 

population to be able to estimate the effects accurately. When the relationships 

between selection candidates and reference individuals are larger, the probability 

that SNPs and QTL segregating in the selection candidate population are 

segregating in the reference population becomes higher as well. Overall, these 

results indicate that the accuracy of across-breed genomic prediction is small 

because of differences in LD (e.g., De Roos et al. 2008; Zhong et al. 2009), absence 

of family relationships (e.g., Habier et al. 2010; Wientjes et al. 2013), and 

differences in allele frequency across breeds (e.g., Daetwyler et al. 2008); in 

addition, all these factors are probably entangled with each other. 

 

5.4.4 Effect of random within-breed animal effect on the accuracy of 

genomic prediction 

The second objective of this study was to investigate the effect of including a 

random across-breed animal effect and a within-breed animal effect in a GBLUP 

model on the accuracy of multi-breed genomic prediction. Our results showed that, 

in contrast to our expectations, adding a random within-breed animal effect did not 
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influence prediction accuracy. In particular, if the QTL were breed-specific and if 

the SNPs segregated in both breeds, which was to a high extent the case when the 

average MAF of QTL was extremely low, an increase in accuracy due to the 

inclusion of a random within-breed animal effect was expected because of 

differences in apparent SNP effects across breeds. The power of this approach to 

separate across- and within-breed animal effects was limited when allele 

substitution effects were randomly assigned to QTL, which may explain why adding 

a within-breed animal effect was not beneficial. For the scenarios for which each 

QTL explained the same variance, the power to separate both effects might differ, 

but adding a within-breed animal effect was still not beneficial in terms of accuracy. 

Using a larger reference population with more animals of each breed may enable 

to properly separate across-breed animal and within-breed animal effects in a 

better way, but enlarging reference populations for numerically small breeds is 

challenging. Thus, to give a conclusive answer about this objective, more data is 

needed to investigate if it is possible to separate random across-breed and within-

breed animal effects, and if this is case, then it is necessary to investigate whether 

it is beneficial for multi-breed genomic prediction. 

 

5.5 Conclusions 
The results of this study show that the accuracy of both single- and multi-breed 

genomic prediction depends on the properties of the QTL that control the trait. A 

decrease in average QTL MAF decreased accuracy of genomic prediction, especially 

when rare alleles had a large effect. Therefore, we demonstrated that the 

properties of the QTL that control traits (i.e., allele frequency spectra of QTL, 

distribution of QTL effects) are key parameters that determine the accuracy of both 

single- and multi-breed genomic predictions. Based on these results, the properties 

of QTL that underlie a trait can explain the limited benefit or the absence of benefit 

of combining information from multiple breeds that is described in empirical 

studies as opposed to the substantial benefit that is achieved in simulation studies. 

Accuracy of single-, but especially multi-breed genomic prediction, could be increased 

by using sequence data, since the causative mutations are probably included in the 

dataset. The results show that the increase in accuracy was consistently, although not 

significantly, larger when the number of other variants included in the dataset was 

smaller. Finally, adding a random within-breed animal effect to a GBLUP type of 

model had no effect on the accuracy of genomic prediction, most likely because the 

power to separate random across-breed and within-breed animal effects was low. 
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 5.7 Appendix 
 

Table A5.1 Average estimated heritabilities for QTL with different properties when 1000 QTL underlie the trait. Average heritabilities (standard 

errors across replicates) estimated with a model including a random across-breed animal effect and a within-breed animal effect and using 

606,384 SNPs to calculate the genomic relationship matrix using different reference populations, different average minor allele frequencies (MAF) 

of the 1000 QTL that underlie the trait and using simulated allele substitution effects randomly sampled from a gamma distribution (RANDOM) or 

with each QTL explaining an equal proportion of the genetic variance (VAR). 
 

   
RANDOM 

 
VAR 

Scenarios Nb HF
 

Nb J
 Moderately 

low MAF
 Very low MAF 

Extremely low 
MAF  

Moderately 
low MAF 

Very low MAF 
Extremely low 

MAF 

1 2000 2000 0.79 (0.020) 0.77 (0.021) 0.72 (0.023) 
 

0.59 (0.028) 0.45 (0.031) 0.21 (0.031) 

2 2000 500 0.80 (0.030) 0.76 (0.032) 0.72 (0.033) 
 

0.54 (0.040) 0.39 (0.042) 0.16 (0.037) 

3 2000 100 0.80 (0.032) 0.76 (0.035) 0.71 (0.036) 
 

0.54 (0.043) 0.39 (0.045) 0.15 (0.039) 

4 2000 0 0.80 (0.033) 0.75 (0.035) 0.70 (0.037) 
 

0.55 (0.044) 0.39 (0.046) 0.15 (0.036) 

5 500 2000 0.78 (0.025) 0.77 (0.025) 0.73 (0.028) 
 

0.61 (0.034) 0.49 (0.039) 0.26 (0.041) 

6 100 2000 0.78 (0.026) 0.78 (0.026) 0.72 (0.030) 
 

0.58 (0.037) 0.46 (0.041) 0.23 (0.042) 

7 0 2000 0.78 (0.027) 0.78 (0.027) 0.73 (0.030) 
 

0.56 (0.038) 0.45 (0.042) 0.23 (0.043) 
 

Nb HF = Number of Holstein Friesian animals; Nb J = Number of Jersey animals; MAF = minor allele frequency 
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Figure A5.1 Allele frequency distribution of imputed and genotyped variants in Holstein Friesian animals. Distribution of allele frequencies of 
variants with on average a moderately low minor allele frequency (MAF), very low MAF or extremely low MAF in real data and imputed data for 
Holstein Friesian animals. 
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Figure A5.2 Allele frequency distribution of imputed and genotyped variants in Jersey animals. Distribution of allele frequencies of variants with 
on average a moderately low minor allele frequency (MAF), very low MAF or extremely low MAF in real data and imputed data for Jersey animals. 
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Figure A5.3 Allele frequencies of Holstein Friesian versus Jersey animals. Patterns of allele 
frequencies for Holstein Friesian versus Jersey animals. (A) Variants with on average a 
moderately low minor allele frequency; (B) Variants with on average a very low minor allele 
frequency; (C) Variants with on average an extremely low minor allele frequency. 
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Figure A5.4 Accuracies of genomic prediction using different marker densities to calculate 
the genomic relationship matrix and QTL with very low minor allele frequency. Average 
accuracies of genomic prediction (± standard errors) for Holstein Friesian (HF, solid fill) and 
Jersey (J, diagonal fill) animals using a model that included a random across-breed animal 
effect and a within-breed animal effect, seven different reference populations and using 
simulated allele substitution effects (A) randomly sampled from a gamma distribution or (B) 
with each QTL explaining an equal proportion of the genetic variance, when 100 QTL 
underlying the trait were sampled from variants with on average a very low minor allele 
frequency. The genomic relationship matrices were calculated using 606,384 SNPs (black), 
60,000 SNPs (dark grey), 606,384 SNPs plus all sampled QTL (grey), or 60,000 SNPs plus all 
sampled QTL (light grey). 
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Figure A5.5 Accuracies of genomic prediction using different marker densities to calculate 
the genomic relationship matrix and QTL with extremely low minor allele frequency. Average 
accuracies of genomic prediction (± standard errors) for Holstein Friesian (HF, solid fill) and 
Jersey (J, diagonal fill) animals using a model that included a random across-breed animal 
effect and a within-breed animal effect, seven different reference populations and using 
simulated allele substitution effects (A) randomly sampled from a gamma distribution or (B) 
with each QTL explaining an equal proportion of the genetic variance, when 100 QTL 
underlying the trait were sampled from variants with on average an extremely low minor 
allele frequency. The genomic relationship matrices were calculated using 606,384 SNPs 
(black), 60,000 SNPs (dark grey), 606,384 SNPs plus all sampled QTL (grey), or 60,000 SNPs 
plus all sampled QTL (light grey). 
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Abstract 
Predicting the accuracy of estimated genomic values using genome-wide 

marker information is an important step in designing training populations. 

Currently, different deterministic equations are available to predict accuracy within 

populations, but not for multi-population scenarios where data from multiple 

breeds, lines or environments is combined. Therefore, our objective was to develop 

and validate a deterministic equation to predict the accuracy of genomic values 

when different populations are combined in one training population. The input 

parameters of the derived prediction equation are the number of individuals and 

the heritability from each of the populations in the training population, the genetic 

correlations between the populations, i.e., the correlation between allele 

substitution effects of quantitative trait loci, the effective number of chromosome 

segments across predicted and training populations, and the proportion of the 

genetic variance in the predicted population captured by the markers in each of the 

training populations. Validation was performed based on real genotype 

information of 1033 Holstein Friesian cows that were divided in three different 

populations by combining half-sib families in the same population. Phenotypes 

were simulated for multiple scenarios, differing in heritability within populations 

and in genetic correlations between the populations. Results showed that the 

derived equation can accurately predict the accuracy of estimating genomic values 

for different scenarios of multi-population genomic prediction. Therefore, the 

derived equation can be used to investigate the potential accuracy of different 

multi-population genomic prediction scenarios and to decide on the most optimal 

design of training populations. 

 

Key words: genomic prediction, multi-population, accuracy, prediction equation   
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6.1 Introduction 
Genomic markers can be used to estimate genomic values of individuals, also 

known as additive genetic values or breeding values, that are used to select animals 

(e.g., Dekkers 2007; De Roos et al. 2011) and plants for breeding (e.g., Heffner et al. 

2009; Jannink et al. 2010), and in humans to predict the genetic risk of diseases 

(e.g., Wray et al. 2007; De Los Campos et al. 2010). In genomic prediction, genome-

wide single-nucleotide polymorphism (SNP) marker information is used to predict 

genomic values based on SNP effects estimated in a training population consisting 

of individuals with known SNP genotypes and phenotypes (Meuwissen et al. 2001). 

The accuracy of estimating genomic values is in general higher when the size of the 

training population is larger, when the level of linkage disequilibrium (LD) between 

the SNPs and the quantitative trait loci (QTL) underlying the trait is higher, and 

when the predicted individuals are more related to the individuals in the training 

population (e.g., Daetwyler et al. 2008; Zhong et al. 2009; De los Campos et al. 

2013; Wientjes et al. 2013).   

For numerically small populations, the size of the training population is limited 

which restricts the accuracy of genomic prediction. Therefore, combining different 

populations in one training population for estimating SNP effects is an appealing 

approach to increase the size of the training population and, thereby, the accuracy 

of predicting genomic values. The potential accuracy of combing different 

populations in one training population has been investigated by combining 

populations from different breeds (e.g., Hayes et al. 2009a; Harris and Johnson 

2010), lines (e.g., Zhong et al. 2009; Calus et al. 2014; Lehermeier et al. 2014), 

subpopulations (e.g., De los Campos et al. 2013), or countries (e.g., Lund et al. 

2011; Haile-Mariam et al. 2015). The increase in accuracy by adding individuals 

from another population to the training population is in most cases much lower 

than the increase in accuracy obtained by adding an equal number of individuals 

from the same population. This is a result of differences that exist between 

populations, like differences in allele frequencies, LD patterns (De Roos et al. 2008; 

Zhong et al. 2009; De los Campos et al. 2012), allele substitution effects of QTL 

(Spelman et al. 2002; Thaller et al. 2003; Wientjes et al. 2015b), environments in 

combination with genotype by environment interactions (Lund et al. 2011; Haile-

Mariam et al. 2015), the presence of QTL that are only segregating in one 

population (Kemper et al. 2015), and the absence of close family relationships 

across populations. 

Different deterministic equations are available to calculate the accuracy of 

genomic prediction when the training population is a subset from the same 
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population as the predicted individuals (Daetwyler et al. 2008; VanRaden 2008; 

Goddard 2009). One type of deterministic equation is based on prediction error 

variance of the mixed model equation and is using the genomic relationships within 

the training population and between training and predicted individuals (VanRaden 

2008). This equation has been extended to enable the calculation of the accuracy 

when different populations are combined in one training population (Wientjes et 

al. 2015b). A disadvantage of this equation is, however, that individuals have to be 

genotyped before the accuracy can be calculated. Therefore, this equation cannot 

be used to decide on the most optimal design of training populations. Another type 

of deterministic equation is able to predict the accuracy before genotype 

information is available and is based on population parameters, such as the size of 

the training population, the heritability of the trait and the effective number of 

chromosome segments (Daetwyler et al. 2008; Daetwyler et al. 2010). This 

equation can be used to investigate the accuracy of different training population 

designs, however, the equation is not applicable for situations with more than one 

population in the training population.  

The first objective of this study is to develop a deterministic equation using 

population parameters to predict the accuracy of genomic values when different 

populations are combined in one training population. The different combined 

populations might for example be populations from different breeds, lines or 

environments, or populations measured for different traits. The second objective is 

to validate the derived equation. For the validation, different scenarios of multi-

population genomic prediction were considered by dividing 1033 Holstein Friesian 

cows with real genotypes and simulated phenotypes in three populations, 

assuming different heritabilities within populations and different genetic 

correlations between populations. Moreover, the equation was used to investigate 

the potential accuracy for one specific dairy cattle scenario and one specific human 

scenario. 

 

6.2 Materials and methods 

6.2.1 Theory 

The accuracy of estimated genomic values (rEGV) is defined as the correlation 

between estimated and true genomic values. The overall accuracy depends on the 

square root of the proportion of genetic variance captured by the SNPs (rLD) and on 

the accuracy of estimating SNP effects (reffect) (Daetwyler 2009; Goddard 2009). The 

rLD depends on the strength of LD between QTL and SNPs; the stronger the LD, the 

higher the proportion of the genetic variance that is captured by the SNPs. The 
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reffect depends on the characteristics of the trait, the population in which the effects 

are estimated and the population in which the effects are used to predict genomic 

values. First, we will derive reffect for a training population consisting of two distinct 

populations, based on the same assumptions as underlying a commonly used 

prediction equation for single-population genomic prediction. Thereafter, reffect is 

combined with rLD to account for the proportion of the genetic variance captured 

by the SNPs to derive the accuracy of multi-population genomic prediction. 

Using the assumptions that nG independent loci are underlying the trait and 

that each locus is explaining an equal amount of the genetic variance, Daetwyler et 

al. (2008) derived the following prediction equation for reffect when considering 

single-population genomic prediction: 

GP
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,            (6.1) 

in which h
2
 is the heritability of the trait and nP is the number of individuals with 

phenotypes and genotypes included in the training population. The original 

derivation of this equation is rather complex and difficult to extend to multi-

population genomic prediction. As shown by Wientjes et al. (2015b), the same 

equation can also be derived by partitioning the variance of the average phenotype 

of nP individuals into a part explained by one locus  Ga n/2  and a part not 

explained by that locus 
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Since each locus is assumed to explain only very little variance, 

222 )/( pGap n  - . Due to the assumption that each locus is explaining an equal 

amount of the genetic variance, the accuracy of estimating the effect of one locus 

is the same for each of the loci, and represents the overall accuracy of estimating 

SNP effects:  
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Thus, this approach results in the same equation to predict the accuracy as derived 

by Daetwyler et al. (2008). The derivation described in Equations 6.2 and 6.3 is, 

however, much simpler, and an analogy of this derivation will be used to derive the 

accuracy of multi-population genomic prediction. 

Similar to Daetwyler et al. (2008), we assume that nG independent loci are 

underlying the trait and that each locus explains an equal amount of the genetic 

variance. The effects of the loci might be different in each population, which is 

measured by the genetic correlation between populations. Furthermore, we will 

assume that nP,A individuals from population A and nP,B individuals from population 

B with phenotype and genotype information are combined into one training 

population to estimate SNP effects. Those estimated SNP effects are then used to 

predict genomic values of individuals from population C, that could be a sample 

from one of the training populations or from a different population. The 

information from populations A and B, used to estimate SNP effects, is combined in 

a selection index approach (Hazel 1943), using the average phenotype of nP,A 

individuals from population A (xA) and the average phenotype of nP,B individuals 

from population B (xB) as records, and the genomic values of individuals from 

population C as breeding goal traits:  

BBAACi xbxbgI
i

 ˆ ,            (6.4) 

in which bA and bB are the regression coefficients on the average phenotype of 

individuals from population A (xA) and B (xB) to predict genomic values for 

individual i from population C (
iCĝ ). 

The regression coefficients of genomic values of individuals from population C 

on the average phenotype of population A and B can be calculated as: 

gPb 1









B

A
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b
,       (6.5) 

in which P is the (co)variance-matrix of xA and xB and g is a vector with covariances 

between xA and xB and the true genomic value of individual i from population C        

(
iCg ):  
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and: 
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In analogy with Wientjes et al. (2015b), the variance of the average phenotype 

of nP,A individuals can be partitioned into a part explained by one locus  Ga n
A

/2  

and a part not explained by that locus 
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Aa  is 

the total genetic variance in population A and 2
Ap  is the total phenotypic variance 

in population A. So, the total variance of xA can be written as: 
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 .             (6.8) 

Note that APp n
A ,

2  represents the part of the phenotypic variance not explained 

by that locus, i.e., the residual variance ( 2

, jAe ) for one locus j.  

The covariance between the average phenotypes in the two populations can be 

partitioned in a part explained by one locus, a part not explained by that locus and 

twice the covariance between the two parts. In an additive model, 0),( eaCov  and 

the parts not explained by a locus, i.e., the residual variances, are expected to be 

independent across populations, indicating that only the covariance between the 

populations of the part explained by one locus is assumed to differ from zero. 

Therefore, the covariance can be written as: 

G

aa
GBA

n
rxxCov BA

BA



,
),(  ,                 (6.9) 

in which 
Aa and 

Ba  are the genetic standard deviations in respectively 

population A and B and 
BAGr ,

 is the genetic correlation between population A and 

B. Hence: 
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in which 2
Ba  is the total genetic variance in population B and 2

Bp  is the total 

phenotypic variance in population B. 
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Since an additive model is assumed, the covariance between the average 

phenotype of population A and the true genomic value of individual i from 

population C is also equal to the covariance between the populations of the part 

explained by one locus: 

G

aa
GCA

n
rgxCov CA

CAi



,
),(  ,    (6.11) 

in which 
Ca  is the genetic standard deviation in population C and 

CAGr ,
 is the 

genetic correlation between population A and C. Hence: 
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in which 
CBGr ,

 is the genetic correlation between population B and C. Substituting 

Equations 6.10 and 6.12 in Equation 6.5 results in: 
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With some algebra (see Appendix A), it can be shown that the accuracy of this 

selection index, representing the accuracy of estimating SNP effects, equals: 
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When only one population is included in the training population, Equation 6.14 

reduces to: 
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This equation is equivalent to the equation of Wientjes et al. (2015b) for across-

population genomic prediction. When estimated SNP effects are applied in another 

subset of the same population as the training population, i.e., 
CAGr ,

 is 1, Equation 

6.15 becomes equivalent to the equation derived by Daetwyler et al. (2008) to 

predict the accuracy of estimating SNP effects within a population (Equation 6.1). 

As explained before, the accuracy of genomic prediction depends on reffect as 

well as on rLD, accounting for the proportion of the genetic variance captured by 

the SNPs. It might for example be that the SNP effects are accurately estimated 

(reffect=1), but when LD between QTL and SNPs is not complete, not all genetic 

variance can be captured by the SNPs and the accuracy of genomic prediction is still 

not 1. Moreover, when a number of QTL is segregating in the predicted population 

and not in the training population, part of the genetic variance in the predicted 

population can never be captured by the SNPs in the training population. 

Altogether, this indicates that the proportion of the genetic variance in the 

predicted population that can be captured by the SNPs in the training population is 

specific for a combination of training and predicted population. Therefore, rLD 

affects the covariance between the phenotypes in the training population and the 

aggregated genotype of the predicted individuals (Equation 6.12), which results in:  
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in which 
CALDr
,

 is the square root of the proportion of the genetic variance in 

predicted population C captured by the SNPs in training population A, and 
CBLDr
,

 is 

the square root of the proportion of the genetic variance in predicted population C 

captured by the SNPs in training population B. Using Equation 6.16 instead of 

Equation 6.12 in the remaining part of the derivation results in the following 

equation to predict the accuracy of genomic prediction: 
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In this study, 
CALDr
,

 and 
CBLDr
,

 were assumed to be characteristics of the training 

and predicted populations, and depending on the SNP density and the properties of 

the QTL underlying the trait. Therefore, an empirical approach was needed to 

estimate values for 
CALDr
,

 and 
CBLDr
,

. The values were estimated in the scenarios 

when only one population (A or B) was used as training population, by calculating 

rLD as 
effect

EGV
r

r
LDr  , in which rEGV was the empirical accuracy and reffect the 

predicted accuracy assuming all genetic variance in the predicted population was 

captured by the SNPs. The empirically estimated values for 
CALDr
,

 and 
CBLDr
,

 were 

used to predict the accuracy when population A and B were combined in the 

training population to predict genomic values for individuals from population C. 

 

6.2.2 Derivation of Me to replace nG 

An important assumption underlying the derived equation is that nG 

independent loci are underlying the trait. In a finite population, loci do not 

segregate independently due to the existence of LD between loci. The equation 

predicting the accuracy of SNP effects using a single population (Equation 6.1), 

derived by Daetwyler et al. (2008), accounts for that by replacing nG by the effective 

number of chromosome segments, Me, in the population (Daetwyler et al. 2010). 

The Me within a population is a statistical concept, and can be interpreted as the 

effective number of chromosome segments that are independently segregating in 

that population. Or in other words, it represents the effective number of effects 

that has to be estimated to predict genomic values for individuals from that 

population. In the derived equation for multi-population genomic prediction, 

different populations are combined in the training population, each with different 

values for Me. For predicting genomic values for individuals from population C, 

using estimated SNP effects in population A, the effective number of estimated 

effects is equal to the effective number of chromosome segments shared between 

population A and C (
CAeM
,

). Equivalently, when estimated SNP effects in population 

B are used, the effective number of estimated effects is equal to 
CBeM
,

. In analogy 

of Me within a population, the Me across populations can be interpreted as the 

effective number of segments that are segregating in a combined population, when 

considering the differences in LD between the populations. Therefore, we propose 

the following adjustment to Equation 6.17:  
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(6.18) 

in which 
CAeM
,

 is the effective number of segments across population A and C, and 

CBeM
,

 the effective number of segments across population B and C. The same 

equation can also be derived when a selection index is used combining estimated 

genomic values for individuals from population C based on training populations of 

respectively population A or B, as is shown in Appendix B. 

The Me within a population can be calculated as (Goddard et al. 2011):  

))((

1

ijij
e

EVar
M

GG 
 ,            (6.19) 

in which Gij contains the genomic relationship and E(Gij) the expected values for the 

genomic relationships between all individuals i and j from that population, with the 

variance taken over all pair-wise relationships between individuals i and j. In 

analogy to Equation 6.19, the values for Me across populations can be calculated 

using (Wientjes et al. 2015b): 
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 ,            (6.20) 

in which 
ji PopPop 2.,1.G  contains the genomic relationships and E(

ji PopPop 2.,1.G ) 

contains the expected values for the genomic relationships between all individuals i 

from population 1 and individuals j from population 2, again the variance is taken 

over all pair-wise relationships between individuals i and j. The genomic 

relationships can be calculated following Yang et al. (2010), by calculating the 

genomic relationships between individual i from population y and individual j from 

population z as 
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genomic relationship of individual i from population y with itself as 
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SNPs, ky i
x  and kz j

x  are the genotypes at locus k coded as 0, 1, and 2, and ykp  and 
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zkp  are the allele frequencies for the second allele (with homozygote genotype 

coded as 2) at locus k for respectively population y and z. The genomic 

relationships used to calculate Me are based on population-specific allele 

frequencies to ensure that unrelated individuals have an expected genomic 

relationship of 0, which is an underlying assumption of the equation to calculate Me 

(Goddard et al. 2011).  

In most human studies, individuals included in the data are unrelated (e.g., Yang 

et al. 2010; Lee et al. 2012; Maier et al. 2015). This indicates that the expected 

values for all genomic relationships (E(G)) would approximately be zero, so 

Equation 6.20 simplifies to 
)(

1

2.,1.
2,1

ji PopPop
e

Var
M

G
 . In most livestock 

populations, individuals are related, so E(G) would not be zero and E(G) could be 

approximated by the pedigree relationship matrix A, i.e., 

)(

1

2.,1.2.,1.
2,1

jiji PopPopPopPop
e

Var
M

AG 
 . When both the G and A matrix are used to 

calculate Me, both matrices should be scaled to the same base population. This can 

be achieved by rescaling the inbreeding level in G to the inbreeding in A, for 

example by using the following adjustment separately for each of the within-

population and across-population blocks (Powell et al. 2010): 

  JGG bb FF 21*  ,            (6.21) 

in which bF  is the average pedigree inbreeding level of individuals in population b 

and J is a matrix filled with ones.  

The G-E(G) values are expected to follow a normal distribution around zero for 

each value of E(G). The pedigree relationships between individuals in A, however, 

depend on the depth of the pedigree for both individuals. In general, the pedigree 

relationships will more closely resemble E(G) when the pedigree for both 

individuals is deeper. When the pedigree is not deep or complete enough for all or 

a subset of the individuals, extra variation in G-A is introduced, resulting in an 

underestimation of Me when A is used to represent E(G). Since the depth of the 

pedigree can differ across individuals, the impact of an insufficient pedigree depth 

on the calculated Me can be reduced by only taking the relationships of individuals 

with the most complete pedigree into account to calculate Me. To check if selecting 

those individuals indeed minimized the impact of an insufficient pedigree depth, 

values of G-A can be plotted versus values of A. When the values for G-A are lower 

for higher A values, as is shown in Figure 6.1, an insufficient pedigree depth is still 

influencing the calculation of Me. To account for this particular pattern, an 
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exponential function was fitted through the data. For all values of A in the data, the 

parameters of the function were estimated in R (R Development Core Team 2011) 

and the fitted values of the function were subtracted from the values of G-A before 

calculating Me.  

 

 
 

Figure 6.1 The genomic minus pedigree relationships (G-A) versus the pedigree relationships 
(A) for across population elements between individuals of two populations. The red line is 

the fitted exponential function ( cbxeaf  1 ) used to correct G-A values to reduce the 

impact of an insufficient pedigree depth. 
 

 

6.2.3 Validation 

After deriving the equation, the aim was to validate it for a broad range of 

scenarios, differing in heritabilities within populations and genetic correlations 

between populations. Those scenarios resemble combining populations from 

different environments or measured for different traits. For the validation, real 

genotypes and simulated phenotypes were used. In each of the scenarios, an 

empirical accuracy was calculated and compared with the predicted accuracy using 

the derived equation to investigate how accurate the accuracy was predicted. In 
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this part, the used genotype information, the simulated phenotypes and the 

estimation of the empirical accuracy is explained. The genotype and pedigree 

information from all individuals, as well as the simulated phenotypes are available 

upon request. 

 

6.2.3.1 Genotypes  

Genotypes were available for 1033 dairy cows from the Netherlands, each 

originating for at least 87.5% from the Holstein Friesian breed, i.e., all animals were 

pure-bred Holstein Friesians. Genotyping was done using the Illumina BovineSNP50 

Beadchip (50k, Illumina, San Diego, CA), after which genotypes were imputed to 

higher density (777k) using 3150 Holstein Friesian animals as reference population 

(Pryce et al. 2014). The accuracy of imputation across imputed loci, as reflected by 

the Beagle R
2
 value, was on average 0.96, indicating high imputation accuracy. As 

quality control, SNPs with a call rate smaller than 95%, an unknown mapping 

position, located on the sex chromosomes, a minor allele frequency (MAF) <0.005, 

for which only two genotypes were observed, and in complete linkage 

disequilibrium with a neighboring SNP were deleted. This quality control step 

reduced the number of SNPs for this study to 422,405. 

A total of 50,000 candidate QTL were selected from the 422,405 SNPs, and in 

each replicate QTL were randomly sampled from the candidate QTL to simulate 

phenotypes for each individual. The candidate QTL were selected from the SNPs 

using two different approaches: 1) Candidate QTL were randomly selected 

(RANDOM), and 2) Candidate QTL were selected from the SNPs with a MAF below 

0.2 (LOW MAF), since the MAF of QTL underlying complex traits is expected to be 

lower than the MAF of SNPs (Goddard and Hayes 2009; Yang et al. 2010; Kemper 

and Goddard 2012) due to ascertainment bias of the SNPs on the SNP chips 

(Matukumalli et al. 2009). For each of the two approaches, the remaining 372,405 

SNPs were used as markers. In this way, the QTL underlying a trait could be 

randomly sampled from the candidate QTL in each of the replicates, while the 

subset of SNP markers was constant across replicates for both RANDOM and LOW 

MAF. 

 

6.2.3.2 Phenotypes 

The 1033 individuals were divided into three groups to represent different 

populations. The first two groups (population 1 and 2) contained 450 individuals 

and represented the different training populations (population A and B in the 

derived equation). The last group (population 3) contained 133 individuals and 

represented the group of predicted individuals for which genomic values were 
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estimated (population C in the derived equation). The division over the groups was 

performed using pedigree information, by allocating paternal and maternal half-sib 

families to the same population. In this way, relationships within a population were 

higher than between populations, as usually would be expected for distinct 

populations.  

For both the RANDOM and LOW MAF approach of selecting candidate QTL, 

phenotypes were simulated by randomly sampling 4000 QTL from the group of 

50,000 candidate QTL. The QTL underlying the trait were the same in each of the 

populations. For each QTL, allele substitution effects were sampled from a 

multivariate normal distribution, with a mean of 0 and standard deviation of 1, 

using different genetic correlations between the populations. Only additive effects 

and no dominance or epistatic interactions were assumed. True genomic values 

(TGVs) were calculated by multiplying the QTL genotypes, coded as 0, 1 and 2, by 

the simulated allele substitution effects of the population to which the individual 

belonged. Across populations, the TGVs were rescaled to a mean of 0 and variance 

of 1. In each of the populations, the genetic variance was calculated as the variance 

of the TGVs for the individuals from that population. For all individuals, the 

environmental effect was sampled from N(0, 







1

1
2h

* Var(TGVi)), in which 

Var(TGVi) is the variance of TGV in population i to which the individual belonged. 

For each individual, the simulated TGV and environmental effect was summed to 

calculate the phenotype.  

 

6.2.3.3 Scenarios  

Seven different scenarios of multi-population genomic prediction were 

investigated, differing in heritabilities and genetic correlations between the 

populations (Table 6.1). The first four scenarios represent multi-environment 

genomic prediction, where populations in different environments were combined 

in one training population in which SNP effects were estimated. In those scenarios, 

the heritability was assumed to be the same in each population (0.95), but genetic 

correlations between populations varied from 0.4 to 1. The last three scenarios 

represent multi-trait genomic prediction, where populations measured for 

different traits are combined in one training population. In those scenarios, each 

population had a different heritability of 0.3 or 0.95 and genetic correlations 

between populations were 0.6 or 1. The values for the heritabilities of 0.3 and 0.95 

were chosen to have a clear contrast between the populations. 
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Table 6.1 Overview of the different scenarios to simulate phenotypes. 
 

 
Heritability 

 
Genetic correlation 

Scenarios
a 

Pop. 1 Pop. 2 
 

Pop. 1 - 2 Pop. 1 - 3 Pop. 2 - 3 

Same heritability 

SH1.0-0.6 0.95 0.95 
 

0.60 1.00 0.60 

SH0.8-0.6 0.95 0.95 
 

0.60 0.80 0.60 

SH0.8-0.4 0.95 0.95 
 

0.60 0.80 0.40 

SH0.4-0.4 0.95 0.95 
 

0.60 0.40 0.40 

       

Different heritabilities 

DH1.0-1.0 0.95 0.30 
 

1.00 1.00 1.00 

DH1.0-0.6 0.95 0.30 
 

0.60 1.00 0.60 

DH0.6-1.0 0.95 0.30  0.60 0.60 1.00 
 

a
 Scenarios are labeled as follows: The names of the scenarios with the same heritability in 

each population start with SH, followed by the genetic correlation between population 1 and 
3, and the genetic correlation between population 2 and 3. The names of scenarios with 
different heritabilities in each population start with DH, followed by the genetic correlation 
between population 1 and 3, and the genetic correlation between population 2 and 3. 

 

In each scenario, population 1, population 2, or population 1 and 2 were used 

as training population and population 3 contained the predicted individuals. Each 

scenario was analyzed using both approaches of selecting QTL; RANDOM and LOW 

MAF. Simulations were replicated 100 times in each scenario. 

 

6.2.3.4 Calculating Me 

Values for Me across the different populations were calculated based on the 

difference between the genomic and pedigree relationship matrix. Since the subset 

of SNPs slightly differed between the two approaches of selecting candidate QTL, 

RANDOM and LOW MAF, values for Me were calculated for each of the approaches. 

To reduce the impact of incompleteness of the pedigree, only individuals with at 

least 3 generations of complete pedigree were taken into account, resulting in 329 

individuals in population 1, 270 individuals in population 2, and 90 individuals in 

population 3. Thereafter, an exponential function was fitted through the data to 

further reduce the impact of an insufficient pedigree depth, as explained before. 

The G matrix was the same for all replicates, since the subset of 372,405 SNPs was 

constant for all replicates while QTL were re-sampled every replicate, resulting in 

the same Me for all replicates. Therefore, only one accuracy could be predicted for 
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all replicates of the same approach of selecting candidate QTL, representing the 

expected average accuracy of estimating SNP effects.  

 

6.2.3.5 Empirical accuracy of genomic prediction 

The empirical accuracies of genomic prediction were obtained both with a 

single-trait and a multi-trait GBLUP type of model run in ASReml (Gilmour et al. 

2009) using the simulated phenotypes. In both models, population was included as 

fixed effect to account for differences in mean phenotype between populations. 

Genomic values for the predicted individuals were estimated using a genomic 

relationship matrix, G, containing all training and predicted individuals, and 

simulated phenotypes of the training individuals. The G matrix included in the 

models was calculated using the allele frequencies across all individuals without 

taking the population into account. The other steps in calculating G were the same 

as explained above.  

In the single-trait model, variances were estimated using REML. Therefore, the 

model used was termed GREML instead of GBLUP, where variances are assumed to 

be known. In the single-trait model, the phenotypes of the different populations 

were pooled in one population, without taking the genetic correlations between 

the populations into account. The differences in heritability were, however, taken 

into account by weighting the phenotypes differently and in this way 

acknowledging that the phenotypes in one population were more accurately 

representing the genomic values of the individuals compared to the phenotypes in 

the other population. It was assumed that the heritability of the phenotypes from 

the population with the lowest heritability, i.e., a heritability of 0.3, represented 

the trait heritability based on one measurement. The phenotypes of the individuals 

from this population were given a weight of 1. The heritability of the other 

population, i.e., a heritability of 0.95, represented the heritability based on multiple 

measurements of the same trait. Or in other words, it represented the reliability of 

the phenotype based on more than one record. This indicates that the genetic 

variance can be assumed to be the same in both populations. The weight for the 

phenotypes of individuals from the population with the highest reliability (r
2
) was 

equal to the ratio of the residual variances in both populations, which can be 

calculated as: 

2
2

2

21

h
r

h

h
w




 .    (6.22) 

Following Equation 6.22, a weight of 44.33 was given to the phenotypes from the 

population with a heritability of 0.95. One possible scenario where phenotypes 
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could be weighted differently is in dairy cattle populations, where phenotypes of 

cows are generally based on one single measurement and phenotypes of bulls are 

based on different numbers of progeny, for which the same weights can be 

obtained following Garrick et al. (2009). 

The multi-trait model considered the phenotypes for the same trait in the 

different populations as different traits with a genetic correlation between the 

traits. Estimating all genetic correlations in the multi-trait model was not possible, 

since phenotypes of the predicted individuals were not included in the model. 

Therefore, genetic correlations and variance components were assumed to be 

known and fixed to the simulated values, and the multi-trait model was termed 

GBLUP.  

For each of the models, the accuracy of genomic prediction was calculated as 

the correlation between the simulated TGVs and predicted genomic values. Note 

that the single- and multi-trait GBLUP models use both SNP information and 

simulated phenotypes, that differed across the replicates. Therefore, averages and 

standard errors across the replicates were calculated and compared to the 

predicted accuracies. 

 

6.2.4 Evaluating the potential accuracies of two scenarios 

The derived equation can be used to investigate the accuracy of different 

scenarios of multi-population genomic prediction. To show the potential of the 

equation for this aim, we used Equation 6.18 to evaluate the potential accuracy for 

two specific scenarios, assuming that all genetic variance in the predicted 

population was captured by the SNPs in the training population (
CALDr
,

=
CBLDr
,

=1).  

The first scenario is relevant for dairy cattle breeding, where bulls with 

deregressed estimated genetic values based on daughter information are in 

general used in the training population, with a heritability equal to the reliability of 

the estimated genetic values. Different studies have investigated the potential to 

increase the accuracy of genomic prediction by adding cows to the training 

population with their own phenotypes, that are in general less reliable than 

estimated genetic values (e.g., Calus et al. 2013; Cooper et al. 2015). This approach 

was studied using the prediction equation (Equation 6.18) when different numbers 

of cows (range 0 to 50,000) were added to a training population of 10,000 bulls, 

assuming a heritability of 0.05 for the phenotypes of cows which is representing 

the heritability of a fertility trait in dairy cattle (e.g., Karoui et al. 2012), different 

reliabilities (range 0 to 1) for the estimated genetic values of bulls, and a genetic 

correlation of 1 between the estimated genetic values of bulls and own phenotypes 
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of cows. The values for Me were set to the values derived from the cattle genotype 

data used in this study. 

The second scenario is representing a scenario in human studies, in which it was 

assumed that different numbers of individuals from a population from African 

descent (range 0 to 100,000) were added to a training population of 5000 

individuals from European descent to increase the accuracy of predicting genetic 

risk for the European population. As an example, parameters for the trait 

schizophrenia were used, with a heritability of 0.28 in the European population, a 

heritability of 0.24 in the African population and a genetic correlation of 0.66 

between the populations (De Candia et al. 2013). The Me in the European 

population (
CAeM
,

 in Equation 6.18) was set to 43,000, based on the equation 

)4ln(

2

LN

LN
M

e

e
e   (Goddard 2009), an effective population size (Ne) of 10,000 

(McEvoy et al. 2011), and a genome length (L) of 30 Morgan (Venter et al. 2001). 

The Me across the populations (
CBeM
,

 in Equation 6.18) was varied (range 43,000 to 

2,000,000).  

 

6.3 Results 
In this section, the results of the prediction equation are first presented 

assuming that all genetic variance in the predicted population (population 3) is 

captured by the SNPs in the training population. Those predicted accuracies were 

used to calculate 
3,1LDr  and 

3,2LDr  based on the ratio between the empirical and 

predicted accuracy of genomic prediction when only one of the populations, 

population 1 or population 2, was used as training population. As a next step, the 

calculated values for 
3,1LDr  and

3,2LDr  were used to predict the accuracy of genomic 

prediction when population 1 and 2 were combined in the training population. 

 

6.3.1 Calculating Me 

In Table 6.2, the different estimated Me values across populations are shown. 

Due to only small differences in the subset of SNPs used to calculate G, estimated 

Me values were very similar for the scenarios with QTL randomly sampled 

(RANDOM) and QTL sampled with a low MAF (LOW MAF). Using population-specific 

allele frequencies or allele frequencies across populations only had a very small 

effect on the estimated values for Me, as well as on the predicted accuracies (range 

-0.9% ̶ +1.3%). This indicates that, for this study, the use of population-specific 

allele frequencies or the allele frequency across populations did not influence the 
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results, due to the very similar allele frequencies across the three populations. 

Therefore, the predicted accuracies are only shown for the Me values calculated 

based on a G matrix using the allele frequencies across the populations.  

 

Table 6.2 Estimated Me values across populations using population-specific allele 
frequencies or the allele frequency across populations to set-up G. 

 

Scenario 
Population-specific allele 

frequency 
Allele frequency across 

populations 

QTL with low MAF 
  

Population 1 - 3 1541 1515 

Population 2 - 3 1616 1652 

   
QTL randomly sampled 

  
Population 1 - 3 1620 1585 

Population 2 - 3 1694 1741 

 

 

 

6.3.2 Scenarios with QTL randomly sampled (RANDOM) 

In this part, results are presented for the RANDOM scenarios of simulating 

phenotypes. For those scenarios, the predicted accuracies and average empirical 

accuracies of genomic prediction obtained with a single-trait model using either a 

single or combined training population and different scenarios of simulated 

phenotypes, are shown in Figure 6.2. The first four scenarios show the accuracies 

when different genetic correlations between the populations were simulated, with 

the same heritability in each of the populations. Those scenarios show that when 

only one population was used as training population, predicted and empirical 

accuracies were, as expected, higher when the genetic correlation between 

training and predicted individuals was higher. There was only a small difference 

between the accuracies obtained using population 1 or 2 as training population 

when the genetic correlation with the predicted individuals was the same, because 

both populations were about equally related to the predicted individuals. 

Combining the two populations in one training population always resulted in an 

increase in both predicted and empirical accuracy. The magnitude of the increase in 

accuracy depended on the genetic correlation between the predicted individuals 

and the added population; the higher the genetic correlation, the higher the 

increase in accuracy.  
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Figure 6.2 Predicted and empirical accuracies of genomic prediction (± standard errors) using 
a single-trait model, one or two populations in the training population, QTL randomly 
sampled from the SNPs, and assuming in the prediction equation that all genetic variance in 
the predicted population was captured by the SNPs in the training population. The different 
scenarios represent the different genetic correlations and heritabilities used to simulate 
phenotypes. The scenarios starting with SH have the same heritability in the two training 
populations, the scenarios starting with DH have a different heritability. For each scenario, 
SH or DH is followed by the genetic correlation between population 1 and 3, and the genetic 
correlation between population 2 and 3.  
 
 

The last three scenarios show the predicted and empirical accuracies using 

different heritabilities in each of the populations and genetic correlations of 1 or 

0.6 between populations. Those scenarios show that when only one population 

was used as training population, predicted and empirical accuracies were, as 

expected, higher when the heritability in the training population was higher. For 

this study, a heritability of 0.3 resulted in approximately 60% of the accuracy 

obtained with a heritability of 0.95. Adding 450 individuals from the population 

with a low heritability to a training population of 450 individuals from the 

population with a high heritability, however, still resulted in an increase in 

accuracy. The increase in both predicted and empirical accuracy was again lower 

when the genetic correlation was lower, similar to the scenarios with the same 

heritability in each population. 
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For each of the scenarios, the predicted accuracy of genomic prediction shown 

in Figure 6.2 is assuming that 
3,1LDr =

3,2LDr =1. In general, predicted accuracies were 

very slightly overestimating the empirical accuracies of genomic prediction (±1%), 

both when the heritability was the same in each population and when the 

heritability was different. When population 1 was used as training population, the 

overestimation was on average 4% (range 1% – 11%). When population 2 was used 

as training population, the empirical accuracy was slightly underestimated by the 

predicted accuracy with on average 8% (range -20% – -2%). When both populations 

were combined in the training population, the overestimation was on average 6% 

(range 3% – 12%). Those results indicate that when QTL were randomly sampled 

from the SNPs, most of the genetic variance in the predicted individuals was tagged 

by the SNPs in the training population, especially when population 2 was used as 

training population, and the estimated value for 
3,1LDr was 0.96 and for 

3,2LDr  1. 

Using those calculated values to predict the accuracy of genomic prediction for the 

combined training population reduced the overestimation of the empirical 

accuracy to 3%. 

 

6.3.3 Scenarios sampling QTL with low MAF (LOW MAF) 

 In this part, results are presented for the LOW MAF scenarios of simulating 

phenotypes. For those scenarios, the predicted and average empirical accuracies of 

genomic prediction obtained with a single-trait model using either a single or 

combined training population are shown in Figure 6.3, assuming 
3,1LDr =

3,2LDr =1. All 

empirical accuracies for the LOW MAF scenarios were lower than the accuracies 

obtained for the RANDOM scenarios. The predicted accuracies, however, were 

similar to the predicted accuracies for the RANDOM scenarios. So, the predicted 

accuracies for the LOW MAF scenarios overestimated the empirical accuracies to a 

greater extent. On average, the overestimation was ±15%, and again higher when 

population 1 was used as training population, compared to using population 2 as 

training population (population 1: 20%; population 2: 7%; combined training 

population: 20%). Those results indicate that, as expected, a smaller proportion of 

the genetic variance in the predicted individuals was tagged by the SNPs in the 

training population when QTL were sampled with a low MAF and the estimated 

value for 
3,1LDr was 0.84 and for 

3,2LDr 0.94. Using those calculated values to predict 

the accuracy of genomic prediction for the combined training population, reduced 

the overestimation of the empirical accuracy to 5%. 
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Figure 6.3 Predicted and empirical accuracies of genomic prediction (± standard errors) using 
a single-trait model, one or multiple populations in the training population, QTL sampled 
with a low minor allele frequency (MAF), and assuming in the prediction equation that all 
genetic variance in the predicted population was captured by the SNPs in the training 
population. The different scenarios represent the different genetic correlations and 
heritabilities used to simulate phenotypes. The scenarios starting with SH have the same 
heritability in the two training populations, the scenarios starting with DH have a different 
heritability. For each scenario, SH or DH is followed by the genetic correlation between 
population 1 and 3, and the genetic correlation between population 2 and 3. 

 

6.3.4 Single-trait versus multi-trait model 

The analyses using a combined training population were performed using both 

a single-trait model as well as a multi-trait model, where the same trait in the 

different populations was modelled as a different correlated trait. The accuracies 

from both models are shown in Figure 6.4, for the (A) RANDOM, as well as for the 

(B) LOW MAF scenarios. In this figure, the predicted accuracies for the combined 

training populations use the estimated values of 
3,1LDr  and 

3,2LDr , estimated when 

only population 1 or 2 was included in the training population. In general, the 

accuracies obtained with the multi-trait model were equal to or higher than the 

accuracies obtained with the single-trait model, depending on the genetic 

correlations. When the genetic correlations between both training populations and 

the predicted population were the same, accuracies obtained with the single- and 

multi-trait model were similar. When the genetic correlations were different,                     

l  



6. Accuracy of multi-population genomic prediction 

 

 

182 
 

 

 
 

Figure 6.4 Predicted and empirical accuracies of genomic prediction (± standard errors) using 
a training population consisting of two populations and QTL (A) randomly sampled, or (B) 
with a low minor allele frequency, and accounting for the proportion of genetic variance in 
the predicted population captured by the SNPs in the training population in the prediction 
equation. Empirical accuracies were either obtained with a single-trait model or a multi-trait 
model. The different scenarios represent the different genetic correlations and heritabilities 
used to simulate phenotypes. The scenarios starting with SH have the same heritability in 
the two training populations, the scenarios starting with DH have a different heritability. For 
each scenario, SH or DH is followed by the genetic correlation between population 1 and 3, 
and the genetic correlation between population 2 and 3.  
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the predicted accuracy of genomic prediction using the estimated values of 
3,1LDr  

and 
3,2LDr reduced on average across replicates to 0% (range -2% to +2%) for the 

RANDOM scenarios and to 1% (range -2% to +3%) for the LOW MAF scenarios. This 

indicates that the equation can accurately predict the accuracy of genomic 

prediction when the proportion of the genetic variance in the predicted population 

not captured by the SNPs in the training population is known and taken into 

account. 

 

6.3.5 The potential accuracies of two scenarios 

The potential accuracies when cows with own phenotypes are added to a 

training population of 10,000 bulls with deregressed estimated genetic values, is 

shown in Figure 6.5, for different numbers of cows added to the training 

population and different reliabilities for the estimated genetic values. This figure 

shows that when the reliability of the estimated genetic values of the bulls was 

low, relatively a small amount of cows had to be added to the training population 

to see a substantial increase in accuracy. When the reliability of the estimated 

genetic values was high (above 0.7), a high accuracy was already obtained with 

10,000 bulls in the training population (accuracies were above 0.9), and enlarging 

the training population by adding cows with own phenotypes only resulted in a 

minor increase in accuracy. 

The potential accuracies for the human scenario where a population from 

African descent is added to a training population of European descent to predict 

the genetic risk of individuals from the European population is shown in Figure 6.6, 

with different numbers of individuals from the African population added to the 

training population and different values for Me across the populations. This figure 

shows that when Me across the two populations was low, adding individuals from 

another population could substantially improve the accuracy of predicting genetic 

risk. When the Me across the two populations was large (>20 times the Me within 

the European population), adding individuals from the other population only 

resulted in a minor increase in accuracy. This indicates that to improve the accuracy 

of predicting genomic values, using training individuals from populations that are 

more closely related and have a more consistent LD pattern, resulting in lower 

values for Me across populations, is more beneficial than using training individuals 

from populations that are only distantly related. 
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Figure 6.5 Predicted accuracies with different numbers of individuals from population 2 
added to a training population consisting of 10,000 individuals from population 1 with 
different heritabilities for the trait. The input parameters represent a scenario in dairy cattle 
were a cow population with own phenotypes (population 2) was added to a bull population 
with estimated genetic values based on daughter information (population 1). Due to 
different numbers of daughters used to estimate genetic values for the bulls, the heritability 
or reliability of the phenotype in population 1 ranged between 0 and 1. The heritability for 
the trait in population 2 was 0.05, and genetic correlations between the training populations 
and between both training populations and the predicted population were 1. The values for 

Me were equal to the values in the simulations (
3,1eM  = 1620, 

3,2eM  = 1694). 
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Figure 6.6 Predicted accuracies with different numbers of individuals from population 2 
added to a training population consisting of individuals from population 1 with different 
values for the effective number of chromosome segments, Me, across population 1 and 2. 
The input parameters represent a human scenario where a population from African descent 
(population 2) was added to a population from European descent (population 1) to predict 
the genetic risk for Schizophrenia in the European population (population 3 = population 1), 
with heritabilities of 0.28 in population 1 and 0.24 in population 2 and a genetic correlation 
of 0.66 between populations 1 and 2 (De Candia et al. 2013). The Me in population 1 was set 

to 43,000, based on the equation 
)4ln(

2

LN

LN
M

e

e
e   (Goddard 2009) and an effective 

population size of 10,000 (McEvoy et al. 2011).  

 

6.4 Discussion 
In this paper, a deterministic equation was derived using population parameters 

to predict the accuracy of genomic values when different populations are 

combined in the training population. The equation was validated in this study using 

simulations to resemble the combining of populations from different environments 

and measured for different correlated traits, i.e., multi-environment and multi-trait 
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genomic prediction, with different heritabilities in each population and genetic 

correlations between populations different from 1. In all simulated scenarios, the 

equation was able to accurately predict the accuracy of genomic prediction when 

the proportion of the genetic variance in the predicted population captured by the 

SNPs in the training population was known and taken into account.  

For the validation of the derived equation, real cattle genotypes from Dutch 

Holstein Friesian cows, divided in three populations based on the pedigree, and 

simulated phenotypes were used. The simulations showed that the equation is able 

to handle heterogeneous data in different populations, such as differences in 

heritability in each population and genetic correlations between populations 

different from 1. In principle, the equation can handle data from more divergent 

populations as well, such as populations from different environments, breeds or 

lines. The proportion of the genetic variance captured by the SNPs can, however, 

be expected to be lower across more divergent populations, as will be discussed 

later. To confirm that the equation indeed gives accurate predictions for those 

other scenarios when the proportion of the genetic variance captured by the SNPs 

is known, further validation of the equation is required using a broader range of 

populations, preferably with real genotype and phenotype information.  

 

6.4.1 Potential of the derived equation 

The equation gives insight in important parameters for multi-population 

genomic prediction and can be used to compare different scenarios. The equation 

for example shows that when the Me across populations is two times higher than 

Me within a population, two times more individuals from the other population have 

to be added to obtain the same increase in accuracy when the heritabilities are the 

same, the genetic correlations between populations is 1, and all genetic variance 

can be captured. When those last criteria are not met, even more individuals from 

the other population have to be added to obtain the same increase in accuracy.  

Another way in which the equation can be used is to investigate the potential 

accuracy of different scenarios, as was done in Figure 6.5 and 6.6. In Figure 6.6, the 

equation was applied to a scenario where human populations from European and 

African descent were combined in one training population to predict Schizophrenia 

risk for the European population, a scenario that was suggested by de Candia et al. 

(2013). The results show that when the LD pattern is very different across 

populations, resulting in a high Me across populations, it is very unlikely to see an 

increase in prediction accuracy, even when a lot of individuals from the other 

population are added. Moreover, it shows that the sensitivity of the accuracy for 

Me is much smaller at larger values of Me across populations compared to small 
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values of Me, which is in agreement with the results found within a population 

(Brard and Ricard 2015). The equation can be used in the same way to investigate 

other scenarios of multi-population genomic prediction. Estimates for the input 

parameters, such as the Me across predicted and training populations, the 

heritability of the trait in each of the training populations, the genetic correlations 

between the populations (rG), and the part of the genetic variance in the predicted 

population captured by the SNPs in the training population (rLD) should, however, 

be known. Apart from the heritability, for which estimates are straightforward to 

calculate, each of the input parameters and how to estimate values for those 

parameters will be discussed in more detail in the following paragraphs.  

 

6.4.2 Effective number of chromosome segments (Me) 

In the derived prediction equation, Me across populations is an important 

parameter. This parameter can be interpreted as a statistical concept and 

represents the effective number of segments that are segregating in a combined 

population, which is a measure for the effective number of effects that has to be 

estimated in one population to predict genomic values for individuals from another 

population. It depends on the consistency in LD between the populations; when 

the LD pattern is completely different between the populations, each of the 

segments has to be very small to segregate in both populations, resulting in a large 

Me across the populations. The importance of this parameter indicates that the 

predicted population influences the accuracy of estimating SNP effects in the 

training population. Consider for example a situation where one population is 

included in the training population to predict a trait that is influenced by one QTL 

having two SNPs in complete LD in that training population. For predicting genomic 

values within a subset of the same population, it does not matter to which of the 

SNPs the effect of the QTL is allocated. When the estimated SNP effects are used in 

another population, for which only one of the SNPs is in complete LD and the other 

is completely independent from the QTL, it is important to which of the SNPs the 

effect of the QTL is allocated. When the effect is equally distributed across the two 

SNPs, only half of the effect of the QTL is captured for that population, which 

reduces the accuracy. This indicates that the accuracy of estimating SNP effects in 

the training population is indeed depending on the predicted population, which is 

reflected in the Me across populations.  

It is good to note that Me represents the number of effects that have to be 

estimated in a GBLUP type of model, basically assuming an infinitesimal model. 

When a Bayesian variable selection model is used, the number of estimated effects 

is only equal to Me when the effective number of QTL underlying the trait is larger 
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than Me, otherwise the number of estimated effects is equal to the effective 

number of QTL (Daetwyler et al. 2010; Van den Berg et al. 2015). This indicates that 

when the number of QTL is substantially lower than Me and a Bayesian variable 

selection model is used, the number of estimated effects is equal to the effective 

number of QTL, which is the value that should be used in the equation to predict 

the accuracy of genomic values. 

As shown in this study as well as in other studies (Goddard et al. 2011; Wientjes 

et al. 2013; Wientjes et al. 2015b), the value for Me can be calculated using the 

relationship matrices based on genomic information and pedigree information. This 

indicates that when a small subset, for example 100 individuals with pedigree 

information, from each population is genotyped, estimates for Me can be obtained. 

The value for Me within population can also be obtained based on the effective 

population size and genome size, for which different equations exist (Goddard 

2009; Hayes et al. 2009b; Goddard et al. 2011). The different equations, however, 

result in quite different estimates for Me (Wientjes et al. 2013; Brard and Ricard 

2015). Moreover, it is not possible to use the equations based on effective 

population size to estimate the value for Me across populations. In general, the 

value for Me across populations can be expected to be higher than within 

populations (Wientjes et al. 2013; Wientjes et al. 2015b), since Me is depending on 

the strength of LD between loci (Goddard et al. 2011), and LD is at least partly 

different across populations (Sawyer et al. 2005; De Roos et al. 2008; Veroneze et 

al. 2013; Wientjes et al. 2015c). In this study, the estimated Me within a population 

was around 1350 for all three populations. The values for Me across populations 

were approximately 20% higher and around 1600. In a study using different breeds, 

the Me values across populations were reported to be around 10 times larger than 

Me within a population (Wientjes et al. 2015b), which is a result of the lower 

variation in relationships across breeds than across populations of the same breed. 

 

6.4.3 Genetic correlation between populations (rG) 

Another input parameter is the genetic correlation between the populations, 

which is the correlation between the allele substitution effects of the QTL. In a 

simulation study with at least 100 individuals in each of the populations, it was 

shown that this parameter can accurately be estimated using a genomic multi-trait 

model, where the same trait in different populations was treated as a different trait 

(Wientjes et al. 2015b). For closely related populations with an overlapping 

pedigree, such as populations in different countries that have some common co-

ancestry, the genetic correlation can also be estimated using a pedigree 

relationship matrix (Schaeffer 1994). For more distantly related populations, such 
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as different breeds or lines, the pedigree would probably not be deep enough to 

capture the relationships across populations and a relationship matrix based on 

genomic information is required (Karoui et al. 2012; Huang et al. 2014). 

 

6.4.4 Genetic variance captured by the SNPs (rLD) 

Results of this study show that the empirical accuracy of genomic prediction 

was depending on the MAF of the QTL underlying the simulated trait; when QTL 

had on average a lower MAF than the SNPs, the accuracy reduced. This is in 

agreement with results of other studies using single- or multi-population genomic 

prediction (Daetwyler et al. 2013; Wientjes et al. 2015a). The reason for this is a 

decrease in the strength of LD between QTL and SNPs when the MAF of QTL is 

lower than the MAF of SNPs (Khatkar et al. 2008; Yan et al. 2009; Wientjes et al. 

2015c), reducing the proportion of the genetic variance captured by the SNPs. As 

stated before, the MAF of QTL underlying complex traits is expected to be lower 

than the MAF of SNPs (Goddard and Hayes 2009; Yang et al. 2010; Kemper and 

Goddard 2012), indicating that it is highly likely that not all the genetic variance can 

be captured by the SNPs in real data.  

The square root of the proportion of the genetic variance captured by the SNPs 

is represented in the prediction equation as rLD, and is depending on the density of 

the SNP chip, the characteristics of the QTL underlying the trait, and the 

investigated populations (Daetwyler 2009; Erbe et al. 2013). This parameter can 

only be estimated based on empirical data, by comparing the predicted and 

empirical accuracy. Using this approach, rLD was estimated to be around 1 when 

QTL were randomly sampled from the SNPs and around 0.85 when QTL had a low 

MAF in this study. In other studies using real data, the square of rLD, i.e., 2
LDr , was 

estimated to be around 0.8 using a 50k chip in Holstein Friesian dairy populations 

for Net Merit (Daetwyler 2009) and production traits (Erbe et al. 2013), and slightly 

lower in Brown Swiss dairy populations for production traits (Erbe et al. 2013; 

Román-Ponce et al. 2014). The studies estimating 2
LDr  only focused on one 

population. Across populations, the value for rLD is supposed to be lower and 

depending on the number of generations since the separation of the populations; 

the higher the number of generations, the lower the consistency in LD (e.g., 

Andreescu et al. 2007; De Roos et al. 2008) and the higher the chance on QTL 

segregating in only one population (Kemper et al. 2015). Therefore, the values of 

8.0 =0.89 for rLD found in the empirical studies can probably be seen as the 

upper limit of rLD, which can only be obtained when the predicted and training 

population are subsets from the same population. The more divergent the 
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predicted and training population are, the lower the value of rLD and the further 

away the value is from the upper limit of rLD within a population.  

 

6.4.5 Single-trait versus multi-trait model 

Empirical accuracies were obtained using both a single-trait model as well as a 

multi-trait model. The results showed that the use of a multi-trait model was 

beneficial when the genetic correlation between the two training populations and 

the predicted population was different. In an empirical study with three different 

chicken lines with different genetic correlations between populations, a multi-trait 

model resulted in more or less similar accuracies than a single-trait model (Huang 

et al. 2014). In an empirical study with three dairy cattle breeds, a multi-trait model 

using estimated genetic correlations resulted in more or less similar accuracies than 

a multi-trait model with genetic correlations fixed at 0.95 (Karoui et al. 2012). The 

combining of dairy cattle populations from three different countries, however, 

showed a higher accuracy for a multi-trait model compared to a single-trait model 

(De Haas et al. 2012). So, empirical studies have shown that multi-trait models yield 

similar or slightly higher accuracies than single-trait models, however, genetic 

correlations were generally estimated with large standard errors. 

The observed increase in accuracy of using a multi-trait model when genetic 

correlations between the two training populations and the predicted population 

were different can be explained as follows. When the genetic correlations are 

different, it is beneficial to take into account that estimated SNP effects from one 

training population are more related to SNP effects in the predicted population 

than estimated SNP effects from the other training population. When the genetic 

correlation was the same, the use of a multi-trait model was not beneficial, even 

not when the genetic correlation among the training populations was different 

from 1. This can be explained by the fact that estimated SNP effects in each of the 

training populations are equally related to SNP effects in the predicted population. 

In the single-trait model, averages of the SNP effects in both training populations 

are estimated, which have the same correlation with the SNP effects in the 

predicted population as the SNP effects in each of the training populations. 

Therefore, taking the genetic correlation between the training populations into 

account had no effect on the obtained accuracy for those scenarios. 
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6.5 Conclusion 
A deterministic equation is derived to predict the accuracy of genomic values 

when the training population comprises individuals of different populations, such 

as different breeds, lines or environments, or populations measured for different 

traits. In this study, the equation was validated for different multi-environment and 

multi-trait scenarios. Results showed that the accuracy of estimating genomic 

values can be accurately predicted for those scenarios, provided that the effective 

number of chromosome segments across predicted and training populations, the 

heritability of the trait in each of the training populations, the genetic correlations 

between the populations, and the proportion of the genetic variance in the 

predicted population captured by the SNPs in the training population are known. 

Therefore, the derived equation can be used to investigate the potential accuracy 

of different multi-population genomic prediction scenarios and to decide on the 

most optimal design of training populations.  

 

6.6 Acknowledgements 
The authors are thankful for useful comments from Chris Schrooten and Henk 

Bovenhuis. This study was financially supported by Breed4Food (KB-12-006.03-005-

ASG-LR), a public-private partnership in the domain of animal breeding and 

genomics, and CRV (Arnhem, The Netherlands). The RobustMilk project and the 

National Institute of Food and Agriculture (NIFA) are acknowledged for providing 

the 50k genotypes of the HF cows, and the gDMI consortium is acknowledged for 

imputing those to 777k genotypes. 

 

 

 

 

 

 

 

 

 

 



6. Accuracy of multi-population genomic prediction 

 

 

192 
 

6.7 Appendix  

6.7.1 Appendix A: Deriving the accuracy of estimating SNP effects in a 

combined training population 

The accuracy of the selection index, representing the accuracy of estimating the 

effect of one locus, can be calculated as: 
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For simplicity, we will start by referring to the first element of this inversed P 

matrix as A, to the off-diagonal elements as B and to the last element as C. Hence, 

Equation A6.1 can be written as:  
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The inverse of the P matrix can be written as:  
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Hence, Equation A6.2 can be written as: 
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Dividing both the numerator and the denominator by 2
Ap  and 2

Bp , results in: 
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Since each locus is assumed to explain the same amount of the genetic variance, 

the accuracy of estimating the effect of one SNP is the same for each of the SNPs, 

and represents the overall accuracy of estimating SNP effects (reffect). 

 

6.7.2 Appendix B: Alternative way of deriving the prediction equation 

In this section, an alternative derivation of the prediction equation is presented. 

In this derivation, the estimated genomic values for population C based on two 

different training populations (population A and population B), are combined in a 

selection index to calculate the estimated genomic values for population C when 

the two populations would be combined in one training population. The estimated 

genomic value for individual i from population C (
iCAEGV , ) can be calculated using 

the estimated marker effects in a training population of population A, following: 

jjiCAi A
j

CGCA XrEGV ̂
,,,  ,    (B6.1)  

in which 
CAGr ,

 is the genetic correlation between population A and C, 
jiCX

,
 is the 

genotype of individual i from population C for marker j, and 
jÂ  is the estimated 

effect of marker j in population A. In an equivalent way, the estimated genomic 

value for individual i from population C can be calculated using the estimated 

markers effects in a training population of population B, i.e., 
iCBEGV , .  

Both estimated genomic values, 
iCAEGV ,  and 

iCBEGV , , can be combined in a 

selection index to estimate the genomic value for individual i from population C 

when both population A and B would be combined in the training population           

(
iCBAEGV , ), following:  



6. Accuracy of multi-population genomic prediction 

 

 

195 

 

 6  

iCBBiCAACBA EGVbEGVbEGV
i ,,,  ,       (B6.2) 

in which bA and bB are the regression coefficients on 
iCAEGV ,  and 

iCBEGV ,  to predict 

the estimated genomic value for individual i from population C for the combined 

training population (
iCBAEGV , ).  

The regression coefficients on 
iCAEGV ,  and 

iCBEGV ,  that would maximize the 

estimation of the genomic value for individual i from population C can be 

calculated as: 

gPb 1
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,      (B6.3) 

in which P is the (co)variance-matrix between the information sources 
iCAEGV ,  and 

iCBEGV , , and g is a vector with covariances between the information sources, 

iCAEGV ,  and 
iCBEGV , , and the true genomic value for individual i from population C 

(
iCTGV ):  
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and: 
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In the following part, we will assume that the variances of the estimated and 

true genomic values are scaled, such that the true genomic values in population C 

have a variance of 1. The variance of the estimated genomic values for population 

C using population A in the training population is then equal to the reliability of 

predicting genomic values for population C: 
2

, ,
)(

CAEGViCA rEGVVar  .          (B6.6) 

The covariance between 
iCAEGV ,  and 

iCBEGV ,  can be written as: 
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The covariance between the effects marker estimated in population A and B can be 

written as: 

)ˆ()ˆ(ˆ,ˆ
ˆ,ˆ jj

jBjAjj BA
j

B
j

A VarVarrCov 
















 .        (B6.8) 

Using the path coefficient method as described by Dekkers (2007), it can be 

shown that the correlation between the estimated marker effects is equal to: 

BABA
jBjA

effecteffectG rrrr
,ˆ,ˆ 


,       (B6.9) 

in which 
BAGr ,

 is the genetic correlation between population A and B, and 
Aeffectr  

and 
Beffectr  are the accuracies of estimating the marker effects in respectively 

population A and B. The square root of the variance of the estimated marker 

effects in each of the populations is equal to the accuracy of the estimated marker 

effects, i.e., 
Aj effectA rVar )ˆ( , therefore: 
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And:  

  22
,, ,,,

,
BABACBCAi effecteffectGGGiCBCA rrrrrEGVEGVCov  . (B6.11) 

The accuracy of estimating marker effects in population A multiplied by the 

genetic correlation between population A and C equals the accuracy of the 

estimated genomic values, i.e., 
ACACA EffectGEGV rrr

,,
 , under the assumption that all 

genetic variance of the predicted population is captured by the training 

populations. Hence, the covariance can be written as: 
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Hence, P can be written as: 
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The covariance between the estimated genomic values for individual i from 

population C using population A as training population is also equal to the reliability 
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of predicting genomic values for population C, i.e.,   2
, ,

,
CAEGViCiCA rTGVEGVCov  . 

Hence, g can be written as: 
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Since it is assumed that the variance of the true genomic values in population C 

is scaled to 1, the accuracy of this selection index, representing the accuracy of 

estimating genomic values for population C based on a training population of 

population A and B, can be calculated as: 
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For simplicity, we will start by referring to the first element of matrix 1P as A, to 

the off-diagonal elements as B and to the last element as C. Hence, Equation B6.15 

can be written as:  
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The matrix P
-1

 can be written as:  
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Hence, Equation B6.16 can be written as: 
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If we assume that all genetic variance in population C can be captured by the 

SNPs in the training population, the accuracies for each of the populations can be 

replaced by the corresponding equation to predict the accuracy of genomic 

prediction (Daetwyler et al. 2008; Daetwyler et al. 2010; Wientjes et al. 2015b): 
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Using this in Equation B6.18 results in: 
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Multiplying both the numerator and the denominator by 
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This last equation is equivalent to the equation derived before, using the same 

assumption that all genetic variance of the predicted population is captured by the 

SNPs in the training populations.  
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7.1 Introduction 
In livestock breeding programs, genotype information of thousands of single-

nucleotide polymorphism (SNP) markers spread across the whole genome is widely 

used to select the genetically best animals to produce the next generation. In this 

approach, known as genomic selection, animals are selected based on genomic 

estimated breeding values (GEBVs), predicted using SNP genotype information of 

those animals as well as SNP effects estimated in a reference population containing 

animals with known phenotypes and SNP genotypes (Meuwissen et al. 2001). The 

accuracy of predicting GEBVs, i.e., the accuracy of genomic prediction, determines 

the response to selection (Falconer and Mackay 1996). One of the factors limiting 

the accuracy of genomic prediction in numerically small populations is the size of 

the reference population. This might result in an increasing genetic gap between 

populations of numerically small breeds compared to populations of the more 

commonly used breeds, e.g., the Holstein Friesian breed in dairy cattle. One way to 

increase the size of the reference population for numerically small populations is to 

add individuals from other populations to the reference population, for example 

individuals from different countries, breeds, or lines. The suitability of individuals 

from another population to increase the accuracy of genomic prediction is, 

however, reduced by differences between the populations, such as differences in 

linkage disequilibrium (LD) between the SNPs and the quantitative trait loci (QTL) 

underlying the trait, differences in allele frequencies of SNPs and QTL, differences 

in allele substitution effects of QTL, and the absence of close family relationships 

between populations. 

The overall objective of this thesis was to investigate the accuracy of multi-

population genomic prediction in dairy cattle. This overall objective was divided in 

two sub-objectives. The first sub-objective was to investigate the effect of different 

factors on the accuracy of multi-population genomic prediction. The factors that 

were studied were the effect of absence of close family relationships (Chapter 2), 

and the effect of differences across populations in allele substitution effects 

(Chapter 3 + 6), linkage disequilibrium patterns (Chapter 2 + 3 + 4 + 6), and allele 

frequencies (Chapter 5). The second sub-objective was to derive deterministic 

equations to calculate or predict the accuracy of multi-population genomic 

prediction. In this thesis, two different equations were derived, one using genomic 

relationships between individuals (Chapter 3), and one using population 

parameters (Chapter 6). 
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This general discussion is divided in five parts. In the first part, the potential of 

multi-population genomic prediction is discussed for different scenarios, combining 

either populations from the same breed from different countries, closely related 

breeds, or distantly related breeds. In the second part, the impact of the model 

used to estimate GEBVs on the accuracy of multi-population genomic prediction is 

discussed. In the third part, the possibility to estimate the genetic correlation, an 

important parameter determining the potential of multi-population genomic 

prediction, using SNP information is discussed. In the fourth part, the relation 

between the effective number of chromosome segments and the consistency of 

multi-locus LD across populations is discussed. Both measures were used in the 

previous Chapters and reflect on the consistency of LD across populations, which is 

influencing the accuracy of multi-population genomic prediction. Finally, in the fifth 

part, possible research directions to improve the accuracy of multi-population 

genomic prediction are discussed. 

 

7.2 Potential of multi-population genomic prediction 
Combining two or more populations in one reference population was expected 

to result in an increase in accuracy of genomic prediction by increasing the size of 

the reference population. Some studies have indeed confirmed this and showed an 

average increase in accuracy of approximately 10% by combining populations (e.g., 

Brøndum et al. 2011; Lund et al. 2011; Zhou et al. 2013). However, other studies 

showed no increase or even a decrease in accuracy by combining populations (e.g., 

Erbe et al. 2012; Karoui et al. 2012; Olson et al. 2012). Therefore, an interesting 

question is: Under which conditions will combining populations in one reference 

population result in an increase in accuracy of genomic prediction?  

To answer this question, the potential of different scenarios of multi-population 

genomic prediction is discussed, differing in the relatedness between the 

populations that are combined. For clarity, it is first assumed that the consistency 

of LD across populations is the only difference between closely related and 

distantly related populations (7.2.1). Later on, the effect of differences between 

closely and distantly related populations in allele substitution effects across 

populations, reflected by the genetic correlation between populations (7.2.2), and 

differences in the proportion of the genetic variance captured by the SNPs across 

populations (7.2.3) are investigated as well. Subsequently, the results are 

compared with the results from empirical studies (7.2.4), followed by some 

concluding remarks regarding the potential of multi-population genomic prediction 

(7.2.5). 
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7.2.1 Differences in consistency of LD across populations 

In this part, the potential to combine information from two populations that are 

either closely or distantly related populations is discussed, assuming that the 

consistency of LD across populations is the only difference between closely and 

distantly related populations. The relatedness between populations is generally 

lower for populations that split more generations ago, for which the effect of drift 

and the number of recombination and mutation events in each population since 

the separation of the populations is higher (Falconer and Mackay 1996). Due to the 

higher number of recombination and mutations events, the consistency of LD 

between the population becomes lower (e.g., Andreescu et al. 2007; Gautier et al. 

2007; De Roos et al. 2008), resulting in a larger effective number of chromosome 

segments (Me) across the populations (Chapter 3; Goddard et al. 2011). The Me 

across populations is used here to reflect the consistency of LD across populations.  

The potential accuracy for predicting GEBVs for selection candidates from 

population 1, using different numbers of individuals from population 1 and 2 in the 

reference population, is investigated using the prediction equation derived in 

Chapter 6. First, this prediction equation is used to investigate how valuable 

individuals from another population are compared to the value of an individual 

from the population of the selection candidates. For this purpose, it is assumed 

that only one population, either population 1 or 2, is included in the reference 

population. When only population 1 is included in the reference population, the 

prediction equation reduces to the prediction equation for within-population 

genomic prediction, as derived by Daetwyler et al. (2008; 2010). When only 

population 2 is included in the reference population, the prediction equation 

reduces to the prediction equation for across-population genomic prediction, as 

derived in Chapter 3. To calculate the number of individuals from population 2 

(nP,2) that can obtain the same accuracy as nP,1 individuals from population 1, the 

predicted accuracy for within- and across- population genomic prediction were 

equalized:  
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,           (7.1) 

in which 2
1h  and 2

2h  are the heritabilities in population 1 and 2 respectively, 
1eM  

is the effective number of chromosome segments in population 1, 
2,1eM  is the 

effective number of chromosome segments across population 1 and 2, and 
2,1Gr is 

the genetic correlation between population 1 and 2. By solving this equation for 
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nP,2 assuming a genetic correlation of 1, it can be shown that the number of 

individuals from population 2 should equal:  

1,2
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P n
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n           (7.2) 

to obtain the same increase in accuracy as with nP,1 individuals from population 1. 

This indicates that when the heritabilities are the same in both populations, the 

value of individuals from another population compared to the value of individuals 

from the population of the selection candidates linearly depends on the ratio 

between Me across the populations and Me within the population of the selection 

candidates. 

Second, the prediction equation derived in Chapter 6 is used to investigate the 

potential accuracy of combining population 1 and 2 for predicting GEBVs for 

individuals from population 1. For this purpose, it is assumed that the heritability in 

both populations was 0.3. For both populations, the number of individuals in the 

reference populations was varied between 0 and 10,000. Moreover, the effective 

number of chromosome segments in population 1 was set to 1000, which is about 

equal to the Me in a Holstein Friesian population (Chapter 2; Chapter 6; Brard and 

Ricard 2015). The Me between the populations was varied between the scenarios, 

representing either populations from the same breed from different countries 

(7.2.1.1), closely related breeds (7.2.1.2), or distantly related breeds (7.2.1.3).  

 

7.2.1.1 Same breed from different countries 

In this paragraph, the accuracy of genomic prediction is described when two 

populations from the same breed from different countries are combined in the 

reference population. This, for example, represents combining Holstein Friesian 

populations from two or more countries (e.g., Lund et al. 2011; Haile-Mariam et al. 

2015). Even though the populations are from the same breed, the relationships 

between individuals from the same population are likely to be slightly higher than 

between individuals of different populations. Therefore, the Me between the 

populations was set to be twice the Me within population 1 (
1eM =1000 and 

2,1eM

=2000), indicating that one individual from population 1 is just as informative as 

two individuals from population 2 (Equation 7.2). The predicted accuracies for this 

scenario are shown in Figure 7.1.  
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Figure 7.1 Predicted accuracy of GEBVs for population 1 using a reference population with 

different numbers of individuals from population 1 and 2. The heritability of the trait is 0.3 

for both populations and the genetic correlation between the populations is 1. The Me 

within population 1 is set to 1000 and the Me between the populations to 2000, 

representing populations from the same breed from different countries.  

 

The results show that when the reference population from population 1 is 

small, e.g., 1000 individuals, a substantial increase in accuracy can be obtained by 

adding 10,000 individuals from population 2 (from 0.48 to 0.80). When the 

reference population from population 1 is large, e.g., 10,000 individuals, the 

accuracy obtained with only population 1 in the reference population is already 

high, resulting in a much smaller increase in accuracy by adding 10,000 individuals 

from population 2 (from 0.87 to 0.90). 

 

7.2.1.2 Closely related breed 

Another possibility to enlarge the reference population is by adding individuals 

from a closely related breed. This, for example, represents the scenario where 

Holstein Friesian and Meuse-Rhine-Yssel or Groningen White Headed individuals 

are combined in the reference population, as described in Chapter 3 and 4. The Me 

between Holstein Friesian and Meuse-Rhine-Yssel or Groningen White Headed 

individuals was found to be 10 times the Me within the Holstein Friesian population 

(
1eM =1000 and 

2,1eM =10,000). Those values for Me indicate that, in this scenario, 
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one individual from population 1 is just as informative as 10 individuals from 

population 2 (Equation 7.2). The predicted accuracies for this scenario are shown in 

Figure 7.2.  

 

 
 

Figure 7.2 Predicted accuracy of GEBVs for population 1 using a reference population with 

different numbers of individuals from population 1 and 2. The heritability of the trait is 0.3 

for both populations and the genetic correlation between the populations is 1. The Me 

within population 1 is set to 1000 and the Me between the populations to 10,000, 

representing closely related breeds.  

 

As can be expected, the increase in accuracy is much lower when individuals 

from a closely related breed are added to the reference population compared to 

individuals from a population from the same breed from a different country. The 

increase in accuracy by adding 10,000 individuals from a closely related breed is 

still reasonably large when only 1000 individuals from population 1 are included in 

the reference population (from 0.48 to 0.61). The increase in accuracy is almost 

negligible when the reference population already consisted of 10,000 individuals 

from population 1 (from 0.87 to 0.88). So, the addition of a closely related breed is 

only helpful when the reference population of the breed itself is small, which can 

be the case for numerically small breeds as well as for traits that are difficult or 

expensive to measure in numerically large populations. 
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7.2.1.3 Distantly related breed 

The last option to enlarge the reference population is by adding individuals 

from a distantly related breed. This, for example, represents combining Holstein 

Friesian and Jersey or Angus individuals in one reference population, as described 

in different studies (Chapter 5; Hayes et al. 2009; Harris and Johnson 2010; 

Khansefid et al. 2014). Using high-density SNP genotypes obtained from sequence 

data of 58 Angus and 30 Holstein Friesian individuals from the United States (1000 

bull genomes consortium), I estimated an Me of approximately 20,000 between 

Holstein Friesian and Angus, which is about 20 times the Me within the Holstein 

Friesian population. Therefore, an Me of 20,000 across populations was used to 

represent very distantly related populations. This indicates that for this scenario 

one individual from population 1 is just as informative as 20 individuals from 

population 2 (Equation 7.2). The accuracies for this scenario are shown in Figure 

7.3. 

 

 
 

Figure 7.3 Predicted accuracy of GEBVs for population 1 using a reference population with 

different numbers of individuals from population 1 and 2. The heritability of the trait is 0.3 

for both populations and the genetic correlation between the populations is 1. The Me 

within population 1 is set to 1000 and the Me between the populations to 20,000, 

representing distantly related breeds.  
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The increase in accuracy when distantly related breeds are combined in the 

reference population is much lower than when closely related breeds are 

combined. The increase in accuracy by adding 10,000 individuals from population 2 

to a small reference population of population 1, e.g., 1000 individuals, is, however, 

still substantial (from 0.48 to 0.56). When the reference population of population 1 

is large, e.g., 10,000 individuals, adding 10,000 individuals from population 2 does 

not increase the accuracy (0.87). This indicates that only when the reference 

population of the breed itself is small, an increase in accuracy can be expected by 

adding individuals from a distantly related breed. 

 

7.2.2 Differences in genetic correlations between populations 

In the previous paragraph, it was assumed that the Me across populations was 

the only factor representing the distance between populations and, thereby, 

influencing the accuracy of multi-population genomic prediction. In real data, this is 

unlikely to be the case. The genetic correlation between populations can, for 

example, be expected to be lower than 1, i.e., the allele substitution effects are 

likely to differ between populations, due to genotype by environment interactions 

(Falconer 1952; Schaeffer 1994; Lillehammer et al. 2007), and due to differences in 

genetic background of the populations in combination with non-additive effects 

(Falconer and Mackay 1996; Huang et al. 2012). Therefore, the accuracies reported 

before are likely to be overestimated.  

For populations that separated more generations ago, the differences in allele 

frequencies are generally higher, due to selection and random genetic drift 

occurring separately in each of the populations (Falconer and Mackay 1996). In 

combination with non-additive effects, those differences in allele frequencies can 

result in differences in allele substitution effects of the QTL underlying the trait 

(Falconer and Mackay 1996; Huang et al. 2012) and can, thereby, reduce the 

correlation between allele substitution effects of QTL from different populations. 

So, distantly related populations, with a reasonably large Me across the 

populations, generally have a lower genetic correlation between populations 

compared to closely related populations, with a reasonably small Me across the 

populations (Lehermeier et al. 2015).  

Genetic correlations lower than 1 between populations reduce the value of 

adding individuals from another population to the reference population. When 

only individuals from another population are used, the maximum accuracy that can 

be obtained is equal to the genetic correlation between the populations. By solving 
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Equation 7.1 including the genetic correlation as a variable, it can be shown that 

the number of individuals from population 2 should equal:  
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 ,    (7.3) 

to obtain the same increase in accuracy as with nP,1 individuals from population 1. 

Equation 7.3 indicates that when the absolute genetic correlation between the 

populations is lower than 1, the value of individuals from another population is 

reduced and the relationship between nP,1 and nP,2 is no longer linear. 

In Figure 7.4, the estimates of nP,2 are plotted assuming different values for nP,1 

and different genetic correlations, for each of the three scenarios of combining 

populations. Those results show that the value of individuals from population 2 

compared to the value of individuals from population 1 decreases when the genetic 

correlation between population 1 and 2 deviates more from 1, and thereby 

becomes closer to 0. For example, when the genetic correlation is 0.8 instead of 1, 

9434 instead of 4000 individuals from population 2 are needed to obtain the same 

increase in accuracy as with 2000 individuals from population 1 when population 1 

and 2 are from the same breed from different countries (
2,1eM =2

1eM ), and 94,340 

instead of 40,000 individuals from population 2 when population 1 and 2 are 

distantly related breeds (
2,1eM =20

1eM ). It is, however, unrealistic to expect a 

genetic correlation of 0.8 between distantly related breeds. Karoui et al. (2012), for 

example, estimated genetic correlations of around 0.53 for production traits 

between three distantly related French dairy cattle breeds; Normande, Holstein 

Friesian and Montbéliarde. The distance between those three breeds is comparable 

to the distance between Holstein Friesian and Jersey, and slightly larger than the 

distance between Holstein Friesian and Angus (Gautier et al. 2010; Decker et al. 

2014). When the genetic correlation between very distantly related populations 

would be 0.53, it is not even possible to obtain the same accuracy as obtained with 

2000 individuals from population 1 by using only individuals from population 2, 

since an accuracy above 0.53 is already obtained with 2000 individuals from 

population 1 at a heritability of 0.3. Therefore, it can be expected that improving 

the accuracy of genomic prediction by combining populations from distantly 

related breeds is impossible. Combining closely related breeds or populations from 

the same breed from different countries can help to increase the accuracy, but only 

when the population of the selection candidates in the reference population is 

small and a large number of individuals from the other population is added.  
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Figure 7.4 The number of individuals in population 2 that have to be used to obtain the same 

accuracy as different numbers of individuals in population 1 using different genetic 

correlations. The heritability of the trait is 0.3 for both populations, and the different 

populations either represent the same breed from different countries, closely related breeds 

or distantly related breeds.  
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7.2.3 Differences in the proportion of the genetic variance captured by 

SNPs across populations 

So far, it was assumed that all of the genetic variance in the predicted 

population can be captured by the SNPs in all reference populations. Due to 

differences in allele frequencies between QTL and SNPs, this assumption will not 

hold within a population, as is shown in Chapter 5 and 6. Moreover, the proportion 

of the genetic variance captured by the SNPs in another population is likely to be 

higher for closely related populations than for distantly related populations. This 

indicates that the proportion of the genetic variance in one population that can be 

captured by the SNPs in another population can also influence the accuracy of 

multi-population genomic prediction. 

As explained before, allele frequencies are likely to differ between populations, 

with generally larger differences in allele frequencies between populations that 

were separated a longer time ago. Those differences in allele frequencies can result 

in differences in the part of the genetic variance for a trait explained by a specific 

QTL, even though that QTL is segregating in both populations. This indicates that a 

QTL that is segregating at a high allele frequency and explaining a large part of the 

genetic variance in one population, might only explain a very small part in another 

population, as was the case for DGAT1 in a Holstein Friesian population compared 

to a Meuse-Rhine-Yssel population (Maurice-Van Eijndhoven et al. 2015).  

When the number of generations since the separation of the population 

increases, the number of population-specific mutations will also increase, resulting 

in a higher number of QTL segregating in only one population (Kemper et al. 

2015a). Those QTL can never be explained by SNPs in another population, 

indicating that when population-specific QTL explain a larger part of the genetic 

variance, the potential of increasing the accuracy by adding another population is 

lower. It might also be that the QTL is fixed in one population, thereby reducing the 

potential benefit of using this population as a reference population for another 

population. To maximize the number of QTL segregating in the reference 

population, it might help to combine multiple populations in the reference 

population, preferably multiple closely related breeds.  

In summary, distantly related populations have a larger value for Me across 

populations, a lower genetic correlation between the populations, and a smaller 

part of the genetic variances that can be captured in the other population 

compared to closely related populations. All those three factors reduce the 

potential to use information across populations, especially across distantly related 

populations. 
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7.2.4 Theoretical versus empirical potential of multi-population genomic 

prediction 

Based on paragraphs 7.2.1 till 7.2.3, it can be concluded that combining 

populations in one reference population is expected to be beneficial when; 1) the 

combined populations are closely related, 2) the population of the selection 

candidates in the reference population is small, and 3) the number of individuals 

added from the other population is very large. This indicates that the design of the 

multi-population reference population has a large impact on the potential benefit 

of combining populations. So far, this conclusion is only based on theory. 

Therefore, in this part, this theoretical conclusion is compared to empirical results 

to prove that the design of the reference population can also explain the 

differences in obtained benefits of combining populations described in literature.  

In dairy cattle, different studies have investigated the potential to combine a 

bull and a cow reference population (Calus et al. 2013; Cooper et al. 2015), a 

scenario that was also studied in Chapter 6. Those populations generally have a 

high level of family relationships between the populations, indicating that those 

populations are very closely related to each other. The heritability of the 

phenotypes might, however, differ between the populations, since phenotypes of 

bulls are normally based on performance records of many daughters with a high 

reliability and phenotypes of cows are only based on own performance records. 

Therefore, the increase in accuracy by adding cows to the reference population 

was lower than what can be expected by adding the same number of bulls, but still 

an increase in accuracy was observed (Calus et al. 2013; Cooper et al. 2015). This 

indicates that combining those closely related populations was indeed beneficial, 

which is in agreement with the theoretical expectation.   

Different studies investigated the obtained accuracy of multi-population 

genomic prediction by combining populations from the same breed from different 

countries, for example by combining different Holstein Friesian populations (e.g., 

Lund et al. 2011; De Haas et al. 2015; Haile-Mariam et al. 2015), Jersey populations 

(Haile-Mariam et al. 2015; Wiggans et al. 2015), or Brown Swiss populations 

(Zumbach et al. 2010; Jorjani et al. 2011). Since the relationships between those 

populations might be high, due to the use of partly the same sires, those different 

populations are generally closely related. Based on the theoretical expectation, 

those scenarios are expected to result in a substantial increase in accuracy, which 

was generally observed as well. The benefit of combining those different 

populations might, however, be slightly lower than expected from the relatedness 

between the populations, due to genotype by environment interactions which 
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reduce the genetic correlation between the populations (Falconer and Mackay 

1996). Combining populations from the same breeds from different countries is 

especially attractive for breeds with small populations in different countries, as is, 

for example, the case for Jersey or Brown Swiss breed (Wiggans et al. 2011; 

VanRaden et al. 2012; Wiggans et al. 2015), or for traits that are difficult or 

expensive to measure and, therefore, only measured at a small scale, such as dry 

matter intake and feed efficiency (De Haas et al. 2012; Pryce et al. 2014). 

Combining more distantly related populations, for example populations from 

different breeds, resulted in a lower increase in accuracy, which is in agreement 

with the theoretical expectation. Combining the Nordic Red breeds, however, 

showed an average increase in accuracy of more than 10% (e.g., Brøndum et al. 

2011; Zhou et al. 2014), which can be explained by the reasonably high relatedness 

between those populations. When more distantly related breeds, like different 

French dairy cattle breeds, were combined, an increase in accuracy was only 

observed when the reference population of the selection candidates was small and 

a large number of individuals from another population was added (Karoui et al. 

2012; Hozé et al. 2014b). The studies combining the very distantly related Holstein 

Friesian and Jersey breeds in general showed no increase, or even a decrease in 

accuracy (e.g., Erbe et al. 2012; Olson et al. 2012). Those finding confirms that 

combining populations is only beneficial when populations are closely related and 

when a large number of individuals is added compared to the size of the reference 

population from the population itself. For selecting closely related breeds, 

phylogenetic trees, like described by Gautier et al. (2010) and Decker et al. (2014), 

can be helpful, since they provide insight in the relationships between breeds.  

 

7.2.5 Concluding remarks regarding multi-population genomic prediction 

Overall, it can be concluded that the potential to improve the accuracy by 

combining populations in one reference population is depending on the design of 

the reference population. The most optimal design of multi-population genomic 

prediction is to combine individuals from the same breed from different countries. 

When this is not possible, for example because the breed is only kept in one 

country, adding individuals from a closely related breed might help to increase the 

accuracy. The value of individuals from another breed is, however, lower than the 

value of individuals from the same breed and depending on the relatedness 

between the breeds. It is difficult to estimate the maximum value for Me or the 

minimum value of the genetic correlation to be able to see an increase in accuracy, 

since the increase in accuracy is influenced by the heritability. At a high heritability, 
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a high accuracy can already be obtained with a small number of individuals for the 

same population, reducing the impact of further enlarging the reference 

population by the breed itself or by another breed. In my opinion, however, it is 

clear that populations with an Me across populations ≥20 times the Me within the 

population and a genetic correlation ≤ 0.5 are too divergent to be combined in a 

reference population. 

 

7.3 Genomic prediction model 
The accuracy of both single- and multi-population genomic prediction varies 

with the model used to estimate GEBVs. At the moment, the commonly used 

models can roughly be divided in two different types; genomic best linear unbiased 

prediction (GBLUP) models and Bayesian variable selection models. The original 

GBLUP model, as described by Meuwissen et al. (2001), assumes that all SNPs 

explain an equal amount of the genetic variance, so basically assumes an 

infinitesimal model. All SNPs or independent segments were also assumed to 

explain an equal amount of the genetic variance in the derivation of the prediction 

equation derived in Chapter 6, used to investigate different scenarios of multi-

population genomic prediction in paragraph 7.2, as well as in the derivation of 

other prediction equations (Daetwyler et al. 2008; VanRaden 2008; Goddard 2009; 

Daetwyler et al. 2010). Therefore, the prediction equations are predicting the 

accuracies that can be obtained with GBLUP. In contrast to GBLUP, the Bayesian 

variable selection model accommodates for some SNPs or segments explaining a 

larger part of the genetic variance compared to other SNPs or segments 

(Meuwissen et al. 2001). Due to this difference, the accuracy of a Bayesian variable 

selection model might deviate from the predicted accuracy.  

For within-population genomic prediction, it is shown that the accuracy of 

GBLUP can accurately be predicted using a prediction equation when all genetic 

variance is captured by the SNPs (Daetwyler et al. 2008; Daetwyler et al. 2010). The 

accuracy of a Bayesian variable selection model, however, was larger than the 

predicted accuracy when the effective number of QTL underlying the trait was 

smaller than Me, and about equal to the predicted accuracy when the effective 

number of QTL was equal to Me (Daetwyler et al. 2010). The same principle was 

shown to be valid for across-population genomic prediction (Van den Berg et al. 

2015). Since the value of Me is much higher across populations than within 

populations, it is much more likely to find an effective number of QTL smaller than 

Me for across-population scenarios than for within-population scenarios, given that 

the total number of QTL underlying the trait is more or less the same across 
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populations. This indicates that the use of Bayesian variable selection models might 

increase the benefit of combining information from multiple populations. It is 

important to stress here that for distantly related populations, a low genetic 

correlation (Lehermeier et al. 2015) and a high number of QTL segregating in only 

one population can be expected (Kemper et al. 2015a). The negative impact of 

those two factors cannot be reduced by using a Bayesian variable selection model, 

which is only reducing the impact of a large Me across populations. Therefore, I 

expect that even when a Bayesian variable selection model is used, the benefit of 

combining information from distantly related breeds is low and negligible. For 

closely related breeds, with a reasonably high genetic correlation and a relatively 

low number of breed-specific QTL, using a Bayesian variable selection model might 

help to use information across populations, especially for traits influenced by a low 

number of QTL or by a few QTL with large effect.  

In a Bayesian variable selection model, a subset of SNPs is selected to explain 

the genetic variance. When the effective number of QTL underlying the trait is 

substantially smaller than Me, the selection of a subset of SNPs has a clear 

advantage, since it reduces the number of effects that has to be estimated. This 

indicates that when the effective number of QTL is smaller than Me, the number of 

effects that has to be estimated in a Bayesian variable selection model is lower 

than Me, resulting in a higher accuracy of genomic prediction. This can be taken 

into account in the prediction equation by replacing the Me by the effective 

number of QTL underlying the trait. At the moment, however, it is very difficult to 

get accurate estimates for the effective number of QTL underlying a trait. 

Therefore, it remains difficult to predict the exact benefit of using a Bayesian 

variable selection model. In general, I expect that it is very likely that a Bayesian 

variable selection model can slightly increase the accuracy when closely related 

breeds are combined in the reference population. 

Besides Me, the proportion of the genetic variance captured by the SNPs might 

also be influenced by the model used to analyze the data. In Chapter 4, it was 

shown that the SNPs very close to a QTL have a higher consistency of multi-locus LD 

across populations, and therefore, those SNPs were better able to predict the QTL 

genotype of individuals from another population. Within a population, however, 

the ability to predict the QTL genotypes using only a subset of the SNPs was lower 

than when all SNPs were used. So, for genomic prediction within a population, the 

selection of a subset of SNPs will probably result in a decrease in the number of 

effects that have to be estimated, but also in a decrease in the proportion of the 

genetic variance captured by the SNPs. The same process of selecting SNPs is also 
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taking place in a Bayesian variable selection model, indicating that such a model is 

expected to explain a smaller part of the genetic variance compared to a GBLUP 

model, which was indeed seen before (Kemper et al. 2015b). The smaller the 

subset of selected SNPs, the lower the number of effects that has to be estimated 

and the lower the proportion of the genetic variance explained by the SNPs. For 

across-population genomic prediction, selecting SNPs surrounding the QTL would 

result in a lower number of estimated effects as well as in a higher proportion of 

the genetic variance captured by the SNPs, since the consistency of LD is higher at 

shorter distances on the genome (De Roos et al. 2008; Zhou et al. 2013). Therefore, 

selecting SNPs in a Bayesian variable selection model is expected to increase the 

proportion of the genetic variance captured by the SNPs in another population 

when the number of QTL underlying the trait is low. This can result in an even 

higher expected accuracy for a Bayesian variable selection model compared to 

GBLUP based on the difference in the number of effects that have to be estimated.  

Altogether, I expect to see a larger advantage of using Bayesian variable 

selection models for across- and multi-population genomic prediction than for 

within-population genomic prediction. Most of the production traits in dairy cattle 

are suggested to be influenced by a large number of QTL. For those traits, I do not 

expect to see an increase in accuracy by using a Bayesian variable selection model 

compared to a GBLUP model for within-population genomic prediction. For across- 

and multi-population genomic prediction, however, I expect to see an increase in 

accuracy, although this increase is probably reasonably low, in the range of 0-10%. 

For traits known to be mainly influenced by only a small number of QTL, such as fat 

percentage in milk in dairy cattle, I expect to see a small increase in accuracy by 

using a Bayesian variable selection model compared to a GBLUP model for within-

population genomic prediction. For across- and multi-population genomic 

prediction, the increase in accuracy is probably much larger and might be up to 30-

50%.  

 

7.4 Estimating the genetic correlation 
As discussed, an important parameter determining the potential to combine 

populations in one reference population is the genetic correlation between the 

populations. The genetic correlation represents the correlation between allele 

substitution effects of the true QTL underlying the trait (Falconer and Mackay 

1996). The true QTL and their effects are generally unknown, which makes it 

impossible to calculate the true genetic correlation. Therefore, an important 

question is how to estimate the genetic correlation in real data.  
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A multi-trait model, where the same trait in the different populations is 

modelled as a different trait, can be used to estimate the genetic correlation 

between populations. For populations from the same breed from different 

countries, it is often possible to estimate the genetic correlation by using only 

pedigree information, since partly the same sires might be used in both populations 

(Schaeffer 1994). For more distantly related populations, pedigree information is 

often not able to accurately describe the relationships between individuals from 

different populations. Therefore, a relationship matrix based on genomic 

information is essential for estimating the genetic correlation between more 

distantly related populations. At the moment, different studies have estimated the 

genetic correlation using a multi-trait GBLUP model (Chapter 3; Karoui et al. 2012; 

Carillier et al. 2014; Huang et al. 2014; Legarra et al. 2014; Lehermeier et al. 2015). 

In the multi-trait GBLUP model, the (co)variance structure between the GEBVs on 

the scale of both populations (A and B) is assumed to follow (Karoui et al. 2012): 
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in which GEBVA (GEBVB) is a vector with GEBVs for all individuals on the scale of 

population A (B), 2
A  ( 2

B ) is the variance of estimated SNP effects in population A 

(B), AB  is the covariance between the estimated SNP effects in population A and 

B, and G is the genomic relationship matrix computed from the SNPs containing all 

genotyped individuals. The genetic correlation estimated with the multi-trait model 

is the correlation between GEBVA and GEBVB. This correlation is equivalent to the 

correlation between estimated SNP effects in each population, since GEBVA and 

GEBVB are calculated using the same genotypes for the same subset of individuals 

and different SNP effects, that are specific for each population. The estimated SNP 

effects might differ between the populations due to differences in QTL effects, but 

also due to differences in the LD between QTL and SNPs and the accuracy of 

estimating the effects. This indicates that the estimated genetic correlation at the 

SNPs is likely to be lower than the true genetic correlation at the QTL, when the LD 

pattern is not consistent for the two populations (Gianola et al. 2015) and when 

SNP effects are not estimated with 100% accuracy (Calo et al. 1973). Therefore, it 

can be expected that the estimated genetic correlation based on SNP information is 

underestimating the true genetic correlation between the populations.  

Besides differences in LD, the estimated genetic correlation might also be 

influenced by the genomic relationship matrix (G) used in the multi-trait GBLUP 

model. In Chapter 3, the genetic correlation between different populations was 
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calculated using a G matrix based on high-density genotypes, by using the average 

allele frequencies across the populations to set-up G. By using those average allele 

frequencies, the base population of G is a kind of admixed population and not the 

current population. This results in an increase in the relationships within a 

population and relationships below zero between populations (Karoui et al. 2012; 

Makgahlela et al. 2013). In general, negative relationships are just as informative as 

positive relationships. So, when the negative relationships between populations 

are absolutely higher than the relationships between unrelated individuals within a 

population, which is for at least part of the relationships the case in Chapter 3 and 

in Karoui et al. (2012), more information can be shared between individuals from 

different populations than between unrelated individuals from the same 

population, which is counterintuitive. Moreover, the higher relationships within a 

population indicate that the inbreeding level is higher than expected when the 

current population was used as base population, resulting in higher estimated 

genetic variances. Altogether, it can be concluded that a G matrix based on average 

allele frequencies might not be the most appropriate G matrix for estimating the 

genetic correlation.  

A more appropriate way to calculate the G matrix for estimating the genetic 

correlation might be the approach described by Erbe et al. (2012). This approach of 

calculating G sets the base population at the time when the populations split, 

indicating that the relationships within a population include a high inbreeding level 

and relationships between populations are on average zero, assuming unrelated 

individuals. The genetic correlation estimated with this approach would, however, 

refer to the genetic correlation in the base population, before the two populations 

separated. Another approach of calculating G would be to use population-specific 

allele frequencies, resulting in relationships between populations of on average 

zero and relationships between unrelated individuals within a population of on 

average zero as well, since the current population was used as base population. 

This would indicate that the average relationships between unrelated individuals 

within a population and relationships between individuals from different 

populations are on the same level, which is counterintuitive as well.  

To check which of the G matrices should be used to obtain the most accurate 

estimate of the genetic correlation, the analyses of Chapter 3 were repeated using 

the different G matrices based on high-density genotypes. In Table 7.1, the 

estimated genetic correlations between the Holstein Friesian and Groningen White 

Headed populations are shown for three different simulated genetic correlations. 

Those results show that the estimated genetic correlations were generally close to 

the simulated genetic correlation, with the most accurate estimate when the G 
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matrix described by Erbe et al. (2012) was used. Differences in LD were present in 

those populations, as is shown in Chapter 4, indicating that the effect of differences 

in LD between populations on the estimated genetic correlation was very minimal. 

Therefore, it can be hypothesized that genetic correlations can be estimated in an 

accurate way by using a multi-trait GBLUP model, at least when high-density 

genotypes were used to set-up the genomic relationship matrix. When the density 

of the SNPs is lower, the impact of differences in LD on the estimated genetic 

correlation might be higher.   

 
Table 7.1 Estimated genetic correlations (standard errors across replicates) between the 
populations using different approaches. 
 

Set-up G matrix 
Estimated genetic correlations (s.e.) 

True rG = 1 True rG = 0.6 True rG = 0.2 

Average AFreq
a 

0.89 (0.01) 0.56 (0.02) 0.16 (0.02) 

Method of Erbe
b 

0.91 (0.01) 0.58 (0.02) 0.16 (0.02) 

Pop.-specific AFreq
c 

0.86 (0.01) 0.51 (0.02) 0.15 (0.02) 
 

a
 G matrix is calculated using average allele frequencies across the populations; 

b
 G matrix is calculated using the method described by Erbe et al. (2012);  

c
 G matrix is calculated using population-specific allele frequencies; 

rG = genetic correlation. 

 

 

7.5 Consistency of LD between populations  
Besides the genetic correlation, the consistency of LD across populations is 

another important factor influencing the accuracy of multi-population genomic 

prediction. In this thesis, two different values referring to the consistency of LD 

across populations are described, namely the consistency of multi-locus LD               

(
SKRPMLLDr

,
; Chapter 4) and the effective number of chromosome segments (

SKRPeM
,

; 

Chapter 3 and 6) between the reference population and selection candidates. Both 

SKRPMLLDr
,

 and 
SKRPeM

,
 are affected by the relatedness between reference and 

selection candidates. When reference and selection individuals are highly related to 

each other, for example due to a high level of family relationships, the LD pattern 

can be expected to be highly consistent between reference and selection 

individuals with the same allele of a SNP in high LD with a QTL allele. This indicates 

that 
SKRPMLLDr

,
 can be approximately 1 and 

SKRPeM
,

 is more or less similar to Me 

within the reference population (
RPeM ), resulting in a high accuracy of genomic 
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prediction (Chapter 2). When the level of family relationship between reference 

and selection individuals is low, the LD pattern might be less consistent and a 

different SNP or a different SNP allele can be in high LD with a QTL allele across 

populations. This indicates that 
SKRPMLLDr

,
 can be much lower than 1 and 

SKRPeM
,

 

much larger than
RPeM , resulting in a lower accuracy of genomic prediction 

(Chapter 2). Since the two measures both refer to the consistency of LD across 

populations, an interesting question is how the relation between those two 

measures can be described? 

The value for Me can be calculated as the inverse of the average LD between all 

pairs of loci on the same chromosome (Goddard et al. 2011), i.e., 
2

1

LDr
. The 

consistency of multi-locus LD indicates how related the LD pattern of the selection 

candidates is to the LD pattern in the reference population, i.e., a consistency of 

multi-locus LD of 0.5 (
SKRPMLLDr

,
=0.5) indicates that the average LD between 

selection candidates and reference individuals is equal to 0.5
2
* 2

LDr , in which 2
LDr  is 

the average LD in the reference population. So, for this case, the value for 
SKRPeM

,
 is 

RPe
LD

M
r 222 5.0

1

*5.0

1
 . Or in general terms; 

SKRPeM
,

 can be calculated following: 
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SKRP e
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e M
r

M
2

,

,

1
 .          (7.5) 

This shows that the Me between reference and selection individuals (
SKRPeM

,
) is 

directly related to the consistency of multi-locus LD between the same individuals   

(
SKRPMLLDr

,
). By knowing the Me within the reference population and either 

SKRPeM
,

 

or 
SKRPMLLDr

,
, the value for the other parameter can be calculated directly. 

In Chapter 3, values for 
RPeM  and 

SKRPeM
,

 were obtained using Holstein Friesian 

individuals as reference population (
HFeM =185) and either Groningen White 

Headed (
GWHHFeM

,
=1809) or Meuse-Rhine-Yssel (

MRYHFeM
,

=2435) individuals as 

selection candidates. In Chapter 4, values for 
SKRPMLLDr

,
 were obtained based on the 

same data (
GWHHFMLLDr

,
=0.37; 

MRYHFMLLDr
,

=0.33). Applying the estimates for
HFeM , and 

respectively 
GWHHFMLLDr

,
 and 

MRYHFMLLDr
,

 in Equation 7.5, results in an estimate for 

GWHHFeM
,

 of 1351, and for 
MRYHFeM

,
 of 1699. Those estimates are not exactly the 
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same as the estimates from Chapter 3, however, they are in good agreement with 

each other, especially when considering that estimating the consistency of multi-

locus LD and Me is prone to sampling variance. 

 

7.6 Research directions for multi-population genomic prediction 
As discussed in this general discussion, the currently used models do not show a 

large potential for using genomic information across populations, especially not 

across different breeds. This does not necessarily mean that there is no information 

that can be shared between different populations and might be related to the used 

models. By using other approaches, it might still be possible to use at least some 

information from one population to predict GEBVs for individuals from another 

population. In this part, the potential of the following research directions for multi-

population genomic prediction is discussed: using sequence data in genomic 

prediction (7.6.1), using information of significant regions across populations 

(7.6.2), and including non-additive effects in the prediction model (7.6.3). 

 

7.6.1 Sequence data in genomic prediction 

In the last decade, the availability of whole-genome sequence data increased 

rapidly due to decreasing costs of this technology. Whole-genome sequence data is 

assumed to contain all variants, including the causal mutations or causal QTL 

underlying the traits of interest. Therefore, by using sequence data in genomic 

prediction models, the dependency on LD between QTL and SNPs is removed. This 

might especially be of interest for reference populations combining multiple 

populations, since the LD between QTL and SNPs is different across populations 

(e.g., Chapter 4; Andreescu et al. 2007; De Roos et al. 2008).  

Simulation studies indeed showed an increase in accuracy of within-population 

genomic prediction by using sequence data compared to low- or high-density SNP 

data (Meuwissen and Goddard 2010; Clark et al. 2011; Druet et al. 2013; MacLeod 

et al. 2014a). Unfortunately, this increase is not completely confirmed in studies 

using real data, both for GBLUP and Bayesian variable selection models in 

Drosophila (Ober et al. 2012) and dairy cattle (Van Binsbergen et al. 2015). In 

another simulation study, the increase in accuracy by using sequence data was 

found to be even higher for multi-population genomic prediction (~16.5%) 

compared to single-population genomic prediction (~4.7%) (Iheshiulor et al. 2014), 

but, disappointingly, the increase in accuracy by using sequence data was only 2% 

for across-population genomic prediction in a study using real dairy cattle data 

across different traits (Hayes et al. 2014). A plausible explanation for those 
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unexpected findings is that even though the causal QTL are included in the data, 

the genomic prediction models are not able to use this information properly and 

are still distributing the effect of the QTL across multiple variants. 

Altogether, those results indicate that with the current prediction models, no or 

only a very small increase in accuracy can be expected when sequence data is used 

compared to high-density SNP information, even for multi-breed genomic 

prediction. In Chapter 5, it is shown that adding causal QTL to the SNP data resulted 

in an increase in accuracy, with a much larger increase in accuracy when the initial 

number of SNPs was lower. The lower initial number of SNPs reduced the dilution 

of the causal QTL effect over the SNPs, which resulted in a higher accuracy of 

estimating the effect. This shows that it is essential to reduce the number of 

variants in sequence data, without deleting the QTL, to be able to see an increase 

in accuracy. One approach of selecting variants is by using biological information. In 

a simulation study, it was shown that only including causal QTL in the model 

resulted in accuracies approaching 1 (Pérez-Enciso et al. 2015). Only including all 

SNPs in the genes affecting the trait also resulted in an increase in accuracy, 

however, when the genes were not selected with 100% accuracy, the accuracy 

dropped drastically (Pérez-Enciso et al. 2015). In studies using real data, variants of 

sequence data have been weighted differently based on the annotation of the 

variant, by giving a higher weight for coding versus non-coding variants (MacLeod 

et al. 2014b), or based on available information of significant SNPs, by giving a 

higher weight to SNPs shown to be significantly related to the trait in previous 

studies versus SNPs not shown to be related (Hayes et al. 2014; MacLeod et al. 

2014b). Surprisingly, the accuracies of genomic prediction were not largely affected 

by the different weighting of the variants in the prediction model (Hayes et al. 

2014). Based on those studies, it can be concluded that at the moment, the 

available knowledge about the genetic architecture of the different traits is 

insufficient to benefit from including biological information in the model. 

Another approach to reduce the number of estimated effects is by using a 

principal component analysis on a genotype matrix (n x p), including for all n 

individuals the genotype for all p SNPs, and fitting the most important principal 

components as a variable in a regression model (e.g., Solberg et al. 2009; Macciotta 

et al. 2010; Dadousis et al. 2014). Although a study using real cattle data with 

50,000 SNPs did not show an increase in accuracy by using principal components 

compared to GBLUP (Dadousis et al. 2014), this approach might increase the 

accuracy when sequence data is used. The reason for this expectation is that for 

sequence data, the number of estimated effects can decrease more drastically 

using principal components due to the higher dependencies between the variants. 
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Since principal components analyses are able to recover the structure of the data, 

using principal components might especially be attractive for structured data, such 

as multi-population and multi-breed reference populations. 

Another approach to increase the potential of sequence information is to 

reduce the long-range LD present in the reference population as a result of a high 

level of relatedness in the population. This can, for example, be done by reducing 

the average relatedness within the reference population, which was already shown 

to be beneficial for within-population genomic prediction using SNP data (Pszczola 

et al. 2012). For sequence data, the LD between QTL and multiple SNPs can still be 

expected to be too high across unrelated individuals from the same population, 

indicating that finding the causal QTL using information from only one population is 

almost impossible. Combining individuals from distantly related populations and 

generations in the reference population, thereby reducing the consistency of LD in 

the reference population, might be necessary. By combining those distantly related 

populations, the level of family relationships in the reference population is reduced 

and the genomic prediction models are forced to focus more on short-range LD 

compared to long-range LD. This is supposed to improve the prediction 

performance across generations as well as across populations. In Chapter 4, for 

example, it is shown that short-range LD is more consistent across breeds and by 

focusing on the SNPs closely located to a QTL, the prediction performance across 

breeds can be improved. An important assumption underlying this approach is that 

the same QTL are underlying the trait and that the QTL have the same effect, which 

is unlikely to be the case for distantly related populations. This would greatly 

reduce the potential of this approach and, therefore, I do not expect to see a large 

increase in accuracy by using this approach. 

 

7.6.2 Information of significant regions  

Another approach to increase the accuracy of multi-population genomic 

prediction is to focus on sharing information about significant regions between 

populations. Even though the causal QTL might partly be different across 

populations, the QTL underlying the trait might still be located in the same regions 

on the genome. Therefore, it can be expected that the regions containing SNPs 

with a large effect show an overlap across populations. This is supported by the 

findings in literature, showing that pre-selecting SNPs with a large effect in one 

French cattle breed can help to increase the accuracy for some traits in another 

French cattle breed (Hozé et al. 2014a). Including information of regions with a 

large effect in one population in the prior of a Bayesian model for another 

population also helped to increase the prediction accuracy (Brøndum et al. 2012). 
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Moreover, it was shown that the accuracy of predicting GEBVs for residual feed 

intake in Holstein Friesian animals can be increased by giving a larger weight to 

SNPs significantly associated with residual feed intake in beef cattle (Khansefid et 

al. 2014). This indicates that there is a large potential to increase the amount of 

information that can be shared across populations by shifting the emphasis from 

combining populations to increase the accuracy of estimating SNP effects to 

combining populations to find regions associated with a trait. Another advantage is 

that in this approach, it is not necessary to account for differences in apparent SNP 

effects between breeds that might exist due to differences in causal QTL, LD, and 

allele substitution effects of QTL, since the effects are estimated separately in each 

population.  

The studies mentioned before have all used a two-step approach, in which first 

significant SNPs or regions are localized in one population and information of those 

SNPs or regions is used later on as input for the model in another population 

(Brøndum et al. 2012; Hozé et al. 2014a; Khansefid et al. 2014). For practical 

applications, combining the localization of significant regions and estimating the 

effects might be attractive. This can, for example, be done by combining the 

information from both populations for defining which SNPs to include in a Bayesian 

variable selection model with a large effect, and consecutively estimate the SNP 

effects separately in each population. This suggestion is comparable to the multi-

task Bayesian learning model described by Chen et al. (2014), which was shown to 

be able to increase the accuracy for a population with a low number of individuals 

in the reference population and keeping the accuracy of the population with a high 

number of individuals in the reference population at the same level. The chance of 

missing QTL that are only segregating in the population with a low number of 

individuals in the reference population is, however, reasonably high. Moreover, 

QTL with a large effect that have an opposite linkage phase with the surrounding 

SNPs might be missed as well. Therefore, the ideal model would be able to use the 

information from both populations to decide on which SNPs to assign a large effect, 

but would still be flexible enough to be able to assign a large effect to other SNPs 

when there is convincing evidence for that in one of the populations. 

 

7.6.3 Non-additive effects 

The estimated SNP effects might not only be different across populations due to 

differences in the causal QTL or LD with the QTL, but might also be different due to 

the existence of non-additive effects at the QTL in combination with differences in 

allele frequencies. This indicates that estimating non-additive effects in the model 

can help to find more consistent effects across populations, which can help to 
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increase the prediction accuracy when populations are combined. Although 

different studies using genomic information have shown that non-additive effects, 

such as dominance and epistasis, exist in livestock populations (Carlborg et al. 

2004; Große-Brinkhaus et al. 2010; Lopes et al. 2014), including non-additive 

effects in estimating GEBVs within one population has not been able to greatly 

improve the accuracy of GEBVs (Huang et al. 2012; Su et al. 2012). This is suggested 

to be a result of capturing a substantial part of the non-additive effects by the 

average allele substitution effects estimated in an additive model (Falconer and 

Mackay 1996). This is especially the case when QTL have a low minor allele 

frequency (Hill et al. 2008), since at a low minor allele frequency, the genotypes in 

a population are mainly at one side of the spectrum being either homozygous for 

one of the alleles or heterozygous, with only a very small number of individuals 

homozygous for the minor allele. This indicates that, for QTL with a low minor allele 

frequency, the number of individuals homozygous for the minor allele might be too 

low to accurately disentangle the additive and dominance effect.  

Due to differences in allele frequencies across populations, a reasonably high 

number of homozygous, heterozygous, and opposing homozygous individuals 

might be present when two populations are combined, which is beneficial for 

estimating non-additive effects. By estimating dominance effects for each of the 

SNPs in a linear model, the number of estimated effects is doubled compared to 

fitting only additive effects. When also first-order epistatic effects between the 

SNPs are fitted in a linear model, the number of estimated effects is an exponential 

function of the number of SNPs. Therefore, the number of effects that have to be 

estimated can become that high, that it is impossible to estimate all of them in a 

genomic prediction model. So, the accuracy of genomic prediction when multiple 

populations are combined in the reference population might be increased by 

including dominance effects in a linear model, but probably not by including 

epistatic effects, even though epistatic interactions might explain a large part of the 

phenotypic variance. Other models would be needed to efficiently estimate the 

first- or even higher-order epistatic interactions. Non-parametric models, such as 

kernel regressions, have the potential to fit epistatic interactions, without explicitly 

modelling all pair-wise interactions (Gianola and Van Kaam 2008; González-Recio et 

al. 2008; De los Campos et al. 2010). Although those models have the potential to 

exploit the non-additive genetic effects in a more efficient way, there is no 

empirical evidence for this yet (Gianola et al. 2014).  
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7.6.4 Concluding remarks regarding the different research directions 

In total, three different research directions to improve the accuracy of multi-

population genomic prediction were discussed in this paragraph, namely using 

sequence data in genomic prediction, using information of significant regions 

across populations, and including non-additive effects in the prediction model. 

Overall, I conclude that using information of significant regions across populations 

has the highest potential to increase the accuracy of multi-population genomic 

prediction in the coming 10 years. One of the main advantages of this approach is 

that it uses information from other populations to identify regions related to a 

trait, but that it is still able to estimate the effects separately within each 

population. Using this approach, it was shown to be possible to share information 

between very distantly related populations, for instance between populations from 

different beef cattle breeds and a Holstein Friesian population. For more closely 

related populations, I expect an even higher potential to share information, due to 

the smaller differences between the populations. For a practical application of this 

approach, the current models should be slightly modified. The first steps to 

implement those changes are already taken by different research groups, indicating 

that a practical application of this approach should be possible in the near future. 

 Estimating non-additive effects in the prediction has the potential to improve 

the consistency of the estimated effects across the populations, and, therefore, can 

improve the accuracy of predicting GEBVs when multiple populations are combined 

in the reference population. A large disadvantage of this approach is the enormous 

increase in the number of effects that has to be estimated when both dominance 

and epistatic interactions are explicitly modeled. This might even be more 

pronounced for multi-population genomic prediction, since the number of 

estimated effects is already larger in those scenarios, due to the larger effective 

number of chromosome segments across populations than within populations. 

Non-parametric models can potentially help to efficiently estimate non-additive 

effects, however, those models still need to be optimized. In my opinion, the 

modelling of non-additive effects can also be improved by increasing our 

knowledge about the genetic architecture of traits, since it can provide information 

about genomic regions influencing a trait and about genomic regions that are likely 

to contain large non-additive effects. 

The main advantage of using sequence data in genomic prediction is that it 

probably contains the causal variants. To make optimal use of those causal 

variants, the number of other variants should be as low as possible. In my opinion, 

the best way to obtain this is by including biological information in the model, 

which requires to have a good understanding of the genetic architecture. At the 



7. General discussion 

 

 

235 

 

 7  

moment, this information is not yet available, which reduces the potential of using 

sequence information in genomic prediction. Therefore, I strongly recommend to 

more thoroughly study the genetic architecture of the most important traits in 

animal breeding (e.g., milk production traits in dairy cattle). When it is possible to 

use information about the genetic architecture in genomic prediction, the 

dependency on a consistent LD phase between SNPs and QTL is reduced. 

Moreover, the number of effects that has to be estimated can be reduced to the 

number of QTL underlying the trait. This also increases the potential to model non-

additive effects, which can further improve the accuracy of both single- and multi-

population genomic prediction in the long-term.  
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In livestock breeding programs, genotype information is widely used to identify 

the genetically best animals to produce the next generation. For identifying those 

animals, genomic estimated breeding values are calculated for selection candidates 

using genotype information of many single-nucleotide polymorphism (SNP) 

markers spread across the genome. This information is combined with SNP effects, 

estimated in a reference population containing individuals with both phenotypes 

and SNP genotypes. For numerically small populations, the size of the reference 

population is often limited, which restricts the accuracy of genomic estimated 

breeding values for those populations as well as the response to selection. An 

attractive approach to increase the size of the reference population for numerically 

small populations is to add individuals from other populations, for example 

individuals from different countries, breeds, or lines. The differences between 

populations, such as differences in linkage disequilibrium (LD) between the SNPs 

and quantitative trait loci (QTL) underlying the trait, differences in allele 

frequencies of SNPs and QTL, differences in allele substitution effects of QTL, and 

the absence of close family relationships between populations, however, reduce 

the suitability of individuals from another population to increase the accuracy of 

genomic prediction. 

Chapter 2 investigated the effect of absence of close family relationships 

between reference and selection individuals. The reference population for this 

study consisted of individuals with real genotype information. Five groups of 

selection candidates were simulated, using increasing amounts of information from 

the reference population: allele frequencies, LD pattern, haplotypes, haploid 

chromosomes, and family relationships. The results showed that the level of family 

relationships between reference and selection individuals has a higher effect on 

the accuracy of genomic prediction than LD per se. Moreover, the results showed 

that a deterministic equation using population parameters can accurately predict 

the accuracy for populations with complex family structures by estimating the 

effective number of chromosome segments (Me) across reference and selection 

individuals, based on the genomic and pedigree based relationship matrix.  

In Chapter 3, two different deterministic equations were derived to predict the 

accuracy of across-population genomic prediction. One equation was based on the 

genomic relationships within the reference population and between reference and 

selection individuals, the other equation was based on population parameters such 

as the Me across populations. The equations were validated using real genotypes of 

three different cattle breeds and simulated phenotypes. It was shown that the 

equation based on genomic relationships was able to accurately estimate the 

accuracy. The equation based on population parameters overestimated the 
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accuracy by about 25 to 30%. Genetic correlations between populations lower than 

1 reduced the accuracy of across-population genomic prediction, proportional to 

the genetic correlation. Therefore, the genetic correlation was an important input 

parameter for both equations. Moreover, it was shown that the number of QTL 

underlying the trait had no effect on the accuracy when a GBLUP type of model was 

used. 

The same genotypes of the three different cattle breeds and simulated 

phenotypes were used in Chapter 4 to investigate the consistency of multi-locus LD 

across populations, and its relationship with the accuracy of across-population 

genomic prediction. Since genomic prediction models are distributing the effect of 

a QTL among a number of SNPs, multi-locus LD was expected to be a better 

predictor for the potential of combining populations than consistency of LD 

between neighboring loci. The results showed that it was possible to estimate the 

consistency of multi-locus LD using a selection index approach, and that it could be 

seen as a characteristic of the properties of the QTL for the investigated 

populations. Consistency of multi-locus LD was highly related to the accuracy of 

across-population genomic prediction and can, therefore, be used to provide more 

insight in underlying reasons for a low empirical accuracy of across-population 

genomic prediction. By focusing only on SNPs closely located to a QTL, the 

consistency of multi-locus LD across populations increased. This indicates that the 

accuracy of across- and multi-population genomic prediction could be increased by 

focusing only on the neighboring SNPs of a QTL, for which the consistency of LD is 

higher across populations. 

The effect of QTL properties, such as allele frequency pattern and distribution 

of allele substitution effects, on accuracy of multi-breed genomic prediction was 

investigated in Chapter 5. In this study, real genotype information of Holstein 

Friesian and Jersey cows was used. For all those individuals, three classes of 

variants obtained from whole-genome sequence data were imputed. Those classes 

of variants differed in their allele frequency pattern, ranging from moderately low 

to extremely low average minor allele frequencies (MAF), and amount of breed-

specific variants. Phenotypes were simulated by sampling QTL from one of the 

classes of variants and by either randomly sampling an allele substitution effect for 

each QTL or by assigning larger effects to QTL with a low MAF. The accuracy of both 

single- and multi-population genomic prediction was shown to be lower when the 

average MAF of QTL underlying the trait was lower, especially when rare alleles 

were given a larger effect. It was demonstrated that QTL properties are key 

parameters determining the accuracy of genomic prediction. Those results show that 

the properties of QTL that underlie a trait can explain the limited benefit or the 
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absence of benefit of combining information from multiple breeds that is described 

in empirical studies as opposed to the substantial benefit that is obtained in 

simulation studies. 

In Chapter 6, a deterministic equation was developed to predict the accuracy of 

multi-population genomic prediction when populations from different breeds, lines 

or environments, or populations measured for different traits are combined in the 

reference population. The equation is using population parameters such as the Me 

across populations and the genetic correlation between populations. Validation 

was performed using real genotypes and simulated phenotypes of Holstein Friesian 

cows, that were divided in three different populations by keeping half-sib families 

in the same population. Results showed that the derived equation can accurately 

predict the accuracy for different scenarios of multi-population genomic prediction, 

representing multi-environment and multi-trait genomic prediction. Therefore, the 

derived equation can be used to investigate the potential accuracy of different 

multi-population genomic prediction scenarios and to decide on the most optimal 

design of reference populations. 

The general discussion of this thesis, presented in Chapter 7, discusses five 

different topics. As a first topic, the potential of multi-population genomic 

prediction is discussed by considering different scenarios, such as combining 

populations from the same breed from different countries, closely related breeds, 

or distantly related breeds. It is shown that combining populations in one reference 

population is likely to result in an increase in accuracy when; 1) the combined 

populations are closely related, 2) the population of the selection candidates in the 

reference population is small, and 3) the number of individuals added from the 

other population is very large. Therefore, the most optimal design to increase the 

accuracy of genomic prediction for numerically small populations would be to add 

a large number of individuals from the same breed from another country. 

Whenever that is not possible, it might help to add a large number of individuals 

from a closely related breed. Adding individuals from a distantly related breed is 

not expected to result in an increase in accuracy, due to the large differences 

between the populations.  

As a second topic, the impact of the model used to estimate genomic breeding 

values on the accuracy of multi-population genomic prediction is discussed. It is 

hypothesized that Bayesian variable selection models are better able to use 

information across closely related populations compared to GBLUP, especially for 

traits influenced by a low number of QTL or by a few QTL with large effect. This is a 

result of focusing more on the SNPs close to a QTL in a Bayesian variable selection 

model compared to GBLUP, which reduces the number of effects that have to be 
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estimated and increases the proportion of the genetic variance captured by the 

SNPs in another population. 

As a third topic, the estimation of the genetic correlation using SNP information 

is discussed. In this part, it is hypothesized that the genetic correlation can be 

accurately estimated using a multi-trait GBLUP model, where the same trait in the 

different populations is measured as a different trait. It is shown that the most 

accurate estimate of the genetic correlation can be obtained when the genomic 

relationship matrix is set-up using the population just before the populations split 

as base population. 

As a fourth topic, the relation between the Me across populations and the 

consistency of multi-locus LD across populations is discussed. Both measures 

reflect on the consistency of LD across populations, which is an important 

parameter influencing the accuracy of multi-population genomic prediction. It is 

shown that the Me across reference and selection individuals is directly related to 

the consistency of multi-locus LD between the same individuals. So, when the Me 

within the reference population is known and one of the measures for the 

consistency of LD across populations, the other measure can be calculated directly.  

As a fifth topic, research directions for multi-population genomic prediction are 

discussed, focusing on the use of sequence data in genomic prediction, the 

identification and use of significant regions across populations, and the potential of 

including non-additive effects in genomic prediction models. The research direction 

which is suggested to have the highest potential to increase the accuracy of multi-

population genomic prediction in the coming 10 years is the identification and use 

of significant regions across populations. In this research direction, it is assumed 

that even though the QTL or the effects of the QTL underlying the trait might differ 

across populations, the QTL are located in the same regions on the genome. 

Moreover, it is discussed that for optimizing the use of sequence data as well as for 

including non-additive effects for genomic prediction, more information about the 

genetic architecture of the trait should become available. 
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In fokkerij-programma’s van landbouwhuisdieren is het steeds gebruikelijker 

om DNA-profielen, bestaande uit duizenden merkers op het DNA, te gebruiken om 

de genetisch beste dieren te selecteren voor het voortbrengen van de volgende 

generatie. Hiervoor wordt eerst in een referentie-populatie, oftewel een groep 

dieren met bekende DNA-profielen en productiegegevens (ook wel fenotypes 

genoemd), voor ieder van de merkers een effect op een bepaald kenmerk geschat. 

Deze geschatte merker-effecten worden gebruikt om genomische fokwaardes te 

berekenen voor jonge dieren waarvan de fenotypes nog niet bekend zijn, maar de 

DNA-profielen wel. Op basis van deze genomische fokwaardes worden de beste 

jonge dieren geselecteerd uit een groep van selectie-kandidaten. Aangezien een 

groot aantal merkers wordt gebruikt, heeft ieder gen wel een relatie met een paar 

merkers, waardoor de merkers het effect van de genen op een kenmerk kunnen 

verklaren.  

Voor populaties met een klein aantal dieren is de referentie-populatie meestal 

te klein om de merker-effecten betrouwbaar te kunnen schatten, met een lage 

betrouwbaarheid van de genomische fokwaardes als gevolg. Dit maakt het lastiger 

om de beste dieren te selecteren en beperkt de genetische vooruitgang. Een 

manier om de referentie-populatie te vergroten is door dieren van een andere 

populatie toe te voegen, bijvoorbeeld dieren van een ander ras of uit een ander 

land. De verschillen tussen populaties maken het echter moeilijker om informatie 

van andere populaties te gebruiken. Zo zijn er tussen populaties geen sterke 

familierelaties, kunnen andere merkers een relatie hebben met een bepaald gen en 

kan het zijn dat de genen andere effecten hebben. In dit proefschrift is gekeken of 

en hoeveel de betrouwbaarheid van genomische fokwaardes verhoogd kan worden 

door informatie van verschillende populaties te combineren. De focus lag hierbij op 

het vergroten van de kennis over dit onderwerp, niet op het verhogen van de 

betrouwbaarheid van genomische fokwaardes voor een specifiek ras of kenmerk.  

Hoofdstuk 2 beschrijft het effect van de afwezigheid van sterke familierelaties 

tussen de referentie-populatie en de selectie-kandidaten. De resultaten van deze 

studie laten zien dat het aantal familierelaties tussen de referentie-populatie en de 

selectie-kandidaten een grote invloed heeft op de betrouwbaarheid van het 

berekenen van genomische fokwaardes. Als familierelaties tussen de referentie-

populatie en de selectie-kandidaten afwezig waren, was de betrouwbaarheid laag, 

zelfs als op DNA-niveau de relatie tussen de merkers en genen hetzelfde was. 

Daarnaast laat deze studie zien dat het mogelijk is om de behaalde 

betrouwbaarheid nauwkeurig te voorspellen door het ‘aantal effectieve 

chromosoom segmenten’ (Me) tussen de referentie-populatie en de selectie-
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kandidaten te berekenen. De Me geeft aan hoe verschillend de DNA-profielen van 

verschillende groepen dieren zijn.      

In Hoofdstuk 3 zijn twee formules afgeleid om de betrouwbaarheid te 

voorspellen van genomische fokwaardes als de referentie-populatie bestaat uit 

dieren van een andere populatie dan de selectie-kandidaten. Beide formules zijn 

gevalideerd door fenotypes te simuleren van drie verschillende melkveerassen op 

basis van echte DNA-profielen. De eerste formule gebruikt de genomische relaties 

tussen de referentie-populatie en selectie-kandidaten, waarbij de genomische 

relatie tussen twee dieren aangeeft hoeveel gelijkenis hun DNA-profielen vertonen. 

Deze eerste formule berekent de betrouwbaarheid van genomische fokwaardes erg 

nauwkeurig. De tweede formule gebruikt populatie-parameters, zoals de eerder 

genoemde Me tussen referentie-populatie en selectie-kandidaten, en overschatte 

de betrouwbaarheid met 25 tot 30%. Voor beide formules was de genetische 

correlatie tussen de populaties, oftewel de correlatie tussen de effecten van de 

genen in de verschillende populaties, een belangrijke input-parameter.     

Dezelfde DNA-profielen en gesimuleerde fenotypes van de drie melkveerassen 

zijn gebruikt in Hoofdstuk 4. Het doel van deze studie was om inzicht te krijgen in 

hoeverre de relatie tussen merkers en genen overeenkomt in verschillende 

populaties en wat de invloed hiervan is op de betrouwbaarheid van genomische 

fokwaardes als de referentie-populatie bestaat uit dieren van een andere 

populatie. De resultaten laten zien dat de relatie tussen merkers en genen 

gedeeltelijk anders is in verschillende populaties, waardoor de merkers die een 

bepaald kenmerk verklaren anders kunnen zijn in verschillende populaties. De mate 

waarin de relatie tussen merkers en genen verschilt, had een sterk verband met de 

betrouwbaarheid van de genomische fokwaardes van dieren uit een andere 

populatie dan de referentie-dieren. Daarnaast laat deze studie zien dat als alleen 

de merkers dichtbij een gen meegenomen worden, de relatie tussen merkers en 

genen meer overeenkomt tussen populaties, wat mogelijk de betrouwbaarheid van 

genomische fokwaardes voor dieren uit een andere populatie dan de referentie-

dieren kan verhogen.   

Het effect van de eigenschappen van de genen op de betrouwbaarheid van 

genomische fokwaardes is onderzocht in Hoofdstuk 5. Hier is gekeken naar enkele 

scenario’s waarbij twee verschillende rassen zijn samengevoegd in de referentie-

populatie. In deze studie is ervan uitgegaan dat ieder gen en iedere merker 

voorkomt in twee varianten. Er is gekeken naar het effect van de frequentie van de 

minst voorkomende variant van een gen. De resultaten laten zien dat de 

betrouwbaarheid van genomische fokwaardes over het algemeen lager is als de 

genen een lagere frequentie van de minst voorkomende variant hebben, vooral als 
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deze genen ook nog een groot effect op een kenmerk hebben. Dit geeft aan dat het 

lastig is om de effecten van genen met een lage frequentie van de minst 

voorkomende variant betrouwbaar te schatten en dat de eigenschappen van genen 

met een effect op een kenmerk een grote invloed hebben op de betrouwbaarheid 

van genomische fokwaardes.  

In Hoofdstuk 6 is een formule afgeleid om de betrouwbaarheid te voorspellen 

waarmee genomische fokwaardes berekend kunnen worden op basis van een 

referentie-populatie bestaande uit verschillende populaties. Deze formule is 

gebaseerd op populatie-parameters, zoals de eerder genoemde Me tussen de 

referentie-populatie en selectie-kandidaten en de genetische correlatie. Deze 

formule is gevalideerd door Holstein Friesians in drie populaties in te delen. Van 

deze dieren waren DNA-profielen bekend en zijn de fenotypes gesimuleerd. De 

formule voorspelde de betrouwbaarheid erg nauwkeurig voor diverse scenario’s. 

Dit geeft aan dat deze formule gebruikt kan worden om keuzes te maken over hoe 

de optimale referentie-populatie eruit moet zien, wat belangrijke informatie is voor 

het opstellen van fokprogramma’s.  

De algemene discussie van dit proefschrift, beschreven in Hoofdstuk 7, 

bediscussieert vijf verschillende onderwerpen. Als eerste wordt de potentie van het 

samenvoegen van populaties in de referentie-populatie besproken, door sterk 

verwante en ver verwante populaties te combineren. Op basis hiervan kan 

geconcludeerd worden dat het samenvoegen van populaties kan leiden tot een 

hogere betrouwbaarheid van genomische fokwaardes, wanneer: 1) de 

gecombineerde populaties nauw verwant zijn, 2) de populatie waartoe de selectie-

kandidaten behoren klein is, en 3) het aantal toegevoegde dieren van een andere 

populatie groot is. Dit geeft aan dat het toevoegen van dieren van hetzelfde ras, 

maar uit een ander land, aan de referentie-populatie de beste manier is om de 

betrouwbaarheid van genomische fokwaardes te vergroten. Als dat niet mogelijk is, 

kan het helpen om dieren van een sterk verwant ras aan de referentie-populatie 

toe te voegen. Het toevoegen van dieren van een ver verwant ras heeft naar alle 

waarschijnlijkheid geen hogere betrouwbaarheid als gevolg, aangezien de rassen te 

verschillend zijn. 

Als tweede wordt het effect van het gebruikte model voor het schatten van 

merker-effecten op de behaalde betrouwbaarheid van de fokwaardes 

bediscussieerd. Hier wordt de hypothese beschreven dat het beste model om DNA-

informatie van verschillende populaties te gebruiken eerst een groep merkers 

selecteert met het meeste bewijs om effect te hebben op een kenmerk, en daarna 

alleen effecten schat voor deze groep merkers. Hierdoor hoeft dit model niet voor 
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alle merkers een effect te schatten, waardoor ieder van de effecten nauwkeuriger 

kan worden geschat.  

Als derde wordt het schatten van de genetische correlatie op basis van merker-

informatie bediscussieerd. Met behulp van een zogenaamd multi-trait model, 

waarbij de fenotypes van de twee populaties als een verschillend kenmerk worden 

gemodelleerd, is het mogelijk om de genetische correlatie betrouwbaar te 

schatten. Hiervoor is het essentieel dat de genomische relaties tussen de rassen 

worden meegenomen.  

Als vierde wordt bediscussieerd of de Me tussen de referentie-populatie en 

selectie-kandidaten gerelateerd is aan de mate waarin de relatie tussen merkers en 

genen hetzelfde is in verschillende populaties. Beide parameters beschrijven 

namelijk de mate van verschil tussen DNA-profielen van verschillende populaties. In 

dit deel wordt aangetoond dat beide parameters sterk samenhangen en dat het 

mogelijk is om de waarde van de ene parameter uit te rekenen op basis van de 

andere parameter. 

Als vijfde worden drie onderzoeksrichtingen bediscussieerd, welke de 

mogelijkheid hebben om beter gebruik te maken van informatie van andere 

populaties om de betrouwbaarheid van genomische fokwaardes te verhogen. De 

onderzoeksrichting met de hoogste potentie in de komende tien jaar is het 

identificeren van regio’s op het DNA met een effect op een kenmerk en deze 

informatie in andere populaties te gebruiken. Hierbij wordt niet aangenomen dat 

de exacte locatie van een gen dat invloed heeft op een kenmerk hetzelfde is in 

verschillende populaties, maar wel dat ze in dezelfde gebieden voorkomen. Het 

gebruik van de hele DNA sequentie, oftewel alle merkers op het DNA, en het 

schatten van interactie-effecten tussen varianten van een gen of tussen 

verschillende genen kan in de toekomst ook voordelig zijn, maar dan is er eerst 

meer informatie nodig over de eigenschappen en locatie van de genen die effect 

hebben op een kenmerk. 

Op basis van deze resultaten kan er geconcludeerd worden dat het combineren 

van informatie van verschillende populaties alleen in bepaalde gevallen leidt tot 

een hogere betrouwbaarheid van genomische fokwaardes. Met behulp van de 

afgeleide formules in dit proefschrift is het mogelijk geworden om te voorspellen 

voor welke scenario’s de betrouwbaarheid zal stijgen en hoe groot de stijging zal 

zijn. 
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Na vier jaar is het dan zo ver, mijn proefschrift is klaar! Wel is het met een 

dubbel gevoel dat ik dit schrijf. Van de ene kant ben ik blij dat het afgerond is, dat 

het doel van de afgelopen vier jaar om een proefschrift te schrijven is bereikt. Aan 

de andere kant vind ik het erg jammer dat het PhD kandidaat zijn nu ook is 

afgelopen, ik heb het namelijk een erg leuke en leerzame tijd gevonden. Met name 

van de sfeer binnen ABGC en van de samenwerking met verschillende mensen heb 

ik genoten. Iedereen bedankt die hieraan heeft bijgedragen! Een aantal mensen wil 

ik hiervoor in het bijzonder bedanken.  

 

Als eerste wil ik mijn begeleiders Mario, Roel, Chris en Henk bedanken. Mario, 

ik ben er zeker van dat ik me geen betere dagelijkse begeleider had kunnen 
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zaten we aan verschillende kanten van de wereld. Tijdens mijn hele PhD tijd heb je 

mij het gevoel gegeven vertrouwen in mij te hebben, iets wat me zelf nog te vaak 

ontbreekt. Voor dit vertrouwen ben ik je erg dankbaar, want daardoor durfde ik het 

aan om mijn grenzen op te zoeken en zelfs te verleggen. Roel, ook jou wil ik 

bedanken voor je vertrouwen. Al was het af en toe een uitdaging om je 

opmerkingen te ontcijferen, ze waren altijd zinvol. Daarnaast was het zonder jouw 

advies om te focussen op de hoofdlijn nooit gelukt om de presentatie-prijs te 

winnen tijdens de WIAS Science Day. Chris, bedankt voor het delen van informatie 

over de praktijk van de rundveefokkerij en de daarbij behorende uitdagingen. En 

natuurlijk ook voor het kritisch doorlezen van mijn papers en het corrigeren van de 

taalfouten. Henk, bedankt voor jouw kritische blik op mijn werk. Dit heeft mij 

geholpen om anders naar dingen te kijken en hierdoor zijn veel papers beter 

geworden. Naast deze begeleiders, wil ik ook Piter bedanken voor het delen van 

zijn inzicht en enthousiasme over de theoretische kant van de fokkerij. Piter, je 

hebt mij geïnspireerd om meer deze theoretische kant op te gaan, iets waar ik 

zeker geen spijt van heb. Daarnaast ben ik zowel jou als Johan dankbaar om al 

tijdens het eindgesprek van mijn MSc-thesis te beginnen over de mogelijkheden 

voor het doen van een PhD. Tot slot wil ik zowel Mario als Piter bedanken voor het 

vertrouwen om onze samenwerking nog 4 jaar voort te zetten tijdens een postdoc-

traject. 

 

I also would like to thank the people at DEPI in Melbourne, Australia, for giving 

me the opportunity to work there for three months. Ben, thanks for your 

supervision. Even though your time was limited, you helped me a lot. Your 

enthusiasm and positivity works inspiring! Mike, thank you for the discussions, 

support and your very useful comments on the paper. I also would like to thank 
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Jennie for her support in organizing my stay in Melbourne. Moreover, I would like 

to thank the group of DEPI for their hospitality, help, nice conversations and 

sightseeing tips. Without the nice atmosphere at DEPI, I wouldn’t have enjoyed my 

time in Melbourne and Australia as much as I did!! 

 

Dit proefschrift is geschreven binnen het GenomXL project, een samenwerking 

tussen Wageningen UR Livestock Research en CRV. Binnen het GenomXL-team 

hebben we verschillende discussies en bijeenkomsten gehad. Naast de eerder 

genoemde personen, wil ik daar ook Sander en Ghyslaine, en later ook Marianne en 

Henk voor bedanken. Jullie feedback op mijn werk en jullie suggesties hebben zeker 

bijgedragen aan dit proefschrift en hebben mij geholpen om meer inzicht te 

verkrijgen in de rundveefokkerij. Bedankt daarvoor! Het GenomXL project was een 

project binnen het Breed4Food consortium. Daarom wil ik ook de andere partners 

van Breed4Food bedanken voor hun input en interesse voor mijn werk.  

 

Many thanks to all the nice colleagues within ABGC! It was nice to get to know 

all of you, and I enjoyed the discussions during QDG and TLM, the conversations 

during coffee/lunch breaks, the birthday parties, the Sinterklaas celebrations and 

all other social activities. It was nice to be part of this group! Due to the 

international team around me, I learned a lot about other cultures and traditions. 

And even though some of you were making fun of my Dutch habits (“Oh, you’re so 

Dutch!”), I hope that you learned that some of the Dutch habits are useful (like 

having an agenda ;-)). The number of colleagues that supported me is too high to 

mention all of them by name. However, a couple of colleagues deserve a special 

thank you, like my roommates, both in Triton and Radix. Besides our nice 

conversations, you were always there if I needed help or advice, or when I just 

wanted to express my frustrations when something didn’t work out according to 

my plan. Ik wil ook graag de secretaresses van zowel ABG als WLR bedanken voor 

de administratieve ondersteuning. Lucia, jou wil ik bedanken voor je vertrouwen en 

je hulp bij het verleggen van mijn grenzen. Al was ik als PhD student een apart 

geval binnen de systemen van WLR, je hebt altijd je best gedaan om het voor mij zo 

makkelijk mogelijk te maken. Marcin, thanks for all your programming help, your 

guidance at the beginning of my PhD and all our discussions. It is nice to see that 

our friendship didn’t end when you moved back to Poland. And it is getting time to 

plan my visit to Poznan ;-). Aniek, bedankt voor de gezelligheid tijdens de pauzes en 

je advies over allerlei zaken. Door onze discussies over inhoudelijke zaken is mijn 

inzicht in de genetica zeker gegroeid! Yvette, jou wil ik bedanken voor de 

gezelligheid, de wandelingen, de adviezen, de paardrijd-begeleiding, de leuke 
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theaterbezoekjes, de final check van mijn thesis en ga zo maar door. Je had altijd 

snel in de gaten als ik ergens mee zat en stond dan meteen voor me klaar, zelfs al 

was je druk. Aniek en Yvette, het is fijn om zo’n collega’s te hebben!! Al hadden 

jullie me wel een keer mogen laten winnen met spelletjes doen ;-). 

 

Rianne, bijzonder om zowel onze studententijd als onze PhD-tijd samen door te 

maken. Erg gezellig natuurlijk, maar ook fijn om de ervaringen tijdens het doen van 

een PhD met iemand te kunnen delen. Alleen is het af en toe wel jammer dat je 

precies weet hoe je mij de slappe lach kunt bezorgen... Succes nog met de laatste 

loodjes van jouw PhD, maar ik heb er alle vertrouwen in dat dit goed gaat komen! 

Natasja, kei bedankt voor de gezellige tijd in Melbourne/Australië! Zonder jou had 

ik deze stap nooit durven zetten, en daar zal ik je altijd dankbaar voor blijven. 

Daarnaast natuurlijk ook bedankt voor alle Brabantse gezelligheid in Nederland, fijn 

om te weten dat ik altijd bij je terecht kan. Rianne en Natasja, ik ben blij dat jullie 

tijdens deze belangrijke dag naast me willen zitten op het podium (dit heeft 

natuurlijk ook nog als extra voordeel dat jullie me niet af kunnen leiden door het 

trekken van gekke bekken ;-)).  

 

 Meiden (en mannen) van de Maliboes, bedankt voor jullie vriendschap, jullie 

steun en de ontspannende dagen, avonden, weekenden en vakanties. Al zien we 

elkaar niet meer iedere dag, zoals tijdens onze studietijd, het is altijd gezellig om 

elkaar weer te zien, bij te kletsen en om (vaak om eigenlijk niets) te kunnen lachen. 

Bedankt voor jullie interesse in mijn onderzoek, al was het af en toe lastig uit te 

leggen waar ik nu precies mee bezig was. Hopelijk dat het na het lezen van mijn 

boekje iets duidelijker is geworden ;-). Daarnaast worden jullie lieve berichtjes op 

momenten dat ik het nodig heb zeker gewaardeerd! Laura, jou wil ik nog speciaal 

bedanken voor het ontwerpen (en tekenen) van de omslag van het boekje! Jouw 

creativiteit kwam daarvoor zeker van pas en ik ben echt blij met het resultaat! 

 

Tot slot wil ik ook alle andere vrienden en familieleden bedanken voor alle 

steun, ontspanning, afleiding, en vriendschap. Pap en mam, bedankt voor de fijne 

thuisbasis op de Zandkant en de Brabantse no-nonsense opvoeding. Jullie 

opvoeding en het opgroeien tussen de koeien hebben me zeker geholpen tijdens 

mijn studietijd en mijn PhD. Bedankt dat jullie me altijd steunen en willen helpen. 

Samen met Anne & Rinus, Rob & Moniek en de kleine Cas, wil ik jullie bedanken 

voor jullie interesse, en de gezelligheid en ontspanning waar jullie voor gezorgd 

hebben. Alhoewel ik vaak gehoord heb “Ze doet iets met DNA en koeien, maar wat 

precies...?”, hebben jullie wel altijd interesse getoond in mijn onderzoek. En het 
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belangrijkste om te onthouden is in ieder geval dat ik het leuk vind! Hopelijk kan ik 

jullie in de toekomst nog eens overtuigen van de voordelen om de koeien te laten 

genotyperen ;-). Anne, jou wil ik nog speciaal bedanken voor je hulp en advies 

tijdens mijn PhD (je weet immers hoe het moet ;-)) en het doorlezen/doorkijken 

van de stukken.  

Nogmaals bedankt allemaal!! Mede dankzij jullie hulp is mijn PhD-tijd een 

onvergetelijke en leuke tijd geworden. Hopelijk kom ik jullie in de toekomst nog 

vaak tegen en kan ik dan nog steeds op jullie hulp, steun, vertrouwen, vriendschap 

en humor rekenen!!  
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