ON ADAPTIVE OPTIMAL INPUT DESIGN
J.D. Stigter®, D. Vries*, K.J. Keesmart

*Systems and Control Group
Wageningen University and Research Center
Mansholtlaan 10-12
6708 PA Wageningen
The Netherlands
e-mail: hans.stigter@wur.nl

Keywords: Identification, Optimal Input Design, Recursivehe field of bioprocess control and, in addition, to introelac

Estimation newadaptiveapproach that solves the input design problem for
a specific case study ‘on-line’, meaning that the best (atire
Abstract estimate of the set of parametérd.e. 0(ty), is used to design

an optimal input signal with respect to a cost criterion I{ide

The problem of optimal input design for a specific fedbatdng the FIM), after which the current estimate is ‘optimally
bioreactor case study is solved recursively. Hereto an-adapdated tof(t; 1) using a so-called recursive parameter esti-
tive receding horizon optimal control problem, involvirtget mation algorithm.

so-called E-criterion, is solved ‘on-line’, using the ant esti-
mate of the parameter vectat each sample instafit, k =
0,...,N — h}, whereN marks the end of the experiment an
h is the control horizon for which the input design proble

Recently, Stigter and Keesman have found analytical soisti
for optimal input design signals with respect to one spepiic
Qameterﬁi in the model structure, [4, 8]. In this case the Fisher
: : " , _ Thformation Matrix reduces to a scalar value which may be op-
in solved. The optimal feed ratey, (tx) thus obtained is aP- timized using a singular control law that can be applied on a

p“(;d and ﬂ;e obs(;arvatlog(tkﬂ) that db_egomes aval'lablitem'ssingular arc in state space that may be reached by a bang-bang
subsequently used In a recursive prediction error algor control. The singular control law is derived by solving aakt

order to find an improved estimate of the parameter eStim%ﬁﬁebraic equations, generated through repeated diffatien

0(tr). The case study involves an identification experimen . s .
with a Rapid Oxygen Demand TOXicity device for estimatioﬂ* the Pontryagin optlm.allty cond.ltllo%; = ,O on. the compact
, whereH is the familiar Hamiltonian associated

of the biokinetic parameteys,... and K s in a Monod type of INtervallty, 2] : :
growth model. It is assumed that the dissolved oxygen prab&¥ith the process model and a goal function that, essentigly
the only instrument available which is an important limtat pends on the parametric output Sensitivitﬁ%%. The solution
Satisfactory results are presented and compared to a *faive of this set of algebraic equations yields explicit expression
put design in which the system is driven by an independdar the input functionu*(¢). In addition, if the cost criterion
binary random sequence with switching probability= 0.5. involves the trace of the Fisher Information Matrix, i.ee th-
This comparison shows that, indeed, the optimal input aesigriterion, the input design problem may also be solved analy
approach yields improved uncertainty bounds on the pagmdically and involves a maximization of the output sensitasg
estimates. of a number of parameter®r which an optimal input signal
needs to be found.

1 Introduction Recent work of Versyck and co-workers includes the solution
_ _ ) . of the optimal input design problem with respect to the modi-
The problem of optimal input design has received ample g5 g criterion (see below) for several case studies usirapan
tenthn |n.the |q_ent|_f|cat|0n literature. Indeed, it is orfetie proach in which the dynamic evolution of the sensitivity aqu
classical identification problems that seeks to addresssan &< is analyzed in detail, [10]. This analysis is subsetye
sential question for the model developer, namely whethier it,seq 1o arrive at an optimal control problem that may be sblve
possible to design a certain experiment in such a way that m‘ﬁnerically, yielding an optimal switching time, initialils-
parameters in the model structure can be uniquely identifiggl,ie concentration, and substrate setpoint conceirédr

and, moreover, how to design an input signal that minimizgge 5 fedbatch reactor case study. A modified-E criterion of 1
(c.q. maximizes) an ‘a priori’ chosen norm of the Fisher info ;g 5chieved for this experimental setup.

mation matrix (FIM) associated with the specific experinagént

setup and corresponding input signal. We shall not elabordithough the reported analytical and numerical results are
too extensively on the historical developments in thisriege Promising, their application in a practical case study o

ing field of study, but will only summarize some recent ddnd a real experimental setup is still limited. This is esply
velopments that have been reported on the subject. Our mi&i@ case in biochemical case studies where (i) the number of
goal in the current study is to focus on the optimal input giesi sensors is usually limited, meaning that not all the steaese
problem for a specific case study that seems to be relevantmgasure directly, (ii) the sensors themselves may be vetjyco



and (iii) may also involve high measurement uncertainties t un-weighted sensitivities, so that the sensitivities asdexl and
deteriorate the parameter estim@tdrawn from an experimen- relatively equal in size to one another.

tal setup and corresponding input design. The search foe MRlote that the cost functions(t;) in the above depends on
advanced algorithms that allow inclusion of these limitasi is f . -
tpe parameter8 whose values are not known ‘a priori’. Let

therefore a challenging problem that has an important pract, ! ; .
cal significance. In addition, as to our knowledge the lia= u’(ty|tx) denote the optimal input calculated on basis of the

ﬁtimateé(tk), having processed the data recdf(t; ). Then,

does not show an example in which the optimal input desig tural choice f luti f the inout desi bl t
problem is solvedn tandemwith a recursive parameter up- naturai OIi(;etoor a solution ot the Input design probiem a

date scheme while this seems to be a natural choice since BB MStantx
problems involve the output parametric sensitivities joar L ) )
rive at the Fisher matrix for the experiment and (ji) to aerat 1 USe the current estimaiét;,) and solve the optimal input
dy pointing to a direction where a minimum of the design problem (3) over a time horizf, ¢y},

a gradient(—jg
innovations residuals (w.r.t. some norm) can be found. 8utl 2 Apply the ‘optimal’ inputu* (¢4 |t),) thus obtained on the
us first introduce some formal definitions in order to be able t  interval [t,,, ;.1 ), assuming for simplicity a zero-order-

be more specific in our discussion. hold mechanism for the input signat (5 t1.),

1.1 Definitions 3. Sample the system at time instapt ,, thereby obtaining
a new measuremepttsy1),
Let the general, possibly non-linear, model structitéd) for

a specific system be given by 4. Process the new measurement to find an improved value

of the current estimaté(¢;), yieldingf(¢. 1), and repeat

dﬂ;if) — F(a(), u(t), 0) 1) the procedure using(t;1).
y(tk) = h(a(ty), ulte), ) +n(tx) @ n summary, our approach is to solve the above identification

wheref : R* x R" x R? — R" is a real valued vector func- Problem as an adaptive receding horizon optimal contrdbpro
tion, i.e. the dynamical mode¥1(6), h : R" x R” x RP — R™ lem that processes the parameter estimates recursively eac
is the observation (or read-out) equatiéris a p-dimensional time an observatiop(t;.1) becomes available.

vector of time-invariant parameters(t) is the n-dimensional our choice for the recursive parameter reconstruction-algo
state vectoru(i) is the r-dimensional input vector, and?) rithm to update the estimatkt,,) in step (4) in the above, is a
is the m-dimensional output vector. We further assume th@j_called ‘recursive prediction error’ algorithm in contous-
the observationd”(ty) = {y(tr), 0 < k < N}, whereN  giscrete format, [5, 7]. The advantage of this specific algor

marks the end of the experiment, is contaminated with a Gagsthat it includes the parametric sensitivities of theestat.e.
sian white measurement noise procéséy), 0 < k < N}
d

with variance-covariance matri®. Note that the above model R
definition is in continuous-discrete format which is a naturof the gradient%te’—e) which is minimized with respect to the
notation for physically based model, often used in bioclwaini prediction error of the predictiof(t,1,6). The algorithm

W(t) = d—‘i%i) in a natural way as to arrive at an estimate

and mechanical engineering. achieves this minimization through calculation and subeety
interpretation of the innovation
1.2 The Optimal Control Problem .
e(te) = y(te) — §(te, 0(tx)) (4)
Since we wish to optimally identify the parameter gebur
control problem may be defined as follows which is, loosely speaking, the mismatch of the last modei pr
diction §(tx, 6(tx)) w.r.t. the current samplg(tx). The in-
max  ¢(t) = [|F(0,t5)]|e ©) terpretation of the innovation is performed through caltioh

w(t)EUadm . . . .
! of a gain matrix which is assumed at steady state for the state

under the dynamical constraints (1), including the dynaiiGector and is calculated explicitly on the basis of a var&nc
evolution of the local parametric output sensitivitiggt) =  covariance matrixP (¢4 ) for the estimated parameters in the
dy(®) \yhich can be derived straightforwardly from the modehodel structure. Since the parametric sensitivifig$t), a
equations (1) and observation equations (2). HE&kg,, is (n x p) matrix, become available once the receding horizon
the set of admissible controls. In the above we have choseptimal control problem is solved at time instapt(step (1)
with some foresight into what follows, to use the so-called En the above procedure), these sensitivities can be use@imm
criterion of the Fisher information matrix), i.e. maximiza- diately for an update of the parameter veofnjtk). Finally,
tion of its minimal eigenvalue at the final tinig. Other criteria it should also be mentioned that the recursive predictioorer
such as D, maodified E, or A-criterion, may be applied — eadtamework provides a unifying perspective on the problem of
with its own advantages/disadvantages [6]. A useful adterroptimal input design in tandem with recursive parameter est
tive formulation of problem (3) is to consider thelative out- mation since both algorithms use the same sensitivity fanst
put sensitivities, appearing in the FIM, instead of the mal, — each, however, for its own goal.



2 The Case Study [mg(Cx)Img(Cs)], and OU R(t) is the oxygen uptake rate of
) ) the biomass in the reactor [mg/L.min]. Note that in the above

2.1 ADynamical Model for Oxygen Uptake in a Fedbatch gl it is assumed that there atissolved oxygen data only

Bioreactor Setup and no biomass concentration data, nor substrate dataxyor o

The case study we wish to address here has been defined irgﬁ'réUptake rate data which W_OUId require differentiatiothef
work by Vanrolleghem, [9]: For determination of the biokiige 9!SSOIved oxygen data w.r.t. time and, therefore, wouldee s
parameters:,.. and K s an identification experiment with g Sitive to hlgh f_requenmes in the measurement noise process
so called Rapid Oxygen Demand TOXicity Device (RODToxﬁ(tk)' Thelllmlted sensor availability causes the problem of
can be conducted and respirometic data can be obtained. GgRonstructingrmax and Ks to be badly defined. Moreover,

erally speaking, the respirogram characterizes the hestite the reconstruction of these parameters from noise comupte
of a biomass concentratiof'§ () and may be used, for eX_data are hampered because of the same measurement noise pro-

ample, to identify a toxic alarm, i.e. the respirometricgigure C€SS and, although the two parameters are theoreticaltyiide
obtained with a RODTOX may be ‘non-standard’, meaning th '?ble, practical identification from these data is indeed/ve
the biomass does not perform normally due to the presencéBficult [3]. At the root of this persistent problem liescar-

a toxic in the feeding substrat€'¢ (). relation of the parametric sensitivitieg,, .. (t) = aciy% and
2 d'q(t

The biokinetic model for the RODTOX device may be preyx; (t) dre In the sequel we will focus on the combined
sented in a more general context, i.e. as a fedbatch reaeistimation ofy.,,., and Ks and we will assume that the pa-
in which substrate (including dissolved oxygen) is fed ithte rametersy” andk;,, have been estimated off-line or have been
reactor with a feedraté;,, (t), instead of ‘only’ one initial im- established via the abundantly available literature. Bmtra-
pulse substrate concentration at the very beginning of Xhe eneters can be specified relatively easily in comparison thith
periment. We assume that the dissolved oxygen concentratigarameter combinatiofys,, .., Ks }-

in the feeding substrate is at saturation level, i.e. it isafe
fected by the solute nor the presence of bacteria which ae
assumed not to be present in the feeding substrate. The con-

sumption of substrate by the bacteria in the reactor is &rofh a numerical experiment the true values for the parameters
and directly affects the dissolved oxygen concentratiothéh \ere set to the values summarized in tables 1 and 2. The goal

Results

vessel. A dynamic model of the process reads: function to be minimized was chosen to be the E-criterion,
dCpo(t) o meaning that maximization of the minimum eigenvalue of
—q ~ FralCui = Cpo(t)) — OUR(Y) + - - F(t;) was desired. Other criteria, such as the modified-E cri-
Fi(t) terion and the D-criterion were considered too but it appear
W(th — Cpol(t)) ®)  that especially the modified-E criterion was extremely diff
dCx (t) Fin(t) too achieve. Betvs{een thg E-criterion and D-criterion, thstb '
T w(Cs(t)Cx (t) — 70 Cx(t) (6) results were obtained using the former and these results wil
therefore be presented here. An important variable in the nu
dCs(t) _ _M(Cs(t))CX(t) 4. merical experiment is the control horizdn whose value in-
di 7 tY fluences the ‘smoothness’ of the optimal solutigtit,|tx) on
in )(Csm — Cs(t)) (7) the prediction-horizon intervdky, t,]. A workable value
Vi(t) appeared to bé = 4 minutes. Since the discretisation vari-
av(t) Fin(t) ®) ableAt = t;,1 — t;, was set to 10 seconds, the optimal control
dt . algorithm optimized 24 constant input valués(ti|t),i =
w(Cs(t)) 1,...,24} on the intervalty, ;. 5]. As said before, this opti-
OUE(t) = (1-Y) Y Cx (1) ©) mization}vvas performed [each tirrle after the next dissolved ox
tmazCs(t) gen observationy(¢;11) was processed by the recursive pre-
wCs(t) = Ks + Cs(t) (10) diction error algorithm in order to improve the estimé(ek).
Cpol(tr) Qlearly, th_e computational burden can bgcome intense ifga fin
y(ts) = (1 0 0)| Cx(ty) (11) dlscretlsatlon grid or larger control horizon is chosen fa p
Cs(ty) ori'. The presented values fér and At, however, turned out

to give ‘manageable’ CPU times on a personal computer plat-
wherek, is the re-aeration constant [1/mif[,(t) is the vol- form. The observationg(t, ) were generated ‘on-line’ through
ume of the solvent [L], including biomass and substratg), simulation of the true system, after which a measuremeisenoi
is the saturation concentration of dissolved oxygen, uhcluwith a varianceR = 0.01 was added to the simulated values.
ing a small (constant) correction for the endogenous raspi
tion of the biomass [mg/L](Cs.: is the (normal) saturation
concentration of dissolved oxygen [mg/ld,,.. IS the max-
imum specific growth rate [mg/min}(s is the saturation con-
stant [mg/L],Y is the yield coefficient of biomass on substrat

[n order to make a good comparison of the adaptive optimal
input design solution this case was compared with an identi-
cal case, but now with a random binary input sequence with

a switching probabilityp = 0.5. Implementation of this



0_ é(o) ) Adaptive OID
Lmaz | 2.62-107% [ 5.0-107%

Ks 1.0 0.5 -
Y 0.64 N/A )
Table 1: Biokinetic parameter values after [9] and initiat e o 5 0 5 = »
timates for these parameters in the two optimal input desi
studies reported here. ozsf o
Cs(0) | Cpo(0) | Cx(0) 0z
0.0 7.0 4000

u(t)

0.1

0.05

Table 2: Initial conditions for the specific setup.

t{min]

sequence causes the substrate feedrate pump to switch f'r:cl)%”e 1: Optimal adaptive receding horizon input (top) and

Fin(t) = 010 F,(t) = Frnae = 0.2 L/min at random on the random binary sequence input (bottom).
switching times{t,, k = 0,..., N} (see figure 1, bottom).

Figure 1 shows the adaptive optimal receding horizon inpt  xw*
for both cases. It is interesting to see that the optimallrésu |-

to inject a pulse of substrate into the reactor at approxaipat Z : Adaptive OID
3.2 minutesafter the recursive estimator has already learnez. J\

from the initial ‘modest’ feeding fase where the feedrate | ¥
only small. This pulse causes the uncertainty in espediadly */
estimate ofu,,,., t0 decrease substantially, as desired (figu
2, top-left). Note also that the tail of the optimal input-sig
nal u*(¢x) exhibits slight ‘ringing’ behavior, causing the feed:
pump to add small pulses of substrate which, on averagestef -
sent an almost constant, small feedrate. These small padses ° s )
added after the biomass has settled in a short zero feediag fiz’

just after the large pulse of substrate. It is also intengstd &, ‘
see that the uncertainty bounds on the param¥éteare much  {|**
smaller in the adaptive optimal receding horizon case than :/|
the case of a random binary input sequence (figure 2, rigt = = o W w o N
Apparently, the random binary sequence is not sufficiently e

citing the dynamics in the bioreactor in order to deduce a feigure 2: Optimal adaptive receding horizon estimatesggen
liable estimate of the saturation concentration param@tes  ated by a recursive prediction error algorithm (top) andirec

confirms the well-known fact that estimation of the parametgive parameter estimates for the random binary input seguen
Ks from oxygen (uptake) data is difficult in practice and regyottom).

quires a careful design.

1

ol

x10™

Figure 3 shows both the unobserved and observed state esti-
mates generated by the recursive prediction error algorith
Clearly, the algorithm is capable of tracking the dissologg-

gen dynamics in the bioreactor sufficiently well. The unob;

served states were also found to be reliable reconstru;ctiorh1e goal function (E-criterion) for the two cases of adaptiv

The optimal input sequence* (ts|t,) causes the dissolvedOpt'mal receding horizon control and random binary seqgeenc

oxygen state to settle down in an almost steady state after %)ntrol. Clearly, the qurmauon C°.”‘e!’“ for espemah;aipa—
rameterKg, corresponding tgfao () in figure 4, substantially

increased oxygen demand due to the substrate pulse at 3.2 min . ) : : . .
. , increases if the input is carefully designed using an Eexddn.
utes has decayed away. In this steady state the recursiveaest__ . . ' ; . -
. ) : . This is confirmed after calculating the corresponding stiigs
tor is only learning at a small rate, since the uncertainiyrios

. . for the parameter estimafg,, .. andf(s at timet, and timet
on the .parameter (_astlmate_s do not decrease substantiaty EJZﬁee figure 5). Maximization of the E-criterion causes thie vo
approximately 8 minutes (figure 2).

ume of the ellipsoid to increase substantially in compariso
Finally, a good indicator for the information content of tan- a ‘naive’ random binary sequence input design and the adapti
ducted experiment is to inspect the trajectories of thedfistoptimal input design is therefore to be preferred.

Information Matrix elementq f;;(t), 7,7 = 1,2}. Figure 4
resents these trajectories, including the evolutionifire} of
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Figure 5: Ellipsoids at both an initiatd{ = 5 min) and final

time (; = 25 min) of the experiment for the adaptive reced-
ing horizon case (top) and the random binary sequence case
(bottom). Clearly, the adaptive receding horizon resukssal-
perior to the random-binary-sequence experiment.

Figure 3: State estimates (unmeasured sig6al$t), Cs(t),
andV (t) and measured signélpo(t)), generated by the re-
cursive prediction error algorithm. True and estimatedesta
were both plotted and can hardly be discerned.
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2 Generally speaking, first principle models, based on a sound
" physical foundation, are vehicles of our hypotheses and, as
such, are rewarding because they provide insight into the pr
cess under study. It is well known that it is increasingly dif
ficult to derive these type of models if the process is complex
E I T ra— and exhibits a myriad of interactions between numerousstat
and their associated parameters. In fact, the growth madhel ¢
20 sidered in our case study may be regarded as ‘black-box’ and
it is considered an archetype model that has shown its value i
many instances. It is important to focus on optimal input de-
sign studies as presented in the current study since thehsear
for minimal uncertainty bounds on the parameters in the hode
structure, obtained via the input/output data record,cases
the validity, or otherwise, of the model structure as a wiiote
tminy both physically based and ‘black-box’ type of models, [1p-O

] ) ) ) ) . timal input design tools may therefore become very useful in
Figure 4: Fisher Information Matrix element trajectoriege search for a satisfactory model for a complex biochemica
fur(t), fr2(t), fa1(t), andfz(¢) (top) and the E-criterion ob- gystem such as presented here or, for example, in the @hssic
jective function (bottom) for both cases. BOD-DO interaction model, [2]. Although not all these sys-
tems may be controlled freely at will, meaning essentidibt t
the seflU,4,, can indeed be very small, one could progress sim-
ilar to the avenue taken by Vanrolleghem where a small pilot
An optimal adaptive receding horizon optimal control peshl plant was constructed that allows a broader range of admissi

was solved using a (direct) optimal control algorithm in-tarP!€ input signals and subsequent excitations, [9]. In tases
dem with a recursive prediction error algorithm. The specifi! @daptive optimal input design algorithm may be applied, n
fedbatch case study shows that the combination of these gy t0 estimate the values of the parameters in the modeg-str
algorithms yields satisfactory results that can be impleteet {Ure; but to assess the validity of the model as a whole.
‘on-line’. The specific solution obtained here includes abm

feeding fase, followed by a substrate pulse, after whicliedbe References
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