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Abstract

The problem of optimal input design for a specific fedbatch
bioreactor case study is solved recursively. Hereto an adap-
tive receding horizon optimal control problem, involving the
so-called E-criterion, is solved ‘on-line’, using the current esti-
mate of the parameter vectorθ at each sample instant{tk, k =
0, . . . , N − h}, whereN marks the end of the experiment and
h is the control horizon for which the input design problem
in solved. The optimal feed rateF ?

in(tk) thus obtained is ap-
plied and the observationy(tk+1) that becomes available is
subsequently used in a recursive prediction error algorithm in
order to find an improved estimate of the parameter estimate
θ̂(tk). The case study involves an identification experiment
with a Rapid Oxygen Demand TOXicity device for estimation
of the biokinetic parametersµmax andKS in a Monod type of
growth model. It is assumed that the dissolved oxygen probe is
the only instrument available which is an important limitation.
Satisfactory results are presented and compared to a ‘naive’ in-
put design in which the system is driven by an independent
binary random sequence with switching probabilityp = 0.5.
This comparison shows that, indeed, the optimal input design
approach yields improved uncertainty bounds on the parameter
estimates.

1 Introduction

The problem of optimal input design has received ample at-
tention in the identification literature. Indeed, it is one of the
classical identification problems that seeks to address an es-
sential question for the model developer, namely whether itis
possible to design a certain experiment in such a way that the
parameters in the model structure can be uniquely identified
and, moreover, how to design an input signal that minimizes
(c.q. maximizes) an ‘a priori’ chosen norm of the Fisher infor-
mation matrix (FIM) associated with the specific experimental
setup and corresponding input signal. We shall not elaborate
too extensively on the historical developments in this interest-
ing field of study, but will only summarize some recent de-
velopments that have been reported on the subject. Our main
goal in the current study is to focus on the optimal input design
problem for a specific case study that seems to be relevant in

the field of bioprocess control and, in addition, to introduce a
newadaptiveapproach that solves the input design problem for
a specific case study ‘on-line’, meaning that the best (current)
estimate of the set of parametersθ, i.e. θ̂(tk), is used to design
an optimal input signal with respect to a cost criterion (includ-
ing the FIM), after which the current estimate is ‘optimally’
updated tôθ(tk+1) using a so-called recursive parameter esti-
mation algorithm.

Recently, Stigter and Keesman have found analytical solutions
for optimal input design signals with respect to one specificpa-
rameterθi in the model structure, [4, 8]. In this case the Fisher
Information Matrix reduces to a scalar value which may be op-
timized using a singular control law that can be applied on a
singular arc in state space that may be reached by a bang-bang
control. The singular control law is derived by solving a setof
algebraic equations, generated through repeated differentiation
of the Pontryagin optimality conditiondHdu

≡ 0 on the compact
interval[t1, t2], whereH is the familiar Hamiltonian associated
with the process model and a goal function that, essentially, de-

pends on the parametric output sensitivitiesdy(t)

dθ
. The solution

of this set of algebraic equations yields anexplicit expression
for the input functionu?(t). In addition, if the cost criterion
involves the trace of the Fisher Information Matrix, i.e. the A-
criterion, the input design problem may also be solved analy-
tically and involves a maximization of the output sensitivities
of a number of parametersfor which an optimal input signal
needs to be found.

Recent work of Versyck and co-workers includes the solution
of the optimal input design problem with respect to the modi-
fied E criterion (see below) for several case studies using anap-
proach in which the dynamic evolution of the sensitivity equa-
tions is analyzed in detail, [10]. This analysis is subsequently
used to arrive at an optimal control problem that may be solved
numerically, yielding an optimal switching time, initial sub-
strate concentration, and substrate setpoint concentration for
the a fedbatch reactor case study. A modified-E criterion of 1
is achieved for this experimental setup.

Although the reported analytical and numerical results are
promising, their application in a practical case study involv-
ing a real experimental setup is still limited. This is especially
the case in biochemical case studies where (i) the number of
sensors is usually limited, meaning that not all the states can be
measure directly, (ii) the sensors themselves may be very costly



and (iii) may also involve high measurement uncertainties that
deteriorate the parameter estimateθ̂ drawn from an experimen-
tal setup and corresponding input design. The search for more
advanced algorithms that allow inclusion of these limitations is
therefore a challenging problem that has an important practi-
cal significance. In addition, as to our knowledge the literature
does not show an example in which the optimal input design
problem is solvedin tandemwith a recursive parameter up-
date scheme while this seems to be a natural choice since both
problems involve the output parametric sensitivities to (i) ar-
rive at the Fisher matrix for the experiment and (ii) to arrive at

a gradientdy

dθ
pointing to a direction where a minimum of the

innovations residuals (w.r.t. some norm) can be found. But let
us first introduce some formal definitions in order to be able to
be more specific in our discussion.

1.1 Definitions

Let the general, possibly non-linear, model structureM(θ) for
a specific system be given by

dx(t)

dt
= f(x(t), u(t), θ) (1)

y(tk) = h(x(tk), u(tk), θ) + η(tk) (2)

wheref : R
n × R

r × R
p → R

n is a real valued vector func-
tion, i.e. the dynamical modelM(θ), h : R

n×R
r×R

p → R
m

is the observation (or read-out) equation,θ is a p-dimensional
vector of time-invariant parameters,x(t) is the n-dimensional
state vector,u(t) is the r-dimensional input vector, andy(t)
is the m-dimensional output vector. We further assume that
the observationsY (tN ) = {y(tk), 0 < k < N}, whereN

marks the end of the experiment, is contaminated with a Gaus-
sian white measurement noise process{η(tk), 0 < k < N}
with variance-covariance matrixR. Note that the above model
definition is in continuous-discrete format which is a natural
notation for physically based model, often used in biochemical
and mechanical engineering.

1.2 The Optimal Control Problem

Since we wish to optimally identify the parameter setθ our
control problem may be defined as follows

max
u(t)∈Uadm

φ(tf ) = ||F(θ, tf )||E (3)

under the dynamical constraints (1), including the dynamical
evolution of the local parametric output sensitivitiesyθ(t) ,
dy(t)

dθ
which can be derived straightforwardly from the model

equations (1) and observation equations (2). Here,Uadm is
the set of admissible controls. In the above we have chosen,
with some foresight into what follows, to use the so-called E-
criterion of the Fisher information matrix (F), i.e. maximiza-
tion of its minimal eigenvalue at the final timetf . Other criteria
such as D, modified E, or A-criterion, may be applied – each
with its own advantages/disadvantages [6]. A useful alterna-
tive formulation of problem (3) is to consider therelativeout-
put sensitivities, appearing in the FIM, instead of the ‘normal’,

un-weighted sensitivities, so that the sensitivities are scaled and
relatively equal in size to one another.

Note that the cost functionφ(tf ) in the above depends on
the parametersθ whose values are not known ‘a priori’. Let
u?(tk|tk) denote the optimal input calculated on basis of the
estimatêθ(tk), having processed the data recordY (tk). Then,
a natural choice for a solution of the input design problem at
time instanttk is to

1. Use the current estimatêθ(tk) and solve the optimal input
design problem (3) over a time horizon[tk, tk+h],

2. Apply the ‘optimal’ inputu?(tk|tk) thus obtained on the
interval [tk, tk+1), assuming for simplicity a zero-order-
hold mechanism for the input signalu?(tk|tk),

3. Sample the system at time instanttk+1, thereby obtaining
a new measurementy(tk+1),

4. Process the new measurement to find an improved value
of the current estimatêθ(tk), yielding θ̂(tk+1), and repeat
the procedure usinĝθ(tk+1).

In summary, our approach is to solve the above identification
problem as an adaptive receding horizon optimal control prob-
lem that processes the parameter estimates recursively each
time an observationy(tk+1) becomes available.

Our choice for the recursive parameter reconstruction algo-
rithm to update the estimatêθ(tk) in step (4) in the above, is a
so-called ‘recursive prediction error’ algorithm in continuous-
discrete format, [5, 7]. The advantage of this specific algorithm
is that it includes the parametric sensitivities of the states, i.e.

W (t) ,
dx(t,θ̂)

dθ
, in a natural way as to arrive at an estimate

of the gradientdy(t,θ̂)

dθ
which is minimized with respect to the

prediction error of the prediction̂y(tk+1, θ). The algorithm
achieves this minimization through calculation and subsequent
interpretation of the innovation

ε(tk) = y(tk) − ŷ(tk, θ̂(tk)) (4)

which is, loosely speaking, the mismatch of the last model pre-
diction ŷ(tk, θ̂(tk)) w.r.t. the current sampley(tk). The in-
terpretation of the innovation is performed through calculation
of a gain matrix which is assumed at steady state for the state
vector and is calculated explicitly on the basis of a variance-
covariance matrixPθθ(tk) for the estimated parameters in the
model structure. Since the parametric sensitivitiesW (t), a
(n × p) matrix, become available once the receding horizon
optimal control problem is solved at time instanttk (step (1)
in the above procedure), these sensitivities can be used imme-
diately for an update of the parameter vectorθ̂(tk). Finally,
it should also be mentioned that the recursive prediction error
framework provides a unifying perspective on the problem of
optimal input design in tandem with recursive parameter esti-
mation since both algorithms use the same sensitivity functions
– each, however, for its own goal.



2 The Case Study

2.1 A Dynamical Model for Oxygen Uptake in a Fedbatch
Bioreactor Setup

The case study we wish to address here has been defined in the
work by Vanrolleghem, [9]: For determination of the biokinetic
parametersµmax andKS an identification experiment with a
so called Rapid Oxygen Demand TOXicity Device (RODTOX)
can be conducted and respirometic data can be obtained. Gen-
erally speaking, the respirogram characterizes the healthy state
of a biomass concentration (CX(t)) and may be used, for ex-
ample, to identify a toxic alarm, i.e. the respirometric signature
obtained with a RODTOX may be ‘non-standard’, meaning that
the biomass does not perform normally due to the presence of
a toxic in the feeding substrate (CS(t)).

The biokinetic model for the RODTOX device may be pre-
sented in a more general context, i.e. as a fedbatch reactor
in which substrate (including dissolved oxygen) is fed intothe
reactor with a feedrateFin(t), instead of ‘only’ one initial im-
pulse substrate concentration at the very beginning of the ex-
periment. We assume that the dissolved oxygen concentration
in the feeding substrate is at saturation level, i.e. it is not af-
fected by the solute nor the presence of bacteria which are
assumed not to be present in the feeding substrate. The con-
sumption of substrate by the bacteria in the reactor is aerobic
and directly affects the dissolved oxygen concentration inthe
vessel. A dynamic model of the process reads:

dCDO(t)

dt
= kLa(Cen

sat − CDO(t)) − OUR(t) + · · ·

Fin(t)

V (t)
(Csat − CDO(t)) (5)

dCX(t)

dt
= µ(CS(t))CX(t) −

Fin(t)

V (t)
CX(t) (6)

dCS(t)

dt
= −

µ(CS(t))

Y
CX(t) + · · ·

Fin(t)

V (t)
(CSin − CS(t)) (7)

dV (t)

dt
= Fin(t) (8)

OUR(t) = (1 − Y )
µ(CS(t))

Y
CX(t) (9)

µ(CS(t)) =
µmaxCS(t)

KS + CS(t)
(10)

y(tk) = ( 1 0 0 )





CDO(tk)
CX(tk)
CS(tk)



 (11)

wherekLa is the re-aeration constant [1/min],V (t) is the vol-
ume of the solvent [L], including biomass and substrate,Cen

sat

is the saturation concentration of dissolved oxygen, includ-
ing a small (constant) correction for the endogenous respira-
tion of the biomass [mg/L],Csat is the (normal) saturation
concentration of dissolved oxygen [mg/L],µmax is the max-
imum specific growth rate [mg/min],KS is the saturation con-
stant [mg/L],Y is the yield coefficient of biomass on substrate

[mg(CX )/mg(CS)], andOUR(t) is the oxygen uptake rate of
the biomass in the reactor [mg/L.min]. Note that in the above
model it is assumed that there aredissolved oxygen data only
and no biomass concentration data, nor substrate data, nor oxy-
gen uptake rate data which would require differentiation ofthe
dissolved oxygen data w.r.t. time and, therefore, would be sen-
sitive to high frequencies in the measurement noise process
η(tk). The limited sensor availability causes the problem of
reconstructingµmax andKS to be badly defined. Moreover,
the reconstruction of these parameters from noise corrupted
data are hampered because of the same measurement noise pro-
cess and, although the two parameters are theoretically identi-
fiable, practical identification from these data is indeed very
difficult [3]. At the root of this persistent problem lies acor-

relation of the parametric sensitivitiesyµmax
(t) ,

dy(t)

dµmax

and

yKS
(t) ,

dy(t)

dKS

. In the sequel we will focus on the combined
estimation ofµmax andKS and we will assume that the pa-
rametersY andkLa have been estimated off-line or have been
established via the abundantly available literature. Bothpara-
meters can be specified relatively easily in comparison withthe
parameter combination{µmax,KS}.

3 Results

In a numerical experiment the true values for the parameters
were set to the values summarized in tables 1 and 2. The goal
function to be minimized was chosen to be the E-criterion,
meaning that maximization of the minimum eigenvalue of
F(tf ) was desired. Other criteria, such as the modified-E cri-
terion and the D-criterion were considered too but it appeared
that especially the modified-E criterion was extremely difficult
too achieve. Between the E-criterion and D-criterion, the best
results were obtained using the former and these results will
therefore be presented here. An important variable in the nu-
merical experiment is the control horizonh, whose value in-
fluences the ‘smoothness’ of the optimal solutionu?(tk|tk) on
the prediction-horizon interval[tk, tk+h]. A workable value
appeared to beh = 4 minutes. Since the discretisation vari-
able∆t = tk+1 − tk was set to 10 seconds, the optimal control
algorithm optimized 24 constant input values{u(tik|tk), i =
1, . . . , 24} on the interval[tk, tk+h]. As said before, this opti-
mization was performed each time after the next dissolved oxy-
gen observationy(tk+1) was processed by the recursive pre-
diction error algorithm in order to improve the estimateθ̂(tk).
Clearly, the computational burden can become intense if a finer
discretisation grid or larger control horizon is chosen ‘a pri-
ori’. The presented values forh and∆t, however, turned out
to give ‘manageable’ CPU times on a personal computer plat-
form. The observationsy(tk) were generated ‘on-line’ through
simulation of the true system, after which a measurement noise
with a varianceR = 0.01 was added to the simulated values.

In order to make a good comparison of the adaptive optimal
input design solution this case was compared with an identi-
cal case, but now with a random binary input sequence with
a switching probabilityp = 0.5. Implementation of this



θ̄ θ̂(0)
µmax 2.62 · 10−4 5.0 · 10−4

KS 1.0 0.5
Y 0.64 N/A

Table 1: Biokinetic parameter values after [9] and initial es-
timates for these parameters in the two optimal input design
studies reported here.

CS(0) CDO(0) CX(0)
0.0 7.0 4000

Table 2: Initial conditions for the specific setup.

sequence causes the substrate feedrate pump to switch from
Fin(t) = 0 to Fin(t) = Fmax = 0.2 L/min at random on the
switching times{tk, k = 0, . . . , N} (see figure 1, bottom).

Figure 1 shows the adaptive optimal receding horizon inputs
for both cases. It is interesting to see that the optimal result is
to inject a pulse of substrate into the reactor at approximately
3.2 minutes,after the recursive estimator has already learned
from the initial ‘modest’ feeding fase where the feedrate is
only small. This pulse causes the uncertainty in especiallythe
estimate ofµmax to decrease substantially, as desired (figure
2, top-left). Note also that the tail of the optimal input sig-
nal u?(tk) exhibits slight ‘ringing’ behavior, causing the feed-
pump to add small pulses of substrate which, on average, repre-
sent an almost constant, small feedrate. These small pulsesare
added after the biomass has settled in a short zero feeding fase,
just after the large pulse of substrate. It is also interesting to
see that the uncertainty bounds on the parameterKS are much
smaller in the adaptive optimal receding horizon case than in
the case of a random binary input sequence (figure 2, right).
Apparently, the random binary sequence is not sufficiently ex-
citing the dynamics in the bioreactor in order to deduce a re-
liable estimate of the saturation concentration parameter. This
confirms the well-known fact that estimation of the parameter
KS from oxygen (uptake) data is difficult in practice and re-
quires a careful design.

Figure 3 shows both the unobserved and observed state esti-
mates generated by the recursive prediction error algorithm.
Clearly, the algorithm is capable of tracking the dissolvedoxy-
gen dynamics in the bioreactor sufficiently well. The unob-
served states were also found to be reliable reconstructions.
The optimal input sequenceu?(tk|tk) causes the dissolved
oxygen state to settle down in an almost steady state after the
increased oxygen demand due to the substrate pulse at 3.2 min-
utes has decayed away. In this steady state the recursive estima-
tor is only learning at a small rate, since the uncertainty bounds
on the parameter estimates do not decrease substantially after
approximately 8 minutes (figure 2).

Finally, a good indicator for the information content of thecon-
ducted experiment is to inspect the trajectories of the Fisher
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Figure 1: Optimal adaptive receding horizon input (top) and
random binary sequence input (bottom).
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Figure 2: Optimal adaptive receding horizon estimates, gener-
ated by a recursive prediction error algorithm (top) and recur-
sive parameter estimates for the random binary input sequence
(bottom).

Information Matrix elements{fij(t), i, j = 1, 2}. Figure 4
presents these trajectories, including the evolution (in time) of
the goal function (E-criterion) for the two cases of adaptive
optimal receding horizon control and random binary sequence
control. Clearly, the information content for especially the pa-
rameterKS , corresponding tof22(t) in figure 4, substantially
increases if the input is carefully designed using an E-criterion.
This is confirmed after calculating the corresponding ellipsoids
for the parameter estimatêµmax andK̂S at timet0 and timetf
(see figure 5). Maximization of the E-criterion causes the vol-
ume of the ellipsoid to increase substantially in comparison to
a ‘naive’ random binary sequence input design and the adaptive
optimal input design is therefore to be preferred.
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Figure 3: State estimates (unmeasured signalsCX(t), CS(t),
andV (t) and measured signalCDO(t)), generated by the re-
cursive prediction error algorithm. True and estimated states
were both plotted and can hardly be discerned.
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Figure 4: Fisher Information Matrix element trajectories
f11(t), f12(t), f21(t), andf22(t) (top) and the E-criterion ob-
jective function (bottom) for both cases.

4 Conclusions

An optimal adaptive receding horizon optimal control problem
was solved using a (direct) optimal control algorithm in tan-
dem with a recursive prediction error algorithm. The specific
fedbatch case study shows that the combination of these two
algorithms yields satisfactory results that can be implemented
‘on-line’. The specific solution obtained here includes a small
feeding fase, followed by a substrate pulse, after which thefee-
drate is switch off for a short time interval and continues ata
small constant feedrate. It was argued that especially whenthe
experiments are costly and involve a limited number of sensors,
the approach may show very useful.
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Figure 5: Ellipsoids at both an initial (t0 = 5 min) and final
time (tf = 25 min) of the experiment for the adaptive reced-
ing horizon case (top) and the random binary sequence case
(bottom). Clearly, the adaptive receding horizon results are su-
perior to the random-binary-sequence experiment.

Generally speaking, first principle models, based on a sound
physical foundation, are vehicles of our hypotheses and, as
such, are rewarding because they provide insight into the pro-
cess under study. It is well known that it is increasingly dif-
ficult to derive these type of models if the process is complex
and exhibits a myriad of interactions between numerous states
and their associated parameters. In fact, the growth model con-
sidered in our case study may be regarded as ‘black-box’ and
it is considered an archetype model that has shown its value in
many instances. It is important to focus on optimal input de-
sign studies as presented in the current study since the search
for minimal uncertainty bounds on the parameters in the model
structure, obtained via the input/output data record, increases
the validity, or otherwise, of the model structure as a wholefor
both physically based and ‘black-box’ type of models, [1]. Op-
timal input design tools may therefore become very useful in
the search for a satisfactory model for a complex biochemical
system such as presented here or, for example, in the classical
BOD-DO interaction model, [2]. Although not all these sys-
tems may be controlled freely at will, meaning essentially that
the setUadm can indeed be very small, one could progress sim-
ilar to the avenue taken by Vanrolleghem where a small pilot
plant was constructed that allows a broader range of admissi-
ble input signals and subsequent excitations, [9]. In thesecases
an adaptive optimal input design algorithm may be applied, not
only to estimate the values of the parameters in the model struc-
ture, but to assess the validity of the model as a whole.
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