Major seed-borne diseases in Indonesia

A.S. Duriat & J.M. van der Wolf

Lay-out

- Conclusions from the survey
- Management of major seed-borne pathogens

Major fungal diseases on hot pepper

Field		Seed
Pathogen	%	Pathogen
Alternaria	4 – 10	
Colletotrichum	0 – 4	Colletotrichum
		Fusarium oxysporum
		Aspergillus
Cercospora	13 – 22	
Culvularia	30	
Choanephora	10-20	
Rhizoctonia	22	

Major bacterial diseases on pepper

Field Seed Pathogen Pathogen Xanthomonas Xanthomonas 17 Ralstonia

Major viral diseases on pepper

Field		Seed	
Pathogen	%	Pathogen	%
Mosaic viruses	3 – 35	ToMV	4
		CMV	18 – 71
Curly Yellow Gemini	2		
Kerupuk (CPSV)	8		

Major fungal diseases on tomato

Field		Seed	
Pathogen	%	Pathogen	%
Alternaria	25 – 50	Alternaria	?
Fusarium	0 – 22	Fusarium	?
Sclerotium	0- 2	Colletotrichum	?
Phytophthora	1 – 38	Aspergillus	?
Cladosporium	0 – 16		

Major bacterial diseases on tomato

Field Seed Pathogen Pathogen Xanthomonas Xanthomonas 33 Clavibacter Ralstonia

Major viral diseases on tomato

Field		Seed	
Pathogen	%	Pathogen	%
Mosaic viruses	3.5 – 56	TMV	5 – 90
		ToMV	8 – 65
		CMV	1 – 20

Curly Yellow Gemini 2 – 54

Conclusions tomato and pepper

- Fungi: no relation between seed infections and symptoms found in field
- Bacteria: possible relation between seed infections and field symptoms for Xanthomonas vesicatoria
- Viruses: clear relation between seed infections and field symptoms for mosaic viruses

Major fungal and bacterial diseases on shallot

Field		Bulbs	
Pathogen	%	Pathogen	%
Alternaria	6 – 13	Alternaria	1
Fusarium oxysporum	1 – 5	Fusarium oxysporum	1
Aspergillus	0 – 1	Aspergillus	0 – 1
Fusarium nivale	0 – 2		
Stemphylium	0 – 22		
Sclerotium	2		
		Erwinia	2

Major viral diseases on shallot

Field		Bulbs	
Pathogen	%	Pathogen	%
Mosaic symptoms	15 – 56	OYDV	8 – 10
Curly symptoms	0 – 5	SYSV	12 – 15
o y mp como		Mixtures	24 – 50

Conclusion shallot

 Moderate relation between bulb infections and field symptoms for fungal and viral pathogens

Management of major seed-borne bacteria and fungi

Tomato

- Alternaria solani early blight
- Xanthomonas axonopodis pv. vesicatoria bacterial spot
- Tomato Mosaic Virus
- Tobacco Mosaic Virus
- Cucumber mosaic cucumovirus

Pepper pathogens

- Colletotrichum capsici pepper (anthracnose)
- Xanthomonas axonopodis pv. vesicatoria bacterial spot
- Tomato Mosaic Virus
- Tobacco Mosaic Virus
- Cucumber mosaic cucumovirus

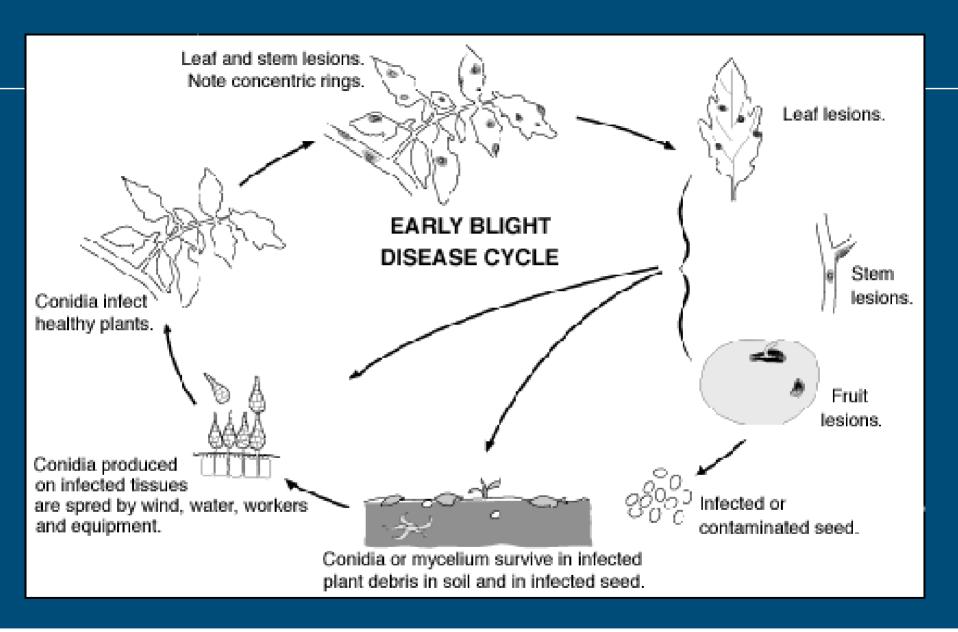
Host-pathogen combinations

- Shallot
 - Alternaria porri neck rot
 - (Erwinia soft rot)
 - Onion yellow dwarf Potyvirus
 - Shallot Yellow Stripe Virus

Alternaria solani – tomato (early blight)

Symptoms

Leaves: brown circular or irregular spots with concentric circles and a chlorotic halo


Progressing disease:

Stems: dark brown circular spots

Fruits:dark brown round depressions with concentric rings

Epidemiological features

- hosts: solanaceous plants
- survival: soil, infested crops, weed residues
- transmission: wind, insects, workers, farm equipment
- Site of infection: conidia on leaves, stems and fruits during warm wet periods
- Inducive conditions: heavy fruit load, nematode attack, low nitrogen fertility, mild to high temperature (24 – 29 °C), rainfall, alternating dry and wet periods
- Damage: yield loss (early leaf fall)

Cropping measures

- Use of certified seed
- Plant resistant varieties
- Planting in dry season
- Crop rotation (3 yrs)
- Removal of debris of former solanaceous crops
- Use of wind breaks (trees, hedges, fodder grasses)
- Do not use overhead irrigation
- Increase of organic matter (nitrogen fixing legumes)
 - increase nitrogen content, reduce nematodes

Control with fungicides

- Upon detection of symptoms: apply protectant fungicides:
 - carbamates
 - clorotalonil
 - cuprics
 (7 days intervals at cool and damp weather,
 10 days intervals at dry conditions)


Anthracnose on pepper caused by Colletotrichum sp.

Pathogen

- Colletotrichum capsici, C. gloeosporioides and C. coccodes
- Ascomycete producing perithecia (sexual) and acervuli (asexual)
- spore morphology:

Pathogen

Spores and black spines in salmon colored acervuli on pepper

Spores under a light microscope

Symptoms

- On all parts in any stage (fruit infections economically most relevant)
- Initially:
 - water soaked, slightly sunken lesions, soft and tan
- Later:
 - lesions brown black
 - concentric rings of salmon colored fungal fruiting bodies (acervuli) releasing wet gelatious spores with numerous black spines

Symptoms

Sweet pepper infected with *Colletotrichum*

Mature pepper fruit with multiple lesions

Salmon colored spore masses in concentric rings

Epidemiological features

- Survival: in seeds, plant debris and alternative hosts (solanaceous weeds)
- Dissemination: via rain splashes
- Factors favouring disease development: optimal temperature 27 °C and rainy weather conditions

Control

- Use certified, pathogen-free seed
- Eliminate weeds and plant debris
- Drainage of soil
- Crop rotation (> 2 years)
- Resistant varieties (only present in chili pepper)
- Avoid wounding (e.g. by insects)

Bacterial spot on pepper and tomato

Pathogen

- Xanthomonas campestris pv. vesicatoria (old name)
 - X. axonopodis pv. vesicatoria (Group A and C)
 - X. vesicatoria (Group B)
 - X. gardneri (Group D)

Group A and B most widely distributed


Group A – D: tomato strains

Group A: predominantly pepper strains

Group C: no pepper strains

(some strains can infect both hosts)

Symptoms on leaves

- Numerous angular spots
 - first water soaked (old leaves) or yellow green (young leaves)
 - later brownish red necrotic spots (0.25 0.5 cm)
- Deformed leaves
- Margins rimmed with necrotic tissue

http://www.apsnet.org/education; http://www.ces.ncsu.edu

Symptoms on leaves

Defoliation....

...resulting in sunscald

Symptoms on fruits

- Numerous angular spots
 - first small, blister like irregular
 - later brown with warty appearance (0.5 cm)
 - Even symptoms on peduncle

Survival and spread

Survival:

- in plant debris (ca. 1 year)
- in seed (many years)
- as epiphytes on non-host plants (solanaceaous plants!)

Spread:

- by water movement during rainy weather (splashing rain drops),
 overhead irrigation, touching and handling wet plants
- bacteria enter through stomato and hydathodes (leaf wet period very important)

Control

- Pathogen free seed
- Avoid overhead irrigation
- Plantlets in sterilized potting medium
- Crop rotation (2 3 years period)
- Seed treatment (e.g. sodium hypochlorite, acetic acid)
- Spraying with copper or streptomycin (marginal effects + resistance)

Alternaria porri - shallot

Symptoms

- Initally whitish sunken lesions
- Later oval brown lesions surrounded by a yellow halo
- Lesions can coalesce and girdle leaves and stems

Epidemiological features

- Conidia are spread by air, rain splashes and tools
- Germination can occur when tissue is covered by a water film for > 2 h
- A new generation of conidia can be produced every
 5 days in warm, moist weather
- Optimum growth temperature 26 °C
- Fungus maintains in infected plant debris in soil for longer than 1 year

Control

- Use certified pathogen-free bulbs or seed and disease-free plantlets of a resistant cultivar
- Grow in well-drained soil
- Drip irrigation is preferred above overhead
- Lower density of transplanted crops
- Treat seed with hot water or fungicide
- Eradicate weeds (in particular Allium species)
- Control insects
- Balance fertility (low nitrogen, high potassium/calcium)
- Eliminate cull piles
- Practice crop rotation (once every 4 years)
- Chemicals: dithiocarbamates, mancozeb, iprodione etc.