Measuring Food Supply Chain Performance

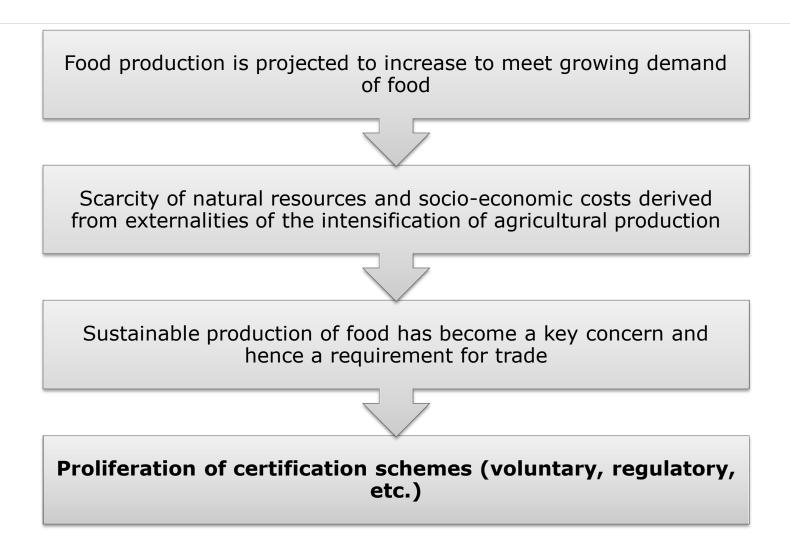
Daniel Gaitán Cremaschi, Alfons Oude Lansink, Miranda Meuwissen Business Economics Group, Wageningen University

daniel.gaitancremaschi@wur.nl

Slides prepared for presentation at the International Agricultural Trade Research Consortium's (IATRC's) 2013 Symposium: Productivity and Its Impacts on Global Trade, June 2-4, 2013, Seville, Spain

MEASURING FOOD SUPPLY CHAIN PERFORMANCE

Daniel Gaitán Cremaschi, Alfons Oude Lansink, Miranda Meuwissen Business Economics Group, Wageningen University


IATRC Symposium

Seville 2-4 June

MOTIVATION

MOTIVATION

Problems:

- Harmonization
- Recognition
- Market-access requirements
- Resources
- Insecurity

Major obstacle for trade of sustainable commodities

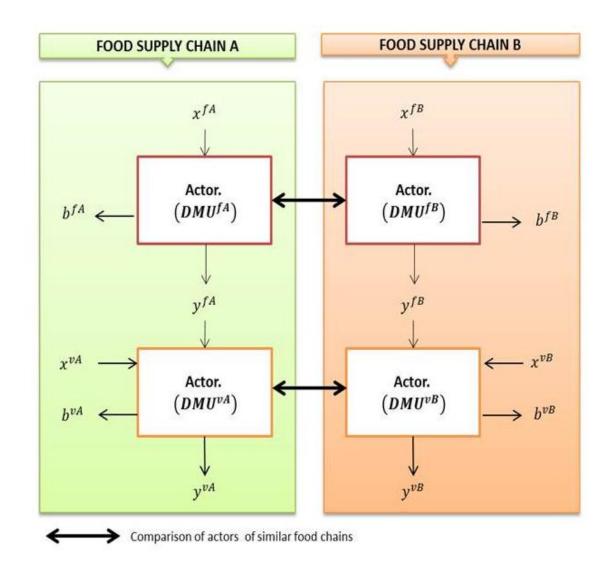
Therefore...

Need to develop a single metric of food supply chain performance towards sustainable development based on the Total Factor Productivity approach

WHY A TFP APPROACH?

TFP acknowledges the fact that a food supply chain is first a system of production

TFP measures are prompt to be adjusted to internalize externalities of agricultural commodity production



FOOD SUPPLY CHAIN SUSTAINABILITY

Actors (*DMUs*) transfor ming inputs into outputs

Inputs
$$x^{f}(x_{1}^{f}, x_{2}^{f}, ..., x_{n}^{f})$$

and outputs $y^{f}(y_{1}^{f}, y_{2}^{f}, ..., y_{m}^{f})$.

Undesirable outputs $b^{f}(b_{1}^{f}, b_{2}^{f} \dots b_{j}^{f})$.

FOOD SUPPLY CHAIN SUSTAINABILITY

✤ Efficient

Maintain the environmental quality

Provide social rewards and produce a sufficient and accessible food supply

ADJUSTED TFP INDICATORS

TFP Indicators

$$TFP^{fA} = Q_0(y^{fA}, b^{fA}) - Q_i(x^{fA})$$
$$TFP^{fAB} = Q_j(y^{fA}, y^{fB}, b^{fA}, b^{fB}) - Q_i(x^{fA}, x^{fB})$$

Adjusted Bennet and Luenberger indicator

ADJUSTED BENNET INDICATOR (1)

 $R^{AB} -$

Output quantity indicator minus an input quantity indicator

$$\frac{1}{2} \left(\frac{p^{A}}{p^{A}g_{y} + w^{A}g_{X} + r^{A}g_{b}} + \frac{p^{B}}{p^{B}g_{y} + w^{B}g_{x} + r^{B}g_{b}} \right) (y^{B} - y^{A}) - \frac{1}{2} \left(\frac{r^{A}}{p^{A}g_{y} + w^{A}g_{X} + r^{A}g_{b}} + \frac{r^{B}}{p^{B}g_{y} + w^{B}g_{x} + r^{B}g_{b}} \right) (r^{B} - r^{A}) - \frac{1}{2} \left(\frac{w^{A}}{p^{A}g_{y} + w^{A}g_{X} + r^{A}g_{b}} + \frac{w^{B}}{p^{B}g_{y} + w^{B}g_{x} + r^{B}g_{b}} \right) (x^{B} - x^{A})$$

Where bad outputs b are aggregated using shadow prices r.
Bennet indicator > 0 productivity B higher than A

ADJUSTED BENNET INDICATOR (2)

Measure of overall welfare.

Relative performance towards sustainability Hypothetical *DMU*: Based on international standards, targets, sustainable reference values, scientific literature, etc.

- Adjusted Bennet indicator < 0 room for improvement
- Shadow prices for non-marketed outputs: WTP and WTA

ADJUSTED BENNET INDICATOR (3)

Advantages

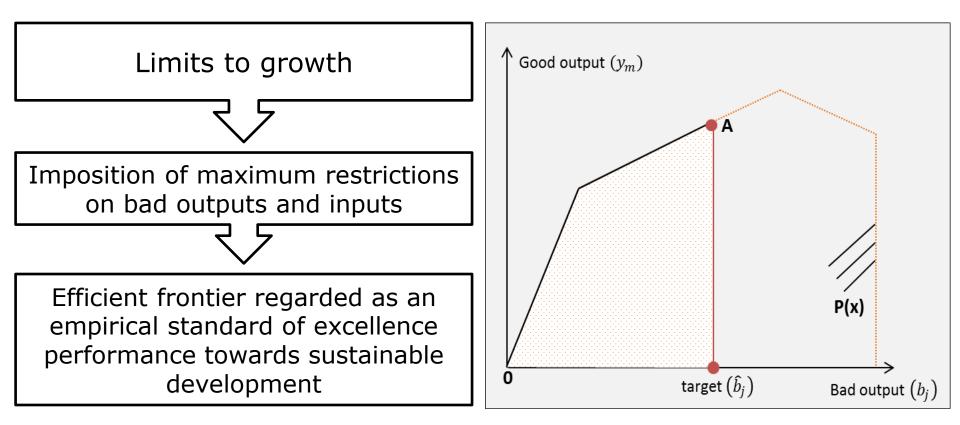
- Few observations required
- Easy to construct and compute
- Regional perceptions and values about sustainability aspects are considered

Disadvantages:

- Precise economic calculation is often impossible. Some values cannot be adequately captured by monetary metrics
- Some values are non-fungible and subject to value incommensurabilities.

ADJUSTED LUENBERGER INDICATOR (1)

Technology P: all feasible vectors (x, y, b) defined as:


 $P(x) = \{(y, b): x \ can \ produce \ (y, b)\}$

- Two properties:
 - 1. Weak disposability
 - 3. Null-jointness

ADJUSTED LUENBERGER INDICATOR (2)

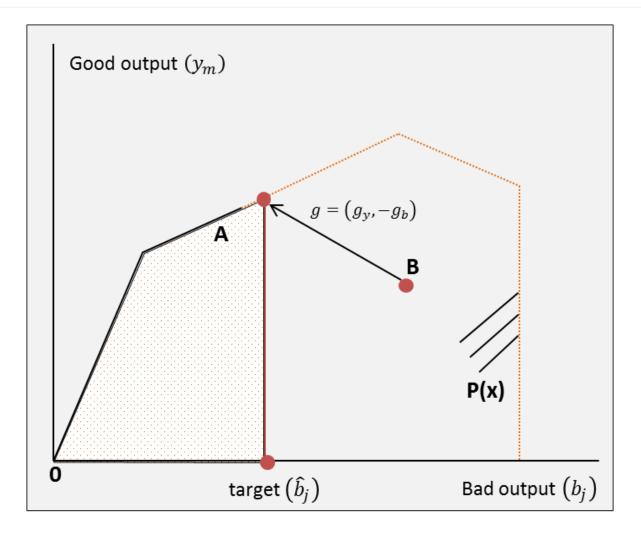
HOW TO ESTIMATE THE PRODUCTION TECHNOLOGY FRONTIER?

Once the frontier is established, we can compare a set of DMUs, to the frontier. Thus, it can be regarded as a benchmarking tool

How to evaluate the economic, environmental and social performance of the observed DMUs.

PERFORMANCE EVALUATION

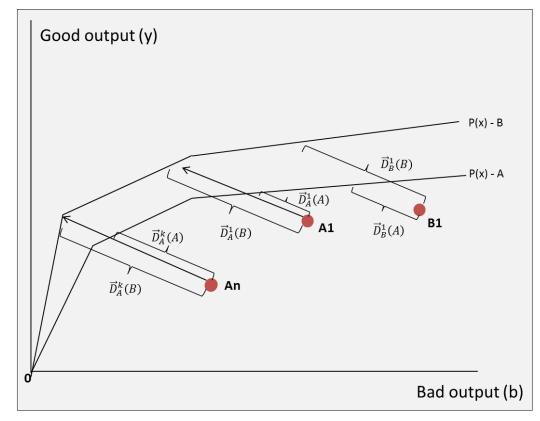
Directional distance functions


In terms of P(x), the directional output distance function is defined as

$$\vec{D}_0(x, y, b; g_y, g_b) = max\left\{\left(\beta: \left(y + \beta g_y, b - \beta g_b\right) \in P(x)\right)\right\}$$

Directional vector used to include societal preferences with regard to sustainability aspects (<u>Are the economic,</u> <u>social and environmental dimension of sustainability</u> <u>equally important?</u>)

PERFORMANCE EVALUATION



CROSS-COUNTRY PERFORMANCE ESTIMATION

Adjusted Luenberger indicator defined as

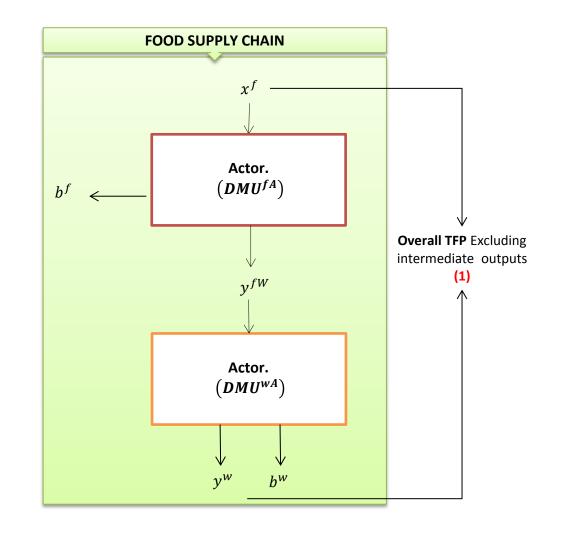
 $SL(.) = \frac{1}{2} \left\{ \begin{bmatrix} D_B(x_A, y_A, b_A; g_y, g_b) - D_B(x_B, y_B, b_B; g_y, g_b) \end{bmatrix} + \\ \begin{bmatrix} D_A(x_A, y_A, b_A; g_y, g_b) - D_A(x_B, y_B, b_B; g_y, g_b) \end{bmatrix} \right\}$

ADJUSTED LUENBERGER INDICATOR

Advantages

- Does not require information
- Inputs, bad outputs and other social outputs can be changed according to institutional regulations, targets, sustainable use levels or relative importance of each sustainability aspect (directional vector)

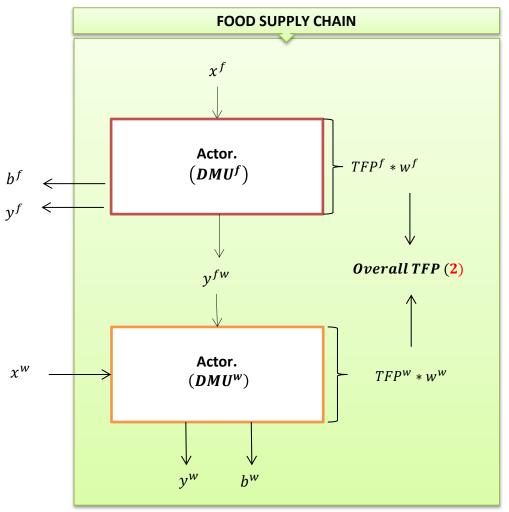
Disadvantages:


- Require extensive data
- Large number of input and output variables will affect the DEA results, implying higher probability of efficient DMUs
- The determination of the weights is problematic and has a high degree of subjectivity

OVERALL FOOD SUPPLY CHAIN PERFORMANCE

 Bad outputs can be added since "bads" are not used as inputs through stages of the chain

Previous approach ignoring intermediate outputs y^f


ADJUSTED INDICATORS IN A CHAIN CONTEXT

2) Weighted sum of individual TFP measures where weights (w^f and w^w) represent the relative importance of individual actors to the overall performance.

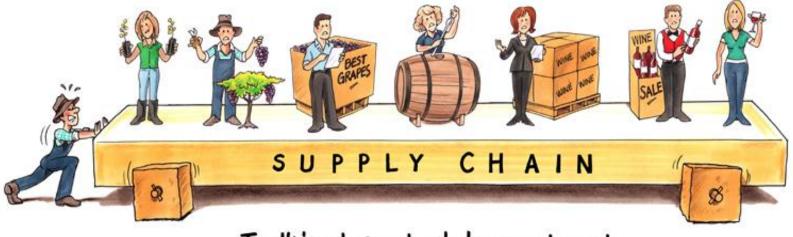
Proportion of the total input used at each stage of the chain

 $w^k = (DMU^k input)$

/(Total input along the chain)

CONCLUSIONS

By providing reliable information about the extent to which commodities are sustainably produced


- Adequate solutions to disputes in the interest of the majority of stakeholders
- Avoiding costs, time and reputation damage
- Will allow imposing trade preferences for sustainable commodities
- Could be the base of Corporate Social Responsibility reporting

Selection of sustainability aspects and indicators

- Application of the adjusted Bennet indicator in conventional, organic and Genetically Modified soy chains in Brazil.
- Application of the adjusted Luenberger indicator in potato chains in the European context
- Comparison of both indicators based on data availability (data poor and data rich situations)

Traditional supply chain - supply push

THANK YOU FOR YOUR ATTENTION

