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Abstract

In closed agricultural systems the weather acts both as a disturbance and as a re-
source. By using weather forecasts in control strategies the effects of disturbances
can be minimized whereas the resources can be utilized. In this situation weather
forecast uncertainty and model based control are coupled. In this thesis a model of a
storage facility of agricultural produce is used as an example for a weather controlled
system.

The first step in reducing prediction uncertainty is taken by reducing the un-
certainty in the weather forecast itself. A Kalman filter approach is used for this
purpose. Weather forecast uncertainty is significantly reduced up to 10 hours for
temperature, up to 32 hours for wind speed and up to 3 hours for global radiation
by using this approach.

For a linearized model of the storage facility error propagation rules have been
derived. The uncertainty of the output can therefore be analytically calculated. The
medium range weather forecast, i.e. up to ten days ahead, consists of an ensemble of
50 forecasts. The mean and variance of these forecasts are used for model prediction
and model output uncertainty prediction. Furthermore, by using optimal control in
conjunction with a cost criterion, the uncertainty of the system state is incorporated
into the cost criterion. As a result the control inputs shift towards parts with less
uncertainty in the weather forecast. Finally, a numerical risk evaluation showed that
if feedback is applied, as in receding horizon optimal control, the cost increase is
limited to 5% for a 24 hour feedback interval.

Mathematical models are always an approximation of the real system. Model
uncertainties arise in the model structure and/or in unknown parameter values. If
measurements from the system are present, the model is fitted to the data by chang-
ing parameter values. Generally, parameters that are nonlinear in system model
output are estimated by nonlinear least-squares (NLS) optimization algorithms. For
systems that rational in their parameters a reparameterization method is proposed
such that the new parameters can be estimated with ordinary least squares. As a
result a modified predictor appears. In the noise free case this leads to the exact
parameter estimates whereas a nonlinear least squares approach might end up in a
local minimum. If noise is present, however, the linear estimates might be biased and
the modified predictor has only a limited range. Because after linear reparameter-
ization the data structure generally becomes errors-in-variables a bias compensated
total least squares approach is used. The predictive performance of the modified
predictor in this case largely improves and is regarded as a powerful alternative to
the existing least squares methods.
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Chapter 1

1.1 Background

Many systems in agricultural practice are influenced by the weather. When these

systems are closed they are usually controlled in order to keep the climate inside

the system on a reference trajectory. In this context the weather is a disturbance

of the system. In practice, the weather does not only act as a disturbance but is

also necessary as a resource, e.g. the effect of global radiation on plant growth. An

enhancement would be to use weather forecasts in control strategies. This idea was

implemented in the EET1-project ”weather in control” [LB06]. The main purpose

of the project ”weather in control” was (i) to compute optimal control strategies that

anticipate to changing environmental conditions (ii) to analyze the effects of weather

forecast and parameter uncertainty on the predicted process states and calculated

optimal controls. In this concept, the weather is then no longer a disturbance but an

external input driving the system.

For greenhouses optimal control studies related to crop growth can be found in

literature e.g. [GAS84, vSCB00]. Since these have long term objectives (months) in

terms of crop yield the outside temperature used in the model comes from climatic

data. However, if the greenhouse climate itself is subject to an optimal control or

model predictive control strategy prediction horizons of no more than one hour are

used [TVWVS96, COC05, PCKP05]. For these short term horizons the lazy man

weather prediction, i.e. the observed weather will not change during the next hour,

proved to be a better solution than using weather forecasts [TVWVS96]. Ultimately,

a two time-scale decomposition can be used to gain from both: a maximum crop

yield and minimizing resources (i.e. greenhouse climate optimization) [vSvWT02].

In the area of livestock buildings optimal control strategies are very scarce and in

these cases no use is made of dynamic models of the indoor climate [SL93, TGB+95].

Dynamic models in livestock buildings are used, however, for the estimation of the

variables to be controlled such as the temperature in the animal occupied zone, that

cannot be measured directly [VWAVB+05] and in robust control design [DAPS06].

Model prediction based on weather forecasts are not found. A third application area

on which ambient weather conditions act is in post-harvest processes. The interest in

control concepts for drying in general has increased only in the last decade [Duf06].

This accounts especially for optimal control concepts. In many cases ambient air is

(partially) used to achieve the control objectives (e.g. [EJM+97, RPM06, SHD06]).

Again, no use is made of weather forecasts. In other post harvest processes like

storage, studies of control with ambient air are very limited. In [KPL03] it was

1EET: subsidy program from the Dutch Ministry of Finance, the Ministry of Education,
Culture and Science and the Ministry of Housing, Regional Development and Environment
(project no. EETK01120)
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Introduction

Figure 1.1: schematic overview

shown that given a perfect weather forecast total costs can be reduced up to four

days ahead. Disturbances, however, are not accounted for in this study.

In figure 1.1 a schematic overview is given of the use of weather forecasts in

dynamical models and the analysis of the uncertainty in weather forecasts. The

main application area in this thesis relates to storage of potatoes (see appendix B for

details of the model). In part I the uncertainty from weather forecasts is analyzed

(chapters 2 and 3). Furthermore, the propagation of this uncertainty and a risk

evaluation of the predicted output is subject of research (chapter 4). Finally, the

predicted uncertainty can be part of an optimal control algorithm (chapter 5). Both

model prediction and error propagation require a good nominal model. In part

II a model calibration technique for rational models is proposed to obtain a good

predictor. First, the technique is applied to the storage model (chapters 6 and 7).

Second, the approach is extended to rational biokinetic models (chapter 8).

1.2 Error Propagation

1.2.1 Weather forecasting

Weather forecasts are predictions of the future state of the atmosphere. Because of

the chaotic nature of the weather exact initial conditions of the numerical weather

prediction models are required in order to provide an accurate forecast [LOR63].

Since these initial conditions are only approximations, the weather forecast becomes

uncertain in the longer range. In order to obtain a measure of the uncertainty

ensemble prediction [LEI74, PBBP97] was developed. An ensemble forecast consists

of several members, where each member has an equal probability of occurrence. The

7



Chapter 1

members are the outcome of a numerical weather prediction model with perturbed

initial states.

With the ensemble prediction an uncertainty measure of the weather forecast be-

comes directly available [Zhu05b] and is also known as skill prediction of the weather

forecast. In addition, a distinction can be made between forecasts with lower or

higher than average expected uncertainty [TZM01, Zie01].

Three different types of goodness of weather forecasting are distinguished [Mur93]:

consistency, quality and value. Consistency is defined by the correspondence between

forecasts and the forecasters’ judgements, quality by the correspondence between

forecasts and observations and value as incremental benefits of forecasts to users.

Since consistency depends on the forecasters’ judgement which is not known to the

user this type of goodness is outside the scope of this thesis. Users in application

areas such as agriculture or electricity production are operating on a local scale and

are interested in the quality of a weather forecast. Furthermore, if decisions are made

upon weather forecasts it can also be related to value [Atz95, KPL03, Wil98, Tei05].

In this thesis the quality plays the central role but the close relationship with value

is obvious.

Because local weather forecasts are essential for local systems it is important

to have a good local weather forecast (see part I). In meteorology postprocessing

techniques like model output statistics, perfect prognosis and reanalysis [Mar06] are

in use to correct model outputs. The commercially available (corrected) weather

forecasts, however, are only given for specific predefined locations. Methods based

on the Kalman filter that reduce the bias of weather forecasts are described in the

literature to account for large differences in mountainous areas [Hom95] or in the

presence of large water surfaces such as seas or lakes [GA02]. Near the ground

the type of vegetation and soil [Gei61] determines the microclimate. However, the

vegetation does not only effect the climate near the ground but also at larger distances

from the ground [WIL91, CHE93]. Furthermore, urbanization has a substantial effect

on the local climate [Mak06].

Local users of weather forecasts are able to purchase forecasts up to ten days

ahead by commercial weather agencies. In general, these forecasts are not corrected

for the local situation. Hence, there is a need to update regional forecasts for local

users. For the short term (up to 36 hours) a single deterministic forecast is available in

the Netherlands. For the medium range forecast (up to 10 days) ensembles are used.

As mentioned before, the medium range ensembles can be treated as probabilistic

forecasts to estimate the probability distribution. Given this probability distribution

economic decision rules can be optimized [SRH01, Zhu02].

8
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1.3 Estimation methods

Calibration of a mathematical model is an important procedure to optimize the

predictive quality of the model. In this thesis (part II) several parameter estimation

techniques, i.e. nonlinear least squares, ordinary least squares and total least squares

are used to calibrate a model of a storage facility of agricultural produce. The

methods that will be used are briefly described in the following subsections. An

example of a very simple deterministic dynamic model is given by:

y(k + 1) = ay(k) + bu(k) (1.1)

a linear time-invariant difference equation model. This model will be used to illus-

trate the differences between the described techniques. It is assumed that the model

structure is known beforehand and that the unknowns are the parameters a and b.

1.3.1 Nonlinear least squares

For models that are nonlinear in the parameters iterative nonlinear least squares

methods are usually used to estimate the parameters. A disadvantage of these meth-

ods is that generally they might end up in local minima. The general procedure of

nonlinear least squares is that a quadratic loss function is defined

V =
m

∑

k=1

(e(k))2 (1.2)

with e(k) the prediction error y(k) − ŷ(k), i.e. the measurement y(k) minus the k-

step ahead prediction ŷ(k), and m the total number of measurements. By changing

the parameters the value of the loss function also changes. A minimum is found if

and only if the following criteria hold:

∂V

∂p
= 0 (1.3)

∂2V

∂p2
> 0 (1.4)

with p the parameter vector. Because this minimum generally cannot be calculated

analytically it is to be found numerically. It is therefore hard to ensure the global

minimum is found if multiple local minima are present.

To illustrate the existence of local minima in a nonlinear least squares approach

the linear deterministic model output (1.1) with b fixed at zero is estimated by:

ŷ(k + 1) = âŷ(k) (1.5)

9



Chapter 1

It can be easily seen that even for a two steps ahead prediction with y0 given the

model becomes nonlinear in its parameters:

ŷ(1) = ây(0)

ŷ(2) = â2y(0)

In the deterministic case shown a minimum is found when V = 0. If noise is present

(i.e. y(k) = ŷ(k) + e(k)), however, which is generally the case the minimum of the

loss function will not be zero. Because the minimum value of V in such cases is

not known the conditions (1.3) and (1.4) need to be evaluated. For this particular

example (up to two-step ahead prediction) the partial derivative is given by:

∂V

∂â
= −2y(1)y(0) + 2ây(0)2 − 4ây(0)y(2) + 4â3y(0)2 (1.6)

There are three solutions for the derivative equals zero, i.e. a minimum, maximum

or inflexion point is found. The solutions are given by:

â =





a

−1
2
a + 1

2

√

(a2 − 2)

−1
2
a − 1

2

√

(a2 − 2)





If a >
√

2 there are three real valued solutions from which two are minima and

one is a maximum. A nonlinear search routine could therefore end up in the wrong

minimum.

For a three-step ahead prediction polynomials of order five are already obtained in

the derivatives. These polynomials can generally not be solved analytically [Abe26].

Numerical solvers are then required to find the roots. Moreover, if more parameters

need to be estimated, nonlinearity increases and more (real valued) minima can be

present. Indeed, in general numerical solvers cannot guarantee to find all minima and

hence they cannot guarantee to find the global minimum. Frequently used methods

like the simplex method or gradient methods [see e.g. DS96] are widely available in

commercial computer programs. The nonlinear least squares procedure for estimating

parameters is used in this thesis as a reference for alternative estimation methods.

1.3.2 Ordinary least squares

For systems linear in their parameters the ordinary least squares procedure is widely

used. Consider again the deterministic system of (1.1) with y(0) given and a = 0. If

the observations are subject to noise the model can be written as:

y(k + 1) = bu(k) + e(k + 1) (1.7)
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If e is zero mean white noise and u(k) is known, b can be estimated with ordinary

least squares. Because the system is linear in its parameters and the squared 2-norm,

i.e. ||e||22 = eT e with e = [e(1), e(2), · · · , e(m)]T , is minimized a global solution is

found by:

b̂ =
(

uT u
)−1

uT y (1.8)

with u = [u(0), u(1), · · · , u(m − 1)]T and y = [y(1), y(2), · · · , y(m)]T . The basic

assumption in this procedure is that the regression vectors are exactly known. The

ordinary least squares procedure ensures the global minimum if the regression vectors

are not linearly dependant. Detailed information about ordinary least squares can

be found in e.g. [Lju87, Nor86].

1.3.3 Total least squares

As mentioned before the underlying assumption of the ordinary least squares esti-

mator is that the regressors are known without errors. Frequently, however, errors

are not only present in the output vector but also in the data matrix containing the

regression vectors. In the ordinary least squares example it was assumed that the

error was related to the output y(k + 1) and that the input u(k) was known exactly.

It is very well possible, however, that also u(k) is subject to errors, e.g. u(k) is

measured itself. The system is then given by:

y(k) + e(k) = b(u(k − 1) + w(k − 1)) (1.9)

This model type is known as errors-in-variables. If the errors e and w are independent

and identically distributed the parameter estimation problem is solved by total least

squares (TLS). TLS is a fitting technique that compensates for errors in the data

and was first introduced by [GVL80]. A graphical representation of TLS estimation

compared with OLS estimation is given in Figure 1.2. In stead of minimizing ‖e‖2,

TLS minimizes ‖[e|w]‖F the frobenius norm of [e|w] which is defined by:

‖[e|w]‖F = ‖Ξ‖F =

√

√

√

√

m
∑

i=1

2
∑

j=1

ξ2
ij (1.10)

The solution of the basic TLS problem is heavily based on the singular value decom-

position. For the specific case described above, i.e. a single parameter needs to be

estimated, the solution is given by:

[u|y] = USV T (1.11)

b̂ = v1,2v2,2 (1.12)

where V =

[

v11 v12

v21 v22

]

. An extensive introduction to TLS with algorithms can be

found in [VHV91].

11
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Figure 1.2: Ordinary least squares (- - -) versus total least squares (—) [GVL80].

Since the introduction of TLS many extensions have been made. The limitation

of independently and identically distributed errors e and w was overcome by the

introduction of generalized TLS [VHV89]. The dependencies between the errors can

be defined in the covariance matrix C and the solution is based on the generalized

singular value decomposition [Van76]. If multiple inputs are present, this method

also allows the case where some of the inputs are free of errors. If the data matrix,

i.e. [y|u], is near rank deficient regularization tools e.g. [Han94] are needed. Specific

methods that are able to regularize TLS are truncated TLS [Fie97] and Tikhonov

based regularization [Gol99, BBT06].

For dynamic systems like (1.1) in which all variables are subjected to errors, the

error matrix [E|w] becomes structured. This is worked out in the following case:

y(k + 1) + e(k + 1) = a(y(k) + e(k)) + b(u(k) + w(k)) (1.13)

For m measurements this leads to the norm of the following structured matrix to be

minimized:
∥

∥

∥

∥

∥

∥

∥

∥

∥











e(1) e(0) u(0)
e(2) e(1) w(1)

...
...

...
e(m) e(m − 1) w(m − 1)











∥

∥

∥

∥

∥

∥

∥

∥

∥

F

Because in this case the errors [e|w] are no longer independent and the errors are

structured the TLS solution is no longer optimal [VHV91]. Several solutions such as

constrained TLS [AMH91], structured TLS [Dem93] and structured total least norm

[RPG96, VPR96] have been proposed and successfully applied for this specific case.

A comparison between these methods can be found in [LVHDM97]. Even in the case

12
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of nonlinearly structured matrices methods are available to cope with these structures

[RPG98, LVHDM02]. The methods dealing with structured matrices, however, are

all based on iterative algorithms which may suffer from local minima.

1.4 Rational models

A special class of nonlinear models is the class of rational models or models with

a polynomial quotient structure. Discrete-time dynamic rational models are in this

thesis specified by:

x(k + 1) = f(Z, p) =
g(Z, p)

h(Z, p)
(1.14)

with g(·) and h(·) polynomials in the elements of Z and p. Furthermore, Z =

(x(k), · · · , x(k − τ), u(k), · · · , u(k − τ)) k, τ ∈ Z
∗ and τ < k with τ the time delay.

Many models are captured by this class such as biokinetic functions described by

the Michaelis-Menten equation. In this thesis the storage model that is used for

uncertainty analysis can be confined to this class (see appendix B or chapter 4).

1.5 Research topics

Models of agricultural systems that use weather forecasts to predict their systems

behavior need a local forecast for the best performance. However, weather forecasts

are only available for specific meteorological weather stations. Furthermore, com-

mercial weather forecasts are only delivered at certain time-intervals. Between two

subsequent weather forecasts no updates are available. In addition, many agricul-

tural systems already have installed basic instruments to measure weather data. The

first research question therefore is postulated as:

Question 1. Can data assimilation techniques be used to improve local weather
forecasts?

A model of a storage facility of agricultural produce is used in the remainder for

analyzing the effect of uncertain weather forecasts. Details of this model can be found

in appendix B. For linear systems it holds that given the second statistical moment

of the input error the error of the system states can be calculated analytically. If the

model state is to be kept within constraints, the uncertainty of the state becomes

important. Furthermore, if optimal control is applied the system uncertainty becomes

part of the optimal control problem. This results in the following questions:

Question 2. How can the state uncertainty be integrated in the goal function?

Question 3. How are the control variable and state uncertainty affected if the un-
certainty of the system states is part of the goal function?

13
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In case a receding horizon optimal control (RHOC) algorithm is implemented

based on a nominal weather forecast the expected costs probably differ from the

realized costs based on the actual weather. The same holds for model uncertainty;

the realized costs based on the actual system differ from the calculated costs.

Question 4. What are the effects of weather forecast uncertainty and parameter
uncertainty on the calculated costs in a RHOC framework?

In order to get a good predictive model, model calibration is required. Nonlinear

least squares is a general approach to obtain this for nonlinear in the parameter

models. Parameter estimation with nonlinear least squares has some drawbacks of

which existence of local minima is of most interest in this study. A rational model

directly follows from a storage application. Hence, for general rational models that

leads to the next problem statements:

Question 5. Is it possible to linearly reparameterize a rational model such that its
parameters can be estimated with linear regression and what effects does it have on
the predictive performance of the model?

Question 6. Is total least squares a suitable technique to estimate the new parameters
obtained with linear reparameterization such that the predictive performance of the
predictor increases?

1.6 Outline of the thesis

This thesis is divided into two parts. In figure 1.1 it can be seen that uncertainty that

is inherent to weather forecasting propagates through a nominal model and leads to

output uncertainty. The output uncertainty can then be used for risk analysis and

used in control. These methods are covered in part I. In order to be able to apply

the described methods a good nominal model is needed. In part II emphasis is put

on obtaining a good nominal model, i.e. a good predictor.

Part 1: Error propagation An effort is made to reduce the uncertainty of the

weather forecasts. In Chapter 2 a general framework based on Kalman filtering

is presented to adapt weather forecasts to local sites. In chapter 3 this concept

has been applied to a greenhouse site with local data available. The next

step is to analyze the propagation of the remaining disturbances through the

model. In chapter 4 this is done for a storage model of agricultural produce (see

appendix B) and an attempt is made to include the uncertain system states into

the optimization procedure. The last chapter of this part, chapter 5 concerns

the impact of uncertainties in both the model and the disturbances on the

calculated costs based on the cost function used in the optimization procedure.

14
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Part 2: Parameter estimation A discrete-time rational storage model (see ap-

pendix B) is calibrated by using different parameter estimation techniques.

The main goal is to obtain a good predictor. In chapter 6 a linear reparam-

eterization method of discrete-time rational models is proposed in order to

uniquely estimate the ”new” parameters with ordinary least squares. After

backtransformation a new predictor is obtained. A total least squares solution

for linearly reparameterized models is presented in chapter 7. The method is

further elaborated for rational biokinetic functions in chapter 8.

Conclusions and general discussion Finally, in chapter 9 conclusions from the

main research questions are drawn and possibilities for future research are given.

15
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Chapter 2

Adaptive Weather Forecasting
using Local Meteorological
Information

This chapter has been published as:
Doeswijk, T.G. and K.J. Keesman. Adaptive Weather Forecasting using Local Meteoro-
logical Information. Biosystems engineering, 91(4):421-431, 2005
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Chapter 2

2.1 Introduction

Weather forecasts are subject uncertainties. The goodness of a weather forecast

[Mur93], however, is not evident as objectives are different among users. Murphy

identified three types of goodness: consistency, quality, and value. Consistency,

mainly concerns the meteorologist. Quality is related to the match between forecasts

and observations. Value, defined by economic benefits, is mainly of interest to users.

The types of goodness are related to one another. For instance, if an economic

decision is based on a weather forecast, the relation between quality and value is

defined by the user and depends on the type of problem.

In general, meteorological parameters such as temperature, rain and global ra-

diation are important for agricultural systems. Anticipating on future conditions is

most often needed in these systems. Weather forecasts then become of substantial

importance. The uncertainties of weather forecasts have a direct effect on the uncer-

tainty of the system states [Atz95]. If control strategies are used that anticipate to

(changing) weather conditions [CBW96, KPL03], the goodness of weather forecasting

is related to value. The anticipating control strategies, however, are heavily based on

the system model and as such on the quality of the forecast. Therefor, the quality

(or accuracy) of the weather forecasts is examined in this chapter.

When very short term weather forecasts are needed, a simple method such as

‘lazy man weather prediction’ [TVWVS96] or a more sophisticated method based

on neural networks [CBCdMO02] can be used. However, when forecasts up to a day

ahead or more are needed, commercially available weather forecasts are more reliable.

Although work has been undertaken to improve meteorological models [PBBP97]

local conditions are not covered by these models. Expert and historical knowledge

of a specific location is needed to improve the local weather forecast. In addition,

the forecast can be further improved by adaptive techniques using local observations.

In previous work, it has been shown that biases of meteorological models can be

reduced for short term forecasts (up to 48 hours) [Hom95]. A comparable result

has been obtained for maximum and minimum temperature forecasts [GA02]. Both

methods are based on prediction of forecast errors. The obtained errors are then

added to the available forecasts.

The main purpose of this chapter is to show that local forecasts can be improved

by using local meteorological information. This improvement is based on reduction

of the standard deviation of the forecast error. The Kalman filter [Gel74] is used to

update local weather forecasts, where the covariance matrices can be obtained from

actual and historical data. In this chapter, the temperature at research location ‘De

Bilt’ in the Netherlands is chosen to demonstrate the procedure. In order to show

the wide applicability of the procedure, results of wind speed and global radiation

20
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are included as well.

2.2 Background

2.2.1 Weather data

The weather data normally used for agriculture, are derived from local measurements

and short term forecasts. Results are presented for the temperature at 2 m, wind

speed and global radiation at location ’De Bilt’ in the Netherlands. Data used for

analysis range from March 2001 until December 2003.

The local measurements are available with an hourly interval. The weather fore-

casts become available every six hours at 0100, 0700, 1300 and 1900 coordinated

universal time (UTC) and consist of forecasts from 0 to 31 hours ahead with an

hourly interval. These external data were extracted from the GFS (global forecast

system) model formerly known as AVN (Aviation) model. The model was modi-

fied during the period of study several times. Both data are possibly adjusted by a

meteorologist.

2.2.2 Diurnal bias corrections

Systematic errors from numerical weather prediction models can be filtered [Hom95,

Bha00, GA02]. In this case, the prediction errors are assumed to vary only in a 24

hour context. The estimated prediction errors at forecast times are added to the

forecasts independent from the forecast horizon. These corrected forecasts give good

results for bias reduction. However, reductions in standard deviations of the forecasts

error are, if any, low. Due to homogeneity of the weather in the Netherlands, i.e. no

large bias is expected, our main focus is to obtain reduction of the standard deviation

of the forecast error.

2.2.3 Forecasting system and Kalman filter

Local measurements are used to update the short term forecasts. The updating

algorithm uses a linear, time-varying system in state-space form that describes the

evolution of the forecasts. Every stochastic l-steps ahead forecast at time instant

k is treated as a state variable xl(k) where l = 0, ...,M (final forecast horizon).

Consequently, x0(k) represents the actual state, x1(k) the one-step ahead forecast,

etc. The forecasts that become available at time instant k are treated as deterministic

input u(k). A discrete-time state-space notation is used to represent the ‘forecasting’
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system

x(k + 1) = A(k)x(k) + B(k)u(k) + G(k)w(k) (2.1)

y(k) = Cx(k) + v(k) (2.2)

where x(k) ∈ R
M+1, u(k) ∈ R

M+1 and y(k) ∈ R
p with p the number of measurements.

Furthermore, it is assumed that the disturbance input w(k) (so called ‘system noise’)

and measurement noise v(k) are zero-mean Gaussian random sequences with:

E
[

w(k)
]

= 0, E
[

w(k)wT (k)
]

= Q (2.3)

E
[

v(k)
]

= 0, E
[

v(k)vT (k)
]

= R (2.4)

where w(k)T denotes the transpose of w(k). The matrices A(k), B(k), C,G(k), Q and

R are system dependent and will be defined in the subsequent sections. Furthermore,

in what follows the matrices C, Q and R are a constant (time-invariant) matrices

whereas A, B and G are time-varying.

In the next sections, the so-called Kalman filter is used to update local weather

forecasts. Given a system in state-space form (Eqns 2.1 & 2.2) and a measured output

y(k), the Kalman filter estimates the states at time instance k with the smallest

possible error covariance matrix P [Kal60]. The following Kalman filter equations

for the discrete-time system (Eqns 2.1 & 2.2) are used to estimate the new states

(i.e. updated l-steps ahead forecasts) when new observations become available:

x̂(k + 1|k) = A(k)x̂(k|k) + B(k)u(k) (2.5)

P (k + 1|k) = A(k)P (k|k)A(k)T + G(k)QG(k)T (2.6)

K(k + 1) = P (k + 1|k)CT
[

CP (k + 1|k)CT + R
]−1

(2.7)

x̂(k + 1|k + 1) = x̂(k + 1|k) + K(k + 1)
[

y(k + 1) − Cx̂(k + 1|k)
]

(2.8)

P (k + 1|k + 1) = P (k + 1|k) − K(k + 1)CP (k + 1|k) (2.9)

where x̂(k+1|k) denotes the estimate of state x at time instant k+1 given the state at

k, and A(k)T is the transpose of A(k). Furthermore, K(k+1), known as Kalman gain,

denotes the weighting matrix related to the prediction error
[

y(k+1)−Cx̂(k+1|k)
]

.

2.2.4 Covariances

In the Kalman filter covariance matrices P,Q and R play an important role. As

can be seen from Eqns (2.6), (2.7) and (2.9), given an initial covariance matrix P (0)

(typically P (0) = 106I with I the identity matrix) the corrected covariance matrix

P (k + 1|k + 1) can be calculated. The matrix R is related to the measurement

noise. It can mostly be determined from the sensor characteristics. The key problem

here is how to choose Q, the covariance matrix related to the disturbance inputs or

system noise. This system noise covariance matrix of the short-term forecasts can be

determined from historical data by comparing forecasts to observations.
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2.3 Local adaptive short term forecasting

The general system (2.1)-(2.2) is further elaborated by defining the system variables

and matrices. The dimension of both the state (x) and input (u) vectors is 32. The

output (y) is the observed meteorological parameter and is a scalar. The system

matrix A is chosen such that at every time instance when a new observation becomes

available, the states are moved up one place. As a consequence, the state vector x

always represents the forecast horizon (from 0 to 31 − k + 1 hours ahead). Subse-

quently, the effective system reduces as long as there are no new external forecasts

available. Given the assumption that new external forecasts are better than updated

old forecasts, the old states are reset and the new initial state is fully determined

by the new forecast as soon as new one becomes available at time instance k∗. The

system matrices are defined as follows:

A(k) =

















0 1 0 . . . 0
...

. . . . . . . . .
...

...
. . . . . . . . . 0

...
. . . . . . . . . 1

0 · · · · · · · · · 0

















k 6= k∗, k ∈ N (2.10)

A(k) = 0 k = k∗, k ∈ N (2.11)

C =
[

1 0 · · · 0
]

(2.12)

The system noise or disturbance input is only relevant at time instant k = k∗, i.e.

when a new external forecast becomes available. The time-varying system matrices

B and G are defined as follows:

B(k) = G(k) = I ∀k = k∗, k ∈ N (2.13)

B(k) = G(k) = 0 ∀k 6= k∗, k ∈ N (2.14)

where A,B,G ∈ R
(M+1)×(M+1) and C ∈ R

M+1 (M = 31). The Kalman filter can now

be introduced to use local measurements for improving short term weather forecasts.

The stability of the filter is proven in Appendix A.

2.4 Results

From the forecast and observation files the average forecast error (i.e. forecasts -

observations) of the predicted meteorological parameter was obtained and the co-

variance matrix Q of the forecast error was calculated. The data used to obtain this

matrix covered the period from March 1, 2001 until March 1, 2002. As an example

the covariance matrix of the 2 m temperature is given in figure 2.1. On the diagonal
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Figure 2.1: Covariance matrix of the short term forecast error

the variance of the forecast error is given along the forecast horizon. Furthermore,

Q is symmetrical, i.e. cov(x, y) = cov(y, x).

For all meteorological parameters the same procedure was used. The Kalman

filter was run over the period December 1, 2002 until November 1, 2003. The updated

forecasts were compared with the original external forecasts after a new external input

entered the system and a measurement was taken.

For the 2 m air temperature a comparison is made between the previously de-

scribed method and the method described in [Hom95] which is based on diurnal bias

corrections.

2.4.1 Air temperature at 2 m

Local adaptive forecasting

The variance of the observational noise R (see Eqn 2.4) was assumed to be 0.1
◦C2. Given A,B,C,G (Eqns 2.10-2.14), Q and R, the Kalman filter could then be

implemented. The results are presented in figure 2.2. From this figure it can be seen

that using a single observation, forecasts up to six hours ahead can be positively

adjusted. The periodicity that is observed is due to interpolation; the original model

output, given at a 3 hourly interval, is interpolated by the weather agency to an

hourly interval.

24



Adaptive Weather Forecasting using Local Meteorological Information

Forecast horizon, h

A
v
er

ag
e

er
ro

r
,o

C

Forecast horizon, h

S
ta

n
d
ar

d
d
ev

ia
ti

on
,o

C

0 10 20 30 400 10 20 30 40
0

0.5

1

1.5

2

2.5

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Figure 2.2: Average forecast error and standard deviation of the original forecasts
(—) and the local adaptive filtered forecasts (- - -) for the 2 m temperature

Diurnal bias correction

There are two important design criteria for this Kalman filter. First, the covariance

matrix Q = σ2
wW should be chosen where W is the correlation matrix and σ2

w the

variance. In this simulation experiment the correlation matrix is chosen similar as

described by [Hom95], i.e. exponentially decaying until k + 12 and then rising again

until k + 24. No difference in correlation is made between successive hours. The

second design criterion is the value σw/V where V denotes the standard deviation of

the observation. The σw/V -ratio appears to be crucial. When the chosen ratio is too

large, the standard deviation of the forecast error increases compared to the original

forecasts after a few forecast hours. When it is too small, standard deviations are

hardly reduced. In this study, the optimum (in terms of minimum average standard

deviation of the forecast horizons) is searched by a line search procedure. The results

of diurnal bias correction with a σw/V ratio of 0.01 are given in figure 2.3. It can be

seen that a structural prediction error still remains and that standard deviations can

be slightly reduced for the whole forecast range.

Local adaptive forecasting on bias corrected forecasts

While the local adaptive forecasting method works specifically on the short term (+6

hours), the diurnal bias correction gains on the longer forecast horizons. A logical
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Figure 2.3: Average forecast error and the standard deviation of the original forecasts
(—) and of the diurnal bias corrected forecasts (- - -) of the 2 m temperature

combination would be to first implement the diurnal bias correction and then use the

local adaptive forecasting technique on the corrected forecasts. The results are shown

in figure 2.4. It can be seen that local adaptive forecasting has the same behaviour

when it is used on prefiltered data as it has on the original data. In addition, the

effect of decreasing standard deviation lasts longer when prefiltered data are used (6

vs 9 hours).

2.4.2 Wind speed

In comparison with the 2 m temperature the system noise covariance matrix of the

diurnal bias correction is taken equal and the σw/V was found to be optimal around

0.02. The variance of the observation noise of the wind speed in the local adaptive

short term system was assumed to be 0.1 m2s−2. The results of all three procedures

are summarised in figure 2.5. Again, both methods increase forecast performance

when used separately. The bias reduction is in this case much more pronounced than

for the temperature forecast. When the methods are combined, an extra increase in

performance can be seen. The main part, of course, is found at the very short term

(+6 hours) but it remains on a small scale for the whole forecast horizon.
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Figure 2.4: Average forecast error and the standard deviation of the original forecasts
(—) and of the combined diurnal bias corrected and local adaptive filtered forecasts
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2.4.3 global radiation

Diurnal bias correction was implemented for temperature and wind speed. However,

for global radiation, the covariance matrix must be adjusted. At night, no radiation

is available and so no correlation is present. The length of the nights also vary during

the year. For simplicity, it is assumed that for the whole year no correlation is needed

between 1700 and 0500 UTC. The remaining correlations are kept the same as for

the temperature case. The optimum σw/V ratio appeared to be around 0.02. For

local adaptive forecasting, no special covariance matrices were used. In figure2.6

the average error and standard deviation for all procedures are given. The twelve

hour dependency is clearly seen by the large periodic variations for the average error

of the original forecast. The diurnal bias correction works well for the 0-12 hour

horizon. From this point the bias increases until 24 hour forecast horizon where it

again approaches zero. Furthermore, the same results are seen for global radiation

as for temperature and wind speed. The standard deviation is reduced for both

procedures. In this case the local adaptive forecasting procedure works only until a

3 hour forecast horizon. However, when both procedures are combined, the standard

deviation is reduced for more than 5 hours horizon.
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2.5 Discussion

The improvement of weather forecasts with the Kalman filter for the local adap-

tive forecasting procedure largely depends on the choice of covariance matrices Q

and R. The period over which the covariance matrices are determined plays an im-

portant role. In this study the covariance matrices are defined over a period of a

year. Herewith seasonal effects are neglected. When seasonal effects on variability

of the forecast error are suspected Q and R must be determined from the seasons

of a previous year. Apart from the seasonal effects, changes in weather forecasting

models can effect the variability of the forecast error. Consequently, a ‘window’ for

the covariances can be considered. The weather forecasting models were adjusted

frequently during the period of research [NCE05]. However, the Kalman filter still

showed a good performance. As an alternative to the stochastic filtering approach

one may also consider an unknown-but-bounded error approach [Sch73, Kee97].

In Section 2.3, a low variance is assumed for the local observation. This might

be true for the measurement device itself but the variance also depends on how and

where the device is installed. The measurement represents the weather disturbance

input of the real system under study. Weather forecasts are generally made only

for a few meteorological stations. As both measurements and forecasts used in this

chapter were dedicated to the same specific meteorological location, larger deviations

between forecasts and measurements are expected for specific agricultural systems.

This is yet another reason why an extra improvement of the forecast is suspected by

using the Kalman filter in relation to the real system.

When considerable biases are present, the diurnal bias correction gives good re-

sults for bias reduction. When the σw/V ratio is chosen correctly, also a reduction

in standard deviation is obtained. This reduction can then last for the whole fore-

cast range. However, when the ratio chosen is too large then a loss in performance is

seen. When values are too low no change in forecasts is apparent. In this study a line

search procedure was performed to find the optimum ratio. However, the optimum

value for this ratio highly depends on the season. For temperature, an optimum value

approaching 0 was found for the winter while during summer the optimum value in-

creased to 0.03. A time-varying ratio based on past forecast errors gave satisfactory

results for maximum and minimum daily temperatures [GA02]. However, the prob-

lem remains because the value is always obtained from past data. A time-varying

ratio which is based on future uncertainties of the forecasts, i.e. uncertainties given

by ensemble forecasts, or expected change in weather conditions is worthwhile to

investigate.

The correlation matrix must be determined for every meteorological parameter.

For global radiation, this matrix must also depend on the time of the year. This
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matrix can be found for every meteorological parameter at a specific location by

time series analysis.

When both procedures are run in series, the results show that both bias correction

as well as standard deviation reduction are obtained, i.e. the methods are comple-

mentary to each other. It is worthwhile to investigate whether both methods can be

integrated into a single system. For instance, the diurnal bias correction supposes

a full correlation of the diurnal pattern, i.e. a certain error obtained now will also

be present tomorrow. A more valid assumption is that this relation is exponentially

decaying. As a result the σw/V ratio chosen can be larger.

2.6 Conclusions

The improvement of local weather forecasts using local measurements is demonstrated

in this chapter for both diurnal bias correction and local adaptive forecasting. If only

very short term forecasts (several hours ahead) are needed local adaptive forecasting

is the proper method to use. If only bias correction is sufficient, the diurnal bias

correction procedure is the best choice. Generally, first a diurnal bias correction

followed by the local adaptive forecasting procedure is recommended because this

gives the best results in both bias and standard deviation reduction. Slow and fast

dynamics of the weather are then incorporated.
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3.1 Introduction

In many agricultural systems all kinds of weather variables, such as temperature,

radiation and rain, have a dominant effect on the systems’ behavior. Weather input

variables are not only a disturbance to the system but are also a resource, (e.g. global

radiation drives plant growth). For maximization of plant production some of the

control inputs should closely follow changes in weather conditions, e.g. CO2-dosing

in green-houses should anticipate on changes of global radiation. Therefore, when

controlling agricultural systems, weather forecasts can be of substantial importance,

especially when anticipating control strategies are used. [see e.g. CBW96, KPL03]. If

forecasts of less than one hour are used, the so-called ”lazy man” weather prediction,

where the forecast is chosen equal to the most recently measured value, seems to

be reasonable [TVWVS96]. If, however, the forecast horizon increases, preferably

commercial forecasts should be used.

It is well known that, because of the chaotic behavior of the atmosphere, weather

forecasts can be rather uncertain. This uncertainty increases as the forecast horizon

increases. Many efforts are taken by meteorologists to improve the quality of the

weather forecasts, but forecasts of weather variables remain uncertain. For instance,

the 2 meter temperature forecast has a standard deviation of 1.5 oC for the zero-hour

ahead forecast in ”De Bilt”, The Netherlands (see figure 2.2).

Previous research has been done to improve local weather forecasts. For instance,

biases can be largely removed from meteorological model outputs [Hom95]. This bias

reduction procedure uses a Kalman filter that predicts a diurnal forecast error. This

forecast error then has to be added to the original forecast. The procedure is further

called ”diurnal bias correction” (DBC). In specific cases like mountainous areas and

places surrounded by seas [GA02] this DBC proved to reduce the bias drastically.

Standard deviations of the forecast error however, are not reduced with this proce-

dure. However, as was shown in chapter 2, reduction of the standard deviation of the

forecast error can be obtained as well. The standard deviation reduction procedure

uses local measurements in a Kalman filter to update the forecast. This procedure is

further referred to as ”local adaptive forecasting” (LAF). The best performance was

obtained by applying both procedures: first bias reduction, then standard deviation

reduction.

The presented studies in [Hom95] and in chapter 2 used meteorological data of

specific meteorological stations. Measurements at these meteorological stations need

to fulfill specific meteorological requirements [WMO96]. In general, local measure-

ments for agricultural systems do not fulfill the meteorological requirements, but

they do represent the actual local situation. Furthermore, the forecasts from weather

agencies are specific for some predetermined places, but most often the specific agri-
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cultural systems are not located at these places. At last, local circumstances such as

soil properties, different altitudes, presence of water resources (lake, sea) etc., have

an effect on local weather conditions and thus should be accounted for by the lo-

cal weather forecast. Therefore it is assumed that weather forecasts for agricultural

systems can be improved for both bias and standard deviation.

The purpose of this chapter is to show that local forecasts for agricultural sys-

tems can be improved by using local measurements. This improvement is based on

reduction of the bias as well as the standard deviation of the forecast error.

In section 3.2 theoretical background is given and the analyzed data are explained.

In section 3.3 the results of three weather variables are presented: temperature, wind

speed and global radiation. The results are discussed in section 3.4. Finally, some

conclusions are presented in section 3.5.

3.2 Background

3.2.1 Kalman filtering

Both procedures, DBC and LAF, are based on a discrete-time state-space system

representation of either forecast errors or forecasts and use the Kalman filter as the

main algorithm to update weather forecasts.

The stochastic discrete-time state-space system used in both procedures is given

by:

x(k + 1) = A(k)x(k) + B(k)u(k) + G(k)w(k) (3.1)

y(k) = C(k)x(k) + v(k) (3.2)

where x(k) ∈ R
M+1, u(k) ∈ R

M+1, with M the maximum forecast horizon, and

y(k) ∈ R
p, with p the dimension of the actual output vector. It is assumed that the

disturbance input w(k) (so called ”system noise”) and measurement noise v(k) are

zero-mean Gaussian random sequences with:

E
[

w(k)
]

= 0, E
[

w(k)wT (k)
]

= Q (3.3)

E
[

v(k)
]

= 0, E
[

v(k)vT (k)
]

= R (3.4)

The matrices A(k), B(k), C(k), G(k), Q and R are system dependent and will be

defined in the subsequent sections.

As mentioned before, the so-called Kalman filter is used to update local weather

forecasts. For an elaborate description of the Kalman filter we refer to [Gel74]. Here,

the algorithm is briefly outlined. Given a system in state-space form (3.1)-(3.2) with

noise properties (3.3)-(3.4) and a measured output y(k), the Kalman filter estimates

the states at time instance k with the smallest possible error covariance matrix. The
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following Kalman filter equations for the discrete-time system (3.1)-(3.2) are used to

estimate the new states (updated forecast errors in DBC or forecasts in LAF) when

new observations become available:

x̂(k + 1|k) =A(k)x̂(k|k) + B(k)u(k) (3.5)

P (k + 1|k) =A(k)P (k|k)A(k)T + G(k)QG(k)T (3.6)

K(k + 1) =P (k + 1|k)CT
[

CP (k + 1|k)CT + R
]−1

(3.7)

x̂(k + 1|k + 1) =x̂(k + 1|k) + K(k + 1) [y(k + 1) − Cx̂(k + 1|k)] (3.8)

P (k + 1|k + 1) =P (k + 1|k) − K(k + 1)CP (k + 1|k) (3.9)

where x̂(k+1|k) denotes the estimate of state x at time instant k+1 given the state at

k, and A(k)T is the transpose of A(k). Furthermore, K(k+1), known as Kalman gain,

denotes the weighting matrix related to the prediction error
[

y(k+1)−Cx̂(k+1|k)
]

.

3.2.2 Diurnal bias correction

It has been shown by [Hom95] that systematic errors from numerical weather pre-

diction models can be largely removed. A brief outline of the algorithm is given.

The basic assumption is that the prediction errors are assumed to vary only in a

24 hour context. The states x1 · · ·x24 represent the forecast errors at times from 0000

UTC until 2300 UTC. No input is present in this system. The output y is defined by

the measurement at a specific time and is a scalar. The system matrices are given by:

A = I, G = I and C is time-varying e.g. C = [1 0 · · · 0] at 0000 UTC, C = [0 1 0 · · · 0]

at 0100 UTC etc. The Kalman filter matrices Q and R are time-invariant where Q

is a symmetric matrix with ones on the diagonal, premultiplied by the variance σ2
w

and R = V 2 the variance of the measurement error. The σw/V -ratio determines

the update rate. The optimal σw/V -ratio can vary between meteorological stations

and can vary between weather variables (see [Hom95] and chapter 2). The initial

covariance matrix P (0) is typically chosen as: P (0) = 106I, with I the identity

matrix. The estimated prediction errors (x̂(k + 1|k + 1) are added to the external

forecasts independent of the forecast horizon.

3.2.3 Local adaptive forecasting

Local measurements are used to update the short term forecasts. The updating

algorithm as described in section 2.3 uses a linear, time-varying system in state-

space form that describes the evolution of the forecasts. Every stochastic l-steps

ahead forecast at time instant k is treated as a state variable xl(k) where l = 0, ...,M ,

with M the maximum forecast horizon. Consequently, x0(k) represents the actual

state, x1(k) the one-step ahead forecast, etc. As a consequence, the state vector x
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always represents the forecast horizon (from 0 to M −k hours ahead). Subsequently,

the effective system dimensions reduce as long as there are no new external forecasts

available. The external forecasts that become available at time instant k∗ are treated

as deterministic input(s) u(k). Given the assumption that new external forecasts are

better than updated old forecasts, the old states are reset and the new initial state is

fully determined by the new forecast, i.e. x(k∗ + 1) = u(k∗). The output y(k) is the

observed weather variable and is a scalar. The system matrices are then defined by

A(k) =

















0 1 0 . . . 0
...

. . . . . . . . .
...

...
. . . . . . . . . 0

...
. . . . . . . . . 1

0 · · · · · · · · · 0

















k 6= k∗, k ∈ N (3.10)

A(k) =0 k = k∗, k ∈ N (3.11)

C =
[

1 0 · · · 0
]

(3.12)

The system noise or disturbance input is only relevant at time instant k = k∗, i.e.

when a new external forecast becomes available. The time-varying system matrices

B and G are defined as follows:

B(k) = G(k) = I ∀k = k∗, k ∈ N (3.13)

B(k) = G(k) = 0 ∀k 6= k∗, k ∈ N (3.14)

where A,B,G ∈ R
(M+1)×(M+1) and C ∈ R

1×(M+1).

The Kalman filter matrices Q and R must still be specified. The measurement

noise covariance matrix R may be found from the sensor characteristics. The key

problem is how to choose Q, the covariance matrix related to the disturbance inputs

or system noise. In figure 2.1 an example of this system noise covariance matrix of the

short-term forecasts was presented. This matrix has been determined from historical

data by comparing forecasts with observations. The initial covariance matrix P (0)

is typically chosen as: P (0) = 106I, with I the identity matrix.

3.2.4 Weather data

Three different weather variables, that are most relevant for greenhouse systems,

are studied: temperature, wind speed and global radiation. Data is obtained from

January 1, 2002 until June 31, 2002 and January 1, 2003 until June 31, 2003. The

origin of forecasts and local measurements are specified by:

short term forecasts The commercial weather agency Weathernews Benelux de-

livered forecasts for location ‘Deelen, The Netherlands’ (see figure 3.1). These
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Figure 3.1: Indication of forecast ( ) and measurement (�) location within the
Netherlands

data become available every six hours and consist of forecasts from 0 to 31

hours ahead with an hourly interval. These external data are extracted from

the GFS model (National Weather Service). The data are possibly adjusted

by a meteorologist. The data are made available at 0100, 0700, 1300 and 1900

UTC.

local measurements These data are obtained from a greenhouse in ‘Wageningen,

The Netherlands’ located at about 20 km from ‘Deelen’ (see figure 3.1). Mea-

surements were stored with a 2 minute interval. The hourly averages were

calculated and used for analysis.

3.3 Results

Forecast data are compared with local observations. For the DBC, matrix Q describes

the correlation of the forecast error over a 24 hour horizon. In this experiment it is

chosen similar as described by [Hom95], i.e. exponentially decaying until t + 12 and

then rising again until t + 23 (e−0.0744t with 0 ≤ t ≤ 12, t ∈ N), for each weather

variable. The optimal σw/V -ratio is found with a line search procedure. Optimality

in this case is defined by: minimum average standard deviation (σe) of the forecast

error

min
σe/V

1

M + 1
ΣM

i=0σi(σw/V ) (3.15)

The optimal ratio is calculated over the period January 1, 2002 until June 31, 2002.

If W is chosen as 1, and σw/V is given, R can be calculated.

The covariance matrix of the forecast error Q of the LAF procedure is calculated

for each weather variable with data from January 1, 2002 until June 31, 2002.
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As both DBC and LAF are complementary the procedures are run consecutively

after a new measurement becomes available. The procedure is run over the period

January 1, 2003 until June 31, 2003. The updated forecasts (DBC+LAF) are com-

pared with the original forecasts provided by the weather agency.

The results related to a specific weather input variable contain the optimal σw/V -

ratio for DBC. In addition, the assumed measurement noise covariance matrix R

used in LAF is given. Furthermore, the forecast error, i.e. forecast - observation, is

calculated and the average forecast error and the standard deviation of the forecast

error are presented.

3.3.1 temperature

The results are given in figure 3.2 with a σw/V -ratio of 0.011 for DBC and the

variance of the measurement noise R in LAF of 0.1 ◦C2. In figure 3.2 it can be seen

that the bias is reduced for each forecast horizon. The standard deviation is reduced

for each forecast horizon but especially up to 10 hours ahead this reduction is clear.

3.3.2 wind speed

The σw/V -ratio used in the DBC was 0.042. The variance of the observation noise

of the wind speed in the local adaptive short term system is assumed to be 0.1

(ms−1)2. The results are summarized in figure 3.3. The bias is almost completely

removed compared to the original forecasts for each forecast horizon. Again, the

standard deviation is lowered. The reduction of standard deviation in this case

clearly remained until the maximum forecast horizon.

3.3.3 global radiation

For global radiation the same LAF procedure as for temperature and wind has been

implemented but with R = 10 (Js−1m−2)2. However, in DBC the covariance matrix

should be adjusted. At night no radiation is available and so no correlation is present.

The length of the nights should also vary during the year. For reasons of simplicity

the yearly variation is neglected and hence it is assumed that for the whole year

no correlation is needed between 1700 and 0500 UTC. The remaining correlations

are kept the same as for the temperature case. The optimum σw/V -ratio appeared

to be around 0.010. In figure 3.4 the average error and standard deviation for the

original forecast and the adjusted forecast are presented. Overall, the bias is reduced.

However, only in the first few hours this can be seen clearly. Furthermore, the

standard deviation is reduced for each forecast horizon, particularly in the first 5

hours. In addition to this, the peaks are largely removed.
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Figure 3.2: Average forecast error and the standard deviation of forecast error of
the original forecasts (—) and of the adjusted forecasts with DBC+LAF (- - -) of the
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3.4 Discussion

Bias of the forecast error is often present even if the forecast is related to a specific

meteorological measurement location. Therefore, it can be expected that for local

measurements, as in agricultural systems, bias is present and is probably larger than

for the meteorological station from which the forecast originated. In figures 3.2 - 3.4

the bias is clearly present.

When considerable biases are present the DBC works quite well for bias reduction

as can be seen in figures 3.2 and 3.3. The σw/V -ratio appears to be crucial for the

performance of DBC. If the σw/V -ratio is chosen too large then a loss in performance

is observed, i.e. the standard deviation increases for larger forecast horizons. For

instance, values chosen by [Hom95], i.e. σw/V = 0.06, does not satisfy for temper-

ature in our case. Too low values will lead to neglegible changes in the forecasts.

Furthermore, the value for this ratio depends on the weather type and change in

weather conditions. A time-varying ratio was proposed by [GA02]. The problem

remains, however, because the value is always obtained from past data.

The line search procedure with optimality criterion (3.15) to minimize the stan-

dard deviation of the forecast error will result in an average standard deviation equal

to or lower than the average standard deviation of the original forecast. The bias,
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however, is then not necessarily minimized. Therefor, other minimization criteria,

such as minimum mean square error or minimum bias, must be used according to the

defined purpose. It should be noted that the calculated optimal σw/V -ratio is kept

constant for each year. In practice, the optimal σw/V -ratio changes every year. From

the results in figures 3.2-3.4, however, it can be seen that the calculated optimal ratio

is applicable for the following year.

The correlation in the covariance matrix Q in DBC has to be determined for every

weather variable. For global radiation, this matrix should also depend on the time

of the year because daylight duration can change largely within a year. In this case

the matrix Q must be time-varying.

The LAF procedure largely depends on the choice of covariance matrices Q and

R. The matrix Q can be found for every weather variable at a specific location by

time series analysis. The period over which the covariance matrices are determined

may play an important role. In our study we defined the covariance matrices over a

period of six months. This was the same period of the year over which the Kalman

filter was run. When seasonal effects on variability of the forecast error are suspected

one can choose to determine Q and R from the seasons of a previous year, e.g. month

by month, quarter by quarter etc. Apart from the seasonal effects, meteorological

models may have a more significant effect on the variability of the forecast error.

Consequently, one could consider to use a ”window” for the covariances.

In this chapter a low variance is assumed for the local measurement. This might be

true for the measurement device itself but the variance also depends on how and where

the device is installed. The measurement should represent the weather disturbance

input of the real system under study. For local measurements devices it is crucial

that they are properly calibrated and maintained. Furthermore, the measurement

device must be situated on a proper place, e.g. a temperature device should not be

exposed to direct sunlight. As ambient measurements are frequently used to control

greenhouse climates, it is acceptable to update forecasts with local measurements. On

the other hand, if it is known that local measurements are unreliable, it is worthwhile

to investigate if the measurements can be updated with weather forecasts to generate

more reliable measurements. As an example the observations of the meteorological

stations of ’Deelen’ and ‘Wageningen’ and the local observations of ‘Wageningen’ are

compared in table 3.1. The meteorological station ‘Wageningen’ is located at about 4

km of the local observations. It can be seen in this table that all differences are quite

similar. Intuitively, the difference between local measurements and ‘Wageningen’

meteorological station is expected to be smaller than the others because of the small

distance. Apparently, local measurements, as stated in the introduction, can behave

quite differently than meteorological measurements.

In this study DBC and LAF were executed consecutively when a new measure-
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Table 3.1: Mean and standard deviation (σ) of observation differences of meteoro-
logical stations in ‘Deelen’(D) and ‘Wageningen’(W) and local observations in ‘Wa-
geningen’(L).

temperature wind speed global radiation
mean σ mean σ mean σ

L-W 0.23 0.91 -0.88 0.84 -1.90 27.5
L-D 0.44 0.92 -1.77 1.17 2.1 29.5
W-D 0.22 1.17 -0.90 1.04 4.5 23.1

ment became available. It could be worthwhile to examine the possibility of inte-

grating both procedures into a single system. For instance, the DBC supposes a

full correlation of the diurnal pattern, i.e. a certain error obtained now will also

be present tomorrow. A more valid assumption is that this relation is exponentially

decaying. As a result the σw/V ratio can be chosen larger. As an alternative to the

stochastic filtering approach one may also consider an unknown-but-bounded error

approach [see e.g Sch73, Kee97].

3.5 Conclusions

It has been demonstrated in this chapter that both bias and standard deviations of

forecast errors are reduced for three different weather variables: temperature, wind

speed and global radiation. The tuning parameters of DBC and LAF, however, must

be chosen carefully. Using historical data for tuning the parameters gives adequate

results.
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Chapter 4

Uncertainty Analysis of a Storage
Facility under Optimal Control

This chapter is submitted for publication as:
Doeswijk, T.G., K.J. Keesman and G. van Straten. Uncertainty analysis of a storage facility
under optimal control
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4.1 Introduction

Predictive models that are subject to disturbances generate uncertain outputs. In

addition, if these disturbances are related to the inputs, like ventilation with outside

air, the uncertainty of the system states increases with increasing control inputs. If

optimal control strategies are used for these systems the optimal controls are usually

only valid around the nominal trajectory of the disturbances. In this paper, it is

shown for a model of a storage facility of agricultural produce that it is possible to

solve an optimal control problem in which the analytically calculated uncertainty is

incorporated into the objective function.

The relative humidity of air can act as driving force of evaporation from water

containing products. Water loss in stored agricultural products results in economic

and quality losses [CG01] and should therefore be minimized. In drying processes

the opposite goal is aimed for and water needs to be removed from the product

until a specific water activity is reached [e.g. GM03]. In both processes, however,

psychrometrics [Ber79] play an important role.

Moisture content in air and relative humidity are linearly related at a constant

temperature. However, with increasing temperature the maximum moisture content

increases nonlinearly, i.e. the relative humidity is nonlinearly related with tempera-

ture. The actual water content is usually calculated via partial and saturated vapor

pressures. There are numerous nonlinear expressions describing the saturated vapor

pressure, see e.g. [Son90, PGM97, TCR02]. the overall model is simplified if these

relationships can be linearized over a temperature range of interest.

Model linearization of dynamical systems is usually done with a first-order Taylor-

series expansion in specific points on the input/state trajectories. The validity of this

linearization is limited around this point. As refrigerating and cold-storage of prod-

ucts generally have a limited temperature range, the error made by linearization can

be calculated for the whole temperature range. The error caused by linearization can

then be compared with the errors resulting from the uncertain inputs or disturbances

of the system. In cold-storage or refrigerators these disturbances are for instance the

time-varying outside temperature.

As uncertainty plays an important role in almost every model prediction, the

propagation of errors through the model becomes important. For linear or linearized

systems, it holds that if the input is normally distributed then the output is also

normally distributed [Sch73]. Let us illustrate this with a simple example

y = ax + b, x = N (µ, σ) (4.1)
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where, a, b ∈ R. Then using the rules of expected value and variance

E(y) = E(ax + b) = aE(x) + b (4.2)

var(y) = var(ax + b) = a2var(x) + b (4.3)

with E(x) = µ and var(x) = σ2. Hence, y = N (aµ + b, aσ), which is exact if the

system is linear. In case of a linearized system the expressions are approximations.

Once the uncertainty is known, the risks of predictive control actions can be ana-

lyzed. For example, the confidence intervals can be calculated [KG91]. For nonlinear

systems, no general rules for error propagation are available. Numerical approaches,

such as Monte Carlo analysis, are then needed to quantify the uncertainty of the out-

put. For bilinear systems the error propagation can only be calculated analytically

if the control inputs are known in advance. The possible future control inputs can

be obtained by, for instance, solving an optimal control [Ste94] problem.

In this paper, a model of stored agricultural products is used as an example. Psy-

chrometrics are part of this model and the main cause of nonlinearity of the system.

The objective of this paper is to analyze the uncertainty of a storage model driven

by weather forecasts by means of error propagation rules. In order to be able to use

the generic rules of error propagation the model is simplified by linearization, dis-

cretization and model reduction. Given the control inputs, the predicted uncertainty

is calculated and the risk analyzed. Finally, in stead of an additive analysis of the

uncertainty, it is shown that the uncertainty can be directly incorporated in optimal

control strategies.

This chapter is structured as follows. In section 4.2 the storage model is given

and subsequently model reduction, linearization and discretization is performed. Fur-

thermore, a noise model for the weather forecast is derived. General rules for error

propagation are given in section 4.3. Optimal control problem formulations including

uncertainty of the storage model are presented in section 4.4. Finally, in section 4.5,

some concluding remarks are given.

4.2 Modeling

4.2.1 Storage model

The model used by [KPL03] (see appendix B), in terms of states (x), inputs u,

disturbance d and parameters p, is given as

ẋ =





p6x2 − p6x1 + p7 − p8e
p4x1 + p9x3 (p5 + x3)

−1

p10x1 + (−p10 − p11 − p12 − p13u) x2 + (p11 + p12 + p13u) d1

(−p12 − p13u) x3 + (p12 + p13u) d2 − p14 + p15e
p4x1 − p16x3 (p5 + x3)

−1





(4.4)
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where x = [Tp, Ta, Xa]
T i.e. temperature of produce, temperature of air and absolute

humidity of air and d = [Te, Xe]
T , i.e. outside temperature and absolute humidity.

Furthermore, u is the control input αφ with α fraction of valve opening and φ the

fraction of the maximum possible ventilation rate. Finally, p is a vector of functions

of design and physical parameters.

The driving force for exchange is the difference between actual vapor pressure in

the surrounding air and the saturated vapor pressure at the surface of the product.

The saturated vapor pressure is given by

ps = 100
(

−1.7001 + 7.7835e
T

17.0798

)

(4.5)

which explains the presence of the exponential term in (4.4). The partial pressure

can be calculated from the nonlinear relationship [Ber79]

pa =
XaPtot

0.6228 + Xa

(4.6)

with Ptot the total pressure. This explains the fractional in (4.4).

4.2.2 Model reduction

The model (4.4) was reduced by [KPL03] on the basis of the singular perturbation

theory. For this analysis we therefore refer to this paper.

In cold storage, i.e. Te < 10◦C, the maximum water content Xs(T = 10◦C) =

0.0077. Because Xa < Xs(T = 10◦C) ≪ 0.628 eqn. (4.6) is reduced to

pa =
Ptot

0.6228
Xa (4.7)

The error that is introduced is smaller than the assumption that Ptot is constant. By

applying (4.7) for the partial vapor pressure the physical model is reduced to:

Ṫp =

(

p6p10

(p10 + p11 + p12 + p13αφ)
− p6

)

Tp +

(

p9p15

p5(p12 + p13αφ) + p16

− p8

)

ep4Tp

+
p6(p11 + p12 + p13αφ)

(p10 + p11 + p12 + p13αφ)
Te +

p9(p12 + p13αφ)

p5(p12 + p13αφ) + p16

Xe

+

(

p7 −
p9p14

p5(p12 + p13αφ) + p16

)

(4.8)

with α, φ the control inputs equivalent to u of (4.4) and quasi steady-states Ta, Xa

given by

T̄a =
p10Tp + (p11 + p12 + p13αφ)Te

(p10 + p11 + p12 + p13αφ)
(4.9)

X̄a =
(p12 + p13αφ)Xe − p14 + p15e

p4Tp

p12 + p13αφ + p16

p5

(4.10)
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4.2.3 Interval linearization

For a specific interval of Tp the non-linear term of (4.8),i.e. e(p4Tp), can be approx-

imated by the linear expression, p20Tp + p21. This can be done by minimizing the

quadratic error over the temperature range.

min
p20,p21

J = min
p20,p21

∫ Tp,max

Tp,min

(

e(p4Tp) − (p20Tp + p21)
)2

dTp (4.11)

Now let us assume that for cold storage the temperature range of the produce varies

between 3oC and 9oC. The parameters p20 and p21 are chosen such that the integral

is minimized. In this particular case where p4 = 17.0798−1 this results in p20 = 0.0834

and p21 = 0.9275.

Given the approximation ep4Tp ≈ p20Tp + p21 the exponential term in (4.8) is

replaced by the linear one. This results in

Ṫp =

(

p6p10

(p10 + p11 + p12 + p13αφ)
+

p20p9p15

p5(p12 + p13αφ) + p16

− p6 − p20p8

)

Tp

+
p6(p11 + p12 + p13αφ)

(p10 + p11 + p12 + p13αφ)
Te +

p9(p12 + p13αφ)

p5(p12 + p13αφ) + p16

Xe

+

(

p7 +
p9(p21p15 − p14)

p5(p12 + p13αφ) + p16

− p21p8

)

(4.12)

Now, if the control inputs α and φ are given and vary in time, a linear (time-varying)

model is obtained. The error of (4.12) compared to the original model is very small

(< 0.01 ◦C) for a constant control αφ = 1 (see figure 4.1). For smaller values of

αφ the error will be larger because the steady state temperature increases and may

exceed the 9 ◦C. Because this is outside the linearization interval where the error is

larger, the error will increase. However, even in case αφ = 0 the error is less than

0.25 ◦C with Tp = 24 ◦C. Note that the linearization of (4.11) can be done for every

kind of nonlinear realization of ps given in literature. Clearly, the error size depends

on the size of the linearization interval.

4.2.4 Discretization

The weather forecasts used for prediction of the indoor climate are given on an hourly

basis. Furthermore, in practice, the control variables are manipulated on a specific

time-interval. Hence, the variables u, Te and Xe of (4.12) are discrete-time variables.

There are two ways to line-up the model. First, the discrete-time variables can be

transformed into continuous-time variables by for instance interpolation or zero-order

hold methods. Second, the continuous-time model can be discretized with an interval

equal to the time interval related to the discrete-time variables. In this case, the latter

option is chosen.
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Figure 4.1: steady state error of Tp for constant inputs Te and Xe introduced by
linearization

A continuous-time model can be approximated by a discrete-time model with e.g.

Euler discretization. Given a linear (time-varying) model

ẋ = F (t)x(t) + G(t)w(t) (4.13)

The discretization procedure is given by [Sch73]

x(k∆ + ∆) = A(k∆)x(k∆) + ∆G(k∆)w(k∆) (4.14)

with,

A(k∆) = I + ∆F (k∆) (4.15)

If ∆ is sufficiently small then equation (4.14) approximates (4.13). For the storage

model (4.12) discretization leads to

Tp(k+1)=

(

1+p22

(

p6p10

(p10+p11+p12+p13α(k)φ(k))
+

p20p9p15

p5(p12+p13α(k)φ(k))+p16
−p6−p20p8

))

Tp(k)

+p22
p6(p11+p12+p13α(k)φ(k))

(p10+p11+p12+p13α(k)φ(k))
Te(k)+p22

p9(p12+p13α(k)φ(k))

p5(p12+p13α(k)φ(k))+p16
Xe(k)

+p22

(

p7+
p9(p21p15−p14)

p5(p12+p13α(k)φ(k))+p16
−p21p8

)

(4.16)

with, p22 = ∆
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Figure 4.2: Responses of the original model and the approximated model with αφ =
1, Te = 3oC and Xe = 3 · 10−3kg/kg

4.2.5 Approximation validity

In this section the procedure of model reduction, linearization and discretization

is validated. The approximated model (4.16) is compared with the original model

(4.4) by generating a model response with a constant input. The two extreme cases

are considered, i.e. u = 0 and u = 1. The two external inputs are considered to be

constant, i.e. Te = 3oC and Xe = 3·10−3kg/kg The responses are presented in figures

4.2 and 4.3. Note that the time scales of both figures differ. The responses of both

models are very much alike. The maximal differences of the predicted temperatures

are 0.052 for u = 1 and -0.018 for u = 0. These differences are much smaller than the

uncertainties in the measurements in practice. Consequently, the simplified model

(4.16) can then be used for analysis.

Note 4.1. The model is not validated with experimental data. However, similar
models [LdKCvdV06] were fitted on experimental data and produced good results.

4.2.6 Noise modeling

In what follows, the uncertain environmental variables (Te and Xe) are divided into

a deterministic and a zero mean noise part. Hence, the model (4.16) becomes of the

form:

x(k+1) = a(k)x(k)+ b1(k)d1(k)+ b2(k)d2(k)+ b1(k)c1(k)+ b2(k)c2(k)+γ(k) (4.17)
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Figure 4.3: Responses of the original model and the approximated model with αφ =
0, Te = 3oC and Xe = 3 · 10−3kg/kg

where x = Tp, d1 = Te, d2 = Xe, c1, c2 are discrete noise terms related to Te and

Xe and γ the constant term in (4.16). The noise sequences can be calculated from

the forecast errors that are known from historical data. The mean and variances

of the noise sequences {c1} and {c2} are calculated for hourly intervals. However,

the input uncertainty related to Te and Xe cannot be seen as white noise sequences

beacause these variables are outputs of meteorological models. In chapter 2 the

covariance matrix for a 0 to 31 hours ahead forecast of the temperature is given.

From this matrix the correlation between the zero and k hour ahead forecast along

the whole forecast range, i.e. k = 0, · · · , 31 has been calculated. In figure 4.4 the

correlation of the forecast error of the temperature can be clearly seen. Therefore

the noise sequences {c1}N
k=1 and {c2}N

k=1 uncertainties should be modeled as colored

noise which can for instance be achieved by the first-order fitter

c1(k + 1) = a2c1(k) + w1(k)

c2(k + 1) = a3c2(k) + w2(k)
(4.18)

If {w} is a zero mean white noise sequence then {c} is also zero mean. The constants,

a2 and a3 are calculated using the autocorrelation function that satisfies the first-

order difference equation ρ(k) = φ1ρ(k − 1) [BJ76, p.57]. This result in: a2 = 0.839

and a3 = 0.856. The auto-correlation function with its approximation is shown in

figure 4.4.
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Figure 4.4: Auto correlation function of forecast error of Te and its first-order ap-
proximation.

Notice that the expectation of Tp is not changed after substituting the discrete-

time the state equations of the noise, (4.18) in (4.17), as the noise is assumed to be

zero-mean white noise. However, the error propagation through the model is affected.

This is further analyzed in section 4.3.

4.3 Error propagation

Given a general linear time-invariant system:

x(k + 1) = Ax(k) + Gw(k) (4.19)

with w(k) zero mean white noise, the second statistical moment is given by [Sch73]:

P (k + 1) = AP (k)AT + GQGT (4.20)

where P the covariance matrix of the states and Q the covariance matrix of the

disturbances, i.e. E(wT w). This is analogous to the static system example given in

eqns. (4.1)-(4.3).

The model of the second statistical moment cannot be applied without some

modifications to the storage model (4.17)-(4.18). First, the variance of the white

noise sequences ({w}N
k=1) of (4.18) is not known. If it is assumed that c1 and c2 are

independent, however, the white noise sequence follows from:
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w(k) =

[

w1

w2

]

(k) = c(k + 1) − Γc(k) where Γ =

[

a2 0
0 a3

]

and c(k) =

[

c1

c2

]

(k).

The variance is then defined by var(w(k)) = var(c(k+1)−Γc(k)). Now, let us assume

that var(c(k + 1)) ≈ var(c(k)). Generalizing the statistical rules: var(x − αy) =

var(x) + α2var(y) − 2αcov(x, y) and cov(x, y) = ρxyσxσy, with ρxy the correlation

coefficient, the variance of the noise vector w(k) is then given by

var(w(k)) = (I − ΓT Γ)var(c(k)) (4.21)

The variance of c(k) can be determined from weather data [e.g. DK05]. Given c(k),

the mean and variance of w(k) is calculated.

Second, the storage model is time-varying. For time-varying matrices A, G and

Q the model of the second statistical moment (4.20) can be adapted to [Åst70]:

P (k + 1) = A(k)P (k)A(k)T + G(k)Q(k)G(k)T (4.22)

Hence, the uncertainty throughout the storage model (4.17)-(4.18) can be calculated

provided that the controls, i.e. A(k) and G(k), and the weather forecast uncertainty

Q(k) are known.

Note 4.2. In this case only the error propagation caused by uncertain inputs is cal-
culated. The model itself is assumed to be perfect.

Given the uncertainty, the 95% confidence limits of the states are known. In the

next section an example will be presented in which the 95% confidence limits of the

storage temperature are given.

4.4 Optimal control

In optimal control theory a cost function is minimized by adjusting the controls

[Ste94]. In case of the storage model, the optimal control trajectory can be calculated

if the forthcoming weather is exactly known in advance. The best approximation,

however, is to use weather forecasts. Unfortunately, the weather forecast is generally

rather uncertain. In this case a cost function around the nominal trajectory (d0) can

be used to calculate the optimal controls. In general terms, find u from

min
u

J = Φ(x(H)) +
H

∑

k=0

f(x(k), u(k), d0(k), w(k)) (4.23)

Given the linearized model, the variance of the of the disturbances, the control

inputs and the error propagation rules, the 95% confidence interval of the state

variable can be calculated. By varying the control inputs the matrices A(k) and G(k)

of (4.22) the covariance matrix P (k + 1) also changes. As uncertainty is undesirable

in many cases, reduction of the state variance is needed. Minimum variance control
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[Åst70] is frequently used in these cases. In practical optimal control problems,

however, in addition to the variance of the predictor the cost function generally

will contain other terms. For instance, in the storage case minimum variance control

would lead to no ventilation because the uncertainty is directly related to the weather

forecast. More uncertainty is brought into the system during ventilation, i.e. G(k)

increases if α(k)φ(k) increases. Furthermore, other elements like ventilation costs and

maintaining a temperature near a reference still are important in the cost function.

Therefore, an approach where the uncertainty is incorporated into the cost function

seems more natural. Let us illustrate this with a simple example. A quadratic cost

function could be formulated as follows:

J = E
H

∑

k=0

(

(x(k) − xref )
2 + u(k)2

)

(4.24)

As the uncertainty of the state x(k) is subject to the uncertainty P (k) the cost

function can be expanded by P (k), so that:

J = E
H

∑

k=0

(

(x(k) − xref )
2 + u(k)2 + P (k)

)

(4.25)

Note that P (k) is not squared because it is already a squared variable (σ2). A more

natural way to handle the uncertainty is not to use x but e.g. x ± 2σ, the 95%

confidence limit of x. The uncertainty is now directly taken into account and no

further weighting of the uncertainty is necessary. By choosing |x − xref | + 2
√

P in

stead of the expected value of x− xref , with |x− xref | =
√

(x − xref )2 the quadratic

cost function changes to:

J =
H

∑

k=0

(

(x(k) − xref )
2 + 4P (k) + 4

√

P (k)(x(k) − xref )2 + u(k)2

)

(4.26)

In the next example the cost functions (4.24)-(4.26) will be evaluated for the storage

model (4.17)-(4.18).

Example 4.1. The weather forecasts used in this example consist of an ensemble of
forecasts [PBBP97]. This ensemble of forecasts is then used to calculate the mean
and the variance at each forecast horizon. The ensemble forecast of the temperature
of 1 april 2005 is given in figure 4.5. The nominal weather forecast (i.e. mean value
of the ensemble) is used as input whereas the variance from the ensemble forecast is
used to calculate the variance of the white noise sequence (i.e. Q(k)) at every time
instance k.

Now that Te(k), Xe(k) and Q(k) are known, a parametric optimization procedure
[Ste94] is used to calculate the optimal controls for each of the cost functions (4.24)-
(4.26), with xref = 7◦C. In figures. 4.6-4.8 the predicted product temperature profiles
are given with their 95% confidence limits and the controls. From these figures it
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Figure 4.5: Ensemble prediction of the temperature of 1 april 2005 (top) and the
mean value (—) and the standard deviation (· · · ) of the ensemble (bottom)
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Figure 4.6: Optimal state trajectory (—) with the 95% confidence limit (· · · ) (top)
with the accompanying controls (bottom) using cost function (4.24).
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Figure 4.7: Optimal state trajectory (—) with the 95% confidence limit (· · · ) (top)
with the accompanying controls (bottom) using cost function (4.25).
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Figure 4.8: Optimal state trajectory (—) with the 95% confidence limit (· · · ) (top)
with the accompanying controls (bottom) using cost function (4.26).
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Figure 4.9: Variance (top) and residuals (xk − xref , bottom) of the calculated state
trajectories using (4.24) (- - -), (4.25)(· · · ) and (4.26) (—).

can be seen that by incorporating uncertainty in the cost function the control inputs
shift to points of lower uncertainty in the weather forecast. This finally results in
a lower state covariance (see figure 4.9). Furthermore, it can be seen that the state
covariance increases less over time if the confidence limit is taken into account during
optimization. It can also be seen that the residuals, i.e. x − xref , in general become
larger. This is more clear by calculating the sum of squared errors (see table 4.4).
This is the trade-off by minimizing the uncertainty.

Note 4.3. In the example no real risk avoidance is incorporated. This could be
done as well by using cost function (4.24) and a hard state inequality constraint e.g.
|x−xref |+2

√

(P ) ≤ δ. It is then possible, however, that there is no feasible solution.

Table 4.1: sum of squared errors of the expected state trajectory using different cost
functions

applied cost function (4.24) (4.25) (4.26)
sse 21.4 26.4 35.7

4.5 Concluding remarks

When the operating point of a process is kept within bounds the model can be lin-

earized on this interval by using an optimality criterium instead of using standard
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linearization techniques around a point. For a storage model, this linearization pro-

cedure proved to be successful. If the controls are known or have been calculated in

advance, the storage model becomes linear and the error propagation calculation can

be done analytically. Finally, the model uncertainty is used in an optimal control

framework such that the predicted 95% confidence limits are kept as close as possible

to the reference trajectory. If implemented as state constraints the confidence limits

can also be used for risk avoidance.
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Impact of Weather Forecast
Uncertainty in Optimal Climate
Control of Storehouses

This chapter has been published as:
Doeswijk, T.G., K.J. Keesman and G. van Straten. Impact of weather forecast uncer-
tainty in optimal climate control of storehouses. In Control Applications in Post - Harvest

and Processing Technology, Bornimer Agrartechnische Berichte, 55, pages 46-55, Potsdam,
Germany, 2006
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5.1 Introduction

Indoor climate in greenhouses, office buildings and storage facilities for agricultural

produce are generally related to outdoor weather conditions [CLW+01, LdKCvdV06,

Tap00]. The indoor climate is affected by for instance heat transfer through walls,

radiation, respiration and evapotranspiration of organisms, ventilation with outdoor

air and by active heating or cooling. If anticipating control strategies such as receding

horizon optimal control are to be used for controlling the indoor climate using outdoor

climate, weather forecasts become important. Uncertainties in weather forecasts then

lead to uncertain predicted indoor climates. Moreover, the cost function relating to

any kind of optimal control strategy is subject to errors in the weather forecasts.

The sensitivity of the model outputs and the related cost function therefore needs to

be investigated. For both air conditioned buildings [HKFK04] and a potato storage

facility [KPL03, LvdVdKC06] it was shown that a good weather forecast reduces the

cost function almost as much as a perfect weather forecast. In these studies short

term weather forecasts (1 to 2 days ahead) were used. In this study which focuses on

effect of the uncertainty in weather forecasts, medium range weather forecasts (up

to 10 days ahead) are used.

The medium range weather forecast [PBBP97] consists of an ensemble of 50 dif-

ferent weather forecasts. All 50 ensemble members have an equal probability of

occurring. Hence, the uncertainty of the weather forecasts is known a priori. This

knowledge can be used to evaluate a calculated optimal control solution by calcu-

lating the costs of each of the ensemble members. Next to this, the optimal control

solution can be evaluated a posteriori with the observed weather.

In general, a model is an approximation and not an exact representation of the

system investigated. Hence, not only uncertainties in the inputs (i.e. weather fore-

casts) but also uncertainties of the model effect the outcome of an optimal control

algorithm.

The objective of this paper is to evaluate the effect of uncertainty in the weather

forecast on the costs of the calculated optimal control problem of a potato storage

facility. Furthermore, the effect of model uncertainty on the costs is investigated.

Finally, a time criterion for which the optimal control problem is to be recalculated

(i.e. feedback is applied) based on model and input uncertainties is proposed.

This chapter is structured as follows: first a brief description of the storage model

and the cost function are given. Next, the type of weather forecasts used is explained.

Then, the open loop and closed loop evaluations using weather forecasts and observa-

tions are given in subsequent sections. Finally, results are discussed and conclusions

are drawn.
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5.2 Preliminaries

5.2.1 Storage model

The model used to simulate a potato storage facility is based on the work of [LdKCvdV06].

The original model was simplified to make it suitable for use in a receding horizon

optimal control algorithm [LvdVdKC06]. A brief description of this discrete-time

model is

xT (k+1)=xT (k)+p1+
(

dTwb,ext
(k)−xT (k)

)

(p3+p2p5umix(k) (p7+(1−p7) uvent(k)))

(5.1)

xCO2(k+1)=xCO2(k)+p1p4+
(

dCO2,ext
(k)−xCO2(k)

)

(p2umix(k) (p7+(1−p7) uvent(k))+p6)
(5.2)

where xT represents the product temperature, xCO2 the CO2 concentration in the

bulk, dTwb,ext
the ambient wet bulb temperature, dCO2,ext

the ambient CO2 concen-

tration, uvent the fraction of maximum possible internal ventilation, umix the fraction

of ambient air in the air flow, and p a vector of parameters containing physical and

design parameters. Hence, the control input is defined by: u = [umix, uvent]
T . The

sample time used for this model is one hour.

The temperature of the bulk can be measured. The CO2-concentration, how-

ever, is difficult to measure in practice. The storehouse therefore is controlled on

the product temperature. The CO2-concentration is simulated to avoid too high

concentrations that lead to damage of the product (see section 5.2.3). This is pos-

sible because the CO2-concentration reduces very fast during ventilation, i.e. the

CO2-concentration reaches equilibrium fast.

5.2.2 Weather forecasts

The weather forecasts used in this paper are the so-called medium range weather

forecasts provided by Weathernews Benelux. This means that the forecast up to 10

days ahead is given. Due to the chaotic nature of the atmosphere, the weather fore-

cast is sensitive to the initial conditions. Therefore, an ensemble prediction system

[PBBP97] is introduced to improve the forecast quality and to get more insight into

the uncertainty of the forecast. The weather forecast used in this paper consists of

50 ensemble members. Each of the members have an equal chance of occurring. The

ensemble mean is used as the nominal weather forecast.

A new weather forecast becomes available every 24 hours. Short term weather

forecasts (up to 36 hours ahead) can be improved by using local observations as was

shown in chapters 2 and 3. A similar method is used here to correct the medium

range weather forecast.
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5.2.3 Cost function

To give a little more insight into the control objectives of the potato storehouse, the

elements of the cost function are mentioned below. How the weighting factors are

chosen is beyond the scope of this paper. The following control objectives are to be

fulfilled:

• The temperature of the bulk must be kept as close as possible to a pre-specified

reference temperature (minu ||xT (k) − Tref ||).

• The temperature must always be kept above a specified minimum temperature

(inequality constraint xT (k) > Tmin).

• The temperature may not decrease faster than a specified limit within 24 hours

(inequality constraint). (xT (k − 24) − xT (k) < T∆).

• The weight loss of the product due to evaporation must be minimized
(

minu

∑H
k=0 f1(xT (k), dTwb

(k), u(k))
)

with H the control horizon.

• The CO2-concentration must always be kept below a specified maximum (in-

equality constraint xCO2 < CO2,max).

• The energy costs related to ventilation must be minimized
(

minu

∑H
k=0f2(uvent(k))

)

.

5.2.4 Receding horizon optimal control

Given the model (5.1)-(5.2), a weather forecast (containing dTwb,ext
(k)) and assum-

ing dCO2,ext
(k) = 0.0314 to be constant, a control trajectory can be calculated that

minimizes a cost function according to:

min
u(k)

J = min
u(k)

E
[

φ[x(k + H)] +
H

∑

k=0

L[x(k), u(k), d(k)]
]

(5.3)

where the expected value is taken because the weather forecast is a stochastic variable

[Ste94]. In the investigated case there are no final costs i.e. φ[x(k + H)] = 0. If this

open-loop control problem is solved repeatedly every l hours (l < H) given the

updated (or measured) states and weather conditions the control loop is closed. This

control strategy is called receding horizon optimal control (RHOC).

The RHOC solution with the nominal weather forecast is taken as the reference

point for the uncertainty evaluation. The RHOC was started at 13 April 2005 and

ended at 2 June 2005 using medium-range weather forecasts for location ’De Bilt,

The Netherlands’. The forecast horizon of the weather forecast also determines the

horizon of the RHOC (H = 217 hours). During this period every six hours a new

optimal control trajectory was calculated (i.e. l = 6) with a new external weather
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Figure 5.1: Optimal control output of 1 May 2005. The subfigures show respectively:
calculated optimal controls (— umix, · · · uvent; predicted product temperature (—)
and external wet bulb temperature (· · · ); predicted cumulative costs

forecast. The initial conditions of each optimal control run was taken equal to the

measurements. In addition, the newly calculated controls were implemented. A total

of 203 optimal control trajectories are calculated (4 times a day, almost 51 days).

An example of a calculated control trajectory with the accompanying predicted state

and cost evolution is presented in figure 5.1. The reference temperature (Tref ) in this

case was 7oC. With the increasing temperature also the costs increase. Therefore,

long periods of ventilation occurs if the external wet bulb temperature is lower than

the product temperature.

5.3 Weather uncertainty

There are several possibilities to evaluate the uncertainties in the cost function. First

the change in cost function is investigated when observations of the weather are used

instead of the forecast. Second, the effect of ensemble members on the cost function is

investigated. It should be noted that no new RHOC calculations are performed based

on different weather forecasts or parameter values. The calculated costs based on the

nominal weather forecast are compared with other weather forecasts or parameter

sets with the same calculated control trajectories of umix and uvent.
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Figure 5.2: Difference in calculated absolute costs and realized costs of 203 optimal
control runs

5.3.1 Open loop evaluation

If the model is run again but now with the observed weather instead of the forecasted

weather, a change in costs is observed. In figure 5.2 the difference between calculated

and realized running costs are given with the running costs defined by:

R =
r

∑

k=0

L (x(k), u(k), d(k)) (5.4)

If r = H then R = J . All 203 cost function trajectories are recalculated with the

observed weather and the given control trajectories. It can be seen that the total

cost difference can be both positive and negative. This means that, given the control

trajectory, the realized weather can reduce the total costs more than was expected

from the forecasted weather. It does not mean that the calculated control trajectory

is also related to the minimum if the observed weather was used in the RHOC.

Because the total absolute costs J change for every optimal control run, because

of changing initial states and changing weather forecasts, the relative change in the

cost function, i.e. ∆Rrel =
Robs−Rfct

Jobs
, is given in figure 5.3. The absolute costs can

change dramatically (not shown here) over the researched period because the outside

temperature increases. Especially, the cost criterion ||xT (k) − Tref || then increases.

Relatively to the costs at t(k) + H, however, the change in costs do not seem to

change that dramatically.
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Figure 5.3: Difference in calculated relative costs and realized costs of 203 optimal
control runs

Using the observed weather to calculate the costs is a useful a posteriori tool.

To evaluate the uncertainty of the costs a priori, however, other information about

the uncertainty of the weather forecast is needed. The uncertainty of the weather

forecast is embedded within the ensemble (see section 5.2.2). By calculating the costs

related to each of the ensemble members the worst case scenario can be evaluated,

i.e. the ensemble member for which the costs are highest of all. In figure 5.4 the

worst-case cost differences are presented. It can be seen here that the worst-case

scenarios always lead to increased costs and these costs are considerably larger than

the realized costs (figure 5.2).

5.3.2 Closed loop evaluation

In the specific RHOC implementation every six hours the newly calculated controls

are implemented. This means that the uncertainty in the cost function after six hours

needs to be evaluated. In figure 5.5 the the differences between calculated costs using

nominal weather and actual costs based on observed weather are presented for each

control run at k = 6. The increased and decreased costs can be clearly seen from

this figure. If all the costs shown in this figure are summed the additional costs are

known for the given period. These costs as well as the relative contribution to the

total costs at the final time are given in table 5.1.

From the a priori known weather forecast uncertainty from the ensemble the
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Figure 5.5: Difference in calculated costs and realized costs of each of the 203 optimal
control runs after six hours
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Figure 5.6: Difference in calculated costs and maximum costs based on the ensemble
of each of the 203 optimal control runs after six hours

worst-case scenario can be calculated. The additional worst-case costs at the moment

that a new optimal control trajectory was calculated, i.e. six hours, are presented

in figure 5.6 for each of the calculated RHOC runs. Again, the figure shows that the

costs always increase. The total additional costs (see table 5.1) in this case, however

are still very low.

5.4 Model uncertainty

The model was calibrated with available data from a storehouse. A perfect fit,

however, is not a realistic assumption because of modeling deficiencies, changing

internal conditions and so on. From the calibration it results that the model lacks

information to be a precise predictor. In general, the model fits quite well but at

some instances misfits occur.

To evaluate the effect of an imperfect model, model parameters are varied and

this modified model is assumed to be the actual system. The model is changed

by changing the parameters p1, p2 and p3 of eqn. (5.1). The changes may vary

between 50% and 150% of the nominal value. The selected parameter variability

is chosen quite arbitrarily but are within range with the estimated parameters of

several different storehouse compartments. Fifty parameter sets are obtained with

Latin hypercube sampling, assuming that the parameters are uncorrelated. The
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Figure 5.7: Difference in calculated nominal costs and upper bound of costs based
on the parameter ensemble of each of the 203 optimal control runs

Table 5.1: Additional costs of the realized costs and the worst-case scenarios for
model and weather forecast uncertainty.

Σ(∆J) Σ(∆J)/Jtot

observations 0.47 0.10%
weather ensemble 1.72 0.37%
parameter ensemble 15.4 3.29%

worst-case scenarios for all 203 optimal control runs are given in figure 5.7. For

the given parameter sets the costs increase considerably. To get more insight in the

closed-loop uncertainty, the maximum cost differences at the 6 hour forecast for each

of the subsequent control runs are given in figure 5.8. At this specific horizon the

cost increase is within reasonable limits as can be seen in table 5.1.

5.5 Discussion

If in open loop the calculated costs based on the weather forecast and the actual

costs given observed weather and realized controls are compared, it is evident that

the costs can both increase and decrease. Not only the total costs are of importance

but also the relative costs. During a long warm period the optimal calculated costs

will increase significantly. The absolute increase or decrease due to uncertain weather

forecasts can then be quite large whereas the relative change may be reasonable. The
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Figure 5.8: Difference in calculated nominal costs and upper bound of costs based
on the parameter ensemble of each of the 203 optimal control runs after six hours

opposite may also occur, i.e. large relative change versus a low absolute change.

Prior knowledge about the uncertainty of the forthcoming weather is very useful

to study uncertainties in the near-future costs. From figures 5.2 and 5.4 it can be

calculated that for this specific case the cost-increase is in general much larger for

the worst-case scenario than for the observed weather. The same can be seen in the

closed loop control in figures 5.5 and 5.6. From these figures it can be seen that the

ensemble, indeed, is a useful tool to evaluate the uncertainty of the cost function a

priori.

From the chosen parameter variability it can be seen that the worst-case scenario

generally has a larger effect on the cost function than the worst-case weather uncer-

tainty. The actual uncertainty based on the true parameters, however, could not be

evaluated as these were not available. It is expected that, in analogy to the weather

forecast uncertainty, the actual cost increase is lower and in some optimal control

runs even decreases.

It has been shown in this case study that applying feedback every six hours reduces

the uncertainty of the calculated costs tremendously. Given an uncertainty interval

the maximum feedback time can be calculated as well. In table 5.2 the maximum

deviation in the cost function from the weather forecast uncertainty is given for

different time-intervals between two subsequent optimal control runs (l). It can be

seen that the difference in costs up to 24 hours is relatively small. Hence, in case of a
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Table 5.2: Additional costs of the realized costs and the worst-case scenarios for
weather forecast uncertainty.

l Σ(∆J)/Jtot

6 0.37%
12 1.15%
18 2.05%
24 3.17%
48 8.0%
72 14.2%

communication failure between optimization algorithm and control computer of less

than e.g. one day no manual intervenience is required.

5.6 Concluding Remarks

In post-harvest storage of agricultural produce, optimal control strategies can be used

to anticipate on future weather conditions. In the simulation case-study with real

weather forecasts and observed weather it appeared that there are only slight cost

increases due to uncertainty in weather forecasts if the optimal control problem is

calculated every 6 hours in a RHOC context. Furthermore, even the a priori known

worst-case scenario from the weather forecast ensemble leads to a satisfactory result

with a 6 hour interval RHOC. The interval between two subsequent optimal control

runs can be increased given a user defined uncertainty limit. In the shown case an

increase up 24 hours leads to a maximum increase of less then 5%.

If the model is known to be inaccurate it is expected that the uncertainty of the

total costs are more subject to model uncertainty than to weather forecast uncer-

tainty. For the investigated case, the worst-case scenario still showed an increase of

the total cost of less than 5% which seems to be acceptable. The effect of the actual

model uncertainty, however, can only be calculated a posteriori.
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Chapter 6

Parameter Estimation and
Prediction of a Rational Storage
Model: an ordinary least squares
approach

This chapter has been published as:
Doeswijk, T.G. and K.J. Keesman. Parameter Estimation and Prediction of a Nonlinear
Storage Model: an algebraic approach. In 2005 International Conference on Control and

Automation, Budapest, Hungary, 2005
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6.1 Introduction

In general, the model structure is an approximate representation of e.g. a specific

physical process. Hence, there is a need to fit the model to the experimental data by

parameter estimation. More specifically, as many physical models of real processes are

nonlinear in the parameters, the model is fitted by nonlinear parameter estimation.

In many applications, such as in optimal control studies, predictive quality is very

important. Hence, the model with the estimated parameters should be validated on

a different data set.

In literature various parameter estimation methods have been proposed. Among

them the ordinary least-squares estimator, using matrix calculus, (see e.g. [Lju87]

and [Nor86]) is most frequently used. Various extensions of this method have been

proposed in the past. For instance, for solving nonlinear least-squares problems,

different numerical optimization-based procedures are available, see [DS96]. The key

problems encountered in nonlinear least-squares estimation, especially in non-convex

optimization problems, are the existence of local minima and the limited amount of

parameters that can be reasonably estimated. Another extension is recursive least-

squares estimation, where the parameters are updated every time instant new data

becomes available. This procedure can be extended to the nonlinear parameter case,

see e.g. [Gel74], as well.

The objective of this paper is to show how to estimate parameters in a nonlinear

discrete-time model structure using ordinary least-squares techniques. Next to this,

the predictive quality of the obtained reparameterized model is shown. Therefor,

a method, together with the corresponding conditions on the model structure, is

presented to reparameterize models that are nonlinear in their parameters as models

linear in their parameters. The parameters of the reparameterized model can then be

estimated by ordinary least-squares. Finally, the original model structure is retained

but with the new parameters. The method is tested on data and a model of a storage

facility. Basically, this paper has been inspired by the work of Ljung and Glad [LG94]

and it is a natural extension of the paper by Lukasse et al. [LKvS96].

In section 6.2 the general derivation from a model with a polynomial quotient

structure to a model linear in its parameters is presented and demonstrated by some

examples. Section 6.3 shows three least-squares estimation techniques to estimate

the parameters of a storage model with real data. Some validation results on the

storage model are shown in section 6.4. In section 6.5 the estimation results as well

as the applicability of the method are discussed. Finally, some conclusions are drawn

in section 6.6.
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6.2 Modelling

Physical modelling can generate equations that are not only nonlinear in their states

and inputs but also in their parameters. If these nonlinear functions can be re-

arranged and reparameterized such that a function arises that is linear in its new

parameters, these parameters can be directly and uniquely estimated using an or-

dinary least-squares procedure. After rearranging, the reparameterized model can

be put in a predictor form. For a discrete-time model this is formally given in the

following theorem:

Theorem 6.1. Given the discrete-time nonlinear model

xk+1 = f(Z, p) (6.1)

where Z = (x(k), · · · , x(k − τ), u(k), · · · , u(k − τ)) k, τ ∈ Z
∗ and τ < k with τ the

time delay. If f(·) is a finite polynomial quotient in the elements of Z and p, the
predictor

x̂(k + 1) = f̃(Z, θ̂) (6.2)

is equivalent to (6.1). The unique ordinary least-squares estimate θ̂ is given by

θ̂ =
(

F (·)T F (·)
)−1

F (·)T F0(·) (6.3)

provided
(

F (·)T F (·)
)−1

exists and where F (·) = [F1(x(k + 1), Z) . . . Fn(x(k + 1), Z)]
and F0(·) = F0(x(k + 1), Z).

Proof. If f(·) is a finite polynomial quotient in Z and p, equation (6.1) can be written
as

x(k + 1) =
g(Z, p)

h(Z, p)
(6.4)

with g(·) and h(·) finite polynomials in elements of Z and p. Then, multiplying
both sides with h(·) and rearranging terms by elementary algebraic operations, as
addition, subtraction, multiplication and division, results in

F0(x(k + 1), Z) = F1(x(k + 1), Z)θ1 + . . . + Fn(x(k + 1), Z)θn

= [F1(·) F2(·) . . . Fn(·)] θ (6.5)

with, for i = 1, . . . , n: θi = ϕi(p), a polynomial quotient in p. A unique least-
squares estimate θ̂, given by (6.3), exists and is equal to θ, if F (·) has rank n and

thus
(

F (·)T F (·)
)−1

exists. Since F0(x(k + 1), Z), ..., Fn(x(k + 1), Z) are again finite

polynomial quotients, equation (6.5) can be rearranged such that x̂(k+1) = f̃(Z, θ̂) =
f̃(Z, θ) with f̃(·) a finite polynomial quotient. After re-substitution using θi = ϕi(p)
and rearranging terms: x̂(k + 1) = f̃(Z, θ) = f(Z, p).

Remark 6.1. Note that the model (6.1) is noise free. Then the estimate θ̂ is optimal,
i.e. θ̂ = θ, which does not always hold for p using nonlinear least squares as will
be demonstrated in example 6.1. However, if noise is present the estimate is only
unbiased if the noise sequence {e} in F0(·) = F (·)θ + e, is uncorrelated with F (·) and
has zero mean [Nor86].
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Figure 6.1: Norm of the prediction error with Km = 1, Vmax = 2.

Remark 6.2. The reparameterized model (6.4) can also be put in an output error
form by adding the output equation

y(k) = x(k) + e(k) (6.6)

The ordinary least squares estimate is then no longer optimal and the estimate may
be biased. However, the estimate could be optimal in the sense that the predictor
has a minimal mean square error over a validation data-set.

Example 6.1. Let us consider substrate consumption with Michaelis-Menten kinet-
ics in a batch reactor. The substrate concentration is described by the following
discrete-time model

S(k + 1) = S(k) − Vmax
S(k)

Km + S(k)
(6.7)

By rearranging (6.7) we get

S(k)(S(k + 1) − S(k)) = [− (S(k + 1) − S(k)) − S(k)]

[

Km

Vmax

]

(6.8)

which is of the form F0(·) = F (·)θ that can be solved by ordinary least-squares. Note
that in this case θ = p. The validity of the procedure can further be verified by
generating model outputs with S(0) = 30, Km = 1, and Vmax = 2. A least-squares
estimation using (6.8) gives θ̂ = [1 2]T

In contrast to linear estimation, the outcome of a nonlinear parameter estimation
procedure is not guaranteed as can be seen in figure 6.1. If no physical insight in
terms of bounds is used and the estimation procedure is treated as a fitting problem
one could easily end up in a local minimum. But also with knowledge about system
or parameter bounds care must be taken and the solution due to possible singularities
in (6.7) is not always obvious.
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Corollary 6.2. If, after rearranging (6.1), in (6.5): F0(·) = 0, then a solution can
be obtained from

θ̂ = ker [F1(·) · · · Fn(·)] (6.9)

In general, the non-empty solutions are not unique. The number of normalized solu-
tions (nullity(F )) can be obtained from the well-known rank-nullity theorem [Kai80]

rank(F ) + nullity(F ) = n (6.10)

Example 6.2. Given the discrete-time system

y(k + 1) = y(k) − a

bu(k) + c
(6.11)

it can be rearranged as:

0 = [1 u(k)(y(k + 1) − y(k)) y(k + 1) − y(k)][a b c]T (6.12)

and the solution is found by:

[â b̂ ĉ]T = ker([1 u(k)(y(k + 1) − y(k)) y(k + 1) − y(k)]) (6.13)

Now, with y0 = 10, u = [0 1 2 3]T and a = 1, b = 2, c = 3 the output
y = [10 9.67 9.47 9.33]T has been generated. Evaluating (6.13) gives the nor-
malized solution: [â b̂ ĉ]T = [0.27 0.53 0.80]T ≃ 0.27[a b c]T , indicating that
the system is unidentifiable.

Let us now apply the previous theory to a real-world application, i.e. storage of

agricultural produce in a storage facility.

A discrete-time nonlinear model describing the temperature of the produce in a

storage facility (see appendix B) is given by:

Tp(k + 1) =

(

p̃1 +
p̃2

p̃3 + p̃4u(k)
+

p̃5

p̃6 + p̃7u(k)

)

Tp(k) +
p̃8 + p̃9u(k)

p̃3 + p̃4u(k)
Te(k)

+
p̃10 + p̃11u(k)

p̃6 + p̃7u(k)
Xe(k) +

(

p̃12 +
p̃13

p̃6 + p̃7u(k)

) (6.14)

where Tp is the product temperature, Te and Xe the external temperature and

absolute humidity respectively, u the controlled input, i.e. product of ventilation

and valve opening, and p̃1 . . . p̃13 are functions of physical and design parameters.

Equation (6.14) can now be written as

Tp(k+1) =
[

u(k)Tp(k+1) u2(k)Tp(k+1) Tp(k) u(k)Tp(k) u(k)2Tp(k) Te(k)

u(k)Te(k) u2(k)Te(k) Xe(k) u(k)Xe(k) u2(k)Xe(k) u(k) u2(k) 1
][

θ1 · · · θ14

]T

(6.15)
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where θi = ϕi(p̃1, · · · , p̃13), a polynomial quotient. Note that after reparameteriza-

tion, F0(·) 6= 0 in (6.5).

Once the least-squares estimate θ̂ has become available the product temperature

can be predicted by

T̂p(k + 1) =
f̃(Tp(k), Te(k), Xe(k), u(k), θ̂)

g̃(u(k), θ̂)
(6.16)

with

f̃(·) =Tp(k)(θ̂3 + θ̂4u(k) + θ̂5u(k)2) + Te(k)(θ̂6 + θ̂7u(k) + θ̂8u(k)2)

+ Xe(k)(θ̂9 + θ̂10u(k) + θ̂11u(k)2) + θ̂12u(k) + θ̂13u(k)2 + θ̂14

g̃(·) =1 − θ̂1u(k) + θ̂2u(k)2

6.3 Estimation

In this section, different least-squares techniques are used to estimate parameters of

the storage model (6.14).

6.3.1 Nonlinear least-squares

Depending on the type of problem an appropriate algorithm must be chosen to solve

a nonlinear least squares problem [DS96, Nor86]. All methods have in common that

the solution is iteratively found. Existence of local minima can be a serious issue

(e.g. figure 6.1) if initial estimates are inaccurate. Hence, in practice, in particular in

non-convex problems, most often the number of parameters to be estimated should

be limited. It is therefor necessary to find the most sensitive parameters. A (local)

sensitivity analysis can be used to gain insight in the parameter sensitivity. Now,

with knowledge of the sensitivities of the parameters, a set of parameters to be

estimated is chosen. When physical and design parameters are to be estimated,

usually these parameters may not vary unlimited. The least-squares problem then

becomes constrained. However, this may lead to a non-optimal estimation in least-

squares sense. Let us now demonstrate this to the storage model (6.14).

The parameter vector p of the discrete-time storage model (6.14) consists of sev-

eral design and physical parameters. The results of a sensitivity analysis are presented

in figure 6.2. The parameters cpp, Vp and ρp have the same sensitivity. They always

appear product-wise and could be replaced by a combined parameter. Hence, only

one of these parameters has to be estimated. Given the sensitivity in figure 6.2 and

some indication of the uncertainty of the physical and design parameters the fol-

lowing parameters have been selected for estimation: θ̂ = [Presp, φmax, cpp, αea, h]T ,

respectively the respiration heat of the stored product, maximum ventilation flow,
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Figure 6.2: Sensitivity of some design and physical parameters of a storage model.

Table 6.1: Nominal and estimated parameter values.
θ0 θ̂

Presp 5.42 5.17
φmax 0.0972 0.0744
cpp 3600 4277
αea 0.347 0.347
h 3.5 3

the heat capacity of the stored product, heat transfer from environment to air in

bulk and the height of the bulk. Subsequently, a constrained nonlinear least-squares

estimation is performed. The nominal values (θ0) and the estimates (θ̂) are given in

table 6.1. Only the parameter estimate of h is at its lower bound; the other parameter

estimates are within the associated bounds.

6.3.2 Truncated least-squares

Given a model that is linear in its parameters, i.e.

y = Cθ + e (6.17)

with y ∈ R
N , C ∈ R

N×n and θ ∈ R
n. An ordinary least-squares estimate is given by

θ̂ =
(

CT C
)−1

CT y (6.18)
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However, when the problem is ill-conditioned the estimates are very sensitive to the

data. To overcome this problem, the truncated least-squares method can be used.

Given the singular value decomposition of C, i.e.

C = UΣV T (6.19)

with U ∈ R
N×N , Σ ∈ R

N×n and V ∈ R
n×n, one can determine from the singular val-

ues (diagonal elements of Σ) whether the problem is ill-conditioned. Premultiplying

(6.17) with UT [Nor86, p.77] gives:

y∗ = UT y = UT Cθ + UT e

= UT UΣV T θ + UT e

= Σθ∗ + e∗

(6.20)

where θ∗ = V T θ and e∗ = UT e. The parameters θ∗i that correspond to singular

values that are very small compared to the largest singular value, defined by the

numerical rank determinator R, are set to 0. Now, the modified linear regression

model (6.20) can be solved. The sum of squares (y∗ −Σθ∗)T (y∗ − Σθ∗) is minimized

when θ̂∗i = y∗
i /σi where σ are the singular values and i = 1, . . . , r with r ≤ n the

numerical rank. The parameter estimates can now be obtained from θ̂ = V θ̂∗.

Let us now analyze the storage model (6.15) and add the equation error ek.

Observations from a 50 days period with a sampling interval of 900 seconds are used

to estimate the parameter vector θ. Using the singular value decomposition (6.19)

we obtain the matrices U, V and Σ related to the regression matrix of (6.15). By

choosing an appropriate numerical rank determinator e.g. R = σ̄/1000, with σ̄ the

largest singular value, the following results are obtained:
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θ̂ =
[

− 0.0038 − 0.0007 0.9998 − 0.0038 0.0007 0.0001 − 0.0003 0.0043

− 6.0 · 10−5 − 2.9 · 10−6 1.6 · 10−6 − 0.0009 − 4.6 · 10−5 0.0024
]T

From the right singular vectors (not shown here) it appears that the first singular

value is predominantly related to θ3 and θ6 and the lowest singular value is related

to θ10 and θ11.

If physical interpretation of the estimates is desired, it is possible to retain the

original physical parameters from the estimated parameters using:

θ̂i = ϕi(p̂) (6.21)

where θ̂ ∈ R
n is the estimated parameter vector and p̂ ∈ R

q the physical and/or design

parameter vector to be estimated. If q = n direct inversion could be used, while in

other cases one should use e.g. a minimum length or least-squares approximation.

However, and this should be stressed again, for prediction (6.16) can be directly

applied.

6.3.3 Recursive estimation

A Kalman filter approach can be used to estimate parameters recursively [Lju87].

The linear regression model of (6.17) should then be written in a form like

θ(k + 1) = θ(k) + w(k) (6.22)

y(k) = C(k)θ(k) + v(k) (6.23)

Under the assumption that the parameters are constant the covariance matrix

E(w(k)w(k)T ) = 0. In addition to this, an assumption about the observation noise

properties must be made and the initial estimate θ(0) and initial covariance matrix

P (0) must be specified. The parameters of (6.15) are now estimated recursively.

Given a sampling time much smaller than the system time-constant of (6.15) the

initial parameter estimate of θ3 = 1 and all other initial parameter estimates are

zero, i.e. the model reduces to Tp(k + 1) = Tp(k). The initial covariance matrix

P (0) = 0.1 ∗ I, i.e. all parameters are considered to be independent and identically

distributed with the knowledge that the actual parameter values are around the initial

estimates. The covariance matrix, R = E(v(k)v(k)T ), represents the variance of the

observations, i.e. the product temperature, and determines the parameter update

rate of the filter. In this example it is taken as 1oC2. With given y and C from

section 6.3.2 the parameter trajectories of θ1, θ2 and θ4 . . . θ14 are given in figure 6.3.

Not shown is θ3 which remains close to one. From figure 6.3 it can be seen that it

takes until day 8 before the parameters start to change. This is due to the fact that

this is the first ventilation period of the data-set. Furthermore, it can be seen that
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Figure 6.3: Parameter evolution of the recursive parameter estimates θ1, θ2 and
θ4 . . . θ14

the parameters converge in time. The recursive parameters estimates at the final

time are given by:

θ̂ =
[

− 4.5 · 10−5 0.0040 0.9998 − 0.0079 − 0.0023 0.0001 0.0007 0.0033

3.9 · 10−5 4.0 · 10−6 4.4 · 10−6 − 0.0003 − 0.0003 0.0021
]T

This final parameter vector at day 52 is used in the next section to test the validity

of the recursively estimated model.

6.4 Validation

In this section the estimated parameters from section 6.3 are validated by evaluating

the model predictions obtained from an open loop simulation. First, the same period

over which the calibration was performed is considered and then a validation period

is chosen with about the same length.

First, the mean-square error (MSE) and a graphical presentation of the results of

the calibration period are given in table 6.2 and figure 6.4. It can be seen that the

MSE of the recursive estimate and the truncated least-squares estimate are within

the same range. The physical model performs slightly worse. Notice furthermore,

that the sudden changes of the recursive estimates of figure 6.3 correspond to the

fast dynamics, i.e. ventilation, of figure 6.4.
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Figure 6.4: Measured and predicted product temperatures in the calibration period
(· · · physical model, · − · truncated least squares, - - - recursive estimate, — mea-
surements)

A validation step is performed over a different period in the same storage season.

Hence, for the same storage facility and product, the same parameter vector as is

obtained from calibration could be used. The results of the validation are given in

table 6.2 and figure 6.5. The model predictions with the truncated least-squares

estimate and the recursive estimate perform within the same range. The physical

model predicts significantly worse.

6.5 Discussion

Reparameterizing and rearranging a discrete-time model with polynomial quotient

structure into a model linear in its parameters is helpful in getting optimal parameter

estimates in least-squares sense if the model is noise free. The physical interpretation

of the variables is lost but the main structure is conserved. In contrast, black-box

modelling on the basis of neural networks or nonlinear regressions can also be used.

Table 6.2: mean squared errors of calibration and validation period
physical model truncated recursive

calibration 0.027 0.020 0.021
validation 0.113 0.032 0.040
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Figure 6.5: Measured and predicted product temperatures in the validation period
(· · · physical model, · − · truncated least squares, - - - recursive estimate, — mea-
surements)

However, in those cases the system order must be estimated from the data. Usually,

no direct information about the physical system is then taken into account.

Some difficulties may arise in least-squares estimation of the reparameterized sys-

tem. Rearranging and reparameterizing may lead to correlated columns and inter-

dependent parameters, which lead to (near) rank deficient problems. This problem

can be solved by using truncated least-squares (see section 6.3.2). But, the main

problem is that due to the reparameterization there is not only (structural) unknown

uncertainty in the output vector but also in the data matrix (see equation (6.5)).

This problem can be tackled by a total least-squares approach [GVL80] and will be

subject of another paper.

In the storage model example the inputs, as external temperature (Te) and hu-

midity (Xe), are measured variables, which directly leads to an errors-in-variables

problem. Consequently, a nonlinear estimation procedure should take this into ac-

count, as well. However, the key problem in this example was the numerical rank

deficiency of the data matrix. This problem not only occurred due to the introduc-

tion of correlated columns, but also due to the experimental setup. First, the fan

is mainly controlled as on/off and it is switched on for less then 10% of the time.

Therefor, the columns of C that are multiplied by u(k) and u2(k) will contain many

zeros and as such will be highly correlated. In addition to this, the control frequency
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was quite high, i.e. 15 minutes compared to the time constant of the system which is

approximately 19 hours with maximum ventilation and 20 days with no ventilation,

where the optimal sample time is about 1/10 of the time constant [Lju87], and thus

leading to high correlations.

Truncated least-squares came out quite well in the example. However, an appro-

priate value for the numerical rank determinator must be chosen. Here it is chosen by

tuning. The nonlinear least-squares estimation performs worse for both calibration as

well as for validation. From table 6.1 it can be seen that the parameter h is bounded

at its lower bound, which indicates that the estimate is non-optimal. Furthermore,

the solution can be in a local minimum. The recursive estimate performs well for

both calibration and validation period.

6.6 Concluding remarks

It has been demonstrated that a discrete-time model with polynomial quotient struc-

ture in input, output, and parameters can be rearranged and reparameterized such

that a model arises that is linear in its parameters. Consequently, the parameters

can be uniquely estimated by ordinary least-squares methods. Furthermore, it has

been shown that using the estimated parameters in the back-transformed model (via

rearranging terms) leads to a predictor with fairly good open loop predictive per-

formance in the sense of mean-square error. Further research will focus on a total

least-squares approach to account for the errors-in-variables problem.
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7.1 Introduction

In general, in a model calibration procedure, the parameters of the model are esti-

mated such that the model predictions fit well on measured data. Several techniques

are available to obtain suitable estimates. For models that are linear in their param-

eters, the ordinary and weighted least squares techniques [Nor86, Lju87] are probably

the most frequently used. However, when errors are not only present in the current

output but also in the previous outputs and inputs, a modification of the ordinary

least squares technique is required. The overdetermined set of linear equations is

then given by:

Aθ ≈ b (7.1)

where A ∈ R
m×n with m > n the data matrix, θ ∈ R

n the linear parameters and

b ∈ R
m the output. The total least squares (TLS) approach [GVL80] provides a

solution if errors are not only present in the output b but also in the data matrix

A. The TLS technique is currently widely used in several application areas, e.g.

[VHL02] and references in [VHV91], and examples are present where TLS shows its

superiority over ordinary least squares.

Usually, for nonlinear in the parameter models, parameter estimates are found

iteratively using optimization algorithms. The existence of local minima and high

computational effort may impede the application of nonlinear estimation methods.

Given the nonlinear discrete-time model

x(k + 1) = f(Z, p) (7.2)

where Z =(x(k), · · · , x(k − τ), u(k), · · · , u(k − τ)), k, τ ∈ Z
+ and τ < k with τ the

time delay, and f(·) a finite polynomial quotient in the elements of Z and p ∈ R
q. The

model can be rearranged and reparameterized such that a model arises that is linear

in its (new) parameters θ, a polynomial quotient in p. These parameters can then be

estimated with a non-iterative least squares estimator. If noise is added to (7.2), then

by rearranging the model, errors become part of the data matrix. Hence, in general

the parameter estimation problem becomes an errors-in-variables (EIV) problem for

which TLS provides a natural solution. Finally, the linear in the parameters model

can be rewritten in predictor form, i.e.

x̂(k + 1) = f̃(Z, θ̂) (7.3)

where θ̂ contains the least squares estimate in the linearly reparameterized model.

Note that the original parameter vector p is not necessarily re-estimated from θ̂. In

what follows, the main focus is on the predictive quality of (7.2) and (7.3).

The validity of reparameterization and linear estimation was illustrated in chapter

6 with an example of Michaelis-Menten kinetics. In the noise free case the linearly
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reparameterizing method led to the exact solution where the nonlinear least squares

approach could end up in local minima. Furthermore, the linear regressive reparam-

eterization approach was applied to a storage facility containing a biological product.

Real data were used to evaluate the predictive quality of (7.3) with θ estimated with

a truncated least squares estimator. The results were compared with the original

model (7.2) where the parameters p were estimated by a traditional nonlinear esti-

mation approach. The linearly reparameterized storage model, however, got an EIV

structure because errors appeared in the data matrix. In chapter 6 this was neglected

initially but it has been noticed that a TLS approach would be more appropriate for

parameter estimation than the truncated least squares method. To our knowledge

this reparameterization, analysis and application of a TLS approach to a nonlinear

in the parameter model has never been explicitly reported.

The objective of this paper is to evaluate the predictive quality of (7.3) with

θ estimated with OLS and TLS and compare this with the predictive quality of

the nonlinear original model (7.2) with p estimated with a nonlinear least squares

technique. First, the Michaelis-Menten model is used with simulated noisy data.

Second, a storage model with real data is used.

7.2 Background

7.2.1 Algebraic non-linear parameter estimation

If f(·) is a polynomial quotient in Z and p, reparameterizing the original model (7.2)

leads to

F0(x(k + 1), Z) = [F1(·) F2(·) . . . Fn(·)] θ (7.4)

with, Fi(·) = Fi(x(k + 1), Z), i = 1, . . . , n. The new parameters are given by θi =

ϕi(p), a polynomial quotient in p. The model (7.4) is a linear regressor (see also

(7.1)) and the parameters θ can be estimated by least squares.

As Fi(·) can be a function of x(k +1), even in case of an equation error structure,

the data matrix may contain errors. Furthermore, the columns Fi(·) can become

linear dependant which leads to (near) rank deficiency. Finally, nonlinearities can

occur in uncertain regression variables which in turn can lead to biased estimates.

Regularization and bias compensation therefore might be needed.

After estimating the parameters θ, the model can be rewritten in predictor form

(7.3). Remark that no effort is done to estimate the original parameters p from θ̂

(see for details chapter 6).
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7.2.2 Michaelis-Menten kinetics

A discrete-time model describing the substrate concentration in a batch bioreactor

with Michaelis-Menten kinetics is given by:

S(k + 1) = S(k) − Vmax
S(k)

Km + S(k)
(7.5)

with S the substrate concentration, Vmax the maximum substrate conversion rate

and Km the Michaelis-Menten constant. Estimating Km and Vmax may lead to local

minima (see figure 6.1). Rearranging (7.5) leads to:

S(k)(S(k + 1)−S(k))=[−(S(k + 1)−S(k)) −S(k)]

[

Km

Vmax

]

(7.6)

which is linear in the parameters. Remark that in this case no reparameterization

has taken place, i.e. θ = p. As the substrate concentration is the measured (noisy)

variable in this system, it can be clearly seen that the data matrix A, in this case

[− (S(k + 1) − S(k)) − S(k)] for k = 1, . . . ,m, contains measurement errors and

hence, (7.6) has become EIV.

7.2.3 Storage model

A model that describes temperature dynamics in storage facilities for biological prod-

ucts such as fruits and vegetables, is given by (see appendix B:

Tp(k + 1) =

(

p̃1 +
p̃2

p̃3 + p̃4u(k)
+

p̃5

p̃6 + p̃7u(k)

)

Tp(k) +
p̃8 + p̃9uk−1

p̃3 + p̃4u(k)
Te(k)

+
p̃10 + p̃11u(k)

p̃6 + p̃7u(k)
Xe(k) +

(

p̃12 +
p̃13

p̃6 + p̃7u(k)

) (7.7)

where Tp(k + 1) is the measured output variable. The variables Tp denotes the

temperature of the produce (oC), Te the external temperature (oC) and Xe the

external absolute humidity (kg/kg). Finally, the input u denotes the product of

fresh inlet and ventilation and is bounded by: 0 ≤ u ≤ 1. The nonlinearities in (7.7)

are related to heat and mass transfer.

Rearranging (7.7) into a linear regression format leads to:

Tp(k+1)=
[

u(k)Tp(k+1) u(k)2Tp(k+1) Tp(k) u(k)Tp(k) u(k)2Tp(k) Te(k) u(k)Te(k)

u(k)2Te(k) Xe(k) u(k)Xe(k) u(k)2Xe(k) u(k) u(k)2 1
][

θ1 · · · θ14

]T

(7.8)

where θi = ϕi(p).

As can be seen from (7.8) the model clearly is EIV as Tp(k + 1) is no longer only

the output variable but now also appears in the data matrix. Furthermore, Tp(k),
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Te(k) and Xe(k) are also measured uncertain variables. After estimating θ the model

(7.8) can be rewritten in predictor form

T̂p(k + 1) =
θ̂3Tp(k)

1 − θ̂1u(k) − θ̂2u(k)2
+ . . . +

θ̂13u(k)2

1 − θ̂1u(k) − θ̂2u(k)2
+ θ̂14 (7.9)

In what follows, the quality of the predictor (7.9) will be evaluated in terms of the

mean square error (MSE) of the prediction errors.

7.3 Estimation methods

To evaluate the performance of predictors (7.2) and (7.3) with estimates p̂ and θ̂,

several estimation methods are compared.

A nonlinear parameter estimation procedure for estimating the parameters of

(7.7) is used in this paper as a reference for the alternative estimation methods.

The vector p of (7.7) consists of several physical and design parameters. A selection

of these physical and design parameters has been estimated using a nonlinear least

squares procedure.

For systems linear in their parameters the ordinary least squares procedure is

widely used. For ill-conditioned systems, however, the estimates are very sensitive

to the data and hence, the errors therein. The predictive quality of the original

system with the estimated parameters is then very poor. A regularization method

to overcome these limitations is the truncated least squares method which uses the

numerical rank of the data matrix to stabilize the solution [Nor86, p.77].

An underlying assumption of the ordinary least squares estimator is that all errors

are subjected to the output vector. However, frequently errors are not only present in

the output vector but also in the data matrix. A fitting technique that compensates

for errors in the data is TLS. [GVL80] outlined a TLS-solution of the EIV problem

which is heavily based on the singular value decomposition (SVD) of (7.1), i.e.:

UΣV T = [A, b] (7.10)

with U ∈ R
m×(n+1) and V ∈ R

(n+1)×(n+1) orthogonal and Σ ∈ R
(n+1)×(n+1) diagonal,

containing the singular values. Their method assumes that the errors are independent

and identically distributed. Then, if the absolute size of the errors are all roughly

equal [VHV91] good results can be obtained.

Several extensions of the TLS algorithm have been proposed. In this paper the

generalized TLS (GTLS) [VHV89] algorithm is used. GTLS overcomes the limitation

of independent and identically distributed errors. GTLS considers different sized and

correlated errors as well as error-free variables where the covariance matrix of the
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Table 7.1: Nominal and estimated parameter values for different numerical ranks.
θ0 θ̂(R = 5) θ̂(R = 4) θ̂(R = 3) θ̂(R = 2)

0.9500 0.9643 0.9600 0.9527 0.9827
0.1000 2.1947 -1.7327 0.0903 0.0355
0.2000 -8.2878 -0.2826 0.1877 0.0706
0.3000 5.1155 1.1424 0.2879 0.1061

errors must be known or estimated. If there are no error-free data and the covari-

ance matrix equals the identity matrix the GTLS solution is equal to the classical

TLS solution. The key problem is how to choose the covariance matrix if the error

distributions are unknown.

In the storage model example, the matrix of interest for GTLS estimation, i.e.

[A, b], of the linearly reparameterized model (7.8) has a large condition number (>

106). The large condition number implies that some columns are highly correlated

which leads to (near) rank deficiency. This, in turn, leads to an estimator that is very

sensitive to the data. Hence, a regularization method was chosen. Both truncated

least squares and the nongeneric GTLS use a numerical rank to overcome the problem

of ill-conditioning. By choosing an appropriate numerical rank a compromise is found

between the stabilization of the solution and the accuracy of the GTLS estimator.

Let us, as an illustrative example, consider the following dynamic system:

x(k + 1) = θ1x(k) + θ2u1 + θ3u2 + θ4u3

y(k) = x(k) (7.11)

where u1, u2 and u3 are all constant inputs related by u3 = 1.5u2 = 3u1. Given the set

of nominal parameters, the constant input signals and the initial condition, the sys-

tem is simulated for 1000 steps. All columns of the data matrix A = [y(k), u1, u2, u3] ∈
R

m×n and output vector b = y(k + 1) ∈ R
m×1 are then corrupted with additive in-

dependent and identically distributed zero mean gaussian white noise. The matrix

[A, b] is now ill-conditioned due to the near linear dependency. However, the param-

eters can still be identified with nongeneric GTLS by evaluating the numerical rank

R of [A, b]. From table 7.1 it can be seen that for R = 3 the estimates approach the

nominal parameters. Notice from figure 7.1 that the predictive value of the estimates

is best in terms of MSE for numerical rank R = 3 and the predictive performance

dramatically decreases for higher (and lower) numerical rank.

The GTLS is elaborated for the bioreactor model (7.6) and for the storage model

(7.8). In section 7.4 the predictive quality of the predictors (7.5) and (7.9) with

GTLS estimates are evaluated.

94



Parameter Estimation and Prediction of a Nonlinear Storage Model: TLS

Numerical rank

M
S
E

2 3 4 5
0

1

2

3

4

5

6

7

8

9

10

Figure 7.1: MSE of simulated output with nominal parameters minus simulated
output with estimated parameters for various numerical ranks

7.4 Results

7.4.1 Michaelis-Menten kinetics

It is known that the parameters of the Michaelis-Menten equation (7.5) in a batch re-

actor are theoretically identifiable if the initial conditions are known [God83]. If noise

is present, however, the parameters, specifically Km, are hard to identify [Hol82].

Furthermore, a nonlinear estimation method can suffer from local minima. In the

following, a comparison between ordinary least squares and GTLS using (7.5) and

simulation data is made. The aim of this simulation experiment is to distinguish

between the predictive quality of (7.5) with the least squares estimates versus the

GTLS estimates.

First, the substrate concentration was simulated for k = 1, · · · ,m, with m = 30

using (7.5) and where Km = 10, S0 = 30, and Vmax = 2. In addition, a Gaussian

white noise sequence is generated with zero mean and unit variance. Next, the

noise sequence is multiplied with a factor varying from 0.01 to 0.2 to obtain a range

of standard deviations of the measurement noise. The noise corrupted substrate

concentrations were then used to generate the data vectors: −S(k) and S(k)
S(k+1)−S(k)

for k = 1, · · · ,m. Given these data Km and Vmax could be estimated. This procedure

was repeated 100 times. The mean of the estimated parameters K̂m and V̂max for

each standard deviation were then used for open loop prediction of the substrate
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Figure 7.2: MSE of predictors (7.5) with parameters estimated by LS of (7.6) (· − ·)
and of (7.12) (- - -), and by GTLS of (7.12) (—).

concentration with (7.5) and S0 = 30.

In order to reduce the number of data errors, the modified Michaelis-Menten

equation (7.6) was further rearranged such that only one column of the data-matrix

contains errors, i.e.

−S(k) = Km +
S(k)

S(k + 1) − S(k)
Vmax (7.12)

Next, for applying GTLS, the covariance matrix had to be chosen. Given the error

e(k) = b(k) − S(k) the variance of the regressor of Vmax was assumed to be much

larger than the variance of the output error because the error of the denominator

e(k + 1) − e(k) can become close to zero. The covariance matrix was chosen as:

cov([
e(k)

e(k + 1) − e(k)
,−e(k)]) =

[

106 0
0 1

]

Subsequently, the parameters were estimated with the least squares estimators

related to (7.6) and (7.12) and with the GTLS estimator related to (7.12). The MSE

of the prediction error ( 1
m

Σm
k=1(Sk − Ŝk)

2) is given in figure 7.2.

GTLS clearly outperforms the ordinary least squares. At higher noise levels,

however, the estimates may induce singularities. At this point the ordinary least

squares estimates already have a poor predictive performance.
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7.4.2 Storage model

Let us consider again eqn (7.8). If the size of the errors of each column of the matrix

[A, b] correspond to the absolute values of the measurements then the errors are not

identically distributed. The absolute humidity Xe is an order of magnitude of 3

smaller than Te and Tp. Furthermore, the last column of the data matrix A is error

free. Hence, better estimates are expected for GTLS compared to truncated least

squares.

For applying GTLS a proper covariance matrix must be chosen. As the exact

sizes of the errors were not known these were approximated by the variance of the

columns. The correlation terms are neglected for convenience. They are relatively

small and therefore will have a minor effect on the results.

If the system is rewritten as a predictor (7.9) there appears to be a constraint on

the estimated parameters θ̂1 and θ̂2. The denominator may not be equal to zero for

the whole range of u. Hence, the constraint is given by:

1 − θ̂1u(k) − θ̂2u(k)2 6= 0, 0 ≤ u ≤ 1 (7.13)

If the constraint is violated, the solution is rejected.

Two data-sets with measured variables, i.e. Tp, Te, Xe and u, of about 50 days

with a sampling interval of 15 minutes were available. The data were obtained from

the same location at the same season but for a different period within the season.

All parameters are assumed to be constant during the whole season. The parameters

are calibrated over one data set (calibration period). The predictive quality is then

obtained by using an open loop prediction over the same data set and cross-validated

over the second data set (validation period).

The MSE of the predictor (7.7) with parameters estimated by nonlinear least

squares (p̂) and the MSE of predictor (7.9) with the parameters estimated by trun-

cated least squares and GTLS (θ̂), with data set 1 the calibration period and data

set 2 the validation period, are presented in table 7.2. The predicted and measured

temperatures of truncated least squares and GTLS are given in figures 7.3 and 7.4.

The same estimation, validation and cross-validation procedures were performed

but now with the data-sets switched, i.e. the second data-set was used for estimation

of p̂ and θ̂. The results are given in table 7.3 and figures 7.5 and 7.6.

Table 7.2: MSE of predictors with parameters estimated by nonlinear LS, truncated
LS and GTLS in calibration (data set 1) and validation (data set 2) period.

nonlinear LS truncated LS GTLS
calibration 0.027 0.019 0.023
validation 0.113 0.031 0.053
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Figure 7.3: Measured (×) and predicted product temperatures in the calibration pe-
riod (data set 1) with parameters obtained by nonlinear least squares (· · · ), truncated
least squares (· − ·) and GTLS (- - -)
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Figure 7.4: Measured (×) and predicted product temperatures in the validation pe-
riod (data set 2) with parameters obtained by nonlinear least squares (· · · ), truncated
least squares (· − ·) and GTLS (- - -).
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Figure 7.5: Measured (×) and predicted product temperatures in the calibration pe-
riod (data set 2) with parameters obtained by nonlinear least squares (· · · ), truncated
least squares (· − ·) and GTLS (- - -).
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Figure 7.6: Measured (×) and predicted product temperatures in the validation pe-
riod (data set 1) with parameters obtained by nonlinear least squares (· · · ), truncated
least squares (· − ·) and GTLS (- - -).
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Table 7.3: MSE of predictors with parameters estimated by nonlinear LS, truncated
LS and GTLS in calibration (data set 2) and validation (data set 1) period.

nonlinear LS truncated LS GTLS
calibration 0.097 0.035 0.017
validation 0.036 0.766 0.016

GTLS has a good performance in each of the four cases and clearly outperforms

the nonlinear least squares estimates. The ordinary least squares estimate only has

a good performance if the calibration data-set is informative enough. This can be

clearly seen in the first part of figure 7.6 where the ordinary least squares estimate

has a very poor performance. There appears to be some time variation in figures

7.3 to 7.6, with estimated values above the actual values early on and below actual

values late on. This is particularly the case for the nonlinear least squares estimates.

If a nonlinear model is linearly regressive reparameterized (from (7.2) to (7.4))

not only ordinary least squares or total least squares methods become available but

a whole set of linear identification tools. As we focus on long-term predictive quality,

a prediction error approach may be a good alternative to the presented least squares

methods.

7.5 Conclusions

Reparameterization of nonlinear discrete-time models with polynomial quotient struc-

ture in Z and p towards linear regression can result in estimates that lead to good

predictive quality. In a simulation environment with low noise signals GTLS out-

performs ordinary least squares in predictive context. In a real world example it is

shown that if the calibration data set is informative, ordinary least squares estima-

tion generates good results in predictive context. For a less informative dataset, the

ordinary least squares estimate behaves badly in the region where no information is

available. GTLS generates good results in both cases.
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8.1 Introduction

Rational biokinetic functions appear frequently in biological studies such as metabolic

pathway modeling (see e.g. [KYY+99]). Parameters that appear nonlinearly in a

rational mathematical model can be estimated linearly by rearranging and reparam-

eterizing the equations. A well-known example is the Michaelis-Menten model:

v =
vmaxS

Km + S
(8.1)

Several types of linearization like the so-called Lineweaver-Burk and Eady-Hofstee

linearizations [Dor95] have been proposed in the past and are widely used in practice.

It is recognized, however, that by rearranging the model in a linear-in-the-parameters

form the error becomes distorted [CB02]. A nonlinear least squares (NLS) approach

to the original model avoids this error distortion introduced by linearization and

result, in general, in a more accurate and more facile determination of the kinetic

constants [GKGE77]. Moreover, the accuracy can be further increased when applying

an optimal input design [KS02, SK04]. Proper initial estimates, however, are still

required as local minima do occur (see e.g. [YAOY03] and figure 6.1). Even with

multi-start procedures, a global minimum can not be assured nor an approximation

error can be given.

By rearranging a model structure in a linear regressive form, it can be investigated

whether the parameters are globally identifiable [LG94]. For the Michaelis-Menten

equation (8.1) the parameters were shown to be globally identifiable in chapter 6. For

some compartmental Michaelis-Menten models it was shown that after reparameter-

izing the new parameters become globally identifiable [Sac04]. In general, the original

parameters can then be recovered by nonlinear estimation of a static problem, with

all the disadvantages of an NLS approach. If the model is used for prediction, how-

ever, the new parameters can be readily used in the reparameterized model, as will

be demonstrated in this paper.

Generally, the rate v in (8.1) is assumed to be the uncertain variable. As the

rate is obtained from measured substrate concentrations, it is reasonable to expect

that S at the right-hand side of (8.1) is also uncertain. This assumption makes

parameter estimation related to the Michaelis-Menten model an errors-in-variables

problem. Errors-in-variables problems that are linear in the parameters can be solved

with a total least squares (TLS) method [GVL80]. In chapter 7 based on simulation,

this TLS estimator showed an improved performance in predictive context compared

to the ordinary least squares (OLS) estimator.

As mentioned before, linear reparameterization usually leads to nonlinearities in

the data. These nonlinearities in uncertain data in turn leads to biased estimates

[Box71]. Therefore, bias compensation must be introduced. In [Van98] it is shown
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that a bias compensated total least squares (CTLS) estimator is asymptotically un-

biased for static polynomial functions.

As already mentioned, the Michaelis-Menten model has been linearized frequently

in the past to linearly estimate the parameters with an ordinary least squares esti-

mator [Dor95]. To our best knowledge, more advanced methods such as errors-in-

variables or bias compensation methods, however, have not been reported. On the

other hand, the CTLS was only used for static polynomial functions.

The objective of this paper is to illustrate the wide applicability of linearly repa-

rameterizing rational biokinetic functions and to evaluate the performance of CTLS

on these functions. The outline of the paper is as follows. First, a general approach to

linearly reparameterize rational functions is proposed. Then, the Michaelis-Menten

parameters are estimated linearly with CTLS. Furthermore, to show the wide appli-

cability of model reparameterization and CTLS, the parameters of enzyme kinetics

with substrate inhibition are estimated as well. Finally, the practical usability is

presented by identifying the biokinetic model parameters of activated sludge from

real respirometric data.

8.2 Preliminaries

8.2.1 Linear reparameterization

In chapter 6 it was outlined that for discrete-time rational models a reparameter-

ization procedure can be applied such that the new parameters can be directly

and uniquely estimated with ordinary least squares. This procedure is widely used

in many different fields when only two parameters need to be estimated. The

Lineweaver-Burk linearization is one example of this procedure. In example 6.1 the

validity of the linear reparameterization procedure was verified with the Michaelis-

Menten model. The solution θ̂ = θ was obtained in the noise ree case whereas the

outcome of a nonlinear parameter estimation procedure was not guaranteed. It was

concluded that, if no physical insight in terms of bounds is used and the estimation

problem is merely treated as a fitting problem, one could easily end up in a local

minimum. But also with knowledge about system or parameter bounds care must

be taken and the solution due to possible singularities in (8.1) is not always obvious.

8.2.2 Handling data errors

The traditional linearizations of the Michaelis-Menten model have been criticized

many times [GKGE77, CB02] because they distort the error. First, the distribution

of the error is changed. Second, the relationship between the dependent and inde-

pendent variables is changed. To see this more clearly, let us add an error term to
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the basic Michaelis-Menten model (8.1):

v =
vmaxS

Km + S
+ e (8.2)

Linearizing according to the Lineweaver-Burk plot leads then to:

1

v
=

Km + S

(vmax + e)S + Kme
(8.3)

Furthermore, it is also noted in [GKGE77] that the substrate concentrations are not

free of error but they are generally believed to be much smaller than those of the

velocities. Ignoring this last assumption, the Michaelis-Menten model becomes an

errors-in-variables problem. To illustrate this, the Michaelis-Menten model (8.1) is

used to describe substrate consumption in a batch reactor. Since, in practice, we

most often have sampled substrate data, the substrate conversion rate is replaced by

v = S(k+1)−S(k)
∆t

. The discrete-time substrate consumption model can then be written

as:

S(k + 1) = S(k) − Vmax
S(k)

Km + S(k)
(8.4)

with V max = vmax∆t. The variables S(k + 1) and S(k) are both measured variables

and as such subject to errors. Hence, the model clearly is errors-in-variables. A

method to estimate parameters in such problems is total least squares [GVL80].

More details and algorithms can be found in [VHV91].

Now, let us proceed by linearly reparameterizing the substrate model (8.4) by

multiplying both sides with the denominator and rearrange such that the model

becomes linear in its parameters:

S(k)(S(k + 1) − S(k)) = [− (S(k + 1) − S(k)) − S(k)]

[

Km

Vmax

]

(8.5)

If the substrate concentrations are known, the parameters can be estimated with ordi-

nary least-squares. Because the problem is errors-in-variables, however, the ordinary

least squares solution is biased [Nor86]. Because the data are not independent (e.g.

S(k) appears in all three columns) an extension of the total least squares method is

needed. The dependency of the columns can be expressed in a covariance matrix.

If the covariance matrix of the errors in the data is known, generalized total least

squares (GTLS) [VHV89] gives the solution.

The GTLS solution can be calculated easily if the regression variables are linear

and the covariance matrix of the variables is known. Due to the linear reparame-

terization, however, this will rarely be the case. Not only the construction of the

covariance matrix is complicated but also bias is introduced because uncertain vari-

ables appear nonlinearly in the regression matrix [Box71]. A simple example will
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illustrate this:

x = x0 + e e ∼ N (0, σ2) (8.6)

E [x] = E [x0 + e] = x0 (8.7)

E
[

x2
]

= E
[

x0
2 + 2x0e + e2

]

= x0
2 + σ2 (8.8)

where x is a measured variable, x0 the true but unknown variable, and e the mea-

surement error. From this example it can be seen that the expected value of x2 is

biased, i.e. b := E [x2]−x0
2 = σ2. Now, if parameter a in the model y = ax2, with y

and x uncertain variables, is to be estimated it will be biased if no bias compensation

method is used. In [Van98] a bias compensated total least squares (CTLS) method

is proposed. It is based on the GTLS approach and provides algorithms to calculate

a bias compensated data matrix, to construct the covariance matrix and add bias

compensation to this covariance matrix. A summary of the algorithm to calculate

the matrices with an illustrative example can be found in appendix D.

8.3 Methods

In the following, three separate cases are investigated: estimation of parameters

from Michaelis-Menten kinetics from simulated data; estimation of parameters from

enzyme kinetics with substrate inhibition from simulated data; and respirometric

data from an activated sludge experiment are used to estimate Monod parameters.

The traditional parameter estimation methods based on OLS and NLS were compared

with CTLS.

8.3.1 Michaelis-Menten kinetics

In this simulation experiment, the substrate concentration S0 was simulated using

(8.4) with nominal parameter values, K0
m = 10, V 0

max = 5 and the initial substrate

concentration S(0) = 50, with k = 1 . . . 15. In addition, noise was added to the

simulated substrate concentrations according to:

S = S0 + e e ∼ N (0, σ2) (8.9)

The parameters were then estimated from the noise corrupted data-set.

First, the parameters were estimated with NLS. Assuming that no prior informa-

tion about the parameters was present, the initial parameter estimates were chosen

as: K̂i
m = 0 and V̂ i

max = 0. Second, the traditional Lineweaver-Burk (L-B) transfor-

mation was used to estimate the parameters with OLS. Finally, CTLS was used with

data matrix Φ and covariance matrix C, that is:

Φ =
[

S(k) − S(k + 1) −S(k) S(k)(S(k + 1) − S(k)) + σ2
]

(8.10)
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C =
1

m

m
∑

k=1

σ2









2 −1 S(k+1)−3S(k)

−1 1 2S(k)−S(k+1)

S(k+1)−3S(k) 2S(k)−S(k+1) 5S(k)2+S(k+1)2−4S(k+1)S(k)−3σ2









(8.11)

Here it is assumed that the noise between S(k + 1) and S(k) are independent and

identically distributed as given in (8.9). The estimates were then used to predict the

substrate concentration

8.3.2 Substrate inhibition

The discrete-time model of substrate inhibition of enzyme kinetics in a batch reactor

is given by:

S(k + 1) = S(k) − VmaxS(k)

Km + S(k) +
S2

k−1

Ki

(8.12)

Normally, the parameters of this model are estimated with NLS. Nonetheless, meth-

ods have been presented that graphically analyzes these kinetics [WAO+99]. This

procedure is based on a two-step procedure. First, the value of
√

Km

Ki
was deter-

mined by visual inspection of a plot of the rate versus the substrate concentration.

Hereafter, the remaining parameters were estimated by a linearized equation. Linear

reparameterization according to theorem 6.1, on the other hand, is then a natural

extension that provides an estimate in a single step. Linearly reparameterizing the

model (8.12) leads to:

S(k)(S(k+1)−S(k)) = (S(k)−S(k+1))Km +K
′

iS(k)2(S(k)−S(k+1))−VmaxS(k)

(8.13)

with K
′

i = 1
Ki

.

In this experiment the substrate concentration is simulated with eqn. (8.12) and

Km = 2, Ki = 5, Vmax = 1 and S(0) = 10 with k = 1 · · · 25. In addition, gaussian

distributed noise was generated and added to the simulated substrate concentration

(S0) similarly as in (8.9). Next, the parameters were estimated using the noisy data-

set with NLS, OLS and CTLS. The bias compensated data matrix Φ and covariance

matrix C for this case are given by (8.14) and (8.15) where, u = S(k + 1) and

v = S(k). Finally, The substrate concentration was predicted using the estimated

parameters. The mean square error of the predicted substrate concentration minus

the actual simulated concentration was calculated.

8.3.3 Respirometric data

The practical identifiability of the Monod parameters was tested with real respiro-

metric data from an activated sludge process [KSv98]. The respirometric data are
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Φ =
[

S(k)−S(k+1) S(k)2(S(k+1)−S(k))+(S(k+1)−3S(k))σ2 −S(k) S(k)(S(k+1)−S(k))+σ2
]

(8.14)

C =
1

m

m
∑

k=1

σ2













2 4v2−2uv−4σ2 −1 u−3v

4v2−2uv−4σ2 10v4−12v3u−4u2v2−σ2 (−4v2−24uv−2u2)−24σ4 2uv−3v2−3σ2 −7v3−7uv2−2u2v−σ2 (15v−5u)

−1 2uv−3v2−3σ2 1 −u−2v

u−3v −7v3−7uv2−2u2v−σ2 (15v−5u) −u−2v 5v2+u2−4uv−3σ2













(8.15)
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Figure 8.1: Measured respiration rates in activated sludge

presented in figure 8.1. In this figure, the endogenous respiration was subtracted from

the total respiration. The data shown are also known as the exogenous respiration

rates in activated sludge experiments. The model of the fast substrate response is

given by:

r =
1 − Y

Y
µm

S

Ks + S
XBH,0 (8.16)

where r the respiration rate (gm−3h−1), Y the yield (gg−1), µm the maximum specific

growth rate (h−1), Ks the Monod half-saturation constant (gm−3), S the substrate

concentration (gm−3) and XBH,0 the initial biomass concentration (gm−3) which

is assumed to be constant in this experiment. Furthermore, respiration rate and

substrate consumption are related by:

(1 − Y )
dS

dt
= −r (8.17)

If only respiration rates are available, structural identifiability is a problem in

activated sludge processes [DVV95]. For example, S(0) and Y cannot be estimated

separately; only the combination (1−Y )S(0) can be estimated. Now, let us therefore

rewrite the system with S̃ := (1 − Y )S, so that

dS̃

dt
= −(1 − Y )

Y
µm

S̃

(1 − Y )Ks + S̃
XBH,0 (8.18)

If XBH,0 is assumed to be constant, which holds for sufficiently small S(0)
XBH,0

-ratios

[CCC92], the model (8.18) can be further reduced by substituting µ̃m = (1−Y )
Y

µmXBH,0
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and K̃s = (1 − Y )Ks:

dS̃

dt
= − µ̃mS̃

K̃s + S̃
(8.19)

This model is analogous to the Michaelis-Menten model (8.1). Using (8.17), the

modified substrate concentrations S̃ can be estimated from the integral of the respi-

ration rates. Under non-equidistant sampling the initial substrate concentration is

determined by:

S(0) =
m−1
∑

i=0

ri(t(i + 1) − t(i)) (8.20)

with m the number of measurements. Given the initial substrate concentration and

the respiration rates and discretizing the model (8.19) the substrate concentrations

can be calculated by:

S̃(k + 1) = S̃(k) − µ̃m
S̃(k)(tk − tk−1)

K̃s + S̃(k)
(8.21)

If S̃(k +1) is independent and identical distributed for all k then the data matrix

Φ and the covariance matrix C are defined by (8.10)-(8.11) and all data are present to

estimate the parameter vector [K̃s µ̃m]T with CTLS. Because the data are obtained

by integrating the respiration rates, however, it cannot be assumed that the calculated

substrate concentrations are independent even if the errors on the respiration rates

were. This is illustrated by elaborating the variances of S̃(0) and S̃(1) and assuming

an additive measurement error: y(k) = r(k) + e(k) with e normally distributed with

zero mean. In addition, it is assumed that cov(S̃, e) = 0. First, some variances are

calculated.

var(S̃(0)) = σ2

var(S̃(1)) = E
[

S̃(1)2
]

− E
[

S̃(1)
]2

= E
[

(S̃(0) − (y(0) − e(0))∆t(0))2
]

− E
[

(S̃(0) − (y(0) − e(0))∆t(0))
]2

= σ2 + ∆t(0)2E(e(0)2)

If ∆t(0)2E(e(0)2) ≪ σ2, which will generally be the case because ∆t is small, then

the variance does not change in time. Next, the covariance between S̃(0) and S̃(1)

is calculated.

cov(S̃(0),S̃(1))=E
[

S̃(0)S̃(1)
]

−E
[

S̃(0)
]

E
[

S̃(1)
]

=E
[

S̃(0)(S̃(0)−(y(0)−e(0))∆t(0))
]

−E
[

S̃(0)
]

E
[

S̃(0)−(y(0)−e(0))∆t(0)
]

=σ2
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These results can be generalized to:

var(S̃(k + 1)) ≈ var(S̃(k)) (8.22)

cov(S̃(k + 1), S̃(k)) = var(S̃(k)) (8.23)

Hence, if var(S̃(k)) = σ2 ∀k then S̃(k + 1) and S̃(k) are fully correlated for all k.

The data matrix as well as the covariance matrix to be used in the CTLS esti-

mation can now be calculated. The data matrix is given by:

Φ =
[

S̃(k) − ˜S(k + 1) −S̃(k) S̃(k)(S̃(k + 1) − S̃(k))
]

(8.24)

Recall that the covariance matrix is defined by (8.11) if S̃(k + 1) and S̃(k) are

independent. If they are not independent the covariance matrix is given by:

C =
1

m

m
∑

k=1

σ2













(1−ρ) 0 (ρ−1)S̃(k)

0 ρ∆t2 ρ∆t
(

S̃(k)−S̃(k+1)
)

(ρ−1)S̃(k) ρ∆t
(

S(k)−S̃(k+1)
)

c33













(8.25)

with c33 =−2(1−ρ)S̃(k+1)S̃(k)+S̃(k)2+(1−ρ)S̃(k+1)2−ρ(5ρ−1)σ2 and

ρ = cov(S̃(k+1),S̃(k))√
var(S̃(k+1))var(S̃(k))

=
σ2

S̃(k)

σ
S̃(k+1)σS̃(k)

=
σ

S̃(k)

σ
S̃(k+1)

. With the data and covariance matrix

given, the parameter vector [K̃s µ̃m]T can be calculated with CTLS.

8.4 Results and discussion

In figure 8.2 a typical result for a specific noise realization of the predictor (8.1)

is presented with parameter estimates found by the several fitting procedures. It

can be seen that NLS has the best predictor performance in terms of mean squared

error (MSE). The peak at noise level 1 indicates that the procedure ended up in a

local minimum. Furthermore, it is clear that CTLS outperforms the (unweighed)

Lineweaver-Burk reparameterization and has an MSE that is less than the variance

of the noise.

As the estimates depend on the noise sequence, the noise was generated 1000

times. The mean and standard deviation of the estimates from NLS and CTLS are

given in table 8.1. It should be noted that the NLS approach, for each of the es-

timations, used the initial parameter vector [Km Vmax]
T = [0 0]T . The results

show that in this case the NLS approach usually generates the best estimates. Fur-

thermore, it can be seen that CTLS generates estimates that are well suited. The

estimates are, however, widely spread at high noise levels. This indicates that for

several noise sequences the estimates are far out of range.
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Figure 8.2: MSE of simulated output with nominal parameters (Km = 10 and Vm =
5) minus simulated output with estimated parameters with NLS, CTLS and L-B at
several noise levels.

The parameters of the substrate inhibition model (8.12) are very hard to identify.

The difficulties in the practical identifiability of the comparable Andrews kinetics

based on sensitivity equations were shown by [SKS03]. In a noise-free simulation

study the true parameters cannot be obtained with NLS. In figure 8.3 the many local

minima and long valleys can be clearly seen. By nature, under noise-free conditions

and linear reparameterization, OLS finds the exact solution. This also holds for

CTLS.

In figure 8.4 a typical realization of the predictive performance of the model (8.12)

with parameters estimated with different estimators is presented. It can be clearly

seen, as expected from figure 8.3, that NLS does not find the global minimum in

general. The CTLS estimator on the other hand finds the global minimum. With

low noise levels this results in quite accurate estimates. With increasing noise levels

Table 8.1: Mean ± standard deviation of parameter estimates at three noise levels
with K0

m = 10, V 0
max = 5

σ = 0.01 σ = 0.1 σ = 1
NLS CTLS NLS CTLS NLS CTLS

K̂m 10.00±0.022 10.00±0.059 10.00±0.22 9.97±0.60 9.89±2.86 10.92±114.97

V̂max 5.00±0.003 4.99±0.091 5.00±0.029 4.99±0.091 4.98±0.39 5.13±13.09
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Figure 8.3: MSE of simulated output with nominal parameters (Km = 2, Ki = 5 and
Vm = 1) minus simulated output with estimated parameters in the 3-dimensional
parameter space (black = low MSE, white = high MSE)
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Figure 8.4: MSE of simulated output with nominal parameters (Km = 2, Ki = 5 and
Vm = 1) minus simulated output with parameters estimated with NLS, CTLS and
OLS at several noise levels.
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Figure 8.5: Predicted vs. measured substrate concentration in waste water

the accuracy decreases but up to the noise levels presented, the estimates are fre-

quently more reliable than the estimates of the NLS estimator. The OLS estimator

shows to be reliable only for very low noise levels. This estimator is therefore not

recommended.

In figure 8.5 the predicted substrate concentrations from the activated sludge

experiment with the estimates obtained with CTLS are presented. It is clear from this

figure that the predicted values are close to reconstructed substrate concentrations

from the measured respirometric data.

It is also possible to estimate the initial substrate concentration together with the

kinetic parameters using linear regression. Therefore, the differential equation:

dS̃

dt
= − µ̃mS̃

K̃s + S̃
(8.26)

must be integrated. This method is also known as the integrated rate equation (see

e.g. [Sch69]). After integration and linear reparameterization the following linear

regressive form can be obtained:

S̃ =
[

1 − t ln S̃
]





S̃(0) + K̃s ln S̃(0)
µ̃m

K̃s



 (8.27)

Given (8.27), the bias compensated data and covariance matrices can be derived and

CTLS can be applied. Note that the first two elements (1 and −t) of (8.27) are free

of error.
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Just as the traditional linearization approaches, i.e. Linewaever-Burk, Eady-

Hofstee and Langmuir linearizations, the general linear reparameterization method

given by theorem 6.1 does not yield a unique reparameterization. Further research

is required to obtain the most suitable reparameterization for each rational function

that is to be estimated linearly (see also chapter 7).

The estimation results depend on the chosen parameters, initial conditions and the

number of measurements used in the simulation. The results, however, are generally

the same: a global optimum in the noise-free case for CTLS and OLS; less biased

estimates for CTLS than OLS with increasing noise levels; NLS might end up in a

local minimum.

Although, calculation of the data and covariance matrices for CTLS are some-

what involved, R©Matlab software is available from the authors for calculating these

matrices. Gaussian distributed noise sequences are assumed in these calculations.

8.5 Conclusions

It has been illustrated in this paper that for a simple rational biokinetic function like

the Michaelis-Menten equation the NLS estimator gives good results in general. It is

possible, however, that a local minimum is found. Traditional linearization methods

ensures a global minimum but become biased if noise is present. CTLS also ensures a

global minimum and provides less biased estimates than the traditional linearization

methods with OLS. For somewhat more complex rational functions that entail many

local minima like enzyme kinetics with substrate inhibition, CTLS provides estimates

that are closer to the nominal values than NLS for low noise levels. At higher

noise levels, NLS might end up in a local minimum (see figure 8.3) but performs

better in predictive context. Hence, no physical interpretation should be given to the

estimates found with NLS. Additionally, CTLS showed to be practically usable in an

example with respirometric data from a waste water treatment plant. Finally, it is

concluded that CTLS is a powerful alternative to the existing least-squares methods

for biokinetic models.
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Conclusions and general discussion
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In this chapter conclusions are drawn of the main research questions postulated

in section 1.5. In addition to the conclusions some thoughts are discussed for possible

further research on each of the subjects.

9.1 Weather forecasts

From the results found in chapters 2 and 3 it is clear that local measurements are cru-

cial for local short term forecasting. It was already shown by [TVWVS96] that for a

forecast up to one hour ahead the local lazy man weather prediction, i.e. the weather

for the next hour remains constant, outperformed regional commercial weather fore-

casts updated twice a day. Despite the improvements made in weather forecasting

it is not expected that the very short term regional commercial weather forecasts

become more reliable than the local lazy man weather prediction. This is due to

the fact that (commercial) weather forecasts are based on measurements that are ob-

tained at least several hours earlier. These observations are then used in atmospheric

models to predict the future weather. Model deficiencies result in prediction errors,

hence, even the zero hour ahead forecast contains errors. Furthermore, site specific

information is generally not present in atmospheric models but can effect the local

climate e.g. [Mak06]. Hence, research question 1 is answered positively, i.e., data

assimilation with local measurements results in better local forecasts provided that

the local measurements are of good quality.

Generally, in data-assimilation a trade-off is made between predicted model states

and measurements. Agricultural control systems are directly influenced by the weather.

For instance, cooling of a storage facility can only be done if the ambient air temper-

ature is low enough [GNF03]. In this case well calibrated measurement devices are

important for proper control. Hence, if these devices are used for direct control they

can also be used for updating local weather forecasts. Reversely, the deviation be-

tween measurements and weather forecasts can also be used to alert for an anomaly

in the measurement device.

As many agricultural sites use weather observations and/or weather forecasts for

management purposes, the electronic measurements of each of the agricultural sites

can be integrated into a network of sensors. Hence, instead of local updates this

network can be used to adjust the weather forecast for the local sites.

9.2 Uncertainty and optimal control

In chapter 4 the relation between uncertainty in weather forecasts and the uncertainty

of the predicted potato temperature in a storage facility was investigated. Minimum

variance control was not suitable because the disturbance entering the system (i.e.
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weather forecast uncertainty) was related to the control variable (ventilation rate).

Furthermore, because the main objective was to use weather forecasts to minimize

energy costs, open loop optimal control based on a predefined cost function was

used as a general tool for calculating the future controls. However, if uncertainty is

present the future controls as computed in the open loop calculations are generally

not optimal anymore but only a best guess. The consequences of a deviation in the

system states on the cost function should therefore be analyzed. Furthermore, the

possibility of constraint violation must be verified.

It has been shown that given the controls a linear time-varying system arises.

Furthermore, uncertainty is only entering the system if it is ventilated. The dis-

turbance propagating through the system can be calculated in order to obtain the

uncertainty of the system states. The 2σ-band provides a 95% confidence region if

the disturbances are normally distributed. This confidence region can then be used

for risk assessment or it can be integrated in the objective function to calculate the

optimal control trajectory. This answers the research question 2. The answer to

research question 3 specified to the storage facility is given by: because uncertainty

is entering the system if the storage facility is ventilated with ambient air, the control

input (ventilation) generally shifts towards parts where the weather forecast contains

less uncertainty. This approach is especially interesting if the uncertainty of the

disturbances is time-varying as in ensemble weather forecasts.

If the disturbances are not normally distributed the variance can still be calculated

and used in the optimization procedure. If the distributions are given, such as in

ensemble weather forecasts, the maximum (d̄) and minimum (d) values at each time

instant can be calculated. This then results in an unknown-but-bounded approach

[Sch73]. The effect of these two extreme outer bounding profiles are then evaluated

in the cost function. If state constraints are present both extreme profiles need to be

evaluated against these constraints. Alternatively, both profiles are part of the cost

function and a trade-of will be made. As an example an unweighted cost function in

addition to section 4.4 can be formulated as

J =
H

∑

k=0

[

(x̄(k) − xref )
2 + (x(k) − xref )

2 + u(k)2
]

(9.1)

where x̄ = f(d̄) the maximum possible temperature and x = f(d) the minimum

possible temperature. This approach only holds for linear systems because only then

d̄ leads to the maximum possible temperature.

The weather forecast ensembles generated by atmospheric models are generally

not normally distributed. A numerical approach by predicting the system states for

each of the ensemble members can be used. The output ensemble then contains

an uncertainty measure and this uncertainty measure can be used in the the cost
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function. This leads to a less conservative control than the unknown-but-bounded

approach but is computationally demanding for an increasing number of ensemble

members. An advantage over the unknown but bounded approach is that it can also

be used for nonlinear systems.

For a more robust performance of the controller feedback is applied. In chapter 5

the effect of the receding horizon optimal controller on the realized costs was investi-

gated. It has been shown that the uncertainty in the weather forecast ensemble has

only a minor effect on the total costs if the optimal controls are recalculated every 24

hours or less. Furthermore, for the arbitrary chosen range of parameter uncertainty

the effect on the total costs quite low if the optimal controls are recalculated every

6 hours. This answers research question 4. This does not imply, however, that no

weather forecasts are needed. In the papers [KPL03] and [LvdVdKC06] the effect of

using weather forecasts in an optimal control approach showed an improvement by

reducing costs if the forecast horizon increases. Furthermore, using the weather of

”today” as a forecast for the coming days resulted in much less cost decrease than

using the commercial weather forecast.

9.3 Parameter Estimation

9.3.1 Linear reparametrization

In part II calibration of a mathematical model which is an important procedure to

optimize the predictive quality of the model is the main subject of interest. Usually

a nonlinear least squares approach is used to solve this issue. Whereas the main

weakness of nonlinear least squares algorithms is that they can easily end up in

local minima and have a high computational demand, their strength is the general

applicability. The main strength of OLS and TLS is that they give directly the global

minimum. Unfortunately, these methods are only applicable to systems with outputs

that are linear in the parameters. Therefore, if the system is reparameterized such

that its output becomes linear in its new parameters, OLS and TLS can be used

and the parameters are globally identifiable [LG94]. In the noise-free case unbiased

parameter estimates are obtained with ordinary least squares. If, however, noise is

present difficulties arise. Additional methods like GTLS and CTLS proved to be

more robust in these cases.

Rational systems or systems with a polynomial quotient structure as used in this

study are defined by numerator and denominator polynomials in inputs, outputs

and parameters. If a rational system is not globally identifiable, the system can be

reparameterized such that the newly defined system is linear in its parameters and

linear estimation methods can be applied to estimate the parameters. The system
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structure is preserved in this case. The new parameters, however, might become

correlated.

In a recent study [Zhu05a], also based on putting rational model parameters in a

linear regressive form, an iterative solution was presented to cope with noise and bias

compensation. The main advantage of GTLS and CTLS, as applied in this study, is

that no iterative procedures are needed and a global minimum is found directly.

In answering research questions 5 and 6 the following can be concluded: (i) ratio-

nal models can be linearly reparameterized such that the newly obtained parameters

can be estimated with linear least squares but does not necessarily lead to a good pre-

dictor, (ii) estimation based on total least squares techniques generally outperforms

ordinary least squares for linearly reparameterized models.

After linear reparametrization and estimating the newly defined linear parameters

the original parameters can be recovered by backtransformation. This backtransfor-

mation is a static nonlinear estimation problem. As an example, the storage system

with parameter vector p from eqn. (6.14) is given. After reparameterization the new

system (6.15) with the parameter vector θ is obtained. The parameters are related

as follows:

θ1 =
p̃7

p̃6

+
p̃4

p̃3

θ2 =
p̃4p̃7

p̃3p̃6

θ3 = p̃1 +
p̃2

p̃3

+
p̃5

p̃6

θ4 =
p̃1p̃3p̃7 + p̃1p̃4p̃6 + p̃2p̃7 + p̃4p̃5

p̃3p̃6

θ5 =
p̃1p̃4p̃7

p̃3p̃6

θ6 =
p̃8

p̃3

θ7 =
p̃6p̃9 + p̃7p̃8

p̃3p̃6

θ8 =
p̃7p̃9

p̃3p̃6

θ9 =
p̃10

p̃6

θ10 =
p̃3p̃11 + p̃4p̃10

p̃3p̃6

θ11 =
p̃4p̃11

p̃3p̃6

θ12 = p̃12 +
p̃13

p̃3
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θ13 =
p̃12p̃4p̃6 + p̃12p̃3p̃7 + p̃13p̃4

p̃3p̃6

θ14 =
p̃12p̃4p̃7

p̃3p̃6

Clearly, this is a set of rational functions and the parameter vector p can be estimated

with a nonlinear least squares approach if θ is given. An advantage over the original

nonlinear least squares estimation problem is that it now is a static problem. Because

the main purpose in this thesis was to obtain a good predictor this backtransformation

was not needed.

In chapter 7 the covariance matrix of the storage system used in the GTLS algo-
rithm was given as a diagonal matrix with the variance of the columns of the data
matrix as the diagonal entries. This resulted in an excellent performance on both
the calibration data and the validation data set. To provide a general approach of
tuning the covariance matrix in chapter 8 CTLS was used to calculate the covariance
matrix. Here, the results obtained with the covariance matrix of chapter 7 (eqn. 9.2)
are compared with the the results obtained with the covariance matrix (eqn. 9.3)
generated with the CTLS approach with ρux = ρuy = ρvy = ρwy = ρxy = ρxv =
ρxw = ρyv = ρyw = ρvw = 0, i.e. independent noise, and variances σ2

u = 0.001,
σ2

x = σ2
y = σ2

v = 0.1 and σ2
w = 10−7, the subscripts denoting y = ∆Tp(k + 1),

x = ∆Tp(k), u = ∆u(k), v = ∆Te(k) and w = ∆Xe(k) where ∆ the measurement
error. The simulation results of table 7.2 and 7.3 extended with CTLS results are
given in table 9.1. In this table it can be seen that both methods have comparable

Table 9.1: MSE of predictors with parameters estimated by nonlinear LS, GTLS and
CTLS in accordance with tables 7.2 and 7.3.

calibration set 1 validation set 2 calibration set 2 validation set 1
nls 0.027 0.113 0.097 0.036
gtls 0.022 0.053 0.017 0.016
ctls 0.021 0.050 0.024 0.071

predictive performance except for the second cross-validation (last column of table
9.1). The difficulty, of course, is how to find the correct covariance matrix. Tuning
is based on trial and error whereas CTLS gives a deterministic covariance matrix.
If the noise characteristics are not known, however, the variances and covariances
between the errors of the variables need to be approximated. Furthermore, the cal-
culated covariance matrix is not always positive definite with an arbitrary choice of
the variances and covariances.

The linear reparameterization method as introduced in chapter 6 is not limited
to rational functions. Linear reparameterization methods also exist for other non-
linear structures. For instance, exponential functions can be linearized by taking
the logarithm. To illustrate this, the Freundlich isotherm [Dor95] that describes the
adsorption of material on a particular surface is given as:

qe = KfC
1
n
e (9.4)
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with qe the equilibrium concentration of e on the adsorbent, Ce the equilibrium
concentration of e in the fluid phase and Kf and n are the parameters that describe
the characteristics of the adsorption system. Taking the logarithm of (9.4) gives

ln qe = ln Kf +
1

n
ln Ce (9.5)

Reparameterization of (9.5) leads to:

ln qe = [1, ln Ce]

[

K̃f

ñ

]

(9.6)

with K̃f = ln Kf and ñ = 1
n
. Both variables qe and Ce are measured and, hence,

subject to errors. Because the data variables qe and Ce appear nonlinearly in eqn.
(9.5) CTLS according to chapter 8 and appendix D is applied. This gives rise to the
following data and covariance matrices:

[A, y] =

[

1, ln Ce +
σ2

C

2C2
e

, ln qe +
σ2

q

2q2
e

]

(9.7)

C =







σ2
c(2c4−5σ2

cc2−10σ4
c)

2c6
ρcq(c2q2−σ2

cq2−ρcqcq−σ2
qc2)

c3q3

ρcq(c2q2−σ2
cq2−ρcqcq−σ2

qc2)
c3q3

σ2
q(2q4−5σ2

qq2−10σ4
q)

2q6






(9.8)

with σ2
c the variance of the error of Ce, σ2

q the variance of the error of qe and ρcq the

covariance between the errors of Ce and qe. With these matrices the parameters K̃f

and ñ can be uniquely estimated.

This method using logarithms,however, cannot directly be applied to all nonlinear
functions. An example of an exponential function that cannot be linearly reparame-
terized directly is given by:

y = a + ebx (9.9)

There are some possibilities, however, to come to a linear in the parameters ex-
pression. First, the exponential function can be approximated with a Taylor series
expansion. Taking too few elements would lead to a relatively large error in the
approximation. Taking too many elements leads to an ill-conditioned data-matrix.
Another approach can be found in taking the derivative of y to x. The following
expression is then obtained:

dy

dx
= bebx = by − ba (9.10)

This can be further worked out, e.g. via

ỹ = by − ã (9.11)

with ỹ = dy
dx

and ã = ba. The difficulty in this case is that the error in dy
dx

increases
compared to the error in y.
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Figure 9.1: sum of squares of two different noise sequences {e}N
k=1

9.3.2 Parameter uncertainty

The parameter vector that is found is the solution of a parameter estimation problem.
Depending on the method an uncertainty measure, i.e. the second moment, can also
be obtained. In general, however, it is not guaranteed that the global minimum
results in the true parameters. This merely depends on the correspondence between
the chosen noise model and the actual noise sequence.

If multiple local solutions exist with almost equal sum of squares it is worthwhile
to investigate the probability density function of the parameter estimates. This is
illustrated with the following single parameter system:

x(k + 1) = x(k) − ax(k)

a2 + x(k)
(9.12a)

y(k) = x(k) + e(k) (9.12b)

Two data sets are generated with a = 2, x0 = 20 and σ2
e = 1. In figure 9.1 it

can be seen that there are two minima. Furthermore, the nonlinear least squares
search routine from Matlab R©, i.e. lsqnonlin, only finds the global optimum if the
initial guess of a is: a / 4. Using a bayesian approach [CL00, Nor86] for parameter
estimation gives the conditional parameter distribution:

p(θ|y) =
p(y|θ)p(θ)

∫

p(y|θ)p(θ)dθ
(9.13)

with p(θ) the prior distribution of the parameters, p(y|θ) the data distribution given
the parameter values and

∫

p(y|θ)p(θ)dθ the normalization factor. If p(θ) is assumed
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Figure 9.2: Probability distributions p(θ|y) of two different noise sequences {e}N
k=1

to be uniformly distributed with −∞ < θ < ∞ the distinction between conditional
and unconditional parameter distributions vanishes [Nor86]. The unnormalized like-
lihood functions p(θ|y) from figure 9.1 are presented in figure 9.2.

In practice p(θ|y) can generally not be solved analytically. A numerical approach
by sampling p(θ) is therefore required. The number of samples taken from p(θ),
however, is limited especially with higher dimensions of θ. Given the sampled data
a posterior probability density can be obtained. This posterior can then be used
to sample new values of θ and create a new posterior distribution. More research
is needed to see if p(θ|y) converges. If the posterior distribution is non-Gaussian
as in figure 9.2 the probability can be approximated with a weighted set of normal
distributions, i.e. Parzen densities [Par62]. Samples can be drawn easily from the
normal distributions. Finally, given a sampled set of the parameter distribution a set
of model predictions can be made and an uncertainty measure of the model prediction
is directly available.

9.4 Epilogue

Two problems that are of interest in agricultural context have been studied in this
thesis. The major contributions of this work are, however, of wider interest. The fact
that weather forecasts can be improved for local situations can be relevant for a wide
range of weather forecast users such as power plant managers, airports and harbors,
water management etc. The possibility to linearly reparameterize a rational model is
not limited to agricultural or biokinetic models. Together with total least squares for
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estimation this approach is interesting in almost all applications of modeling. Further
research must be done to generalize this approach to other types of nonlinearities as
mentioned in section 9.3.1. Also multiple output problems are not dealt with in this
thesis and are subject of further research.
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C.F. Mueller, Karlsruhe, 1979.

[Bha00] K. Bhattacharya. Forecast surface temperature correction by esti-
mation theory. Indian Journal of Pure and Applied Mathematics,
31(8):921–932, 2000.

[BJ76] G. E. P. Box and M. J. Jenkins. Time Series Analysis: forecasting
and control. Time series analysis and digital processing. Holden-Day,
Oakland, 1976.

[Box71] M. J. Box. Bias in nonlinear estimation. Journal of the Royal Statis-
tical Society Series B-Statistical Methodology, 33(2):171–201, 1971.

[CB02] A. Cornish-Bowden. Statistical analysis of enzyme kinetic data. In
R. Eisenthal and M.J. Danson, editors, Enzyme Assays, pages 249–
268. Oxford University Press, New York, 2nd edition, 2002.

129



BIBLIOGRAPHY

[CBCdMO02] J. P. Coelho, J. Boaventura Cunha, and P. B. de Moura Oliveira. Solar
radiation prediction methods applied to improve greenhouse climate
control. In World Congress on Computers in Agriculture and Natural
Resources, pages 154–160, Iguaca falls, Brazil, 2002.

[CBW96] Z. S. Chalabi, B. J. Bailey, and D. J. Wilkinson. A real-time optimal
control algorithm for greenhouse heating. Computers and Electronics
in Agriculture, 15(1):1–13, 1996.

[CCC92] P. Chudoba, B. Capdeville, and J. Chudoba. Explanation of biological
meaning of the S0/X0 ratio in batch cultivation. Water Science and
Technology, 26(3-4):743–751, 1992.

[CG01] M. K. Chourasia and T. K. Goswami. Losses of potatoes in cold
storage vis-a-vis types, mechanism and influential factors. Journal of
Food Science and Technology-Mysore, 38(4):301–313, 2001.

[CHE93] JQ CHEN. Contrasting microclimates among clear-cut, edge, and
interior of old-growth douglas-fir forest. Agricultural and forest mete-
orology, 63(3-4):219–237, 1993.

[CL00] B. P. Carlin and T. A. Louis. Bayes and empirical bayes methods for
data analysis. Chapman & Hall/CRC, Boca Raton, 2nd edition, 2000.

[CLW+01] D. B. Crawley, L. K. Lawrie, F. C. Winkelmann, W. F. Buhl, Y. J.
Huang, C. O. Pedersen, R. K. Strand, R. J. Liesen, D. E. Fisher,
M. J. Witte, and J. Glazer. Energyplus: creating a new-generation
building energy simulation program. Energy and Buildings, 33(4):319–
331, 2001. Sp. Iss. SI.

[COC05] J. P. Coelho, P. B. D. Oliveira, and J. B. Cunha. Greenhouse air
temperature predictive control using the particle swarm optimisation
algorithm. Computers and Electronics in Agriculture, 49(3):330–344,
2005.

[DAPS06] P. I. Daskalov, K. G. Arvanitis, G. D. Pasgianos, and N. A. Sigrimis.
Non-linear adaptive temperature and humidity control in animal
buildings. Biosystems Engineering, 93(1):1–24, 2006.

[Dem93] B. Demoor. Structured total least-squares and l2 approximation-
problems. Linear Algebra and Its Applications, 188:163–205, 1993.

[DK05] T. G. Doeswijk and K. J. Keesman. Adaptive weather forecast-
ing using local meteorological information. Biosystems Engineering,
91(4):421–431, 2005.

[Dor95] P. M. Doran. Bioprocess Engineering Principles. Elsevier Academic
Press, London, UK, 1995.

130



BIBLIOGRAPHY

[DS96] J. E. Dennis and R. B. Schnabel. Numerical Methods for Uncon-
strained Optimization and Nonlinear Equations, volume 16 of Classics
in Applied Mathematics. Prentice Hall, Inc, Englewood Cliffs, NJ,
1996.

[Duf06] P. Dufour. Control engineering in drying technology: Review and
trends. Drying Technology, 24(7):889–904, 2006.

[DVV95] D. Dochain, P. A. Vanrolleghem, and M. Vandaele. Structural iden-
tifiability of biokinetic models of activated-sludge respiration. Water
Research, 29(11):2571–2578, 1995.

[EJM+97] D. A. Epp, D. S. Jayas, W. E. Muir, N. D. G. White, and D. St George.
Near-ambient drying of stored wheat using variable airflow - a simula-
tion study. Canadian Agricultural Engineering, 39(4):297–302, 1997.

[Fie97] S Fierro, RD. Regularization by truncated total least squares. SIAM
journal on scientific computing, 18(4):1223–1241, 1997.

[GA02] G. Galanis and M. Anadranistakis. A one-dimensional kalman filter
for the correction of near surface temperature forecasts. Meteorological
Applications, 9:437–441, 2002.

[GAS84] S. Gal, A. Angel, and I. Seginer. Optimal-control of greenhouse climate
- methodology. European Journal of Operational Research, 17(1):45–
56, 1984.

[Gei61] R Geiger. Das Klima der bodennahen Luftschicht : ein Lehrbuch der
Mikroklimatologie, volume 78 of Die Wissenschaft. Braunschweig, 4
edition, 1961.

[Gel74] A. Gelb. Applied Optimal Estimation. MIT Press, Cambridge, Mas-
sachusetts, 1974.

[GKGE77] L. Garfinkel, M. C. Kohn, D. Garfinkel, and L. Endrenyi. Systems-
analysis in enzyme-kinetics. Crc Critical Reviews in Bioengineering,
2(4):329–361, 1977.

[GM03] F. Grabowski and M. Marcotte. Drying of fruits, vegetables, and
spices. In A. Chakraverty, A.S. Mujumdar, G.S.V. Raghavan, and
H.S. Ramaswamy, editors, Handbook of Postharvest Technology, page
884. Marcel Dekker Inc., New York, 2003.

[GNF03] K. Gottschalk, L. Nagy, and I. Farkas. Improved climate control for
potato stores by fuzzy controllers. Computers and Electronics in Agri-
culture, 40(1-3):127–140, 2003.

[God83] K Godfrey. Compartmental models and their application. Academic
Press, London, 1983.

131



BIBLIOGRAPHY

[Gol99] GH Golub. Tikhonov regularization and total least squares. SIAM
journal on matrix analysis and applications, 21(1):185–194, 1999.

[GVL80] G. H. Golub and C. F. Van Loan. An analysis of the total least squares
problem. SIAM Journal on Numerical Analysis, 17(6):883–893, 1980.

[Han94] Per Christian Hansen. Regularization tools: A Matlab package for
analysis and solution of discrete ill-posed problems. Numer. Algo-
rithms, 6(1-2):1–35, 1994.

[HKFK04] G. P. Henze, D. E. Kalz, C. Felsmann, and G. Knabe. Impact of
forecasting accuracy on predictive optimal control of active and passive
building thermal storage inventory. Hvac & R Research, 10(2):153–
178, 2004.

[Hol82] A. Holmberg. On the practical identifiability of microbial-growth mod-
els incorporating michaelis-menten type nonlinearities. Mathematical
Biosciences, 62(1):23–43, 1982.

[Hom95] M. Homleid. Diurnal corrections of short-term surface temperature
forecasts using the kalman filter. Weather and Forecasting, 10(4):689–
707, 1995.

[Kai80] T. Kailath. Linear systems. Prentice-Hall Information and System
Sciences Series. Prentice-Hall, Englewood cliffs, New Jersey, 1980.

[Kal60] R. E. Kalman. A new approach to linear filtering and prediction
problems. Transactions of the ASME–Journal of Basic Engineering,
82(Series D):35–45, 1960.

[Kee97] K. J. Keesman. Weighted least-squares set estimation from l∞-norm
bounded-noise data. IEEE Trans. Autom. Control, 42(10):1456–1459,
1997.

[KG91] J. C. Kabouris and A. P. Georgakakos. Stochastic-control of the
activated-sludge process. Water Science and Technology, 24(6):249–
255, 1991.

[KPL03] K. J. Keesman, D. Peters, and L. J. S. Lukasse. Optimal climate
control of a storage facility using local weather forecasts. Control
Engineering Practice, 11(5):505–516, 2003.

[KS72] H. Kwakernaak and R. Sivan. Linear optimal control systems. Wiley.
Interscience, New York [etc.], 1972. Isn356840en.

[KS02] K. J. Keesman and J. D. Stigter. Optimal parametric sensitivity con-
trol for the estimation of kinetic parameters in bioreactors. Mathe-
matical Biosciences, 179(1):95–111, 2002.

[KSv98] K. J. Keesman, H. Spanjers, and G. vanStraten. Analysis of endoge-
nous process behavior in activated sludge. Biotechnology and Bioengi-
neering, 57(2):155–163, 1998.

132



BIBLIOGRAPHY

[KYY+99] T. Katoh, D. Yuguchi, H. Yoshii, H. D. Shi, and K. Shimizu.
Dynamics and modeling on fermentative production of poly (beta-
hydroxybutyric acid) from sugars via lactate by a mixed culture of lac-
tobacillus delbrueckii and alcaligenes eutrophus. Journal of Biotech-
nology, 67(2-3):113–134, 1999.

[LB06] L. J. S. Lukasse and J. Bontsema. Weer in control ii. Openbaar
eindrapport, Wageningen UR, 18 mei 2006 2006.

[LdKCvdV06] L. J. S. Lukasse, J.E. de Kramer-Cuppen, and A.J. van der Voort. A
physical model to predict climate dynamics in ventilated bulk-storage
of agricultural produce. International Journal of Refrigeration, 2006.
Accepted for publication.

[LEI74] Max LEITH, CE. Theoretical skill of monte-carlo forecasts. Monthly
weather review, 102(6):409–418, 1974.

[LG94] L. Ljung and T. Glad. On global identifiability for arbitrary model
parametrizations. Automatica, 30(2):265–276, 1994.

[Lju87] L. Ljung. System Identification, Theory for the User. Information and
System Sciences. Prentice Hall, Inc., Englewood Cliffs, New Jersey,
1987.

[LKvS96] L. J. S. Lukasse, K. J. Keesman, and G. van Straten. Grey-Box Iden-
tification of Dissolved Oxygen Dynamics in an Activated Sludge Pro-
cess. In Proc. 13th IFAC world congress, San Francisco, USA, Vol. N,
pages 485–490, 1996.

[LOR63] Max LORENZ, EN. Deterministic nonperiodic flow. Journal of the
atmospheric sciences, 20(2):130–141, 1963.

[LvdVdKC06] L. J. S. Lukasse, A.J. van der Voort, and J.E. de Kramer-Cuppen. Op-
timal climate control to anticipate future weather and energy tariffs.
In K. Gottschalk, editor, 4th IFAC Workshop on Control Applications
in Post - Harvest and Processing Technology, volume 55 of Bornimer
Agrartechnische Berichte, pages 109–122, Potsdam, Germany, 2006.

[LVHDM97] P. Lemmerling, S. Van Huffel, and B. De Moor. Structured total
least squares problems : formulations, algorithms and applications.
In S. Van Huffel, editor, Recent Advances in Total Least Squares
Techniques and Errors-in-Variables modeling, pages 215–223. SIAM,
Philadelphia, 1997.

[LVHDM02] P. Lemmerling, S. Van Huffel, and B. De Moor. The structured total
least-squares approach for non-linearly structured matrices. Numerical
Linear Algebra with Applications, 9(4):321–332, 2002.

[Mak06] PA Makar. Heat flux, urban properties, and regional weather. Atmo-
spheric environment, 40(15):2750–2766, 2006.

133



BIBLIOGRAPHY

[Mar06] C Marzban. Mos, perfect prog, and reanalysis. Monthly weather re-
view, 134(2):657–663, 2006.

[Mur93] A. H. Murphy. What is a good forecast? an essay on the nature of
goodness in weather forecasting. Weather and Forecasting, 8(2):281–
293, 1993.

[NCE05] NCEP. History of recent modifications to the global forecast/analysis
system, 2005.
http://wwwt.emc.ncep.noaa.gov/gmb/STATS/html/model changes.html.

[Nor86] J. P. Norton. An Introduction to Identification. Academic Press, Lon-
don, 1986.

[Par62] E. Parzen. Estimation of a probability density-function and mode.
Annals of Mathematical Statistics, 33(3):1065–1076, 1962.

[PBBP97] T. N. Palmer, J. Barkmeijer, R. Buizza, and T. Petroliagis. The ecmwf
ensemble prediction system. Meteorological Applications, 4(4):301–
304, 1997.

[PCKP05] S. Pinon, E. F. Camacho, B. Kuchen, and M. Pena. Constrained pre-
dictive control of a greenhouse. Computers and Electronics in Agri-
culture, 49(3):317–329, 2005.

[PGM97] R. H. Perry, D. W. Green, and J. O. Maloney. Perry’s chemical engi-
neers’ handbook. McGraw-Hill, New York, 1997.

[RPG96] J. B. Rosen, H. S. Park, and J. Glick. Total least norm formulation and
solution for structured problems. Siam Journal on Matrix Analysis
and Applications, 17(1):110–126, 1996.

[RPG98] J. B. Rosen, H. Park, and J. Glick. Structured total least norm for
nonlinear problems. Siam Journal on Matrix Analysis and Applica-
tions, 20(1):14–30, 1998.

[RPM06] A. Ryniecki, A. Pawlowska, and K. Molinski. Stochastic analysis of
grain drying with unheated air under two different climates. Drying
Technology, 24(9):1147–1152, 2006.

[Sac04] M.P. Saccomani. Some results on parameter identification of nonlin-
ear systems. Cardiovascular Engineering: an International Journal,
4(1):95–102, 2004.

[Sch69] G. W. Schwert. Use of integrated rate equations in estimating ki-
netic constants of enzyme-catalyzed reactions. Journal of Biological
Chemistry, 244(5):1278–1284, 1969.

[Sch73] F. C. Schweppe. Uncertain Dynamic Systems. Prentice Hall, Engle-
wood cliffs, New Jersey, 1973.

134



BIBLIOGRAPHY

[SHD06] G. S. Srzednicki, R. L. Hou, and R. H. Driscoll. Development of a
control system for in-store drying of paddy in northeast china. Journal
of Food Engineering, 77(2):368–377, 2006.

[SK04] J. D. Stigter and K. J. Keesman. Optimal parametric sensitivity con-
trol of a fed-batch reactor. Automatica, 40(8):1459–1464, 2004.

[SKS03] E. A. Seagren, H. Kim, and B. F. Smets. Identifiability and retrievabil-
ity of unique parameters describing intrinsic Andrews kinetics. Applied
Microbiology and Biotechnology, 61(4):314–322, 2003.

[SL93] J.D. Simmons and B.D. Lott. Automatic fan control to reduce fan
run time during warm weather ventilation. Journal of Applied Poultry
Research, 2(4):314–323, 1993.

[Son90] D. Sonntag. Important new values of the physical constants of 1986,
vapour pressure formulationson the its-90, and psychrometer formulae.
Zeitschrift fuer Meteorologie, 40(5):340–344, 1990.

[SRH01] L. A. Smith, M. S. Roulston, and J. Hardenberg. End to end ensemble
forecasting: Towards evaluating the economic value of the ensemble
prediction system. Technical memorandum 336, ECMWF, 2001.

[Ste94] R. F. Stengel. Optimal Control and Estimation. Dover publications,
New York, 1994.

[Tap00] F Tap. Economics-based optimal control of greenhouse tomato crop
production. PhD thesis, Wageningen University, 2000.

[TCR02] D. J. Tanner, A. C. Cleland, and T. R. Robertson. A generalised
mathematical modelling methodology for design of horticultural food
packages exposed to refrigerated conditions: Part 3, mass transfer
modelling and testing. International Journal of Refrigeration-Revue
Internationale Du Froid, 25(1):54–65, 2002.

[Tei05] TJ Teisberg. The economic value of temperature forecasts in elec-
tricity generation. Bulletin of the American Meteorological Society,
86(12):1765, 2005.

[TGB+95] M. B. Timmons, R. S. Gates, R. W. Bottcher, T. A. Carter, J. Brake,
and M. J. Wineland. Simulation analysis of a new temperature con-
trol method for poultry housing. Journal of Agricultural Engineering
Research, 62(4):237–245, 1995.

[TVWVS96] R. F. Tap, L. G. Van Willigenburg, and G. Van Straten. Receding hori-
zon optimal control of greenhouse climate using the lazy man weather
prediction. In Proceedings of the 13th IFAC World Congress, pages
387–392, San Francisco, USA, 1996.

135



BIBLIOGRAPHY

[TZM01] Zoltan Toth, Yuejian Zhu, and Timothy Marchok. The use of ensem-
bles to identify forecasts with small and large uncertainty. Weather
and Forecasting, 16(4):463–477, 2001.

[Van76] C. F. Vanloan. Generalizing singular value decomposition. Siam Jour-
nal on Numerical Analysis, 13(1):76–83, 1976.

[Van98] G. Vandersteen. On the use of compensated total least squares
in system identification. IEEE Transactions on Automatic Control,
43(10):1436–1441, 1998.

[VHL02] S. Van Huffel and P. Lemmerling, editors. Total Least Squares and
Error-in-Variables modeling: Analysis, Algorithms and Applications.
Kluwer Academic Publishers, Dordrecht, 2002.

[VHV89] S. Van Huffel and J. Vandewalle. Analysis and properties of the gen-
eralized total least squares problem Ax ≈ b when some or all columns
in A are subject to error. SIAM Journal on Matrix Analysis and
Applications, 10:294–315, 1989.

[VHV91] S. Van Huffel and J. Vandewalle. The Total Least Squares Problem:
Computational Aspects and Analysis, volume 9 of Frontiers in Applied
Mathematics. SIAM, Philadelphia, 1991.

[VPR96] S. VanHuffel, H. Park, and J. B. Rosen. Formulation and solution of
structured total least norm problems for parameter estimation. Ieee
Transactions on Signal Processing, 44(10):2464–2474, 1996.

[vSCB00] G. van Straten, H. Challa, and F. Buwalda. Towards user accepted
optimal control of greenhouse climate. Computers and Electronics in
Agriculture, 26(3):221–238, 2000.

[vSvWT02] G. van Straten, L. G. van Willigenburg, and R. F. Tap. The signifi-
cance of crop co-states for receding horizon optimal control of green-
house climate. Control Engineering Practice, 10(6):625–632, 2002.

[VWAVB+05] A. V. Van Wagenberg, J. M. Aerts, A. Van Brecht, E. Vranken,
T. Leroy, and D. Berckmans. Climate control based on temperature
measurement in the animal-occupied zone of a pig room with ground
channel ventilation. Transactions of the Asae, 48(1):355–365, 2005.

[WAO+99] J. S. Wang, T. Araki, T. Ogawa, M. Matsuoka, and H. Fukuda. A
method of graphically analyzing substrate-inhibition kinetics. Biotech-
nology and Bioengineering, 62(4):402–411, 1999.

[WIL91] TB WILLIAMS. Microclimatic temperature relationships over differ-
ent surfaces. The Journal of geography, 90(6):285–291, 1991.

[Wil98] DS Wilks. Optimal use and economic value of weather forecasts for
lettuce irrigation in a humid climate. Agricultural and forest meteo-
rology, 89(2):115–129, 1998.

136



BIBLIOGRAPHY

[WMO96] World Meteorological Organization WMO. Guide to Meteorological
Instruments and Methods of Observation, volume 8. WMO, Geneva,
sixth edition, 1996.

[YAOY03] N. Yildirim, F. Akcay, H. Okur, and D. Yidirim. Parameter estimation
of nonlinear models in biochemistry: a comparative study on optimiza-
tion methods. Applied Mathematics and Computation, 140(1):29–36,
2003.

[Zhu02] YJ Zhu. The economic value of ensemble-based weather forecasts.
Bulletin of the American Meteorological Society, 83(1):73, 2002.

[Zhu05a] Q. M. Zhu. An implicit least squares algorithm for nonlinear ratio-
nal model parameter estimation. Applied Mathematical Modelling,
29(7):673–689, 2005.

[Zhu05b] YJ Zhu. Ensemble forecast: A new approach to uncertainty and pre-
dictability. Advances in atmospheric sciences, 22(6):781–788, 2005.

[Zie01] C. Ziehmann. Skill prediction of local weather forecasts based on the
ecmwf ensemble. Nonlinear Processes in Geophysics, 8(6):419–428,
2001.

137





Appendices





Appendix A

Nomenclature

141



Appendix A

Chapter 1

P State covariance matrix
V loss function
Ξ error matrix [e|w]
a parameter
b parameter
d disturbance
e measurement error
k discrete time index
l l-steps ahead prediction
m number of measurements
p parameter vector
u control input
y measurement vector
ŷ model output prediction
w measurement error
τ time delay
Z

∗ set of nonnegative integers

Chapters 2 and 3

A system matrix
B input matrix
C observation matrix
E expectation value
G noise matrix
I identity matrix
K Kalman gain matrix
M final forecast horizon
P covariance matrix of the estimated system states
Q system or input noise covariance matrix
R observation noise covariance matrix
V standard deviation of the observation noise
W correlation matrix
Φ system transition matrix
i index number
k discrete-time index
p length of output vector
u input vector
v observation noise
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Nomenclature

w system or input noise
x state vector
y output vector
σ standard deviation
σe standard deviation of the forecast error
σw standard deviation of the system or input noise
0 null matrix
N set of natural numbers
R set of real numbers

Chapter 4

A discrete-time system matrix
E expectation
F continuous time system matrix
G disturbance matrix
I identity matrix
J total costs
P state covariance matrix
Ptot atmospheric pressure
Q covariance matrix of the disturbances
T temperature
X absolute humidity
a parameter vector
b parameter vector
c colored noise vector
d disturbance vector
k discrete-time index
p partial pressure
p1 · · · p22 parameters
t time
x state vector
y output vector
u input vector
w system noise
∆ discretization interval
Φ terminal costs
α hatch position
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γ constant
µ mean
φ ventilation speed
σ standard deviation
N set of natural numbers
subscripts
a air around the product
e ambient air
p product
s saturation value
0 nominal value
ref reference value

Chapter 5

x state vector
k discrete-time index
p parameter vector
u control input
d disturbance input vector
T temperature
H maximum forecast horizon
J total costs
E expectation
L total costs
l time between two consecutive optimal control runs
R total costs
r forecast horizon
subscripts
ref reference value
vent ventilation
mix hatch postion
obs observation
fct foreast
tot total
superscripts
rel relative

Part II

C covariance matrix
E expectation
Ki inhibition constant
Km michaelis-Menten constant
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Nomenclature

Ks monod half-saturation constant
N (·) normal distribution
S substrate concentration
T temperature
X absolute humidity
Vmax maximum substrate conversion rate (discrete-time)
XBH,0 biomass concentration
Y yield
e vector of measurement errors
k discrete time index
m number of measurements
n number of parameters
p parameter vector
r respiration rate
t time
x state vector
y measurement
u vector of control variables
v substrate conversion rate
vmax maximum substrate conversion rate
Φ data matrix
θ reparameterized parameter vector
σ standard deviation
µm maximum specific growth rate
R set of real numbers
Subscripts
p product
e ambient air
Superscripts
0 nominal value
ˆ estimated value
˜ modified
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Figure B.1: Storage facility

In chapters 4, 6 and 7 the storage model adopted from [KPL03] is used with the

lumped parameter vectors p (eqn. 4.4) and p̃ (eqns. 6.14 and 7.7). In this appendix,

the physical background of this model is presented. Furthermore, the relationship

between the physical parameters and the parameter vector p of chapter 4 and p̃ of

chapters 6 and 7 is given.

B.1 Layout

The storage facility to be modeled consists of a potato pile, and a fan and hatches

with which the temperature of the potatoes can be controlled. A schematic overview

of the modeled storage facility is presented in figure B.1. Since the main purpose

is to predict the temperature of the potatoes, the model is limited to respiration

(with respect to heat production), heat transfer and evaporation. This results in the

following states:

Tp potato temperature

Ta temperature of the air around the potatoes

Xa absolute humidity of the air around the potatoes

The following assumptions are given beforehand:

• The potato pile is spatially homogeneous distributed, i.e. each of the states Tp,

Ta and Xa have only one value.

• The relative humidity at the potato surface is always 100%.

• Transpiration heat is completely removed from the potatoes.
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• Condensation is not incorporated and thus a relative humidity greater than

100% is possible.

• The mixing ratio between ambient air and recirculation air is linearly related

with the hatch position.

• Heat production of the fan is neglected.

• Respiration, heat capacity and density of the potatoes are constant during the

whole period of storage.

B.2 Modeling

The general dynamical model of the storage facility is given in eqns. (B.1)-(B.3). A

list of symbols is given in table B.2.

The product temperature (Ta) dynamics are described by

dTp

dt
=

(

(Ta−Tp)

Rpa(φ)

)

+ Presp − rkvAsp

(

100
(

−1.7011 + 7.7835e
Tp

17.0798

)

− XaPtot

0.622+Xa

)

ρpVpcp,p

(B.1)

The first term on the right-hand side is related to heat transfer between the product

(potatoes) and the air around the product. The second term reflects the produced

heat due to respiration of the product and the last term represents the heat loss due

to transpiration. The dynamics of the air temperature (Ta) is described by

dTa

dt
=

(

(Tp−Ta)

Rpa(φ)

)

+
(

(Te−Ta)
Rea

)

+ (αφ+φl)ρacp,a(Te−Ta)

h

ρaVacp,a

(B.2)

where the first term on the right-hand side is related to the heat transfer between the

product and the air around the product. The second term reflects the heat transfer

between ambient air (Te) and the air around the product through the walls. The last

term represents heat transfer due to forced ventilation with flow φ and leakage with

flow φl, respectively. Finally, the water content of the air inside the storage facility

is given by

dXa

dt
=

kvAsp

(

100
(

−1.7011 + 7.7835e
Tp

17.0798

)

− XaPtot

0.622+Xa

)

+ (αφ−φl)ρa(Xe−Xa)
h

ρaVa

(B.3)

where the first term on the right-hand side reflects the transpiration of the product.

The second term represents the water flux due to forced ventilation and leakage,

respectively.
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In short hand notation the model (B.1)-(B.3) can be written as:

ẋ =





p6x2 − p6x1 + p7 − p8e
p4x1 + p9x3 (p5 + x3)

−1

p10x1 + (−p10 − p11 − p12 − p13u) x2 + (p11 + p12 + p13u) d1

(−p12 − p13u) x3 + (p12 + p13u) d2 − p14 + p15e
p4x1 − p16x3 (p5 + x3)

−1





(B.4)

which is equal to equation (4.4). The parameter vector p is defined by:

p1 = 100

p2 = 1.7011

p3 = 7.7835

p4 = 17.0798−1

p5 = 0.6228

p6 = (RpaρpVpcp,p)
−1

p7 = (Presp + p1p2rkvAsp(ρpVpcp,p)
−1

p8 = rkvAspp1p3(ρpVpcp,p)
−1

p9 = rkvAspPtot(ρpVpcp,p)
−1

p10 = (RpaρaVacp,a)
−1

p11 = (ReaρaVacp,a)
−1

p12 = φl(hVa)
−1

p13 = φmax(hVa)
−1

p14 = p1p2kvAsp(ρaVa)
−1

p15 = p1p3kvAsp(ρaVa)
−1

p16 = kvAspPtot(ρaVa)
−1

p17 = Ptot

p18 = p2 ∗ p5

p19 = p3 ∗ p5

Model reduction and discretization in chapter 4 led to the resulting model given by

eqn. (4.16). For clarity this result is again presented in eqn. (B.5).

Tp(k+1)=

(

1+p22

(

p6p10

(p10+p11+p12+p13α(k)φ(k))
+

p20p9p15

p5(p12+p13α(k)φ(k))+p16
−p6−p20p8

))

Tp(k)

+p22
p6(p11+p12+p13α(k)φ(k))

(p10+p11+p12+p13α(k)φ(k))
Te(k)+p22

p9(p12+p13α(k)φ(k))

p5(p12+p13α(k)φ(k))+p16
Xe(k)

+p22

(

p7+
p9(p21p15−p14)

p5(p12+p13α(k)φ(k))+p16
−p21p8

)

(B.5)

In chapters 6 and 7 the same model is used for parameter estimation but then with
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an even more densed notation as in eqns. (6.14), (7.7) and (B.6)

Tp(k + 1) =

(

p̃1 +
p̃2

p̃3 + p̃4u(k)
+

p̃5

p̃6 + p̃7u(k)

)

Tp(k) +
p̃8 + p̃9u(k)

p̃3 + p̃4u(k)
Te(k)

+
p̃10 + p̃11u(k)

p̃6 + p̃7u(k)
Xe(k) +

(

p̃12 +
p̃13

p̃6 + p̃7u(k)

) (B.6)

Equations (B.5) and (B.6) are equivalent with

p̃1 = 1 − p22p6 − p22p20p8

p̃2 = p22p6p10

p̃3 = p10 + p11 + p12

p̃4 = p13

p̃5 = p22p20p9p15

p̃6 = p5p12 + p16

p̃7 = p5p13

p̃8 = p22p6(p11 + p12)

p̃9 = p22p6p13

p̃10 = p22p9p13

p̃11 = p22p9p13

p̃12 = p22p7 − p22p21p8

p̃13 = p22p9(p21p15 − p14)
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Table B.1: List of symbols used in eqns. (B.1)-(B.3).
Symbol Description Units
α relative position hatch -
φ air flow m3 m−2 h−1

φl air flow m3 m−2 h−1

ρa air density kg m−1

ρp product density kg m−1

cp,a specific heat capacity of air kJ kg−1 ◦C−1

cp,p specific heat capacity of product kJ kg−1 ◦C−1

h store room height m
kv evaporation constant kg m−2 Pa−1 h−1

r evaporation heat of water kJ kg−1

t time h
Asp specific area m2 m−3

Presp respiration heat kJ m−3 h−1

Ptot air pressure Pa
Rpa heat transfer resistance between product and air ◦C m3 h kJ−1

Rea heat transfer resistance between ambient air and
air around the product

◦C m3 h kJ−1

Ta air temperature around the product ◦C
Te ambient air temperature ◦C
Tp product temperature ◦C
Va air volume per volume store room m3 m−3

Vp product volume per volume store room m3 m−3

Xa water content air around the product kg kg−1

Xe water content ambient air kg kg−1

152



Appendix C

Stability of filter

153



Appendix C

The proposed forecasting system in Section 2.3 is checked on stability. Recall

from systems theory that if (A,G) is stabilizable and (C,A) is detectable then

limt→∞ P (t) = P1, where P1 is the solution of an algebraic Riccati equation. A

sufficient condition for detectability of (C,A) is that it is observable. A sufficient

condition for stabilizability of (A,Q) is that it is controllable.

As the system noise matrix G from Eqn (2.1) is time-varying the following theorem

should hold for complete controllability [KS72]: the system is controllable if and only

if for every i0 there exists an i1 ≥ i0 +1 such that the symmetric nonnegative definite

matrix:

W (i0, i1) =

i1−1
∑

i=i0

Φ(i1, i + 1)G(i)GT (i)ΦT (i1, i + 1) (C.1)

is nonsingular. Here, Φ is the transition matrix of the system and is defined by:

Φ(i + 1, i0) = A(i)Φ(i, i0) i ≥ i0 (C.2)

Φ(i0, i0) = I (C.3)

The system noise matrix G swaps between the values I and 0. If there exists a time

instant k for which G(k) = I then, for all i0 ≤ k and i1 = k + 1, Eqn (C.1) can be

rewritten as:

W (i0, k + 1) =
k

∑

i=i0

Φ(k + 1, i + 1)G(i)GT (i)ΦT (k + 1, i + 1)

=Φ(k + 1, k + 1)G(k)GT (k)ΦT (k + 1, k + 1)+

k−1
∑

i=i0

Φ(k + 1, i + 1)G(i)GT (i)ΦT (k + 1, i + 1)

=I +
k−1
∑

i=i0

Φ(k + 1, i + 1)G(i)GT (i)ΦT (k + 1, i + 1) (C.4)

The matrix W (i0, k +1) is nonsingular and therefore the system is controllable when

future inputs are available.

As the matrix A is time-varying the following result should hold for complete

observability [KS72]: the system is observable if and only if for every i1 there exists

an i0 ≤ i1 − 1 for which the nonnegative definite matrix:

M(i0, i1) =

i1
∑

i=i0+1

ΦT (i, i0 + 1)CT (i)C(i)Φ(i, i0 + 1) (C.5)

is nonsingular. Transition matrix Φ is again defined by Eqns (C.2) and (C.3). Com-

plete observability cannot be obtained through this theorem because of the term

CT C =

[

1 0
0 0

]

∀i. The matrix M shall therefore always be singular. Hence, sta-

bility cannot be proven by these classical methods. However, the following theorem

can be proven:
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Theorem C.1. Given discrete-time state-space system (2.1-2.2) with matrices de-

fined in equations (2.10-2.14), i.e. short term forecasting system, and given no future

inputs, i.e. no external forecasts, the following holds:

limk→∞ P (k) = P∞

The solution of the discrete algebraic Riccati equation is: P∞ = 0 [Sch73]:

P∞ = P∞(1|0) − P∞(1|0)CT
[

CP∞(1|0)CT + R
]−1

CP∞(1|0)

with

P∞(1|0) = AP∞AT + GQGT

Given future inputs at k = k∗, the following holds: P (k∗ + 1|k∗ + 1) = Q −
QCT

(

CQCT + R
)−1

CQ

Proof. Given k 6= k∗ ∀k, matrix A is time-invariant of the form of Eqn (2.10) and

G = 0 (Eqn 2.14). Consequently, Eqn (2.6) reduces to P (k + 1|k) = AP (k|k)AT .

After substituting P∞(1|0) = AP∞AT , because G = 0, P∞ is the solution of the

algebraic Riccati equation

P∞ = AP∞AT − AP∞AT CT
(

CAP∞AT CT + R
)−1

CAP∞AT

= AP∞AT
[

I − CT
(

CAP∞AT CT + R
)−1

CAP∞AT
]

(C.6)

Consequently, the solution of (C.6) is: P∞ = 0.

At k = k∗, A = 0 (2.11) and G = I (2.13). Hence, Eqn. (2.6) reduces to

P (k∗ + 1|k∗) = Q. Consequently, the updated error covariance matrix is: P (k∗ +

1|k∗ + 1) = Q − QCT
[

CQCT + R
]−1

CQ. Consequently, this covariance matrix only

depends on the user-defined matrices Q and R.
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This appendix presents an outline of the algorithm to calculate bias compensated

data and covariance matrices according to the theory developed in [Van98]. One of

the key aspects is linearization by Taylor series expansion. Before presenting the

algorithm, two matrix operations are introduced.

Kronecker product Given A ∈ R
m×n and B ∈ R

p×q, the kronecker product de-

noted by ⊗ is defined by:

A ⊗ B =







a11B · · · a1nB
...

...
am1B · · · amnB







vec-operator The vec-operator on matrix A is defined by:

vec(A) = [a11, . . . , am1, a12, . . . , am2, . . . , a1n, . . . , am.n]T

In the left column the general case is described whereas in the right column a

specific example is elaborated.

y = Xθ y = ax2

φ = [X, y] φ = [y, x2]

ΦT (z) =
[

φ(z),
∂φ(z)

∂zT
,

∂φ(z)

∂zT [2] ,
∂φ(z)

∂zT [J]

]

ΦT (z) =

[

x2 2x 0 2 0 0 0
y 0 1 0 0 0 0

]

where X ∈ R
K×p the data matrix, y ∈ R

K the output vector, z the vector with the variables e.g.

z = [x, y]T , zT the transpose of z, J the mixing order of the uncertain variables and

z[J] = z ⊗ z ⊗ · · · ⊗ z with ⊗ the kronecker product. Given ∆z the mean error in z:

N(∆z) =















1 0 0 · · ·

∆z I 0 · · · 0

∆z[2]/2! I ⊗ ∆z I[2] 0
..
.

..

.
. . .

∆z[J]/J ! I ⊗ ∆z[j−1] · · · · · · I















N(∆z) =



















1 0 0 0 0 0 0
∆x 1 0 0 0 0 0
∆y 0 1 0 0 0 0

1/2∆x2 ∆x 0 1 0 0 0
1/2∆xy ∆y 0 0 1 0 0
1/2∆xy 0 ∆x 0 0 1 0
1/2∆y2 0 ∆y 0 0 0 1



















Assume x ∼ N (0, σ2
x) and y ∼ N (0, σ2

y)

t = (E [N(∆z)])−1 (:, 1) t =
[

1 0 0 − 1
2
σ2

x − 1
2
ρxy − 1

2
ρxy − 1

2
σ2

y

]T

with σ the standard deviation and ρxy the covariance of x and y. In the example it is assumed that
J = 2 and ρxy = 0.

φ̃ = tT Φ φ̃ ∈ R
1×p φ̃ =

[

x2−σ2
x, y

]

Incorporating the data X and y gives the bias compensated data matrix φ̃.
Next, the covariance matrix of the bias compensated functions is calculated. The covariance matrix is
calculated element by element.

cov
(

φ̃kφ̃l

)

= tT [2]E
[

NT [2](∆z)
]

vec(ΦkΦl) − φkφl cov
(

φ̃1φ̃1

)

= 4x2σ2
x + 2σ4

x

with vec(·) the vec-operator. Finally, bias compensation is needed in the covariance matrix
as in the example nonlinearities in the data appear, i.e. x2. This results in:

C = 1
K

∑K
k=1











cov
(

φ̃1φ̃1

)

· · · cov
(

φ̃1φ̃p+1

)

.

.

.
.
.
.

cov
(

φ̃p+1φ̃1

)

· · · cov
(

φ̃p+1φ̃p+1

)











C = 1
K

∑K
k=1

[

4x2
k
σ2

x+2σ4
x 0

0 σ2
y

]
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Many systems in agricultural practice are influenced by the weather. When these

systems are closed they are usually controlled in order to keep the climate inside

the system on a reference trajectory. In this context the weather is a disturbance

of the system. In practice, the weather does not only act as a disturbance but is

also necessary as a resource, e.g. the effect of global radiation on plant growth. An

enhancement would be to use weather forecasts in control strategies. This idea was

implemented in the EET-project ”weather in control”. The main purpose of the

project ”weather in control” was (i) to compute optimal control strategies that antic-

ipate to changing environmental conditions, and (ii) to analyze the effects of weather

forecast and parameter uncertainty on the predicted process states and calculated

optimal inputs. In this context, the weather is no longer a disturbance but an ex-

ternal input driving the system. Weather forecast uncertainty in relation to model

based control has been studied according to the following research questions:

1. Can data assimilation techniques be used to improve local weather forecasts?

2. How is it possible to integrate the state uncertainty in the goal function?

3. How are the control variable and state uncertainty affected if the uncertainty

of the system states is part of the goal function?

4. What are the effects of weather forecast uncertainty and parameter uncertainty

on the calculated costs in a receding horizon optimal control framework?

Not only input uncertainty is relevant to control but also the quality of the model

itself. Therefore, calibration of models to data is a crucial step. In this thesis the

following questions have been studied.

5. Is it possible to linearly reparameterize a rational model such that its param-

eters can be estimated with linear regression and what effects does it have on

the predictive performance of the model?

6. Is total least squares a suitable technique to estimate the new parameters ob-

tained with linear reparameterization such that the predictive performance of

the predictor increases?
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In chapters 2 and 3 a closer look is taken at the local weather forecasts, i.e.

the weather forecast at one specific location. In chapter 2 weather forecasts and

measurements from a meteorological station are compared. In chapter 3 the forecasts

used for a greenhouse from the most nearby meteorological station, are compared

with local measurements. A framework is presented in which local weather forecasts

are updated using local measurements. Kalman filtering is used for this purpose as

data assimilation technique. This method is compared and combined with diurnal

bias correction. It is shown that the standard deviation of the forecast error can

be reduced up to six hours ahead for temperature, up to 31 hours ahead for wind

speed, and up to three hours for global radiation using local measurements. Diurnal

bias correction is able to remove most of the the bias but has only a minor effect

on the standard deviation. Combining both methods leads to a further increase in

performance in terms of both bias and standard deviation.

In chapter 4 linearization and discretization techniques are used on a nonlinear

model of a storage facility with forced ventilation using ambient air. Finally, a

linear system describing the behavior of the potato temperature is obtained for a

given trajectory of control inputs, i.e. ventilation rate. In order to predict the

future temperature of the potatoes weather forecasts are needed. Because weather

forecasts inherit uncertainty, the storage model is amenable to uncertainty. Based on

a regionally linearized version of the storage model standard error propagation rules

have been used to predict the system uncertainty analytically under the assumption

of gaussian distributed noise.

Optimal control algorithms calculate controls in such a way that a prespecified

cost criterion is minimized. As the uncertainty of the storage system is dependent

on ventilation with outside air, the uncertainty of the potato temperature increases

with increased ventilation. The medium-range weather forecast, up to 10 days ahead,

consists of an ensemble of forecasts. From this ensemble the mean and the variance

are obtained at each of the forecast intervals. The mean is used as the nominal input

and the variance is used to calculate the error propagation. The predicted uncertainty

is integrated into the cost criterion to allow a trade off between an optimal nominal

solution and a minimum variance control solution. Because uncertainty is entering

the system if the storage facility is ventilated with ambient air, the control input

(ventilation) generally shifts towards parts where the weather forecast contains less

uncertainty.

Another approach for assessing the uncertainty in weather forecasts and its effect

optimal control solutions is presented in chapter 5. This numerical evaluation is based

on an optimal control trajectory of the mean of the ensemble weather forecast with

expected total costs. The total costs based on the optimal control trajectory with

each of the ensemble members are calculated and the risks are analyzed. Furthermore,
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the model parameters are not known exactly and hence subject to uncertainties. An

ensemble of parameter vectors is generated. The total costs of each of the ensemble

members is calculated in the same way as for the weather forecast ensemble. The

worst-case scenarios show that if closed loop optimal control strategies are used the

costs are more sensitive for model uncertainty than for weather uncertainty. Fur-

thermore, if a new optimal control trajectory is calculated within 24 hours the cost

increase is smaller than 5%.

Mathematical models are always an approximation of the real system. Model

uncertainties arise in the model structure and/or in unknown parameter values. If

measurements from the system are present, the model is fitted to the data by changing

parameter values. Generally, parameters that are nonlinear in system model output

are estimated by nonlinear least-squares (NLS) optimization algorithms. A major

drawback of the NLS estimator is that it can end up in a local minimum. In chapters

6 and 8, a method is proposed for nonlinear discrete-time models with a polynomial

quotient structure in input, output, and parameters (x(k + 1) = f(Z, p), with Z

containing the previous inputs and outputs) to re-parameterize the model such that

the model becomes linear in its new parameters. The new parameters (θ) can then

be estimated by ordinary least squares and a global minimum is ensured. Finally,

the model is rewritten in predictor form. This leads to the modified predictor: x̂(k +

1) = f̃(Z, θ̂). In chapter 6 this approach was used on the simplified storage model

obtained in chapter 4. Real data was available to demonstrate the applicability of

the procedure and the predictive quality of the modified predictor.

Rearranging and linearizing rational functions for parameter estimation is com-

mon practice (e.g Lineweaver-Burk linearization). By rearranging, however, the error

is distorted. In addition, the rearranged model frequently becomes errors-in-variables

i.e. not only the output vector contains errors but also the regression vectors con-

tain errors. The total least squares (TLS) approach provides a natural solution for

these problems. Generalized total least squares (GTLS) is an extension to this that

provides the covariance matrix between the output vector and the regression vector.

In chapter 7 first the well-known Michaelis-Menten kinetics are used as an illustra-

tion with simulated (noisy) data. For low noise levels the predictive quality of the

Michaelis-Menten model is better if the parameters are estimated with GTLS than

with OLS. In addition to the Michaelis-Menten example, the simplified model of the

storage facility containing biological products as obtained in chapter 4 is used as a

real life example. Here, it is seen that ordinary least squares generates estimates

with good predictive quality if the calibration data-set is informative enough. Oth-

erwise, the predictive quality is poor. GTLS, however, provides estimates with good

predictive quality for both data-sets.
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In chapter 7 the covariance was merely used as a tuning parameter. In chapter

8 the covariance matrix is generated with an algorithm called bias compensated

total least squares (CTLS). Nonlinearities in the data that contain errors may lead

to biased estimates. CTLS accounts for these nonlinearities and generates a bias

compensated data matrix and an accompanying covariance matrix. Two simulation

examples that show the applicability of linear reparameterization and the advantages

of CTLS over OLS are provided. The examples contain Michaelis-Menten kinetics and

enzyme kinetics with substrate inhibition. In addition, the existence of local minima

was clearly shown for the substrate inhibition example. Finally, the applicability

of CTLS was demonstrated with real data of an activated sludge experiment. It is

concluded that CTLS is a powerful alternative to the existing least-squares methods

for rational biokinetic models.

164
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Veel systemen in de agrarische praktijkstaan onder invloed van het weer. Als de

systemen gesloten zijn worden ze geregeld om het klimaat binnen het systeem op een

gewenst niveau te houden. Vanuit deze zienswijze is het weer een verstoring op het

systeem. Het weer werkt niet alleen als verstoring op het systeem maar kan ook die-

nen als bron, bijvoorbeeld zoninstraling is nodig voor plantengroei. Vanuit dit kader

bezien zou het een vooruitgang zijn om weersverwachtingen te gebruiken voor regel-

strategieën. Dit idee is gëımplementeerd in het EET-project ”weer in control”. De

hoofddoelen van dit project betroffen: (i) het berekenen van optimale stuurprofielen

die anticiperen op verwachte veranderingen van het weer, en (ii) het analyseren van

de effecten van onzekerheid in weersverwachtingen en van onzekerheid in de geschat-

te parameters op de onzekerheid van de voorspelde model toestanden. In dit geval

wordt het weer niet behandeld als een verstoring maar als externe ingangsvariabele

die fungeert als drijvende kracht van het systeem. Onzekerheid in weersverwach-

tingen in relatie tot model gebaseerd regelen is onderzocht naar aanleiding van de

volgende onderzoeksvragen:

1. Kunnen data-assimilatie technieken gebruikt worden om lokale weersverwach-

tingen te verbeteren?

2. Op welke wijze kan de onzekerheid van modeltoestanden worden meegenomen

in de doelfunctie?

3. Hoe worden de stuurvariabele en de onzekerheid van de modeltoestanden bëınvloed

als de onzekerheid van de modeltoestanden wordt meegenomen in de doelfunc-

tie?

4. Wat zijn de effecten van onzekerheid in weersverwchtingen en de onzekerheid

van model parameters op de berekende kosten in een receding horizon optimal

control raamwerk

Niet alleen onzekerheid van de ingangsvariabelen is van invloed op de regeling maar

ook de kwaliteit van het model zelf. Daarom is calibratie van modellen op data een

cruciale stap.In dit proefschrift zijn de volgende vragen bestudeerd:
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5. Is het mogelijk om rationele modellen linear te reparameteriseren zodat de

nieuwe parameters geschat kunnen worden met lineaire regressie en wat voor

effect heeft dit op de voorspellende kracht van het model?

6. Is total least squares een bruikbare techniek om de parameters van het lineair

gereparameteriseerde model te schatten zodat de voorspellende kracht van het

model wordt vergroot?

In hoofstukken 2 en 3 wordt de aandacht gericht op de lokale weersverwachtin-

gen, dat wil zeggen lokale metingen en weersverwachtingen uitgegeven voor die lokatie

worden met elkaar vergeleken. In hoofdstuk 2 betreffen zowel de metingen als ver-

wachtingen een specifiek meteorologisch station, te weten ”De Bilt”. In hoofdstuk 3

worden de verwachtingen voor een tuinbouwkas van de dichtst bijzijnde meteorolo-

gische locatie vergeleken met lokale metingen van de betreffende kas. Een raamwerk

waarin lokale metingen worden gebruikt om de weersverwachtingen aan te passen

wordt gepresenteerd. Kalman filtering wordt hierbij gebruikt als data-assimilatie

techniek. De methode is vergeleken met en gecombineerd met een methode genaamd

”diurnal bias correction”. De standaard deviatie van de voorspelfout kan geruceerd

worden tot 6 uur vooruit voor temperatuur, tot 3 uur vooruit voor globale straling

en tot 31 uur vooruit voor windsnelheid met behulp van de voorgestelde methode.

Diurnal bias correction verwijdert wel de systematische afwijking van de voorspelfout

maar leidt nauwelijks tot vermindering van de standaard deviatie. Een combinatie

van beide methodes leidt tot een vermindering van de systematische afwijking en tot

een verlaging van de standaard deviatie.

In hoofdstuk 4 worden linearisatie en discretisatie technieken gebruikt op een

model van een aardappelbewaarplaats die wordt geventileerd met buitenlucht. Het

model beschrijft het gedrag van de aardappeltemperatuur in de bewaarplaats. Uit-

eindelijk wordt een lineair model verkregen voor een gegeven stuurpatroon (ven-

tilatiesnelheid). Om de toekomstige aardappeltemperatuur te kunnen beschrijven

zijn weersverwachtingen nodig. Omdat in weersverwachtingen nogal wat onzeker-

heden zitten zijn de modelvoorspellingen ook vatbaar voor onzekerheid. Standaard

foutpropagatie technieken zijn gebruikt op een regionaal gelineariseerd aardappel be-

waarmodel om de onzekerheid van de aardappeltemperatuur analytisch te kunnen

berekenen. Hierbij is aangenomen dat de fout normaal verdeeld is.

Optimale besturingsalgoritmen berekenen de stuurvariablelen dusdanig dat een

bepaald kostencriterium wordt geminimaliseerd. Omdat het bewaarsysteem wordt

geventileerd met buitenlucht zal de onzekerheid van de voorspelde aardappeltempera-

tuur toenemen indien er actief geventileerd wordt. De middellange termijn weersver-

wachting, tot 10 dagen vooruit, bestaat uit een ensemble van verwachtingen. Vanuit

dit ensemble kunnen het gemiddelde en de variantie op elk van de verwachtingsinter-
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vallen worden berekend. Omdat onzekerheid alleen het model in komt als er actief

geventileerd wordt met buitenlucht verschuiven de stuurvariabelen naar tijdstippen

waar de onzekerheid van de weersverwachtingen kleiner is.

Een andere aanpak om de onzekerheid in weersverwachtingen en de effecten hier-

van op de optimale besturing te benaderen wordt gegeven in hoofdstuk 5. Deze

numerieke benadering is gebaseerd op een berekend optimaal stuurprofiel aan de

hand van het gemiddelde van de ensemble weersverwachting en verwachte totale kos-

ten. Voor elk ensemble lid afzonderlijk worden de totale kosten berekend en worden

de risico’s geanalyseerd. Modelonzekerheid is in dit hoofdstuk benaderd door de

parameters te laten variëren. Hierbij wordt een ensemble van parameter vectoren

gegenereerd die elk het ëchte”systeem kunnen voorstellen. De totale kosten van elk

van de parameter vectoren worden berekend. In het geval de hoogste extra kosten

worden vergeleken voor beide gevallen blijkt dat de kosten gevoeliger zijn voor mode-

lonzekerheid dan voor weersonzekerheid. In een gesloten lus regelstrategie (RHOC)

blijken de uiteindelijke kosten minder dan 5% te stijgen voor weersonzekerheid als

de optimale sturingen zijn herberekend met een interval van 24 uur of minder.

Wiskundige modellen zijn altijd een benadering van de werkelijkheid. Model

onzekerheid komt naar voren in model structuur en /of model parameters. Als me-

tingen van het systeem beschikbaar zijn wordt het model gefit op de metingen door

het variëren van de parameters. Normaal gesproken worden parameters die niet line-

air voorkomen in modellen geschat met behulp van niet-lineaire kleinste kwadraten

(NLS) algoritmes. Een groot nadeel van NLS schatters is dat ze in lokale minima

kunnen uitkomen. In hoofdstuk 8 wordt een methode gëıntroduceerd om niet lineaire

discrete tijd modellen met een polynomiale quotient structuur in ingangsvariabelen,

uitgangsvariabelen en parameters (x(k + 1) = f(Z, p), waarin Z de voorgaande in-

puts en outputs bevat) te reparameteriseren zodanig dat een vergelijking ontstaat die

lineair is in de parameters. De nieuwe parameters (θ) kunnen dan geschat worden

met de gewone kleinste kwadraten methode en een minimum is gegarandeerd. Uit-

eindelijk wordt de voorspelling berekend op basis van het model in gemodificeerde

voorspellende vorm en wordt geschreven als: x̂(k + 1) = f̃(Z, θ̂). Deze aanpak is

toegepast in hoofdstuk 8 op het vereenvoudigde aardappel bewaarmodel uit hoofd-

stuk 4. Echte meetdata was beschikbaar om de toepasbaarheid van de procedure en

voorspellende kwaliteit van het gemodificeerde model aan te tonen.

Het herschikken en lineariseren van rationele functies wordt veelvuldig toegepast

(bv Lineweaver-Burk linearizatie). Door het herschikken wordt echter ook de fout-

structuur verstoord. Verder kunnen de fouten zowel aan de linkerzijde als de rech-

terzijde van de vergelijking terecht komen. Total least squares (TLS) is een methode

voor het oplossen van dit type problemen. Generalized total least squares (GTLS) is

een uitbreiding hierop waarbij een covariantie matrix van de regressoren kan worden
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opgegeven. In hoofdstuk 7 wordt deze methode gëıllustreerd aan de hand van de

Michaelis-Menten vergelijking en gesimuleerde data. Voor lage ruisniveau’s presteert

de voorspeller beter als de parmaters geschat zijn met GTLS dan met OLS. Hierna

is de GTLS methode toegepast op het vereenvoudigde aardappel bewaarmodel van

hoofdstuk 4. In dit geval presteert het model met schattingen uit OLS goed als de

data van de calibratie set voldoende informatie bevatten. Is dit niet het geval dan is

de voorspellende kwaliteit slecht. Voor GTLS geldt dat in beide gevallen een goede

voorspellende kwaliteit van het gemodificeerde model wordt gevonden.

In hoofdstuk 7 werd de covariantie matrix bepaald door tuning. In hoofdstuk

8 wordt de covariantie matrix bepaald aan de van een algoritme genaamd: bias

compensated total least squares (CTLS). Niet-lineariteiten in de data kunnen lei-

den tot onzuivere schattingen. CTLS houdt rekening met deze niet-lineariteiten en

genereert een ”bias compensated”data matrix en een bijbehorende ”bias compensa-

ted”covariantie matrix. In twee simulatie voorbeelden wordt de toepasbaarheid van

CTLS weergegeven en de voordelen ten opzichte van OLS aangetoond. Deze voor-

beelden betreffen de Michaelis-Menten vergelijking en een model voor enzym kinetiek

met substraatinhibitie. Het bestaan van lokale minima was duidelijk zichtbaar voor

het voorbeeld van substraatinhibitie. Uiteindelijk is de toepasbaarheid van CTLS

aangetoond met echte data uit een actief slib experiment. Er wordt geconcludeerd

dat CTLS een krachtig alternatief vormt voor de bestaande kleinste kwadraten me-

thodes voor rationele biokinetische modellen.
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PRIVA BV en Weathernews Benelux. Allereerst moet ik Leo bedanken die dit pro-

ject gëınitieerd heeft. Naast je inzet voor het project en het kritisch doorlezen van

mijn papers heeft deze samenwerking ook nog een fiets opgeleverd. Verder wil ik

Peter bedanken voor alle informatie over de meteorologie en de weersverwachtingen.

Ook alle overige leden van de werkgroep wil ik bij deze bedanken voor de prettige

werksfeer en de altijd interessante en daarom uitlopende vergaderingen. Als blijk van

de goede samenwerking kan dan ook wel het afsluitende diner in ”De Lier”genoemd

worden. Omdat een van de voornaamste commentaren op mijn artikelen de ack-

nowledgements betrof zal ik hiermee afsluiten: Leo, Aart-Jan, Janneke, Eldert, Jan,

Enrico, Jan, Gerrit, Theo, Jorrit, Hendrik, Peter en de stuurgroepleden Hans, Sjaak,
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Een goede werksfeer werkt stimulerend en mede hierdoor heb ik mijn onderzoek

tijdig kunnen afronden. Dit begint bij de kamergenoten waarvan Bas (toen nog als

student) de eerste was. Later heb ik met Martijn de IMAG-tijd vol gemaakt. We

hebben samen onze eerste stappen het onderzoek gezet na enige jaren in de auto-

matisering te hebben gewerkt. De langste tijd heb ik met Dirk doorgebracht. Vanaf

het moment dat we het technotron betraden hebben we leuke discussies gehad over

onze beide onderwerpen. Verder heb je me op het pad gezet van velerlei alternatieve

software programma’s. Ik vind het dan ook erg leuk dat je de zware taak van pa-

ranimf op je wilt nemen. Ook de overige (ex-)medewerkers en -aio’s wil ik bij deze
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Dan kom ik bij mijn tweede paranimf: Roy. Ik vind het erg leuk dat je voor deze

gelegenheid even terugkomt naar Nederland. We zien elkaar niet vaak maar je komt

wel trouw aan als je weer in de buurt bent. Samen met Paul komen we zo af en toe

zelfs tot concrete afspraken. Hopelijk komt er niets tussen bij een volgend weekendje

naar Engeland.

Mijn ouders wil ik graag bedanken voor het mogelijk maken van mijn studie
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is jullie misschien niet duidelijk geweest wat dit onderzoek inhield maar jullie houden

er een mooi boekje aan over.

Terugkomend op de aio-dip, een van de grootste redenen om hier niet in terecht

te komen zijn onze lieve dochters Tosca en Blanca en zoon Milo. Door jullie geklets,
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