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Abstract 

In the biobased economy algae are regarded as an important source of materials. Lipid-

biorefineries are suited to yield biodiesel from algae. Biorefineries consist of several process 

steps, each with different options for operating units. The models for the operating units are 

presented by Slegers et al. (2014). In the research of Slegers et al. (2014) the optimal 

operating chain is derived. The algae broth input is constant and control factors are optimized. 

Since algae do not constant grow constant throughout the year, variation in the feed flow 

occurs. A robust biorefinery is needed to keep the output constant with variation in the algae 

broth. Furthermore lipid biorefineries want to fulfil varying demands, a flexible biorefinery is 

needed. Control over the system through control factors is desired to fulfil these demands. 

With the use of response surface methodology (RSM), the operating units and operating 

chains of lipid biorefineries are analysed. The RSM provides a quantitative approach in 

analysing the systems and insight whether a system is flexible or robust. Furthermore it 

indicates which characteristics of the algae broth or control factors influence the process. 

With the classification of the operating units, robust or flexible operating chains can be 

created. The most robust operating chain is created by linking the most robust operating units. 

The most flexible operating chain is created by linking the most flexible operating units. In 

this study the most flexible, robust, and the most efficient operating chains presented by 

Slegers et al. (2014) are studied. 

In this research a robust system is classified as a system where the output will be minimal 

influenced by the variation of the input. The RSM is created by linking the output with the 

input. Low parameters from the RSM indicate a robust system that is minimal influenced by 

the varying flow and concentrations of algae. The control factors are optimized. For the 

operating chains a different operating point is studied to investigate if the robustness is 

improved. 

Flexible systems are indicated with high control over the output through control factors. A 

RSM will be created by linking the output with the control factors. High parameters from the 

RSM indicate much influence of the control factors, thus can be used to influence the output 

of the system. With the use of a non-square relative gain array (NRG) control over the flexible 
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operating chain can be reached. The NRG indicates which control factor favours which 

output. 

The RSM is successfully applied to create a more flexible or robust processing chain. Also 

more insight can be gained over the process, indicating which control factors have influence 

on the output. From this information it is possible to pair control factors with output. The 

framework created for this thesis can be applied on any system. 
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1. Introduction 

1.1 Problem statement 

Depletion of oil reserves requires the investigation for alternatives choices. The 

intergovernmental panel on climate change wants all fossil fuels to be banned in 2100 to stop 

global warming(IPCC, 2014). Biobased economy is an economy independent of fossil fuels. 

This economy can be reached through effectively using biomass. Currently biomass is mostly 

used for feed and food, however in the biobased economy it will be used as a chemical, 

material, and fuel. For the biobased economy algae are regarded as an important source for 

these products(Wolkers et al., 2011). 

Algae produce biomass from CO2 and solar energy. Algae can efficiently use 3-8% of the 

solar energy while plants can only use 0.5%(Lardon et al., 2009). Also algae are more suitable 

at producing biofuel than plants(Chisti, 2008). Beside CO2 and light, algae need nutrient rich 

water to grow(Chisti, 2007). Algae can be cultivated on waste water and marine conditions 

and are not competitive for fresh water resource (de la Noüe et al., 1992; Pittman et al., 2011; 

Wang et al., 2010), making it suitable for cultivation on regions not suited for crops. 

Algae production is dependent on different variables: temperate, light, wind velocity, relative 

humidity, reactor geometry, algae characteristics, biomass characteristics, and wall 

material(Slegers et al., 2011a; Slegers et al., 2013; Ugwu et al., 2008).  Therefore the 

production of algae won’t be constant year-round.  

Products from algae are a hot-topic currently, it is possible to extract oils, proteins, starch and 

pigments from algae with the use of biorefineries(Wolkers et al., 2011). IEA Bioenergy task 

42(Cherubini et al., 2007) defines biorefineries as the sustainable  processing of biomass into 

a spectrum of marketable products and energy. However current algae biorefineries are not 

yet economic feasible (Williams and Laurens, 2010). Production costs must be reduced ten 

times and efficiency increased three times (Wolkers et al., 2011). Another way to increase the 

economic feasibility of algae is to coproduce products along the biofuel(Langeveld et al., 

2010; Li et al., 2008) or to lower external energy use by recovering and utilizing the non-lipid 

portion of the algal(Chowdhury et al., 2012). 

In the project of TKI-biorefinery several scenarios for biorefineries are considered. These 

biorefineries produce products from algae. Biorefineries consist of several process steps. 

These process steps can be categorized into harvesting, dewatering, disruption, extraction and 
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conversion. Within the process steps several unit operations are possible, each with their own 

configurations.  The configurations of the unit operations are optimized with respect to 

efficiency. In the model  an optimum operation chain has been designed with an inflow of 

5000 L h
-1

 and an concentration of 2 g L
-1 

algae. Optimisation has been reached through 

maximizing the net energy ratio(NER) or yield of biodiesel.  

The quantity of algae broth production varies throughout the year, causing the output to 

shift(Slegers et al., 2011b). The variation of algae can be feed flow rate, concentration, and 

substance. These all influence the product yield and NER(Scott et al., 2010). As a 

consequence, a system optimized for a given condition may perform below expectations under 

different circumstances. Ideally a lipid refinery can compensate for these variations in algae. 

Compensation can be done through changing control factors (for example concentration 

factor, chitosan concentration, bead filling, extraction temperature, and methanol flow) in the 

process.  

Furthermore the demand for product can change over time. Making flexible biorefineries will 

be able to fulfil these new demands. This flexibility can be done through adjustment of the 

control factors of the operating chain. 

Phadke (1995) defines robustness as ‘system parameters (variables) that are permanently set 

in such a way as to minimize the effect of unforeseeable changes in the operating environment 

on the performance of the system without eliminating the cause of the changes themselves.’ 

Whereas in this thesis robustness does not fix the system parameters but let them change to 

keep the optimal performance. A robust system is defined as a system that has the capability 

to compensate the influence of disturbance through control factors. 

Olewnik et al. (2004) defines a flexible system as ‘a system designed to maintain a high level 

of performance through real time changes in configuration when operating conditions or 

requirements change in a predicable or unpredictable way.’ While a flexible system in this 

research is defined as a system that can change its process, within the allowable constraints, to 

fulfil alterations in the outflow demand. A flexible system has a high controllability. 

Currently no research has been done around the robustness or flexibility of algae biorefineries. 

Sensitivity analysis, as seen in Yao (2015), have been performed on the models of algae 

biorefineries by Slegers et al. (2014).  
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1.2 Objectives 

The objective of this thesis is to develop an effective framework to keep the desired 

production in lipid biorefinery. This can be either a robust system, where the influence of the 

input on the output is minimal, or flexible, where it is easier to adapt the systems output. An 

operating chain consist of all processing unit used from begin- to end-product. In this research 

four different operating chains will be analysed. These four operating chains consist of the 

most robust, flexible and efficient with regard to biodiesel yield and NER.  

Each processing unit is analysed on its robustness or flexibility, from this study the most 

robust or flexible operating units can be found. The robust operating chain will be created by 

linking the most robust operating units, for a flexible operating chain the most flexible 

operating units will be linked. In the paper of Slegers et al. (2014) the most effiecient 

operating chain with respect to biodiesel yield and NER are given.  

Investigating how the output changes with a varying input will provide information  on the 

robustness of the system. Analysing the influence of the control factor on the output will 

gather more information about the flexibility of the system. Control factors are the operating 

conditions of the processing units. These influence how the system operates. In this research 

there are two production objective: flow of biodiesel and net energy ratio (NER). The NER is 

the energy gained from the biodiesel divided by the total energy usage from the production of 

the biodiesel. 

1.3 Approach 

For the design of a robust or flexible lipid biorefineries a step-wise approach is chosen. Since 

each step in the process of the lipid biorefinery has multiple options for operating units, first 

all the different processing units will be analysed on their robustness or flexibility. Robustness 

is analysed by linking the input of the algae broth with the output. It indicates how variation in 

the algae broth influences the output. Flexibility is analysed through linking the control 

factors with the output. It indicates how much influence on the output is reached with the 

control factors. The output in this thesis consist of flow of biodiesel and NER. The processing 

units are provided from the paper of Slegers et al. (2014).  

The next step after analysing the processing is classifying them on whether they are robust or 

flexible.  
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After classifying the operating units an operating chain will be created with them. Linking the 

most robust operating units creates the most robust operating chain. Linking the most flexible 

operating units creates the most flexible operating chain.  

Linking the operating units black box models will yield a new black box model as can be seen 

in Figure 1, where the different black box models linked together form one black box model 

of the operating chain. Output will only consist in flow of biodiesel and NER for the operating 

chain. Input will be the algae broth. The control factors depends on the operating chain. 

 

Figure 1 A black box model of an operating chain of an algae biorefinery where the operating units also consist of 

black box models. 

Since only the relation between output and input or control factors are relevant a black box 

model is created for each processing unit. Every process unit has a different input and output. 

These black box models will be created through response surface methodology (RSM). The 

RSM provides a full quantitative results of the system, while most sensitivity test only give 

semi quantitative results. The quantitative results are used to classify processing units whether 

they are robust or flexible. Furthermore the quantitative results can be used to control the 

system. Another advantage of RSM is that no information about the initial condition of the 

model is needed. Also the polynomial model formed from the RSM gives information about 

the system without solving the model (Ivakhnenko, 1971).  

Robustness is analysed by linking the input with the output while keeping the control factors 

optimal. Flexibility through linking the control factors with the output and keeping the algae 

broth fixed. Processes without control factors or which have no influence on the output will 

not be analysed on their flexibility. Processes were the output is constant will not be analysed 

on their robustness. These are already robust and an RSM will not yield any new information. 

For robust operating chains the control factors are optimized. However performing at different 

operating points can influence the robustness. In this study performing with non-optimal 

configurations is also investigated. 
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For flexible systems control over the outputs is preferred. Since the flexible systems have 

interaction, changing one input can influence multiple outputs, knowing which input influence 

which output the best, a more controllable system can be created. The relative gain array 

(RGA) gives insight in the amount of interaction. Not only will it tell the amount of 

interaction but also which control factor can be best used to control which output. Thereby 

optimal control over the system can be reached. 

In this thesis four different operating chains will be analysed. The most robust operating chain 

will be analysed on its robustness. The most flexible operating chain will be analysed on its 

flexibility. The other two operating chains that will be analysed are those with the highest 

NER and flow of biodiesel according to the paper of Slegers et al. (2014). Reason for this is 

that a high flow of biodiesel or NER can be preferred more than a robust or flexible operating 

system. Slegers et al. (2014) never analysed how robust and flexible these systems are. 

However just analysing the operating chain with the higher NER and flow of biodiesel will 

not yield much information. By comparing them with the most robust and flexible operating 

chain more information can be gained.  
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2. Materials and methods 

2.1 Processing units 

Throughout the process chain the algae broth is processed to biodiesel. For this process 

several steps are needed as seen in Table 1 and in Figure 21. Every process has multiple 

inputs and outputs, however not all are relevant for this research. The focus of this research 

lies on NER and biodiesel yield. Some properties of algal broth that has influence on the 

products are considered, flow, concentration, and lipid fraction. Broth flow gives an indication 

for the product yield per hour and the energy demand to run the process chain. Concentration 

value shows the amount of lipid in the system and lipid content illustrate the potential amount 

of biodiesel. A concluded list of the relevant  inputs and outputs for each process step can be 

found in Table 1.  

For every output a RSM is created to analyse the processing units. From this RSM 

classification can be done to indicate robustness or flexibility. For the calculation of the RSM 

the input values have to be given. Each process step has different inputs with different values. 

All the possible values of these inputs must be determined from the model to create an 

accurate RSM. This will be done by finding the minimum and maximum values of the output 

of the previous step in the process, these values will be the input of the next processing unit. 

These minimum and maximum values can be found in appendix A. The feed flow rate for the 

flexible systems are fixed values and not considered as a range. Therefore the average of 

minimum and maximum values of the outputs  are taken.  

The output concentration of dewatering which is the input of disruption step is fixed at 100 g 

L
-1

. It is assumed that in harvesting and dewatering only the flow has an influence on the end 

product. In bead-milling unit there is no change in algae flow and concentration, consequently 

only a RSM of energy usage will be created. After harvesting and dewatering lipids of the 

algae will be extracted to be converted to biodiesel. Flow of algae broth still remains relevant 

for input since this has an influence on the energy demand of the processing unit. The only 

relevant outflow in the final-step in the processing chain is biodiesel-flow and energy usage, 

the process chain is focused on yielding biodiesel from algae. All other outputs are not 

relevant in the final-step, these have no influence on the  production objective. 

NER evaluation is not a step wise approach and can only be calculated from the whole 

operating chain. The NER is calculated from the energy usage of processing units and the 
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biodiesel yield. In order to test the robustness or flexibility of the processing units with 

regards to the NER, energy usage is used.  

Table 1 All relevant input and outputs of the process steps 

Process step Input Output 

Harvesting Flow of algae broth (m
3
 h

-1
) 

Alga concentration (kg m
-3

) 

Flow of algae broth (m
3
 h

-1
) 

Energy usage    (J) 

Dewatering Flow of algae broth (m
3
 h

-1
) 

Alga concentration (kg m
-3

) 

Flow of algae broth (m
3
 h

-1
) 

Energy usage   (J) 

Disruption Flow of algae broth (m
3
 h

-1
) Flow of algae broth (m

3
 h

-1
) 

Concentration lipids (kg m
-3

) 

Energy usage   (J) 

Extraction Flow of algae broth (m
3
 h

-1
) 

Concentration lipids (kg m
-3

) 

Mass lipids  (kg h
-1

) 

Energy usage   (J) 

Conversion Flow of algae broth (m
3
 h

-1
) 

Mass lipids  (kg h
-1

) 

Flow of biodiesel (L h
-1

) 

Energy usage   (J) 

2.1.1 Control factors 

Table 2 shows the selected control factors. The values for the lower and upper bound are 

given in Slegers et al. (2014) and provided in Table 2. According to Slegers et al. (2014) the 

control factor for the dewatering step is concentration factor. The concentration factor 

influence the amount of reduction in the volume and increase in the concentration of the algae 

broth. Since concentration of the algae broth is fixed at 100 g L
-1

 after dewatering, the 

concentration factor is dependent on the concentration of algae going into the process. Thus 

the concentration factor in dewatering is not considered as an control factor in this research. 

Since the concentration factor of dewatering has a maximum of 40 times, the concentration of 

algae inflow has to have a minimum value of 2.5 g L
-1 

to ensure that the 100 g L
-1 

 is reached 

after dewatering.  

Table 2 Control factors given with their lower and upper bound. 

Control factor Unit Lower bound Upper bound 

Concentration factor harvesting (-) 2 40 

Concentration factor drying (-) 4 160 

Concentration chitosan flocculation (g m
-3

) 150 250 

Concentration poly-glutamate flocculation (g m
-3

) 10 60 

Bead filling (%) 70 90 

Temperature SCCO2 (K) 313 333 

Pressure SCCO2 (bar) 150 300 

Flow of methanol (m
3
 h

-1
) 0.3 0.9 

Temperature supercritical methanol wet conversion (K) 513 533 
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2.2 Operating chains 

Connecting the processing units together creates an operating chain. The output of a 

processing unit is the input of the next processing unit. Operating chains will be analysed 

through RSM creating a black box mode as seen in Figure 1. A second order model for each 

unit will be fitted to link the input with the output. A second order model is chosen as stated in 

2.3 Response surface methodology. The operating chain will be analysed the same way as the 

operating units. 

For energy usage the output of an operating unit is not the input of the next processing unit. 

Energy usage is added up after each process step to calculate the total energy usage.  

2.3 Response surface methodology 

With the use of the response surface methodology (RSM) it is possible to study the processing 

units and operating chains. RSM shows how the input or control factor influences the output. 

RSM is calculated by changing the conditions one at a time and computing the different 

outcomes. From this data a RSM can be created. Since not all process are linear, a second 

order model is used for RSM to ensure a good fit for the RSM. A third order model or higher 

has complex computation so second order model is assumed to be sufficient for the aim of this 

study.  A second order model of RSM is : 

 

𝑦 = 𝛽0 + ∑ 𝛽𝑖𝑈𝑖

𝑘

𝑖=1

+ ∑ 𝛽𝑖𝑖𝑈𝑖
2

𝑘

𝑖=1

+ ∑ ∑ 𝛽𝑖𝑗

𝑘

𝑗=2𝑖<𝑗

𝑈𝑖𝑈𝑗 + ϵ 

 

(1) 

Where y is the chosen outcome, U the changing conditions i that is applied on the processing 

units or operating chains, 𝛽 the parameter, k the amount of conditions that can be changed and 

𝜖 the error.  

The parameters give an indication about the influence of U on the outcome. Parameters close 

to zero indicate that U has a low influence on the outcome, parameters bigger than zero 

indicate that U has a higher influence on the outcome. The parameters can be used to see if a 

system is robust or flexible. β0 has no influence on the robustness or flexibility as it is not 

related to a changing condition. 

The RSM is created with a computer simulation and not with experimentation where variation 

may occur between results. Doing the calculation with the same data will always yield the 

same results thus the error is obsolete. 
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The changing conditions have different scale of size, comparison of the parameters can only 

be done if rescaling is applied. Moreover it is also common to rescale the conditions before 

applying the RSM, this ensures the RSM is more accurate(Myers, 1976). Rescaling is done 

through recoding with the following formula: 

 𝑈𝑖𝑗 =
𝜉𝑖𝑗 − [max(𝜉𝑖𝑗) + min(𝜉𝑖𝑗)]/2

[max(𝜉𝑖𝑗) − min(𝜉𝑖𝑗)]/2
 

(2) 

 
 

−1 ≤ 𝑈𝑖𝑗 ≤ 1  

In which Uij is coded value of the ith observation of variable j, ξij is true value of the ith 

observation of variable j. Max(𝜉𝑖𝑗)  is the maximum of all observations i of variable j. 

Min(𝜉𝑖𝑗) is the minimum of all observations i of variable j.  

From this point all changing conditions will be given in coded values, since these are used for 

the RSM. This will be indicated with labelling them as coded values.  

2.3.1 Statistical test 

To ensure the RSM is a proper fit to the processing unit and operating chain a statistical test is 

performed. This statistical test indicates the fit of the RSM to the processing unit. The 

statistical test is to ensure the parameters represent the processing unit and can be used to 

classify the processing unit. 

For each RSM the fit will be calculated with the correlation coefficient(R
2
) and the adjusted 

correlation coefficient. The correlation coefficient is an indication on the fit of the RSM 

towards the modelled data. R
2
 increases when a new variable is added, even if this variable 

does not hold new information. The adjusted R
2
 does not hold this problem, only variables 

with predictive capability increase the adjusted R
2
. The adjusted R

2
 is more suited to see if the 

fit of the RSM is correct. The expression for adjusted R
2 

is: 

𝑅𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑
2 = (1 − 𝑅2)

𝑛 − 1

𝑛 − 𝑚 − 1
 

Where R
2 

is the normal correlation coefficient, n the number of data points and m the amount 

of independent variables. 

Processing units  are classified on their parameters. The RSM always gives a value for a 

parameter even if the changing condition has no influence on the result. To ensure parameters 
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are correct a student’s distribution test is performed on each parameter. 𝑝 < 0.05 indicates 

that the coefficient is statistical significant. Parameters where 𝑝 > 0.05 will not be used to 

investigate the robustness or flexibility of the system. The student’s distribution test can 

reduce the amount of parameters that have influence on the output, this will not influence the 

robustness or flexibility of the processing unit. The robustness or flexibility is dependent on 

the value of the parameters, not the amount of parameters.  

More information about the calculation of the student’s distribution test can be found in 

appendix E. 

2.4 Robustness 

For finding a robust system all the processing units will be studied with varying inputs. The 

feed flow for harvesting will range from 4500 to 5500 L h
-1

 and the concentration from 0.5 to 

1.5 g L
-1

. The range of concentration is chosen because of the processing unit poly-glutamate 

flocculation, its input cannot exceed 1.5 g L
-1

. Further explanation about this limitation can be 

found in section 4. Discussion For the other process steps the range of the feed flows can be 

found in appendix A. 

In this research a robust system is classified as a system where the output will be minimal 

influenced by the variation of the input. Low parameters indicate a robust system that is 

minimal influenced by the varying flow and concentrations. 

The control factors for the processing units are optimized with regards to their configuration 

when analysing them individually. Operating units are not individually analysed on their 

performance with non-optimal configurations. The performance of each processing unit is 

dependent on its configuration, some configurations improve the robustness of the processing 

unit. For example a concentration factor of 5x for the processing unit centrifugation in 

harvesting yields an outflow concentration from 2.5 to 7.5 g L
-1

, while a 40x concentration 

factor increases the range of the outflow concentration from 20 to 60 g L
-1

. This indicates that 

a low concentration factor makes the processing unit robust, whereas a high concentration 

factor indicates a low robust system since it is more influenced by the input. Analysing all 

possible configuration of the processing unit could reduce the influence of the configuration. 

Doing this increases the complexity of the system, and increases complex computational. 

Reduction of computational cost is not part of this study however using optimal configuration 

is sufficient in this study. Analysing the operating units with all possible configuration is done 
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for testing them on flexibility. The inputs will only be control factors and the variation of the 

algae broth will be constant, thus complex computational will be low. 

The performance of operating chains has been analysed with non-optimal configuration as 

stated in the introduction, to indicate if the condition below optimum increases the robustness. 

The non-optimal configuration will be set to the average of the minimum and maximum 

configuration of the processing unit. This will only be applied to robust operating chains and 

not individually operating units as stated above.  

Linking robust processing units together will create a robust operating chain. Proof of this 

theorem can be found in 2.6 Linking processing units. 

2.5 Flexibility 

Flexible system are indicated with high control over the output through control factors. A 

RSM will be created with all the possible configurations of the control factors. The inflow of 

algae broth is fixed at 5000 L h
-1

 with a concentration of 1 g L
-1

 for the process step 

harvesting. For the other process steps the average of the flows in appendix A are taken. 

Parameters with higher values from the RSM indicate higher  influence of the control factors 

which can be used to influence the output of the system. Low parameters indicate that the 

control factor has no influence on the output of the system. The influence of a control factor 

on the output will be visualized with the use of a perturbation plot. In a perturbation plot only 

one control factor is changed, while the others are set to zero, and plotted how this alters the 

output. Placing all the control factors in one plot indicates how a control factor influence the 

output compared to the other control factors. From the RSM it is only seen which control 

factor have high influence, from the perturbation plot it is more clear how this control factor 

influence the output. This will only be done for operating chain and not operating units. Most 

operating units only have one control factor, the perturbation plot is used to compare control 

factors within the system.  

Control over the systems cannot be reached with the RSM and perturbation plots only. The 

systems have multiple outputs with interaction, the RSM and perturbation plot do not hold 

information about interaction. In 2.7 Pairing this will be taken into account to indicate which 

control factor should control which output.  
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Linking flexible processing units together will create a flexible operating chain. Proof of this 

theorem can be found in section 2.6. 

2.6 Linking processing units 

It is stated previously that linking robust processing units together creates a robust operating 

chain and the same for flexible operating chains. To prove this statement, information is 

needed from the RSM. Parameters from the RSM influence the output, low parameters give 

an indication that the output of the operating unit has a small range, which can be seen in 

Figure 2, while an operating unit with high parameters has a large range that can be seen in 

Figure 4.  

These output ranges can be indicated using the propagation of error (POE). The POE 

calculates the variance of the input to the output. This variation can be used to find the 

optimal points and also to find the points with large variation. A low POE indicates low 

variation, an high POE indicates high variation. The expression for the POE is as follow: 

 

𝑃𝑂𝐸 = √∑ (
𝛿𝑓

𝛿𝑈𝑖
)

2

 𝛿𝑈𝑖 
2 + 𝛿𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

2   

𝑖

 (3) 

Where f is the function, Ui the individual factor i, 𝛿𝑈𝑖 
2  the variance of the input factor Ui, and 

𝛿𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙
2  the residual variance. Since the models always produce the same outcome the 

residual variance can be neglected.  

Since the first derivative is taken from the RSM, β0 has no influence on the POE. The 

variation of the outcome is determined by the variance of the input factor Ui and the 

coefficients βi, βii, and βij.  High coefficients cause a high POE, and low coefficients cause a 

low POE.  

The variance of the input factor Ui is determined by the processing unit variance before the 

current one. If the previous processing unit had a large POE, its variation of the input factor Ui 

will be high. This will increase the POE of the current processing unit.  

Flexible operating units have high parameters and high variance of the input factor, thus 

linking flexible operating units will create a system with an high POE. Combining flexible 

operating units creates a flexible operating chain. For robust operating units the variance of 

the input factor and the coefficients are low, thus giving a low POE. Combining these 

operating units will create a robust operating chain.  
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This all can also be visualized with graphs. The first two process steps of the lipid biorefinery 

are taken as an example, harvesting and dewatering. These two first steps of two different 

operating chains are visualized in figure 3-6. For the harvesting step the operating units poly-

glutamate flocculation and chitosan flocculation are taken, poly-glutamate flocculation has 

low parameters and chitosan flocculation has high parameter. For the dewatering step the 

operating unit centrifugation has been chosen.  

Figure 2 and Figure 4 show the response of the processing unit poly-glutamate flocculation 

and chitosan flocculation on a varying concentration algae broth to the outflow of algae. Δy1 

depicts the range of outflow of algae from the processing unit poly-glutamate flocculation, 

Δy2 is the range of outflow of algae from the processing unit chitosan flocculation. Figure 3 

and Figure 5 show the response of the processing unit centrifugation to a varying inflow of 

algae to the outflow of algae.  

For graphical presentation the flow of algae in the first process step is fixed at 5000 L h
-1

. On 

the y-axis the coded values are given for the range, not the true values. The true values of the 

varying concentration algae in Figure 2 and Figure 4 is 0.5 – 1.5 g L
-1

,  and for the inflow of 

algae in Figure 3 and Figure 5 is 0.002 – 2.6 L h
-1

. 

The outflow of Figure 2 is the inflow of Figure 3 and the outflow of Figure 4 is the inflow of 

Figure 5. However Figure 3 and Figure 5 depict all the possible inflow for that processing 

unit. The processing unit in harvesting limits the possible range of the inflow for 

centrifugation. In Figure 3 Δy3 depicts the range of outflow of the processing unit 

centrifugation if poly-glutamate flocculation is the previous processing unit. It is seen that the 

range is low. In Figure 5 Δy4 is the range of outflow of the processing unit centrifugation if 

chitosan flocculation is the previous processing unit. It is seen that the range is high.  

Figure 3-6 are indicating that choosing a robust processing units greatly influences the next 

operating unit. The same process can be done to see that flexible processing unit have 

influence on the next processing unit. 
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Figure 2 Response of poly-glutamate flocculation on varying 

concentration algae broth, where Δy1 indicate the range of the 

outflow.  

 

 

Figure 3 Response of centrifugation on varying inflow of algae 

broth. Δy1 indicate the range of outflow of the processing unit 

poly-glutamate flocculation and Δy3 the range of 

centrifugation with poly-glutamate flocculation as the previous 

processing unit. 

 

 

Figure 4 Response of chitosan flocculation on varying 

concentration algae broth, where Δy2 indicate the range of the 

outflow. 

 

 

Figure 5 Response of centrifugation on varying inflow of algae 

broth. Δy2 indicate the range of outflow of processing unit 

chitosan flocculation and Δy4 the range of centrifugation with 

chitosan flocculation as the previous processing unit. 

 

For energy usage the output of the processing unit is not the input for the next processing unit. 

Energy usage is added up and there are no interactions between the operating units. Therefore 

only the range of the energy usage of a processing unit is being investigated. Each processing 

unit has a range for its energy usage. These ranges of energy usage are added up, where a 

large range of the total energy usage of the operating chain is created if the processing unit 

have large ranges. If the range of the operating chain is large, the system would be classified 

as flexible. The large ranges of operating units are caused by high parameters, which are 

classified as flexible operating units. Thus linking operating units with flexible energy usage 

creates a flexible operating chain in energy usage. The same trend as for flexible system is  for 

robust operating chains. Adding operating units that have a small range in energy usage will 

yield an operating chain that will have a small range in energy usage. Small ranges are 

indicated with low parameters, which are classified as robust operating units. 
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2.7 Pairing 

For flexible systems control over the output by configuring the control factors is desired. The 

system has multiple outputs, interaction between the outputs occur. Interaction can be reduced 

by knowing which control factor to use for controlling one output while not altering the other 

outputs.  

The RSM shows how much influence a changing condition has on the outcome. This 

information can be used to reach the desired output with the right configuration of the RSM. 

However the RSM does not hold information about how it influences the other outputs. The 

relative gain array (RGA) holds information about which control factor influence which 

output while not altering the other outputs. Consequently the RGA indicates which control 

factor is preferred to influence an output with regards to the other control factors. From this 

RGA a controllable system can be created. 

The RGA calculations will be done with the RSM. Through rescaling it is more apparent 

which control factor has a higher influence on the system, since the control factors have 

different scale of size. Each element in the matrix indicates how the control factor can 

influence the output.  

The RGA only works for linear time-invariant nxn MIMO systems. The flexible systems 

described in this study consist of multivariable, non-linear and non-square (nxm) systems. 

Chang and Yu (1990) describes the calculations of the multivariable non-square relative gain 

array (NRG). More information can be found in appendix F. For the calculation the system is 

linearized.  
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3. Results 

3.1 Processing units 

From the coefficients of the RSM a classification can be made about the  flexibility or 

robustness of a processing unit. The coefficients from the response surface methodology can 

be found in appendix B and C. Classification of the processing units can be found in Table 3. 

An example for this classification is being followed in the next paragraph.  

Example 1: The RSM with respect to robustness of centrifugation and pressure filtration in 

harvesting are given below: 

Centrifugation: 

Flowalgae = 2.38 + 0.238 ⋅ U1 − 1.20 ⋅ 10−15 ⋅ U1
2 + 1.37 ⋅ 10−16 ⋅ U2 − 7.03 ⋅ 10−16 ⋅ U2

2 − 5.27 ⋅ 10−17 ⋅ U1U2 

Energy usage = 5.10 ⋅ 103 + 499 ⋅ U1 + −0.0012 ⋅ U1
2 + 880 ⋅ U2 − 237 ⋅ U2

2 + 88.0 ⋅ U1U2 

Pressure filtration: 

Flowalgae = 2.38 + 0.238 ⋅ U1 − 1.20 ⋅ 10−15 ⋅ U1
2 + 1.37 ⋅ 10−16 ⋅ U2 − 7.03 ⋅ 10−16 ⋅ U2

2 − 5.27 ⋅ 10−17 ⋅ U1U2 

Energy usage = 2.78 ⋅ 103 + 278 ⋅ U1 + 1.19 ⋅ 10−4 ⋅ U1
2 + 1.94 ⋅ 10−5 ⋅ U2 + 9.07 ⋅ 10−7 ⋅ U2

2 + 3.86 ⋅ 10−6 ⋅ U1U2 

With U1 = Flow in (m
3
 h

-1
), and U2 = Concentration algae (kg m

-3
) both encoded.  

Pressure filtration and centrifugation have the same values from the RSM for the outflow but 

the higher coefficients for the energy usage in the centrifugation unit make the pressure 

filtration more robust than centrifugation. 

Example 2: The RSM with respect to flexibility of chitosan flocculation and poly-glutamate 

flocculation in harvesting are given below: 

Chitosan flocculation: 

Flowalgae = 0.281 − 0.405 ⋅ U1 + 0.343 ⋅ 10−15 ⋅ U1
2 − 0.438 ⋅ U2 − 0.0268 ⋅ U2

2 + 0.403 ⋅ U1U2 

Energy usage = 2.50 ⋅ 103 + 0.0103 ⋅ U1 − 0.0085 ⋅ U1
2 + 0.0120 ⋅ U2 + 0.0010 ⋅ U2

2 − 0.0101 ⋅ U1U2 

With U1 = concentration factor (-), and U2 = chitosan concentration (g m
-3

) both encoded.  

Poly-glutamate flocculation: 

Flowalgae = 0.093 − 4.92 ⋅ 10−8 ⋅ U1 − 6.91 ⋅ 10−14 ⋅ U1
2 

Energy usage = 600 + 2.37 ⋅ 10−10 ⋅ U1 + 2.85 ⋅ 10−26 ⋅ U1
2 

With U1 = poly-glutamate concentration (g m
-3

) encoded.  
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The coefficient of ploy-glutamate flocculation are lower, and thus chitosan flocculation is 

more flexible.  

Table 3 Classification of processing units on its robustness or flexibility 

Process step Processing unit Robust Flexible 

Harvesting Centrifugation +/- +/- 

Pressure filtration + +/- 

Vacuum filtration + +/- 

Ultrasound +  

Chitosan flocculation - + 

Poly-glutamate flocculation - - 

Dewatering Centrifugation -  

Pressure filtration +/-  

Vacuum filtration -  

Drying Drying  +/- + 

Disruption Bead milling +/- +/- 

Extraction Hexane +/- - 

Supercritical CO2 +/- + 

Conversion Acidic + - 

Alkaline +/- - 

Enzymatic direct conversion +/- - 

Microwave assisted dry conversion - +/- 

Supercritical methanol wet conversion - +/- 

The RSM shows which control factors have influence on the process. Ultrasound shows no 

flexibility since the model for the processing unit does not have any control factors. For 

dewatering there is no flexibility, the value of the control factor is determined by the 

concentration of the flow in. Bead filling percentage has only influence on the mass of lipids, 

not on energy consumption or flow. The flow of methanol only has influence on the flow of 

biodiesel for enzymatic direct conversion, microwave assisted dry conversion, and 

supercritical methanol wet conversion. It does have influence on the energy consumption for 

all the processing units in conversion.  

3.2 Flexible and robust operating chain 

For the creating of robust or flexible operating chains Table 3 is used. Linking robust 

processing units together creates a robust processing chain, the same goes for flexibility as 

stated in 2.6 Linking processing units.  

Poly-glutamate flocculation will not be included in any of the following operating chains, 

consequently the concentration of the algae in the operating chains will be altered slightly. 

Since the processing unit poly-glutamate flocculation could not handle a concentration 
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exceeding 1.5 g L
-1

, the new concentration of algae for robustness will have a range of 1.8 – 

2.2 g L
-1

 and for flexibility it will be 2.0 g L
-1

. This is caused by Slegers et al. (2014) who 

reported the concentration of 2.0 g L
-1 

as feed concentration. 

3.2.1 Robust 

Figure 6 depicts the most robust operating chain which is created by linking the most robust 

operating units. The operating chain consist of five operating units and has two control 

factors, bead filling percentage (%) in the processing unit bead milling and flow of methanol 

(L methanol kg
-1

 lipids) in the processing unit acidic conversion. The range of the in- and 

outflow is given. 

 

Figure 6 Most robust operating system with the corresponding in- and outflows and the possible configurations for the 

control factors. 

Table 4 depicts the result of the RSM for flow of biodiesel. U1 is the flow of algae (m
3
 h

-1
) 

and U2 the concentration of algae (g L
-1

). 

Table 4 RSM results for flow of biodiesel from the operating chain in Figure 6. 

Output (Y) β0 β1 β11 β2 β22 β12 R2 Adjusted R2 

Flow of biodiesel 

(L h-1) 

1.23 0.135 -0.0010 0.135 -0.0010 0.0175 0.994 0.994 

p-value 0 0 9.95e-14 0 7.29e-14 0 

Table 4 indicates that all coefficients have statistical significant, all p-values are below 0.05. 

Both U1 and U2 have a significant influence on the output. R
2
 and adjusted R

2
 confirm that the 

RSM is a good fit. 

Table 5 RSM results for NER from the operating chain in Figure 7. 

Table 5 depicts the results of the RSM for NER. It shows that all coefficient have statistical 

significant, all p-values are below 0.05. Both U1 and U2 have a significant influence on the 

output. R
2
 and adjusted R

2
 confirm that the RSM is a good fit. 

Output (Y) β0 β1 β11 β2 β22 β12 R2 Adjusted R2 

NER (-) 0.344 0.0135 -8.33e-04 0.0219 -8.50e-04 0.0020 0.975 0.975 

p-value 0 0 3.70e-99 0 3.65e-103 0 
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Figure 7 Contour plot of algae concentration (kg m-3) and flow of algae (m3 h-1) against flow of biodiesel(L h-1) and 

NER(-) respectively.  

Figure 7 depicts a plot figure of the algae concentration (kg m
-3

) and flow of algae (m
3
 h

-1
) 

against flow of biodiesel (L h
-1

) and NER (-). The right plot figure shows a small change in 

the middle of the plot. The flow of biodiesel flow increases faster than normal and for the 

NER a small offset is shown. The cause lies in the processing unit bead-milling. For the 

excess flow of lipids an extra bead milling unit is needed. This extra unit uses extra energy 

and does increase the flow of biodiesel since the efficiency of the bead milling is increased if 

the flow is lowered. 

  
Figure 8 Range of the output with optimal and non-optimal configurations. 

In section 1 it was discussed that the robust operating chains will be analysed on two different 

operating points. Figure 8 depicts the influence of these two operating points, optimal 

configuration against non-optimal configuration. The range of the outputs are given in the 

figure. The range for the output is decreased using non-optimal configuration increasing the 

robustness of the system. Using non-optimal configurations lowers the value of the NER.  
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3.2.2 Flexible 

Figure 9 depicts the most flexible operating system which is created by linking the most 

flexible operating units. It consists of three operating units and has four control factors. From 

this operating chain a RSM is created in which U are the control factors.  U1 is the 

concentration factor of chitosan flocculation(-), U2 is the chitosan concentration (kg m
-3

), U3 

the temperature of supercritical methanol wet conversion(K), and U4 the flow of methanol(L 

methanol kg
-1

 lipids).  The range of the outflow is given. 

 

Figure 9 Most flexible operating system with the corresponding in- and outflows and the possible configurations for 

the control factors. 

Table 6 depicts the result of the RSM for flow of biodiesel. 

Table 6 RSM results for flow of biodiesel from the operating chain in Figure 10. 

Table 6 concludes that U1 is not statistical significant to the p-value. Any interaction with U1 

is non-significant, all interaction terms (β1X)  show a p-value above 0.05. All other control 

factors are statistical significant on the outflow of biodiesel except for the interaction 

coefficient between U2 and U4, this coefficient has no statistical significant. R
2
 and adjusted 

R
2
 confirm that the RSM is a good fit.  

Table 7 RSM results for the NER from the operating chain in Figure 9. 

Output (Y) β0 β1 β11 β2 β22 β3 β33 β4 β44 

NER(-) 0.157 6.21e-04 -7.36e-04 0.0019 -0.0030 -0.0725 0.0317 -0.0044 -0.0460 

p-value 0 0.0342 0.137 1.45e-10 1.50e-09 0 2.66e-273 3.00e-44 0 

 β12 β13 β14 β23 β24 β34 R2 Adjusted R2 

NER(-) 1.53e-05 -4.74e-04 -3.17e-05 -4.95e-04 -5.07e-05 -0.0042 0.993 0.993 

p-value 0.970 0.252 0.939 0.232 0.902 2.75e-22 

Table 7 depicts the result of the RSM for NER. U1 only shows a linear relation with the 

output, the second order term β11 shows no influence on the output. All other coefficients are 

statistical significant except for the interaction coefficients. The interaction coefficients β34 is 

Output (Y) β0 β1 β11 β2 β22 β3 β33 β4 β44 

Flow of biodiesel 

(L h-1) 

2.11 -1.33e-15 3.20e-16 0.0438 -0.0700 -0.365 0.138 -0.0156 -0.596 

p-value 0 1 1 1.10e-197 3.89e-186 0 0 3.33e-49 0 

 β12 β13 β14 β23 β24 β34 R2 Adjusted R2 

Flow of biodiesel 

(L h-1) 

6.46e-16 1.87e-15 1.30e-15 -8.7e-03 -3.71e-04 -7.38e-03 0.998 0.998 

p-value 1 1 1 4.47e-10 0.786 1.11e-234 
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statistical significant. The control factors related to β34 are from the same processing unit, as a 

result they influence each other. U1 and U2 are also from the same processing unit however U1 

has a small influence on the output, consequently β12 even less. This can be further seen in 

Figure 10. R
2
 and adjusted R

2
 confirm that the RSM is a good fit. 

  

Figure 10 Perturbation plot of flow of biodiesel (L h-1) and NER(-) for the operating chain given in Figure 9. 

The perturbation plot shows the change of one control factor on the output while keeping the 

other control factors at zero. The perturbation plot shows which control factor has an 

influence on the output. The type of response of the control factor on the output is also 

visualized. Figure 10 depicts that U1 and U2 show little influence on the output with regards to 

U3 and U4. 

3.3 Operating chains from Slegers et al. (2014) 

In Slegers et al. (2014) a list of operating chains are given. Included are those with the highest 

NER and highest flow of biodiesel. In this study these two are analysed to get more insight on 

their flexibility and robustness.  

3.3.1 Highest NER 

3.3.1.1 Robust 

The operating chain with the highest NER is identical to the one discussed in section 3.2.1. 

There it was analysed on its robustness but not on its flexibility. The following section will 

analyse the operating chain on its flexibility. 

3.3.1.2 Flexible 

Figure 11 depicts the operating chain with the highest NER according to Slegers et al. (2014). 

It consists of five operating units and has two control factors. From this operating chain a 

RSM is created in which U are the control factors. U1 is the bead filling percentage(%) from 
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the processing unit bead milling and U2 the flow of methanol (L methanol kg
-1

 lipids) of the 

process unit acidic conversion. The range of the outflow for flexibility is given. 

 

 

Figure 11 Operating chain with the highest NER according to Slegers et al.(2014). Given are the corresponding in- 

and outflows for flexibility and the possible configurations for the control factors. 

Table 8 depicts the result of the RSM for flow of biodiesel.  

Table 8 RSM results for flow of biodiesel from the operating chain in Figure 11. 

Output (Y) β0 β1 β11 β2 β22 β12 R2 Adjusted R2 

Flow of biodiesel 

(L h-1) 

1.21 0.0117 -6.75e-04 2.23e-17 -5.07e-16 -6.02e-17 1.00 1.00 

p-value 2.68e-91 1.05e-55 7.08e-28 1 1 1 

Table 8 concludes that only U1 is statistical significant. Reason is that the flow of methanol in 

acidic conversion has no influence on the flow of biodiesel as stated in 3.1 Processing units. 

R
2
 and adjusted R

2
 confirms that the RSM is a good fit.  

Table 9 depicts the results of the RSM for NER. 

Table 9 RSM results for NER from the operating chain in Figure 12. 

Output (Y) β0 β1 β11 β2 β22 β12 R2 Adjusted R2 

NER (-) 0.344 0.0135 -8.33e-04 0.0219 -8.50e-04 0.0020 0.975 0.975 

p-value 0 0 3.70e-99 0 3.65e-103 0 

Table 9 concludes that both U1 and U2 are statistical significant. R
2
 and adjusted R

2
 confirms 

that the RSM is a good fit. 

  

Figure 12 Perturbation plot of flow of biodiesel (L h-1) and NER(-) for the operating chain given in Figure 11. 
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The perturbation plots in Figure 12 show a linear relation between U1 and U2 with the output. 

The RSM from Table 8 and Table 9 indicates a non-linear relation, the p-values indicate that 

second order parameters, β11 and β22, have significant influence on the output. But value β11 

and β22 are too low to depict a non-linear relationship in the perturbation plot. The 

perturbation plot of flow of biodiesel indicates that U1 has no significant influence on the 

output, previous stated by the RSM. 

3.3.2 Flow of biodiesel 

3.3.2.1 Robust 

Figure 16 shows the optimal operating chain for the maximum flow of biodiesel with the in- 

and outflows for robustness. 

 

Figure 13 Operating chain with the highest flow of biodiesel according to Slegers et al.(2014). Given are the in- and 

outflow for robustness. 

Table 10 depicts the results of the RSM for flow of biodiesel. 

Table 10 RSM results for flow of biodiesel from the operating chain in Figure 13.  

Output (Y) β0 β1 β11 β2 β22 β12 R2 Adjusted 

R2 

Flow of biodiesel 

(L h-1) 

2.59 0.259 1.68e-05 0.259 1.72e-05 0.0259 1.00 1.00 

p-value 8.27e-115 1.59e-98 8.47e-15 1.59e-98 5.93e-15 1.13e-76 

Table 10 indicates that all coefficients are statistical significant. Both U1 and U2 have a 

significant influence on the flow of biodiesel. R
2
 and adjusted R

2
 confirm that the RSM is a 

good fit. 

Table 11 shows the results of the RSM for NER. 

Table 11 RSM results for NER from the operating chain in Figure 16. 

Table 11 indicates that all coefficients are statistical significant. U1 and U2 have a significant 

influence on the flow of biodiesel. R
2
 and adjusted R

2
 ensure that the RSM is a good fit. 

Output (Y) β0 β1 β11 β2 β22 β12 R2 Adjusted 

R2 

NER (-) 0.0527 0.0012 -9.14e-05 0.0012 -9.21e-05 -6.41e-05 1.00 1.00 

p-value 3.89e-78 1.74e-49 4.48e-24 1.42e-49 3.93e-24 1.26e-22 
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Figure 14 Contour plot of algae concentration (kg m-3) and flow of algae (m3 h-1) against flow of biodiesel(L h-1) and 

NER(-) respectively. 

Figure 14 show that both flow of biodiesel and NER show a slight non-linear relation with 

algae concentration and flow. Increasing both the concentration and algae flow increases both 

the flow of biodiesel and the NER.  

  
Figure 15 Minimum and maximum values of the output with optimal and non-optimal configurations and their given 

range. 

Figure 15 depicts the influence of using optimal configuration against non-optimal 

configuration. The range of the outputs are given in the figure. The range for the output is 

decreased using non-optimal configuration increasing the robustness of the system. Using 

non-optimal configurations lowers the value of the NER. 
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3.3.2.2 Flexible 

Figure 16 depicts the optimal operating chain for the maximum flow of biodiesel with the 

corresponding input and output if the system is analysed on its flexibility. It consists of four 

operating units and has two control factors. From this operating chain a RSM is created in 

which U are the control factors.  U1 is the concentration factor(-), U2 the chitosan 

concentration(kg m
-3

), U3 the concentration factor of drying(-), and U4 the flow of methanol(L 

methanol kg
-1

 lipids). The range of outflow for flexibility is given. 

 

Figure 16 Operating chain with the highest flow of biodiesel according to Slegers et al.(2014). Given are the in- and 

outflow for flexibility.  

Table 12 depicts the result of the RSM for flow of biodiesel.  

Table 12 RSM results for flow of biodiesel from the operating chain in Figure 16. 

Output (Y) β0 β1 β11 β2 β22 β3 β33 β4 β44 

Flow of biodiesel    

(L h-1) 2.58 
-2.54e-

15 

4.90e-

16 
0.0601 -0.0960 

-9.15e-

16 

1.66e-

15 

-5.13e-

04 

2.74e-

04 

p-value 0 1 1 0 0 1 1 0 0 

 β12 β13 β14 β23 β24 β34 R2 Adjusted R2 

Flow of biodiesel 

(L h-1) 

7.53e-

16 
1.97e-15 

1.60e-

15 

1.71e-

15 

-2.40e-

05 
1.78e-15 

1.00 1.00 

p-value 1 1 1 1 5.18e-18 1 

U2 and U4 and their interaction parameters are statistical significant. U1 and U3 are not 

statistical significant, these control factors have no influence on the amount of lipids or the 

conversion of lipids into biodiesel. R
2
 and adjusted R

2
 ensure that the RSM is a good fit. 

Table 13 shows the result of the RSM for NER. 

Table 13 RSM results from the NER from the operating chain in Figure 16. 

Output (Y) β0 β1 β11 β2 β22 β3 β33 β4 β44 

NER(-) 0.0365 3.03e-05 -3.60e-05 2.88e-04 -4.58e-04 -0.0027 0.0035 -0.0063 0.0010 

p-value 0 0.5885 0.7039 3.50e-07 1.64e-06 6.57e-209 1.47e-159 0 2.68e-25 

 β12 β13 β14 β23 β24 β34 R2 Adjusted R2 

NER(-) 4.39e-07 -4.44e-06 -9.89e-06 -4.01e-05 5.59e-05 9.07e-04 0.944 0.944 

p-value 0.996 0.955 0.901 0.612 0.480 1.06e-27 

All the control factors are statistical significant on the NER except for U1. Only one 

interaction coefficient shows significant influence on the outcome, the interaction coefficient 

between U3 and U4. β34 shows significant influence because the flow of methanol is related to 
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the flow of the algae broth for the processing unit, with the processing unit dryer this flow can 

be reduced by increasing the concentration factor. 

  

Figure 17 Perturbation plot of flow of biodiesel (L h-1) and NER(-) for the operating chain given in Figure 16. 

The perturbation plot in Figure 17 shows that for flow of biodiesel only U2 has any influence 

on the output in contradiction to the RSM which noted that both U2 and U4 have significant 

influence on the output. From the perturbation plot of the NER it is seen that U1 shows no 

influence on the output and U2 a minimal influence.  

3.4 Pairing 

The relative gain array (RGA) can be used for pairing control factors with outputs. Only for 

the flexible systems a relative gain can be created since in these systems control factors have 

been used to influence the output. In robust systems the control factors are always set to 

optimal or fixed configurations. RGA is a method to investigate the possibility for input 

output pairing. The concept is designed for systems with an equal number of inputs as outputs 

variables. Since there are more control factors than outputs a non-square relative gain is 

needed. 

In the relative gain the first column is for the first output, flow of biodiesel, and the second 

column for the second output, the NER. The rows indicate the different control factors for the 

operating chain. Each element in the matrix indicates how the control factor can influence the 

output of its column. For example in Matrix 1 in the first column and second row the value is 

0.634, which is the highest number of this column. To influence the flow of biodiesel the 

second control factor should be used. The last row of the matrix are both low values, 

indicating that the control factor has low influence on both of the outputs. It is preferred to 

have only one large value per row so that a control factor influences one output and 

interaction is minimal.  
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The relative gain indicates which control factor is relatively better to control the output. The 

relative gain of a control factor is a percentage of the total control that can be reached on the 

output. All the individuals values of the relative gain for one output should be equal to one. 

Matrix 1 depicts the non-square relative gain for the operating chain of Figure 9. This 

operating chain is the most flexible operating chain. 

[

−1.8 ⋅ 10−13 0.909
 0.634 0.0156
0.366 0.0749

3.51 ⋅ 10−4 2.11 ⋅ 10−4

] 

Matrix 1 Non-square relative gain for the operating chain of Figure 9. 

U1 , the concentration factor for harvesting,  shows large influence on the NER. U2 , chitosan 

concentration, and U3, temperature supercritical methanol wet conversion, influence the flow 

of biodiesel. U4, the flow of methanol, shows minimal influence on both outputs.   

Matrix 2 depicts the square relative gain for the operating chain given for Figure 11. This 

operating chain has the highest NER according to Slegers et al. (2014).  

[
1.0 0
0 1.0

] 

Matrix 2 Square relative gain for the operating chain of Figure 11 

U1, the bead milling percentage, only influences the flow of biodiesel. U2, the flow of 

methanol, only influences the NER. 

Matrix 3 depicts the non-square relative gain for the operating chain for Figure 16. This 

operating chain has the highest flow of biodiesel according to Slegers et al. (2014).  

[

5.41 ⋅ 10−11 0.879
0.998 8.89 ⋅ 10−4

5.93 ⋅ 10−14 0.105
0.00239 0.0159

] 

Matrix 3 Non-square relative gain for the operating chain of Figure 16 

U2, the chitosan concentration, shows a high control on the flow of biodiesel. For the NER U1, 

the concentration factor for harvesting, indicates a high control. U3, the concentration factor of 

drying, could be used to control the NER. U4, the flow of methanol, shows minimal influence 

on both the outputs.   
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4. Discussion 

In this study the different models provided by Slegers et al. (2014) were analysed. Using these 

models some limitation were experienced. These are discussed in section 4.1. Using the RSM 

for testing system on their robustness or flexibility has not yet been performed. Perspectives 

for future use of this method are also discussed in 4.2. 

4.1 Models 

The level of detail provided from the models differ. Some models were white box models 

while others were grey. To make better conclusions about the operating chains, the models 

have to be reconsidered.  

The algae concentration in the feed 

flow was in the range of 0.5 to 1.5 g 

L
-1

. The choice for the range algal 

concentration is due to the  model 

of poly-glutamate flocculation. 

Exceeding this range makes the 

model unreliable which can also be 

seen in Figure 18, where the model 

becomes unstable around 2 g L
-1

.  

However as this processing unit is 

not used in any of the operating 

chain as stated in section 3.2, it was 

chosen to increase the concentration of algae to the values as given by Slegers et al. (2014).  

One of the criticism with this frame work is using the same unit operation like centrifugation 

in both harvesting and dewatering step for one operating chain. In reality the desired  

concentration can be reached after one step of centrifugation which eliminate the need 

application of second centrifugation unit for dewatering step.   

The correlation coefficient in bead milling models gives another reason to discuss the models. 

The correlation coefficient in the case of bead milling unit model  is low which means not a 

good fit. There are some reasons to be discussed for this low correlation coefficient. First of 

all the main model reported by Doucha and Lívanský (2008) that bead milling model in this 

study has been originated from shows a low correlation coefficient of 0.862.  Moreover as it 

Figure 18 Flow out(m3 h-1) against concentration algae (kg m-3) 

for poly-glutamate flocculation 
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Figure 19 Concentration of extractible lipids (kg m -3) 

against flow in (m3 h-1) for bead milling 

 

can be seen in Figure 19, there are little spikes 

on a fixed interval. These spikes are the 

consequence of exceeding the maximum fixed 

value for flow of lipids per hour in bead 

milling unit. In this case, exceeding the 

maximum value each time creates an extra 

bead mill unit, therefore splitting the flow of 

algae over the extra unit. Therefore the 

efficiency of the bead mill units rises, causing 

spikes in the graph. Due to these spikes a good 

fit is hard to compute, since the RSM is always a smooth line.  

Another issue regarding to the models is that 

processing units with as control factor the 

concentration factor show low correlation 

coefficient. Figure 20 depicts the flow out 

against the concentration factor, it illustrates a 

negative exponent function. The RSM consist 

of a second order model. A good fit with a 

second order model for a negative exponent 

function is hard to compute, resulting in a low 

correlation coefficient.   

It should be mentioned that assumptions were made as no real data was available about the 

variation in the algae broth. For the analysis of the processing units and operating chain on 

their robustness the minimum and maximum flow was set at 4500 L h
-1

 and 5500 L h
-1

 and for 

concentration to 1.8 and 2.2 g L
-1

. 

After the process step dewatering and harvesting the concentration of algae is fixed at 100 g 

L
-1

. This limits the flexibility of the processing units in dewatering and harvesting, since they 

are configured to reach this concentration. It is seen from the RSM that the control factors in 

dewatering and harvesting show little influence on the end-product. Removing this limitation 

might increase the flexibility of the process. 

Figure 20 Flow out (kg m-3) against concentration factor 

for the processing unit dryer 
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4.2 Perspectives 

The approach of this work was to demonstrate the usage of RSM to analyse systems on their 

robustness and flexibility. The benefit the RSM offers is the easy and quick insight into the 

system. This insight can be used to compute certain aspects of the system, like controllers and 

configurations.  

The current operating chain only produces one product, however to increase the economic 

feasibility of algae, multiple products need to be extracted from the algae broth. Each product 

has different prices and analysing trade-offs between products can be performed.  

Adding more products might alter the use of flexibility in this study, since here it is depicted 

as the range of the outflow. With more end-products more market demands can be fulfilled. 

To fulfil the different trends within these market demands, quick adaptions to the production 

chain needs to performed. In that case, flexibility would be about the adaption of the operating 

chain to fulfil new market demands. 

Assumptions regarding the control factors are made. It is believed that control factors can be 

easily set to new configurations. However, some control factors might be difficult to 

configure. For example, the processing unit bead milling has as control factor bead filling, a 

percentage of beads in the unit. This percentage can be changed by adding or removing beads 

from the unit. The processing unit has to be shut down when changing the amount of beads. 

This may cause shutting down the whole operating chain. Therefore it might be more 

beneficial to use a processing unit that  is easier to adapt.  

More robustness or flexibility can be reached by including more control factors. A higher 

control can result in better performance.  

In this study it was stated that performing below the optimum configurations could increase 

the robustness of the operating chain. This is examined by adjustment of the control factors 

and comparing the result with an operating chain with optimal configuration. In the current 

work focus was on creating robust operating chain, but the optimal configuration for the 

robust operating chain has not been examined. 

For the robust operating chain compared to the operating chain with optimal biodiesel yield 

the output range of NER is larger. The main reason are trade-offs performance in the 

classifications of the processing units. Since most processing units have RSM’s for multiple 
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outputs, classification of a processing unit on its robustness or flexibility is not 

straightforward. In some cases RSM’s show contradicting information, where one RSM holds 

information that a system was flexible while the other RSM indicates contradictory results. 

The RSM’s with information about the algae broth and the process to convert the algal broth 

to biodiesel are preferred for the classification as opposed to the RSM about the energy usage 

of the processing unit.  
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5. Conclusion 

In this work, a response surface methodology (RSM) based approach for the analysis of 

robustness or flexibility in lipid biorefineries is introduced. With the use of the RSM it is 

possible to analyse processing units and operating chains. The RSM provides information 

about which inputs or control factors are relevant for the process and the scope of influence.  

The robust operating chain compared to the operating chain with optimal biodiesel yield has a 

smaller output range of biodiesel yield. Choosing robust operating units increase the 

robustness of the operating chain because of decreasing the influence of input on output. 

However for a robust operating chain the flow of biodiesel is substantially lower. 

Choosing a non-optimal configuration decreases the range of output slightly as a result 

making the system more robust. However it lowers the value of the biodiesel flow and NER. 

A trade-off analysis between optimal output and optimum robustness was not done in this 

study.  

It is observed that a flexible operating chain has a higher range, therefore a higher flexibility, 

compared to non-flexible operating chain.  

Pairing of the outputs with the control factors is not straightforward. Net energy ration (NER) 

and flow of biodiesel are two output that show interaction, since the NER is partially derived 

from the flow of biodiesel. However the non-square relative gain (NRG) shows that it is 

possible to make choice which control factor has the best influence on the output. Using this 

information, more control over the system can be reached. Adding more final products will 

make the NRG more beneficial for control over the system since it is more complicated to 

make trade-offs from the information presented by the RSM without the NRG.  

The RSM is successfully applied to create a more flexible or robust processing chain. Also 

more insight can be gained over the process, indicating which control factors have influence 

on the output. It can be concluded that with the RSM an effective framework for the analysis 

of a system on its robustness or flexibility can be created.  
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Appendices 

Appendix A. Processing units 

 

Figure 21 All the processing units and the possible configurations for an operating chain. Before each process step the minimum and maximum values are given. 
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 Appendix B. Result processing units robustness 
Table 14 Robustness of the processing units in harvesting with U1 = Flow in (m3 h-1), and U2 = Concentration algae (kg m-3) encoded 

Harvesting Output (Y) β0 β1 β11 β2 β22 β12 R2 Adjusted R2 

Centrifugation Flow of algae broth 

(m3 h-1) 

2.3750 0.2375 -1.1981e-15 1.3738e-16 -7.0276e-16 -5.2736e-17 1 1 

p-value 4.6871e-291 9.1446e-275 0.0053 0.5488 0.0803 0.8702 

Energy usage (J) 5.1041e+03 498.5537 -0.0012 880.1164 -237.1690 88.0117 0.9993 0.9991 

p-value 5.9680e-42 1.7725e-25 0.9999 3.6880e-30 3.7755e-15 5.5295e-09 

Pressure 

filtration 

Flow of algae broth 

(m3 h-1) 

2.3750 0.2375 -1.1981e-15 1.3738e-16 -7.0276e-16 -5.2736e-17 1 1 

p-value 4.6871e-291 9.1446e-275 0.0053 0.5488 0.0803 0.8702 

Energy usage (J) 2.7778e+03 277.7801 1.1858e-04 1.9405e-05 9.0688e-07 3.8616e-06 1 1 

p-value 3.0502e-196 5.9505e-180 1.3486e-54 5.4273e-44 1.4950e-14 8.1182e-28 

Vacuum 

filtration 

Flow of algae broth 

(m3 h-1) 

2.3750 0.2375 -1.1981e-15 1.3738e-16 -7.0276e-16 -5.2736e-17 1 1 

p-value 4.6871e-291 9.1446e-275 0.0053 0.5488 0.0803 0.8702 

Energy usage (J) 6.1111e+03 611.1135 1.1858e-04 1.9405e-05 9.0688e-07 3.8616e-06 1 1 

p-value 9.5132e-203 1.8560e-186 1.3486e-54 5.4274e-44 1.4950e-14 8.1184e-28 

Ultrasound Flow of algae broth 

(m3 h-1) 

0.1000 0.0100 -3.7004e-17 3.1402e-18 -2.2275e-17 -1.1935e-17 1 1 

p-value 1.4059e-295 2.7429e-279 7.7209e-04 0.5732 0.0265 0.1399 

Energy usage (J) 8.3400e+03 840.0027 1.3272e-04 2.8999e-05 2.6156e-07 5.7805e-06 1 1 

p-value 1.5754e-204 2.6822e-188 9.6674e-55 1.6011e-46 2.8297e-05 2.3370e-30 

Chitosan 

flocculation 

Flow of algae broth 

(m3 h-1) 

1.9603 0.1545 -6.1308e-16 1.1378 -0.8303 0.1138 0.9959 0.9948 

p-value 4.1587e-25 8.7062e-08 1 2.4599e-23 1.7270e-16 3.4341e-04 

Energy usage (J) 2.5003e+03 50.0099 0.0014 -0.0024 0.0152 3.4855e-04 1.0000 1.0000 

p-value 7.5329e-102 2.7995e-72 0.6950 0.2726 5.1872e-04 0.9100 

Poly-glutamate 

flocculation 

Flow of algae broth 

(m3 h-1) 

0.0924 0.0097 -3.8318e-17 0.0345 0.0084 0.0034 0.9985 0.9981 

p-value 3.3980e-33 2.3652e-17 1 8.8629e-28 4.6841e-12 4.5850e-07 

Energy usage (J) 600.0194 50.0032 1.3417e-04 -1.2270e-04 -5.2248e-05 -2.2269e-05 1.0000 1.0000 

p-value 8.4161e-148 5.2426e-130 7.2558e-20 1.9655e-23 2.4912e-12 1.6988e-07 
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Table 15 Robustness of the processing units in dewatering with U1 = Flow in (m3 h-1), and U2 = Concentration algae (kg m-3) encoded 

Dewatering Output (Y) β0 β1 β11 β2 β22 β12 R2 Adjusted R2 

Centrifugation Flow of algae broth 

(m3 h-1) 

0.3910 0.3846 -4.6740e-19 0.3597 -1.3646e-16 0.3538 1.0000 1.0000 

p-value 5.4591e-289 1.4540e-291 0.9954 5.1929e-291 0.1061 5.1332e-288 

Energy usage (J) 2.8503e+03 2.5930e+03 0.0017 629.2376 -429.1152 619.0133 0.9936 0.9919 

p-value 5.4968e-20 6.7271e-22 1.0000 1.2352e-10 6.9935e-05 4.5546e-08 

Pressure 

filtration 

Flow of algae broth 

(m3 h-1) 

0.3910 0.3846 -4.6740e-19 0.3597 -1.3646e-16 0.3538 1.0000 1.0000 

p-value 5.4591e-289 1.4540e-291 0.9954 5.1929e-291 0.1061 5.1332e-288 

Energy usage (J) 731.6405 719.7539 0.0017 0.0022 0.0012 0.0028 1.0000 1.0000 

p-value 4.4705e-112 1.1906e-114 2.6578e-05 1.7297e-10 0.0013 1.2263e-09 

Vacuum 

filtration 

Flow of algae broth 

(m3 h-1) 

0.3816 0.3754 -1.4900e-18 0.3691 -1.3548e-16 0.3631 1.0000 1.0000 

p-value 1.6400e-288 4.3681e-291 0.9859 6.0282e-291 0.1199 5.9588e-288 

Energy usage (J) 1.6096e+03 1.5835e+03 0.0017 0.0022 0.0012 0.0028 1.0000 1.0000 

p-value 1.3942e-118 3.7134e-121 2.6578e-05 1.7297e-10 0.0013 1.2263e-09 

 
Table 16 Robustness of the processing unit drying in drying with U1 = Flow in (m3 h-1) encoded 

Drying Output (Y) β0 β1 β11 β2 β22 β12 R2 Adjusted R2 

Drying  Flow of algae broth 

(m3 h-1) 

0.0047 0.0027 8.6367e-19 - - - 1 1 

p-value 1.8703e-31 4.7122e-31 0.8093 - - - 

Concentration algae 

(kg m-3) 

1.6000e+04 -1.0965e-12 -2.4956e-12 - - - 0 -1 

p-value 9.4166e-33 0.5179 0.4047 - - - 

Energy usage (J) 2.0063e+05 1.1471e+05 1.3339e-07 - - - 1 1 

p-value 4.0464e-29 1.0195e-28 2.1532e-04 - - - 
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Table 17 Robustness of the processing unit bead milling in disruption with U1 = Flow in (m3 h-1) encoded 

Disruption Output (Y) β0 β1 β11 β2 β22 β12 R2 Adjusted R2 

Bead milling Flow of algae broth 

(m3 h-1) 

0.0696 0.0694 2.0205e-17 - - - 1 1 

p-value 5.5248e-31 4.5810e-31 0.8229 - - - 

Concentration lipids 

(kg m-3) 

11.6145 -0.9175 1.3124 - - - 0.8567 0.7135 

p-value 0.0011 0.1185 0.1551 - - - 

Energy usage (J) 3.3000e+03 5.5317e-06 2.7564e-06 - - - 1.0000 1.0000 

p-value 1.3835e-32 4.0548e-15 4.6658e-14 - - - 

 

Table 18 Robustness of processing units in extraction with U1 = flow of algae(m3 h-1), and U2 = concentration lipids (L h-1) encoded 

Extraction Output (Y) β0 β1 β11 β2 β22 β12 R2 Adjusted R2 

Hexane Mass lipids (kg h-1) 1.2928 0.7391 5.2404e-17 0.0198 -4.2711e-16 0.0113 1 

 

1 

p-value 2.1231e-289 1.7006e-287 0.8382 1.2385e-257 0.1079 3.6817e-250 

Energy usage (J) 6.0443e+03 1.5370e+03 0.2114 3.2081e-07 2.4578e-09 3.1530e-07 1.0000 1.0000 

p-value 1.2436e-116 4.8293e-108 2.4163e-30 0.9997 1.0000 0.9998 

Supercritical CO2 Mass lipids (kg h-1) 1.4206 0.8122 -5.5431e-16 0.0218 -7.7296e-16 0.0124 1 1 

p-value 1.8448e-288 1.4777e-286 0.0913 1.0762e-256 0.0227 3.1991e-249 

Energy usage (J) 1.9337e+04 1.1508e+04 317.9387 31.1433 0.1763 28.9687 1.0000 1.0000 

p-value 4.3532e-59 1.6277e-57 1.3765e-23 2.3570e-09 0.9723 1.3699e-06 

 
Table 19 Robustness of the processing unit conversion where U1= Flow of algae(m3 h-1), and U2 = concentration algae (kg m-3) or mass lipids (kg h-1) encoded 

Conversion Output (Y) β0 β1 β11 β2 β22 β12 R2 Adjusted R2 

Acidic Flow of biodiesel 

(l h-1) 

0.0016 5.3130e-20 -6.2020e-19 9.8224e-04 -6.7302e-19 -1.3938e-20 1 1 

p-value 2.8698e-292 0.6901 0.0115 6.2536e-291 0.0068 0.9409 

Energy usage (J) 7.7440e+03 0.7248 7.8221e-04 143.7456 5.2789e-10 0.0026 1.0000 1.0000 

p-value 2.8570e-185 1.9602e-111 9.8798e-51 4.3878e-155 0.9991 3.7602e-62 

Alkaline Flow of biodiesel 

(l h-1) 

0.0016 2.2345e-20 -1.2483e-18 9.9647e-04 -5.0871e-19 7.2306e-21 1 1 

p-value 5.3962e-289 0.9113 0.0014 1.1759e-287 0.1450 0.9797 

Energy usage (J) 6.2189e+05 3.3468e+04 2.6097e+03 -4.4639 -9.2396e-11 -2.5521 1.0000 1.0000 

p-value 6.5884e-86 1.6656e-64 4.0293e-39 0.2418 1 0.6309 

Enzymatic direct 

conversion 

Flow of biodiesel 

(l h-1) 

0.0016 9.4006e-04 -5.1614e-19 2.5203e-05 -7.7277e-19 1.4409e-05 1 1 
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p-value 2.6230e-290 2.1010e-288 0.0894 1.5301e-258 0.0148 4.5487e-251 

Energy usage (J) 6.2189e+05 3.3468e+04 2.6097e+03 -4.4639 -9.2396e-11 -2.5521 1.0000 1.0000 

p-value 6.5884e-86 1.6656e-64 4.0293e-39 0.2418 1 0.6309 

Microwave 

assisted dry 

conversion 

Flow of biodiesel 

(l h-1) 

0.0452 0.0414 7.2444e-04 0.0441 7.7304e-04 0.0399 0.9999 0.9999 

p-value 5.6615e-35 5.8299e-37 0.0035 1.7404e-37 0.0021 8.3699e-34 

Energy usage (J) 1.1148e+05 5.7634e+03 7.9607 17.9288 8.4089 22.7823 1.0000 1.0000 

p-value 1.3906e-79 7.5423e-58 0.0037 1.1672e-10 0.0025 7.0910e-10 

Supercritical 

methanol wet 

conversion 

Flow of biodiesel 

(l h-1) 

2.3193e-05 1.3260e-05 3.0517e-21 - - - 1 1 

p-value 9.8469e-32 2.4808e-31 0.8102 - - - 

Energy usage (J) 6.5515e+04 1.6901e+04 1.2966 - - - 1.0000 1.0000 

p-value 9.0576e-15 1.1209e-13 5.4406e-05 - - - 
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Appendix C. Result processing units flexibility 
Table 20 Flexibility of the processing units in harvesting with their U1 and U2 

Harvesting Output (Y) β0 β1 β11 β2 β22 β12 R2 Adjusted R2 

Centrifugation 

(concentration 

factor) 

Flow of algae broth 

(m3 h-1) 

0.0911 -0.9540 1.1332 - - - 0.9094 0.8187 

p-value 0.7808 0.0671 0.1234 - - - 

Energy usage (J) 5.1000e+03 0.0027 -0.0027 - - - 0.9449 0.8898 

p-value 1.3394e-14 0.0374 0.0955 - - - 

Pressure 

filtration 

(concentration 

factor) 

Flow of algae broth 

(m3 h-1) 

0.0911 -0.9540 1.1332 - - - 0.9094 0.8187 

p-value 0.7808 0.0671 0.1234 - - - 

Energy usage (J) 2.7778e+03 0.0027 -0.0027 - - - 0.9449 0.8898 

p-value 4.5151e-14 0.0374 0.0955 - - - 

Vacuum 

filtration 

(concentration 

factor) 

Flow of algae broth 

(m3 h-1) 

0.0911 -0.9540 1.1332 - - - 0.9094 0.8187 

p-value 0.7808 0.0671 0.1234 - - - 

Energy usage (J) 6.1111e+03 0.0027 -0.0027 - - - 0.9449 0.8898 

p-value 9.3288e-15 0.0374 0.0955 - - - 

Chitosan 

flocculation 

(concentration 

factor, chitosan 

concentration) 

Flow of algae broth 

(m3 h-1) 

0.2806 -0.4046 0.3430 -0.4376 -0.0268 0.4036 0.9339 0.9165 

p-value 1.2840e-04 1.0388e-08 1.2268e-04 2.9382e-09 0.7115 1.8549e-06 

Energy usage (J) 2.5003e+03 0.0103 -0.0085 0.0120 0.0010 -0.0101 0.9419 0.9266 

p-value 6.2899e-108 4.9135e-09 9.8067e-05 4.5055e-10 0.5635 1.3538e-06 

Poly-glutamate 

flocculation (poly-

glutamate 

concentration) 

Flow of algae broth 

(m3 h-1) 

0.0926 -4.9156e-08 6.9116e-14 - - - 1.0000 1.0000 

p-value 5.4537e-33 1.5941e-20 2.3038e-08 - - - 

Energy usage (J) 600.0194 2.3701e-10 -2.8541e-26 - - - 1.0000 1.0000 

p-value 8.7185e-33 4.6016e-08 1 - - - 
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Table 21 Flexibility of the processing unit drying in drying with its U1 

Drying Output (Y) β0 β1 β11 β2 β22 β12 R2 Adjusted R2 

Drying 

(concentration 

factor) 

Flow of algae broth 

(m3 h-1) 

-2.4809e-04 -0.0048 0.0062 - - - 0.8861 0.7722 

p-value 0.8960 0.0888 0.1382 - - - 

Algae concentration 

(kg m-3) 

8.2000e+03 7.8000e+03 2.8042e-12 - - - 1 1 

p-value 2.2706e-31 2.0666e-31 0.6859 - - - 

Energy usage (J) 2.6264e+05 2.4414e+04 -3.1691e+04 - - - 0.8861 0.7722 

p-value 0.0011 0.0888 0.1382 - - - 

 

Table 22 Robustness of the processing unit bead milling in disruption with its U1 

Disruption Output (Y) β0 β1 β11 β2 β22 β12 R2 Adjusted R2 

Bead milling 

(Bead filling) 

Concentration 

accessible lipids (kg 

m-3) 

11.7053 0.1128 -0.0065 - - - 1.0000 1.0000 

p-value 1.1024e-10 9.7737e-07 8.3071e-04 - - - 

Energy usage (J) 3.3000e+03 -1.7582e-13 2.1173e-29 - - - 1.0000 1.0000 

p-value 0 0 0 - - - 

 

Table 23 Robustness of the processing unit supercritical CO2 in extraction with its U1 

Extraction Output (Y) β0 β1 β11 β2 β22 β12 R2 Adjusted R2 

Supercritical CO2 

(temperature, 

pressure) 

Mass lipids (kg h-1) 0.6028 -0.3380 0.2216 0.4477 0.1065 0.0676 0.9727 0.9655 

p-value 5.4910e-14 4.8169e-12 1.2066e-05 3.1252e-14 0.0110 0.0458 

Energy usage (J) 2.0430e+04 579.6763 -1.3229e-04 513.3317 2.6167e-06 -1.6930e-04 1.0000 1.0000 

p-value 2.2484e-158 1.0879e-131 4.8332e-04 1.0953e-130 0.9346 3.6670e-06 
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Table 24 Flexibility of the processing units in conversion with their U1 and U2 

Conversion Output (Y) β0 β1 β11 β2 β22 β12 R2 Adjusted R2 

Acidic (flow of 

methanol) 

Energy usage (J) 1.5828e+04 8.5377e+03 461.6937 - - - 1.0000 1.0000 

p-value 5.8537e-07 1.6568e-06 0.0016 - - - 

Alkaline (flow of 

methanol) 

Energy usage (J) 8.8406e+05 4.4281e+05 461.6937 - - - 1.0000 1.0000 

p-value 1.8764e-10 6.1592e-10 0.0016 - - - 

Enzymatic direct 

conversion (flow 

of methanol) 

Energy usage (J) 1.6544e+06 1.3390e+06 3.1128e+05 - - - 1.0000 0.9999 

p-value 2.0215e-05 2.5415e-05 0.0013 - - - 

Microwave 

assisted dry 

conversion (flow 

of methanol) 

Flow of biodiesel 

(l h-1) 

0.0452 -1.6215e-04 8.6865e-05 - - - 0.9935 0.9870 

p-value 5.6123e-08 0.0036 0.0340 - - - 

Energy usage (J) 2.1666e+05 1.0529e+05 110.3031 - - - 1.0000 1.0000 

p-value 1.6688e-10 5.8196e-10 0.0015 - - - 

Supercritical 

methanol wet 

conversion (flow 

of methanol, 

temperature) 

Flow of biodiesel 

(l h-1) 

0.0012 -2.0375e-04 7.6960e-05 -8.7275e-06 -3.3267e-04 -4.1241e-05 0.9983 0.9978 

p-value 1.9026e-36 7.9757e-25 1.0351e-12 0.0052 1.5370e-24 2.1789e-09 

Energy usage (J) 1.0565e+05 3.7963e+04 160.8693 3.8596e+03 -26.7018 1.6352e+03 1.0000 1.0000 

p-value 3.0527e-82 1.6623e-76 4.2562e-27 1.2142e-57 1.5098e-12 1.0732e-47 
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Figure 22 Central composite design for three parameters. 

Appendix D. Response surface methodology 

Creating a RSM for data can be done 

through different templates. In this research 

a central composite design (CCD) will be 

used, which is widely used for second order 

models with multivariable. The main 

advantage of CCD is that a full factorial 

experiment is not needed. In a full factorial 

experiment all possible states of a system 

are explored. Normally a CCD consist of 

twelve runs when there are three parameters, four runs at the centre, four runs at the corner 

points and four runs at the axial runs as can be seen in Figure 22. In Figure 22 the length of a1 

and b1 are respectively 1 and √2. In this paper the axial runs are neglected and only runs 

within the cube are performed. Reason is that our control factors have a minimum and 

maximum value. With equation 2 it is easy to encode these into a range of -1 to 1. Assuming 

√2 is possible in the equation means that the minimum or maximum value of the control 

factor will be exceeded.  

Every point in the CCD has an outcome Y. We can create two matrixes, an X matrix which is 

size [M x N] and a Y matrix which is size [M x 1]. The X matrix holds all the possible coded 

variables, the Y matrix the outcome of the system with these different coded values. The size 

of M and N are dependent on the amount of parameters. The amount of M and N can be 

calculated with equation 4 and 5.  

 𝑀 = 2|𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟| + 1 (4) 

 

𝑁 = 1 + 2 ⋅ |𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟| + ∑ (|𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟| − 𝑖

|𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟|

𝑖=1

) (5) 

In which |parameter| denotes the amount of parameters. Equation 4 is just the calculation of all 

the corners of the cube, plus one for the point in the middle of the cube. For the length of N, 

one is added. This is because the first column of the X matrix only consist of the number one. 

This is needed for equation 6. The calculation of the coefficients (β) of equation 1 is done 

with equation 6. 

 𝛽 = (𝑋𝑇𝑋)−1𝑋𝑇 (6) 
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Appendix E. Statistics 

To test if the coefficient has a significant influence on the output a student’s t-distribution is 

applied. This test is useful to see if two distributed means have different values. This method 

is useful since it can be used to test if a coefficient has an influence on the mean. If the test 

indicates that the mean is altered, the coefficient has an influence on the output. A two-sided 

test is applied since both below or above the mean indicates that the control factor has 

influence on the output(Press et al., 1996). To apply the student’s t-distribution equation 7 is 

used. 

 𝐴(𝑡|𝑣) = 𝐼 𝑣
𝑣+𝑡2

(
𝑣

2
,
1

2
) (7) 

𝐴(𝑡|𝑣) stance for the result of the two-sided test. Where v is the degrees of freedom. The t can 

be calculated with equation 8. 

 𝑡 =
βn

√𝑣𝑎𝑟𝛽𝑛

 (8) 

βn is the coefficient n that is tested. Varβn
is the variation of the coefficient n. 

To calculate the regularized incomplete beta function equation 9 is needed. 

 𝐼𝑥(𝑧, 𝑤) =
1

𝐵(𝑧, 𝑤)
∫ 𝑡𝑧−1(1 − 𝑡)𝑤−1𝑑𝑡

𝑥

0

 (9) 

And the beta function: 

 𝐵(𝑧, 𝑤) = ∫ 𝑡𝑧−1(1 − 𝑡)𝑤−1𝑑𝑡

1

0

 (10) 
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Appendix F. Relative gain for non-square multivariable systems 

Normally for the calculation of a relative gain matrix the amount of inputs of the systems is 

equal to the outputs. However not all the systems in this research hold this property. Chang 

and Yu (1990) found a way to calculate the relative gain for multivariable systems where the 

amount of inputs and outputs is not identical.  

For the calculation of the relative gain  for non-square multivariable systems, or in other terms 

the non-square relative gain, the steady state gain matrix is needed. Since our system is 

already in steady state, the relative gain is only needed to be calculated. This is done with  

equation 11. 

 𝐺 = [

𝜆11
𝑁 ⋯ 𝜆1𝑗

𝑁

⋮ ⋱ ⋮
𝜆𝑖1

𝑁 ⋯ 𝜆𝑖𝑗
𝑁

] (11) 

In which G is the steady state gain matrix. 𝜆𝑖𝑗
𝑁  is the open-loop gain over the closed-loop gain 

as seen in equation 12. 

 𝜆𝑖𝑗
𝑁 =

𝑜𝑝𝑒𝑛 − 𝑙𝑜𝑜𝑝 𝑔𝑎𝑖𝑛

𝑐𝑙𝑜𝑠𝑒𝑑 − 𝑙𝑜𝑜𝑝 𝑔𝑎𝑖𝑛
=

[
𝛿𝑦𝑖

𝛿𝑢𝑗
]

𝑢𝑘,𝑘≠𝑗

[
𝛿𝑦𝑖

𝛿𝑢𝑗
]

𝑦𝑘,𝑘≠𝑖

 (12) 

The open-loop gain is the change of 𝑦𝑖 if 𝑢𝑖 is increased with 𝛿𝑢𝑖 while all the other inputs 

remain constant.  

The closed loop is derived where an change of 𝛿𝑢𝑖 causes 𝑦𝑘,𝑘≠𝑖 to increase. The system will 

try to keep  𝑦𝑘,𝑘≠𝑖 constant by changing 𝑢𝑘,𝑘≠𝑗. Therefore a new 𝑢𝑘,𝑘≠𝑗 is derived which will 

change 𝑦𝑖 with  𝛿𝑦𝑖. 

For the calculation of the NRG equation 13 is used. 

 Λ𝑁 = 𝐺 ⊗ (𝐺+)𝑇 (13) 

In which ⊗ denotes element-by-element multiplication of the matrixes. Λ
N
 is our normalised 

relative gain. For the calculation of the NRG the inverse of G is needed. The matrix G is a 

non-square matrix so therefore calculation the inverse is done with the Moore-Penrose 

procedure. This creates a pseudo-inverse matrix of G stated as G
+
 in equation 13. 


