
Emerald: A Stochastic Modelling Approach for Rapid 
Assessment of Groundwater Dynamics 

DJJ . Walvoort 
M.F.P. Bierkens 

BIBLIOTHEEK "DE HAAFF 
Droevendaalsesteeg 3a 
6708 PB Wageningen 

Report 171 

DLO Winand Staring Centre, Wageningen (The Netherlands), 1999 

aoôaso 
! J' 



ABSTRACT 
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A simple one-dimensional stochastic model was developed for quantifying groundwater dynamics 
and model accuracy. Due to its soil physical backbone, the model is somewhere between pure empirical 
models on the one hand, and complex physical-mechanistic models on the other. Hence, it is envisaged 
that it is more effective in scenario studies than pure empirical models, and more easily to operate 
than complex physical-mechanistic models. A case study showed that the model was capable of 
predicting various groundwater characteristics. 
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Preface 

As part of the DWK Research Program 328 of the Dutch Ministry of Agriculture, 
Nature Conservation, and Fisheries, the section Land Inventory Methods of the 
Winand Staring Centre is developing a tool-box for characterising groundwater 
dynamics on local and regional scales. One of the tools in this box is EMERALD, a 
stochastic hydrologie model, primarily developed to combine fast outcomes with high 
accuracy. These properties are also reflected by the title of this report, which is in 
fact derived from the acronym SMARAGD, i.e. EMERALD in Dutch. 

EMERALD is named after the green variety of the mineral beryl. Beryl is colourless 
when pure, but intense green when impurities of the metal chromium are present in 
its crystal lattice. Emerald does not only owe its brilliant green colour to these 
impurities, but also its preciousness. 

The same is true for the mechanistic hydrologie model presented in this report. It 
is also enriched by adding impurities to its internal structure. But unlike the gem, 
these impurities are not present in a physical sense, but merely in the form of 
statistical noise. 

We thank Martin Knotters and Tom Hoogland of SC-DLO for their useful comments 
on an earlier draft of this report. 



Summary 

Accurate information on phreatic groundwater dynamics is indispensable for 
agriculture, land use planning, nature conservation, and water management. In 
addition to field surveys, hydrological models can be very valuable to obtain this 
information. Due to our incomplete knowledge of the hydrological processes involved 
(resulting in invalid model assumptions and uncertain model parameters), and input 
data afflicted with measurement errors, model predictions are inaccurate. Stochastic 
models can take these uncertainties explicitly into account. 

In this report, a stochastic model is presented, which combines the fastness and 
simplicity of empirical models and the knowledge on soil physics incorporated in 
physical-mechanistic models. This model, hereafter referred to as EMERALD, consists 
of three submodels, i.e. a model of the unsaturated zone, a model of the saturated 
zone, and a noise model. The unsaturated zone is partitioned into two subsystems, 
i.e. a root zone and a percolation zone. The root zone is modelled by means of a 
nonlinear reservoir. The incoming fluxes are precipitation and capillary rise, the 
outgoing fluxes are évapotranspiration and percolation. The second subsystem, i.e. 
the percolation zone, is modelled as the convolution of the percolation flux leaving 
the root zone, and the pulse response of the percolation zone. The pulse response 
is based on Richards' equation, and as such it has a soil physical background. 
EMERALD can take multiple subsoil layers, and even preferential flow (bypass flow) 
into account. The saturated zone is modelled by means of an analytical solution to 
the one-dimensional transient flow equation. 

Uncertainty is modelled by means of an autoregressive noise model. This model 
can be used to generate external or internal noise. External noise is added directly 
to the predicted time series. Internal noise on the other hand is considered as 
additional groundwater recharge, and as such it serves as input to the groundwater 
model. Realizations generated by an internal noise model, therefore contain noise 
that is affected by the groundwater system. This approach distinguishes EMERALD 

from most other stochastic hydrological models. 

EMERALD can be used to predict time series of groundwater depths at a specific 
location, together with the variance of the prediction errors. Furthermore, EMERALD 
can be used to simulate equiprobable realizations of groundwater time series. These 
realizations can then be used to derive interesting groundwater characteristics like 
mean highest and mean lowest water table depths, regime curves and frequency of 
exceedance graphs. Furthermore, the accuracy of the results is explicitly quantified. 
EMERALD not only generates time series of groundwater depths, but also of specific 
groundwater discharge, and several additional quantities like actual évapotranspiration, 
soil moisture content and groundwater recharge. 

In this report, four calibration methods are presented. Three pertain to the noise 
model, and one to the deterministic component of EMERALD. The performance of 
these methods is tested by means of a simulation study. The calibration method for 
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the deterministic component of EMERALD performed very well, even in the presence 
of high noise levels. Calibration of the internal noise model was more difficult. The 
calibration method pertaining to the external noise model was not tested, because 
similar methods were tested elsewhere. 

The report is concluded with a case study. In this case study EMERALD is confronted 
with real-wold data. Observed time series were split into calibration and validation 
sets. EMERALD yielded unbiased predictions for the calibration sets and slightly biased 
predictions for the validation sets. The accuracy attained, as expressed by the root 
mean squared error, varied between 11.0 cm and 13.4 cm. The fraction of residuals 
outside the area bounded by the 2.5% and 97.5% percentiles was generally somewhat 
too high. 

Validation also showed that EMERALD correctly reproduces univariate and bivariate 
statistics. In addition, derived measures of groundwater dynamics like the mean 
highest and mean lowest water-table depths, and the frequency of exceedance graph 
were also predicted well. 

EMERALD is implemented in a computer program. It is driven by a simple script 
language. 

12 



1 Introduction 

To support policymaking, accurate information on the spatial and temporal variation 
of groundwater levels is required. In the Netherlands, this kind of information is 
usually available in the form of maps of water table classes (e.g. Te Riele & Brus, 
1996). The concept of water table classes provides a concise way to describe 
groundwater fluctuation by means of two parameters, i.e. the mean highest and mean 
lowest groundwater level (Van der Sluijs, 1990). However, the information provided 
by these parameters is often too limited. There is a growing need for more detailed 
information on groundwater dynamics. 

This kind of detail can not be obtained by intensifying field survey campaigns, since 
the required observation density, both in space and time, will certainly violate 
budgetary constraints. Therefore, in addition to field surveys, one also has to resort 
to mathematical models for predicting groundwater characteristics at unvisited points 
in the space-time domain. 

One way to describe the spatio-temporal variation of the phreatic surface is to use 
a distributed transient groundwater model. These models are mechanistic in nature, 
and describe flow in the saturated zone. However, the spatial variation of a shallow 
water table is mostly determined by the properties of the unsaturated zone, and by 
a dense network of drainage ditches with controlled surface water levels. To describe 
such groundwater tables with sufficient accuracy (root mean squared prediction error 
smaller than 20 cm), the distributed groundwater model must be of high resolution, 
and should include the unsaturated zone and all surface waters. This would require 
an enormous amount of input that can only be acquired at high costs. 

Alternatively, one can use simple one-dimensional models of soil-groundwater 
interaction that describe the temporal variation of the water table at a single location. 
Such one dimensional models only require some meteorological inputs and simple 
borehole descriptions of the topsoil (of which there are many available at the Staring 
Centre). At each point where a borehole description is available, one-dimensional 
models can be used to generate long time series of daily water table depths. A spatio-
temporal description then follows from interpolating between these locations. 

Knotters & Van Walsum (1994, 1997) evaluated the performance of two one-
dimensional groundwater models, viz. a transfer function model (Box et al, 1994), 
and SWATRE (Feddes et aZ.,1978; Belmans et al., 1983). The first is an empirical 
model, while the latter is more physical-mechanistic in nature. Both models were 
equipped with an additive noise model. Therefore, in addition to a more detailed 
description of groundwater dynamics (also extreme values can be simulated), they 
also provide valuable information on the accuracy obtained. Although SWATRE 
performed slightly better in their case study, it required a lot of additional information 
on soil properties and drainage conditions. 
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Both physical-mechanistic and empirical models have their pros and cons. Empirical 
models are relatively fast, robust, need smaller amounts of data, and are less 
complicated than physical-mechanistic models. Physical-Mechanistic models on the 
other hand are less prone to extrapolation errors than empirical models due to their 
soil physical background. In this report, EMERALD is introduced, a stochastic 
hydrologie model in which the advantages of empirical and physical-mechanistic 
models are united. EMERALD is a physical-mechanistic model equipped with a 
stochastic component. In contrast with SWATRE, the soil-groundwater system is 
modelled by means of simple analytical expressions. As a result, EMERALD is more 
robust, requires less CPU-time, and erroneous results are easier to trace back. Another 
difference with both SWATRE and the transfer function-noise model is the way in 
which noise is added to the system. Noise can not only be added a posteriori to the 
deterministic model output, but can also serve as additional input to the groundwater 
system, where it is moulded by the physical-mechanistic analytical groundwater 
model. The resulting noise has therefore gained some colour, and contains site 
specific hydrological information. This latter property makes the noise, at least 
theoretically, transferable in space. We expect EMERALD to fill the gap between 
complex physical-mechanistic models and purely empirical models. 

The outline of this report is as follows. In Chapter 2, we give the theoretical 
background of EMERALD. Each building stone of the model is addressed in detail. 
Chapter 3 is devoted to the calibration of the deterministic and stochastic components 
of EMERALD. The model is verified by means of simulation studies. The results of 
these studies are given in chapter 4. In chapter 5, EMERALD is confronted with real 
world data. Finally, the main conclusions are summarized in chapter 6. 
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2 Model description 

In this chapter, the theoretical background of EMERALD is given. A schematic 
representation of the soil-groundwater system to be modelled is depicted in Fig. 2.1. 
Three subsystems can be distinguished, i.e. the root zone, the percolation zone, and 
the groundwater system. Each subsystem is successively addressed below. 
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Fig. 2.1: Left: Schematic representation of the hydrologie system under study, showing fluxes of 
the saturated zone. Right: Enlargement of the figure on the left, showing fluxes in the 
unsaturated zone. The symbols are explained in the text, and in the list of symbols. 

2.1 Root zone 

The root zone is modelled as a nonlinear reservoir, i.e. its outflow is nonlinearly 
related to its moisture volume. The root zone is schematically depicted in Fig. 2.2. 

VmftT 

Vmlrv 

Fig. 2.2: Schematic representation of the root zone 

Incoming fluxes are precipitation and capillary rise, outgoing fluxes are 
évapotranspiration and percolation. The volume of soil moisture in the root zone 
during time step tk is obtained by solving the following water balance: 

V(h) = Vit^) + (P(tk) +qßk) ~Eßk) -qv(tk))At (2.1) 
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where 
tk = t ime step k [t]; 
V = volume of soil moisture in the root zone [L]; 
At = duration of t ime step tk [t]; 
P = precipitation [L t 1 ] ; 
Ez = actual évapotranspiration [L t 1 ] ; 
qc = capillary rise [L t 1 ] ; 
qp - percolation [Lt1] 

The upper and lower bounds of V are governed by the soil moisture content at field 
capacity and wilting point respectively: 

V =</9 f (2.2) 
max r fc 

V . = J 9 (2.3) 
min r wp 

where 
V m a x = maximum volume of soil moisture in the root zone [L]; 
V m i n = minimum volume of soil moisture in the root zone [L]; 
0fc = soil moisture content at field capacity [-]; 
6wp = soil moisture content at wilting point [-]; 
dr = effective rooting depth [L] 

The effective rooting depth is defined as the soil depth where-just enough roots are 
available to entirely deplete the soil moisture storage capacity Smax (Wiersum & 
Reijmerink, 1990). 5max is given by: 

S = V - V . (2.4) 
max max nun 

Wiersum & Reijmerink (1990) also give a more practical definition of effective 
rooting depth: that level above which 90 percent of the roots are present. 

In the following subsections, the components of the water balance are addressed. 

2.1.1 Precipitation and évapotranspiration 

The Royal Netherlands Meteorological Institute (KNMI) maintains an extensive 
monitoring network of meteorological stations. At these stations several meteorologie 
quantities are recorded or deduced. Among these are precipitation amounts and 
Makkink's reference-crop évapotranspiration. The latter corresponds to the 
évapotranspiration of an extensive area, uniformly covered with dry "standard" grass, 
8-15 cm in height, and well supplied with water (CHO, 1986; Feddes, 1987). The 
potential évapotranspiration for other crops can be obtained by multiplying Makkink's 
reference-crop évapotranspiration ET by a crop specific factor fc: 

E =fE (2.5) 
p J c r 

16 



where 
= potential évapotranspiration [Lt"1]; 
= crop factor [-]; 
= Makkink's reference-crop évapotranspiration [Lt1] 

Feddes (1987) provides crop factors for several crops. By definition, the crop factor 
equals unity for "standard" grass. In case of soil moisture deficiencies, actual 
évapotranspiration is less than potential évapotranspiration, and is given by: 

E =oc E 
a s p 

(2.6) 

Reduction factor ocs is related to pressure head hp. This relationship is completely 
defined by two parameters, i.e. limiting point and wilting point (Fig. 2.3). It bears 
some resemblance to the reduction function of Feddes et al. (1978), which relates 
actual to potential transpiration. 

«*[-] 

| h p | (cm) -

Fig. 2.3: Evapotranspiration reduction function 

Pressure head is dependent on the moisture content of the root zone, according to 
(Wösten et al, 1994): 

h =_L p a 
e - e 

î 
e - e 

v 

(2.7) 

where 6 is the moisture content [-], and 9r [-], 0S [-], a [L1], and n [-] are the Van 
Genuchten parameters. The Van Genuchten parameters for several representative soils 
in the Netherlands are tabulated in Wösten et al. (1994). The moisture content of 
the root zone can be obtained by: 

0 = V(U (2.8) 

So, having obtained the soil moisture content by means of Eq.2.8, the actual 
évapotranspiration can be computed by applying Eqs 2.7, 2.5, and 2.6 respectively. 
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2.1.2 Capillary rise 

The amount of capillary rise reaching the root zone is governed by both groundwater 
depth, and the moisture content of the root zone. Capillary rise occurs if and only 
if the following condition is met: 

V{tk_x) + (P(tk) - Eßk))At < Vm (2.9) 

The maximum (or potential) amount of capillary rise is related to groundwater depth, 
and is modelled by a logistic function: 

( \ 

1c 
max max 

At 
1 1 

1 +exp(60+61z) 
(2.10) 

This function and its parameters are graphically depicted in Fig. 2.4. 

z (cm) 

Fig. 2.4: Logistic function to model qc as a function of z 

Variable z is given by: 

z=zt-dT-du- h(tkJ (2.11) 

where 

dr 

d„ 

h{tk-i) 

= ground level with respect to drainage base [L]; 
= effective rooting depth [L]; 
= thickness of the capillary fringe [L], i.e. the saturated zone above the 

groundwater table where the absolute value of the pressure head is greater 
than the air-entry value of the largest pores. In this report, we follow 
Gehrels (1995) by assuming that the air-entry value directly below the 
root zone equals pF 1.3; 

= groundwater level with respect to drainage base at tk_j [L]. 
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In agricultural water management the term critical depth is employed to indicate the 
position of the phreatic surface where it is just able to supply a flux of 1.5 à 2 
mm/day to the bottom of the root zone (Van der Sluijs, 1990). Smaller fluxes result 
in crop deterioration due to moisture deficits. 

Given the following conditions: 

4 c m a X = e"' 

is 
-i max 

n max _ ^ 
% At 

if 

if 

z = zc 

z=\ = \ 

b, 
1 

(2.12) 

where 

gc
crit = critical capillary flux [Lt1], usually 1.5 à 2.0 mm/day 

zc = critical depth minus thickness capillary fringe [L]; 
Zi - point of inflection of the logistic function [L]. 

Eq. 2.10 can be solved for b0 and bt. This results in: 
( \ 

è 0 = l n 

\ = 

V 

2b, 

0.2At 
1 

(2.13) 

Gehrels (1995) used a linear rather than a logistic function to model the maximum 
amount of capillary rise. In this report, however, it is assumed that the gradual 
behaviour of a logistic function better complies with reality. 

The actual amount of capillary rise is finally determined by the degree of saturation 
of the root zone: 

<?A) 

' T " if VaM) iP(tk) -E£tk) +qr\tk))At < Vm 

At 
if V(tk^[P(tk)-EStkyqrx(h))At > V, 

(2.14) 
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2.1.3 Percolation 

Percolation occurs if field capacity is exceeded. In symbols: 

The percolation flux is given by: 

a(t) _ vc t-,)+ {ny-EMY* - vmax (2.16) 
q*(k) ~ Ät 

2.2 Percolation zone 

Two fluxes can be discerned in the percolation zone, i.e. an incoming and an outgoing 
flux (Fig. 2.1). The first, i.e. qp, is the outgoing flux of the root zone, while the latter, 
i.e. groundwater recharge q%, serves as input to the groundwater system. qv does not 
instantaneously affect groundwater recharge, in fact the response of q% is more or 
less delayed. Furthermore, as a result of storage and dispersion, q% has a smoother 
appearance than qp. Delay and smoothing are more pronounced in thick percolation 
zones. In section 2.2.1 an expression is derived to model both delay and smoothing 
for a single soil layer. In section 2.2.2 this expression is extended to the multi-layer 
case. Incorporation of preferential flow is discussed in section 2.2.3. 

2.2.1 Single layer percolation zone 

Delay and smoothing can be modelled by: 

«,(0 =iX('WA'>Wi>) (2-17) 

1=1 

where 
q. - groundwater recharge [Lt"1]; 
qv = percolation [Lt" ]; 
Up = pulse response of the percolation zone [-] 

This expression gives groundwater recharge as the convolution of percolation and 
pulse response. The concept of pulse response stems from systems analysis. The pulse 
response of a system is defined as the response of the system to an input of unit 
volume occurring at a uniform rate for a period At (Dooge, 1973, p. 127). Likewise, 
the pulse response in Eq.2.17 describes groundwater recharge as a function of time, 
resulting from a unit depth of percolation entering the percolation zone uniformly 
during time step At. 
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The pulse response is given by: 

Up(At,t)=Sp(t)-Sp(t-to) (2.18) 

where 
5P(0 = step response or S-curve for the percolation zone [-]. 

The step response of a system is defined as the output of the system resulting from 
zero input for t<0, and an input of unit intensity for t>0 (cf. Dooge, 1973, p.86). In 
order to-normalize the volume of the pulse response, Eq.2.18 is usually divided by 
At (see Dooge, 1973, p.86). In our case, however, normalization is inappropriate, 
since percolation is given as an intensity rather than a depth. 

In short, Eq.2.17 can be applied if we are able to find an expression for either the 
pulse response or the step response. The latter can be derived by considering 
Richards' equation as a starting point. Richards' equation describes one-dimensional 
unsaturated flow in soil, and is given by (e.g. Koorevaar et ai, 1983): 

/ 

— = —k 
I F Hz 

dh 
p 

dz 
+ 1 

(2.19) 

J 

where 
0 = soil moisture content [-]; 
t - time [t]; 
k = hydraulic conductivity [Lt1]; 
hp = pressure head of soil moisture [L]; 
z - vertical space coordinate [L]. 

It can be derived by substituting Darcy's law, i.e. 

( 

o = - * 
dh 

p 

dz 

\ 

.+1 
(2.20) 

J 

into the equation of continuity, i.e. 

dt dz 
(2.21) 

where qz is the flux density in vertical direction. Since Eq.2.17 does only apply to 
linear systems, Richards' equation has to be linearized: 

dt 
M7 -^-k\QJ^l+k(QJhp\QJ ^1 

dz2 

(2.22) 
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where 

t 

z 

= flux density in z-direction [Lt'1]; 
= time [t]; 
= depth [L] (z is decreasing in downward direction); 
= hydraulic conductivity corresponding to 8 ff (see below) [Lt"1]; 

and 

*'«u - § 
where 
k 

K 
8 
9ef f 

K'(QJ = 
dh. 

-p v eff' 3 e 

hydraulic conductivity [Lt1]; 
pressure head [Lt1] 
soil moisture content [-]; 
effective soil moisture content, i.e. the soil moisture content that 
corresponds to the mean vertical flux density [-]. 

It's derivation is given in Zwamborn (1995) and in annex 1. Eq.2.22 has the same 
form as the convection-dispersion equation used in solute transport. The analytical 
solution of the convection-dispersion equation for a step input, i.e. the step response 

of the system, is given by Bear (1979, p.268). Since k'(Qett) corresponds to the 

convection parameter, and k(Qe{^h /(8eff) to the dispersion parameter this solution can 
be written as: 

S (d ,0= -
pv p' ' 2 

erfc 
d?-k'i&Jt 

2Jk(QJhJ(QJt efF p V" efF 

exp 
k\QJdp 

WJK'&J 
erfc 

àp
+k'(QJt 

2jk(QJhp\QJi 

(2.23) 

Note that z has been replaced by d , i.e. the average thickness of the percolation 
zone. The pulse response can now be obtained by applying Eq.2.18. Convolution of 
percolation and pulse response finally gives groundwater recharge (Eq.2.17). 

2.2.2 Multi-layer percolation zone 

It is often possible to discern more than one soil layer in the percolation zone, each 
with its own hydrological properties. In order to model a multi-layer percolation zone, 
Eq.2.17 should be generalized as follows: 
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*A> = E *;-,('W*W for
 - / = 1 ' 2 ' - ' " L

 (Z24) 

1=1 j 

where 
qj = outflow of layer j [Lt1]; 
qjA = outflow of layer j - \ [Lr1]; 
U = pulse response for layer y' of the percolation zone [-]; 
nL = number of layers in the percolation zone [-]. 

Note that q0 corresponds to qp, and qn to qg. 

2.2.3 Preferential flow 

In practice, Richards' equation sometimes tends to overestimate delay. The reason 
is that through burrowing activities of soil animals, and by the presence of root 
channels and vertical cracks, part of the water entering the percolation zone reaches 
the groundwater faster than predicted. This preferential flow, or bypass flow as it 
is also called, can be modelled by: 

*A> = E a -/^-,(W* W + f^flj-i for >=1 A - ^ L (2-25) 

i=i ' 

where fbj is the fraction of preferential flow for subsoil layer j . 

2.3 Groundwater system 

The groundwater system is modelled by means of an analytical solution of the 
transient flow equation. Its derivation is given in section 2.3.1. On the basis of this 
solution, the step and pulse responses of the system are derived (sections 2.3.2 and 
2.3.3). The latter is convolved with the net input to the groundwater system to obtain 
groundwater depth. In the final section, this convolution is rewritten in order to 
increase computational efficiency. 

2.3.1 Transient flow equation 

Groundwater flow is considered to be one-dimensional through a homogeneous 
unconfined aquifer. The groundwater system is schematically depicted in Fig. 2.1. 
Flow is subjected to the Dupuit-Forcheimer assumption, i.e. flow is horizontal, and 
its velocity uniform with depth. Furthermore h«D, and the saturated hydraulic 
conductivity k is assumed to be a constant. For these conditions, Darcy's law and 
the equation of continuity for horizontal saturated transient, i.e. time dependent, flow 
are given by Eqs 2.26 and 2.27 respectively (Dooge, 1973): 
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gx = -kD. 
dh 

Ü£i = (O- — 
dx n dt 

where 

4x = flux density in jc-direction (horizontal flow) [L2t-1]; 
= net input to the groundwater system [Lt1]; 
= effective drainage depth [L]; 

'= specific yield [-]; 
= time [t]; 
= hydraulic conductivity [Lt"1]; 
= hydraulic head [L]; 
= horizontal space coordinate [L]. 

(2.26) 

(2.27) 

(2.28) 

Net input to the groundwater system qn is defined as: 

" n " g " v " c 

where 
qg - groundwater recharge [Lt"1]; 
qv - seepage (qw>0) or infiltration (qv<0) [Lt1]; 
qc - capillary rise [Lt1]. 

Substituting Eq.2.26 into Eq.2.27 yields the one-dimensional transient flow equation: 

kD + q (t) = u— 
dx2 " dt 

(2.29) 

Kraijenhoff van de Leur (1958) derived its analytical solution subject to the initial 
and boundary conditions in Table 2.1: 

4<7 A h(x,t)= — / £ n 
H/i n=l,3,5 

1 - exp 
f n2t^ 

sin 
1'nnx^ 

P V 

(2.30) 

where L is the average distance between water courses (Fig. 2), and J (dimension: 
[t]) is given by: 

(2.31) 
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Table 2.1: initial and boundary conditions to solve the transient flow equation 

time place state description 

t<0 0<x<L qn=0 no input for t<0 
t>0 0<x<L gn=constant constant input for t>0 
t-0 0<x<L h=0 flat initial groundwater surface 
t>0 x=0 h=0 constant water level in water course at x=0 
/>0 x-L h-0 constant water level in water course at x=L 
t—>°° 0<x<L dh/dt=0 steady state (net input = groundwater discharge) 

Reservoir characteristic J is related to drainage resistance, a more familiar parameter 
in Dutch water management. Drainage resistance is defined as the quotient of 
convexity and specific groundwater discharge during steady state conditions (CHO, 
1986). In symbols: 

h(x=—L, f—>°°) 
(2.32) 

Convexity at t—>°° (steady state) is given by: 

h(x=lL, t—>oo) = Hm 
4o 

i n j £ n 
™M «-1,3,5 

1 -exp 
' - n 2 ^ 

V J J 
sin 

fnn^ 

V2J 

TC/i „=1, ~3,5,-7 

n3kD 32 

L2 

SkD 
% 

(2.33) 

At steady state, qd-qn- Hence, drainage resistance is given by: 

h(x=lL, f->oo) 

h(x=lL, t—>°°) (2.34) 

In 

SkD 
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Combining Eqs.2.31 and 2.34 yields: 

, 8u 

7T 
(2.35) 

Substituting Eq.2.35 into Eq.2.30 gives the solution of Kraijenhoff van de Leur in 
terms of drainage resistance: 

2>2q -
h(x,f)=—JLYE n 

TV „=1,3,5 

1 -exp ^ n V ^ 
8^y 

yj 
sin 

^«TCt^ (2.36) 

2.3.2 Flow as step response 

Starting with an initial horizontal groundwater surface, Eq.2.36 describes the position 
of the phreatic surface as a function of space and time, resulting from a constant input 
qn. If this input equals unity, Eq.2.36 gives the step response of the system: 

32 
5h(x,/)=—-YE n 

TV „=1,3,5 
exp 

(-n2n2t^ 

8 W P 
sin 

^rnix^ (2.37) 

In the previous section, specific groundwater discharge qd was introduced in order 
to derive an expression for drainage resistance. By considering the definition of qd 

as a starting point, its step response can be derived. Specific groundwater discharge 
is defined as the volume of groundwater discharge per unit of catchment area (CHO, 
1986). In symbols: 

iL 
2 

(2.39) 

where qs is the discharge per unit length of water course at x=0 or x-L [L2t ' ] . This 
quantity can be obtained by evaluating Dupuit-Darcy at JE=0 (or equivalently at x=L): 

qs = -kD— 
dx 

(2.40) 
x=0 
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If the net input to the groundwater system equals unity, Eq.2.40 can be written as: 

dS, 
9. = "«M dx x=0 

, n 3 2 
= -kD—y 

KJ 
E n 

„=1,3,5 

1-exp 
( n2K2t^ 

8/-Y P 

n% 
.cos 

^rnix^ 

KL J 

(2.41) 

x=0 

= -kD—-y £ n 

K2L '„= 1,3,5 

1-exp ' n¥(̂ ' 
8 ^ 

The step response of #d can be obtained by substituting Eq.2.41 into Eq.2.39. 
Transmissivity kD can be eliminated by means of Eq.2.34: 

f «V^1 

TV „=1,3,5 
1-exp 

8^y 
(2.42) 

2.3.3 Flow as pulse response 

In the previous section it was assumed that groundwater input qn is invariant with 
time. However, since qn is a function of time-dependent processes, like precipitation 
and évapotranspiration, this assumption does generally not hold. Precipitation and 
évapotranspiration are usually recorded on a daily basis, and can therefore be 
considered as pulses, i.e. average inputs during a given time step, in this case 1 day. 
Consequently, we need pulse responses rather than step responses. As was shown 
in section 2.2 the pulse response for time step At can be obtained by applying: 

U(At,t) = S(t) - S(t-At) 

Substitution of Eqs 2.37 and 2.42 into Eq.2.43 respectively gives: 

(2.43) 

32 
Uh(x,At,t) = — Y Y, n 

% „=1,3,5 
exp 

fn2n2At^ 

8^y 
•1 exp 

( n2K2t^ 

8 W 

sin 
^ rVKX^ 

V L J 

(2.44) 

t/ (Af,0=-iE n 
K „=1,3,5 

exp 
U2Tl2At^ 

%w 
exp 

( n2K2t^ 

8/OT 

(2.46) 

Let qa(tt) denote the average net input to the groundwater system during time step 
(/,_!,£,]. The groundwater level at time tk can then be obtained by convolution of qn 

and Uh: 

h{x,tk) =
1Eqa($Uh(xMtk_(i_J (2.47a) 
i=i 
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The specific groundwater discharge can be obtained in a similar way: 

1=1 

(2.49a) 

These expressions are only valid in case the initial conditions in Table 2.1 are met, 
i.e. h(x,t0)-0 V {x | 0<x<L} and consequently qa(t0)=0. Otherwise, a correction term 
should be added to each expression (e.g. De Zeeuw, 1966): 

h(x,tk) = h(x,t0) exp 

4A) = 4d('0)
exP 

xp 

V 

h* 
{ 8^yJ 

8^YJ 
+ 

i=l 

(2.47b) 

(2.49b) 

In this report, however, the correction terms are omitted because their contribution 
to the total expressions diminishes quickly as tk increases. 

2.3.4 Time series representation 

In order to increase computational efficiency, Eqs 2.47a and 2.49a are rewritten 
according to the day-by-day method of De Zeeuw (1966). This method leads to the 
following recurrence relations (Annex 2) if the higher order terms are neglected: 

^ ) = ô ^ V i ) + ^ A ) + »A(V.) <2-5°) 

qA(tk) = 8<7d(Vi) + wo<7A) + « k A - , ) ( 2-51 ) 

where 
f Afft2^ 

8//y 
8 = exp 

mo = —77(l-8)sin 
it* 

co, = -8AI/h(l) 

+ A[/h(l) 

coo = 4 (1 -5 )+At / (1 ) 
7T2 

œî = -8AI7 (1) 

Af / h ( l ) =SË n-3(l-ô"2)sin 
7t n=3,5,7 

^ratx^ 

vL J 

' 7C n-3,5,7 
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Parameter 8 is the autoregressive parameter of the model, andco0, co;, co0 and to, 
are its moving average parameters. 

In case of capillary rise, qa(tk) is a function of h(tk). Therefore, Eqs 2.50 and 2.51 
are nonlinear. A linear approximation can be obtained by letting qn(tk) depend on 
Ktk.ty. 

h(tk) = SAC^) + a0qßk, h(tk_x)) + &#&„ , h(tk_2)) (2.52) 

qd(tk) « Sqß^) + (u/
0qßk , h(t„)) + ( ö ^ . , , h(tk_2)) (2.53) 

Eqs 2.52 and 2.53 represent the deterministic component of EMERALD. An important 
property of this component is that it incorporates hysteresis effects, a commonly 
observed feature of flood waves (e.g. Shaw, 1983). Two hysteresis loops are shown 
in Fig. 2.5, i.e. an exact solution and an approximation. The exact solution is 
computed by means of Eqs 2.47b and 2.49b. The approximation, on the other hand, 
is obtained by applying Eqs 2.52 and 2.53. It can be concluded that the assumption 
A[/(/)=0 for i=2,3,...,°° made in annex 2 does not significantly affect the results. 
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Fig. 2.5: Hysteresis loops according to the expression of Kraijenhoff van de Leur. The solid line 
is based on the exact solution, the dashed line on its approximation. 

2.3.5 Incorporating uncertainty 

In the previous sections, several simplification have been made to facilitate the 
derivation of EMERALD. These simplifications, together with uncertain model 
parameters and input, will finally lead to errors in the model output. It is assumed 
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that the deterministic component of EMERALD, once properly calibrated, offsets all 
systematic errors. In order to take random errors into account, a realization of noise 
process N is added to qn, i.e. one of the most uncertain parameters of EMERALD. AS 

a consequence qn, and therefore h and qd will become random variables. The 
stochastic counterparts of Eqs 2.52 and 2.53 are given by: 

H(tk) = Sff^.,) + <u0Qßk,H(tkJ) + agß^Hit^)) 
(2.55) 

+ oyvrg + co^cv,) 

QA) = 8ßd(W
 + <QßkMtk.J) + ^QD(tk_vH(tk.2)) 

(2.56) 

In the remaining chapters of this report, random variables will be expressed in 
uppercase. 

There are many ways to model noise process N (e.g. Box et al., 1994; Chatfield, 
1989). In this report, it is modelled as a zero-mean autoregressive process of order 1 : 

N(tk) = $N(tkJ + e{tk) (2.57) 

where 
N = random error [Lt"']; 

(|> = autoregressive parameter [-]; 

e - discrete-time white noise [Lt"1] 

Discrete-time white noise has the following properties: 

E{E(tk)} = 0 (2.58) 

Var{e(ft)} = E{e(tk)
2} = CE

2 (2-59) 

Cov{e(tk), e(tkJ} =E{e(tk)e(tkJ] =0 V x^O (2.60) 

where 

CE
2 = variance of e [L2t2] 

T = lag [-] 

Eqs 2.55 and 2.56 consist of a transfer function model (non-iV-terms) and a noise 
model (iV-terms). Unlike the models applied by Knotters & Van Walsum (1995,1997) 
the noise is part of the model's input, and not added a posteriori to its deterministic 
output. In the remaining chapters of this report, the first type of noise is referred to 
as internal noise, while the second type is called external noise. EMERALD supports 
both internal and external noise models. The advantage of an internal noise model 
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is that not only H but also gd, £a, Ep, V, gp, Qg, Qc and Qn become stochastic. This 
means that they also incorporate model uncertainty. Moreover, both the transfer 
function model and the internal noise model contain site specific information, i.e. 
drainage resistance, specific yield and geographic position (x and L). This is a very 
powerful property since it makes the parameters of the model transferable in space. 
However, one critical comment should be made in this respect. The shape of the 
phreatic surface is often not parabolical as is assumed by the expression of 
Kraijenhoff van de Leur (Fig. 2.1), but more or less trapezoidal, with steep slopes 
near the drainage courses. This is especially true for sandy areas. In other words, 
groundwater fluctuation near drainage courses is for trapezoidal surfaces very similar 
to fluctuation near the centre of the plot, where x/L-0.5. Therefore, in case of 
trapezoidal groundwater surfaces, the ratio xlL near drainage courses should also be 
set to 0.5, or to some slightly smaller value. This implies that the model does no 
longer depend on the ratio xlL anymore. 

2.4 Simulation and prediction 

Eqs 2.55 and 2.56 can be used to generate realizations of time series of groundwater 
levels and specific groundwater discharge. The AR(l)-process N is given by: 

N(tk) = W M ) + ctZ (2.61) 

where Z is a normally distributed deviate with zero mean and unit variance 
(Z~W(0,1)). 

Predictions can be obtained by taking the expected values of H and Qd: 

E{H(tk)} = m{H(tk_r)} + (ußlQß^Hit^))} + <ù£{Qn(tk_vH{tk_2)} (2-62) 

E{ßd(ft)} = ôE(ÔA-i)} + CöoE{ßA>#(V.)} + (ù'fiiQjLt^Hit^} (2-63) 

In order to express these equations entirely in terms of expected values of H, it is 
assumed that: 

E{ßA,tf(v,)} - sA.JW*-.)» (2-64) 

This assumption is legitimate as long as Qn is linearly related to H. Since Qn is only 
dependent on H by means of capillary rise, and since this dependency is modelled 
by a sigmoid function, this assumption is reasonable, except for the tails of this 
function. Eqs 2.62 and 2.63 can therefore be written as: 

E{H(tk)} = 5£{ff(V,)} + to0qa(tk,E{H(tk_x)}) + iû,qn{tk_„E{H{fk^}) (2.65) 

E{Qßk)) = mQß^)} + ^qn{tk,E{H{tk_x)}) + ^qn{t^,E{H{tk_2)}) (2-66) 
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Given the initial conditions E{H(f0)} and E{Qd(t0)}, these expressions can be used 
to predict groundwater levels and specific discharge. The prediction errors are given 
by: 

H'{tk) = H(tk) ~ E{H(tk)} (2-67) 

ß/('*) = ÔA) - E{ßd(g> (2-68) 

The variances of these errors are derived in annex 4, and read: 

VariH'it)} - c 2 ^ + ̂ X 1 + 8 ( f r ) + 2 r o
0

m / 5 + fr) (2.69) 
( 1 - ^ ( 1 -8M1-Ô2) 

VarlO'rni - a 2 ̂  " ^ + 5 ^ + 2 < M A 5 + ^ (2.70) 
* C (l-tfd-SMl-S*) 
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3 Model calibration 

Calibration takes place in two steps. First the deterministic component of EMERALD 

is calibrated (section 3.1). If the time series of observed groundwater depths is not 
affected by external trends, i.e. trends not induced by precipitation excess, calibration 
of the deterministic model should remove systematic errors in model output. Random 
errors are dealt with in the second calibration step. During this step the stochastic 
part of EMERALD is calibrated given the calibrated deterministic model of the first 
step. Three calibration methods for the stochastic component are given in section 
3.2. 

3.1 Calibration of the deterministic component 

Three parameters of the deterministic component (Eq. 2.52) are considered for 
calibration, i.e. y, \x and qs. Calibration can be accomplished by minimizing the 
following objective function: 

4(T .M v )= iE^) -^) ] 2 ^ 

where 

Y - observed groundwater level [L]; 
h = groundwater level predicted by the deterministic component [L]; 
nY = number of observations [-]. 

Several optimization techniques are available for this purpose. We applied the 
Downhill Simplex method (Press et al., 1989). 

3.2 Calibration of the stochastic component 

The calibrated deterministic component serves as a starting-point for the calibration 

of the stochastic component. The parameters to calibrate are § and or
2. In this section, 

three calibration methods are discussed. Each method requires an equidistant time 
series of observed groundwater levels. In section 3.2.1 a method is given which uses 
Cov{N(tk),N(tk+l)} to calibrate the parameters of an internal noise model. The 
remaining sections address two calibration methods which are based on 
Cov{H'(tk),H'(tk+z)}. The method in section 3.2.2 deals with internal noise, while 
the method in section 3.2.3 is appropriate for external noise. 
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3.2.1 Calibration of internal noise: the inverse model approach 

The aim of this calibration method is to estimate parameters <]> and o~E
2of AR(1)-

process N, that is added to the net input to the groundwater system (section 2.3.5). 

A time series of N j'.e, the average N over time step AtY, can be obtained after 
rewriting Eq.2.55: 

N(tk) = ^[^-S^-awA^-fflÄ^MU-^H)] (3'2) 

where Y is the observed groundwater level [L]. The average net inputs qn to the 
groundwater system can be computed by running the (calibrated) deterministic 
component of EMERALD for time step At, and averaging the resulting time series of 
qD(At) over AtY. 

The experimental autocovariance function ofN can be estimated by: 

1 (3.3) 
nY-l ,-=i 

where 
nY = number of observations [-] ; 

T = lag [-] 

The noise parameters for time step At=\ can now be obtained by fitting the theoretical 
autocovariance function to the experimental one. The theoretical autocovariance 
function is derived in annex 3, and reads: 

Cow {N(tk),N(tk J) =' 

a 2 n-\ n-1 

(1 -<j)2)n ,-=o ;=o 

a knri-lW 
fi-^y-

,2\„ 2 (1 -tf)n 

1-$ 
1-<S? 

for x=0 

for x>0 

(3.5) 

where 

0 = autoregressive parameter of the noise model for time step At=l day [-]; 

G J - variance of noise model for time step At=l day [L2t2]; 
n = AtYIAt where At=\ day [-]. 
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3.2.2 Calibration of internal noise: the forward model approach 

In this section, calibration is not based on the autocovariance function of N, but on 
the autocovariance function of the prediction errors of h. These errors are given by 
(cf. Eq.2.67): 

H'{tk) = Y(tk)-h(tk) (3-6) 

where 
Y = observed groundwater level [L]; 
h = groundwater level obtained by the calibrated deterministic model [L]. 

The lag i autocovariances pertaining to i / /can be estimated by: 

CW=J-£H>(t)H>(tiJ (3-7) 

In annex 4 the theoretical autocovariance function of H'it^ is derived. It is given 
by: 

r IU' n' x- 2 (œo+œ')(ô-+(l)ô-1
+Ti7)+œ0cû/ô'-+ô-^+<t>ô^(l+ô2)+Ti2+Tii) „ 8 ) 

( 1 - ^ ( 1 - S ^ X l - S 2 ) 

where 

^ 

0 for x = 0 

L^5_(ô^)-ô-+f 
[1-V& 

for T=1,2,...,OO 

T\2=< 

0 f o r t e {0,1} 

l -^gT- i .^ - i j .Sy- .^x- i f o r T=2,3,...,o 
1-<J>/S 

= 1 ^ (ST+l.QT^.S-t- l+y+l f o r T=0f!,„.,, 
l-(()/ô 

Fitting the theoretical autocovariance function to the experimental autocovariances 

estimated by Eq.3.7 yields parameters § and OE
2 . 
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3.2.3 Calibration of external noise: the forward model approach 

This method is similar to that of Knotters & Van Walsum (1995, 1997). Instead of 
adding noise process TV to qn it is added to the output of the deterministic output h: 

H(tk) = h(tk) + N(tk) (3.9) 

Therefore, N(tk) can be estimated by: 

N(tk) = Y(tk) - h(tk) (3.10) 

The experimental autocovariance function of N can be estimated by: 

C(T) =_L£tf(*,-)tf(U (3-n> 

Note that ti+x-tt-i:AtY. The theoretical autocovariance function for an AR(l)-process 
is given by: 

C(T) = _^l(t)W (3.12) 

Fitting this expression to the autocovariances computed by Eq.3.11 gives noise 

parameters <|) and a.2. 

Once the model is properly calibrated, simulation can be performed by adding 
realizations of N to the deterministic time series of h (Eq.2.57). 
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4 Model verification 

In this chapter, some components of EMERALD are verified. Thorough testing of all 
ins and outs of program behaviour falls beyond the scope of this report. Only some 
limited testing has been performed to achieve some basic insights. The results should 
be considered as a guide line for further modelling and testing. 
In section 4.1, the expression for estimating the variance of the prediction errors 
is verified. In section 4.2 the calibration method of the deterministic component of 
EMERALD is addressed. The chapter is concluded by testing the calibration methods 
of the stochastic components of EMERALD (section 4.3). 

4.1 Variance of prediction errors 

In section 2.4 an expression was given to estimate the variance of prediction errors 
of h (Eq.2.69). It was derived in annex 4 subject to the assumption that Qn is 
independent of H. In practice, however, this assumption does generally not hold due 
to the occurrence of capillary rise. It is therefore interesting to test the validity of 
expression 2.69 in case capillary rise can not be ignored. 

For this purpose, 1000 traces of 1 year were simulated for different drainage levels. 
This is analogous to simulating 1000 traces with different amounts of capillary rise. 
The following parameter values were used: <|)=0.0, x/L-0.5, n=Q.2, y=250 days, gv=0 

mm/d. In order to obtain ot
2, Eq.2.69 was solved for Ot

2 after setting Var{//'} equal 
to 200 cm2. In addition, the soil characteristics of well 12BL0015 (Table 5.1), and 
the meteorologie data of 1982 of Eelde were used. In order to diminish the effect 
of initial values, a warming-up period of two years was considered. For each day 
Var{H'} and E{ Qc} were estimated for the ensemble of realizations. The results are 
shown in Fig. 4.1. 

Figure 4.1 clearly illustrates the effects of capillary rise. When capillary rise is 
insignificant (z0<-200 cm), Var{H'} is estimated quite well. However, when the 
drainage level is increased, capillary rise becomes more pronounced and the estimate 
Var{//'}=200 cm2 becomes biased. As z0 further increases (z0=-50 cm), all realizations 
contribute maximally and equally to capillary rise, and Var{//'} is estimated well 
again. 
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Fig. 4.1: VarfH'J (solid line) and EfQJ (bars), based on 1000 simulated traces of groundwater 
levels and capillary rise respectively. The position of drainage level z0 is varied from 350 cm 
(upper left) to 50 cm below the soil surface (lower right). The variance of prediction errors of H 
equals 200 cm2 
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4.2 Calibration of the deterministic component 

The performance of the calibration method for the deterministic component was tested 
by means of Monte Carlo analysis. For four levels of Var{/7'} and four time steps 
(Aty), 100 synthetic time series of "observations" were generated by random selection 
of y, /u, and qv from uniform distributions. The parameter sets employed in this test 
are given in Table 4.1. Pedology and hydrology were adopted from well 12BL0015 
(see Table 5.1). Furthermore, a warming-up period of two years was taken into 
account. 

Table 4.1: Parameters applied in the Monte Carlo analysis 

parameter 

Var{#'} 
AtY 

y 
9v 

value(s)/range 

0 
0,100,200,300 cm2 

1,5,10,15 day(s) 
0.05 to 0.35 

10 to 750 days 
-1 to 1 mm/d 

selection 

fixed 
alternating 
alternating 
randomly 
randomly 
randomly 

Monte Carlo simulation resulted in a total of 1600 (4 times 4 times 100) synthetic 
time series of "observations", covering the 10-year period 1961-1970. Each time 
series was calibrated for Y, /J, and qy. For each combination of Var{/T} and AtY two 
verification measures were computed, i.e. the mean error (ME), and the root mean 
squared error (RMSE). These measures are given by: 

ME = IJ2 iprp) 
n ,•=, 

RMSE = ^ 2 £ (Prfiï 

(4.1) 

(4.2) 

N " .--l 

where 
pt = randomly selected parameter of interest (Y, H, or qv); 

p. = calibrated parameter of interest {% fi, or gv); 
n - number of realizations (n=100). 

The results are given in Fig. 4.2. It can be concluded that the parameters of fully 
deterministic traces, i.e. Var{/f }=0, are estimated very well. In case Var{i/'} 
increases from 100 cm2 to 300 cm2, the RMSE and the absolute value of the ME only 
increase slightly. In short, it can be concluded that the calibration procedure for the 
deterministic component works very well. 
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4.3 Calibration of the stochastic model 

The performances of both internal noise calibration methods were tested. The method 
for calibrating external noise is left out of consideration, since similar procedures 
were already tested elsewhere (e.g. Knotters & Van Walsum, 1995). For 15 times 
15 combinations of y and AtY, 100 realizations of time series of 10 and 30 years were 
simulated. The following parameters were kept constant: ^=0.20, <(>=0.25, 
Var{H'}=200 cm2. Pedology and hydrology were again adopted from well 12BL0015 

(Table 5.1). Each of the simulated 45000 time series was calibrated for 0 andc.2 

according to the forward model approach (IF) and the inverse model approach (II). 

The estimates obtained by calibration, i.e. <j) and 6c
2, were confronted with the 

parameters used for simulation i.e. <|> and a.2. This was accomplished by comparing 

the first 10 lags of the autocovariance function based on $ and cj2 with those based 

on <j) and 6t
2. Again, the ME and RMSE were used for this purpose: 

9 
M E = 4 T E (C(i àt

2, T) - C(4>, o2, x)) (4-3) 

RMSE = 
(4.4) -L£\C(§,61,T) -C«|>,a2,T) 

\\ 10 •u-0 

Finally, the expected values of the ME and RMSE for each combination of y and 
A/Y were computed by taking their arithmetic averages over all realizations. The 
results are presented in Figures 4.3 and 4.4, both for the 10-year period and for the 
30-year period. The 10-year period can be used to evaluate the performances of the 
calibration methods for situations commonly encountered in practice. The 30-year 
period should be considered as a reference situation, based on an almost exhaustive 
set of observations. 

As expected, the performances of both methods decrease when AtY increases. 
Performances also decrease when drainage resistance increases. This is due to the 
following reasons. First, the effect of capillary rise. As became clear in section 4.1, 
capillary rise significantly affects the accuracy Eq.2.69. This is also true for Eq.3.8 
which is based on the same assumption. Large drainage resistances result in rapidly 
rising and slowly falling groundwater levels, and therefore in potentially greater 
amounts of capillary rise. This reduces the validity of Eq.3.8, and worsens the 
performance of the IF-method. Second, a larger drainage resistance corresponds to 
a larger memory of the system (larger autoregressive parameter). Hence, in order 
to obtain the same level of accuracy, a longer time-series of observations is required. 
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Very striking in Figs 4.3 and 4.4 are the vertical strips of alternating large and low 
E{ME}s and E{RMSE}s. At first glance, these results may look contradictory, as 
large AtYs yield smaller errors than small A?Ys. A closer look, however, reveals that 
strips of small errors pertain to odd ArYs, and strips of larger errors to even AfYs. 
This is an artefact of the applied autoregressive noise model, and can be illustrated 
by means of an example. Consider an autoregressive noise process of order 1 with 
autocorrelation structure: 

Cor{T} = 0.5|T| (4.5) 

Furthermore, suppose that a time series of observations Y of the process is available 
with even time steps AtY=2. In order to model its spatial structure, the autocorrelation 
function of the observations is estimated and fitted by the following model: 

Cor{T} = <j) M (4.6) 

Since odd lag distances are missing, both (j)=0.5 and <f)=-0.5 describe the estimated 
autocorrelation function equally well (Fig. 4.5). If, however, AtY represents an odd 
number, the presence of both odd and even lag distances prevents <j) from becoming 
negative. A similar mechanism probably plays a role in Figs 4.3 and 4.4. 

o 
Î9 

o u o 
CS 

-0.50 -

-0.75 -

4 5 
lag (days) 

Fig. 4.5: Even lag distances result in two possible solutions of the calibration procedure. The 
fitted autocorrelations are connected by lines just to guide the eye. 

The key-question now is, which method performs best, and under what conditions. 
This question can be answered by comparing the plots on the right in Figure 4.4 with 
those on the left. The difference in E{RMSE} between the methods provides a useful 
measure of relative performance, and is plotted in Fig. 4.6. Keep in mind that these 
plots only give a rough qualitative impression of the relative performances of the 
calibration methods. They are based on several assumptions, including educated 
guesses of the noise parameters themselves. Therefore, these plots should only be 
used as a rough guide line to obtain some insight in the relative performances. 
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5 Model application 

In this chapter, EMERALD is confronted with real world data. After a brief description 
of the study area (section 5.1) and a summary of input data (section 5.2), the 
calibration of EMERALD is described (section 5.3). The calibrated model is verified, 
and its predictive power validated in section 5.4. In section 5.5 the ability of 
EMERALD to reproduce several univariate and bivariate statistics is tested. The chapter 
is concluded by giving some useful characteristics of groundwater dynamics based 
on simulation experiments (section 5.6). 

5.1 Study area 

EMERALD is applied to two observation wells in the vicinity of meteorological station 
Eelde, in the northeastern part of the Netherlands. The wells are coded 12EL0003 
and 12BL0015. Groundwater depths are recorded twice a month, and stored in the 
On Line Groundwater Archive (OLGA) of NITG-TNO (Netherlands Institute for Applied 
Geosciences - Dutch Organisation for Applied Scientific Research). Knotters & Van 
Walsum (1995) give an elaborate description of the pedology and hydrology of the 
observations sites. A summary is given below: 
Well 12EL0003 is located in a 100 cm thick peat soil on top of moderately fine sand 
(150-210 /mi). Groundwater depths usually vary between 0-90 cm below the soil 
surface. Groundwater depths at well 12BL0015 are somewhat deeper, fluctuating 
between 20 and 150 cm below the soil surface. This well is situated in a loamy fine 
sandy soil. Both sites are covered with grass (pasture). 

5.2 Model input 

A summary of the model input is given in Table 5.1. Some entries need to be 
explained. First, the quotient of x and L is set to Vi, which does not comply with 
the situation in the field. For reasons given in section 2.3.5 a value of Vi seemed 
more appropriate for both observation wells. Second the percolation zone has been 
discarded by setting fb to unity. This seemed legitimate since the thicknesses of the 
percolation zones are small in both cases. Therefore, smoothing and delay play only 
a minor role, and are probably fully outweighed by the effects of bypass flow. 
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Table 5.1: Model input 

characteristic 

P and E, 
soil profile*' 

d, 

4 v->' 
f 
Ap(0fc> 
'p.limiling 

p, willing 

Zc 

ZS 

x/L 

d 
p 

12BL0015 

meteostation Eelde 
0-

55 • 
85 -

• 55 cm B3 
85 cm 03 

180 cm 04 
35 cm 

1 

1 

-100 cm 

-500 cm 
-8000 cm 

151 cm 
80 cm 

0.5 

35 cm 

12EL0003 

meteostation Eelde 
0 

25 -
100 -

- 25 
100 
120 

cm B16 
cm 017 
cm 02 

20 cm 

1 

1 

-100 cm 

-500 cm 
-8000 cm 

120 cm 
30 cm 

0.5 

15 cm 

references 

KNMI (1982-1991) 
Knotters & Van Walsum (1995) 
Wösten et al. (1994) 

Stolp, personal communication 

-
Knotters & Van Walsum (1995) 

Knotters & Van Walsum (1995) 

Knotters & Van Walsum (1995) 
Knotters & Van Walsum (1995) 
Wösten et al. (1994) 
Knotters & Van Walsum (1995) 
-

-

codes refer to soil building blocks of the "Staringreeks" (Wösten et al, 1994) 

5.3 Calibration 

For both observation wells, a time series of observed groundwater depths, covering 
the period 1982-1991, was considered. The time series were split into a calibration 
and a validation period, each existing of five consecutive years. Hence, three periods 
were available for calibration, i.e. 1982-1986, 1987-1991, and 1982-1991. The 
deterministic component of EMERALD was calibrated by minimizing the objective 
function given in section 3.1. In order to estimate the internal noise parameters, the 
forward model approach was applied (section 3.2.2). The results are given in Tables 
5.2 and 5.3. 

Table 5.2: Calibrated parameters for observation well 12EL0003 

period 

1982-1986 
1987-1991 
1982-1991 

Table 5.3: 

calibration 

period 

Y 
(days) 

88 
85 
86 

(-) 

0.16 
0.19 
0.17 

(mm/d) 

-2.32 
-3.23 
-2.79 

4> 
(-) 

0.79 
-0.19 
0.99 

Calibrated parameters for observation well 12BL0015 

Y 
(days) (-) (mm/d) 

4> 
(-) 

a 2 

(mm2/d2) 

0.0213 
0.6207 
0.0002 

a 2 

r 
(mm2/d2) 

1982-1986 
1987-1991 
1982-1991 

305 
256 
274 

0.29 
0.33 
0.31 

-0.34 
-0.40 
-0.36 

-0.98 
-0.98 
-0.98 

0.5222 
0.7448 
0.6692 
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The calibrated parameter sets are very similar, except for qw and the noise parameters 
of observation well 12EL0003. The first abberation is probably due to a trend in 
groundwater levels that can not be explained by the model. Therefore, qv is assigned 
a lower value in the second period than in the first period. The dissimilarity in noise 
parameters is probably due to fast reaction times (small memory) of the groundwater 
system. This is reflected by relatively small drainage resistances. Therefore, 
observation density may be too sparse for accurate identification of the underlying 
autocovariance structure. 

5.4 Verification and validation 

Three measures were used to verify and validate the model, i.e. the mean error (ME), 
the root mean squared error (RMSE), and the fraction of significant errors (FSE). 
Error R is given by: 

R(t) = Y(t)-h(t) (5.1) 

The mean error quantifies bias, and is defined as: 

ME = _L £*(*,) (5-2) 

The root mean squared error incorporates both bias and spread, and reads: 

RMSE = ±±{R(t)f <5-3) 
M "Y '-"I 

Note that the objective function used to calibrate the deterministic component is equal 
to the mean squared error (MSE). 

The third measure used in this study is the fraction of significant errors. This quantity 
is equal to the fraction of residuals outside the area bounded by the 2.5% and 97.5% 
percentiles: 

49 



FSE = -L £/(*,.) 
i=i 

where: 

l(R) = ' 

(5.4) 

0 if |R| < 2\/Var(H/) 

1 if |R| > 2\/Var(H/) 

Var{H'} is given by Eq.2.69. It is to be expected that five percent of the residuals 
R are outside the 2.5% en 97.5% percentile bounds, i.e. FSE=0.05. Recall that 
Eq.A4.11 is only an approximation is case of capillary rise. If more accurate bounds 
are required, the 2.5% and 97.5% percentiles should be obtained by simulation. 

The following procedures were followed for verification and validation. First, on 
the basis of the parameter sets given in Tables 5.2 and 5.3, time series of h(tk) were 
predicted for the period 1982-1991. Next, the model was verified on the calibration 
periods and validated on the remaining periods by means of the measures given 
above. The results are presented in Tables 5.4 and 5.5. 

The predictions are unbiased for the verification periods, and only slightly biased 
for the validation periods. Bias is due to the presence of trends not accounted for 
by the model. The accuracy of the predictions, as expressed by the RMSE, varies 
for both observation wells between 11.0 cm and 13.4 cm. Similar results for these 
wells were obtained by Knotters & Van Walsum (1995), Bierkens (1998a,b; 1999), 
and Bierkens & Walvoort (1998). The FSEs are generally somewhat too large. The 
same is true if the bounds were based on 1000 realizations instead of Eq.2.69 (Fig 
5.1). For the 1982-1991 verification period, this results in FSEs of 0.11 and 0.08 
for wells 12EL0003 and 12BL0015 respectively. Large FSEs are probably due to 
difficulties with the identification of the noise parameters. 

Table 5.4: Verification and validation results for observation well 12EL0003. ME=mean error, 
RMSE=root mean squared error, FSE=fraction of significant errors. 

calibration 
period 

1982-1986 
1987-1991 
1982-1991 

ME 
(cm) 

0.0 
7.4 

1982-1986 
RMSE FSE 

(cm) (-) 

11.0 0.05 
13.3 0.08 

verification or validation period 

ME 
(cm) 

-7.3 
0.0 

1987-1991 
RMSE FSE 

(cm) (-) 

13.4 0.08 
11.0 0.04 

1982-1991 
ME RMSE FSE 

(cm) (cm) (-) 

0.0 11.7 0.11 
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Table 5.5: Verification and validation results for observation well 12BL0015. ME=mean error, 
RMSE=root mean squared error, FSE=fraction of significant errors. 

calibration 
period 

1982-1986 
1987-1991 
1982-1991 

ME 
(cm) 

0.0 
3.3 

1982-1986 
RMSE FSE 

(cm) (-) 

12.3 0.11 
13.3 0.09 

verificatior 

ME 
(cm) 

-3.8 
0.0 

l or validation 
1987-1991 
RMSE FSE 

(cm) (-) 

12.6 0.10 
11.4 0.09 

period 
1982-1991 

ME RMSE FSE 
(cm) (cm) (-) 

0.0 12.1 0.08 
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Fig. 5.1: Observed groundwater levels and the area where 95% of the realizations are in for 
12EL0003 (top) and 12BL0015 (bottom). Calibration period: 1982-1991. 
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5.5 Reproducibility of univariate and bivariate statistics 

In order to test if EMERALD correctly reproduces univariate statistics the following 
procedure was followed. First, 1000 time series were simulated for the calibration 
period 1982-1991. Next, univariate statistics were computed not for each realization 
separately, but for all realizations grouped together. These statistics were compared 
with those of observed time series. The results are visualised in Fig. 5.2 by means 
of box-whisker graphs. It can be concluded that EMERALD correctly reproduces 
univariate statistics. 

30 

10 

-10 

0 -30-

ö 
g -50-

1 -70-
g 
? -90 
o 
°> -110-

-130 

-150-

-170 
EL-obs. EL-sim. BL-obs. BL-sim. 

Fig. 5.2: Box-whisker diagrams for observed and simulated distributions. From left to right: 
well 12EL0003 observed and simulated, well 12BL0015 observed and simulated. The boxes 
represent the 25%, the 50% and the 75%-percentiles, the whiskers the minimum and the 
maximum values, and the crosses the arithmetic means. 

Also the autocorrelation functions of observed and simulated groundwater levels were 
compared. The latter was obtained by averaging the 1000 autocorrelation functions 
of the realizations. The results are given in Figure 5.3. The autocorrelation functions 
pertaining to well 12EL0003 match very well. Those computed for well 12BL0015 
are in phase, but differ somewhat in amplitude. 
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well 12BL0015 
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500 

Fig. 5.3: Autocorrelation functions for well 12EL0003 (top) and well 12BL0015 (bottom) based 
on observations and simulation. 
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5.6 Derived measures of groundwater dynamics 

Once a set of simulated time series of groundwater depths is available, numerous 
measures for describing groundwater dynamics can be derived. Some examples are 
the Mean Highest and Mean Lowest Water-table depths (MHW and MLW respectively), 
the frequency of exceedance graph (FOE-graph), and the regime curve. These measures 
will be addressed below. 

The MLW and MHW are computed in two steps. First the three lowest and three highest 
groundwater depths during a year are determined and averaged. The resulting 
quantities are LG3 and HG3 respectively. The MLW is the arithmetical average of the 
LG3s during at least eight consecutive years. Similarly, the MHW is defined as the 
arithmetical average of the HG3s during this period. In order to compute these 
quantities, groundwater depths should be recorded twice a month. In Table 5.7 the 
MHWS and MLWS based on observations and simulation are given for the wells under 
study. These estimates pertain to the calibration period 1982-1991. It can be 
concluded that the MHWs and MLWS based on simulation closely resemble those based 
on observations. 

Table 5.7: MHW and MLW based on observations and simulation. These characteristics pertain 
to the calibration period 1982-1991. 

12EL0003 12BL0015 
observed simulated observed simulated 

MHW 3Ö3 :2T5 30 ^m 
MLW -71.2 -71.9 -108.5 -107.1 

A FOE-graph gives the probability that a specific groundwater level is exceeded. FOE-
graphs for well 12EL0003 and well 12BL0015 are given in Figure 5.4. The solid 
curve is based on observations, the dashed one on 1000 realizations. As such, the 
latter represents both natural variation and model uncertainty. It can be concluded 
that the solid and dashed curves match very well. 

The regime curves for the wells under study are plotted in Figure 5.5. A regime curve 
reflects the annual variation in groundwater levels. The shaded area in Figure 5.5 
represents 95% of all realizations. As such, it resembles both natural variation and 
model uncertainty. 
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6 Conclusions 

EMERALD provides a means for rapid assessment of groundwater dynamics on a daily 
basis. It not only predicts important hydrological characteristics like groundwater 
depths and specific groundwater discharge, but it also quantifies the accuracy 
obtained. EMERALD describes three contiguous zones, i.e. the root zone, the 
percolation zone, and the groundwater zone. The root zone is modelled as a nonlinear 
reservoir. The model of the percolation zone is based on a linearized form of 
Richards' equation, while that of the groundwater zone is based on an analytical 
solution to the one-dimensional transient flow equation. Uncertainty is modelled 
by means of a first order autoregressive model. 

A validation study revealed that EMERALD is able to make accurate predictions of 
various groundwater characteristics. Since calibration of its internal noise parameters 
can be troublesome, EMERALD is also equipped with an external noise model. 
EMERALD can be used to generate accurate time series of groundwater characteristics 
at sites where soil profile descriptions are available. A high resolution spatio-temporal 
description of the phreatic surface follows from interpolating these time series to 
a dense grid. This will be one of the challenging research topics for the future. 
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Annex 1 Linearization of Richards' equation 

The derivation in this annex is largely based on Zwamborn (1995). 
Richards' equation is given by: 

dt dz 

( \ 
dh 
_ L + 1 

ydz , 

(Al.1) 

where 
9 = soil moisture content [-]; 
t = time [t]; 
k - hydraulic conductivity [Lt"1]; 
Ap = pressure head of soil moisture [L]; 
z - vertical space coordinate [L]. 

In this expression, coordinate z is decreasing in downward direction. Both hp and 
k are nonlinearly related to 9. A linear approximation of these variables can be 
obtained by means of Taylor expansion about 9eff, i.e. the soil moisture content 
corresponding to the mean vertical flux in the percolation zone: 

00 h (n)f9 ) 

ÄP(9) = E - ^ - ^ ( 6 - e j -
n=0 

n\ 
(Al.2) 

= W + K'OJV-QJ + - ^ ^ ( e ^ e f f ) 2 + 

- kin\Qff) 
k(ß) = £ —-^-(e-9eff)« 

n=0 n\ 
(Al.3) 

= k(QJ + ^(9cff)(9-9eff) + i i !^(9-9 e f f)
2
 + 

Neglecting all nonlinear terms gives: 

Ve) ~ W + K'VJV-oj (AL4) 

k(Q) = k(ßj + fc'ce^xe-ej (AI.5) 

Substituting Eqs Al .4 and Al .5 into Richards' equation, and neglecting all nonlinear 
terms yields: 

* = k\BJ* + WJ>h>(BJ>™ (Al.6) 
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In order to incorporate fluxes into this expression, it is first differentiated with respect 

to z and multiplied by k(Qtff)h '(ßet{): 

7) api D ( 3 Û \̂ 

dz dt dz V dz 

( 
+ WJhp'(VJj-z 

k(QJh'(QJ d2Q 
eff' p V eff -, 2 

V dz: 
(Al.7) 

dt 

dj 
dz 

k<(QJk(QJh<(QJ™ 
\ 

dQ V k(QJh'(Qjl-
dz dz Wöj aeï 

dz)_ 

Next, the linear flux density equation is derived by substituting Eqs Al.4 and Al.5 
into Darcy's law and neglecting all nonlinear terms: 

( 

q7 = ~k(Q) 

\ 
dh (8) 

PV ' + 1 

V 
dz 

J 
- -K*Jh^J*--K*à 

(Al.8) 

Rearranging gives: 

k(QJhp\QJ^ = -qz-k(QJ (Al.9) 

This expression can be used to express 0 in Eq.Al.7 in terms of qz 

dt d 

M7 ,,,n dq 

- -^(k'(QJ(-qz'k(QJ)) + *(eeff)V(eeff)-^ 

t\ 

d(-q-k(QJ) 

dz 

° "5T s ^(Öeff)"^ + W ( 9 « ^ (ALIO) 

The resulting expression is the linear approximation of Richards' equation. It 

corresponds to the linear convection dispersion equation (e.g. Bear, 1979), where k ' (9eff) 

is the convection parameter, and k(Qef^)h '(Qe{) the dispersion parameter. 
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Annex 2 The day-by-day method of De Zeeuw 

In this annex, the convolutions of qn and the pulse responses of qd and h (Eq 2.49a 
and 2.47a) are rewritten according to the day-by-day method of the Zeeuw (1966). 

First, Eq.2.46 is rewritten for discrete time steps t^kAt (£=0,1,...,°°): 

U (k) = _ £ n ~2(5^ - 1) dk"2 

1T2n=l,3,5 

(A2.1) 

where 8 = exp ( Am^ 

v 8 ^ y 

Next, Eq.A2.1 is split into a linear (first order) term, and a nonlinear term: 

U (k) = —(6~' - 1)5* + — £ n-2(5-"2 - 1)8*"2 

q" 7t2 7t2 „=3,5,7 

(A2.2) 

Let the nonlinear term be denoted by AU (k), then it follows: 

U(k) = . 1 ( 8 - ' - l)8*-'8 + AU(k) 
" 7t2 d 

(A2.3) 

= _L(1 - 8 ) 8 " + AU(k) 
7C2 

If qd(t0)-0 then the specific groundwater discharge at time step tt equals: 

*-('i) = tó)^JD 

<?„(',) 
A f 8 f_l(l-8) 

7T 

(A2.4) 

«AWM) 
J 

and at t2: 

qd(t2) = ^ W (2) + qn(t2)U(l) 

= 9.('i) 4(1-5) 
71" 

5 +q^)MJ(2) (A2.5) 

-1(1-8) 
v71 y 

«„(^O) 
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Let 

and 

then 

9d('i) = «d*(0 + *d"('i) 

Similarly for r2: 

(A2.6) 

(A2.7) 

(A2.8) 

9d*('2)
 = *n('i) 

rs (1-8) 
TT 

s + *B(g rs 
j 

(1-5) 

- 4 / (^ )8 + qn(t2) 

V 

f 8 ^ 

7tz 

(A2.9) 

71" 
y 

<?d('2) = <7d*('2)
 + qJLWum + qjLQAum (A2.10) 

In general, the specific groundwater discharge for time step tk is given by: 

q;{tk) = &,d*(Vl) + 9A) r(l-S) 
TC" 

*A) = *,*('»)+ E *„(WAi/q (0 

(A2.ll) 

(A2.12) 

Thus far the day-by-day method. Computational efficiency can be further increased 

by neglecting terms of AU (i) for i=2,3,...,°°: 

9d*('t)
 = ô?d*(^-i) + <?A) 4(1-5) 

TC" 

Combining these state and output equations yields: 

qä{tk) = bqä(tk_x) + Cù0^n(g + œ;<7n(Vi) 

(A2.13) 

(A2.14) 

(A2.15) 
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( Am2^ 

v 
8̂ y 

where 

8 = exp 

<o'0 = JL(l-8)+AC/(l) 
TT 

(û, = -8A£7 (1) 
1 q„v y 

A[ / q ( l ) 4E /^(l-S*') 
71 n=3,5,7 

The state and output equations with respect to h can be derived in a similar way, 
and read: 

32 
h\tk) = ö/**(Vi) + <7A)-ÇYO -8)sin 

^ 

7XJ 

v L y 
h(tk) = Ä*(ft) + ?n(ft)A[/h(l) 

Combining Eqs A2.16 and A2.17 yields: 

where 

8 = exp ' Am2^ 

V 
8 W 

7T 

' l t t > 

KLJ 
AC/h(D 

©, = -SA£/h(l) 

32 
AC/h(l)=ilYE «"3(l-5"1si sm 

' mtc ' 

71 «=3,5,7 v L y 

(A2.16) 

(A2.17) 

(A2.18) 
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Annex 3 Autocovariance function of a temporally averaged 
AR(l)-process 

Let N(t.) denote the temporal mean of n t ime steps of the random process N(tk): 

1 
n-l 

n ,-=o 
(A3.1) 

Furthermore, let each outcome of N(tk) be a realization of a zero-mean autoregressive 
process of order 1, with autocovariances (e.g. Chatfield, 1989): 

Cov{N(tk),N(tk+l)} =aN
2( |) 2 * l ' l = a 

1-ty2 

Then the autocovariance of N(t.) is given by: 

Cov{N(tk),N(tkJ} = E 

Y 

- E Mv.) 
" i = 0 

n-l n-l 

A 

n-l 

-£><W 
• ; -o 

- - L E E C O V W ^ ) , ^ ^ } 
« i=0 y=0 

2 n-l n-l 
a E E «^ 

(l-())2)n2 ,-=o ;=o 

(A3.2) 

(A3.3) 

In section 3.2.1, the sets of n random variables N are mutually exclusive. Therefore,! 

should be a multiple of n, i.e. Te {0,n,2n,3n,...,°°}. 

For T >n the double summation in Eq.A3.3 can be eliminated. First Eq.A3.3 is written 
as: 

Cov{N(tk),N(tkJ} = 

2 n-l n-l 

yi-j 

(l-<|>2)n2 ,-=o y=o 

.-. 2 n-l n-l 

^ E E r + r i 
(1 -(t>2)n^ ,M> ;=o 

if j ' - i < x 

if j-i>x 

(A3.4) 
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Since j-i is always smaller than or equal to T for x>n, Eq.A3.4 can be written as: 

Cov{N(t.),N(t)} = 
o 2 n-\ n-\ 

rEE*1 +'-; for x>n (A3.5) 
(l-(j)2)n2 i=0 ;=0 

Elimination of the finite geometric sequences in this expression finally yields: 

2 n-1 n-1 

Cov{N(tk), N(tkJ} = — - 1 — E E V *'-j 

(1 -()) )n2 ,-=o ./=o 

2 

<i>TE4>E<i>: 

(l-(jr)n2 ,-=o ;=o 

a 

(l-<)>>: 

(l-<))2)n2 

a 2 

r ^ 
( 1 - A « A l - < j > ' 

V ] -+A 

l - « ! ) • " 

i-(|)-7 

< t > T - " l̂-f̂  
y 1 " * ; 

( t ) n - i 

i-())-; 

,<t>T"'1 f i - ^ Y l-y 

(1-( | )>2 

(!-(()>2 

•0T 

i-4> 

i-<t>n 

W-D 
(|)-i 

A/ 

1-* 
v T y 

,n\A (l)(l-((,«) 

l-4> 

4> 
A -kn^ 

T-n+1 1-ty 

v^v 

(A3.6) 

for T6 {n, In, 3n,..., °°} 

In short, Eq. A3.3 should be used for x=0, and Eq.A3.6 for xe {n, 2n, 3n,..., «>}. 
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Annex 4 Autocovariance functions of prediction errors of 
groundwater levels and specific discharge 

The prediction error of H is defined as the difference between its true value and 
its prediction: 

Hi = Hk - E{Hk} (A4.D 

where Hk = H(tk). Note that the true value has been modelled as the outcome of 
a random variable. 

The autocovariance of points separated by lag x is given by: 

Cov{Hk',HU) = E{#; Hi,} - E{tf/}E{tf/+t} (A4.2) 

Since E { H / } = 0 \/k, Eq.A4.2 is identical to: 

Cov{tft', HU) = E{Hk' HU) (A4-3^ 

In order to facilitate the derivation of the autocovariance function of H ', Qa is 
assumed to be independent of H, and therefore deterministic, i.e. Qn{Hk}=qn, and 

qj = qn -E{qJ = 0. Consequently, Eq.2.55 can be written as: 

Hk' = SHU + « X + »X> (A4-4) 

Expanding this expression gives: 

Hi = 8fft-i + coX + wX-i 
= 82tf/-2 + ScaX-i + 8a>At-2 + œ X + œ X i 

= è8f(a>X-.- + tDX-M) 

(A4.5) 

i-O 

and 

HU = E Ô'(»X-- + <-H) (A4-6) 
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Substituting Eqs A4.5 and A4.6 into Eq.A4.3 gives: 

Cov{/// , < T } = E « E 5'coX-, + E StoXi-i) 
i=0 i=0 

7=0 7=0 

= < Ë E V*B.{NUILI} 
I=0 y'=0 

+ CÛ 0CÛ 7ÊÊÔ'^Ë{<,X^} 

i=0 ;=0 

<=0 y-0 

i=0 7-0 

Recall that the lag t-autocovariance of AR(l)-process N is given by: 

(A4.7) 

E{N[NU] = <|>WcN
2 = <t>w 

l-(l)2 
(A4.8) 

Substituting this expression into Eq.A4.7 gives: 

G 2 - JL ». . , . ., G-2 

Cov{///,///+T}= J l ^ c o^E E 5'^ /T+ ' ; l + ^œ^EEô'V^11 

1-<|) i=0 7=0 1 -< | ) i=0 7*0 

1 - ( | ) i=0 7=0 1^<P N ) 7=0 

a. 
I-«))2 (CÛ^Û)^)E E * V*-" 

i=0 7=0 

(A4.9) 

+ co0co ; Y, E Ô ' V ^ 1 1 + E E s* V+,'~-/~11 

i=0 7=0 i=0 7=0 yj 

Evaluation of the infinite geometrie sequences finally gives: 
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Cov{ HI,HU) = 

2 (cOo+cû/)(ô^+^ôT+1+ri;)+(û0œ/[ô'""+ô-7",+(j)ô'1(l+ô2)+ri2+Tii] 
(A4.10) 

( l - ^ 2 ) ( l ^ ) ( l - 8 2 ) 

where 

T\j = 

0 for T = O 
1-<)>Ô 

l-(|)/ô 
( ô ^ - ô ^ + f for t=l,2,...,o 

n2 = 
for xe{0,l} 

1"^5(5x-'-(|)T-1)-8^+(j)T-1 for x=2,3,...,= 
1 -<t>/ô 

r\3 = J_*5.(ôT + 1 - f+ 1 ) -ô^ 1+^ t l for T=0,1,...,OO 
1 -(()/ô 

Applying this expression for x=0 gives the variance of Hk ' : 

H, _ G 2(mS+afl(l+840+2a>oa>,(S + 40 ( A 4 U ) 

(l-( t>2)(l-ô^)(l-ô2) 

The autocovariance of Qd' can be derived analogously to that of//'. The resulting 

expression is very similar to Eq.A4.10, except that the moving average parameters co0 

and to; should be replaced by 0)0 and co, respectively. 
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Annex 5 User's manual EMERALD (version: July 1998) 

Introduction 
EMERALD is implemented on a personal computer. It is written in Borland's Turbo 
Pascal (version 7.0) for MS-DOS. A data flow diagram (DFD) of EMERALD is given 
in Figure A5.1. In this diagram, processes are denoted by circles, temporary files 
by two parallel horizontal lines, user accessible files by boxes, and data flows by 
arrows. 

script 

meteorology observations 

jL 

EMERALD 

soil physical 
characteristics 
"Staring.dat* 

orary storage 

Output 
direct access 

Output 
sequential 

Fig. A5.1: Dataflow diagram of EMERALD 

EMERALD is driven by a script file, which takes a central position in the DFD. A 
script file contains a high-level computer language, i.e. the script, which prescribes 
which actions to perform, which files to read, and where to store results. At run-time, 
EMERALD reads the script, deciphers it by means of its built-in script interpreter, and 
carries out the appointed tasks. Each line in the script file consists of a script 
directive and associated parameters. In general, the syntax reads: 

DIRECTIVE <mandatory_parameter> [optional_parameter] <option_l I option_2> 

Throughout this manual, mandatory parameters are given in angular brackets and 
optional parameters in square brackets. Furthermore, piping symbols, i.e. I, are used 
to separate two or more options. Only one of these options should be selected. 
Annotations should be preceded by a "+" on the first position of each commentary 
line in the script file. Parameters printed in italics and greek symbols should be 
replaced by appropriate numeric values, parameters printed upright should simply 
be copied, EMERALD'S script language is order invariant. This means that the user 
can put the script directives in any order (s)he prefers. However, if EMERALD 

encounters a directive more than once, only the first is processed. 
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Script directives 
In this section the script directives are addressed in alphabetical order. 

BINARY output 

syntax: BINARY <* I [Ea] [Ep] [V] [qp] [qg] [qc] [qn] [h] [qd]> 

purpose: Stores output in direct access files. In case of simulation, storage of all realizations 
may take up a substantial amount of disk space. In order to suppress this demand, 
EMERALD offers the opportunity to store the realizations in direct access format. 
This can be effectuated by means of the BINARY-directive. Its syntax is very similar 
to the OUTPUT-directive, except that no output file name(s) can be specified. 
EMERALD uses default file names which consist of the parameter name of interest 
plus extension rl4, e.g. Ea.rU, Ep.rU, and V.rl4. A description of these binary files 
is given in a subsequent section. 

example: BINARY h qd 

BYPASS model parameters 

syntax: BYPASS <ƒ„,,> [fi2] ... \fh_9] 

purpose: Governs the amount of bypass flow through subsoil layers 1 to 9. fbj should be 
expressed as a fraction of the incoming flux of subsoil layer j . 

example: BYPASS 0.5 0.2 0.1 

CALIBRATION action 

syntax: CALIBRATION < [D] [II] [IF] [EF] > [tolerance] 

purpose: Specifies the calibration method(s) to perform. The deterministic component is 
calibrated when D is encountered on the parameter line, the stochastic component is 
calibrated when II, IF, and/or EF are encountered. These abbreviations stand for 
Internal noise - Inverse model, Internal noise - Forward model, and External noise -
Forward model respectively. Optionally, the tolerance of the termination criterium 
of the Downhill-Simplex method may be specified (Press et al., 1989). 
When II, IF, and/or EF are supplied as parameters, EMERALD expects the 
observations in the observation file to be separated by approximately equal time 
steps (section 3.2). Furthermore, if II is specified, EMERALD replaces missing values 
by predictions obtained by linear interpolation. 

example: CALIBRATION D IF EF le-6 
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CROP model parameters 

syntax: CROP <ƒ> </ipfc> <Ap-lp> </ip,wp> <*lzc> 

purpose: Supplies EMERALD with crop and soil specific parameters. The parameter line 
should contain the following quantities: 

fc = crop factor [-]; 
h?[c = pressure head at field capacity (cm); 
A , = pressure head at limiting point (cm); 
h?vl? = pressure head at wilting point (cm); 
zc = critical depth (cm); 
* = critical depth according to Wösten et al., (1994) (cm). 

EMERALD makes no distinction between positive and negative pressure heads. 

example: CROP 1-100 -500 -8000 * 

DRAINAGE model parameters 

syntax: DRAINAGE <zd> <x> <L> 

purpose: Specifies the drainage parameters: 

zd= level of drainage base with respect to soil surface (cm); 
x= lateral space coordinate (see Figure 2.1) [L]; 
L= distance between drainage courses (see Figure 2.1) [L]. 

example: 

See to it that x and L have corresponding units. 

DRAINAGE -100 50 100 

FIX action 

syntax: FIX <[gamma] [mu] [qv] [phi] [sigma2]> 

purpose: Keeps the parameters on the parameter line fixed to their initial values during 
calibration. The initial values should be specified by the GROUNDWATER and NOISE 
directives. 

example: FIX gamma phi 

GROUNDWATER model parameters 

syntax: GROUNDWATER <fi> <y> <qw> <*lfcavg> «7g,avg> 

purpose: Provides the parameters of the saturated zone. The parameter line should contain 
the following quantities: 

/j = specific yield [-]; 
y = drainage resistance (days); 
<7V = infiltration/seepage flux (mm/d); 
fcavg = average groundwater level (cm); 
* = average groundwater level is based on observation file (cm); 
<7g.avg = average flux in percolation zone (mm/y). 

Groundwater levels should be given with respect to the soil surface. 

example: GROUNDWATER 0.2 200 0 * 250 
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INITIAL model parameters 

syntax: 

purpose: 

example: 

INITIAL <50> <*l/l0> <qi0> <qn0> <N0> 

Gives the initial values of the following parameters: 

S0 = initial saturation grade root zone [-]; 

h0 = initial groundwater level with respect to the soil surface (cm); 
* = h0 equals the average groundwater level in the observation file (cm); 
qiB = initial specific discharge (mm/d); 
qn0 = initial net input to the groundwater system (mm/d); 
A'o = initial value of noise process N. 

The following default values are used if this directive is omitted: S0~field 

capacity, h0~drainage base, qia, qD0, and A'o are set to zero. 

INITIAL 0.8 * 0 0 0 

LAGS action 

syntax: LAGS <nm> [nprinl] 

purpose: Specifies the number of lags involved in fitting the autocovariance function (section 

3.2). The optional parameter nprint specifies the number of lags that should be 
written to the output file. npriM should always be greater than or equal to nRv If the 
LAGS - directive is omitted, nm and nprinl are set to 10 by default, i.e. lags 0 to 9 are 
used for fitting. 

example: LAGS 15 20 

METEO input 

syntax: 

purpose: 

example: 

METEO <file_name> [skip] 

Specifies the name of the file containing time series of precipitation amounts and 
évapotranspiration. Its file format is given in a subsequent section. The optional 
parameter [skip] denotes the number of lines to skip in the meteo file (default: 
skip=0). 

METEO Eelde.met 1 

NOISE model parameters 

syntax: 

purpose: 

example: 

NOISE <<))> <GC
2> 

NOISE <(()> < O E
2 > <INTERNAL I EXTERNAL> 

Specifies the parameters of the noise process. The first is sufficient to supply the 
initial values in case of calibration, the latter is required in case of simulation. In 
case of prediction, the variance of the prediction errors of h and/or q& are given if 
the noise type is set to INTERNAL. 

NOISE 0.25 0.01 INTERNAL 
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OBSERVATIONS input 

syntax: OBSERVATIONS <dayl> <yearl> <day2> <year2> <file_name> [skip] 

purpose: Specifies which part of observation file <file_name> should be processed. The 
period of interest starts at <dayl> of <yearl> and ends at <day2> of <year2>. 
[skip] refers to the number of lines to skip in <file_name>, and is 0 by default. 

example: OBSERVATIONS 1 1982 365 1991 12BL0015.dat 1 

OUTPUT output 

syntax: OUTPUT <file_name> 

OUTPUT <file_name> <* I [P] [Ea] [Er] [Ep] [V] [qp] [qg] [qc] [qn] [h] [qd]> 

purpose: Creates output file <file_name> which gives a summary of input parameters, and a 
detailed description of model output. In case of prediction or simulation, the 
requested output should be enumerated after <file_name>. The mnemonics on the 
parameter line correspond to those used in the report. If the symbol * is used, all 
parameters on the parameter line are written to <file_name>. In case of calibration, 
it is sufficient to supply <file_name>. 

example: OUTPUT Emerald.out h qd 

PREDICTION action 

syntax: 

purpose: 

example: 

PREDICTION <dayl> <yearl> <day2> <year2> 

Performs prediction. The parameter line specifies the start and end of the prediction 
period, i.e. <dayl> of <yearl> and <day2> of <year2> respectively. If the script 
contains the OBSERVATlON-directive, validation and/or verification measures are 
computed for the time span that is part of both the prediction period and the 
observation period. 

PREDICTION 1 1982 365 1991 

PRERUN action 

syntax: PRERUN <* I #years> 

purpose: Specifies the length of the prerun or warming up period. A prerun of <#years> 
years is required to eliminate the effect of the initial values. The prerun period 
starts at the first day in the meteo file if <*> is encountered on the parameter line. 

example: PRERUN 2.5 

SIMULATION action 

syntax: SIMULATION <dayl> <yearl> <day2> <year2> <#runs> <#runs_out> <seed> 

purpose: Performs simulation. The parameter line specifies the start and end of the 
simulation period, i.e. <dayl> of <yearl> and <day2> of <year2> respectively, the 
number of realizations to perform <#runs>, the number of realizations to write to 
the output file <#runs_out>, and the random seed <seed> to initiate the pseudo 
random number generator (gasdev/ranl of Press et al. (1989)). 

example: SIMULATION 1 1982 365 1991 1000 1 12534 
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SOIL model parameters 

syntax: SOIL <topsoil=thickness> <subsoill=thickness> ... [subsoil9=thickness] [cut_off] 

purpose: Specifies the soil physical characteristics of the unsaturated zone. The parameter 
line contains building blocks of the Staringreeks (Wösten et ai, 1994), together 
with their associated thicknesses (cm). A total of nine subsoil layers may be 
specified. The root zone is represented by the topsoil layer, the percolation zone by 
the subsoil layers. The amount of percolation not reaching the groundwater system 
due to truncation of the pulse response function Up(Ar,0 is governed by [cut_off\. 
This quantity should be expressed as a fraction of the total amount of percolation. It 
significantly affects the amount of CPU-time required. Default value: 1E-6. 

example: SOIL B3=30 B3=20 03=100 le-5 

TMPDIR general 

syntax: TMPDIR <path> 

purpose: Designates the path to temporary files. Model performance may be significantly 
improved if <path> denotes a RAM-drive. 

example: TMPDIR e:\tmp 

Examples of script files 
In Figures A5.1 and A5.2 examples of script files are given. These scripts were also 
used for the case study of Chapter 5. 

+ + - l -4- + -i~ + + + + - * - + - * - - f + + + + + - * - - t - - i - - * - 4 - + + + 
+ • 
+ Calibration of the deterministic and stochastic + 
* components {internal noise, forward model), + 
+ followed by prediction (verification) +• 

+ period : 1982-1986 
well : 1201,0015 

+ location : Vries, Eelde 

+ + + + + + + + -*- + •f + + + -*--j--t- + + + + + + -<- + + 

CALIBRATION 0 IF le-9 
LAGS 20 20 
PREDICTION 1 1582 365 1986 
OBSERVATIONS 1 1982 365 1986 12BLOU15.dat 5 
METEO Eelde.met 1 
PRERÜN 2 
OUTPUT prediction.out h 
CROP 1 100 500 8000 * 
SOIL B3=35 13=20 03=30 04=95 le-6 
GROUNDWATER 0.2 165 0 * 261 
DRAINAGE -80 1 2 
INITIAI» 1 * 0 0 0 
BYPASS 1 1 1 
NOISE 0 0.001 INTERNAL 

Fig. A5.2: verification script 
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:+ + :+:;;; *:;; + :+ '. :4-^:!*j:;S;:^ +'.:i::t::!!:^ï:::*:l#:l*;^^'>^:''.':'+ : + 

:+ Ctó|feat:ib^: ' ' iE) 'fy^^A^^^£ïöLatic aitd s t o cha s t i c ; + . 
;+ eor^ifieïïtesir/{&tériia^ + 

W. LdcatüöM:' 

ïli:982-199i:: 
^123^0015 
f f e i e s , Eeldp-;; 

+ + + + :;t :.:.::!+. *'ist. +•+: .+ t . . + : Ä 4 * :::*i*i:h.:+:ù' -Pk, 

a^IBSAîS<iîSdi3Äè^9i j î : i | |K^: i l# i | • 
LAOS. 20 .aSi^.HlSSfflA '̂.Ùi/^:1^*'̂ -""'"1'̂ :^ 
S a Ä i Ä 3 M Ä ^ ^ S ^ - : S « 5 ' . 1993* Ä 0 ;"2 1:2 5 3 4 
ÖB tBRIÄiö i s i i l i # l i : ;:3;.65 1991 12ÏI.0015.äat 5 
Kié i l i :Miöe> : i* t i i : ::« 

CSiiife'ArSimula.lïaaïiiüti h gd 
BiSÄR* h qd ••""i'.llP".. 
| É t e 1; 100' ' 50Q:JilSS ,*: •. : 

GSÏINDWATER -o. , : i i i i s : : : i i i i i i i : i ;S:': 

BAÏNAOE -80 àis;fcllfc^'.'.T 

ÉsiÉÉBla. ooi : a Ä i i i ö L , : 

:«&••:. + : . + : + 

Fig. A5.3: simulation script 

Execution 
The executable of EMERALD should be run in a MS-DOS environment. If your 
operating system is WINDOWS 3.X/95/98/NT, EMERALD should be executed in a MS-
DOS-box. Execution starts after typing 

EMERALD <script_file> 

on the command-line, followed by pressing the ENTER/RETURN-key. The name of the 
script file should satisfy the MS-DOS conventions, even when EMERALD is installed 
on a wiNDOWS-machine. File names may contain wildcarts in order to start several 
script files on a row. For instance 

EMERALD *.scr 

processes all script files with extension scr in the active directory. 
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Input nies 
The data flow diagram of EMERALD discerns three (ASCII) input files. The first 
contains meteorological data, the second observed groundwater levels, and the third 
soil physical characteristics. 

The meteo file consists of four columns, i.e. day number (1-365 or 366), year (4 
digits), amount of precipitation (mm), and amount of évapotranspiration according 
to Makkink (mm). An example of a meteo file is given in Figure A5.4. Parameter 
skip equals 1, because one header line is present. Missing values are not allowed. 
Furthermore, the time step between successive lines should equal 1 day. 

äay 
1 
2 
3 
4 
5 
« 
7 
8 
9 

Î0 

year 
1959 
1959 
1959 
1959 
1959 
1959 
1959 
1959 
1959 
1959 

p 
6.5 
9.0 
5.4 
7,7 
7.7 
0.5 
2.9 

12.4 
2.7 
8.3 

Ëï 
0.4 
0.3 
0.3 
0.3 
0.3 
0.2 
0.1 
0.3 
0.2 
0.1 

Fig. A5.4: Example of a meteo file 

The observation file consists of three columns, i.e. day number (1-365 or 366), year 
(4 digits), and observed groundwater levels (cm). The entries of the third column 
are defined with respect to the soil surface, and are decreasing in downward direction. 
All alphanumeric characters (including blanks) are regarded as missing values. An 
example of an observation file is given in Fig. A5.5. It contains one header line, so 
parameter skip of the OBSERVATlON-directive should be set to 1. 

clay 
14 
28 
43 
57 
74 
86 

104 
118 
134 
148 

year 
1982 
IL 9 t$2> 

1982 
1982 
1982 
1982 
1982 
1982 
1982 
1982 

Y 
-36 
-34 
-39 
-33 
-39 

-64 
-71 
-74 
-90 

Fig. A5.5: Example of an observation file 
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The file containing soil physical properties is called "Staring.dat". This file contains 
the Van Genuchten parameters, the critical depth, and the thickness of the capillary 
fringe for all soil building blocks of the "Staringreeks" (Wösten et al, 1994). The 
user is allowed to add new building blocks, and edit existing ones. However, see to 
it that the codes referring to the soil building blocks consist of three characters at 
most. 

SÎARINGREEKS 

topsoils 
code 
al 
B2 
B3 
B4 
B7 
B8 
B9 
BIO 
811 
B12 
814 
BIS 
817 
B18 

•Or 
0.01 
0.02 
0.01 
0.01 
0.00 
0.00 
0.00 
0.01 
0.00 
0.00 
0.01 
0.00 
0.Q0 
0.ÛÔ 

subsoils 
code 
01 
02 
03 
04 
05 
06 
08 
09 
010 
oil 
012 
013 
014 
Ol 5 
OIS 
017 

user 
code 
Dl 
Wl 

Or 
0.01 
0.02 
0.01 
0.00 
0.01 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.01 
o.oo 
0.00 

defined 
Or 

0.01 
0.01 

, Wösten et a 

Os 
0.43 
0.43 
0.45 
0.42 
0.40 
0.43 
0.43 
0.42 
0.60 
0.55 
0.42 
0.73 
0.72 
0.77 

8s 
0.36 
0.38 
0.34 
0.36 
0.32 
0.41 
0.47 
0.4S 
0.49 
0.42 
0.56 
0.57 
0.38 
0.41 
0.89 
0,86 

soils 
©s 

0.43 
0.36 

Ks 
17.46 

9.65 
17.81 
54.80 
14.07 

2.25 
1.54 
1.17 
5.26 

15.46 
0.80 

13.44 
4.46 
6.67 

Ks 
13.21 
15.56 
18.30 
53.10 
43.55 

5.48 
9.08 
2.23 
2.22 

13.79 
1.14 
3.32 
0.36 
3.70 
1.07 
2.75 

KS 
17.46 
13.21 

1., 1994 

a 
0.0249 
0.0227 
0.0152 
0.0163 
0.0194 
0.0096 
0.0065 
0.0118 
0.0243 
0.0532 
0.0051 
0.0134 
0.O18O 
0.0197 

a 
0.0224 
0.0214 
0.0211 
0.0216 
0.0597 
0.0291 
0.0136 
0.0094 
0.0107 
0.0191 
0.0095 
0.0171 
0.0025 
0.0071 
0.0103 
0.0127 

a 
0.0249 
0.0224 

(Technical Document 18) 

1 
-0.140 
-0.983 
-0.213 

0.177 
-0.802 
-2.733 
-2.161 
-4.795 
-5.395 
-8.823 
0.000 
0.534 

-0.350 
-1.845 

1 
0.000 
0.039 

-0.522 
-0.520 

0.343 
-6.864 
-0.803 
-1.382 
-2.123 
-1.384 
-4.171 
-4.645 
0.057 
0.912 

-1.411 
-1.832 

1 
-0.140 
0.000 

n 
1.507 
1.548 
1.412 
1.559 
1.250 
1.284 
1.325 
1.224 
1.111 
1.081 
1.305 
1.320 
1.140 
1.154 

n 
2.167 
2.075 
1.564 
1.540 
2.059 
1.152 
1.342 
1.400 
1.280 
1.152 
1.159 
1.110 
1.686 
1.298 
1.376 
1.274 

n 
1.507 
2.167 

zc 
94.0 

104.0 
151.0 
201.3 

93.2 
102.3 
119.1 

58.2 
29.0 
24.5 
65.0 

120.4 
30.0 
43.9 

zc 
87.0 
96.0 

127.0 
189.0 

42.0 
61.6 

128.3 
107.0 

79,1 
66.5 
33.1 
25.1 

140.0 
109.2 

58.1 
71.0 

zc 
94.0 
87.0 

dae 
19.2 
18.8 
19.3 
19.8 
18.0 
15.1 
15.0 
10.8 
10.5 
10.2 
12,3 
18.8 
11.9 
14.0 

dae 
19.5 
19.6 
19.4 
19.8 
19.4 
12.4 
18.5 
16.3 
14.7 
16.3 

8.9 
9.6 

12,2 
17.1 
13.2 
15.0 

dae 
19.2 
19.5 

Fig. A5.6: Example of "Staring.dat" 
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Output files 
EMERALD always generates an ASCII output file. It contains a summary of input data, 
and the results of executed calibration, prediction and/or simulation routines. In case 
of simulation, the results can also be stored in binary (direct-access) format by using 
the BlNARY-directive. The contents of each record is given in table A5.1. 

Table A5.1: Contents of binary (direct-access) files. Each record contains 4 bytes of 
information. 

record contents 

0 first year of the simulation period 
1 final year of the simulation period 
2 number of runs 
3-eof realizations, where the year-loop is embedded in the run-loop 

Concluding remarks 
Although EMERALD has been extensively tested, it is not guaranteed free of bugs. 
If errors or imperfections are encountered, please inform the authors. The authors 
and SC-DLO disclaim all liability for direct, incidental, or consequential damages 
resulting from using EMERALD. 
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